
Copyright

by

Georgios-Grigorios Mplemenos

2009

ii

A Reconfigurable Approach to the Design of WSN Routing

Protocols

APPROVED BY

SUPERVISING COMMITTEE:

Assistant Professor Ioannis Papaefstathiou, Supervisor

Professor Apostolos Dollas

Associate Professor Dionisios Pneumatikatos

iv

A Reconfigurable Approach to the Design of WSN Routing

Protocols

by

Georgios-Grigorios Mplemenos, B.Sc.

THESIS

Presented to the Faculty of the Graduate School of

The Technical University of Crete

in Partial Fulfillment

of the Requirements

for the Degree of

MASTER OF SCIENCE

TECHNICAL UNIVERSITY OF CRETE

September 2009

vi

”It is common sense to take a method and try it. If it fails, admit it frankly and
try another. But above all try something.”

FRANKLIN D. ROOSEVELT

viii

Acknowledgments

This senior thesis was elaborated at the Microprocessor and Hardware Lab-
oratory (MHL) in partial fulfilment of the requirements for the degree of Master of
Science from the department of Electronic and Computer Engineering of Technical
University of Crete, under the supervision of the assistant professor Ioannis Papaef-
stathiou.
I feel the need this moment to thank some people who helped me to complete my
master thesis, who encouraged me when some obstacles seemed to be insuperable
and who finally supported me morally during the last two years.
A big thank is not enough to express my gratitude to my parents and my brother,
who encouraged me to this attempt and mainly who supported and continue to
support, by all means, me and my choices.
Also, I would like to thank my advisor, assistant professor Ioannis Papaefstathiou
for the chance, the excellent working environment and the trust he granted for my
research. I hope I didn’t let him down with my work - I am still learning things and
I am trying to improve my skills all the time!
Furthermore, I am grateful to Associate Professor Dionision Pneymatikatos and
Professor Apostolos Dollas who agreed to evaluate this thesis. I would alos like to
acknowledge the support of the following people :

• Andreas Brokalakis, research staff at MHL: his experience helped me in many
difficult technical issues of this thesis.

• Dimitrios Meidanis, PhD student at MHL, for his great help in learning the
tools needed in analog electronics.

• Euripides Sotiriades, PhD student at MHL, for his constant support, during
these months, even when everything seemed to be difficult and for the end-
less moments of snoring during our trips to Finland, Estonia, Belgium and
Netherlands - I hope there will be more...!

Also, I would like to thank my friends Konstantinos Papadopoulos, Charis Ef-

fremidis, Vasilis Dranos and Stauros Zampelis for all the great student years we

ix

had in Chania, hoping that we will have more of them in the future. Finally, I

would like to express my grateful to Zeta for the tolerance she showed the nights

I was working on this thesis and for putting up with me. I dedicate this work to

her...

x

A Reconfigurable Approach to the Design of WSN Routing

Protocols

Georgios-Grigorios Mplemenos, M.Sc.

Technical University of Crete, 2009

Supervisor: Assistant Professor Ioannis Papaefstathiou

A Wireless Sensor Network (WSN) consists of many sensor nodes deployed in
a field, each able to collect environmental information and together able to support
multi-hop Ad-hoc routing. WSNs provide an inexpensive and convenient way to
monitor physical environments. With their environment-sensing capability, WSNs
can enrich human life in applications such as health-care, building monitoring and
home security.
The main challenge is to produce low cost and tiny sensor nodes with minimal low
power and energy consumption. The large number of sensor nodes involved in WSNs
and the need to operate over a long period of time require careful management of
the energy resources as most of those nodes are operated by a small battery.
We designed two different WSN platforms: one that consists of a commonly used
WNS mote and a CPLD device and one that includes an FPGA and a general
purpose CPU. Two different widely used WSN routing protocols were implemented
on them and tested in a real WSN environment.
As this thesis demonstrates, we can use low power FPGAs and CPLDs in different
kinds of nodes (i.e. sensor nodes or base stations) within a WSN environment, in
order to increase the nodes processing power (thus enabling the implementation of
more complex functions) and decrease their overall energy consumption.

xi

xii

Table of Contents

Acknowledgments ix

Abstract xi

List of Tables xvii

List of Figures xix

Chapter 1. Introduction 1
1.1 Motivation . 1
1.2 Scientific Contribution . 2
1.3 Structure of the Thesis . 3

Chapter 2. Theoretical Background and Related Work 5
2.1 Routing Challenges and Design Issues in WSNs 7
2.2 Routing Protocols in WSNs . 9

2.2.1 Network-Structure-Based Protocols 9
2.2.1.1 Flat-Routing . 10
2.2.1.2 Hierarchical Routing 10
2.2.1.3 Location-Based Routing Protocols 11

2.2.2 Routing Protocols based on Protocol Operation 12
2.2.2.1 Multipath Routing Protocols 12
2.2.2.2 Query-Based Routing 12
2.2.2.3 Negotiation-Based Routing Protocols 12
2.2.2.4 QoS-based Routing 12
2.2.2.5 Coherent and Non-coherent Processing 13

2.3 Trust Information Communication Models 13
2.3.1 Basic Notions of Trust Definition 14
2.3.2 Trust Models and Classification 15

xiii

2.3.3 Centralized Approach . 16
2.3.4 Hierarchical Approach . 17
2.3.5 Distributed Approach . 17
2.3.6 Hybrid Schemes . 18
2.3.7 Trust Model Attacks and Countermeasures 18

2.4 Trust Metrics Identification and Trust Value Derivation 19
2.4.1 Metrics for Trust Establishment in Ad-Hoc Sensor Networks . 19
2.4.2 Trust Quantification and Trust Computation 20

2.4.2.1 Trust Value Calculation 20
2.4.2.2 Statistical Trust Calculation 21

2.5 WSN Reconfigurable Platforms . 22
2.5.1 mPlatform . 22
2.5.2 Atific Helicopter . 25

Chapter 3. GPSR Routing Protocol and XMesh Protocol Stack 27
3.1 Greedy Perimeter Stateless Routing 27

3.1.0.1 Greedy Forwarding 29
3.1.0.2 The Right-Hand Rule: Perimeters 32
3.1.0.3 Planarized Graphs . 33
3.1.0.4 Combining Greedy and Planar Perimeters 36

3.1.1 GPSR Trust Model . 39
3.1.1.1 Trust Model Architecture 40
3.1.1.2 Events and Data Collection 41
3.1.1.3 Direct Trust Evaluation 42
3.1.1.4 Indirect Trust/Reputation Evaluation 44
3.1.1.5 Total Trust Evaluation 45

3.1.2 GPSR Software Implementations 46
3.1.2.1 C-Based Implementation 46
3.1.2.2 TinyOS Based Implementations 49
3.1.2.3 GPSR Secure Routing Module 52

3.2 Xmesh Protocol Stack . 53
3.2.1 Protocol Implementation Framework 54
3.2.2 Xmesh Underlying Issues . 55

xiv

Chapter 4. Reconfigurable (CPLD) Nodes Implementation 59
4.1 GPSR Implementation . 59

4.1.1 Euclidean Distance Architecture 60
4.1.2 CPLD - Mote Interconnection 64
4.1.3 CPLD - Mote Intercommunication 66

4.2 XMesh Implementation . 69
4.2.1 Cost Functions Architecture 69
4.2.2 Node Implementation . 70

Chapter 5. Reconfigurable (FPGA) Nodes Implemenation 71
5.1 GPSR Architecture . 72

5.1.1 Neighbor Table . 74
5.1.2 Greedy Forwarder . 75
5.1.3 Perimeter Forwarder . 79
5.1.4 Update Mechanism . 86
5.1.5 Trust Mechanism Architecture 86
5.1.6 GPSR Controller . 92

5.2 Implementation Details . 93

Chapter 6. Reconfigurable (FPGA) BaseStation Implementation 101
6.1 Architecture . 101

Chapter 7. System Verification, Monitoring Tools and TestBed 103
7.1 System TestBed and Verification . 103

7.1.1 Sub-systems Verification . 103
7.1.2 System Testbed . 105

7.2 Monitoring Tools . 106

Chapter 8. Performance Results, Conclusions and Future Work 107
8.1 Performance Results . 107

8.1.1 CPLD Approach . 107
8.1.2 FPGA Approach . 111

8.2 Conclusions . 116
8.3 Future Work . 117

xv

Appendix 118

Bibliography 122

xvi

List of Tables

2.1 Hierarchical vs. Flat topologies Routing 13

3.1 GPSR packet header fields used in perimeter mode forwarding. . . . 37
3.2 Direct Trust Table Structure . 42
3.3 Indirect Trust Table Structure . 45
3.4 GPSR Packets Fields . 53

4.1 Custom Cable Pins . 67

8.1 CPLD Node Approach with GPSR Performance Results 108
8.2 CPLD with GPSR Resource Utilization 109
8.3 Motes with GPSR Resource Utilization 109
8.4 CPLD Node Approach with XMesh Performance Results 111
8.5 CPLD with XMesh Resource Utilization 111
8.6 FPGA vs CPU Performance Results (XUPV2P) 113
8.7 Virtex 5 Resource Utilization . 114
8.8 Virtex 2 Pro Resource Utilization . 115
8.9 Throughput (MPackets/s) FPGA Approach 115
8.10 Maximum Throughput in different Protocols 116

xvii

xviii

List of Figures

2.1 Overview of the mPlatform architecture. 23
2.2 Atific Platform Hardware Architecture 25
2.3 Atific Platform Top View . 26

3.1 Greedy forwarding example. y is x’s closest neighbor to D. 30
3.2 Greedy forwarding failure. 32
3.3 Node x’s void with . 32
3.4 The right-hand rule . 34
3.5 A network with crossing edges . 34
3.6 The RNG graph . 35
3.7 The GG graph . 35
3.8 General Architecture of the Trust Model 41
3.9 GPSR Beacon Packet Format . 51
3.10 GPSR Data Packet Format . 52
3.11 ReliableRoute Components . 54

4.1 CPLD-Based Node Scheme . 60
4.2 Digilent X-Board Block Diagram . 61
4.3 CPLD Calculation Block Diagram 62
4.4 CPLD Multiplication Block Diagram 63
4.5 CPLD Multiplication Controller . 63
4.6 CPLD Calculation Process Controller 64
4.7 IRIS Block Diagram . 65
4.8 MICAz Block Diagram . 65
4.9 Communication Protocol Scheme . 66
4.10 Timing Diagram of Synchronization Protocol 68
4.11 Wireless Platform Top View . 69
4.12 Wireless Platform . 69

xix

5.1 FPGA Node Block Diagram . 71
5.2 XUPV5 Evaluation Platform Block Diagram 72
5.3 GPSR on FPGA Block Diagram . 73
5.4 Neighbor Table Block Diagram . 75
5.5 Memory Entry . 75
5.6 Greedy Forward Mechanism Block Diagram 76
5.7 Greedy Forwarding Controller . 76
5.8 Find Shortest Path Block Diagram 77
5.9 Euclidean Distance Block Diagram 78
5.10 Perimeter Forwarder Block Diagram 80
5.11 Perimeter Forwarder Controller . 80
5.12 Find Clock Wise Path Block Diagram 81
5.13 XY Plane Block Diagram . 82
5.14 Slope Calculation Block Diagram . 83
5.15 Face Change Algorithm Block Diagram 83
5.16 Find Cross Point Block Diagram . 84
5.17 Update Mechanism Block Diagram 86
5.18 Direct Trust Between A and B nodes Block Diagram 87
5.19 Direct Trust Table Block Diagram 88
5.20 Trust A B Block Diagram . 89
5.21 Confidence Factor Between A and B 90
5.22 Indirect Trust Table Block Diagram 90
5.23 Indirect Trust Between A and B nodes Block Diagram 91
5.24 Total Trust Between A and B nodes Block Diagram 92
5.25 Trusted GPSR on FPGA Block Diagram 93
5.26 r-GPSR Controller . 94
5.27 Trusted r-GPSR Controller . 94
5.28 Atom Board (D945GCLF2D) Block Diagram 95
5.29 FPGA Node Top View . 96
5.30 Serial Forwarder Message Format . 97
5.31 Python Script Flowchart of FPGA Node I/O Communication 97
5.32 FPGA Node Software Stack . 98

xx

7.1 TestBed General Scheme . 105

1 RS-232 Block Diagram . 119
2 UART Controller . 120

xxi

xxii

Chapter 1

Introduction

1.1 Motivation

A Wireless Sensor Network (WSN) consists of many sensor nodes deployed in
a field, each able to collect environmental information and together able to support
multi hop Ad-hoc routing. WSNs provide an inexpensive and convenient way to
monitor physical environments. With their environment-sensing capability, WSNs
can enrich human life in applications such as health-care, building monitoring and
home security.
The main challenge is to produce low cost and tiny sensor nodes with minimal low
power and energy consumption. The large number of sensor nodes involved in WSNs
and the need to operate over a long period of time require careful management of the
energy resources as most of those nodes are operated by a small battery. Replacing
batteries on thousands of WSN nodes may well become infeasible, if not impossible
on some applications. Hence, it is well accepted that one of the key challenges in
unlocking the potential of such sensor networks is to decrease their energy consump-
tion so as to maximize their post-deployment active sensing lifetime.
Moving to a different field, Field-Programmable Gate Arrays (FPGAs) are semicon-
ductor devices that can be configured by the customer or designer after manufac-
turing and they perform certain processing intensive tasks more efficiently than the
general-purpose CPUs. FPGAs contain programmable logic components called logic
blocks, and an hierarchy of reconfigurable interconnections that allow the blocks to
be wired together. In most FPGAs, the logic blocks also include memory elements,
which may be simple flip-flops or more complex memory structures.
Moreover, FPGA manufacturers have constructed small Complex Programmable
Logic Devices (CPLDs) which are integrated circuits with architectural features of
both Programmable Logic Arrays (PLAs) and FPGAs. The main characteristics
of the CPLDs are: a) very low energy consumption, b) relatively high bandwidth
when executing certain data manipulation tasks and c) low cost (less than $10).

1

On the other hand, the main disadvantage of those devices is their small number of
resources allowing them to execute only small, yet very CPU intensive, tasks. As
this thesis demonstrates, we can use FPGAs and CPLDs in different kinds of nodes
(i.e. sensor nodes or base stations) within a WSN environment, in order to increase
the nodes processing power (thus enabling the implementation of more complex
functions) and decrease their overall energy consumption.
To the best of the author’s knowledge, this is one of the first attempts to utilize re-
configurable devices in the actual data and networking processing of the WSN nodes
and as our real world measurements clearly demonstrate, this approach can be very
promising in reducing the overall energy cosumption of a WSN infrastructure at the
cost of a few inexpensive CPLD/FPGA devices.

1.2 Scientific Contribution

The contribution of this thesis is the following:

• Design and implementation of 2 newly introduced reconfigurable WSN plat-
forms. The first one includes a common WSN mote and a CPLD device while
the second includes a state-of-the-art FPGA device and a general purpose,
state-of-the-art CPU.

• Hardware Architecture designs of the commonly-used GPSR WSN protocol
(r-GPSR), and implementations on the new WSN platforms.

• Design and implementation of the XMesh’s cost function on the CPLD-based
WSN platform

• Study and architectural design of a Trust Model for the GPSR protocol. This
model adds security and trustworthiness on it.

• Evaluation of the r-GPSR and XMesh protocols on the new platforms based
on execution, energy and power attributes. In general, this is one of the first
works that studies and proposes a way that reconfigurable devices (CPLDs
and FPGAs) can be used in the design of WSN nodes and provides the ba-
sis, through the reconfigurable routing protocols, to develop applications that
utilize all the advantages of FPGAs.

2

1.3 Structure of the Thesis

The remainder of this thesis is organized as follows:

• Chapter 2 presents the theoretical background of WSN routing protocols
and a short classification of them based on their attributes and characteristics.
Furthermore, this chapter illustrates the state-of-the-art trust models that are
used to secure WSN routing protocols. Finally, it summarizes the related work
that has been done so far, regarding WSN platforms that utilize in some way
reconfigurable devices.

• Chapter 3 describes in detail the GPSR routing protocol and especially its
attributes, its characteristics and the algorithms that implements in order
to route packets inside a WSN. Also, in this chapter are presented the soft-
ware implementations of this protocol for different platforms. A newly intro-
duced trust model is illustrated together with its implementation details for
the GPSR protocol. Finally, another multi-hop routing protocol (XMesh) is
briefly described.

• Chapter 4 points out the implementation details of CPLD-based WSN Nodes.

• Chapter 5 presents the implementation details for the newly introduced
FPGA-based WSN node for GPSR protocol.

• Chapter 6 presents the implementation details for the newly introduced
FPGA-based WSN BaseStation for GPSR protocol.

• Chapter 7 describes the different verification processes that were followed in
order to fully test out new platforms. Some monitoring tools that were used
during the development processes are also presented

• Chapter 8, finally, provides performance results of these new platforms de-
rived from experimental, real world experiments; conclusions and future work
on reconfigurable WSN platforms are also presented.

3

4

Chapter 2

Theoretical Background and Related Work

WSNs consist of small nodes with sensing, computation, and wireless com-
munications capabilities. Many routing, power management, and data dissemina-
tion protocols have been specifically designed for WSNs where energy awareness
is an essential design issue. Routing protocols in WSNs might differ depending
on the application and network architecture [1]. Overall, the routing techniques
are classified into three categories based on the underlying network structure: flat,
hierarchical, and location-based routing. Furthermore, these protocols can be classi-
fied into multipath-based, query-based, negotiation-based, QoS-based and coherent
based depending on the protocol operation.
Routing in WSNs is very challenging due to the inherent characteristics that distin-
guish these networks from other wireless ones like mobile ad-hoc or cellular networks.
First, due to the relatively large number of sensor nodes, it is not possible to build
a global addressing scheme for the deployment of a large number of sensor nodes as
the overhead of ID maintenance is high. Thus, traditional IP-based protocols may
not be applied to WSNs. Furthermore, sensor nodes that are deployed in an Ad-hoc
manner need to be self-organizing as the Ad-hoc deployment of these nodes requires
the system to form connections and cope with the resultant nodal distribution, es-
pecially as the operation of sensor networks is unattended. In WSNs, sometimes
getting the data is more important than knowing the IDs of which nodes send it.
Second, in contrast to typical communication networks, almost all applications of
sensor networks require the fbw of sensed data from multiple sources to a particular
BaseStation (BS). This, however, does not prevent the flow of data to be in other
forms (e.g., multicast or peer to peer). Third, sensor nodes are tightly constrained
in terms of energy, processing, and storage capacities and thus, they require careful
resource management. Fourth, in most application scenarios, nodes in WSNs are
generally stationary after deployment except for maybe a few mobile nodes. In other
traditional wireless networks they are free to move, which results in unpredictable
and frequent topological changes. However, in some applications, some sensor nodes

5

may be allowed to move and change their location (although with very low mobil-
ity). Fifth, sensor networks are application-specific (i.e., design requirements of a
sensor network change with application). Sixth, position awareness of sensor nodes
is important since data collection is normally based on the location. Currently, it
is not feasible to use Global Positioning System (GPS) hardware for this purpose.
Methods based on triangulation ([2]), for example, allow sensor nodes to approxi-
mate their position using radio strength from a few known points. It is found in [2]
that algorithms based on triangulation or multilateration can work quite well under
conditions where only very few nodes know their positions a priori (e.g., using GPS
hardware). Still, it is favourable to have GPS-free solutions ([3]) for the location
problem in WSNs. Finally, data collected by many sensors in WSNs is typically
based on common phenomena, so there is a high probability that this data has some
redundancy. Such redundancy needs to be exploited by the routing protocols to im-
prove energy and bandwidth utilization. Usually, WSNs are data-centric networks
in the sense that data is requested based on certain attributes (i.e., attribute-based
addressing). An attribute-based address is composed of a set of attribute-value pair
query.
Due to such differences, many new algorithms have been proposed for the routing
problem in WSNs. These routing mechanisms have taken into consideration the
inherent features of WSNs along with their application and architecture require-
ments. The task of finding and maintaining routes in WSNs is non-trivial since
energy restrictions and sudden changes in node status (e.g., failure) cause frequent
and unpredictable topological changes. To minimize energy consumption, routing
techniques proposed in the literature, employ some well-known routing tactics as
well as tactics special to WSNs, such as data aggregation and in-network process-
ing, clustering, different node role assignment and data-centric methods.
Almost all of the routing protocols can be classified according to the network struc-
ture as flat, hierarchical, or location-based. Furthermore, these protocols can be
classified into multipath-based, query-based, negotiation-based, quality of service
(QoS)- based, and coherent-based depending on the protocol operation. In flat net-
works all nodes play the same role, while hierarchical protocols aim to cluster the
nodes so that cluster heads can do some aggregation and reduction of data in order
to save energy. Location-based protocols utilize position information to relay the
data to the desired regions rather than the whole network ([4], [5]).

6

2.1 Routing Challenges and Design Issues in WSNs

Despite the innumerable applications of WSNs, these networks have several
restrictions, such as limited energy supply, limited computing power, and limited
bandwidth of the wireless links connecting sensor nodes. One of the main design
goals of WSNs is to carry out data communication while trying to prolong the life-
time of the network and prevent connectivity degradation by employing aggressive
energy management techniques. The design of routing protocols in WSNs is influ-
enced by many challenging factors. These factors must be overcome before efficient
communication can be achieved in WSNs. In the following, we summarize some of
the routing challenges and design issues that affect the routing process in WSNs.

Node deployment: Node deployment in WSNs is application-dependent and can
be either manual (deterministic) or randomized.

Energy consumption without losing accuracy: Sensor nodes can use up their
limited supply of energy performing computations and transmitting information in
a wireless environment. As such, energy-conserving forms of communication and
computation are essential. Sensor node lifetime shows a strong dependence on bat-
tery lifetime [6]. In a multi-hop WSN, each node plays a dual role as data sender
and data router. The malfunctioning of some sensor nodes due to power failure can
cause significant topological changes, and might require re-routing of packets and
reorganization of the network.

Data reporting method: Data reporting in WSNs is application-dependent and
also depends on the time criticality of the data.

Node/link heterogeneity: In many studies, all sensor nodes were assumed to
be homogeneous (i.e., have equal capacity in terms of computation, communica-
tion, and power). However, depending on the application a sensor node can have
a different role or capability. The existence of a heterogeneous set of sensors raises
many technical issues related to data routing. For example, some applications might
require a diverse mixture of sensors for monitoring temperature, pressure, and hu-
midity of the surrounding environment, detecting motion via acoustic signatures,
and capturing images or video tracking of moving objects

7

Fault tolerance: Some sensor nodes may fail or be blocked due to lack of power,
physical damage, or environmental interference. The failure of sensor nodes should
not affect the overall task of the sensor network. If many nodes fail, medium access
control (MAC) and routing protocols must accommodate formation of new links
and routes to the data collection BSs.

Scalability: The number of sensor nodes deployed in the sensing area may be
on the order of hundreds or thousands, or more. Any routing scheme must be able
to work with this huge number of sensor nodes. In addition, sensor network routing
protocols should be scalable enough to respond to events in the environment. Until
an event occurs, most sensors can remain in the sleep state, with data from the few
remaining sensors providing coarse quality.

Network dynamics: In many studies, sensor nodes are assumed fixed. However,
in many applications both the BS or sensor nodes can be mobile [7]. As such, rout-
ing messages from or to moving nodes is more challenging since route and topology
stability become important issues, in addition to energy, bandwidth, and so forth.

Connectivity: High node density in sensor networks precludes them from being
completely isolated from each other. Therefore, sensor nodes are expected to be
highly connected.

Coverage: In WSNs, each sensor node obtains a certain view of the environment.
A given sensor’s view of the environment is limited in both range and accuracy; it
can only cover a limited physical area of the environment. Hence, area coverage is
also an important design parameter in WSNs.

Data aggregation: Since sensor nodes may generate significant redundant data,
similar packets from multiple nodes can be aggregated to reduce the number of
transmissions. Data aggregation is the combination of data from different sources
according to a certain aggregation function (e.g., duplicate suppression, minima,
maxima, and average). This technique has been used to achieve energy efficiency
and data transfer optimization in a number of routing protocols.

Quality of service: In some applications, data should be delivered within a certain

8

period of time from the moment it is sensed, or it will be useless. Therefore, bounded
latency for data delivery is another condition for time-constrained applications.

2.2 Routing Protocols in WSNs

In general, routing in WSNs can be divided into flat-based routing, hierarchical-
based routing, and location-based routing depending on the network structure. In
flat-based routing, all nodes are typically assigned equal roles or functionality. In
hierarchical-based routing, nodes will play different roles in the network. In location-
based routing, sensor nodes positions are exploited to route data in the network.
A routing protocol is considered adaptive if certain system parameters can be con-
trolled in order to adopt to current network conditions and available energy levels.
Furthermore, these protocols can be classified into multipath-based, query-based,
and negotiation-based, QoS-based, or coherent-based routing techniques depending
on the protocol operation. In addition to the above, routing protocols can be clas-
sified into three categories, proactive, reactive, and hybrid, depending on how the
source finds a route to the destination. In proactive protocols, all routes are com-
puted before they are really needed, while in reactive protocols, routes are computed
on demand. Hybrid protocols use a combination of these two ideas. When sensor
nodes are static, it is preferable to have table-driven routing protocols rather than
reactive protocols. A significant amount of energy is used in route discovery and
set-up of reactive protocols. Another class of routing protocols is called cooperative.
In cooperative routing, nodes send data to a central node where data can be aggre-
gated and may be subject to further processing, hence reducing route cost in terms
of energy use. Many other protocols rely on timing and position information. In the
following subsections we present a classification according to the network structure
and protocol operation (routing criteria).

2.2.1 Network-Structure-Based Protocols

The underlying network structure can play a significant role in the operation
of the routing protocol in WSNs.

9

2.2.1.1 Flat-Routing

The first category of routing protocols are the multi-hop flat routing pro-
tocols. In flat networks, each node typically plays the same role and sensor nodes
collaborate to perform the sensing task. Due to the large number of such nodes, it
is not feasible to assign a global identifier to each node. This consideration has led
to data-centric routing, where the BS sends queries to certain regions and waits for
data from the sensors located in the selected regions. Since data is being requested
through queries, attribute-based naming is necessary to specify the properties of
data. Early work on data centric routing (e.g., SPIN and directed diffusion [8])
were shown to save energy through data negotiation and elimination of redundant
data. These two protocols motivated the design of many other protocols that follow
a similar concept. Some of these protocols are the following:

• Sensor Protocols for Information via Negotiation (SPIN) ([9], [10], [11])

• Directed diffusion ([12])

• Rumor Routing ([13])

• Minimum Cost Forwarding ([8])

• Gradient-based routing ([14])

• Information-driven sensor querying and constrained anisotropic diffusion rout-
ing ([15])

• GOUGAR ([16])

• ACQUIRE ([17])

• Energy-Aware Routing ([18])

• Routing Protocols with random walks ([19])

2.2.1.2 Hierarchical Routing

Hierarchical or cluster based routing methods, originally proposed in wire
line networks, are well-known techniques with special advantages related to scala-
bility and efficient communication. As such, the concept of hierarchical routing is

10

also utilized to perform energy-efficient routing in WSNs. In a hierarchical architec-
ture, higher-energy nodes can be used to process and send the information, while
low-energy nodes can be used to perform the sensing in the proximity of the target.
The creation of clusters and assigning special tasks to cluster heads can greatly
contribute to overall system scalability, lifetime, and energy efficiency. Hierarchical
routing is an efficient way to lower energy consumption within a cluster, performing
data aggregation and fusion in order to decrease the number of transmitted mes-
sages to the BS. Hierarchical routing is mainly two-layer routing where one layer is
used to select cluster heads and the other for routing. However, most techniques in
this category are not about routing, but rather who and when to send or process/
aggregate the information, channel allocation, and so on, which can be orthogonal
to the multihop routing function. Some of these protocols are enumerated below:

• LEACH protocol ([6])

• Power-Efficient Gathering in Sensor Information Systems ([20])

• Threshold-Sensitive Energy Efficient Protocols ([21], [22])

• Small minimum energy communication network (MECN) ([23])

• Sensor aggregates routing ([24])

• Hierarchical power-aware routing ([25])

• Two-Tier Data Dissemination ([7])

2.2.1.3 Location-Based Routing Protocols

In this kind of routing, sensor nodes are addressed by means of their loca-
tions. The distance between neighboring nodes can be estimated on the basis of in-
coming signal strengths. Relative coordinates of neighboring nodes can be obtained
by exchanging such information between neighbors ([2], [3], [25]). Alternatively, the
location of nodes may be available directly by communicating with a satellite using
GPS if nodes are equipped with a small low-power GPS receiver. To save energy,
some location-based schemes demand that nodes should go to sleep if there is no
activity. More energy savings can be obtained by having as many sleeping nodes in
the network as possible. The problem of designing sleep period schedules for each
node in a localized manner was addressed in [26].

11

2.2.2 Routing Protocols based on Protocol Operation

2.2.2.1 Multipath Routing Protocols

In this subsection we study routing protocols that use multiple paths rather
than a single path in order to enhance network performance. The fault tolerance
(resilience) of a protocol is measured by the likelihood that an alternate path exists
between a source and a destination when the primary path fails. This can be
increased by maintaining multiple paths between the source and destination at the
expense of increased energy consumption and traffic generation. These alternate
paths are kept alive by sending periodic messages. Hence, network reliability can be
increased at the expense of increased overhead in maintaining the alternate paths.
Such protocols are presented in [27], [18], [28] and [29].

2.2.2.2 Query-Based Routing

In this kind of routing, the destination nodes propagate a query for data
(sensing task) from a node through the network, and a node with this data sends
the data that matches the query back to the node that initiated the query. Usually
these queries are described in natural language or high-level query languages. An
example of a Query-Based routing protocol is rumor routing protocol ([13]), which
uses a set of long-lived agents to create paths that are directed towards the events
they encounter.

2.2.2.3 Negotiation-Based Routing Protocols

These protocols use high-level data descriptors in order to eliminate redun-
dant data transmissions through negotiation. Communication decisions are also
made based on the resources available to them. The SPIN family protocols [9] dis-
cussed earlier and the protocols in [10] are examples of negotiation-based routing
protocols.

2.2.2.4 QoS-based Routing

In QoS-based routing protocols, the network has to balance between energy
consumption and data quality. In particular, the network has to satisfy certain QoS
metrics (delay, energy, bandwidth, etc.) when delivering data to the BS. [30]

12

2.2.2.5 Coherent and Non-coherent Processing

Data processing is a major component in the operation of wireless sensor
networks. Hence, routing techniques employ different data processing techniques.
In general, sensor nodes will cooperate with each other in processing different data
flooded in the network area.

Table 2.1: Hierarchical vs. Flat topologies Routing

Hierarchical Routing Flat Routing
Reservation-based scheduling Contention-based scheduling

Collisions avoided Collision Overhead present
Reduced duty cycle due to Variable duty cycle by controlling

periodic sleeping sleep time of nodes
Data aggregation cluster-head Node on multi-hop path

aggregates incoming data from neighbours
Simple but non-optimal routing Routing optimal with added complexity
Global and local synchronization Links formed on the fly without sync

Energy dissipation is uniform Energy dissipation depends on traffic patterns

2.3 Trust Information Communication Models

A Wireless Sensor Network should satisfy a number of security requirements.
An important subset of the security threats can be addressed implementing a trust
management system, which establishes trust relationships among the network nodes.
The methods for calculating trust via concatenation and multipath propagation are
referred to as trust models. These relationships are then taken into account when a
node needs the collaboration of its neighbours to accomplish a task, such as routing
and data aggregation. While key-based techniques can be used to provide data
integrity and confidentiality, a trust model is required for higher layer decisions,
which are critical in this collaborative networking environment formed by the sensor
networks. The output of this scheme will be a single trust value that will be taken
into account when deciding the routing path. Trust schemes work towards the
effective increase of availability and reliability of a sensor network which is of primary
concern taken into account the unattended and infra-structureless nature of such
networks. For a complete estimation of such a scheme not only computational

13

complexity but also the level of increase of the total network throughput and the
impact on energy consumption must be thoroughly examined in order to evaluate
its effective applicability in WSN networks.
Unlike infrastructure-based networks, nodes need to cooperate in order to route
packets in ad-hoc and sensor networks. However, in this unmanaged environment,
trusting the neighbor for forwarding the traffic is not a wise option. To establish
trust relationships, the nodes are required to evaluate the trust of their neighbors
and communicate in order to exchange trust information, exactly as happens in every
society. To evaluate the trust, each node monitors the behaviour of its neighbors
and/or challenges it. The outcome may be used by itself or can be announced to
other nodes as well.
In this chapter are investigated various trust models focusing on the way trust
information is communicated among nodes, i.e. we will study how the nodes perceive
their neighbors trust.

2.3.1 Basic Notions of Trust Definition

Before the analysis of the different aspects and characteristics of WSN trust
models a short description for the meaning of trust is provided in this section. Trust
concept has been used in the literature for many purposes. For example, authors in
[31] present a new approach of dynamic symmetric key distribution algorithm for
encrypting the communication between two nodes in a wireless sensor network, by
using a localized node computation of a trust value granted by the requesting nodes,
without the need for a trusted third party node. Below we provide some necessary
definitions:

• Trust is defined as the confidence of an entity on another entity based on the
expectation that the other entity will perform a particular action important to
the truster, irrespective of the ability to monitor or control that other entity.

• Reputation is the opinion of one entity about another and in an absolute
context it is the trustworthiness of an entity.

Trust establishment can be considered as the application of an evaluation metric
to a body of trust evidence that is constructed from the set of attributes that
define trust. The outcome of the trust establishment process is a trust relation.

14

Trust relations are based on evidence created by the previous interactions of entities
within a network. The evidence may be obtained on- or off-line. An established trust
relation can be used in other trust establishment processes and can be combined with
other relations to form more general trust relations. In [32] Trust Establishment is
defined as the specification of admissible types of trust evidence, the generation,
distribution, discovery and evaluation of trust evidence. Trust establishment can be
considered as a process which involves the following steps:

1. Collection of evidence from network entities

2. Evaluation of trust based on a defined set of metrics

3. Propagation of trust evaluation results in other network entities

2.3.2 Trust Models and Classification

To thoroughly study trust models, we need to identify the building blocks
they consist of, or the invoked processes. There are several options to be decided
when designing a trust model. To provide a preview:

• The participating entities monitor the behavior of neighboring nodes, in order
to obtain trust-related data. The aspects of behavior under measurement
may vary, from model to model as well as the way this is quantified. The
measurement may be performed by one, more or all the nodes of the network.
Each monitoring (source) node may monitor/observe the behavior of one, a set
(possibly the nodes of its cluster) or all the neighboring nodes of the network.

• Once the trust data are formed, they are communicated, either to the upper
layers of the node (in which case the trust values are consumed by the node
itself and the model is based on direct observations only) or to other nodes as
well, building a reputation scheme. In the later case, the trust information may
travel towards any node requesting this information, all the neighboring nodes
(flooding of trust information), nodes fixed number of hops away (limited
flooding), a set of nodes (aggregator nodes, or nodes that have used this path
recently) or a single trusted node (sink) or cluster head ([33]).

• The trust information is used to decide the eligibility of a node for a specific
task, or the exclusion of the node from candidates. The criteria for this choice

15

is usually the overall node trust value (which may be a function of differ-
ent trust metrics) while the selected threshold values depend on the desired
sensitivity. Other response options are defensive response, offensive response,
and dismissal response ([34]). A defensive response avoids using bad reputed
nodes but accepts their packets. In an offensive response, a node refuses to
forward packets received from an observed node that violates the trust limits,
punishing it. With an extreme violation of trust limits, a bad node is totally
dismissed with zero chance to be accepted.

• The eligibility decision may be taken in one trusted node only (sink or cluster
head) or can be taken in a distributed way either from all nodes in the network
during their routing decisions or by part of them. When the trust information
is used to decide the non-trusted nodes,these decisions may travel to other
nodes based again on some announcement protocol which defines whether this
information will be communicated to all nodes, or to a list of nodes or to single
nodes upon request.

A variety of trust models will be evaluated along the above four directions rang-
ing from proactive and reactive ad-hoc routing protocols [35] (e.g. DSR, AODV,
TORA) to trust-modified geographic routing protocols (GPSR, GEAR). We will
try to organize them in categories but mainly evaluate them. Different categories
of trust models can be formulated based on each arising option described above, as
also stated in [32]. For example, we can distinguish trust models which are based on
direct trust measurements from others which are based on both direct and indirect
trust measurement. We can also classify the trust models based on the network
element that measure the trust which can be one, a set of special nodes or all of
them. Another option is to classify them according to the node that decides the
trusted/non trusted nodes. In the sequence, we classify the trust models in three
categories: centralized, hierarchical and distributed based on the split of function-
ality among the participating nodes.

2.3.3 Centralized Approach

In a centralized trust model, a (head) node undertakes the responsibility to
decide the node’s trustworthiness, based either on trust data it has collected on its
own, or on trust data received by other nodes. The head node issues a broadcast

16

message requesting trust information and all the receiving nodes respond with the
trust data. Then these data are used to select the most trustful node to undertake a
certain task, which is usually the forwarding task. The decision is then announced
back to the participating nodes, to appropriately update the relevant information.
In [35], a similar scheme is adopted to elect the next cluster head in the cluster.
The current cluster head undertakes the responsibility to gather trust information
and decide the next cluster head. This protocol is suitable for sensor network which
follow clustering architectures or assign a node with a specific task. This task can
be data forwarding (e.g. a node with higher capabilities may be assigned the task of
forwarding the packets of the cluster) or data aggregation or even trust evaluation, as
for example in [36] the nodes calculate their neighbors trust based on the information
received from an ”anchor” apart from their own observations. These nodes become
then more important than others and represent potential single points of failure,
thus necessitating the implementation of a trust model [37].

2.3.4 Hierarchical Approach

To economize resources such as transmission power and bandwidth, dense
sensor networks can be are divided in groups/clusters and one (or more) node in
each cluster undertakes special responsibility. The division can be based on location
or application criteria. For example, nodes sensing the temperature can form a
group while nodes for other physical parameters may belong to a different group.
Special responsibilities include (but are not limited to) forwarding towards the sink
or data aggregation or trust measurement. Different solutions for choosing the
”special” nodes exist (such as the LEACH scheme) [6]. Here, we focus on trust
models designed for sensor networks of hierarchical structure.

2.3.5 Distributed Approach

Trust models assume that no sensor has been assigned a specific role in the
trust management system. Direct trust measurements are used as a criterion for
routing purposes while a combination of direct and indirect measurements can also
be taken into account. Although the indirect measurements could be considered only
as a component of the trust value, actually they play a more significant role than
that. They are part of the trust system management design since the communication
of this information introduces the need for a specific protocol (type of messages

17

exchanged,frequency, interactions, etc.). Moreover, they affect the performance of
the sensor network since they consume resources for transmission and processing.

2.3.6 Hybrid Schemes

Beyond completely centralized or distributed trust management schemes,
hybrid schemes compromising resource consumption for achieved security have also
been reported. An example is the ”Group - based trust management” scheme pro-
posed in [38]. This is a novel lightweight group based trust management scheme
for distributed wireless sensor networks in which the whole group gets a single trust
value. Within the group the distributed trust management approach is used in
which all sensor nodes need to calculate individual trust values for all group mem-
bers. Cluster head is responsible for trust values aggregation and forwarding to the
base station. Depending upon the trust values concentrated in base station each
whole group is assigned one out of three possible values: trusted, un-trusted and
uncertain.

2.3.7 Trust Model Attacks and Countermeasures

Trust management can effectively improve network performance. Therefore,
trust management itself is an attractive target for attackers. For example, trust
evaluation systems also suffer from sybil attacks when a malicious node can create
faked IDs that share or even take the blame which should be given to the mali-
cious node. Another possible attack is the newcomer’s attack: a malicious node
removes its bad history by registering as a new user. The defence against the Sybil
attack and newcomer attack does not rely on the design of trust evaluation, but
the authentication schemes. Other attacks that threaten trust evaluation systems
include:

• Bad Mouthing Attack

• On-Off Attack

• Conflicting Behavior Attack

18

2.4 Trust Metrics Identification and Trust Value Derivation

The actions expected to be taken by every node in a sensor network include
forwarding of packets, appropriate handling of routing messages, sincere partici-
pation in the network operation, performing forwarding, aggregation and specific
protocol-related information communication etc. Each action can be described us-
ing a set of different attributes and thus each node can be described by its ID, the
actions it contributes in and the relevant attributes values. When the cooperation
process among the nodes finishes, the trust relationship is set up among the nodes,
and the historical cooperation records can be built gradually. Trust can be build
monitoring different aspects of the behavior of the neighboring node.

2.4.1 Metrics for Trust Establishment in Ad-Hoc Sensor Networks

There is no consensus among researchers on the behavior aspects that should
be monitored in order to calculate a single total trust value for each node. This is is
not surprising since the adopted metrics depend on the type of attack the network
should be shielded from. The type of monitored aspect affects the types of attack
the trust system can face. For example, if the message integrity is not monitored,
any attack based on message modification will not be combated.
For this reason, in this section, we investigate the node behaviors that have to be
monitored in order to define its trustworthiness and then we study how this infor-
mation can be used to calculate a trust value. Since monitoring multiple behavior
aspects and the maintenance of the relevant information consumes valuable resources
(in terms of power, processing capability and memory), the target is to identify the
metrics that bring the best result with the available resources.

• Data Packets Forwarded: Each node in the network buffers every trans-
mitted packet for a limited period. During this time, each node places its
wireless interface into promiscuous mode in order to overhear whether the next
node has forwarded the packet or not. The information collected through this
scheme is then used by the Pathrater entity in order to define different (dy-
namically varying) ratings for the neighboring nodes. Watchdog and Pathrater
have been designed to enrich with trust the Dynamic Source Routing protocol
(which is a re-active routing protocol), although they are also applicable to a
wide range of routing protocols.

19

• Control Packets Forwarded: Similarly to the observations regarding the
data packet forwarding, the forwarding of control (routing) messages can be
monitored in order to evaluate the trust of a sensor node. The method of pas-
sive acknowledgement can be further classified into acknowledgements for data
packets and acknowledgements for control packets, to produce two different
trust metrics. This is meaningful only if we intend to assign different weight
values to each metric. The approach is similar to the one described for data
packets: for each transmitted control packet a counter is maintained and the
source node listens the transmissions of the destination node in order to check
whether the control message has been forwarded. In case, data forwarding is
distinguished from control messages forwarding, a different set of counter is
needed. The trust related to control frames is expressed similarly to the data
forwarding metric [39].

• Data Packet Precision: The forwarding of altered packets should raise an
alarm and the node should be marked from suspicious to malicious. This way
all attacks related to message modifications can be combated. This metric
is applicable to all routing schemes. The category Packet Precision [40] en-
sures the integrity of the data and control packets that are either received or
forwarded by other nodes in the network.

• Other metrics: ”Hello” replies measurements [37], Packet Address Modified
[40], Cryptography, Correct routing protocol execution [39].

2.4.2 Trust Quantification and Trust Computation

The trust value represents a total trustworthiness of a node, which is evalu-
ated based on a set of trust factors expressing the metrics described in the previous
section. The trust value of a node changes dynamically because the values of each
trust evaluation factor change with the lapse of time.

2.4.2.1 Trust Value Calculation

Different options regarding the calculation of the overall trust value exist:
it can be calculated as a product of trust-related parameters value or as a weighted
sum where each trust parameter is assigned a different weight, i.e. level of impor-
tance.

20

The case of product has been initially proposed in [37] where three different trust
parameters were used: the Cryptography capability of the Node (Ci), the Availabil-
ity (based on beacon messages) and the Packet forwarding. The equation expressing
the trust value is:

Ti = Ci ∗ Ai ∗ b ∗ Pi (2.1)

It is worth stressing that although Ai and Pi range from 0 to 1, two values are only
possible for Ci 1 and 0, which emphasizes on the value of cryptography in secur-
ing the network communication. An encouragement factor b was also introduced
in calculating the forwarding trust value which is initially set high and decreases
with increase in number of samples to encourage newly activated nodes to forward
packets.
The initial trust values have attracted a lot of attention, with the most popular
proposals assigning an average trust value, when needed. No such choice is required
in the case that packet forwarding is expressed as the ratio of successfully forwarded
packets over the received packets, assuming that the trusted routing protocol does
not use the maximum trust value criteria for routing. If this assumption does not
hold, new nodes will never get the opportunity to forward a packet unless every
other node is exhausted.
An approach widely adopted defines the overall trust as a sum of weighted factors.
This means that the trust parameters are first the significance of the measurement,
i.e.

Txy =
n∑

i=1

[Wxy(i) ∗ Txy(i)] (2.2)

Where Txy is the situational trust Txy(i) in node y calculated by node x for trust
category i, n the number of evaluated metrics and Wxy(i) the weight assigned to
the trust metric i.
Slightly different proposals for the calculation of the overall trust value have been
defined in [40].

2.4.2.2 Statistical Trust Calculation

Other approaches in trust calculation have concentrated in statistical meth-
ods ([41]). In [41] the output of the trust mechanism is a trust value and a confidence
interval around this value based on direct and indirect experiences of sensor node
behavior. Statistical values are used both in initial evaluation of experience records

21

as well as the collected experiences by third parties. An assumption taken in this
work is the existence of sufficient redundancy in the amount of sensor nodes to meet
the application needs. The correctness of sensed data values can be verified by close
neighbors. In the initial evaluation the value of confidence interval is used to de-
termine the existence of sufficient evidence in order to take the decision if the node
can be considered trusted or not.

2.5 WSN Reconfigurable Platforms

One of the most important features of a successful WSN platform is its
low energy consumption. That is the main reason that most available WSN nodes
include a bare minimum of circuitry typically consisting of some sensoring devices,
a simple micro controller and a simple wireless communication module.
Recent advances in micro-electronics, and especially in the field of reconfigurable
devices, have enabled the development of reconfigurable, low-cost, low-power and
high performance devices that can be deployed in WSN nodes. In this section, some
of these platforms are presented, which are, according to our knowledge, the first
attempts to introduce reconfigurable devices in the field of WSNs.

2.5.1 mPlatform

mPlatform [42] is a new reconfigurable modular sensornet platform that en-
ables real-time processing on multiple heterogeneous processors. The heart of the
mPlatform is a scalable high-performance communication bus connecting the dif-
ferent modules of a node, allowing time-critical data to be shared without delay
and supporting reconfigurability at the hardware level. Furthermore, the bus allows
components of an application to span across different processors/modules without
incurring much overhead, thus easing the program development and supporting
software reconfigurability. In [42], the authors describe their communication archi-
tecture and protocol as well as their implementation in a low power, high speed
complex programmable logic device (CPLD). An asynchronous interface decouples
the local processor of each module from the bus, allowing the bus to operate at
the maximum desired speed while letting the processors focus on their real-time
tasks such as data collection and processing. Extensive experiments on the mPlat-
form prototype have validated the scalability of the communication architecture,

22

and the high bandwidth provided at the expense of a small increase in the power
consumption. Finally, they demonstrate a realtime sound source localization appli-
cation on the mPlatform, with four channels of acoustic data acquisition, FFT, and
sound classification, that otherwise would be infeasible using traditional buses such
as I2C.
mplatform addresses the inter-module communication problem by introducing a

Figure 2.1: Overview of the mPlatform architecture.

new flexible, efficient and reconfigurable communication channel architecture that
better fits the needs of modular sensor network platforms. The architecture is based
on the following key design requirements: Resource efficiency, Processor Indepen-
dence, Scalability,Fairness, Reconfigurability.
mPlatform meets these design requirements by abstracting the communication chan-
nel from the communicating processors. The local processor on each module in-
teracts with a parallel bus through a bus controller, implemented in a low-power
CPLD. This approach decouples the communication channel from the local pro-
cessor, allowing different processors running at different speeds to share the bus
without impacting its throughput. To guarantee fairness a TDMA-based protocol
implemented in the bus controller allows multiple processors to exchange data al-

23

most simultaneously. The high data rate enabled by the parallel bus combined with
the TDMA protocol create a near real time inter-module communication channel
that scales well with the number of modules in the stack. Processor independence
and resource efficiency are achieved by enforcing an asynchronous interface over a
separate parallel bus between the CPU and the bus controller. This enables the
bus controller to be transparently interfaced to a processor running at any speed.
The asynchronous nature of the interface enables the processor to transfer data at
a speed usually limited by the processor clock speed because of the relatively high
clock speed of the bus controller.
The advanced functionality of the new communication architecture comes at the
expense of a small increase in the power consumption of the platform mainly due
to the use of CPLD. However, the flexibility afforded by the CPLD outweighs the
small power overhead. The mPlatform architecture is a research platform designed
to facilitate rapid prototyping and experimentation. Complex programmable logic
devices provide an abstraction of the hardware layer that drastically simplifies the
tinkering at the protocol level requiring little change to hardware.
mPlatform is a modular architecture that focuses on providing a Lego-like, plug-
and-play capability to put together a sensor network platform tailored to specific
application/research requirements. The hardware architecture design was driven by
the following basic guidelines:
Reconfigurability: The architecture needs to be easily reconfigurable to meet spe-
cific needs of a particular research project. For example, a data collection task with
a low sampling rate may just require an 8-bit processor and a slow radio connection
to a gateway to conserve power, while a physiological monitoring application on
a body sensor network that alerts a remote physician upon detecting an abnormal
condition will need more processing power to analyze the signals, enough storage for
disconnected operation, and the ability to connect to multiple wireless networks. To
enable reconfigurability, mPlatform was designed so that a wide range of processors,
from MSP430 class processors up to PXA270 processors, can co-exist on the same
platform and efficiently communicate in any possible configuration.
Real-time event handling: Since a sensor platform is typically used in appli-
cations where it constantly interacts with the environment, the ability to handle
real-time events is crucial. Examples include detection of an abnormally high tem-
perature indicating a fire, detection of an abnormal physiological signal, and arrival
of a radio packet.

24

Fine-grained power management: In many sensing and mobility applications
nodes are powered by battery or salvaged energy sources. It is desirable to be able
to shut down components when not in use and scale up or down operation volt-
age and/or frequency of the components in order to accommodate task needs while
conserving energy and other resources.

2.5.2 Atific Helicopter

The design and implementation of an innovative high performance multi-
radio WSN platform is presented in [43], [44]. This platform includes both multi-
processor devices and extremely flexible and fully re-configurable FPGAs. The use
of four parallel radio transceivers with 83 selectable frequency channels allows the
development of communication protocols with high interference tolerance, low la-
tency and high mesh-networking performance. Purely simultaneous data exchanges
with several neighbors are possible. Case studies present the performance of a num-
ber of multi-processor implementations including from 1 to 4 parallel Altera [45]
Nios II [46] soft core processors. In addition, two design cases achieving ultra low
latency and high network throughput employing up to four radio transceivers are
also presented.
The platform is targeted for demanding WSN applications for surveillance and con-
trol in in-door environment. The platform operates in large mesh networks, where
high network throughput and security, very low routing delay, and very high inter-
ference tolerance are required.
The use of FPGA enables timely accurate parallel processing, reconfigurability and
high processing performance. The processing architecture can be changed in field
after deployment.

The hardware architecture of the platform is presented in Figure 2.2. All the

Figure 2.2: Atific Platform Hardware Architecture

25

processing takes place on Altera Cyclone EP1C20 [47] FPGA. The FPGA is large
enough for implementing several embedded processor cores, system memory, and
custom hardware accelerators. The Cyclone FPGA contains 20,060 Logic Elements
(LEs) and 294,912 bits of embedded dual-port RAM. These resources are suited
for implementing versatile multi-processor architectures. Further, custom hardware
accelerators can be synthesized into the FPGA for accelerating functions that are
performed faster and with lower energy on dedicated logic than on a processor.

Normally the FPGA configuration is loaded from an on-board flash memory on

Figure 2.3: Atific Platform Top View

power up. Alternatively, Altera download cable can be used to configure both the
flash memory and FPGA.
Wireless communication use four Nordic Semiconductor nRF2401A [48] radio transceivers.
The radios have 1 Mbps data rate and 83 selectable frequency channels in the 2.4000
2.4835 GHz license-free frequency band (Europe region). Thus, a locally unique
frequency channel may be assigned for each radio link. This may be utilized for
developing very high performance link layer protocols.
The platform can operate as stand-alone node in the WSN, but it can also be con-
nected to a PC computer for debugging and monitoring of internal operation. This
is enabled by RS-232 serial port [49]. PC can also accommodate some of the WSN
application or protocol functionality especially during the development phase.
The complete WSN implemented platform is presented in Figure 2.3. This platform,
according to the authors, gives excellent opportunities to design and test new kind
of WSN protocols, algorithms and applications.

26

Chapter 3

GPSR Routing Protocol and XMesh Protocol Stack

In this chapter we present the Greedy Perimeter Stateless Routing (GPSR)
[50], [51], [52], [53] a novel routing protocol for wireless datagram networks that
uses the positions of routers and a packet’s destination to make packet forwarding
decisions. GPSR makes greedy forwarding decisions using only information about
a router’s immediate neighbours in the network topology. When a packet reaches
a region where greedy forwarding is impossible, the algorithm recovers by routing
around the perimeter of the region. By keeping state only about the local topology,
GPSR scales better in per-router state than shortest-path and ad-hoc routing pro-
tocols as the number of network destinations increases. Under mobility’s frequent
topology changes, GPSR can use local topology information to find correct new
routes quickly.
Later in this chapter we present also a Trust model for the GPSR protocol, that
makes it secure and trustworthy. The outcome of this model will be the forwarding
trustworthiness of each node and will be exploited to define secure routes to the
destination.
Finally, we present another WSN routing protocol, the XMesh protocol stack, which
is a widely used multihop routing protocol, famous for its performance when applied
in real world WSNs.

3.1 Greedy Perimeter Stateless Routing

In networks comprised entirely of wireless stations, communication between
source and destination nodes may require traversal of multiple hops, as radio ranges
are finite. A community of ad-hoc network researchers has proposed, implemented,
and measured a variety of routing algorithms for such networks and they concluded
to the observation that topology changes more rapidly on a mobile, wireless net-
work than on wired networks, where the use of Distance Vector (DV), Link State

27

(LS), and Path Vector routing algorithms is well established. DV and LS algorithms
require continual distribution of a current map of the entire network’s topology to
all routers. DV’s Bellman-Ford approach constructs this global picture transitively;
each router includes its distance from all network destinations in each of its periodic
beacons. LS’s Dijkstra approach directly floods announcements of the change in
any link’s status to every router in the network. Small inaccuracies in the state
at a router under both DV and LS can cause routing loops or disconnection [54].
When the topology is in constant flux, as under mobility, LS generates torrents of
link status change messages, and DV either suffers from out-of-date state [55], or
generates torrents of triggered updates.
The two dominant factors in the scaling of a routing algorithm are: the rate of
change of the topology and the number of routers in the routing domain.
Both factors affect the message complexity of DV and LS routing algorithms: intu-
itively, pushing current state globally costs packets proportional to the product of
the rate of state change and number of destinations for the updated state.
Hierarchy is the most widely deployed approach to scale routing as the number
of network destinations increases. Without hierarchy, Internet routing could not
scale to support today’s number of Internet leaf networks. An Autonomous System
runs an intra-domain routing protocol inside its borders, and appears as a single
entity in the backbone inter-domain routing protocol, BGP. This hierarchy is based
on well-defined and rarely changing administrative and topological boundaries. It
is therefore not easily applicable to freely moving ad-hoc wireless networks, where
topology has no well-defined AS boundaries, and routers may have no common ad-
ministrative authority.
Caching has come to prominence as a strategy for scaling ad-hoc routing protocols.
Dynamic Source Routing (DSR) [56], Ad-Hoc On-Demand Distance Vector Rout-
ing (AODV) [57], and the Zone Routing Protocol (ZRP) [58] all eschew constantly
pushing current topology information network-wide. Instead, routers running these
protocols request topological information in an on-demand fashion as required by
their packet forwarding load, and cache it aggressively. When their cached topo-
logical information becomes out-of-date, these routers must obtain more current
topological information to continue routing successfully. Caching reduces the rout-
ing protocols’ message load in two ways: it avoids pushing topological information
where the forwarding load does not require it (e.g., at idle routers), and it often
reduces the number of hops between the router that has the needed topological in-

28

formation and the router that requires it (i.e., a node closer than a changed link
may already have cached the new status of that link).
The aggressive use of geography allows GPSR to achieve scalability. Geographic
routing allows routers to be nearly stateless, and requires propagation of topology
information for only a single hop: each node need only to know its neighbors po-
sitions. The self-describing nature of position is the key to geography’s usefulness
in routing. The position of a packet’s destination and positions of the candidate
next hops are sufficient to make correct forwarding decisions, without any other
topological information.

3.1.0.1 Greedy Forwarding

We now describe the first part of the Greedy Perimeter Stateless Routing
algorithm: greedy forwarding. In this chapter, we define the greedy forwarding
rule; define a simple beaconing protocol for nodes to learn their neighbors’ posi-
tions; identify the desirable properties of greedy forwarding; define the topologies
on which greedy forwarding fails and characterize the frequency of greedy forward-
ing failure by the density of nodes in a network.
Under GPSR, packets are marked by their originator with their destinations’ loca-
tions. As a result, a forwarding node can make a locally optimal, greedy choice in
selecting a packet’s next hop. Specifically, if a node knows its radio neighbors’ po-
sitions, the locally optimal choice of next hop is the neighbor geographically closest
to the packet’s destination. Forwarding in this regime follows successively closer
geographic hops, until the destination is reached. An example of greedy next-hop
choice appears in Figure 3.1. Here, x receives a packet destined for D. X’s radio
range is denoted by the dotted circle about x, and the arc with radius equal to the
distance between y and D is shown as the dashed arc about D. x forwards the
packet to y, as the distance between y and D is less than that between D and any of
x’s other neighbors. This greedy forwarding process repeats until the packet reaches
D.
Suppose the header of a packet p contains fields p.a, the address of the packet’s
destination, and p.l, the location of the packet’s destination. Moreover, assume for
the moment that each node has a neighbor table N, each of whose entries is a pair of
a neighbor node’s address (a) with that neighbor’s location (l). We denote a node’s
own address and location by self.a and self.l.

29

Figure 3.1: Greedy forwarding example. y is x’s closest neighbor to D.

A simple beaconing protocol provides all nodes with their neighbors’ positions: pe-
riodically, each node transmits a beacon to the broadcast MAC address, containing
only its own identifier (e.g., IP address) and position. Position is encoded as two
four-byte floating-point quantities, for x and y coordinate values. To avoid syn-
chronization of neighbors’ beacons, as observed by Floyd and Jacobson [59], each
beacon’s transmission is jittered by 50% of the interval B between beacons, such
that the mean inter-beacon transmission interval is B, uniformly distributed in [0.5B,
1.5B].
Upon not receiving a beacon from a neighbor for longer than timeout interval T, a
GPSR router assumes that the neighbor has failed or gone out-of-range, and deletes
the neighbor from its table. The 802.11 MAC layer also gives direct indications of
link-level retransmission failures to neighbors.
The position a node associates with a neighbor becomes less current between bea-
cons as that neighbor moves. The accuracy of the set of neighbors also decreases;
old neighbors may leave and new neighbors may enter radio range. For these rea-
sons, the correct choice of beaconing interval to keep nodes’ neighbor tables current
depends on the rate of mobility in the network and range of nodes’ radios.
This beaconing mechanism does represent pro-active routing protocol traffic, avoided
by DSR and AODV. To minimize the cost of beaconing, GPSR piggybacks the local
sending node’s position on all data packets it forwards, and runs all nodes’ network
interfaces in promiscuous mode, so that each station receives a copy of all packets
for all stations within radio range. At a small cost in bytes, this scheme allows all
packets to serve as beacons. When any node sends a data packet, it can then reset

30

its inter-beacon timer. This optimization reduces beacon traffic in regions of the
network actively forwarding data packets.
Greedy forwarding’s great advantage is its reliance only on knowledge of the forward-
ing node’s immediate neighbors. The state required is negligible, and dependent on
the density of nodes in the wireless network, not the total number of destinations in
the network 1. On networks where multi-hop routing is useful, the number of neigh-
bors within a node’s radio range must be substantially less than the total number
of nodes in the network.
The density in space of the nodes deployed on a wireless network increases, greedy
forwarding approximates shortest paths progressively more closely; the shortest path
between two nodes tends towards the Euclidean straight line between them, as the
minimum possible number of hops is bounded below by the number of radio ranges
between source and destination, laid end-to-end.
Traditional shortest-path routing algorithms cannot exploit structure in IP addresses
to make forwarding decisions; they must treat IP addresses as flat identifiers, and
resort to a table lookup among all destinations in the routing domain. It is the
self-describing nature of geographic co-ordinates that allows forwarding routers to
interpret the destination location in a packet to make a purely local forwarding de-
cision.
Note that the only routing protocol traffic required for greedy forwarding is that of
the beaconing protocol. Because the beaconing protocol pushes state only a single
hop in the network, intuitively it should consume considerably less bandwidth than
protocols which distribute state globally throughout the routing domain (e.g., DV
and LS routing protocols), or accumulate state along an entire source route (e.g.,
DSR).
Because greedy forwarding makes purely local decisions, it should be robust under
topological changes; a node can make correct forwarding decisions without requiring
up-to-date state (or indeed, any state) concerning nodes beyond a single hop away.
The power of greedy forwarding to route using only neighbor nodes’ positions comes
with one attendant drawback: there are topologies in which the only route to a des-
tination requires a packet move temporarily farther in geometric distance from the
destination. A simple example of such a topology is shown in Figure 3.2. Here, x is

1The word ”stateless” in GPSR’s name is not meant literally, but refers to this small, purely
local state.

31

closer to D than its neighbors w and y. Again, the dashed arc about D has a radius
equal to the distance between x and D. Although two paths, (x → y → z → D) and
(x → y → w → D) exist to D, x will not choose to forward to w or y using greedy
forwarding. x is a local maximum in its proximity to D. Some other mechanism
must be used to forward packets in these situations.
Motivated by Figure 3.2, we note that the intersection of x’s circular radio range
and the circle about D of radius |xD| (that is, of the length of line segment xD) is
empty of neighbors. This region is clearly presented in Figure 3.3. From node x’s
perspective, we term the shaded region without nodes a void. x seeks to forward a
packet to destination D beyond the edge of this void. Intuitively, x seeks to route
around the void; if a path to D exists from x, it doesn’t include nodes located within
the void (or x would have forwarded to them greedily).

Figure 3.2: Greedy forwarding failure. Figure 3.3: Node x’s void with

3.1.0.2 The Right-Hand Rule: Perimeters

The long-known right-hand rule for traversing a graph is depicted in Figure
3.4. This rule states that when arriving at node x from node y, the next edge
traversed is the next one sequentially counter-clockwise about x from edge (x,y).
It is known that the right-hand rule traverses the interior of a closed polygonal
region (a face) in clockwise edge order-in this case, the triangle bounded by the
edges between nodes x, y, and z, in the order (x → y → z → y). The rule traverses
an exterior region, in this case, the region outside the same triangle, in counter-
clockwise edge order.
In Figure 3.3, traversing the cycle (x → y → z → D → z → y → x) by the right-
hand rule amounts to navigating around the pictured void, specifically, to nodes

32

closer to the destination than x (in this case, including the destination itself, D).
The sequence of edges traversed by the right-hand rule is called a perimeter.
Unfortunately, the right-hand rule does not yield a traversal of the perimeter of a
closed polygon on all wireless network graphs. On graphs with edges that cross,
the right-hand rule may instead take a degenerate tour of edges that does not trace
the boundary of a closed polygon. Such graphs with crossing edges are known as
non-planar graphs, or more precisely, non-planar embeddings of graphs; for brevity,
we refer to them as non-planar graphs herein. An example of a non-planar graph
appears in Figure 3.5. Here, when x originates a packet to u, the right-hand rule
results in the tour: (x → u → z → w → u → x). The problem is the crossing edges:
(w, z) and (u, x). If (w, z) were removed from the graph, the perimeter probe from
x to u would instead have taken the desired tour, (x → u → z → v → x).
Authors in [50] introduce the no-crossing heuristic: if, during traversal of a graph
by the right-hand rule, the candidate next edge crosses an edge taken earlier in
the traversal, that candidate next edge is ignored, and the next edge in counter-
clockwise order is taken, instead. The purpose of this heuristic is to remove crossing
edges from the graph, so that the right-hand rule takes the intended tour. In the
case of figure 3.5, starting from x, after taking the path (x → u → z), the the no-
crossing heuristic ignores edge (z,w), because it crosses the previously taken edge
(x, u). Here, the heuristic has the desired effect: the complete clockwise outer edge
tour (x → u → z → v → x) is taken. The implementation of this heuristic is
straightforward: each node appends its location to packets it forwards by the right-
hand rule, and checks whether a candidate next edge crosses one already taken in
the packet’s path history using simple simultaneous equations for the two edges in
question.

3.1.0.3 Planarized Graphs

While the no-crossing heuristic empirically finds the vast majority of routes
(over 99.5% of the n(n−1) routes among n nodes) in randomly generated networks,
it is unacceptable for a routing algorithm persistently to fail to find a route to a
reachable node in a static, unchanging network topology. In this section are pre-
sented alternative methods for eliminating crossing links from the network.
A graph in which no two edges cross is known as planar. A set of nodes with radios,
where all radios have identical, circular radio range r, can be seen as a graph: each

33

Figure 3.4: The right-hand rule Figure 3.5: A network with crossing edges

node is a vertex, and edge (n,m) exists between nodes n and m if the distance
between n and m, d(n,m) ≤ r. Graphs whose edges are dictated by a threshold
distance between vertices are termed unit graphs.
The Relative Neighborhood Graph (RNG) and Gabriel Graph (GG) are two planar
graphs long-known in varied disciplines [60], [61]. An algorithm for removing edges
from the graph that are not part of the RNG or GG would yield a network with
no crossing links. For our application, the algorithm should be run in a distributed
fashion by each node in the network, where a node needs information only about the
local topology as the algorithm’s input. However, for this strategy to be successful,
one important property must be shown:

Removing edges from the graph to reduce it to the RNG or GG must not disconnect
the graph; this would amount to partitioning the network.

Given a collection of vertices with known positions, the RNG is defined as fol-
lows:

An edge (u, v) exists between vertices u and v if the distance between them, d(u, v),
is less than or equal to the distance between every other vertex w, and whichever of
u and v is farther from w. In equational form:

∀w &= u, v : d(u, v) ≤ max'd(u, v), d(v,w)((3.1)

34

Figure 5 depicts the rule for constructing the RNG. The shaded region, the lune
between u and v, must be empty of any witness node w for (u, v) to be included in
the RNG. The boundary of the lune is the intersection of the circles about u and v

of radius d(u, v).
When we begin with a connected unit graph and remove edges not part of the RNG,
note that we cannot disconnect the graph. (u, v) is only eliminated from the graph
when there exists a w within range of both u and v. Thus, eliminating an edge
requires an alternate path through a witness exist. Each connected component in
an unobstructed radio network will not be disconnected by removing edges not in
the RNG.

Figure 3.6: The RNG graph Figure 3.7: The GG graph

The GG is defined as follows:

An edge (u;v) exists between vertices u and v if no other vertex w is present within
the circle whose diameter is uv. In equational form:

∀w &= u, v : d2(u, v) ≤ max'd2(u, v) + d2(v,w)((3.2)

Figure 3.7 depicts the GG graph membership criterion.
Eliminating edges in the GG cannot disconnect a connected unit graph, for the same
reason as was the case for the RNG. Both these algorithms for rendering the graph
of the radio network planar take time O(deg2) at each node, where deg is the node’s
degree in the full radio graph.
It has been shown in the literature [61] that the RNG is a subset of the GG. This

35

is consistent with the smaller shaded region searched for a witness in the GG, as
compared with in the RNG. Figure 7 shows a full unit graph corresponding to 200
nodes randomly placed on a 2000-by-2000 meter region, with radio ranges of 250
meters; the GG subset of the full graph; and the RNG subset of the full graph.
Note that the RNG and GG offer different densities of connectivity by eliminating
different numbers of links. Many MAC layers exhibit drastically reduced efficiency
as the number of mutually reachable sending stations increases [62], [63]. Moreover,
while any packet a node transmits monopolizes the shared channel within its radio
range, MAC protocols that address the hidden terminal problem, including 802.11
[64], MACA [65], and MACAW [66], deliberately spread contention to the full radio
ranges of both sender and receiver. Under such regimes, using fewer links in routing
can improve spatial diversity.

3.1.0.4 Combining Greedy and Planar Perimeters

In this section we present the full Greedy Perimeter Stateless Routing algo-
rithm, which combines greedy forwarding on the full network graph with perimeter
forwarding on the planarized network graph where greedy forwarding is not possi-
ble. Recall that all nodes maintain a neighbor table, which stores the addresses and
locations of their single-hop radio neighbors. This table provides all state required
for GPSR’s forwarding decisions, beyond the state in the packets themselves.
The packet header fields GPSR uses in perimeter-mode forwarding are shown in
Table 3.1. GPSR packet headers include a flag field indicating whether the packet
is in greedy mode or perimeter mode. All data packets are marked initially at their
originators as greedy mode. Packet sources also include the geographic location of
the destination in packets. Only a packet’s source sets the location destination field;
it is left unchanged as the packet is forwarded through the network.
Upon receiving a greedy-mode packet for forwarding, a node searches its neighbor
table for the neighbor geographically closest to the packet’s destination. If this
neighbor is closer to the destination, the node forwards the packet to that neighbor.
When no neighbor is closer, the node marks the packet into perimeter mode.
GPSR forwards perimeter-mode packets using a simple planar graph traversal. In
essence, when a packet enters perimeter mode at node x bound for node D, GPSR
forwards it on progressively closer faces of the planar graph, each of which is crossed
by the line xD. A planar graph has two types of faces. Interior faces are the closed

36

polygonal regions bounded by the graph’s edges. The exterior face is the one un-
bounded face outside the outer boundary of the graph. On each face, the traversal
uses the right-hand rule to reach an edge that crosses line xD. At that edge, the
traversal moves to the adjacent face crossed by xD. See Figure 8 for an example.
Note that in the figure, each face traversed is pierced by xDthe first two and last
faces are interior faces, while the third is the exterior face.
When a packet enters perimeter mode, GPSR records in the packet the location Lp,
the site where greedy forwarding failed. This location is used at subsequent hops to
determine whether the packet can be returned to greedy mode. Each time GPSR
forwards a packet onto a new face, it records in Lf the point on xD shared between
the previous and new faces. Note that Lf need not be located at a node; xD usually
intersects edges, as in Figure 8. Finally, GPSR records e0, the first edge (sender
and receiver addresses) a packet crosses on a new face, in the packet.
Upon receiving a perimeter-mode packet for forwarding, GPSR first compares the

Table 3.1: GPSR packet header fields used in perimeter mode forwarding.
Field Function

D Destination Location
Lp Location Packet Entered Perimeter Mode
Lf Point on xV Packet Entered Current Face
e0 Frst Edge Traversed on Current Face
M Packet Mode: Greedy or Perimeter

location Lp in a perimeter-mode packet with the forwarding node’s location. GPSR
returns a packet to greedy mode if the distance from the forwarding node to D is
less than that from Lp to D. Perimeter forwarding is only intended to recover from
a local maximum; once the packet reaches a location closer than where greedy for-
warding previously failed for that packet, the packet can continue greedy progress
toward the destination without danger of returning to the prior local maximum.
When a packet enters perimeter mode at x, GPSR forwards it along the face in-
tersected by the line xD. x forwards the packet to the first edge counter-clockwise
about x from the line xD. This determines the first face over which to forward the
packet. Thereafter, GPSR forwards the packet around that face using the right-
hand rule. There are two cases to consider: either x and D are connected by the
graph, or they are not.

37

When x and D are connected by the graph, traversing the face bordering x in either
direction (we use the previously described right hand rule) must lead to a point y at
which xD intersects the far side of the face. This is the case whether the traversed
face is interior or exterior. At y, GPSR has clearly reduced the distance between
the packet and its destination, in comparison with the packet’s start in perimeter
mode at x.
While forwarding around a face, GPSR determines whether the edge to the cho-
sen next hop n intersects xD. GPSR has the information required to make this
determination, as Lp and D are recorded in the packet, and a GPSR node stores
its own position and those of its neighbors. If a node borders the edge where this
intersection point y lies, GPSR sets the packet’s Lf to y. At this point, the packet
is forwarded along the next face bordering point y that is intersected by xD. The
node forwards the packet along the first edge of this next face-by the right-hand
rule, the next edge counter-clockwise about itself from n. This first edge on the new
face is recorded in the packet’s e0 field.
This process repeats at successively closer faces to D. At each face, the packet
progresses by the right-hand rule until reaching the edge that intersects with xD at
a point y closer than the packet’s Lf field to D. Finally, the face containing D is
reached, and the right-hand rule leads to D along that face.
When D is not reachable (i.e., it is disconnected from the graph), two cases ex-
ist: the disconnected node lies either inside an interior face, or outside the exterior
face. GPSR will forward a perimeter mode packet until the packet reaches the cor-
responding face. Upon reaching this interior or exterior face, the packet will tour
unsuccessfully around the entirety of the face, without finding an edge intersecting
xD at a point closer to D than Lf . When the packet traverses the first edge it took
on this face for the second time, GPSR notices the repetition of forwarding on the
edge e0 stored in the packet, and correctly drops the packet, as the destination is
unreachable; the perimeter-mode graph traversal to a reachable destination never
sends a packet across the same link in the same direction twice.
Note that GPSR will greedily forward a packet for potentially many hops, before
the packet loops on an exterior or interior face and is recognized as undeliverable.
If the majority of unreachable destinations lie beyond the boundary of a single face,
undeliverable packets may concentrate at that face of the network graph. This be-
havior is a direct consequence of GPSR’s avoidance of transitive routing protocol
traffic across the many hops from a destination to a forwarding router. Other tech-

38

niques for scaling routing have similar effects, however: the hierarchy used to scale
routing on wired networks obscures intra-domain link failures from the backbone in
the interest of scaling. Thus, the inter-domain routing system will push a packet a
great distance, with the potential result that the packet will be dropped inside the
destination AS.

3.1.1 GPSR Trust Model

The GPSR Trust Model that is presented here is the one proposed in the
AWISSENET (Ad-hoc personal area network and WIreless Sensor SEcure NET-
work) project trust scheme [67] for the GPSR routing protocol. A similar Trust
Model is also proposed in [68].
The primary concept of the proposed trust model is to create on each sensor a trust
repository (Trust Table), which will maintain and handle trust and reputation infor-
mation about each neighbouring node. The Trust Table will calculate and store the
values of a number of events and parameters and by applying the proper weighting
factor to each one, they contribute towards the selection of the proper forwarding
node. As a conclusion, reputation and trust are two very useful tools that can be
used in order to facilitate decision making in WSN networks, and thus, trust man-
agement can effectively improve network performance and help towards detection of
malicious node behavior. Therefore, specific trust metrics can be measured to effi-
ciently address specific security or routing protocol attacks or trust model security
attacks.
The outcome of the trust model will be the forwarding trustworthiness of each node
and will be exploited to define secure routes to the destination. This trust model
will be based on both direct and indirect trust values while its functionality will be
distributed, as will be described later in this section. The trust metrics (in other
words the type of events) that will be monitored will be discussed below and may
be different for different types of devices to achieve applicability to heterogeneous
environments and allow for lifetime security trade-offs. The protocol can discover
multiple paths between two nodes. This is essential for an ad hoc network to be
able to tolerate attacks inducing path failures and provide robust packet delivery.

39

3.1.1.1 Trust Model Architecture

The proposed trust model is a decentralized trust scheme, i.e. the trust
management functionality will be distributed over the network nodes. The rationale
behind this choice is the following: Centralized trust requires a centralized, globally
trusted node, which computes the trust of every node in the network. Apparently, a
node has to select information about another node by asking the centralized node.
This notion has two disadvantages:

1. By capturing the centralized node, the whole network is under capture (single
point of failure)

2. In this way, the personal opinion regarding a node is suppressed (especially
in cases where the types of events collected by the centralized node refer to
network parameters, such as link quality, or latency).

Following the decentralized approach, each node is responsible for computing its
own trust value per relation in the network, either collecting events from direct rela-
tions, or collecting trust values from other nodes in the network. It is also assumed a
decentralized trust scheme, where no central authority is present and every decision
is up to the individual node of the network. However, an option is considered in
order to assign higher weights to reputations (indirect trust information) coming
from nodes in higher layers of the architecture. The only assumption for this model
is that nodes will be pre-programmed with appropriate software (depending on their
role) and pre-arranged keys will be distributed for secure communication.
Both direct and indirect trust values will be used to evaluate each node’s trustwor-
thiness. The indirect (second-hand) information is particularly useful when no or
limited direct interaction has been attempted. In this concept, every node can build
a relation with its neighbors, based on the collection of actions (events) performed
by other nodes in the neighborhood.
In Figure 3.8, a high-level description of the proposed trust model architectures

presented, as it will be implemented on each network node. Each node monitors
events which are then stored by the trust management component to the direct
interaction trust table. To evaluate the trustworthiness of a certain node, indirect
information is required and is obtained through the following sequence of actions:
a reputation request is broadcasted and the received responses are delivered to the

40

Figure 3.8: General Architecture of the Trust Model

trust management component through the monitoring component. The content of
the reputation response is stored in the indirect interactions table, if a set of checks
that will be detailed later on is successful. Finally, the trust evaluation component
combines the direct and indirect interactions information to calculate a single trust
value per neighboring node and finally forward these values to the trust decision
component. This component is also triggered when the node is asked to provide its
trust value for a neighbor, i.e. to form a reputation response message.

3.1.1.2 Events and Data Collection

One of the most important aspects of trust management schemes is the pro-
cess of data collection. In general, for the development of a trust management
system, data related to the neighboring nodes behavior is collected and then ana-
lyzed depending on how the trust management system works. The direct trust value
of a neighboring node can be determined by its multi-attribute, time-varying trust
value depending on a set of events. The information related to previous cooperation
is assembled in a Trust Table, as shown in. Direct Trust Table. Therefore, it is
essential to point out, what type of data will be more relevant for these systems,

41

and which are the events that can provide a useful feedback to the system, towards
the proper decision.
The structure of the Trust Table that stores the trust values is shown in Direct Trust
Table 3.2. Each node with k neighboring nodes will store k Trust Tables. Thus,
the table size should be as small as possible (especially in densely deployed network
scenarios), while keeping the most important information. As shown for each event,
are stored both the number of successful and the number of failed interactions. In

Table 3.2: Direct Trust Table Structure
Reference Node Reference Node ID/Address

Forwarding number of Success/Failures
Network-ACK number of Success/Failures

Packet precision-Integrity number of Success/Failures
Authentication number of Success/Failures

Cryptography-Confidentiality number of Success/Failures
Reputation RES number of Response/no Response

Reputation Validation Value
Remaining Energy Value

Network ACK History Log 1011010011010111
Number of Interactions Value
Distance of Sink Node Value

order to take the final forwarding decision, the trust values will be combined with
factors like the distance to base station, number of hops to base station and node
confidence. A subset of the above described events can be monitored and used
to evaluate a node’s trustworthiness by each type to allow for the trust model’s
adaptation to the application needs and node’s features.

3.1.1.3 Direct Trust Evaluation

For each one of the first 6 events of Table 3.2, node’s A Trust value regarding
node B, i.e. TA,B

i , can be calculated as follows:

TA,B
i =

aiS
A,b
i − biF

A,B
i

aiS
A,B
i + biF

A,B
i

(3.3)

where:

42

• SA,B
i is the number of successful type i events that A has measured for B

• FA,B
i is the number of failed type i events that A has measured for B

• ai and bi represent the weight/significance of a success vs. the weight/significance
of a failure of type Ei events.

For event types 7 and 8 of the table 3.2, the trust value is the value already stored
at the table. This value is increased or decreased based on periodic monitoring.
Especially for type 8, the equation below (or a similar one, based on the simulations)
will be used:

TA,B
8 =

a8Vnow − b8Vinitial

a8Vnow + b8Vinitial
(3.4)

where Vnow is the latest voltage value of node B and Vinitial is the initial voltage
value of node B.
For the History Log a simple pattern matching technique is used which will help
towards either calculating the trust value or categorizing the neighboring nodes
activity.
The number of interactions is a measure of confidence. A high confidence value
means that the target has passed a large number of tests that the issuer has set,
or that the issuer has interacted with the target for a long time, and the node
is sure that the value of the neighboring node is more certain. The algorithm of
trust evaluation is more sensitive in the beginning of the interactions period (since
confidence value is small, one fault should have a large impact in trust value), while
as confidence value increases, the impact (either on positive or negative events) is
smoother. Thus, a confidence factor is defined, like in the next equation:

CA,B = 1 − 1
noi + a10

(3.5)

where noi indicates the number of interactions with node B and a10 is a factor whose
value will be checked during simulation testing. This confidence factor can be proved
to be useful, especially during the beginning of network operation. Moreover, in case
of GPSR a proper metric that can be implemented in this trust model which is the
distance of each one of the neighboring node to the sink. The closer a node to the
sink, the greater the value added to the final direct trust of the node.

43

Finally, node’s A Direct Trust value for its neighboring node B, i.e. DTA,B with k

event types can be calculated according to the following equation:

DTA,B = CA,B ∗ (
k∑

i=1

Wi ∗ TA,B
i) (3.6)

where Wi is the weighting factor for each one of the k event types and TA,B
i is node’s

A trust value of event i regarding node B.

3.1.1.4 Indirect Trust/Reputation Evaluation

There are several cases where a node (e.g. node A) needs the trust opinion
of its neighboring nodes (e.g. node C, D, E) regarding a specific node (node B).
Examples of such cases may be the discovery of a new node appeared during a
”HELLO” message or when direct trust value of node B is neutral (its value is neither
large nor small). In this trust model, a node A may find the indirect trust/reputation
value of a node B i.e. the ITA,B by combining the direct trust values (reputation
values) of its neighboring nodes, as shown in the following equation:

ITA,B =
n∑

j=1

W (DTA,Nj) ∗ DTNj ,B (3.7)

where n is the number of neighboring nodes to A, Nj are neighboring nodes to A,
DTNj ,B is node’s Nj reputation value of node B and W (DTA,Nj) is a weighting
factor reflecting node’s A direct trust value of node Nj . Different weighting factors
are used for each node regarding the events described above. For example, if node’s
C direct trust value (evaluated by node A) is large and also node C is frequently
sending responses to node’s A requests, then its weighting factor is large.
The reputation value B (DTNj ,B) that the neighboring nodes propagate to the
interested node are kept to the Reputation Indirect Trust Table, thus the interested
node can check the correctness of their answers on next route discovery phase and
modify the direct trust values of the neighbors W (DTA,Nj) accordingly (e.g. increase
the direct trust value of a node who gave a reputation that was proved correct).
This is the reason of the direct trust value selection, instead of the sum of direct
and indirect trust values.
The metrics that allow node A to evaluate node’s B trustworthiness in this case
are the node’s direct trust value, which includes its responsiveness in the reputation

44

scheme implementation as well as the provided reputation value. Considering very
important the node willingness to participate in the reputation scheme, the history
of this interaction is also maintained to allow for fast detection of nodes injecting
incorrect reputation values implementing either bad-mouthing attacks or attacks
based on colluding nodes.

Table 3.3: Indirect Trust Table Structure
Direct Trust Value Value

Reputation RES number of Response/no Response
Reputation value of responding node value
Reputation Correctness History Log 10110100110101

3.1.1.5 Total Trust Evaluation

The total trust evaluation node A of node B, i.e. TTA,B is performed by
applying the following equation:

TTA,B = W (DTA,B) ∗ DTA,B + W (ITA,B) ∗ ITA,b (3.8)

where DTA,B is node’s A trust value of node B, W (DTA,B) is a weighting factor
reflecting node’s A direct trust value of node B, ITA,B is a node’s A indirect trust
value of node B and W (ITA,B) is a weighting factor reflecting node’s A indirect
trust value of node B. The weights can possibly be set to zero, and be dynamically
updated and adjusted by the nodes to reflect their own conditions. Every time that
the cooperation among the nodes is completed, every node records and updates the
trust value of its cooperation node. The trust value of a node varies with time. In
our trust model, if a node cannot provide cooperation for other nodes, the other
nodes will gradually decrease its trust value accordingly. Since node A can be
sure only about the first-hand information that has collected, the weighting factor
of the Direct Trust Value will be larger than the weighting factor of the Indirect
Trust value. This remark might not be applicable in the case where a new node
appears in the neighborhood, where indirect information may be the only source of
information to be used for validating the neighbour’s trustworthiness. This case will
also be examined through computer simulations.

45

3.1.2 GPSR Software Implementations

In this section we describe in detail all the existing software implementations
of the GPSR routing protocol. So far, there are three different software implementa-
tions : A PC/Linux Based, a TinyOS-1.x and a TinyOS-2.x [69] one. Our hardware
approach (which will be described in detail in the next chapter), is implemented
and verified based on these software implementations.

3.1.2.1 C-Based Implementation

In this section we describe in detail, the functionalities of GPSR implemen-
tation, the structure of software, sequence diagrams for normal functionalities and
format of all GPSR protocol packets [70], [71]. This is based on [50] and is run-able
on the following Linux Systems:

1. PCs/WSs running Red-hat Linux 8.0/9.0 [72] or Ubuntu 9.04 [73]

2. PC-104 running Linux + Real mote (Mica) [74]

3. HP IPAQ running familiar Linux [75]

Regarding the functions of GPSR implementation these are divided into:

1. States of Neighbors: This keeps states based on positioning information from
all immediate neighbors and provides the following functions for other mod-
ules:

• Add and delete neighbor

• Update and look-up the state of neighbor

• Update RNG topology and GG topology

• Find shortest-path for greedy forward

• Find clockwise-path for perimeter forward

2. Beaconing

• Receive beacon packet and beacon solicit packet

• Periodically broadcast beacon packet to neighbor nodes

46

• Periodically check connections to neighbor nodes

3. Greedy Forwarding

• Receive greedy-mode data packet

• Send the pure application data except for GPSR protocol header to upper
application if the destination of packet is same as the position of local
node.

• Send the receiving whole packet to upper application if GPSR daemon
runs on loosely-coupled mod.

• Forward the packet to shortest neighbor nodes if GPSR daemon runs on
tightly-coupled mod.

4. Perimeter Forwarding

• Receive perimeter-mode data packet

• Send the pure application data except for GPSR protocol header to upper
application if the destination of packet is same as the position of local
node.

• Send the receiving whole packet to upper application if GPSR daemon
runs on loosely-coupled mod.

• Forward from on perimeter mode to on greedy mode if distance from local
to destination is shorter than one from previous node to destination.

• Drop(send to application) the pure data except for protocol header if
receiving packet is the previous sent packet to neighbor.

• Perform ”face change” algorithm.

• Forward the packet to counter-clockwise neighbor nodes.

5. Upper interface

• Send data to GPSRAPI who is a communication agent for applications.

• Trigger greedy−mode or perimeter−mode forward if data from GPSRAPI

are received.

• Create a thread per a receiving data from GPSRAPI .

6. Lower interface

47

• Unicast data packet to neighbor node or broadcast beacon to all neighbors
via communication socket.

• Trigger greedy−mode or perimeter−mode reception if data from neigh-
bor nodes are received.

• Create a thread per a receiving data from neighbor nodes.

GPSR is implemented as Daemon process and it consists of two modules:

1. GPSR daemon that performs original GPSR functions and

2. Application Programming Interface (API) library that provides the access to
GPSR for various applications.

The characteristics of GPSR implementation are as follows:

1. Event-driven: when GPSR protocol packets from neighbor nodes or appli-
cation messages from applications are received, polling is not used because
it can unnecessarily consume power resources during idle periods and also
inadequate for real-time attributes that wireless applications can own.

2. Multithread: a thread per an event(reception of packet, reception of appli-
cation data, timeout) is created.

3. Multiplexing: GPSR daemon can establish multiple channels for multiple
applications. It is intended for multiple applications concurrently use GPSR
daemon. To discriminate a destination application when a GPSR data packet
is received, GPSR daemon uses multiplexing table and appport within GPSR
packet header.

4. Use of UDP socket: UDP socket is used as communication with applica-
tions.

5. Support of Ethernet, 802.11.b, mote radio: they can be used for com-
munication with neighbor nodes.

48

3.1.2.2 TinyOS Based Implementations

In [76] there is a detailed description of the TinyOS-based GPSR imple-
mentation, as well as a complete specification for programmers who intend to make
TinyOS-based applications.
Regarding the version of TinyOS used, there are so far two different implementa-
tions, one for TinyOS-1.x and one for TinyOS-2.x, which have the same functionality.
The motes that this software implementations are tested on are the Crossbow’s [74]
Micaz and Iris [77] ones for both TinyOS versions
This full-fledged nesC [78] implementation includes the GG and the RNG planariza-
tion algorithms (chosen via a configuration parameter), as well as greedy and perime-
ter mode packet forwarding.
Here are described the functionalities of the TinyOS GPSR Implementation, as
these presented in [76]. According to the authors, these are divided in the following
categories:

1. LLC (Logical Link Control):

• It fragments a long GPSR packet into multiple TOS messages and re-
assembly multiple TOS messages to a long GPSR packet.

• It can compress sending packets and decompress receiving packets if they
are compressed.

• Reliable packet delivery can be performed through sequencing and hop-
by-hop acknowledgment.

• It provides a link-probing function that performs probing-test on a spe-
cific link and eliminates highly noisy or asymmetric links according to
result of probing-test.

2. Neighbor List. This keeps state such as positioning information of immedi-
ate neighbors and performs the followings:

• Adds neighbors to neighbor list and delete neighbors from neighbor list

• Updates and looks up state of neighbors

• Finds next-hop for greedy forward

• Finds clockwise-path next-hop for perimeter forward

49

• Finds counter-clockwise-path next-hop for some purposes.

3. Beaconing:

• Periodically sends beacon on the radio

• Receives beacons from neighbors and processes them as follows: If sender
of beacon is new on neighbor list, information about sender is registered
to neighbor list, link probing function is triggered to measure link-quality,
and then planarization task is triggered to reflect topology change if re-
sult of link-probing is well. If sender is already registered on neighbor
list, some information about sender is update to neighbor list. Option-
ally, events such as addition/deletion/update of neighbor can be sent to
applications

• Periodically checks connectivity to all nodes on neighbor list: If connec-
tivity for a neighbor is failed, link probing is triggered. If result of link
probing is bad, information for the neighbor is deleted from neighbor list
and then planarization task is triggered to reflect topology change.

4. Planarization:

• Whenever topology is changed, planarization is triggered: Planariza-
tion generates Gabriel Graph or Relative Neighborhood Graph from full
graph. The planarized graph is determined when applications initialize
GPSR component. Gabriel Graph planarization is used as default.

• According to result of planarization, some links on the neighbor list are
marked as routable to be used by perimeter forward and other links is
marked as non-routable not to be used by perimeter forward. Optionally,
before a link is marked as non-routable, Mutual Witness query can be
sent to corresponding neighbor.

5. Mutual Witness Protocol

6. Packet reception

7. GPSR Forward (Greedy and Perimeter):

• It firstly tries to find a greedy neighbor to destination

50

• If a greedy neighbor is found: If it is performed on intermediate node,
distance from greedy neighbor to destination and one from Lf to desti-
nation is compared. If first one is shorter than second one, forward mode
for packet is change to greedy mode.

• If a greedy neighbor is not found, forward mode for packet is changed to
perimeter mode. It tries to select a clockwise neighbor by right-handed
rule and face-change rule. If selected clockwise neighbor is same as Lf in
the packet, the packet is dropped (transfer it to application)

• After a neighbor to which packet is sent is found, packet is transferred to
LLC to be sent to a next hop.

8. Broadcast Forward and UART communication

Because GPSR is implemented on TinyOS programming platform, it has the follow-
ing characteristics:

AM.
1B

DES.
ADDR.

2B

SOURCE
ADDR.

2B

LEN.
1B

GR.
ID.
1B

HAN
1B

LOC. X
2B

LOC. Y
2B

DATA
2B

ID.
1B

15 BYTES

BEACON
PACKET

TINYOS HEADER GPSR FIELDS

Figure 3.9: GPSR Beacon Packet Format

1. Component Based: GPSR software is a component program using TinyOS
system components. GPSR program consists of three components: GPSRFor-
warder, GPSRRouter, and LLC component.

2. Event Driven: when GPSR data packets from neighbor or from applications
are received, corresponding event handlers or command handlers are invoked.
Also, event handlers are invoked by time-out events.

51

AM.
1B

DES.
ADDR.

2B

SOURCE
ADDR.

2B

LEN.
1B

GR.
ID.
1B

HAN
1B

LOC. X
2B

LOC. Y
2B

DATA
4B

Cnt.
1B

34 BYTES

DATA
PACKET

TINYOS HEADER GPSR FIELDS

Lp X
2B

Lp Y
2B

Lf X
2B

Lf Y
2B

eo1 x
2B

eo1 y
2B

eo2 x
2B

eo2 y
2B

Data
Len.
1B

Figure 3.10: GPSR Data Packet Format

3. Concurrency Intensive: Because jobs like forwarding a GPSR data packet
spend much time for processing, event handler or command handler is in-
adequate for long -term jobs. Hence, these event/command handlers fork
long-term tasks and are promptly exited. According to this action, multiple
tasks to forward a GPSR data packet can exist by a sequence of events or
commands.

At this point we present the format of the Data and Beacon Packets of the GPSR
Routing Protocol. The same packet format will be used in our Hardware Imple-
mentation of the Protocol. The size of the Beacon packets is 15 whereas the size of
the GPSR Data packets (Greedy and Perimeter) is 34 bytes long. In figures 3.9 and
3.10 the format of the packets is presented whereas in Table 3.4 are described the
fields of the aforementioned packets.

3.1.2.3 GPSR Secure Routing Module

A software implementation of the GPSR protocol together with the Trust
model is proposed in the AWISSENET’s project. The software implementation con-
sists of the proposed nesC implementation for Tinyos 2.x of the GPSR together with
the implementation of the previously described Trust Metrics for Direct, Indirect

52

Table 3.4: GPSR Packets Fields
Field Beacon Data
AM Active Message Active Message

DES. ADDR. Destination Address (0xFF) Destination Address
SOURCE ADDR. Link Source Address Link Source Address

LEN. Message Length Message Length
GR. ID Group ID Group ID
HAN Handler Type Handler Type

LOC. X Location X of node Location X of node
LOC. Y Location Y of node Location Y of node
DATA Transmitted Data -

ID Node ID -
Lp X - Enter Perimeter Location X
Lp Y - Enter Perimeter Location Y
Lf X - Enter Face Location X
Lf Y - Enter Face Location Y
eo1 X - First Edge Start X
eo1 Y - First Edge Start Y
eo2 X - First Edge End X
eo2 Y - First Edge End Y
Cnt. - Control Flag

Data Len. - Data Lenght
DATA . - Transmitted Data

and Total Trust. This implementation though, is still under development, so we
cannot provide further details at the moment.

3.2 Xmesh Protocol Stack

Multi-hop or ad hoc, wireless networks use two or more wireless hops to con-
vey information from a source to a destination. There are many Multi-hop Routing
protocols for WSNs, which are characterized by the absence of a single multihop
stack, and also by the fact that they are application-dependent. Each of these pro-
tocols adopts a different approach for routing, for energy management and for the
overall latency management. TinyOS which is the most widely used OS for WSN
nodes, allows users to wire-in different protocols with minimal effort. A Multihop

53

protocol can be executed on each Mote, while each Mote can serve both as a data
source and as a router.
There are three different routing protocols supported by TinyOS 1.x which differ
in terms of both the actual routing algorithm and the services they provide. In
particular, Route seeks to minimizes the number of hops that each packet traverses
while MINTRoute and ReliableRoute (XMesh) route packets based on link-quality
estimates that seek to maximize the probability of a packet being delivered ([79],
[80], [81], [82], [83], [84], [85]). The most widely used such routing scheme is the
XMesh due mainly to its performance when applied in real-world WSNs.

3.2.1 Protocol Implementation Framework

Figure 3.11 captures the high level interactions of all the components of the
XMesh routing protocol. Each node maintains estimates of inbound (reception)
link quality. Routing is based on outbound (transmission) link, so this information
needs to be propagated back to the neighbors. The core component is the neighbor
table which contains status and routing entries for neighbors; its fields include MAC
address, routing cost, parent address, child flag, reception (inbound) link quality,
send (outbound) link quality, and link estimator data structures.
Below the routing layer, all packets on the channel are snooped by the estimator,

Figure 3.11: ReliableRoute Components

with insertions controlled by the neighbor table manager. Parent selection is run pe-
riodically to identify one of the neighbors for routing; it may also broadcast (locally)

54

a route message. The route messages include parent address, estimated routing cost
to the sink, and a list of reception link estimations of neighbors. When a route mes-
sage is received from a node that is resident in the neighbor table, the corresponding
entry is updated. Otherwise, the neighbor table manager decides whether to insert
the node or drop the update. Data packets originating from the node, i.e., outputs
of local sensor processing, are queued for sending with the parent as the destination.
Incoming data packets are selectively forwarded through the forwarding queue with
the current parent as destination address. The corresponding neighbor table entry
is flagged as a child to avoid cycles in parent selection. Duplicate forwarding packets
are eliminated. When cycles are detected on forwarding packets, parent selection is
triggered with the current parent demoted to break the cycle.

3.2.2 Xmesh Underlying Issues

Parent Selection: Many distance-vector based algorithms can be imple-
mented in this framework, using different cost metrics to guide routing. The cost
of a node is an abstract measure of distance; it may be number of hops, expected
number of transmissions, or some other estimate of energy required to reach the
sink. When scheduled to run, the routing algorithm accesses the neighbor table and
extracts a set of potential parents. A neighbor is selected as a potential parent only
if its cost is less than the current cost of the node. A node may switch to a new
parent if one is sufficiently smaller in cost by some margin than the current parent.
It may also switch to a new parent if the link quality to the current parent drops
below some threshold, if the sink is unreachable through the current parent, or if a
cycle is detected. When connectivity to the current parent worsens, its link estima-
tion will automatically degrade over time, allowing the selection of a new parent.If
connectivity to the current parent is lost and no potential parents are available, the
node declares it to have no parent, disjoints from the tree, and sets its routing cost
to infinity.
Rate of Parent Change: Regardless of the routing algorithm, routes can be
changed whenever the parent selection algorithm is scheduled to run. For fast adap-
tation, it is tempting to schedule the parent selection component to evaluate new
routes for every route update received from neighboring nodes. However, a domino
effect of route changes is likely to be triggered across the entire network, especially
when routing costs are very sensitive. To achieve a stable topology, routes are eval-

55

uated on a periodic basis, rather than upon receiving a route update, except when
a cycle is detected.
Packet Snooping: Given that the wireless network is a broadcast medium, a lot
of information can be extracted by snooping. Link estimation is one example. At
the routing level, since each node is a router, snooping on forwarding packets allows
a node to learn about all its children, which is useful to prevent cycle formation.
Furthermore, snooping on a neighboring nodes messages is a quick way to learn
about its parent, which decreases the chance of stale information causing a direct
two-hop cycle. The same technique can also be used to prune children quickly in
the case of a network partition. When a node with an unreachable route receives a
forwarding message from its child, it will NACK by forwarding the childs message
with a NO ROUTE address. All neighboring nodes, including its children, snooping
on this packet can quickly learn about an unreachable route. In fact, this naturally
provides feedback deep down into the tree, in effect solving the counting-to-infinity
problem.
Cycles: For many-to-one routing over relatively stationary sensor networks, it is
better to use simple mechanisms to mostly avoid loop formation and to break cycles
when they are detected, rather than to employ weight protocols with inter-nodal
coordination. By monitoring forwarding traffic and snooping on the parent address
in each neighbors messages, neighboring child nodes can be identified and will not
be considered as potential parents. This information should be maintained for nodes
in the neighbor table. Route invalidation when a node becomes disjoint from a tree
and tree pruning by NACKing children traffic are used to alleviate stale informa-
tion, which leads to cycles. With these simple mechanisms, cycles may potentially
occur and must be detected. Since each node is a router and a data source, cy-
cles can be detected quickly when a node in a loop originates a packet and sees
it returning. This mechanism works as long as queue management policy avoids
letting forwarding traffic suppress originated traffic. (Otherwise, packets may get
stuck in a loop in the middle of a route without detection.) This level of fairness is
an appropriate policy in any case. Once a cycle is detected, discarding the parent
by choosing a new one or becoming disjoint from the tree will break it. Duplicate
Packet Elimination: Duplicate packets can be created upon retransmission when
the ACK is lost. Without duplicate packet elimination, these will be forwarded,
possibly causing more retransmissions and more contention, plus they waste energy.
To avoid duplicate packets, the routing layer at the originating node appends the

56

sender ID and an originating sequence number in the routing header. To suppress
forwarding duplicate packets, each parent retains the most recent originator ID and
originating sequence number in child entries in the neighbor table. This approach
relies on in-order packet delivery during retransmission and assumes that the neigh-
bor table is able to track children. Alternatively a recent originator cache could be
employed.
Queue Management: Nodes high in the tree forward many more messages than
they originate. Care must be taken to ensure that forwarding messages do not
entirely dominate the transmission queue, since it would prevent the node from
originating data and undermine cycle detection. The forwarding and originating
messages are separated into two queues so that upstream bandwidth is allocated
according to a fair sharing policy. The policy that is used is very simple. With the
assumption that originating data rate is low compare to that of forwarding mes-
sages, priority is given to originating traffic. For data collection it is possible to
estimate the ratio of forwarding to originating packets by counting the descendants
of each parent.
Relationship to Link Estimation: Link estimation and routing are not entirely
independent. Link failure detection based on fixed number of consecutive trans-
mission failures can be ineffective over semi-lossy links. An estimation of the link
quality yields a much better judgement of link failure. With bi-directional link es-
timations, routing over asymmetric links can be avoided. The stability and agility
of link estimation can directly affect the stability of the routes and the rate of route
adaptation, especially when the estimations are combined to form a distance metric
describing a path. Therefore, the final tuning of the link estimator must be done
while observing its effect on routing performance.
Routing Cost Metrics:With links of varying quality, a longer path with fewer re-
transmissions may be better than a shorter path with many retransmissions. An al-
ternative approach is to use the expected number of transmissions along the path as
the cost metric for routing rather than traditional cost metrics for distance routing.
That is, the best path is the one that minimizes the total number of transmissions
(including retransmissions) in delivering a packet over potentially multiple hops to
the destination. This approach is called the Minimum Transmission (MT) metric.
In considering the expected number of transmissions of a link, it is important to
determine link quality for both directions since losing an acknowledgement would
also trigger a useless retransmission. For each link the MT cost is estimated by the

57

product
1

linkqualityforward
× 1

linkqualitybackward
(3.9)

which is also proposed in [86]. The distance-vector algorithm computes overall cost
of a path in the same manner as hop count with these weighted hops. In addition
to optimizing for something closer to the true cost, MT eliminates the need for
predetermined link thresholds. However, the stability of MT routing is potentially
an issue, since the MT metric utilizes link estimations in a non-linear fashion. Thus,
for MT a substantial noise margin should be used in parent selection to enhance
stability.

58

Chapter 4

Reconfigurable (CPLD) Nodes Implementation

In this chapter we describe in detail the implementation and the hardware
architecture for the different reconfigurable nodes we have designed. First we de-
scribe in detail the CPLD-approach in designing reconfigurable WSN nodes. Two
different protocols were utilized: the GPSR and XMesh protocol stack respectively.
One part of every of these protocols was designed and implemented on a CPLD
device, which communicates with a common WSN mote through a custom commu-
nication protocol.

4.1 GPSR Implementation

An overall block diagram of the CPLD-Based WSN node implementation is
presented in figure 4.1. In this subsection we will provide all the implementation
details of this new approach to the design of reconfigurable WSN nodes with the
use of CPLDs.
The device utilized in our pioneering design is one from the Xilinx CoolRunner-

II family. The CoolRunner-II CPLD family [89] utilizes Xilinx second-generation
RealDigital technology so as to provide high performance, advanced features and
low power consumption, all at a very low price. Featuring a 100% digital core, up to
323 MHz performance and ultra-low stand-by current, CoolRunner-II CPLDs offer a
wide range of densities, plus abundant I/O, the flexibility to move from one density
to another in the same package and the lowest cost per I/O pin in the industry.
The specific prototyping CPLD board utilized is the Digilent X-Board [90], which

is a complete circuit development platform for Xilinx CoolRunner-II CPLD. It pro-
vides all essential support circuits for the CoolRunner-II including an on-board
USB2 port which provides a data port for CPLD configuration as well as for user
data transfers. This board includes a very low-cost 256 macro cell CoolRunner-II
CPLD device (XC2C256) in a TQ-144 package while more than 75 CPLD signals

59

XBOARD
Integrated
XC2C256

CPLD MDA100CB

ZigBee

IRIS/MICAz
Integrated

ATMega1281

51-pin
connectorGPIO BUS

Figure 4.1: CPLD-Based Node Scheme

are routed to an expansion connector so our designs can be easily extended. Figure
4.2 presents the block diagram of Digilent X-Board.

4.1.1 Euclidean Distance Architecture

One of the main process that is involved in the GPSR routing protocol is
the Euclidean Distance one. The Euclidean distance or Euclidean metric is the
”ordinary” distance between two points that one would measure with a ruler, which
can be proven by repeated application of the Pythagorean theorem. By using this
formula as distance, Euclidean space becomes a metric space.
In our case, the Euclidean distance is used to calculate the distance between two
nodes. Since every nodes is aware of the positions of all its neighbors, can easily
calculate the distance between its position and every other node inside its neighbor
table, in order to decide where to send a data packet.
This metric is also used in perimeter forwarding, when a node needs to decide which
perimeter to follow in order for a packet to reach its destination.
The previously described metric is calculated from the following formula:

D(A,B) =
√

(x1 − x2)2 + (y1 − y2)2 (4.1)

60

Figure 4.2: Digilent X-Board Block Diagram

where A = (x1, y1) and B = (x2, y2) are two dimensional points.
This metric function has been chosen in order to be implemented on the CPLD,

since after some experimentation it was found that this metric is used very often by
the protocol in order to calculate the necessary distances among the nodes. Besides
that, we have tried also to implement on the CPLD device, other parts of the GPSR
protocol, but non of them fitted inside it. The Euclidean Distance Metric is the
largest part of the GPSR that fits in the chosen device.
The proposed CPLD architecture overall block diagram is presented in figure 4.3
At this point it should be mentioned that, since resources of a CPLD are very limited,
the square root function was not implemented on the CPLD. On the contrary, we
have chosen to implement only a part of the Euclidean Distance and especially the
one that is described by the following formula:

(xa − xb)2 (4.2)

The rest of the Euclidean Distance function is implemented in software on the mote
as it will be described in the next chapter.
As figure 4.3 depicts, the calculation module takes as inputs 4 8-bit values, which
represent 2 co-ordinates. To be more specific, the first two 8-bit inputs represent
the high-8 and low-8 bits respectively of xa co-ordinate of a node’s location and the
second two 8-bit inputs represent, in the same manner the high-8 and low-8 of xb

61

Reg

Reg

concat

Reg

Reg

concat

sub mul16x16

Reg

Reg

Reg

Reg

Figure 4.3: CPLD Calculation Block Diagram

coordinate of another node’s location.
All these values are stored into 4 8-bit registers (the only memory element that can
be used on such reconfigurable devices), since the CPLD has only 8-bit input, as we
will describe in the next chapter, and thus all the input values should be stored into
memory elements for later use.
Then the high and low bits of a and b co-ordinates are concatenated into 16-bit

values respectively and after that b is subtracted from a. The subtracter module
was implemented with the use of the VHDL libraries. At this point it should be
mentioned that these values are positive unsigned integer numbers, since in a real-
word environment a node can be located only in the first quartile of a Cartesian
coordinate system. The comparison between these coordinates takes place in soft-
ware, so there is no need to check whether there is an overflow in the result of the
subtraction. Also, the range of each value can be only between [0...255], as this is
defined by the GPSR protocol software.
Then the 16-bit subtraction result is squared with the use of a 16x16 multiplier in
order to calculate the distance of these two coordinates. The 32-bit multiplication

62

m
u
x

shift
left

adder Reg

Reg
m
u
x

Figure 4.4: CPLD Multiplication Block Diagram

result is stored into 4 8-bit registers, so as to be transmitted back to the mote.
The 16x16 multiplier architecture block diagram is presented in figure 4.4. For the

s0 s1 s2 s3 s4 s5 s6 s7

s8s9s10s11s12s13s14s15s16

START

END

Figure 4.5: CPLD Multiplication Controller

implementation of this design, two multiplexers 2-1 of 16 bits each are used. The
first multiplexer has as inputs the temporary result of the multiplication and zero.
The control signal of the multiplexer chooses the zero input when the algorithm
is at its first stage and the temporary result in all the other cycles. The second
multiplexer has as inputs the first multiplier and a zero input. It has as a control
signal every bit of the second multiplier, always according to the stage that the
algorithm is in. Based on the multiplication algorithm, the process is completed in
17 cycles, one for each bit of the second multiplier plus an additional cycle that is
needed in order to check and take the result from the last output register. After

63

the selection of the proper values, the outputs of the two multiplexers are added
together with the use of a 32-bit adder; the output of the adder is stored in a 32-bit
register. This register is necessary, in order to store the temporary result, since it
will be later-on used for the next step of the algorithm. Then this result is shifted
left by one position and goes back to the first multiplexer.
This process is repeated 16 times; during the 17th cycle the final result is stored to
the 32-bit output register. For the control of this multiplier, a simple finite state
machine (FSM) is designed. Each cycle of the multiplication process corresponds to
a state of the designed FSM (figure 4.5).
Figure 4.6 presents the FSM that was designed in order to control the whole calcu-
lation process. It consists of 3 different cycles: During the first cycle all the inputs
are stored into the registers and then the calculation process is ready to start. As
soon as the calculation process is completed, a signal is triggered in order to notify
the upper levels that the final result is ready so as for the output to the mote to
begin.

The tool used to implement our design was the Xilinx ISE 10.1 [92], while its

init calc out
START END

Figure 4.6: CPLD Calculation Process Controller

embedded simulator was used in order to verify the correct operation of our ar-
chitecture via the process of ”Behavioral Simulation”. Next, we had to carry out
”Post Fit Simulation” and, for this purpose, we preferred Modesim SE 6.3f [93].
The CPLD was programmed using the embedded Xilinx ISE tool.

4.1.2 CPLD - Mote Interconnection

In order to implement a complete real-world WSN node, we connected the
X-Board to the Crossbow MDA100 sensor and data acquisition boards [94] which
include a precision thermistor, a light sensor/ photocell and provide a general pro-
totyping area.

64

We have also used a USB PC Interface Board, the Crossbow MIB520 Gateway [77]
which provides a USB Interface for data communication and allow the developer to
seamlessly program the sensor boards.
This board has an in-system processor (ISP) which is an Atmega16L which is used
to program the Motes. Code is downloaded to the ISP through the USB port and
then the ISP programs the Motes processor. The motes used are the Xbow’s MI-
CAz and IRIS motes [77], which are probably the most widely used ones. MICAz
motes uses the TI CC2420, IEEE 802.15.4 compliant ZigBee ready radio frequency
transceiver which is integrated with an ATmega 128L micro-controller, while IRIS
motes use an Atmel RF230, IEEE 802.15.4 compliant, ZigBee ready radio frequency
transceiver which is integrated with an Atmega1281 micro-controller. These IRIS
enhancements provide up to three times improved radio range and twice the pro-
gram memory over the previous generation Motes. The block diagrams of IRIS and
MICAz motes are presented in figures 4.7 and 4.8 respectively.
The development of the GPSR Routing protocol, as well as the development of cus-

Figure 4.7: IRIS Block Diagram Figure 4.8: MICAz Block Diagram

tom sensor applications in enabled with the use of the TinyOS 2.1 operating system
[69]. For the programming of the nodes we have utilized the nesC (network em-

65

bedded system C) programming language [78], which is a component-based, event-
driven programming language used to build applications for the TinyOS platform.
On the contrary, TinyOS is an operating environment designed to run on embedded
devices used in WSNs. NesC s built as an extension to the C programming language
with components ”wired” together to run applications on TinyOS.
A TinyOS 2.1 implementation of the GPSR protocol, runnable on the IRIS and MI-
CAz motes, exists and was described in a previous chapter. We have programmed
all our motes with this application: The motes that are not connected with a CPLD
are programmed with the given one application, whereas the other motes, which
are a part of our new platform, are programmed with the a modified version of this
application, in order to support the I/O process between the mote and the CPLD
device.

take 1st
byte

START take 2nd
byte

take 3rd
byte

take 4th
byte

execute
algo

send 1st
byte

send
2nd byte

send 3rd
byte

send 4th
byte

END

Figure 4.9: Communication Protocol Scheme

4.1.3 CPLD - Mote Intercommunication

This I/O issue was confronted with the following way: Regarding the CPLD
connection, the JTAG ports were chosen for data transfers between the motes and
the CPLD. For the mote connection, only 24 pins out of the 102 of the prototyping
area are actually available since the remaining pins are either open or dedicated to
a specific operation of the main micro-controller of the mote. Based on a traffic
profiling of several applications, and since it was necessary for this connection to be
used in many applications except for the GPSR one, we decided to use 8 of those
pins as an input to the mote, 8 for the output traffic and the remaining for several
input/output control signals 4.1.
In order to efficiently and correctly exchange data between the CPLD and the Mote,

66

Table 4.1: Custom Cable Pins
MDA100CB Pin Mode CPLD Pin Mode

F2 DATA (out) p117 DATA (in)
F3 DATA (out) p136 DATA (in)
F4 DATA (out) p134 DATA (in)
F5 DATA (out) p132 DATA (in)
F6 DATA (out) p57 DATA (in)
F7 DATA (out) p59 DATA (in)
F8 DATA (out) p119 DATA (in)
F13 DATA (out) p45 DATA (in)
C10 DATA (in) p129 DATA (out)
C11 DATA (in) p126 DATA (out)
C12 DATA (in) p124 DATA (out)
C13 DATA (in) p120 DATA (out)
D10 DATA (in) p118 DATA (out)
D11 DATA (in) p116 DATA (out)
D12 DATA (in) p114 DATA (out)
D13 DATA (in) p112 DATA (out)
E2 RESET (out) p106 RESET (in)
E3 TOGGLE (in) p137 TOGGLE (out)
E4 OFFSET (out) p135 OFFSET (in)

a simple toggle synchronization protocol was also implemented both in software
(on the motes) and in hardware (on the CPLD). As described in the algorithm’s
architecture, the input to and the output of the CPLD should be 32-bit long. As a
result, a number of the Mote’s and CPLD’s pins should be used 6 times for a single
Mote-to-CPLD transfer. The protocol we have designed works as follows: firstly, the
Mote sends the first 8 bits to the CPLD. This datum is stored in a register. Then
the next 24 bits are accordingly sent. When the CPLD receives the first block of
data, a toggle bit transits from its current state to the other, so as to ensure the data
freshness and that the datum is received correctly from the CPLD. Additionally, a
block-offset bit is used, to indicate which block is transferred each time. So, when
the first 8 out of 32 bits are sent to the CPLD, the value of the block offset is 0,
whereas the value of the block-offset bit is 1 when the byte is sent to the CPLD.
After the successful reception of the first block of data, the CPLD sends an inversed
toggle bit to the Mote, so as to trigger the sending of the second block of data. The

67

RESET

TOGGLE

OFFSET

1 2 3 4 5 6 7

Figure 4.10: Timing Diagram of Synchronization Protocol

same procedure is followed, for all bytes, which are stored to 4 input registers in the
CPLD respectively. At this point the CPLD is ready to start the processing of the
received data. After the completion of the algorithm execution, the CPLD starts
to send the data back to the Mote. The protocol used for sending the data to the
Mote is almost the same with the one used for receiving data from the Mote: every
block, is initially stored in an output register in the CPLD. Initially, a toggle bit
is sent to the Mote; then the Mote replies, and upon the reception of the answer,
the CPLD sends the first block with the correct value of the block offset. At this
point it should be mentioned that the output of our hardware module is 32-bit long.
So, every sub-block is 8-bit long, and consequently 4 blocks are sent to the Mote.
Upon correctly receiving the first block of data, the Mote notifies the CPLD about
this fact, and the later starts sending the second block of data to the Mote. This
procedure is repeated in the same way for all the bytes. Once the transfer is finished,
the Mote notifies the CPLD, and the Mote transmits the packet to the other nodes
in the network.
The implementation of the communication protocol on the CPLD is presented in
figure 4.9, whereas, for better explanation, a timming diagram of this protocol is
presented in 4.10.Regarding the actual system integration, the Motes and the CPLD
were programmed and connected together via a custom made cable. The prototyping
system is presented in figures 4.11 and 4.12. The marked area is the CPLD chip,
whereas the rest is the prototyping area of the Xboard development board.

68

Figure 4.11: Wireless Platform Top View Figure 4.12: Wireless Platform

4.2 XMesh Implementation

4.2.1 Cost Functions Architecture

In order to form and maintain a Mesh network, the following two parallel
processes are involved: Link Estimation and Parent Selection. These processes
estimate the following metrics:
Receive Estimate (RE), Send Estimate (SE), Link Cost (LC), Neighbor’s Cost (NC)
and Overall Cost (OC). These metrics are calculated from the following equations
and are described in [83]:

Est = 255 × received/(received + missed) (4.3)

RE = (1 − alpha) × RE + alpha × Est (4.4)

LC = (1 * 18)/(SE × RE) (4.5)

OC = LC + NC (4.6)

From the previous cost metric functions, the multiplication was chosen to be imple-
mented on the reconfigurable device, in order to accelerate the performance of the
routing protocol and to reduce the energy and the maximum power consumption.
At this point, it should be mentioned that implementing all the cost metric functions
on the CPLD, even though it decreases the power consumption, it also increases the
whole execution time of the system, since after experimentation, it was found that
the implementation of a divider in a CPLD is very slow; obviously if a larger CPLD
is utilized, in which a high-speed divider can be implemented, the complete cost

69

function will be mapped to the CPLD resulting in greater power savings and perfor-
mance improvements. Besides that, the reconfigurable multiplication unit is utilized
in other tasks of the protocol as well, since there are a number of related metrics
that are calculated using only multiplication. In figure 4.5 is demonstrated the block
diagram of the multiplier that was implemented on the CPLD. The multiplier used
is the same as the one implemented for the Euclidean Distance Architecture that is
involved in the GPSR routing protocol. The only difference is that this multiplier
is used for 8-bit inputs and thus the cycles that it consumes are limited to 9 (8 for
the multiplication and one for the output).

4.2.2 Node Implementation

At this point it should be stressed out that for the implementation of the
Xmesh Cost function that was described in the previous section the same process is
involved. The same communication protocol was used, with the only difference that
this process sends 2 bytes to the CPLD and receives 2 bytes respectively. Besides
that, the operating system is different; since the XMesh routing protocol is no more
under development, it is available only on the TinyOS 1.x, under the license of
Crossbow. According to the author’s knowledge, this protocol was not ported to
the TinyOS 2.x platform and consequently our development was constrained only on
the CPLD. Furthermore, the GPSR protocol is more efficient in terms of developing,
since it’s code is freely distributed and no permission is needed in order to expand
it.

70

Chapter 5

Reconfigurable (FPGA) Nodes Implemenation

In this chapter we describe the design flow we followed in order to design
and implement an FPGA-based reconfigurable node, executing the GPSR protocol.
This approach consists of a state-of-the-art FPGA connected together with a low-
power general purpose CPU board. This platform and the one that was described
previously not only can comprise two different networks but can also be nodes of an
heterogeneous wireless network, since their functionality is exactly the same.
An overall block diagram of the FPGA-based WSN node implementation is pre-
sented in figure 5.1. In this subsection we will describe the implementation details
of this architecture.
The FPGA device utilized in our innovative design is the one from the Virtex 5

XUPV5
Integrated

XC5VLX110T
FPGA

Intel Board
Integrated

Atom
Processor

RS232
ZigBee
USB

Dongle
USB

ZigBee

Figure 5.1: FPGA Node Block Diagram

family. The Virtex-5 family [95] FPGAs are the worlds first 65nm FPGA family
fabricated in 1.0v, triple-oxide process technology, providing up to 330,000 logic
cells, 1,200 I/O pins, 48 low power transceivers, and built-in PowerPC 440, PCIe
endpoint and Ethernet MAC blocks, depending upon the device selected. They of-
fer the best solution for addressing the needs of high-performance logic designers,
high-performance DSP designers, and high-performance embedded systems design-
ers with unprecedented logic, DSP, hard/soft microprocessor, and connectivity ca-
pabilities.

71

XUPV505-LX110T is a feature-rich general purpose evaluation and development
platform with on-board memory and industry standard connectivity interfaces. It
features a Virtex-5XC5VLX110T FPGA device supporting USB host, peripheral
controllers, programmable system clock generator and many other I/O devices in-
cluding RS-232 port [96]. The block diagram of the XUPV5 development board is
presented in figure 5.2

Figure 5.2: XUPV5 Evaluation Platform Block Diagram

5.1 GPSR Architecture

In this section we present the reconfigurable architecture of the GPSR Rout-
ing Protocol on an FPGA. The protocol was designed from scratch on a reconfig-
urable device, so as for the FPGA to act as a WSN node and to have exactly the
same functionality as a common WSN mote. In the following subsection we present
in detail this new proposed architecture.
The GPSR routing protocol was described in detail in chapter 3. Following this de-
sign specification, an overall block diagram of this protocol on an FPGA is presented

72

in figure 5.3. Our architecture consists of the following components:

NEIGHBOR
TABLE

BEACONING/
UPDATE

GREEDY
FORWADER

PERIMETER
FORWARDER

RECEIVER
MECHANISMinput

packet

CONTROLLER

output
packet

Figure 5.3: GPSR on FPGA Block Diagram

• Receiver Mechanism: It is responsible for receiving all incoming packets
and, according to their type, send them to the appropriate module for further
processing.

• Neighbor Table: This module stores all the neighbors of this node, with all
the necessary information that is needed in order for the protocol to decide
where to forward an incoming data packet.

• Beaconing/Update Mechanism: This module is responsible to receive and
send beacon packets to the rest of the nodes of the neighbor, and update the
neighbor table according to the incoming beacon packets.

• Greedy Forwarder: It implements the Greedy Algorithm, according to the
GPSR specification.

• Perimeter Forwarder: It implements the Planarized Algorithm, so as to
forward packets in cases where the Greedy Forwarder cannot decide where to
forward an incoming packet.

73

• Controller: It arbitrates the functionality and the inter-communication of all
the others modules

All the previously mentioned modules will be described later in the following sub-
sections.
The reconfigurable GPSR (r-GPSR) takes as inputs a beacon or a data packet and
subsequently its outputs are the same. The types of the packets are the same as the
original GPSR and are presented in figures 3.9 and 3.10. The size of a beacon packet
is 15 bytes, whereas the size of a data packet is 34 bytes. The input to r-GPSR has
to be 35 bytes long (34 bytes the maximum length of a packet plus one indicating
the packet’s type). When a packet is of ”beacon” type, it size is modified to be 34
bytes long. The unused fields remain zero, and the r-GPSR handles it as a beacon
packet according to its type, that is added as an extra byte in a new field in the
end of the packet. As far as the size of the data packets concerned (both perimeter
and greedy), this is 34 bytes long plus one byte that is added in the software, which
is their type. To summarize, the input of the r-GPSR is 35 bytes long or 280 bits,
whereas the size of the output is also 35 bytes. The software is responsible to ”add”
or ”cut” the unnecessary bytes, according to the type of each packet

5.1.1 Neighbor Table

The Neighbor Table architecture is presented in figure 5.4 and it consists of
a controller, a Block RAM (BRAM) and some output registers. Single-port BRAM
was chosen to be utilized for the neighbor table, which consists of 16 positions by
99-bits each. Every memory entry is presented in figure 5.5. The high 32-bits are
used to store the ID number of each node, while the following 32 bits store the node’s
position (16 bit for the x co-ordinate and 16 bit for the y co-ordinate), assuming
that all the nodes are placed in the first quartum of a 2-D Cartesian Coordinate
System. The rest of the bits are used to store the status of each node.

The memory controller is an FSM which arbitrates the Neighbor Table and its
functionality is the following: If the GPSR Controller asks all the entries of the
the neighbor table, the memory controller signals the BRAM to read all them. In
every cycle one position is read and all the memory’s containers are stored to the
registers, in order to be used later by every module that needs them. If a new entry

74

BRAM
99x16

MEMORY
CONTROLLER

entry0

R
E
G
I
S
T
E
R
S

entry1

entry2

entry3

entry15

Figure 5.4: Neighbor Table Block Diagram

comes, meaning that a new node has been added to the neighbor, then the memory
controller seeks for the first empty position in the neighbor table so as to store the
new data. After that, the read process is repeated, so as all the modules to be notified
for the new node. If an update notification is received by the GPSR controller, then
the memory controller updates (update or delete) the neighbor table. The read
process is repeated again, in the same manner as it was described previously.
Last but not least, we should mention that one of our assumptions is that in the first
position of the neighbor table, the current node’s ID, position and status is stored

99 BIT

NODE ID
32 bit

POSITION X
16 bit

POSITION Y
16 bit

STATUS
35 BIT

Figure 5.5: Memory Entry

5.1.2 Greedy Forwarder

The Greedy Forwarder module, as the name of the protocol implies, is the
one that implements the previously described, greedy algorithm. It calculates the
shortest path for one input packet and forwards it to the shortest node in the
neighborhood table.

75

The Greedy Forwarder module is presented in figure 5.6 and consists of a module
that finds the shortest path among all the nodes of the neighbor table using the
Euclidean Distance Metric and some other components that are used to ”fix” the
new packet fields, according to the decision made by the Greedy Alogirthm.

FIND SHORTEST
PATH

packetmemory
entries

input packet

node position

FIX GREEDY

FIX
PERIMETER

m
u
x

re
g
is

te
rs

next hop

mode

success

Figure 5.6: Greedy Forward Mechanism Block Diagram

iddle
START ENDfind

path
path
done

perimeter/
failure

Figure 5.7: Greedy Forwarding Controller

This module takes as inputs the incoming packet (280-bits long), all the en-
tries of the neighbor table and the current node ID and position. The outputs of
this module are: a signal that indicates whether or not the calculation of the new
path was successful (in other words if there is a shortest path for the packet to be
transmitted through), the new packet with fixed fields, according to the path that it
will be followed, the next node that the packet should be transmitted to and a signal
that indicates whether or not this specific packet should remain in greedy or transit
to perimeter mode. The last occurs when the ”Find Shortest Path” mechanism fails
to find a proper path.

76

The functionality of this module is arbitrated by a controller in the following way:
Once the Greedy Forwarder module is enabled, it starts to find the shortest path
among all the available paths. This is done by the ”Find Shortest Path” module.
This process is repeated for all the memory entries. This module returns, as it
was previously described, the next node ID that a packet should be transmitted to.
If it returns 0, it means that there is no greedy path for this specific packet, and
thus perimeter forwarding should be tried. On the other hand, if there is a success
in finding a shortest path, the packet fields are fixed and the packet is ready to
be transmitted to the upper modules for further processing and transmission. The
packet fields that are fixed are the destination node ID, which takes the value of the
next node that the packet should be forwarded to and the new destination position
of the target node. The rest of the packet fields remain the same and are copied
from the incoming packet to the new one.
The ”Find Shortest Path” module block diagram is presented in figure 5.8. In the

calculate euclidean
distance

n
o
d
e p

o
sitio

n

entry1

entry1

entry14

entry15

controller

distance
reg

distance
reg

distance
reg

distance
reg

compare

compare

compare

n
o
d
e id

n
o
d
e p

o
sitio

n

Figure 5.8: Find Shortest Path Block Diagram

”heart” of this module a circuit exists that calculates the Euclidean Distance among
all the nodes’ positions. It also consists of a controller which determines the way
this module works, some registers to store the results and some comparators, which
decide the final output of this circuit.
This module takes as inputs all the Neighbor Table entries as well as the current
node position and ID. When this module finishes its process, will output the node
position and the ID that the packet should be transmitted to.

77

Once this module is activated, it calculates in pairs, the distances between the node’s
position and every other node in the Neighbor Table. This process is done in a se-
rial way, since it was necessary to minimize the resources that this specific circuit
uses, despite the fact that in this way it becomes slower (this is not nevertheless
the critical path of our architecture). All the calculated values are then stored into
32-bit registers, for further processing.
Uppon completion of the distances calculations, a successive pair-comparison for all
the distances takes place. The first comparator has as inputs the two first distances.
It compares them and outputs the lower, together with the lower distance’s node ID
and position. The second comparator takes as inputs the second calculated distance
and the result of the previous comparator and finds the lower distance between
them. This process is repeated for all the calculated distances. At last, the final
comparator gives as result the total shortest distance, together with the node ID
and the position of this specific node, which will be the new destination one.
The module that calculates the Euclidean Distance for all the paths is presented

x1

compare

x2

y1

compare

y2

subtraction
multiplication

16x16

subtraction
multiplication

16x16

adder distance

Figure 5.9: Euclidean Distance Block Diagram

in figure 5.9. It consists of two 16-bit comparators, two 16-bit subtracters, 2 16x16
multipliers and a 32-bit adder.
The Euclidean Distance Theorem was presented in the previous section of this chap-
ter, so it will not be explained at this point.
This circuit takes as inputs 4 16-bit positive integer numbers, which represent the
co-ordinates of two different nodes on a Cartesian Co-ordinate System. The x1

and x2 inputs represent the x-coordinates, while the y1 and y2 represent the y-
coordinates of two different nodes. The output of this module is a positive 32-bit
long integer number, which represents the Euclidean Distance, squared. At this
point it should be mentioned that there was no need for the square root function to

78

be implemented, since the calculated numbers are used only for comparisons. So,
the comparison result remains the same whether we compare two numbers or their
square values.
The 16x16 multipliers are imported from the Xilinx Core Generator [87], while for
the implementation of the subtracters, the comparators and the adder the VHDL
Library was u utilized.
This module was designed to be fully combinational, which means that it outputs
the result in one cycle. Firstly, the input values are compared so as to determine
which is the greatest value. These numbers, in the proper order, are then used as
inputs for the subtracters, so as to calculate their differences, which are then mul-
tiplied with themselves, so as to calculate their squares. Finally, these numbers are
added together, which results to the distance between those co-ordinates.
In other words, the previously described circuit calculates the following mathemat-
ical statement:

Distance2 = (x1 − x2)2 + (y1 − y2)2 (5.1)

5.1.3 Perimeter Forwarder

The Perimeter Forwarder module tries to select a clockwise neighbor by us-
ing the ”right-handed” rule and performing the ”face-change” algorithm when a
”greedy” neighbor is not found. It receives a perimeter-mode data packet, performs
the ”face change” algorithm and forwards a packet to counter-clockwise neighbor
nodes. If the distance from local position to destination is shorter than one from
previous node to destination it sends the packet to the greedy forwarder.
Figure 5.10 illustrates the Perimeter Forwarder block diagram. It consists of 3 ma-
jor components: a module that tries to find a shortest path for the input packet
(it was described in detail in the previous section), a module that implements the
”Clock Wise Mechanism” (in other words it tries to find a clockwise path for a specif
packet) and a module that implements the ”face change” algorithm.
The Perimeter Forwarder module takes as inputs a data packet, which is of ”perime-

ter” type, all the entries from the Neighbor Table and the local node position. The
outputs of this module are: a signal that indicates whether there is a success in find-
ing a perimeter path, the new packet when there was a success or the same packet
when there was a failure, the next perimeter that the packet should follow and the
mode that the packet should be in (greedy or perimeter). If the distance from local

79

FIND
SHORTEST

PATH packet

memory
entries

input packet

node position

re
g
is

te
rs

next
perimeter

mode

success

CLOCK
WISE CALC

FACE
CHANGE

ALGORITHM

Figure 5.10: Perimeter Forwarder Block Diagram

iddle
START find

path
perimet

start
find
face

path
done

END

FAIL/
GREEDY

FAIL/
GREEDY

Figure 5.11: Perimeter Forwarder Controller

position to destination is shorten than one from previous node to destination, the
new packet transits to greedy mode, else it remains in perimeter mode.
Figure 5.11 presents the FSM that was designed in order to control the Perimeter

Forwarder module. When a packet in perimeter mode is received, it tries to find a
shortest path for the given neighbor nodes. If it finds a greedy path, the Perime-
ter Forwarder finishes its execution, and the packet enters in greedy mode. In the
opposite case, the module tries to find the best perimeter in clockwise order so as
to forward the packet. Once a path is found, the ”Face Change” algorithm starts
its execution in order to determine whether the packet has reached an edge that
crosses the line to the destination. The Face Change returns the appropriate next
hop for the first edge on the next face, if such a crossing edge has been reached, or
the unchanged next hop found by the right-hand rule if no crossing of the line to
the destination is found.
The module that is used to find a clockwise path for a perimeter packet is the ”Find
Clock Wise Path” one and is presented in figure 5.12. The packet is forwarded to

80

the first edge in clock wise order from the current node using the right hand rule.
So, this module finds all the paths that a perimeter packet could be traversed from.
It takes as inputs a Neighbor Table entry (node ID, location and status) and the

xy_plane

my node

slope base slope

xy_plane

slope

plane

entry

base plane

cmp planes

slope

cmp slopes

selected
plane

selected
slope

Figure 5.12: Find Clock Wise Path Block Diagram

local node data (position and ID).Its outputs are the selected slope and the plane
that this packet may follow. It consists of 2 ”xy plane” modules that try to find the
plane that this packet should follow and 2 modules that calculate the ”base slope”
and the slope that this packet may follows respectively. It also consists of 2 modules
that compare a base slope with a calculated one and a base plane with a calculated
one, and decide, given some rules, which are the best to follow. The rules, that the
comparisons are made are described in detail in the Software Documentation of the
GPSR Routing Protocol [70].
The ”xy-plane” module architecture is presented in figure 5.13. It takes as inputs 4
16-bit values which represent the coordinates of two nodes and it outputs the best
plane based on the following comparisons: If x1 > x2 and y1 > y2, the output is 1
in 32-bit representation. If x1 <= x2 and y1 > y2, the ”xy plane” is 2, if x1 < x2
and y1 <= y2, ”xy plane” is 3 and finally if x1 >= x2 and y1 < y2, ”xy plane” is 4.
The ”Slope” module block diagram is presented in figure 5.14. It is used to calcu-

81

x1

compare

x2

y1

compare

y2

AND xy_plane

Figure 5.13: XY Plane Block Diagram

late the slope of 2 given coordinates (x1, y1) and (x2, y2). These values are 16-bit
unsigned integers. The outputs of this module are two numbers indicating the value
of a slope. This value is represented by 2 16-bit unsigned values (the remainder and
the quotient of a division).
The Slope module works as follows: The input co-ordinates are subtracted (x =
x1−x1, y = y1−y2) and the results are divided according to the following formulas:

quotient = X/Y (5.2)

remainder = X%Y (5.3)

For the implementation of the 16-bit subtracters, we used the VHDL library
templates, whereas for the implementation of the divider we utilized the Core Gen-
erator. Regarding the divider [88], it is based on Radix-2 non-restoring division.
The Radix-2 algorithmic exploits fabric to achieve a range of throughput options,
including single cycle. Since the result of the division is not ready in one cycle, the
controller of the slope delays the output of this module waiting for the completion
of the division.
Regarding the ”Face Change” module, it is presented in figure 5.15, whereas the

pseudo code for this algorithm is presented in 5.1.3. This module is responsible for
performing the ”Face Change” algorithm, which determines whether the packet has

82

x1

subtractor

x2

y1

subtractor

y2

quotient

Divider

remainder

Figure 5.14: Slope Calculation Block Diagram

find cross point clock_wisepacket packet

Figure 5.15: Face Change Algorithm Block Diagram

reached an edge that crosses the line to the destination. It returns the appropriate
next hop for the first edge on the next face if such a crossing edge has been reached,
or the unchanged next hop found by the right-hand rule if no crossing of the line
to the destination is found. Note that the changing faces amounts to treating the
next hop on the current face as the previous hop, and applying the right-hand rule.
Face-change calls itself recursively, because it is possible that a single node borders
multiple edges that cross the line to the destination. The recursion terminates upon
reaching the edge that crosses the line at the closest point to the destination; it must
terminate because there is always an edge that crosses the line at a point farther
than this closest point.
As figure 5.15 clearly depicts, this module consists of two major components. A

module that finds the previously mentioned cross points and a module that finds

83

Algorithm 1 Face Change Pseudo Code Algorithm
FACE − CHANGE(p, t)
i = INERSECT (t.l, self.l, p.Lp,D)
if i &= NIL then

if DISTANCE(i,D) < DISTANCE(p.Lf,D) then
t = RIGHT − HAND − FORWARD(p, t)
t = FACE − CHANGE(p, t)
p.e0 = (self.a, t)

end if
end if

the clock wise path for this specific cross point and packet. It takes as input the in-
coming perimeter packet and outputs the new perimeter packet with updated fields,
according to the path that this packet should follow.
The ”Find Cross Point” module is presented in figure 5.16 and its main function-

x1

y1

slope

mul a1_val

x2

y2

sub

y3

slope

mul a2_val

x4

y4

sub b2

sub

a1_val

a2_val

sub

DIV

mul

add

b1

x3

a1_inf

AND

a2_inf

cross x

cross x

Figure 5.16: Find Cross Point Block Diagram

ality is to find the crossing points of the planarized graphs when the face change
algorithm is performed. It takes as inputs the location in which the packet entered in
perimeter mode (Lp), the location the packet entered the current face (Lp), the po-

84

sition of the local node and a calculated position that was calculated initially by the
clock wise mechanism, when the perimeter forwarding mechanism started its execu-
tion. This module will output the location where a crossing point (crossx, crossy)
exists. It consists of several components, the major of which are 2 ”slope modules”,
for the calculation of the slopes of the given locations, 3 16x16 multipliers, 4 sub-
tracters, divider and an adder. The output of this packet are 2 32-bit unsigned
integer values.
This module works as follows: First the slopes are calculated for the given locations.
When slopes are calculated the remainder values are checked so as to determine if
they are equal or not. If they are both equal to zero, the quotient values are com-
pared together. If they are equal the process ends and is repeated for other input
combination. If they are not equal the b1 and b2 values are calculated from the
following formulas:

b1 = posy1 − a1quotient ∗ posx1 (5.4)

b2 = posy3 − a2quotient ∗ posx3 (5.5)

Uppon completion, the division takes place, with dividend the subtraction result
b1 from b2 and divisor the subtraction result a1quotient from a2quotient. The result
of the division is the crossx. Afterwards, the croosy value is calculated from the
following formula:

y = a1quotient ∗ x + b1 (5.6)

If a2remainder is equal to zero and a1remainder is not, the crossx takes the value of
the x1 co-ordinate, while the crossy takes the value of the following formula:

y = a2quotient ∗ crossx + b2 (5.7)

Finally, if a1remainder is equal to zero and a2remainder is not, then the crossx takes
the value of the x3 co-ordinate, while the crossy takes the value of the following
formula:

y = a1quotient ∗ crossx + b1 (5.8)

In all the previously described cases, a check is executed after the calculation of all
the crossing points to decide whether there was a success in finding a cross point or
not.

85

5.1.4 Update Mechanism

The update mechanism is used so to find which nodes inside the Neighbor
Table has to be updated (position, status). Updating means either to update an
existing entry, to add a new entry or delete one. Figure 5.17 presents an abstract
block diagram of this module.
It takes as inputs all the entries from the Neighbor Table and the received packet

find neighborentry

find neighborentry

find neighborentry

packet

up entry

Figure 5.17: Update Mechanism Block Diagram

and outputs the updated entry with some extra control signals that indicate either
the adding the updating or the removal of a node from the Neighbor Table.
16 simple comparators are used to compare every entry’s ID with the input one so
as to decide if the node exists or not. After that, this entry is updated and sent
back to the Neighbor Table.

5.1.5 Trust Mechanism Architecture

The Trust mechanism is used to calculate the trustness between the current
node and all its neighbors. It consists of a module that calculates the Direct Trust
Value, one the calculates the Indirect Trust Value and a Total Trust Calculator. In
this section we describe in detail the architecture of this mechanism always according
to the description that was presented in the previous chapter. The main goal is to

86

make the r-GPSR protocol to operate in terms of security and trustness.
At this point it should be mentioned, that since this trust model has never been
implemented in the past, either in software or hardware, the provided details were
not sufficient in order to implement this module. To be more specific, we don’t have
the arithmetic details of the values used as well as the values of the constants. As
a result, we designed a more abstract architecture, which, on the other hand, keeps
up with the proposed trust model.
The first module that the Trust Mechanism consists of, is the Direct Trust one,

W0

mul

T0

W1

mul

T1

W10

mul

T10

ADDER mul

C
_
A
B

DT_AB

Figure 5.18: Direct Trust Between A and B nodes Block Diagram

which is presented in figure 5.18. A node’s A Direct Trust value for its neighboring
node B, i.e. DTA,B with k even types, can be calculated according to the following
equation:

DTA,B = CA,B ∗ (
k∑

i=1

Wi ∗ TA,B
i) (5.9)

where Wi is the weighting factor for each one of the k event types and TA,B
i is node’s

A trust value of event i regarding node B.
It consists of 10 multipliers, if we assume that the number of nodes in the Neighbor

87

Table is 10, an adder, and a multiplier which calculates the Direct Trust value
between A and B nodes after multiplying the Confidence factor with the previously
described value.
Regarding Direct Trust Table that was mentioned in the previous chapter, this is

DIRECT TRUST
CONTROLLER

value 1

R
E
G
I
S
T
E
R
S

value 2

value 3

value 4

value16

BRAM
16x20

4 + 16

Figure 5.19: Direct Trust Table Block Diagram

presented in figure 5.19. This table is used to store the most important information
so as for the Direct Trust value calculation to be feasible. It consists of a single port
BRAM that is organized by 16 entries of 20 bits each. The first 4 bits are used to
store a number that corresponds to the Direct Trust attributes and the next 16 are
used to store the value of each attribute.
For each one of the of the Direct Trust Table node’s A Trust value regarding node
B, i.e. TA,B

i , can be calculated as follows:

TA,B
i =

aiS
A,b
i − biF

A,B
i

aiS
A,B
i + biF

A,B
i

(5.10)

where:

• SA,B
i is the number of successful type i events that A has measured for B

• FA,B
i is the number of failed type i events that A has measured for B

• ai and bi represent the weight/significance of a success vs. the weight/significance
of a failure of type Ei events.

88

The block diagram of the previous function is presented in figure 5.20. It takes as
inputs the ai, Si, bi and Ti values and outputs the TAB value. For this module two
multipliers, a subtracter, an adder and a divider were utilized.
As fas as the Confidence Factor CAB concerned, this is calculated based on the

ai

multiplication

Si

bi

multiplication

Ti

subtractor

adder

DIVIDER DT

Figure 5.20: Trust A B Block Diagram

following formula:

CA,B = 1 − 1
noi + a10

(5.11)

where noi indicates the number of interactions with node B and a10 is a factor
whose value will be checked during simulation testing. This confidence factor can
be proved useful, especially during the beginning of network operation. Moreover,
in case of GPSR, a proper metric that can be implemented in this trust model which
is the distance of each one of the neighboring nodes to the sink. The closer a node
to the sink, the greater the value added to the final direct trust of the node.
The block diagram of the Confidence Factor is presented in figure 5.21 and utilizes
an adder, a subtracter and a divider. The Indirect Trust block diagram is presented
in figure 5.23. The designed architecture is based on the following equation:

ITA,B =
n∑

j=1

W (DTA,Nj) ∗ DTNj ,B (5.12)

where n is the number of neighboring nodes to A, Nj are neighboring nodes to A,
DTNj ,B is node’s Nj reputation value of node B and W (DTA,Nj) is a weighting
factor reflecting node’s A direct trust value of node Nj . Different weighting factors
are used for each node regarding the events described above. For example, if node’s
C direct trust value (evaluated by node A) is large and also node C is frequently
sending responses to node’s A requests, then its weighting factor is large. It consists
of several number of dividers and multipliers (their number is equal to the number

89

Divider1

noi

adder

a10

subtractor C_AB

1

Figure 5.21: Confidence Factor Between A and B

of nodes in the Neighbor Table), and an adder which adds the previously calculated
values together so as to output the Indirect Trust Value.

The Indirect Trust Table is organized as presented in figure 5.23. This table

INDIRECT
TRUST

CONTROLLER

value 1
R
E
G
I
S
T
E
R
S

value 2

value 3

value 4

BRAM
4x18

2 + 16

Figure 5.22: Indirect Trust Table Block Diagram

contains all the attributes that were described in the previous chapter.
The total trust evaluation node A of node B, i.e. TTA,B is performed by applying

the following equation:

TTA,B = W (DTA,B) ∗ DTA,B + W (ITA,B) ∗ ITA,b (5.13)

where DTA,B is node’s A trust value of node B, W (DTA,B) is a weighting factor
reflecting node’s A direct trust value of node B, ITA,B is a node’s A indirect trust

90

N0

DT

B

ADDER IT_AB

mul

W(DT_A,N0)

Nn

DT

B
mul

W(DT_A,Nn)

Figure 5.23: Indirect Trust Between A and B nodes Block Diagram

value of node B and W (ITA,B) is a weighting factor reflecting node’s A indirect
trust value of node B. The block diagram of the Total Trust Module is presented in
figure 5.24. It contains the previously described Direct and Indirect Trust modules,
2 multipliers and an adder that calculates the Total Trust Value. Every time that
the cooperation among the nodes is completed, every node records and updates the
trust value of its cooperation node. The trust value of a node varies with time. In
our trust model, if a node cannot provide cooperation for other nodes, the other
nodes will gradually decrease its trust value accordingly. Since node A can be sure
only about the first-hand information that has collected, the weighting factor of
the Direct Trust Value will be larger than the weighting factor of the Indirect Trust
value. This remark might not be applicable in the case where a new node appears in
the neighborhood, where indirect information may be the only source of information
to be used for validating the neighbor’s trustworthiness. Regarding the embedding
of the Trust Mechanism with the rest of the r-GPSR architecture, this is presented in
an abstract way in figure 5.25, but we have not implemented this actually. We only
present here the way that this module can be added on our r-GPSR architecture
that will transform it to Trusted and Secured GPSR protocol.

91

A

DT

B

W(DT_A,N0)

A

IT

W(IDT_A,Nn)

multiplication

multiplication

adder TT_AB

Figure 5.24: Total Trust Between A and B nodes Block Diagram

5.1.6 GPSR Controller

In order to make all the components that comprise the r-GPSR protocol to
communicate and co-operate, an effective controller was necessary to be designed.
Figure 5.26 depicts the FSM controller that was designed for this purpose.
This FSM consists of 10 states, at one of each a specific operation of the GPSR
is triggered. Initially, the FSM is at the idle state. When a packet arrives, the
Neighbor Table is activated and all the existing entries in it are read and stored into
registers. After that, the type of the packet is checked, in order to be determined
whether this specific packet is beacon or data.
If it is a beacon packet, the FSM transits to the ”Beacon Receive” state. The appro-
priate fields are read, the ”Update Mechanism” is activated and upon completion,
a new Beacon Packet is ready to be send to the output, with location co-ordinates
and ID, the current location and ID of the local node respectively.
If the packet that was received is a data one, the FSM transits to the ”data receive”
state, where is determined whether it is ”GREEDY” or ”Perimeter” one. At this
state, the Update Mechanism is also triggered in order to update, if necessary, the
Neighbor Table.
In case of a ”GREEDY” packet, the FSM waits for the Greedy Forwarder mech-
anism to complete and send the packet to the output. If that is not possible, the
control passes to the Perimeter mechanism, so as to find out whether a possible

92

NEIGHBOR
TABLE

BEACONING/
UPDATE

GREEDY
FORWADER

PERIMETER
FORWARDER

RECEIVER
MECHANISM

input
packet

CONTROLLER

output
packet

TRUST
MECHANISM

Figure 5.25: Trusted GPSR on FPGA Block Diagram

perimeter exists for this specific packet and neighbor nodes stored into the neighbor
table. If yes, the new packet is a perimeter one, else a copy of the incoming packet
is sent back to the upper levels (which will be described in the next chapter) with
the appropriate failure code.
Finally, in case of a perimeter packet, the same process is repeated respectively.

5.2 Implementation Details

The whole GPSR protocol architecture was implemented on this device. As
far as some implementation details concerned, for the Neighbor Table’s memory,
we used single port BRAM, while the initialization of this memory was made with
the use of a ”.coe” file, which contains some initial nodes’ IDs together with their
position and status data. At this point it should be mentioned that, the node’s po-
sitions, when GPSR is used, have to be pre-defined when there is no GPS receiver.
The tool used to implement our design was Xilinx ISE 10.1 [92], while its embedded
simulator was used in order to verify the correct operation of our architecture via
the process of ”Behavioral Simulation”. Next, we had to carry out ”Post Place and

93

iddle
START

read NT check
codes

beacon
receive

update
table

data
receive

beacon
send

wait for
greedy

wait for
perimet

send
packet

EN
D

END

Figure 5.26: r-GPSR Controller

iddle
START

read NT check
codes

beacon
receive

update
table

data
receive

beacon
send

wait for
greedy

wait for
perimet

send
packet

EN
D

END

Trust
Calcul

Trust
Calcul

Figure 5.27: Trusted r-GPSR Controller

Route Simulation” and, for this purpose, we preferred Modesim SE 6.3f [93]. The
FPGA was programmed using the embedded Xilinx ISE tool.
The previously described device is connected with an Intel Desktop Board D945GCLF2
that contains an integrated Intel Dual-Core Atom 330 processor @ 533 MHz [97].
The Intel Desktop Board D945GCLF2 is designed to support Internet-centric com-
puting in a Mini-ITX form factor using the Intel 945GC Express Chipset. Besides
that, our board is equipped with a 1-GB DDR2 RAM module and an external
SATA2 hard disk drive. The block diagram if this device is presented in figure 5.28.

The connection of the previously described devices was made via RS-232 port.
We connected the development systems with a null modem serial cable, utilizing

94

Figure 5.28: Atom Board (D945GCLF2D) Block Diagram

the RS-232 ports of each device @ 115200 Kbps., since the GPSR routing protocol
doesn’t require high data transfer speed. As far as the wireless part of our innovative
platform concerned, we used the Crossbow MIB520CB USB Gateway connected to
the Intel Atom Board.
As it was previously described, the communication between the Intel Atom board

and the XUPV5 is facilitated through the RS-232 ports. So, we have designed and
implemented a simple RS-232 interface in the reconfigurable device. The reconfig-
urable UART module consists of a simple serial receiver, a BRAM, which is used
in order to temporary store the input and output data, a simple serial transmitter,
and a simple controller, which arbitrates the functionality of the previous modules
(Appendix A).
Figure 5.29 shows the top view of our platform. In this figure the FPGA used in
inside the red frame, the ZigBee module inside the yellow one and the Atom pro-
cessor inside the blue one. The rest parts are the prototyping areas used mainly for
the intercommunication and the development of the platform.
Apart from the hardware modules utilized in our system, a software suite was also
developed in order to enhance our platform with the appropriate functionality. To

95

Figure 5.29: FPGA Node Top View

begin with, one of the most crucial issues was the correct selection of the operating
system of the the Intel Atom Board. The operating system should be as minimal
as in can, so as to meet the WSN need for lower power consumption; as a result,
Linux Xubuntu 8.10 with Linux kernel 2.6.27 was selected, which is claimed to be
appropriate for low power solutions [98].
The ZigBee module that is connected on a USB port of the Atom Board consists
of an MIB520CB gateway and an IRIS mote connected together. It is programmed
with a TinyOS utility application called ”BaseStation”. This application acts as
bridge between the serial port and radio network. When it receives a packet from
the serial port, it transmits it on the radio; when it receives a packets over the radio,
it transmits it to the serial port. Because TinyOS has a tool chain for generating
and sending packets to a mote over a serial port, using a ”BaseStation” allows PC
tools to communicate directly with mote networks.
A python software suite was developed on the top of the Xubuntu OS which controls

the efficient and correct data transfer among the FPGA and the ZigBee interface.
Python [99] is a dynamic object-oriented programming language that can be used
for many kinds of software development. It offers strong support for integration
with other languages and tools and comes with extensive standard libraries. For

96

AM.
1B

DES.
ADDR.

2B

SOURCE
ADDR.

2B

LEN.
1B

GR.
ID.
1B

HAN
1B

PAYLOAD
x BYTES

<=28
BYTES

TINYOS HEADER APP. FIELDS

Figure 5.30: Serial Forwarder Message Format

our application, we used the open-source PySerial, Socket and MySQLdb, python
libraries. PySerial is a library which provides support for serial connections over a
variety of different devices: old style serial ports, Bluetooth dongles, infra-red ports,
and so on. In our case, PySerial provides all the necessary functions for the com-

Start

Socket Connection
- SF

Open Serial @
115200

while 1

Read Size - SF

Read Packet - SF

Write Packet -
Serial

Read Packet -
Serial

Connect to DB

Write Packet - SF

Write Packet - DB

Figure 5.31: Python Script Flowchart of FPGA Node I/O Communication

munication between the Atom Processor and the FPGA Board, whereas the Socket
library provides access to the BSD socket interface. The Socket Python library is
also utilized for the interconnection with the ZigBee module, through the SerialFor-
warder Tool, which is described later in this section. Last but not least, MySQLdb

97

is a thread-compatible interface to the popular MySQL database server that pro-
vides the Python database API, which enables us to store our results directly to a
database for easier retrieval and post-processing.
The SerialForwarder program opens a so called packet source and let many appli-

BaseStation -
nesC

usb

socket
SerialForwarder

- java

Packet
Reception/

transmission -
python

write/read paket
UART - python

pySerial
write to DB-

pythonPHP Web Page apache server

in packet

out packet

m
yS

Q
Ld

b

Figure 5.32: FPGA Node Software Stack

cations connect to it over a TCP/IP stream. For example, a SerialForwarder whose
packet source is the serial port can be executed; instead of connecting to the serial
port directly, applications connect to the SerialForwarder, which acts as a proxy
to read and write packets [100]. Figure 5.30 presents the message format that the
Serial Forwarder can recognize.
In general, our new node is used to receive, process, forward and optionally store
data packets using all the previously referred software tools. Figure 5.31 presents
the flowchart of our basic software suite while Figure 5.32 presents the complete
software stack of our development tools. Utilizing our development tools, any ap-
plication implemented in the Atom CPU, the FPGA or a combination of the two,
can easily process incoming packets from the Motes. Upon a packet is received, our
suite reads its size and the actual data itself. The received packet, then, is either
processed by the software executed on the Atom or written to the RS-232 port, in

98

order to be processed by the FPGA. When an incoming packet is monitored in the
RS-232 port, our software suite reads it, forms it according to the SerialForward
Protocol and sends its size and the actual data to the socket, so as to either be
further processed by the software executed on the Atom or be broadcasted to the
air via the ZigBee module. Our development tools can also store this packet to a
database.
Regarding the implementation of the previously described trust metrics, it should
be noted that we have implemented them stand alone on a XUPV5 device. We
haven’t though connected the implemented module with the rest GPSR module,
since we are still unaware of some important details such as the trust metrics arith-
metic. Also the software implementation is still (when we write down these lines)
under development and consequently we cannot verify the GPSR based on Trusted
attributes.

99

100

Chapter 6

Reconfigurable (FPGA) BaseStation Implementation

The hardware modules used for the implementation of the Base Station
node are the same as for the FPGA-Based node: A XUPV5 Development platform,
an Intel Atom Development Board and a Zigbee Module. The FPGA device is
programmed with the Base Station architecture that was described in the previous
chapter. The software stack remains almost the same. The only difference is that
our node does not send any data packets back to the air; only beacon packets
are broadcasted through the Zigbee Dongle. Regarding the Data packets, these
are aggregated in the Basestation node, and are stored to a database for further
processing.

6.1 Architecture

In this section we describe the architecture of the r-GPSR routing protocol
on a Base Station Node, which includes an FPGA Device. The previously proposed
r-GPSR protocol was modified in order for the FPGA device to act as a BS.
In fact, the protocol functionality remains the same, as it is presented in figure 5.3,
but with less functionalities.
A BS is usually the final destination for all the packets that are transmitted from all
the nodes. It has only to receive beacon messages from the nodes inside its neigh-
borhood, to notify its neighbors about its existence and to receive and store data
packets. Consequently, the modules that are necessary for the FPGA to act as a
BS are only a Neighbor Table, the Beacon/Update module, a Receiver Mechanism
and a controller to arbitrate the module inter-communication.
The Neighbor Table architecture remains the same, as it was described previously:
It is responsible to keep the states of all the node inside the neighborhood.
The Receiver Mechanism is slightly modified it order to receive data packets and to
notify the Software Stack so as to store the data included in these packets.

101

The Beacon\Update module is responsible to generate and broadcast beacon mes-
sages to the rest of the neighbors and update correctly the Neighbor Table with the
nodes’ states.
The Greedy and Perimeter Forwarders are not used, since no data packets can be
transmitted by the Base Station Node.

102

Chapter 7

System Verification, Monitoring Tools and TestBed

In this chapter we present the verification processes that were followed during
the systems development. We also give some examples of monitoring tools that were
used in order to view the ZigBee exchanged packets. Finally, we present a testbed
that can be used for exhibiting our systems.

7.1 System TestBed and Verification

In this section we describe all the steps we followed in order to verify our
proposed platforms. We describe in detail the verification process for every module
separately but as a whole system too. Also, we present some scenarios that we have
been examined and some other applications that can be used on this platform.

7.1.1 Sub-systems Verification

Our proposed systems have been tested and verified in every step of the
development:

• CPLD Architecture: The architecture that was implemented on the CPLD
device, was first simulated with the ModelSim Simulator via the ”Behavioral
Simulation” process. The results of the ”Euclidean Distance” were compared
and verified with those that came out of a simple Matlab Script which calcu-
lates the distances for several inputs. Also ”Post-Fit Simulation” process was
conducted, in order to examine the functionality of our module right before
this is downloaded on the CPLD device.

• CPLD-Mote Communication Protocol: For the verification of the CPLD-
Mote communication protocol we implemented the following scenario: First
we implemented the communication protocol on the CPLD, without any other

103

functionality except for that the CPLD should send back to the Mote the
inputs inverted. We implemented also in nesC an application that increases
a counter, sends these values to the CPLD through the custom-made cable,
takes the inverted inputs from the CPLD and broadcasts the initial counter
value and the inversed one to the air. With the use of the ZigBee dongle we
capture all these packets and verify them.

• CPLD-Based Node: In order to verify the correct functionality of the
CPLD-based platform, we programmed the Mote with the modified GPSR
Software that supports the communication protocol and has a specific loca-
tion and an ID. The CPLD was programmed with the ”Euclidean Distance”
module and the CPLD communication protocol. This node acts as a GPSR
network node. First, we verified that this node sends GPSR packets to the
air. Afterwards, we checked, with a use of a ZigBee Dongle, whether this node
forwards packets to other nodes or not. Finally, we programmed another mote
with the same ID and location attributes, and for the same coordinates and
number of nodes in the network, we compared if the node forwards the packets
in the same manner as the new one. We also used for our experiments MICAz
and IRIS motes in order to examine if the behavior of our new system remains
the same.

• FPGA Architecture: All the modules that comprise the r-GPSR archi-
tecture were simulated separately with the ”Behavioral Simulation” process
with the use of the ModelSim Simulator. All the results were examined and
compared with the results that we conducted from several Matlab scripts.
Furthermore, the whole r-GPSR architecture was simulated with the ”Behav-
ioral Simulation” process and the ”Post Place and Route Simulation” process.
Finally, the functionality of our architecture was tested on-board, with the use
of a python script and an RS-232 port.

• FPGA-Atom Board Communication Protocol: For the verification of
this sub-system we designed a python script that sends random values through
the RS-232 ports and we expect back, these values inverted. This is done so
as to check the development board communication process. Also, in order to
check the communication between the ZigBee module, which is programmed
with the Base Station Application, and the Atom Board, we created a python

104

script that receives packets from the air, prints them to the monitor and sends
them back to the air, with another ID. For the latter, the ZigBee dongle was
utilized.

• FPGA-based Node: We program the FPGA to act as a r-GPSR node, with
an ID and a location position, and we put it inside an existing network, that
consists of several nodes, programmed with the GPSR application. What we
expect is to see if this node receives packets, adds nodes to its neighbor list
and sends beacon and data packets. All the exchanged packets are captured
with the ZigBee dongle.

XBOARD

IRIS

GPIO
Wireless

Link

Zigbee
802.15.4

Zigbee Card

Intel Board
XUPV5

RS232
XC2C256

CPLD

XC5VLX110T
FPGA

USB Atom
Processor

IRIS MICAz

MICAz IRIS

Figure 7.1: TestBed General Scheme

7.1.2 System Testbed

In this section we propose two different testbeds for our new-platforms: The
first one includes 2 CPLD-based nodes, an FPGA-based node and several IRIS
and MICAz motes. An IRIS mote is used a GPSR Base Station with a random
ID and location position. All the other nodes have also random and distinct IDs
and location positions. We place all the nodes in different positions inside an area,
according to their locations, and start up all the nodes. In order to have a real
world experiment, we program the motes and the CPLD-based nodes to sense the

105

environment (light and temperature) and send these values to the air over the GPSR
stack. The FPGA-based node cannot sample any values, since it has no embedded
sensors. As a result it acts as a simple packet forwarder. In other words, this node
doesn’t generate any new data packets.
The second testbed application includes 2 CPLD-based nodes, several IRIS and
MICAz motes and a FPGA-Based BaseStation node. All nodes gather temperature
and light measurements and try to forward them, through the GPSR stack to the
BaseStation, where they are stored into a database and are uploaded to the Internet.
A general scheme of this testbed application is presented in figure 7.1.

7.2 Monitoring Tools

In order to test, monitor and measure the wireless link activity, two different
options were implemented:

• ZigBee Dongle: The messages exchanged among the nodes can be captured
by the Integration Wireless Platform Analyzer using a ZigBee dongle (Integra-
tion IA-OEMDAUB1-2400 - ZigBee ready, 2.404 - 2.481GHz / IEEE 802.15.4),
which is installed on a monitoring PC. These messages are transferred to the
PC for further analysis.

• WEB Interface: As it was previously mentioned, all the messages received
from the FPGA node, both from the ZigBee interface card and the FPGA
device, are stored to a database, using the Open Source MySQL Database
Management System [101]. These stored packets are then published on the
Internet with the help of the open source Apache HTTP web server [102],
which is installed on the Atom board.

106

Chapter 8

Performance Results, Conclusions and Future Work

In this chapter we present the performance results of our previously described
implementations. First we present the execution time, energy consumption and
max power draw of the CPLD implementation and then the FPGA-based system
performance results. Later in this chapter we describe the conclusions of this thesis
and the future work that can be done on it, in order to achieve better results and
to enhance its scientific contribution.

8.1 Performance Results

8.1.1 CPLD Approach

The system was evaluated based on three major metrics: execution time,
energy consumption and maximum power draw. All these are critical parameters in
WSNs, since it is certainly desirable to increase the limited processing power of the
node while also increasing the life time of the wireless mote by reducing the energy
and maximum power consumption.
Our performance results are based on real-world experiments in which a mixed
signal oscilloscope has been used in order to take the speed, energy and power
measurements. An extra signal has been used in both the software and the hardware
implementation of the application in order to measure the execution time; this
signal transits to high when the execution of the specific process starts and then
toggles back to low, when the process ends. Furthermore, the energy consumption is
calculated using the integral of the measured voltage Vm for the measured execution
time period ∆τ . The result is divided with the reference resistance Rref , which is
equal to 0.1 Ω in the experimental topology used, in order to calculate the reference
current Iref .
Multiplying the Iref with the reference voltage Vref that is equal to 2.7 V for the
Micaz Mote and 3.3 V for the CPLD, the overall energy consumption is calculated

107

based by the following formula:

E = IrefVref , whereIref =
ΣiVm,i∆τ

R
(8.1)

Regarding maximum power consumption, this is calculated by multiplying the ref-
erence voltage of the system Vref , with the maximum measured value of the current
Imax, which is calculated by the division of the measured value for the voltage Vmax,
with the reference resistance Rref . The actual equation used is the one below (8.2).

Pmax = Im,maxVref , whereIm,max =
Vm,max

Rref
(8.2)

The overall measured values for the specified system are presented in Table 8.1. At

Table 8.1: CPLD Node Approach with GPSR Performance Results

System Execution Energy Max Power
Time(s) Consumption(J) Draw(W)

MICAz Mote 3.15E-06 5.96E-07 2.66E-01
MICAz Mote 9.46E-05 3.29E-05 3.89E-01

plus CoolRunner-II
MICAz Mote 7.04E-05 1.68E-05 3.72E-01

plus CoolRunner-II(overhead)

this point it should be mentioned that there is no point in measuring the execution
time, energy consumption and maximum power draw of the CPLD standalone, when
this is processing the ”Eucidean Distance” algorithm, since it can not stand as a
complete system.

In order to have realistic measurements, we repeated the experiments for the
previous systems, for 2, 3, 4, 5, 6 and 8 nodes in the network for 100 packets each
and we calculated the mean values. We found out, based on our measurements,
that there is no significant difference in the execution time, energy consumption or
maximum power draw. Also, there is no significant difference, when we use IRIS
motes instead of Micaz, since their micro-controllers belong to the same family, so
their electrical characteristics remain almost the same.
Regarding the measurement of the overhead of the communication between the

108

Table 8.2: CPLD with GPSR Resource Utilization

Macrocells 228/256 (90%)

Pterms 640/896 (72%)

Registers 167/256 (66%)

Pins 28/118 (24%)

Function Block Inputs 420/640 (66%)

Table 8.3: Motes with GPSR Resource Utilization

Resource IRIS (ATmega1281) MICAz (ATmega128L)
without CPLD with CPLD without CPLD with CPLD

ROM (bytes) 19006 21528 19762 22770
RAM (bytes) 2842 2840 2649 2651

Mote and the CPLD, this is implemented as follows: We programmed the CPLD
with a design that doesn’t calculate the Euclidean Distance Algorithm, but im-
plements only the communication protocol. The software, with which the mote is
programmed remains the same.
Based on our experiments, (and when the CPLD was clocked at a moderate rate
of 48MHz), the derived experimental results are not very promising. The execution
time when using a CPLD is decreased by 30 times when compared with the execu-
tion time of the same algorithm on the micro-controller of the Mote. Moreover, the
communication overhead takes about the 75% of the total execution time, due to the
large number of bits that have to be transmitted to and from the CPLD. To be more
specific, the total number of bits that need to be transmitted are 64 or 8 bytes; as a
result, it can be conducted that this specific algorithm is not efficient enough on the
CPLD and in combination with the delay that the custom-made cable adds together
with the protocol it is not a good tactic to implement this algorithm on the CPLD.
Previous work at MHL, have proved that the CPLD can add processing power and

109

thus reduce the execution time, when the total transmission bits are fewer and when
the CPLD executes simpler functions (e.g. encryption, turbo-coding) [103].
Regarding the overall energy consumption for this algorithm is increased by 98.19%
whereas more of 48% of this energy is spent for the communication process.
The max power draw for this algorithm when the CPLD is connected is about
31.62% higher compared to the max power draw without a CPLD.
As far as the resource utilization of the CPLD and the Motes concerned, this is
presented in tables 8.2 and 8.3 respectively.
Table 8.4 illustrates the performance results of our new platform when the XMesh
routing protocol stack is utilized. We measured the execution time, energy consump-
tion and max power draw of the Cost Function that was described in the previous
chapter, when this is executed on a mote and on our platform respectively. At this
point it should be mentioned, that due to the limited resources of the CPLD device,
only the multiplication is executed on the CPLD. The rest of the cost function in
executed on the mote. The results derived from real world experiments while the
methodology used was the same as for the GPSR Euclidean Distance. As Table 8.5
clearly demonstrates, the execution time remains almost the same in both cases,
due to the fact the bottleneck of this function is the division. On the other hand,
when using the CPLD for executing the 8-bit multiplication, the overal energy is
decreased by 71,5%. Also there is a decrease in in max power draw by almost 50%
when the CPLD device is utilized. Comparing these results with those derived from
the first system (Table 8.2), we can see that in the latter case the CPLD actually
accelerates the performance of the XMesh protocol. This is explained by the fact
that the overhead the communication protocol introduces is lower since we have to
transfer 4 bytes instead of 8 in the first case. Besides that the multiplication pro-
cess takes almost the half time to be executed since it operates on 8-bit numbers.
In Table 8.5 the CPLD utilization is presented for the XMesh Cost Function to-
gether with the communication protocol. As this table clearly demonstrates, almost
half the resources of this devices are utilized. The division process though requires
more than these resources so as to be implemented together with the multiplication
process.

110

Table 8.4: CPLD Node Approach with XMesh Performance Results

System Execution Energy Max Power
Time(s) Consumption(J) Draw(W)

MICAz Mote 1.25E-04 8.56E-06 1.01
MICAz Mote 1.23E-04 2.44E-06 5.13E-01

plus CoolRunner-II

Table 8.5: CPLD with XMesh Resource Utilization

Macrocells 134/256 (53%)

Pterms 338/896 (38%)

Registers 116/256 (46%)

Pins 28/118 (24%)

Function Block Inputs 208/640 (33%)

8.1.2 FPGA Approach

The FPGA system was evaluated on the same metrics: execution time,
energy consumption and maximum power draw. All these are metrics of critical
importance for WSNs. At this point we compare the GPSR protocol on the FPGA
device against its software implementation on the Atom Processor. We do not com-
pare the previous system with this one, since they are used for different purposes:
The FPGA is used in cases where there is a great need in processing power such as
in WiMax networks. So, it completely pointless to compare the GPSR execution
time, energy consumption and maximum power draw on a simple, low power, 8-bit
micro controller with a large, state-of-the-art FPGA Device.
In other words, what we examine here is the possibility of replacing the ”big” ag-
gregate nodes on a network, that consist only of a general purpose CPU, with our
newly introduced reconfigurable system.

111

Our FPGA performance results are based on real-world experiments in which a
mixed signal oscilloscope has been used in order to take the speed, energy and
power measurements. An extra signal has been used in both the software and the
hardware implementation of the application in order to measure the execution time;
this signal transits to high when the execution of the specific process starts and then
toggles back to low, when the process ends. Furthermore, the energy consumption is
calculated using the integral of the measured voltage Vm for the measured execution
time period ∆τ . The result is divided with the reference resistance Rref , which is
equal to 0.1 Ω in the experimental topology used, in order to calculate the reference
current Iref .
Multiplying the Iref with the reference voltage Vref that is equal to 3.3 V for the
FPGA, the overall energy consumption is calculated based by the following formula:

E = IrefVref , whereIref =
ΣiVm,i∆τ

R
(8.3)

Regarding maximum power consumption, this is calculated by multiplying the ref-
erence voltage of the system Vref , with the maximum measured value of the current
Imax, which is calculated by the division of the measured value for the voltage Vmax,
with the reference resistance Rref . The actual equation used is the one below (8.4).

Pmax = Im,maxVref , whereIm,max =
Vm,max

Rref
(8.4)

The FPGA board used for our measurements is the Digilent XUPV2P board,
with a Virtex 2 Pro XC2VP30 integrated FPGA device, since the XUPV5
board used for our implementation can not provide the appropriate input and out-
put pins for this kind of measurements. We cannot isolate the voltage regulator,
and thus we cannot power up the FPGA device from an external Power Generator.
In order to measure the execution time of the GPSR software on the Atom Pro-
cessor, we used the Intel Vtune Performance analyser tool 9.1 [104] installed on
Linux Xubuntu 8.10, whereas for the power draw measurement we used the Linux
PowerTop tool [105]. PowerTop is a tool that measures the percentage of power
states at which a processor exists, when executing a software. We couldn’t used the
previously described methodology, in order to measure the execution time, energy
and power draw of the Intel Atom Board, since we couldn’t isolate the voltage reg-
ulator, which drives the current to the processor. This is the only technique that
is used in bibliography, in order to measure the power consumption of this kind

112

Table 8.6: FPGA vs CPU Performance Results (XUPV2P)

System Execution Energy Max Power
Time(s) Consumption(J) Draw(W)

Reconfigurable Node 1.36E-04 3.50E-06 1.40E-01
Reconfigurable BaseStation 1.52E-05 2.18E-07 3.54E-02

ATOM Processor(Node+BS) 4.28E-03 1.09E-02 2.54

of boards. Regarding the power states of the Atom Processor, these are described
in detail in [106] data-sheet. To summarize, the Atom 330 Family processor has 2
states : C0 and C1. The C0 state is the normal operating state for threads in the
processor. C1 is a low power state entered when a thread executes a halt or wait
instructions. When the Atom processor enters in C0 state, the average power draw
is 8 W, whereas when it enters in C1 state the average power draw is 2 W. These are
the only experimental values the manufacturer provides, without giving details for
this specific the experimental topology. Also, there is no way to measure the average
energy consumption, since there is not available tool for this kind of measurement.
In order our measurements on the FPGA to keep up with the measurements on the
Atom processor, the same experiments were carried out: The same number of pack-
ets were exchanged among the nodes of a network that was set up, with the same
beacon delay and the same topology (locations) of the nodes inside the network.
The overall measured values for the specified system are presented in Table 8.6,
while the FPGA resource utilization results are presented in Tables 8.8 and in 8.7
for the Virtex 2 Pro and for the Virtex 5 device respectively, for both Base Station
and Node applications. All the utilization results are those that the ISE tool gener-
ated after the ”Place and Route” process (at the Place and Route Report). In the
following tables we include also the power results that the Xilinx XPower Analyzer
tool generated [92]. These results are presented here, in order for consistency to ex-
ist with the measurements on the Intel Atom Board. Those results were measured
with the use of a software tool (PowerTop) and as a consequence, it is necessary, to
present the FPGA power consumption values that were derived by a software tool
(Xilinx XPower Analyzer) too. Regarding the FPGA performance results, we mea-
sured the execution time, the energy consumption and the max power draw for 1000
packets (beacon+data). The measurements were taken by sets of 100 packets (10

113

Table 8.7: Virtex 5 Resource Utilization

Resource Base Station Node

DSP48Es - 25 out of 64 (39%)
RAMB18x2s 1 out of 148 (1%) 1 out of 148 (1%)

RAMB36 EXPs 1 out of 148 (1%) 1 out of 148 (1%)
Slice Registers 1608 out of 69120 (2%) 14910 out of 69120 (21%)

Slice LUTS 1630 out of 69120 (2%) 16485 out of 69120 (23%)
Slice LUT-Flip 2166 out of 69120 (3%) 20433 out of 69120 (29%)

Flop pairs
Frequency (MHz) 165.80 56.50
Power Cons. (W) 0.98 1.07

XPower Measurement

sets of 100 packets each). The packets were random, and generated by the motes.
On the other hand, for the Atom measurements, we used the same node’s locations
and took the measurements for 1000 packets: using the VTune for the execution
time and PowerTop for the power draw respectively.
The comparison of the performance results in table 8.6, shows a speedup in execu-
tion time from the FPGA side by a factor of 31 and a decrease in power draw by
almost 95%.
As far as the FPGA utilization results concerned, the critical path of our design is
the module that implements the face change algorithm. It consists of many complex
logic that delays the execution of the whole system and thus the frequency achieved
by the tools is not very high compared to the maximum frequency that can be
achieved on these FPGA devices (according to the manufacturers).
At this point it should be also mentioned that the XPower Analyser values are
presented here for consistency purposes with the results derived from the Linux
PowerTop tool. As it is clearly demonstrated by the derived values, the XUPV2P
results are very similar (same order of magnitude) to the results taken by the ex-
perimental measurements with the oscilloscope. Their difference relies on the facts
that, firstly the XPower Analyzer makes only an estimation based on the design.
before this is downloaded on the board and secondly by the fact this tools estimates
the worst power consumption that the board may have during real time operation.

114

Table 8.8: Virtex 2 Pro Resource Utilization

Resource Base Station Node

MULT18x18s - 18 out of 136 (13%)
RAMB16s 3 out of 136 (2%) 3 out of 136 (2%)

Slices 1381 out of 13696 (10%) 12459 out of 13696 (90%)
Frequency (MHz) 122.69 41.16
Power Cons. (W) 0.12 0.23

XPower Measurement

In Table 8.9 the throughputs of the Reconfigurable Sensor Nodes approaches are pre-
sented. The length of the beacon and data packets is 120 bits and 272 respectively.
This value is necessary in order to estimate the bandwidth of our system in the case
which it will be used as part of a 802.11 Network (WiFi or WiMax). Measuring the
bandwidth at the case of ZigBee is useless, since not only its a limited-bandwidth
protocol but also it was used as the most convenient one during the design and
implementation of our systems. At this point it should also be mentioned that our
system uses as I/O device the RS232 protocol, for the same purpose. If we have em-
bedded a USB ZigBee Card on the FPGA or if we have chosen another I/O protocol
the usage of the Atom Board would have been unnecessary.

Table 8.9: Throughput (MPackets/s) FPGA Approach

Packet Type XUPV2P XUP5V
BaseStation Node BaseStation Node

(122.69 MHz) (41.16 MHz) (165.80 MHz) (56.50 MHz)
Beacon (120 bits) 5.88 1.88 7.69 2.56
Data (272 bits) - 0.56 - 0.75

In table 8.10 the maximum throughput values in different transmission pro-
tocols are presented. These values are calculated based on the maximum packet
sizes that each of these protocols can support. As it is clearly demonstrated, in
Wifi, the best throughput can be achieved.

115

Table 8.10: Maximum Throughput in different Protocols

Protocol/ Max. Throughput Beacon Max. Throughput Data
Max. Packet Size Packet (MB/second) Packet (MB/second)
ZigBee/128 Bytes 327.68 96.00

Ethernet/518 Bytes 1326.08 388.50
WiFi/2312 Bytes 5918.72 1734.00

8.2 Conclusions

In this thesis we presented a new approach to the design of routing proto-
cols with the use of reconfigurable devices. We introduced two different approaches:
the first one consists of common used WSN motes and state-of-the-art low-power
CPLD devices while the second one consists of a large FPGA device and a general
purpose CPU. We designed the platforms, together with the appropriate hardware
and software and we evaluated them with the design of 2 different reconfigurable
architectures of the GPSR and XMesh protocols respectively.
Regarding the first approach, we implemented in hardware commonly used by the
routing protocols functions and we connected the CPLD device with Xbow’s motes.
We designed and implemented both in software and hardware a communication
protocol for these two devices, and we set up a WSN to validate this platform’s
performance results, based on execution time, energy consumption and maximum
power draw attributes. The results that came out from our experimental measure-
ments were not very promising in the case of GPSR, since no speedup or energy
saving was achieved, due to the large overhead that is introduced by the communica-
tion protocol, and also due to the fact that the mote micro-controller is very capable
of executing arithmetic operations (more efficient than a custom approach). In the
case of the XMesh, where the arithmetic operations are smaller, there was a slight
speedup in execution time and we achieved energy consumption and a reduction in
max power draw.
The results that derived form the second approach were very promising (compared
to the first one). We designed and implemented the whole GPSR protocol on a
state-of-the-art FPGA device. We also implemented all the necessary software suite
on the an Atom processor, that is used for I/O purposes with the FPGA from the
one side and with the air from the other. The speed-up achieved is about 31 times

116

higher compared to the GPSR software that runs on an Atom Processor, while the
max power draw is decreased at about 95%. Besides that, a whole new platform
was introduced, on which many WSN applications can be implemented.

8.3 Future Work

Many things can be done in order to improve our systems. First of all, in or-
der to improve the energy consumption and power draw of the CPLD, a more-energy
efficient communication protocol can be designed for the CPLD-Mote platform. Be-
sides that, another part of the GPSR can be designed on it, or at least another more
CPLD-appropriate application, such as encryption or Turbo-coding.
Also, the custom made cable can be replaced together with all the development ar-
eas of the boards, since they waste a lot of energy. Instead of these, a custom board
can be designed which contains only a CPLD device, the Mote’s micro-controller
and the ZigBee module.
Except for that, a larger CPLD device can be used, in order to explore the energy
consumptions when a bigger device is utilized and consequently another application
that uses all its resources.
Regarding the FPGA-based architecture, we can enhance our protocol functionality
and security by adding some trust metrics, as these referred in [107].
Also we can embed sensors on our FPGA so as our node to have the ability to gather
environmental measurements and send them over the network.
Finally, we can replace the RS-232 connection of the Intel Atom Board, with Giga-
bit Ethernet, in order to succeed higher transfer rates between the FPGA and the
Atom processor and thus enabling the use of this protocol to other network types,
such as WiMax.

117

118

Appendix

119

RS-232 hardware module

As referred in implementation chapter, serial port is used by the base station
for sending/receiving data to/from the FPGA device. For this purpose, a RS-232
hardware module is implemented in order to be used as input/output interface from
the side of the reconfigurable device. An abstract block diagram of this module is
illustrated in Figure 1.
The components that are used for communicating with the external port are the

UART
receiver

UART
transmitter

BRAM

MUX

register
1

register
2

register
35

enableenableenable

input

output

. . .

GPSR module

MUX

. . .

transmit

receive

Figure 1: RS-232 Block Diagram

UART receiver and transmitter; the first one is used for receiving data from the
port and the other one for transmitting data to it. Another component used for the
same purpose is called ”baud” and is a clock divider used for adjusting the system
clock with the UART one.

120

RS-232 module also consists of two multiplexers (a 2-1 and a 35-1 with 8-bit in-
puts/output) and 35 8-bit registers (34 are the bytes of the GPSR data packet plus
one indicating the type of the packet). Also a BRAM, generated by Xilinx Core
Generator and organized by 1024 memory location of 8 bit each, is used in order to
store the input and output data.

Further more we designed a controller which arbitrates the functionality of the

Receiver
Waiting

START Input
data

store
data to

registers

GPSR
process

Store
packet

to BRAM

Transmit
Packet

 35 cycles 35 cycles GPSR Done 35 cycles

END

 35 cycles

Figure 2: UART Controller

previously described RS-232 module. According to the the timing diagram defined,
the UART receiver is initially in waiting state. When an interrupt occurs, the re-
ceiver is enabled. This data is received in quantities of 8 bits each one. This process
is repeated 35 times, until the whole GPSR packet fields are succesfully received
and stored into the BRAM. The first multiplexer is set to select the output of the
UART receiver in order to store the input data. The following 35 cycles are spent
in order to read this input data byte-by-byte (reading each position of the memory)
and store it to the 35 byte-registers, the outputs of which are connected to the input
of the GPSR module. This module then outputs a new packet (beacon or data), and
stores it to the RS-232 BRAM. Finally, the output data are read from the BRAM
and sent to the UART transmitter during the last 35 clock cycles in order to send
it to the serial port enabling its transmit interrupt. The gpsr controller is presented
in figire 2.

121

122

Bibliography

[1] J. N. Al-Karaki and A. E. Kamal. Routing techniques in Wireless sensor
networks: a survey. IEEE Wireless Communications, 11(6):6–28, 2004.

[2] Nirupama Bulusu, John Heidemann, and Deborah Estrin. GPS-less Low
Cost Outdoor Localization for very small devices, 2000.

[3] Andreas Savvides, Chih-Chieh Han, and Mani B. Strivastava. Dynamic fine-
grained localization in Ad-Hoc networks of sensors. In MobiCom ’01: Pro-
ceedings of the 7th annual international conference on Mobile computing and
networking, pages 166–179, New York, NY, USA, 2001. ACM.

[4] Lan F. Akyildiz, Welljan Su, Yogesh Sankarasubramaniam, and Erdal Cayirci.
A survey on Sensor Networks, 2002.

[5] Sameer Tilak, Nael B. Abu-Ghazaleh, and Wendi Heinzelman. A taxon-
omy of Wireless micro-sensor Network models. SIGMOBILE Mob. Comput.
Commun. Rev., 6(2):28–36, 2002.

[6] Wendi Rabiner Heinzelman, Anantha Chandrakasan, and Hari Balakrish-
nan. Energy-Efficient Communication Protocol for Wireless Microsensor
Networks. In HICSS ’00: Proceedings of the 33rd Hawaii International Con-
ference on System Sciences-Volume 8, page 8020, Washington, DC, USA, 2000.
IEEE Computer Society.

[7] Fan Ye, Haiyun Luo, Jerry Cheng, Songwu Lu, and Lixia Zhang. A two-tier
data dissemination model for large-scale wireless sensor networks. In Mobi-
Com ’02: Proceedings of the 8th annual international conference on Mobile
computing and networking, pages 148–159, New York, NY, USA, 2002. ACM.

[8] Fan Ye, Alvin Chen, Songwu Lu, Lixia Zhang, and Fan Ye Alvin Chen. A
Scalable Solution to Minimum Cost Forwarding in Large Sensor Networks.
pages 304–309, 2001.

123

[9] Wendi Rabiner Heinzelman, Joanna Kulik, and Hari Balakrishnan. Adaptive
protocols for information dissemination in wireless sensor networks. In Mobi-
Com ’99: Proceedings of the 5th annual ACM/IEEE international conference
on Mobile computing and networking, pages 174–185, New York, NY, USA,
1999. ACM.

[10] Joanna Kulik, Wendi Heinzelman, and Hari Balakrishnan. Negotiation-based
protocols for disseminating information in wireless sensor networks. Wirel.
Netw., 8(2/3):169–185, 2002.

[11] Hedetniemi, Hedetniemi, and Liestman. A Survey of Gossiping and Broadcasting
in Communication Networks. NETWORKS: Networks: An International
Journal, 18, 1988.

[12] Chalermek Intanagonwiwat, Ramesh Govindan, and Deborah Estrin. Di-
rected diffusion: a scalable and robust communication paradigm for sensor
networks. In MobiCom ’00: Proceedings of the 6th annual international con-
ference on Mobile computing and networking, pages 56–67, New York, NY,
USA, 2000. ACM Press.

[13] David Braginsky and Deborah Estrin. Rumor Routing Algorithm for Sensor
Networks. pages 22–31, 2002.

[14] Curt Schurgers Mani and Mani B. Srivastava. Energy Efficient Routing in
Wireless Sensor Networks. In in the MILCOM Proceedings on Communica-
tions for Network-Centric Operations: Creating the Information Force, pages
357–361, 2001.

[15] Maurice Chu, Horst Haussecker, and Feng Zhao. Scalable Information-Driven
Sensor Querying and Routing for ad hoc Heterogeneous Sensor Networks,
2002.

[16] Yong Yao and Johannes Gehrke. The cougar approach to in-network query
processing in sensor networks. SIGMOD Rec., 31(3):9–18, 2002.

[17] Narayanan Sadagopan, Bhaskar Krishnamachari, and Ahmed Helmy. The
ACQUIRE Mechanism for Efficient Querying in Sensor Networks. In In
IEEE International Workshop on Sensor Network Protocols and Applications
(SNPA03, pages 149–155, 2003.

124

[18] Rahul C. Shah and Jan M. Rabaey. Energy aware routing for low energy
Ad-Hoc Sensor Networks, 2002.

[19] Sergio D. Servetto and Cornell Univerisity. Constrained random walks on
random graphs: Routing algorithms for large scale wireless sensor networks.
pages 12–21, 2002.

[20] Corresponding Author Cauligi, Stephanie Lindsey, Cauligi S. Raghavendra,
and Cauligi S. Raghavendra. PEGASIS: Power-efficient gathering in sensor
information systems stephanie lindsey cauligi s. raghavendra.

[21] Arati Manjeshwar and Dharma P. Agrawal. TEEN: A routing protocol for
enhanced efficiency in wireless sensor networks. In IPDPS ’01: Proceedings
of the 15th International Parallel & Distributed Processing Symposium, page
189, Washington, DC, USA, 2001. IEEE Computer Society.

[22] Arati Manjeshwar and Dharma P. Agrawal. APTEEN: A hybrid protocol
for efficient routing and comprehensive information retrieval in wireless sen-
sor networks. In IPDPS ’02: Proceedings of the 16th International Parallel
and Distributed Processing Symposium, page 48, Washington, DC, USA, 2002.
IEEE Computer Society.

[23] Volkan Rodoplu and Teresa H. Meng. Minimum energy mobile wireless net-
works. IEEE Journal on Selected Areas in Communications, 17:1333–1344,
1998.

[24] Qing Fang, Feng Zhao, and Leonidas Guibas. Lightweight sensing and com-
munication protocols for target enumeration and aggregation. In In Proceed-
ings of the 4th ACM International Symposium on Mobile ad hoc networking
and computing, pages 165–176. ACM Press, 2003.

[25] Qun Li, Javed Aslam, and Daniela Rus. Hierarchical power-aware routing in
sensor networks. In In Proceedings of the DIMACS Workshop on Pervasive
Networking, 2001.

[26] Benjie Chen, Kyle Jamieson, Hari Balakrishnan, and Robert Morris. Span:
an energy-efficient coordination algorithm for topology maintenance in ad hoc
wireless networks. Wirel. Netw., 8(5):481–494, 2002.

125

[27] Jae-Hwan Chang and Leandros Tassiulas. Maximum lifetime routing in wire-
less sensor networks. IEEE/ACM Trans. Netw., 12(4):609–619, 2004.

[28] Stefan Dulman, Tim Nieberg, Jian Wu, and Paul Havinga. Trade-off be-
tween traffic overhead and reliability in multipath routing for wireless sensor
networks, 2003.

[29] Deepak Ganesan, Ramesh Govindan, Scott Shenker, and Deborah Estrin.
Highly-resilient, energy-efficient multipath routing in wireless sensor networks.
SIGMOBILE Mob. Comput. Commun. Rev., 5(4):11–25, 2001.

[30] Katayoun Sohrabi, Jay Gao, Vishal Ailawadhi, and Gregory J Pottie. Proto-
cols for self-organization of a wireless sensor network. IEEE Personal Com-
munications, 7:16–27, 2000.

[31] N. Lewis, N. Foukia, and D. G. Govan. Using trust for key distribution and
route selection in wireless sensor networks. In In IEEE Globecom Workshops
November 2007, 2007.

[32] G. Theodorakopoulos and J. S. Baras. On trust models and trust evalua-
tion metrics for ad hoc networks. Selected Areas in Communications, IEEE
Journal on, 24(2):318–328, 2006.

[33] Zhaoyu Liu Joy and R.A. A.W. Thompson. A Dynamic Trust Model for
Mobile Ad Hoc Networks. In FTDCS ’04: Proceedings of the 10th IEEE
International Workshop on Future Trends of Distributed Computing Systems,
pages 80–85, Washington, DC, USA, 2004. IEEE Computer Society.

[34] Ismat K. Maarouf and A. R. Naseer. WSNodeRater - an Optimized Reputation
System Framework for security aware energy efficient geographic routing in
WSNs. Computer Systems and Applications, ACS/IEEE International Con-
ference on, 0:258–265, 2007.

[35] Asad Amir Pirzada and Chris McDonald. Performance comparison of trust-
based reactive routing protocols. IEEE Transactions on Mobile Computing,
5(6):695–710, 2006. Member-Datta, Amitava.

[36] Nael Abu-Ghazaleh, Kyoung-Don Kang, and Ke Liu. Towards resilient ge-
ographic routing in wsns. In Q2SWinet ’05: Proceedings of the 1st ACM

126

international workshop on Quality of service & security in wireless and mobile
networks, pages 71–78, New York, NY, USA, 2005. ACM.

[37] Sapon Tanachaiwiwat, Pinalkumar Dave, Rohan Bhindwale, and Ahmed Helmy.
Location-centric isolation of misbehavior and trust routing in energy-constrained
sensor networks. In IEEE Workshop on Energy-Efficient Wireless Commu-
nications and Networks (EWCN), in conjunction with IEEE IPCCC, pages
14–17, 2004.

[38] Riaz Ahmed Shaikh, Hassan Jameel, Sungyoung Lee, Saeed Rajput, and
Young Jae Song. Trust management problem in distributed wireless sensor
networks. In RTCSA ’06: Proceedings of the 12th IEEE International Con-
ference on Embedded and Real-Time Computing Systems and Applications,
pages 411–414, Washington, DC, USA, 2006. IEEE Computer Society.

[39] A. A. Pirzada and C. McDonald. Trust establishment in pure ad-hoc net-
works. Wirel. Pers. Commun., 37(1-2):139–168, 2006.

[40] Garth V. Crosby, Niki Pissinou, and James Gadze. A framework for trust-
based cluster head election in wireless sensor networks. In DSSNS ’06: Pro-
ceedings of the Second IEEE Workshop on Dependability and Security in Sen-
sor Networks and Systems, pages 13–22, Washington, DC, USA, 2006. IEEE
Computer Society.

[41] Matthew J. Probst and Sneha Kumar Kasera. Statistical trust establishment
in wireless sensor networks. In ICPADS ’07: Proceedings of the 13th Interna-
tional Conference on Parallel and Distributed Systems, pages 1–8, Washington,
DC, USA, 2007. IEEE Computer Society.

[42] Dimitrios Lymberopoulos, Nissanka B. Priyantha, and Feng Zhao. mPlatform:
a reconfigurable architecture and efficient data sharing mechanism for modu-
lar sensor nodes. In IPSN ’07: Proceedings of the 6th international conference
on Information processing in sensor networks, pages 128–137, New York, NY,
USA, 2007. ACM.

[43] Mikko Kohvakka, Tero Arpinen, Marko Hännikäinen, and Timo D. Hämäläinen.
High-performance multi-radio wsn platform. In REALMAN ’06: Proceedings
of the 2nd international workshop on Multi-hop ad hoc networks: from theory
to reality, pages 95–97, New York, NY, USA, 2006. ACM.

127

[44] Mikko Kohvakka. Atific helicopter high performance multi-radio wsn plat-
form.

[45] Altera. http://www.altera.com/. Last accessed: 29-06-2009.

[46] Altera. Nios II Processor Reference Handbook, March 2009.

[47] Altera. Cyclone FPGA Datasheet, March 2008.

[48] Nordic Semiconductor. http://www.nordicsemi.com/. Last accessed: 29-06-
2009.

[49] Inc All Rights Reserved. RS232 library 1.0 1.0.

[50] Brad Karp and H. T. Kung. GPSR: greedy perimeter stateless routing for
wireless networks. In MobiCom ’00: Proceedings of the 6th annual interna-
tional conference on Mobile computing and networking, pages 243–254, New
York, NY, USA, 2000. ACM.

[51] Jian Chen, Yong Guan, and Udo Pooch. Customizing a geographical rout-
ing protocol for wireless sensor networks. In ITCC ’05: Proceedings of the
International Conference on Information Technology: Coding and Computing
(ITCC’05) - Volume II, pages 586–591, Washington, DC, USA, 2005. IEEE
Computer Society.

[52] Young-Jin Kim, Ramesh Govindan, Brad Karp, and Scott Shenker. Geo-
graphic routing made practical. In NSDI’05: Proceedings of the 2nd confer-
ence on Symposium on Networked Systems Design & Implementation, pages
217–230, Berkeley, CA, USA, 2005. USENIX Association.

[53] Matthias Witt and Volker Turau. The impact of location errors on geo-
graphic routing in sensor networks. In ICCGI ’06: Proceedings of the Interna-
tional Multi-Conference on Computing in the Global Information Technology,
page 76, Washington, DC, USA, 2006. IEEE Computer Society.

[54] William T. Zaumen and J. J. Garcia-Luna Aceves. Dynamics of distributed
shortest-path routing algorithms. SIGCOMM Comput. Commun. Rev.,
21(4):31–42, 1991.

128

[55] Josh Broch, David A. Maltz, David B. Johnson, Yih-Chun Hu, and Jor-
jeta Jetcheva. A performance comparison of multi-hop wireless ad hoc net-
work routing protocols. In MobiCom ’98: Proceedings of the 4th annual
ACM/IEEE international conference on Mobile computing and networking,
pages 85–97, New York, NY, USA, 1998. ACM.

[56] David B. Johnson and David A. Maltz. Dynamic source routing in ad hoc
wireless networks. In Mobile Computing, pages 153–181. Kluwer Academic
Publishers, 1996.

[57] Charles Perkins and Elizabeth Royer. Ad-hoc on-demand distance vector
routing. In In Proceedings of the 2nd IEEE Workshop on Mobile Computing
Systems and Applications, pages 90–100, 1997.

[58] Zygmunt J. Haas and Marc R. Pearlman. The performance of query control
schemes for the zone routing protocol. In DIALM ’99: Proceedings of the
3rd international workshop on Discrete algorithms and methods for mobile
computing and communications, pages 23–29, New York, NY, USA, 1999.
ACM.

[59] Sally Floyd and Van Jacobson. The synchronization of periodic routing mes-
sages. IEEE/ACM Trans. Netw., 2(2):122–136, 1994.

[60] Ruben K. Gabriel and Robert R. Sokal. A new statistical approach to ge-
ographic variation analysis. Systematic Zoology, 18(3):259–278, September
1969.

[61] Godfried T. Toussaint. The relative neighbourhood graph of a finite planar
set. Pattern Recognition, 12:261–268, 1980.

[62] N. Abramson. The aloha systemanother alternative for computer communica-
tions. In Proceedings of Fall Joint Computer Conference, AFIPS Conference,
pages 37+, 1970.

[63] Prosenjit Bose, Pat Morin, Ivan Stojmenovic, and Jorge Urrutia. Routing
with guaranteed delivery in ad hoc wireless networks. Wireless Networks,
7(6):609–616, 2001.

129

[64] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications. IEEE Standard 802.11, June 1999.

[65] Phil Karn. MACA: a new channel access method for packet radio. In
Computer Networking Conference, volume 9th, pages 134–140, 1990.

[66] Vaduvur Bharghavan, Alan Demers, Scott Shenker, and Lixia Zhang. MACAW:
a media access protocol for wireless LAN’s. In SIGCOMM ’94: Proceedings of
the conference on Communications architectures, protocols and applications,
pages 212–225, New York, NY, USA, 1994. ACM.

[67] Awissenet European Project. http://www.awissenet.eu/. Last accessed:
29-06-2009.

[68] Asad Amir Pirzada and Chris McDonald. Trusted greedy perimeter stateless
routing. In 15th IEEE International Conference on Networks, 2007 (ICON
2007), pages 206–211, 2007.

[69] TinyOs Online Tutorial. http://www.tinyos.net, September 2008. Last
accessed: 29-06-2009.

[70] Kim Young Jin and Godivan Ramesh. GPSR Detailed-level Design Specifi-
cation. University of Southern California, July 2003.

[71] Kim Young Jin and Godivan Ramesh. GPSR User Specification. University
of Southern California, July 2003.

[72] Red Hat Linux. http://www.redhat.com. Last accessed: 29-06-2009.

[73] Ubuntu Linux. http://www.ubuntu.com. Last accessed: 29-06-2009.

[74] Crossbow. http://www.xbow.com. Last accessed: 29-06-2009.

[75] HandHelds. http://www.handhelds.org/geeklog/index.php. Last accessed:
29-06-2009.

[76] Kim Young Jin and Godivan Ramesh. GPSR Design Specification. Univer-
sity of Southern California, May 2004.

[77] Crossbow. MPR-MIB Users Manual, June 2007. Revision A.

130

[78] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer, and
David Culler. The nesC language: A holistic approach to networked em-
bedded systems. In PLDI ’03: Proceedings of the ACM SIGPLAN 2003
conference on Programming language design and implementation, pages 1–11,
New York, NY, USA, 2003. ACM.

[79] Crossbow Technologies. XMesh Users’s Manual, March 2007. Revision C.

[80] A. Teo, G. Singh, and J.C. McEachen. Evaluation of the xmesh routing
protocol in wireless sensor networks. Circuits and Systems, 2006. MWSCAS
’06. 49th IEEE International Midwest Symposium on, 2:113–117, Aug. 2006.

[81] Umberto Malesci and Samuel Madden. A measurement-based analysis of the
interaction between network layers in tinyos. In EWSN, 2006.

[82] P. Buonadonna, D. Gay, J.M. Hellerstein, W. Hong, and S. Madden. TASK:
sensor network in a box. Wireless Sensor Networks, 2005. Proceeedings of
the Second European Workshop on, pages 133–144, Jan.-2 Feb. 2005.

[83] Alec Woo, Terence Tong, and David Culler. Taming the underlying challenges
of reliable multihop routing in sensor networks. In SenSys ’03: Proceedings of
the 1st international conference on Embedded networked sensor systems, pages
14–27, New York, NY, USA, 2003. ACM.

[84] Douglas S. J. De Couto, Daniel Aguayo, John Bicket, and Robert Morris. A
high-throughput path metric for multi-hop wireless routing. In MobiCom ’03:
Proceedings of the 9th annual international conference on Mobile computing
and networking, pages 134–146, New York, NY, USA, 2003. ACM.

[85] Mark D. Yarvis, W. Steven Conner, Lakshman Krishnamurthy, and Alan
Mainwaring. Intel labs.

[86] Douglas S. J. De Couto, Daniel Aguayo, Benjamin A. Chambers, and Robert
Morris. Performance of multihop wireless networks: shortest path is not
enough. SIGCOMM Comput. Commun. Rev., 33(1):83–88, 2003.

[87] Xilinx. Xilinx Core Generator, June 2008.

[88] Xilinx. Divider v2.0 Product Specification, June 2008.

131

[89] Xilinx. CoolRunner-II CPLD Family. Xilinx, v3.1 edition, September 2008.

[90] Digilent. XBoard Reference Manual, January 2007.

[91] HDL Analysis and Standardization Group. http://www.eda.org/vhdl-200x/.
Last accessed: 29-06-2009.

[92] Xilinx ISE 10.1. http://www.xilinx.com/ise/. Last accessed: 29-06-2009.

[93] ModelSim Simulator. http://www.model.com/. Last accessed: 29-06-2009.

[94] Crossbow. MDA Users Manual, June 2007. Revision A.

[95] Xilinx. Virtex-5 Family Overview. Xilinx, v5.0 edition, February 2009.

[96] Xilinx. ML505/ML506/ML507 Evaluation Platform. Xilinx, v3.1 edition,
November 2008.

[97] Intel. Intel Desktop Board D945GCLF2, Technical Product Specifiaction.
Intel, December 2008.

[98] Xubuntu Linux. http://www.xubuntu.com. Last accessed: 29-06-2009.

[99] Python Online. http://www.python.org. Last accessed: 29-06-2009.

[100] TinyOS Serial Forwarder tool. http://docs.tinyos.net/index.php/. Last
accessed: 29-06-2009.

[101] MySQL DBMS. http://www.mysql.com/. Last accessed: 29-06-2009.

[102] Apache Server. http://www.apache.org/. Last accessed: 29-06-2009.

[103] Mplemenos Georgios, Papadopoulos Konstantinos, Brokalakis Andreas, Grig-
orios Chrysos, Sotiriades Euripides, and Papaefstathiou Ioannis. RESENSE:
Reconfigurable WSN Nodes. In WISIG: Wireless Sensing Showcase 2009,
London, UK, 2007.

[104] Intel VTune Performance Analyzer. http://software.intel.com/en-us/intel-
vtune/. Last accessed: 29-06-2009.

[105] PowerTop. http://www.lesswatts.org/projects/powertop/. Last accessed:
29-06-2009.

132

[106] Intel. Intel Atom Processor 330 Systems Datasheet, February 2009. Revision
002.

[107] Pirzada A. and McDonald C. Trusted greedy perimeter stateless routing. In
15th IEEE International Conference on Netowrks, pages 206–211, 2007.

[108] C. S. Raghavendra. Wireless Sensor Networks. Springer, July 2005.

[109] Riesgo Teresa Portilla Jorge and Angel de Castro. A reconfigurable FPGA-
based architecture for modular nodes in wireless sensor networks. In 3rd
Southern Conference on Programmable Logic,2007, SPL ’07, pages 203–206,
2007.

[110] Chee yee Chong, Ieee, Srikanta P. Kumar, and Senior Member. Sensor net-
works: evolution, opportunities, and challenges. In Proceedings of the IEEE,
pages 1247–1256, 2003.

[111] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and Kristofer
Pister. System architecture directions for networked sensors. In ASPLOS-

IX: Proceedings of the ninth international conference on Architectural support
for programming languages and operating systems, pages 93–104, New York,
NY, USA, 2000. ACM.

[112] NesC Tutorial Online. http://en.wikipedia.org/wiki/NesC. Last accessed:
29-06-2009.

[113] Atmel. ATmega128L Datasheet, September 2003. Revision I.

133

