
Technical University of Crete

Department of Electronic and Computer Engineering

Design of LDPC Codes for the Two-User

Gaussian Multiple Access Channel

By:

Alexios-Konstantinos Balatsoukas-Stimming

Submitted in June 2012 in partial fulfilment of the requirements for the
Master of Science degree in Electronic and Computer Engineering

Advisor: Professor Athanasios P. Liavas
Co-advisor: Professor Nikos D. Sidiropoulos
Co-advisor: Assistant Professor George N. Karystinos





Abstract

The capacity region of Gaussian Multiple Access Channels (GMACs) has been

known since 1971. The efficient design of powerful codes that can achieve points

near the dominant face of the capacity region, where the sum-rate is maximal, is an

interesting problem. Significant progress has been made in this direction using time

sharing, rate-splitting, as well as joint iterative decoding. Joint iterative decoding

seems to be the most promising path, especially for codes that have low-complexity

decoders, like Low-Density Parity-Check (LDPC) codes.

LDPC codes are capacity-approaching over a wide variety of channels. Addi-

tionally, elegant tools, such as Density Evolution and EXIT charts, can be used to

accurately predict the asymptotic performance of an LDPC code ensemble. These

tools can be used for the design of optimal LDPC codes, allowing for transmission

over many types of channels with vanishingly small probability of error.

In this thesis, we focus on the two-user GMAC. To the best of our knowledge,

there exist two LDPC code design frameworks for this channel. Amraoui et al. use

Density Evolution, which is very demanding in terms of computational complexity.

Roumy and Declercq use EXIT charts, a low-complexity approximation of Density

Evolution, but their design is restricted to the case where the power of both users at

the receiver is equal. We extend the EXIT chart based optimization framework by

removing the equal power constraint, allowing for the optimization of LDPC codes

over unequal power two-user GMACs. We show that, under some assumptions,

the optimization problem can be expressed as an alternating linear programming

problem, which can be solved efficiently. The resulting codes are close to optimal,

in terms of sum-rate, and exhibit very good finite-length behavior.
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Chapter 1

Introduction

1.1 Gaussian Multiple Access Channels (GMACs)

In a two-user multiple access setting, a channel is used by two users who wish to simultaneously

send information to a common receiver. Let the two length-n codewords for users 1 and 2 be

denoted as c[1] ∈ C1 and c[2] ∈ C2, respectively, where C1 and C2 denote the corresponding

codebooks. Since the two users transmit independent information, c[1] and c[2] are statistically

independent. Let the BPSK modulated codewords be denoted as x[1] and x[2], where we employ

the standard mapping

x[1] = 1− 2c[1] and x[2] = 1− 2c[2]. (1.1)

Frame synchronized transmission through an equal power two-user Gaussian MAC (GMAC)

can be modeled as

y = x[1] + x[2] + w, w ∼ N (0, σ2I), (1.2)

where y denotes the observation vector at the receiver and N (0, σ2I) denotes the multivariate

Gaussian distribution with mean vector µ = 0 and covariance matrix Σ = σ2I. Two-user

GMAC channels can exist both on their own and as parts of more complex communication

channels. The most prominent example of a complex system that contains a MAC is the relay

channel [1]. Although the equal power assumption is rather constraining, such channels can

exist in practice if proper power control is performed at the transmitters.

We can lift the equal power assumption by assigning powers P̃1 and P̃2 to users 1 and 2,

respectively, leading to the following channel model

y =

√
P̃1x

[1] +

√
P̃2x

[2] + w̃, w̃ ∼ N (0, σ2I). (1.3)

In the sequel, it will be convenient to normalize the users’ powers with respect to the noise

variance, i.e.

y =

√
P̃1

σ2
x[1] +

√
P̃2

σ2
x[2] + w, w ∼ N (0, I). (1.4)

Figure 1.1: Equal and unequal power two-user GMACs.
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By defining P1 ,
P̃1
σ2 and P2 ,

P̃2
σ2 , we get the following expression

y =
√
P1x

[1] +
√
P2x

[2] + w, w ∼ N (0, I). (1.5)

Using the above model, we define the SNR for each user as

SNR1 , P1, and SNR2 , P2. (1.6)

1.2 Low-Density Parity-Check (LDPC) Codes

Low-Density Parity-Check (LDPC) codes are a class of capacity approaching linear block codes.

They were invented by Robert Gallager in 1960 [2] but forgotten for over 30 years, mainly due to

practical issues regarding their implementation. Since their revival in 1995 by David MacKay

and Radford Neal [3], a very lively research community has been engaged with the study of

LDPC codes. As their name implies, they have a parity-check matrix with a low density of non-

zero entries, i.e. a sparse matrix. The definition of “low density” is a bit loose but, generally,

matrices with less than 10% non-zero entries are considered to be sparse. The number of non-

zero entries in a sparse matrix increases linearly with respect to matrix dimensions, and not

quadratically as in regular (dense) matrices. It is exactly this property that enables LDPC codes

to be decodable with linear time complexity. Under some conditions, linear time encoding is

also possible [4].

LDPC codes, just like any linear code, can be defined through their m× n parity-check

matrix, commonly denoted as H. The codebook C consists of all vectors c ∈ {0, 1}n, for which

Hc = 0, where additions are performed modulo 2. More formally

C = {c ∈ {0, 1}n : Hc = 0} ,

which means that C is the (modulo 2) nullspace of the matrix H.

Tanner graphs [5] provide a way to visualize the parity-check constraints imposed by an

LDPC code, as well as the effect of the transmission channel and, in our case, the effect of the

interfering user. Single user Tanner graphs consist of variable nodes and check nodes. A variable

node j is connected to a check node i iff Hij = 1. In words, a variable node j is connected to a

check node i iff the codeword bit i participates in the parity-check equation j. Assume that the

number of variable nodes of degree i is Λi, so that
∑

i Λi = n. In the same fashion, the number

of check nodes of degree i is Pi, so that
∑

i Pi = n(1− r) = m, where r is the design rate of the

code. The following compact notation is more convenient

Λ(x) ,
∑
i

Λix
i, P (x) ,

∑
i

Pix
i.

From the above definitions, we get the following useful relationships

Λ(1) = n, P (1) = n(1− r), r(Λ, P ) = 1− P (1)

Λ(1)
, Λ′(1) = P ′(1).

The first four relationships are obvious. If we rewrite the left part of the last one as Λ′(1) =∑
i iΛi, we see that this sum represents the total number of connections on the variable node

side. This number is equal to the number of connections on the check node side. Λ(x) and P (x)
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are called the check and variable degree distributions from a node perspective. It is usually more

convenient to use the corresponding normalized distributions

L(x) ,
Λ(x)

Λ(1)
=
∑
i

Lix
i, R(x) ,

P (x)

P (1)
=
∑
i

Rix
i.

Naturally, it holds that ∑
i

Li =
∑
i

Ri = 1.

We can also define the distributions from an edge perspective, meaning that the polynomial

coefficients represent the fraction of edges connected to degree i variable or check nodes. This

definition is particularly useful for Density Evolution. The normalized node degree distributions

from an edge perspective are defined as

λ(x) ,
L′(x)

L′(1)
=
∑
i

λix
i−1, ρ(x) ,

R′(x)

R′(1)
=
∑
i

ρix
i−1.

Again, it holds that ∑
i

λi =
∑
i

ρi = 1.

The design rate of an edge perspective degree distribution pair is defined as

r(λ(x), ρ(x)) , 1−
∫ 1
0 ρ(x)dx∫ 1
0 λ(x)dx

= 1−
∑

i ρi/i∑
i λi/i

.

We refer the interested reader to Richardson and Urbanke [6] for further details.

1.3 Previous Work and Motivation

The capacity region of a two-user GMAC is the pentagon defined by [7]

R[1] ≤ I(X1;Y |X2) = C

(
P1

N

)
,

R[2] ≤ I(X2;Y |X1) = C

(
P2

N

)
,

R[1] +R[2] ≤ I(X1, X2;Y ) = C

(
P1 + P2

N

)
,

where C(x) = 1
2 log2(1 + x), Pi is the power of user i, i = 1, 2, and N is the noise power. In

the equal power case, we have I(X1;Y |X2) = I(X2;Y |X1), so the capacity region looks like the

example in Figure 1.2. In the case where the users have different powers, the region is stretched

in the direction of the user with the higher power.

We are mainly interested in rate pairs lying on the diagonal line, since this line represents

the rate pairs with maximal sum rate. This line is also called the dominant face, denoted D.

The corner points of the capacity region can be easily achieved by successive decoding, i.e. by

decoding one user while treating the other user as interference and then subtracting the decoded

codeword from the received signal and decoding the second user [8, 9]. The remaining points

of the line can be achieved either by time-sharing [7], rate-splitting [10], or by joint decoding

[11, 12]. Time sharing is not implementation friendly, since, for the two user case, two codes

13



Figure 1.2: GMAC capacity region.

are needed for each user. In the general case with M users, the required number of codes is of

order M2. The discussion about rate-splitting in [10] is purely theoretical and no code design

method is provided.

On the other hand, joint decoding of LDPC codes is practically feasible due to the low-

complexity and excellent performance of the most widely used message-passing algorithm for

the approximation of the bit-wise Maximum A Posteriori (MAP) decoding rule, i.e. Belief

Propagation (BP) [13]. LDPC code design methods for the two-user GMAC using joint decoding

have been proposed in [11] and [12]. However, in [11], Density Evolution, which has very high

computational complexity, is used and, in [12], the analysis is restricted to the equal power

GMAC.

In this thesis, we are concerned with extending the existing methodology to include the

unequal power case, thus developing a more general framework for low-complexity design of

LDPC codes for arbitrary power two-user GMACs.
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Chapter 2

Asymptotic Analysis

2.1 Bit-Wise MAP Decoding and Belief Propagation

In this section, we derive the bit-wise MAP decoding rules for both users of the GMAC and

we describe the corresponding Tanner graph. We also prove that the two-user Tanner graph is

asymptotically cycle-free, like in the single user case. Furthermore, we review the variable and

check node update rules for the BP algorithm and we derive the update rule for a new type of

node, which can not be found in single user graphs, i.e. the state node.

2.1.1 Bit-Wise MAP Decoding Rule

We present a detailed derivation of the bit-wise MAP decoding rule for user 1. The MAP rule

for user 2 can be derived similarly. Let x̂
[1]
i denote the MAP estimate for symbol i of user 1’s

BPSK modulated codeword based on the observation vector y. This is equivalent to the MAP

estimate of codeword bit i of user 1’s binary codeword, since the mapping describing BPSK

modulation is a bijection. By definition of the MAP rule, we have

x̂
[1]
i , arg max

x
[1]
i

p(x
[1]
i |y), (2.1)

where the maximum is taken over x
[1]
i ∈ {±1}. Equation (2.1) can be rewritten as follows

x̂
[1]
i , arg max

x
[1]
i

p(x
[1]
i |y) (2.2)

= arg max
x
[1]
i

∑
∼x[1]i

p(x[1]|y)1[c[1]∈C1] (2.3)

= arg max
x
[1]
i

∑
∼x[1]i

∑
x[2]

p(x[1],x[2]|y)1[c[1]∈C1]1[c[2]∈C2] (2.4)

= arg max
x
[1]
i

∑
∼x[1]i

∑
x[2]

p(y|x[1],x[2])p(x[1])p(x[2])1[c[1]∈C1]1[c[2]∈C2] (2.5)

= arg max
x
[1]
i

1

|C1|·|C2|
∑
∼x[1]i

∑
x[2]

p(y|x[1],x[2])1[c[1]∈C1]1[c[2]∈C2], (2.6)

= arg max
x
[1]
i

∑
∼x[1]i

∑
x[2]

p(y|x[1],x[2])1[c[1]∈C1]1[c[2]∈C2], (2.7)

15



...... ...... ...

Figure 2.1: Two-user MAC Tanner Graph.

where
∑
∼x[1]i

denotes summation over all symbols except x
[1]
i and |C| denotes the cardinality

of a set C. From (2.4) to (2.5) we applied Bayes’ rule and from (2.5) to (2.6) we used the fact

that codewords are drawn uniformly at random from their respective codebooks, so that x[1]

has probability 1
|C1| if a c[1] such that x[1] = 1 − 2c[1] exists in C1, otherwise it has probability

zero. The same holds for x[2]. The function 1[c∈C] is an indicator function defined as

1[c∈C] =

{
1, c ∈ C,
0, otherwise.

(2.8)

By further assuming that the channel is memoryless, we can arrive at the final expression

x̂
[1]
i = arg max

x
[1]
i

∑
∼x[1]i

∑
x[2]

(
n∏
k=1

p(yk|x
[1]
k , x

[2]
k )

)
1[c[1]∈C1]1[c[2]∈C2], (2.9)

which is the expression appearing in [6, Chapter 5]. Accordingly, for user 2 we have

x̂
[2]
i = arg max

x
[2]
i

∑
∼x[2]i

∑
x[1]

(
n∏
k=1

p(yk|x
[1]
k , x

[2]
k )

)
1[c[1]∈C1]1[c[2]∈C2]. (2.10)

2.1.2 Two-User Tanner Graph and Tree Assumption

The above expressions naturally lend themselves to a Tanner graph representation. The BP

algorithm [13] can be employed on this graph in order approximate (2.9) and (2.10) accurately

and efficiently. In the ideal case where the Tanner graph is cycle-free, BP actually performs

exact MAP decoding.

Since we have two users using possibly different codes, the two-user Tanner graph will contain

two distinct single user Tanner graphs. Moreover, the function p(yk|x
[1]
k , x

[2]
k ) in (2.9) and (2.10)

means that the variable node k of user 1 will be connected to the variable node k of user 2

through a node which represents this function. We call this node a state node. An example of

the two-user Tanner graph which we just described is depicted in Figure 2.1.

The Tree Assumption for a single user graph states that, for a fixed number of iterations

and in the limit of infinite blocklength, the BP computation graph, which is derived from the
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code’s Tanner graph, is a tree, i.e. no cycles exist [6, Chapter 3]. In this case, the BP algorithm

performs exact MAP decoding and the performance of a code ensemble can be predicted very

elegantly. So, it is comforting to know that the following statement is true.

Theorem 2.1. For a fixed number of iterations and in the limit of infinite blocklength for both

codes, the BP computation graph, which is derived from the two-user Tanner graph, is cycle-free

with probability one.

Proof. The proof is very similar to the single-user case, see [6].

We will henceforth use the notions of the Tanner graph and the corresponding BP compu-

tation graph interchangeably, since each one can be derived from the other.

2.1.3 Belief Propagation

Now that we have asserted that in the limit of infinite blocklength the two-user Tanner graph

is cycle-free, we can proceed with stating the message update rules for BP. All messages are in

Log-Likelihood Ratio (LLR) form, i.e.

m = log
p(xi = +1|y)

p(xi = −1|y)
, (2.11)

where y is a random variable containing all the information incorporated into this message [14].

We will first discuss the update rules for variable and check nodes. Since these update rules

are the same regardless of the user, we will temporarily suppress the user index for the sake

of simplicity. Let sv`i denote the state-to-variable message from state node i towards variable

node i at iteration `. Let cv`ji denote the check-to-variable messages from check node j towards

variable node i. The variable-to-check message from variable node i towards check node j at

iteration (`+ 1), denoted vc
(`+1)
ij , can be computed, according to standard BP rules [6], as

vc
(`+1)
ij =

{
sv`i , ` = 0,

sv`i +
∑

j′∈Ci/{j} cv
`
j′i, ` ≥ 1,

(2.12)

where Ci denotes the set of all check nodes connected to variable node i. The variable-to-state

message from variable node i towards state node i, denoted vs`i , can be computed, according to

standard BP rules [6], as

vs`i =
∑
j′∈Ci

cv`j′i. (2.13)

Both rules exhibit the following symmetry property

Ψ(−m0,−m1, . . . ,−m|Ci/{j}|) = −Ψ(m0,m1, . . . ,−m|Ci/{j}|), (2.14)

where Ψ is the update rule appearing in Equation (2.12) or (2.13), and m0, . . . ,m|Ci/{j}| are

the messages used in the calculation of Ψ. A hard decision for the BPSK codeword bit i at

iteration ` can be made as follows

x̂`i = sign

sv`i +
∑
j′∈Ci

cv`j′i

 . (2.15)

17



The check-to-variable message from check node j towards variable node i can be computed,

according to standard BP rules [6], as

cv`ji =
1

2
tanh−1

 ∏
i′∈Vj/{i}

tanh

(
vc`i′j

2

) , (2.16)

where Vj denotes the set of all variable nodes connected to check node j. The check node update

rule exhibits the following symmetry

Φ(b0m0, b1m1, . . . , b|Vj/{i}|m|Vj/{i}|) =

|Vj/{i}|∏
k=0

bk

Φ(m0,m1, . . . ,m|Vj/{i}|), (2.17)

for any ±1 sequence (b0, . . . , b|Vj/{i}|), where Φ is the update rule appearing in Equation ()

and m0, . . . ,m|Vj/{i}| are the messages used in the calculation of Φ. Until this point, we have

reviewed the single user update rules for the BP messages and we have also introduced the

variable-to-state message, which simply follows the same rule as the variable-to-check messages.

We now need to derive an update rule for the messages from the new type of nodes we

introduced, i.e. the state nodes, towards the variable nodes. This can be achieved by applying

the standard message passing rule from which the message update rule for the check nodes was

derived [6], but with respect to the function which the state nodes represent, i.e. p(yi|x[1]i , x
[2]
i ).

We will first consider the equal power case, deriving the results of [12] in detail. We will then

move on to the unequal power case and derive the corresponding message update rule.

Equal Power: We focus on the derivation of the update rule for the messages towards the

variable nodes of user 1. For user 2, the update rule can be derived accordingly. For the message

from state node i towards variable node i of user 1, denoted sv
[1]
i , we use the variable-to-state

messages from user 2 and the channel observation yi. According to standard message passing

rules [6], the outgoing message for state node i is

sv
[1]
i = log

∑
x
[2]
i

p(yi|x[1]i = +1, x
[2]
i )µ(x

[2]
i )∑

x
[2]
i

p(yi|x[1]i = −1, x
[2]
i )µ(x

[2]
i )

. (2.18)

We note that vs
[2]
i = log

µ(x
[2]
i =+1)

µ(x
[2]
i =−1)

. Since the update rule is the same for all state nodes, we will

henceforth ommit the index i for the sake of simplicity. We have1

sv[1] = log

∑
x[2] p(y|+1, x[2])µ(x[2])∑
x[2] p(y|−1, x[2])µ(x[2])

(2.19)

= log
p(y|+1,+1)µ[2](+1) + p(y|+1,−1)µ[2](−1)

p(y|−1,+1)µ[2](+1) + p(y|−1,−1)µ[2](−1)
(2.20)

= log
p(y|+1,+1)µ

[2](+1)

µ[2](−1) + p(y|+1,−1)

p(y|−1,+1)µ
[2](+1)

µ[2](−1) + p(y|−1,−1)
. (2.21)

1For readability, we will use the notation p(y|x[1] = ±1, x[2] = ±1) = p(y|±1,±1) and µ(x[2] = ±1) = µ[2](±1).
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As stated previously, we have µ[2](+1)

µ[2](−1) = evs
[2]

, which leads to

sv[1](y, vs[2]) = log
N (+2, σ2)evs

[2]
+N (0, σ2)

N (0, σ2)evs
[2]

+N (−2, σ2)
(2.22)

= log

1√
2πσ2

e−
(y−2)2

2σ2 evs
[2]

+ 1√
2πσ2

e−
y2

2σ2

1√
2πσ2

e−
y2

2σ2 evs
[2]

+ 1√
2πσ2

e−
(y+2)2

2σ2

(2.23)

= log
e−

(y−2)2

2σ2 evs
[2]
e
y2

2σ2 + 1

evs
[2]

+ e−
(y+2)2

2σ2 e−
y2

2σ2

(2.24)

= log
e

2(y−1)

σ2
+vs[2] + 1

evs
[2]

+ e−
2(y+1)

σ2

, (2.25)

which leads to a final rule that is exactly the same as the one found in [12]. For completeness,

the final state node update rules for the messages towards the variable nodes of both users are

sv[1](y, vs[2]) = log
e

2(y−1)

σ2
+vs[2] + 1

evs
[2]

+ e−
2(y+1)

σ2

, (2.26)

sv[2](y, vs[1]) = log
e

2(y−1)

σ2
+vs[1] + 1

evs
[1]

+ e−
2(y+1)

σ2

. (2.27)

Unequal Power: By working as we did in the previous section, but lifting the equal power

assumption, for user 1 we have

sv[1] = log
p(y|x[1] = +1)

p(y|x[1] = −1)
(2.28)

= log
p(y|+

√
P1,+

√
P2)p(x

[2] = +
√
P2) + p(y|+

√
P1,−

√
P2)p(x

[2] = −
√
P2)

p(y|−
√
P1,+

√
P2)p(x[2] = +

√
P2) + p(y|−

√
P1,−

√
P2)p(x[2] = −

√
P2)

(2.29)

= log
N (+

√
P1 +

√
P2, σ

2)p(x[2] = +
√
P2) +N (+

√
P1 −

√
P2, σ

2)p(x[2] = −
√
P2)

N (−
√
P1 +

√
P2, σ2)p(x[2] = +

√
P2) +N (−

√
P1 −

√
P2, σ2)p(x[2] = −

√
P2)

(2.30)

= log
N (+

√
P1 +

√
P2, σ

2)p(x
[2]=+1)

p(x[2]=−1) +N (+
√
P1 −

√
P2, σ

2)

N (−
√
P1 +

√
P2, σ2)

p(x[2]=+1)

p(x[2]=−1) +N (−
√
P1 −

√
P2, σ2)

(2.31)

= log
N (+

√
P1 +

√
P2, σ

2)evs
[2]

+N (+
√
P1 −

√
P2, σ

2)

N (−
√
P1 +

√
P2, σ2)evs

[2]
+N (−

√
P1 −

√
P2, σ2)

. (2.32)

From (2.28) to (2.29) we used the law of total probability. From (2.29) to (2.30) we used the

conditional probability density function of the channel. From (2.30) to (2.31) we divided by

p(x[2] = −1). If we replace the conditional channel probability density functions in (2.32) with

their closed form expressions, we get the final update rule

sv[1](y, vs[2]) = log
e−

(y−
√
P1−
√
P2)

2

2σ2 evs
[2]

+ e−
(y−
√
P1+
√
P2)

2

2σ2

e−
(y+
√
P1−
√
P2)

2

2σ2 evs
[2]

+ e−
(y+
√
P1+
√
P2)

2

2σ2

. (2.33)
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We observe that this update rule boils down to the equal power update rule in (2.26) for the

special case where
√
P1 =

√
P2 = 1. Recall that our model assumes σ2 = 1, so for user 1 we get

sv[1](y, vs[2]) = log
e−

(y−
√
P1−
√
P2)

2

2 evs
[2]

+ e−
(y−
√
P1+
√
P2)

2

2

e−
(y+
√
P1−
√
P2)

2

2 evs
[2]

+ e−
(y+
√
P1+
√
P2)

2

2

. (2.34)

Accordingly, for user, 2 we have

sv[2](y, vs[1]) = log
e−

(y−
√
P1−
√
P2)

2

2 evs
[1]

+ e−
(y+
√
P1−
√
P2)

2

2

e−
(y−
√
P1+
√
P2)

2

2 evs
[1]

+ e−
(y+
√
P1+
√
P2)

2

2

. (2.35)

The slight difference of the signs in (2.34) and (2.35) is the only indication of the asymmetry

of the update rules of the two users.

2.1.4 Message Scheduling

After deriving the message update rules for all types of nodes, in order to completely describe

the decoder, we need to specify a schedule, i.e. an order in which the messages will be computed.

We choose a parallel schedule in which the state node messages are first updated and then a

round of single user BP is performed on each single user Tanner graph. This schedule admits

easier analysis than most other schedules [6, Chapter 5],[12]. We consider one iteration to start

with a state-to-variable message update, followed by the single user variable-to-check and check-

to-variable message updates and ending with the variable-to-state updates. No claims for the

optimality of this schedule are made.

2.2 Density Evolution

Density Evolution (DE) tracks the probability density functions of the messages exchanged

by the BP decoder during the `-th iteration, for ` = 1, 2, . . .. Using these densities, or some

linear functional of the densities (like the Bit Error Rate (BER) or the entropy), we can derive

conditions which guarantee that the probability of decoding error becomes vanishingly small as

the number of iterations tends to infinity.

In this section, we first prove that, in order to predict the asymptotic performance of a pair

of LDPC code ensembles over the two-user GMAC, it suffices to consider the case where one

user transmits the all-zero codeword (equivalently, the all-one BPSK codeword) and the other

user transmits a typical codeword of type one-half, i.e. a codeword with half its bits equal to

zero (equivalently, half its symbols equal to +1) and half its bits equal to one (equivalently, half

its symbols equal to −1). We then present the recursive two-user DE update rules.

2.2.1 (No) Restriction to the All-One BPSK Codeword

The GMAC is not symmetric in the single user sense. Due to this fact, the probability of error

is not codeword independent, meaning that we can not restrict our analysis to the case where

both users transmit the all-one BPSK codeword. Fortunately, we can show that it suffices

to consider the case where one user transmits the all-one BPSK codeword and the other user

transmits a BPSK codeword with half positions equal to +1 and the other half equal to −1. In

order to provide intuition for the proof of the aforementioned statement and to introduce some
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notation, we will first state the proof for the restriction to the all-one BPSK codeword in the

single user case.

Recall that the Log-Likelihood Ratio for the noisy output y of a binary memoryless channel

is defined as

l(y) = log
pY |X(y|x = +1)

pY |X(y|x = −1)
. (2.36)

In the single user case, a binary memoryless channel is said to be symmetric if

pY |X(y|x = +1) = pY |X(−y|x = −1). (2.37)

Let Y denote the random variable corresponding to y and let L(Y ) denote the corresponding

LLR. Let a denote the probability density function of L(Y ), conditioned on X = 1. We say

that a is an L-density. An L-density is symmetric if [6]

a(z) = exa(−z), (2.38)

for all z ∈ R. L-densities for binary memoryless symmetric channels are always symmetric [6].

L-densities can be used in order to represent the associated channel multiplicatively as

Y = xZ, Z ∼ a(z). (2.39)

Theorem 2.2 ([6], Lemma 4.90). Let G be a Tanner graph representing a binary linear code C.

Suppose that C is used to transmit over a BMS channel characterized by its L-density aBMSC and

suppose that the receiver performs belief propagation decoding on G. Let PBP(G, aBMSC, `, c) de-

note the conditional (bit or block) probability of error after the `-th decoding iteration, assuming

that c was sent, c ∈ C. Then, it holds that

PBP(G, aBMSC, `, c) =
1

|C|
∑
c′∈C

PBP(G, aBMSC, `, c
′) = PBP(G, aBMSC, `). (2.40)

This means that PBP(G, aBMSC, `, c) is independent of the transmitted codeword.

Proof. Recall that, based on the previous discussion, a binary memoryless symmetric channel

can be modeled multiplicatively as

Yt = xtZt, (2.41)

where {Zt}nt=1 is a sequence of iid random variables with density aBMSC. Let x ∈ C and let Y

denote the corresponding channel output, Y = xZ (multiplication is component-wise). Note

that Z by itself is equal to the observation assuming the the all-one codeword was transmitted.

We will now show that the messages sent during the decoding process for the cases where the

received word is either xZ or Z are in one-to-one correspondence.

Let i be an arbitrary variable node and let j be one of its neighboring check nodes. Let

m
(`)
ij (y) denote the message sent from i to j in iteration ` assuming that the received value is y

and let m
(`)
ji (y) denote the corresponding message sent from j to i.

We have m
(0)
ij (y) = m

(0)
ij (xz) = xim

(0)
ij (z), where the second step follows from the variable

node symmetry property in Equation (2.14). Assume that we have m
(`)
ij (y) = xim

(`)
ij (z) for all

(i, j) pairs and some ` ≥ 0. Let ∂j denote all variable nodes which are connected to check node

j. Since x is a codeword, we have∏
k∈∂j

xk = 1 ⇔
∏

k∈∂j/i

xk = xi. (2.42)
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In words, the product of the signs of the messages which are used for the calculation of the

message towards variable node i is equal to xi. Thus, from the check node symmetry condition

in Equation (2.17), we conclude that m
(`+1)
ji (y) = xim

(`+1)
ji (z). Further, invoking once more the

variable node symmetry condition, it follows that m
(`+1)
ij (y) = xim

(`+1)
ij (z) for all (i, j) pairs.

Thus, by induction, all messages to and from variable node i, when y is received, are equal

to the product of xi and the corresponding message when z is received. Hence, both decoders

proceed in lock step and commit exactly the same number of errors, which proves the claim.

We will now show that the state node update rule has a certain symmetry, which will be

indispensable in the sequel.

Lemma 2.3. Regardless of the users’ powers, the update rules for the state-to-variable messages

exhibit the following symmetry property

sv[1](−y,−vs[2]) = −sv[1](y, vs[2]), (2.43)

sv[2](−y,−vs[1]) = −sv[2](y, vs[1]). (2.44)

Proof. For the equal power update rule for the messages towards user 1, it holds that [12]

sv[1](−y,−vs[2]) = log
e

2(−y−1)

σ2
−sv[2] + 1

e−sv
[2]

+ e−
2(−y+1)

σ2

= log
e−

2(y+1)

σ2
−sv[2] + 1

e−sv
[2]

+ e
2(y−1)

σ2

(2.45)

= − log
e

2(y−1)

σ2
+sv[2] + 1

esv
[2]

+ e−
2(y+1)

σ2

= −sv[1](y, vs[2]). (2.46)

The state node update rule for the message towards user 2 exhibits the same symmetry. For

the unequal power update rule for the messages towards user 1, which we derived in (2.34), it

holds that

sv[1](−y,−vs[2]) = log
e−

(−y−
√
P1−
√
P2)

2

2 e−vs
[2]

+ e−
(−y−

√
P1+
√
P2)

2

2

e−
(−y+

√
P1−
√
P2)

2

2 e−vs
[2]

+ e−
(−y+

√
P1+
√
P2)

2

2

(2.47)

= log
e−

(y+
√
P1+
√
P2)

2

2 e−vs
[2]

+ e−
(y+
√
P1−
√
P2)

2

2

e−
(y−
√
P1+
√
P2)

2

2 e−vs
[2]

+ e−
(y−
√
P1−
√
P2)

2

2

(2.48)

= log
e−

(y+
√
P1+
√
P2)

2

2 + e−
(y+
√
P1−
√
P2)

2

2 evs
[2]

e−
(y−
√
P1+
√
P2)

2

2 + e−
(y−
√
P1−
√
P2)

2

2 evs
[2]

(2.49)

= −sv[1](y, vs[2]). (2.50)

Again, the state node update rule for the message towards user 2 exhibits the same symmetry.

The following symmetry property of the conditional probabilities of the GMAC can be easily

verified for the unequal power case

p(yi|x[1]i = 1, x
[2]
i = 1) = p(−yi|x[1]i = −1, x

[2]
i = −1). (2.51)
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Naturally, it also holds under the equal power assumption as a special case. If we restrict

ourselves to the cases where x
[1]
i = x

[2]
i , this channel is equivalent to a BI-AWGN channel with

input power
√
P1 +

√
P2, which is symmetric in the single user sense. Similarly, if we restrict

ourselves to the cases where x
[1]
i = −x[2]i , this channel is equivalent to a BI-AWGN channel with

input power
√
P1 −

√
P2, which is also symmetric in the single user sense. So, we can model

transmission over the two “restricted” channels multiplicatively as [6]

Y
[1]
i = xiZ

[1]
i and Y

[2]
i = xiZ

[2]
i , (2.52)

where Z
[1]
i is distributed according to a

x
[2]
i =x

[2]
i

(z) and Z
[2]
i is distributed according to a

x
[1]
i =−x[2]i

(z),

and xi = x
[1]
i = x

[2]
i and xi = x

[1]
i = −x[2]i , respectively.

Since x[1] and x[2] are independent, the events x
[2]
i = x

[2]
i and x

[1]
i = −x[2]i are equiprobable,

each having probability 1/2. Thus, in the typical case half the state nodes will be x
[1]
i = x

[2]
i

nodes and half the state nodes will be x
[1]
i = −x[2]i nodes.

Theorem 2.4. The probability of error when the received values at x
[1]
i = x

[2]
i nodes are Y[1] =

xZ[1] and the received values at x
[1]
i = −x[2]i nodes are Y[2] = xZ[2] is equal to the probability

of error when the received values at x
[1]
i = x

[2]
i nodes are Y[1] = Z[1] and the received values

at x
[1]
i = −x[2]i nodes are Y[2] = Z[2]. In words, we can predict the asymptotic performance by

assuming that user 1 transmits the all-one codeword and user 2 transmits a typical codeword of

type one-half.

Proof Outline: We will show that, due to the BP update rule symmetries, the xi signs can

be factored out. This means that we can assume transmission of the all-ones x codeword.

The fact that, the probability of the event xi = x
[1]
i = x

[2]
i is 1/2 and the probability of the

event xi = x
[1]
i = −x[2]i is also 1/2, leads to the conclusion that user 1 can transmit the all-one

codeword, but user 2 has to transmit a codeword of type one-half.

Proof. We will prove Theorem 2.4 by induction. Let ik be an arbitrary variable node of user

k, k = 1, 2, and let jk be one of its neighboring check nodes. Let vc
(`)
ikjk

(yi) denote the message

sent from ik to jk in iteration ` assuming that the received value is yi, let cv
(`)
jkik

(yi) denote

the corresponding message sent from jk to ik, and let vs
(`)
ik

(yi) denote the message sent from

variable node ik to its corresponding state node. Finally, let sv
(`)
i2

(y, vs
(`)
i1

) (resp. sv
(`)
i1

(y, vs
(`)
i2

))

denote the message from the state node connected to variable node i1 of user 1 (resp. variable

node i2 of user 2) towards the corresponding variable node of user 2, i.e. i2 (resp. i1).

Induction Basis: Due to the state node update rule symmetry, the initial messages from

the state nodes to the variable nodes are

sv
(0)
i1

(yi, 0) = sv
(0)
i1

(xizi, 0) = xisv
(0)
i1

(zi, 0), (2.53)

sv
(0)
i2

(yi, 0) = sv
(0)
i2

(xizi, 0) = xisv
(0)
i2

(zi, 0), (2.54)

where zi is distributed either according to a
x
[1]
i =x

[2]
i

(z) or according to a
x
[1]
i =−x[2]i

(z), depending

on the type of the state node. Due to the variable node update rule symmetry and the fact the

we can factor out the sign from the initial messages from the state nodes, we also have

vc
(0)
ikjk

(yi) = vc
(0)
ikjk

(xizi) = xivc
(0)
ikjk

(zi), (2.55)
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where zi is distributed according either to a
x
[1]
i =x

[2]
i

(z) or to a
x
[1]
i =−x[2]i

(z), depending on the type

of the state node the variable node is connected to. In either case, the sign can be factored out.

Inductive Hypothesis: Now assume that we have vc
(`)
ikjk

(yi) = xivc
(`)
ikjk

(zi) for all (ik, jk) pairs.

Inductive Step: Let ∂jk denote the indices of all variable nodes which are connected to

check node jk. Since x1 and x2 are codewords, they must satisfy all parity check equations.

Thus, we have ∏
i∈∂jk

xi = 1 =⇒
∏

i∈∂jk/{i′}

xi = xi′ , (2.56)

where i′ ∈ ∂jk. So, using the check node symmetry, we have

cv
(`+1)
jkik

(yi) = xicv
(`+1)
jkik

(zi). (2.57)

Due to the variable node update rule symmetry, which also holds for the messages from variable

nodes to state nodes, we have

vs
(`+1)
ik

(yi) = xivs
(`+1)
ik

(zi). (2.58)

Due to the state node update rule symmetry in Equation (2.44), for the message from the state

node connected to variable node i1 towards the corresponding variable node of user 2, we have

sv
(`+1)
i2

(xizi, xivs
(`+1)
i1

) = xisv
(`+1)
i1

(zi, vs
(`+1)
i1

). (2.59)

Similarly, due to the state node update rule symmetry in Equation (2.43), for the message from

the state node connected to variable node i2 towards the corresponding variable node of user 1,

we have

sv
(`+1)
i1

(xizi, xivs
(`+1)
i2

) = xisv
(`+1)
i1

(zi, vs
(`+1)
i2

). (2.60)

Invoking the variable node symmetry once again, we have that

vc
(`+1)
ikjk

(yi) = xivc
(`+1)
ikjk

(zi). (2.61)

Thus, we have proven the inductive step. This means that x can be the all-zero codeword,

which in turn implies that x[1] can be the all-zero codeword but x[2] has to be a codeword of

type one-half.

Remark. If we set xi = −x[1]i = x
[2]
i in (2.52) when x

[1]
i = −x[2]i (instead of xi = x

[1]
i = −x[2]i as

we did), then nothing changes essentially except that we will reach the conclusion that user 2

can be restricted to the all-one codeword and user 1 has to transmit a typical codeword of type

one-half. In both cases, one user transmits the all-one codeword and the other user transmits

a codeword of type one-half.

2.2.2 Density Evolution

Before continuing, we need to write the check node message update rule in a more convenient

form. Let γ denote a map from [−∞,+∞] to GF(2)× [0,+∞] defined as [14]

γ(x) , (γ1(x), γ2(x)) ,
(

sign(x),− ln tanh
∣∣∣x
2

∣∣∣) , (2.62)
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where the convention − ln 0 = +∞ is used. Using γ(x), the check node message update rule in

(2.1.3) can be rewritten as

cv`ji = γ−1

 ∑
i′∈Vj/{i}

γ
(
vc`i′j

) , (2.63)

where addition is performed component-wise. This form is more convenient because, using the

Tree Assumption and given the densities of all vc`i′j , i
′ ∈ Vj , it is relatively easy to calculate

the density of cv`ji. Let Γ denote the density transformation corresponding to γ(x), i.e. given a

random variable Z ∈ [−∞,+∞] with density fZ(z), the density of γ(Z) is

fγ(Z)(γ1(z), γ2(z)) = Γ(fZ(z)). (2.64)

This transformation has a well defined inverse, denoted Γ−1, and both Γ and Γ−1 are additive

operators on their respective domain spaces [14]. The range space of Γ is endowed with a

convolution operator [14].

As in [14], let P` andQ` denote the densities of the random variables vc` and cv`, respectively.

We wish to calculate the density of the messages emanating from a check node of degree i,

denoted Q`,i. At a check node of degree i, (i− 1) incoming messages2 are summed after passing

through the transformation γ(x). The result is then transformed back to the LLR domain

using γ−1. By the Tree Assumption, all incoming messages are independent and distributed

according to P` and their images under γ(x) are also independent and distributed according to

Γ(P`). This means that the density of the sum in (2.63) is equal to the (i− 1)-fold convolution

of Γ(P`) with itself over the space defined by Γ. The last step is to apply the Γ−1 transformation

to the resulting density, leading to

Q`,i = Γ−1
(

Γ (P`)
⊗(i−1)

)
. (2.65)

By definition of ρ(x), an edge is connected to a check node of degree i with probability ρi. Thus,

the above density corresponds to a message that appears in BP decoding with probability ρi.

By taking the weighted average of the densities Q`,i over the coefficients of ρ(x), we have

Q` =
∑
i

ρiQ`,i =
∑
i

ρiΓ
−1
(

Γ (P`)
⊗(i−1)

)
. (2.66)

Γ−1 is additive, thus

∑
i

ρiΓ
−1
(

Γ (P`)
⊗(i−1)

)
= Γ−1

(∑
i

ρiΓ (P`)
⊗(i−1)

)
, (2.67)

which we can rewrite, slightly abusing notation, to get the final density update rule for the

check nodes

Q` = Γ−1 (ρ (Γ (P`))) . (2.68)

At variable nodes the situation is much less involved. At a degree i variable node, (i − 1)

incoming messages from check nodes are summed along with an additional incoming message.

Let S` denote the density of this additional incoming message at iteration `. By the Tree As-

sumption, the messages from check nodes are independent and identically distributed according

2Recall that these messages are LLRs.
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to Q` and the additional message is independent from all other incoming messages and dis-

tributed according to S`. Then, the density of the messages emanating from a variable node of

degree i towards the check nodes, denoted P(`+1),i, is simply the convolution of the densities of

all incoming messages, i.e.

P(`+1),i = S` ⊗Q
⊗(i−1)
` . (2.69)

By averaging over the coefficients of λ(x) and by substituting the expression we have derived

for Q` as a function of P`, we have

P(`+1) =
∑
i

λi

(
S` ⊗Q

⊗(i−1)
`

)
(2.70)

= S` ⊗
∑
i

λiQ
⊗(i−1)
` (2.71)

= S` ⊗
∑
i

λi
(
Γ−1 (ρ (Γ (P`)))

)⊗(i−1)
. (2.72)

By slightly abusing notation again, we get the final expression for P(`+1) as a function of P`

P(`+1) = S` ⊗ λ
(
Γ−1 (ρ (Γ (P`)))

)
. (2.73)

In single user Density Evolution, S` depends solely on the channel observation and it is actually

not a function of `. In the two-user GMAC, however, this density corresponds to incoming

messages from the state nodes. Since messages from the state nodes towards one user depend

on the check-to-variable messages of the other user, the recursive DE expression for each user

will necessarily contain some message density of the other user.

Let R` denote density of the variable-to-state messages at iteration `. The message from a

degree i variable node towards its corresponding state node is the sum of i independent incoming

messages from the check nodes which are distributed according to Q`. So, the density of the

message from a degree i variable node towards its state node at iteration `, denoted R`,i, is the

convolution of the densities of the incoming messages, i.e.

R`,i = Q⊗i` . (2.74)

The densities R`,i depend on the degree of the variable node from which the corresponding

messages emanate, not from the degree of the edge along which they are transmitted, as happens

with variable-to-check messages. Thus, in order to calculate the average density R`, we need

to average R`,i over the degrees of the variable nodes,3 i.e. over the variable node degree

distribution from a node perspective, which is denoted as L(x). So, we have

R` =
∑
i

LiR`,i =
∑
i

LiQ
⊗i
` =

∑
i

L(Q`), (2.75)

where we have slightly abused notation as usual.

Let Σ denote the density transformation corresponding to the state-to-variable update rule.

Then, resuming user notation, we can express P
[1]
(`+1) as a function of both P

[1]
` and P

[2]
` as

3Recall that for P` and Q` we averaged over the degree of the edges, not the degrees of the nodes.
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follows

P
[1]
(`+1) = S

[2]
` ⊗ λ

[1]
(

Γ−1
(
ρ[1]
(

Γ
(
P

[1]
`

))))
(2.76)

= Σ
(
R

[2]
`

)
⊗ λ[1]

(
Γ−1

(
ρ[1]
(

Γ
(
P

[1]
`

))))
(2.77)

= Σ
(
L[2]

(
Q

[2]
`

))
⊗ λ[1]

(
Γ−1

(
ρ[1]
(

Γ
(
P

[1]
`

))))
(2.78)

= Σ
(
L[2]

(
Γ−1

(
ρ[2]
(

Γ
(
P

[2]
`

)))))
⊗ λ[1]

(
Γ−1

(
ρ[1]
(

Γ
(
P

[1]
`

))))
. (2.79)

Similarly, for P
[2]
(`+1) we have

P
[2]
(`+1) = Σ

(
L[1]

(
Γ−1

(
ρ[1]
(

Γ
(
P

[1]
`

)))))
⊗ λ[2]

(
Γ−1

(
ρ[2]
(

Γ
(
P

[2]
`

))))
. (2.80)

The derivation of Σ is nontrivial. However, we can overcome this problem by proceeding with

a Gaussian Approximation, in which the exact nature of Σ is irrelevant.

2.2.3 Stability Condition

Before proceeding with the Gaussian Approximation, we will very briefly discuss the stability

condition for the two-user Density Evolution recursions. The stability condition provides a

necessary and sufficient condition for the decoding to converge to zero probability of error,

provided that the probability of error has already evolved to a sufficiently small value [14].

For the equal power case, we use the stability condition which is provided in [12]. The same

stability condition applies to both users since in [12] it is assumed that both users employ codes

from the same ensemble.

λ2
∑
i

(i− 1)ρi < exp
(
1/(2σ2)

)
. (2.81)

We observe that the receiver of an unequal power two-user GMAC channel is equivalent to

the best receiver of a two-user broadcast channel. Thus, the stability condition of the unequal

power two-user DE recursions decomposes into to two single user stability conditions, as in [15]

λ
[j]
2

∑
i

(i− 1)ρ
[j]
i < exp (Pj/2) , j = 1, 2. (2.82)

2.3 Gaussian Approximation and EXIT Charts

In this section, we apply the Gaussian Approximation (GA) to the two-user Density Evolution

recursion and provide conditions which guarantee that the probability of decoding error for

both users becomes vanishingly small. Based on the GA, we proceed with an EXtrinsic Infor-

mation Transfer (EXIT) chart analysis and we provide EXIT chart based sufficient conditions

for successful decoding.

2.3.1 Gaussian Approximation

Under the Gaussian Approximation [16], all message densities are approximated as symmetric

Gaussian. A Gaussian density is said to be symmetric if σ2 = 2µ, where σ2 and µ denote the

variance and the mean, respectively. So, instead of tracking the evolution of densities as the

number of iterations increases, we can get a very good approximation of DE by tracking the

evolution of a single parameter, i.e. the mean.
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We will temporarily drop the user index for the sake of simplicity when dealing with the

variable and check nodes, since the same rules apply to both users.

Let µ`cv denote the mean of the check-to-variable messages at iteration `. Similarly, let

µ`sv denote the mean of the state-to-variable messages at iteration `. Then, the mean of the

variable-to-check messages emanating from a variable node of degree i at iteration (` + 1),

denoted µ
(`+1),i
vc , is

µ(`+1),i
vc = µ`sv + (i− 1)µ`cv. (2.83)

At a variable node of degree i, due to the central limit theorem and the fact that all incoming

messages are assumed to be independent, the density of the variable-to-check message does

indeed resemble a Gaussian density. As the degree of the variable node increases, the approxi-

mation becomes better. By averaging over the coefficients of λ(x), the overall variable-to-check

message density will be a mixture of Gaussians with mean

µ(`+1)
vc =

∑
i

λiµ
(`+1),i
vc = µ`sv +

∑
i

λi(i− 1)µ`cv. (2.84)

However, under the GA, it is assumed that the above density is not a mixture of Gaussian

densities, but a single Gaussian density with mean µ
(`+1)
vc [16].

The mean of the variable-to-state messages emanating from a variable node of degree i at

iteration `, denoted µ
(`),i
vs , is

µ`,ivs = iµ`cv. (2.85)

Since we average over the coefficients of L(x), the overall variable-to-state message density will

also be a mixture of Gaussians with mean

µ`vs =
∑
i

Liµ
(`),i
vs =

∑
i

Liiµ
`
cv. (2.86)

As previously, under the GA it is assumed that the above density is not a mixture of Gaussians,

but a single Gaussian density with mean µ`vs.

At check nodes the approximation is not very accurate, but it has been shown to be satis-

factory [16]. As before, since we average over the coefficients of ρ(x), the actual overall density

will be a mixture of Gaussians, but we assume that it is a single Gaussian density. As shown

in [16], at a degree i check node we have

µ`,icv = φ−1
(

1−
(

1− φ(µ`vc)
)(i−1))

, (2.87)

where φ(·) is defined as

φ(x) =

{
1− 1√

4πx

∫ +∞
−∞ tanh

(
u
2

)
exp

{
− (u−x)2

4x

}
du, x > 0,

1, x = 0.
(2.88)

A good approximation for φ(x) can be found in Appendix C. By averaging over the coefficients

of ρ(x), we get

µ`cv =
∑
i

ρiµ
`,i
cv =

∑
i

ρiφ
−1
(

1−
(

1− φ(µ`vc)
)(i−1))

. (2.89)

By combining (2.84) and (2.89), we can express µ
(`+1)
vc as a function of µ

(`)
vc as follows

µ(`+1)
vc = µ`sv +

∑
i

λi(i− 1)

∑
j

ρjφ
−1
(

1−
(

1− φ(µ`vc)
)(j−1)) . (2.90)
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As a last step, we need to derive the update rule for the state-to-variable message means. At

this point, we will resume the user index notation since it is necessary. We state the equal power

update rule appearing in [12] and we derive a new update rule for the unequal power case.

As discussed previously, we can restrict the transmitted codeword to the all-one BPSK code-

word for one user and a type one-half BPSK codeword for the other user. This means that we

will have two types of state nodes. One type is connected to two variable nodes with associated

value +1, while the other is connected to one variable node with associated value +1 and one

variable node with associated value −1.

Equal Power: Recall that the state node update rule for user 1 is

sv[1],`(y, vs[2],`) = log
e

2(y−1)

σ2
+vs[2],` + 1

evs
[2],`

+ e−
2(y+1)

σ2

. (2.91)

We assume that the variable-to-state message from user 2, denoted vs[2],`, has mean µ
[2],`
vs . The

mean of y depends on the type of the state node. Using the above update rule and given the

means of the input messages, for a state node of user 1 which is connected to two +1 variable

nodes, the mean of the state-to-variable messages towards user 2 at iteration ` can be calculated

as

µ
[1],`
sv|+1,+1 = F+1,+1(µ

[2],`
vs , σ2), (2.92)

where σ2 is the noise variance and F+1,+1(µ, σ
2) is defined as [12]4

F+1,+1(µ, σ
2) ,

1√
π

∫ +∞

−∞
e−z

2
log

(
1 + e2z

√
µ+2/σ2+µ+2/σ2

1 + e−2z
√
µ+2/σ2−µ−6/σ2

)
dz − µ. (2.93)

Similarly, for the state nodes connected to one +1 and one −1 variable node, the mean of the

state-to-variable messages towards user 2 at iteration ` can be calculated as

µ
[1],`
sv|+1,−1 = F+1,−1(µ

[2],`
vs , σ2), (2.94)

where F+1,−1(µ, σ
2) is defined as [12]4

F+1,−1(µ, σ
2) ,

1√
π

∫ +∞

−∞
e−z

2
log

(
1 + e2z

√
µ+2/σ2−µ−2/σ2

1 + e−2z
√
µ+2/σ2+µ−2/σ2

)
dz + µ. (2.95)

Using the law of iterated expectations, the overall mean can be calculated as

µ[1],`sv = p(+1,+1) · µ[1],`sv|+1,+1 + p(+1,−1) · µ[1],`sv|+1,−1 (2.96)

= p(+1,+1) · F+1,+1(µ
[2],`
vs , σ2) + p(+1,−1) · F+1,−1(µ

[2],`
vs , σ2) (2.97)

=
1

2

(
F+1,+1(µ

[2],`
vs , σ2) + F+1,−1(µ

[2],`
vs , σ2)

)
. (2.98)

For user 2, due to symmetry, we have

µ[2],`sv =
1

2

(
F+1,+1(µ

[1],`
vs , σ2) + F+1,−1(µ

[1],`
vs , σ2)

)
. (2.99)

4We found a small typo in [12], which has been corrected in the above expression.
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By combining (2.90) with (2.98), for user 1 we get

(2.100)

µ[1],(`+1)
vc =

1

2

(
F+1,+1(µ

[2],`
vs ) + F+1,−1(µ

[2],`
vs )

)
+
∑
i

λ
[1]
i (i− 1)

∑
j

ρ
[1]
j φ
−1
(

1−
(

1− φ(µ[1],`vc )
)(j−1)) .

Similarly, by combining (2.90) with (2.99), for user 2 we get

(2.101)

µ[2],(`+1)
vc =

1

2

(
F+1,+1(µ

[1],`
vs ) + F+1,−1(µ

[1],`
vs )

)
+
∑
i

λ
[2]
i (i− 1)

∑
j

ρ
[2]
j φ
−1
(

1−
(

1− φ(µ[2],`vc )
)(j−1)) .

Unequal Power: In the unequal power case, a new rule needs to be derived for the state-to-

variable messages since the update rule has changed significantly in comparison with [12]. In

fact, the update rule for the means of the state node is now different for each user, since

sv[1](y, vs[2]) = log
e−

(y−
√
P1−
√
P2)

2

2 evs
[2]

+ e−
(y−
√
P1+
√
P2)

2

2

e−
(y+
√
P1−
√
P2)

2

2 evs
[2]

+ e−
(y+
√
P1+
√
P2)

2

2

, (2.102)

sv[2](y, vs[1]) = log
e−

(y−
√
P1−
√
P2)

2

2 evs
[1]

+ e−
(y+
√
P1−
√
P2)

2

2

e−
(y−
√
P1+
√
P2)

2

2 evs
[1]

+ e−
(y+
√
P1+
√
P2)

2

2

. (2.103)

For the sake of the derivation in Appendix A, we need to decide which user transmits the

all-ones BPSK codeword and which user transmits the BPSK codeword of type one-half. We

assume, without loss of generality, that user 1 transmits the all-ones BPSK codeword. If this

choice were reversed, the derivation would involve slightly different computations, but the final

result would be the same.

By proceeding as we did in the equal power case, the mean of the state-to-variable messages

towards user 2 at iteration ` can be calculated as

µ
[1],`
sv|+1,+1 = F

[1]
+ (µ[2],`vs ) and µ

[1],`
sv|+1,−1 = F

[1]
− (µ[2],`vs ), (2.104)

where F
[1]
+ (µ) and F

[1]
− (µ) are defined as

F
[1]
+ (µ) =

1√
π

∫ +∞

−∞
e−z

2
log

(
1 + e

√
4µ+8P2z+µ+2P2

1 + e−
√
4µ+8P2z−µ−2P2−4

√
P1
√
P2

)
dz − µ+ 2(P1 − P2) (2.105)

F
[1]
− (µ) =

1√
π

∫ +∞

−∞
e−z

2
log

(
1 + e−

√
4µ+8P2z−µ−2P2

1 + e
√
4µ+8P2z+µ+2P2−4

√
P1
√
P2)

)
dz + µ+ 2

(√
P1 −

√
P2

)2
(2.106)

Similarly, the mean of the state-to-variable messages towards user 1 at iteration ` can be cal-

culated as

µ
[2],`
sv|+1,+1 = F

[2]
+ (µ[1],`vs ) and µ

[2],`
sv|−1,+1 = F

[2]
− (µ[1],`vs ), (2.107)
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where F
[2]
+ (µ) and F

[2]
− (µ) are defined as

F
[2]
+ (µ) =

1√
π

∫ +∞

−∞
e−z

2
log

(
1 + e

√
4µ+8P1z+µ+2P1

1 + e−
√
4µ+8P1z−µ−2P1−4

√
P1
√
P2

)
dz − µ+ 2(P2 − P1) (2.108)

F
[2]
− (µ) =

1√
π

∫ +∞

−∞
e−z

2
log

(
1 + e

√
4µ+8P1z+µ+2P1−4

√
P1
√
P2

1 + e−
√
4µ+8P1z−µ−2P1

)
dz − µ− 2

(√
P2 −

√
P1

)2
(2.109)

For the sake of readability and text continuity, the exact derivation of the above expressions

has been stashed away in Appendix A. Using the law of iterated expectations as previously, the

overall mean for user 1 can be calculated as

µ[1],`sv =
1

2

(
F

[1]
+ (µ[2],`vs ) + F

[1]
− (µ[2],`vs )

)
. (2.110)

Accordingly, for user 2, we have

µ[2],`sv =
1

2

(
F

[2]
+ (µ[1],`vs ) + F

[2]
− (µ[1],`vs )

)
. (2.111)

By combining (2.90) with (2.110), for user 1 we get

µ[1],(`+1)
vc =

1

2

(
F

[1]
+ (µ[2],`vs ) + F

[1]
− (µ[2],`vs )

)
+
∑
i

λ
[1]
i (i−1)

∑
j

ρ
[1]
j φ
−1
(

1−
(

1− φ(µ[1],`vc )
)(j−1)) .

(2.112)

Similarly, by combining (2.90) with (2.111), for user 2 we get

µ[2],(`+1)
vc =

1

2

(
F

[2]
+ (µ[1],`vs ) + F

[2]
− (µ[1],`vs )

)
+
∑
i

λ
[2]
i (i−1)

∑
j

ρ
[2]
j φ
−1
(

1−
(

1− φ(µ[2],`vc )
)(j−1)) .

(2.113)

2.3.2 EXtrinsic Information Transfer (EXIT) Charts

EXtrinsic Information Transfer (EXIT) charts [17] can be used to accurately analyze the be-

havior of iterative decoding systems. More specifically, the decoder of an LDPC code consists of

elements of two types, namely, variable and function (i.e. check and state) nodes. The evolution

of some one-dimensional output metric at a particular type of node can be tracked as a function

of the same metric at the input of these nodes. EXIT chart analysis is exact for the BEC where

messages are inherently one dimensional. For all other channels, we need to reduce the dimen-

sionality of the problem. In our case, through the Gaussian Approximation, we have reduced

the dimensionality of the problem from infinite (whole densities, i.e. continuous functions) to

one (the mean).

Mutual information between the messages and the codeword bits we wish to decode has been

shown to be a metric capable of very accurately predicting the bevahior of an LDPC decoder

[19, 22]. Using this metric, we track the mutual information between the variable-to-check

messages and the codeword bits as a function of the mutual information between the check-

to-variable and the state-to-variable messages, from which the variable-to-check messages were

computed, and the codeword bits. For any value of the mutual information between the input

messages and the codeword bits, we want the mutual information between the corresponding
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output messages and the codeword bits to be larger than this value. This provides a sufficient

condition for the decoding to converge to a state of absolute certainty, i.e. a state where

the mutual information between the output messages and the codeword bits is equal to one.

Absolute certainty is equivalent to zero probability of error.

Consider a variable node of degree i. Recall that, under the GA, all outgoing messages

from this variable node, denoted mvc, follow a symmetric Gaussian distribution with mean

µ = µsv + (i − 1)µcv and, due to the Tree Assumption, variance σ2 = 2µ = σ2sv + (i − 1)σ2cv.

The mutual information between the random variable Xk corresponding to the BPSK symbol

xk and mvc is (for simplicity, we write x for xk, X for Xk, m for mvc, and M for the random

variable representing m) [18]

I(X;M) = H(X)−H(X|M) (2.114)

= 1− E
[
log2

(
1

pX|M (x|m)

)]
(2.115)

= 1−
∫ +∞

−∞
pM |X(m|+1) log2

(
1 + e−m

)
dm. (2.116)

A proof, which only requires the message densities to be symmetric, can be found in Appendix B.

When conditioned on X = +1, M is distributed according to N (σ2/2, σ2). This leads to [18, 19]

I(X;M) = J(σ) , 1− 1√
2πσ

∫ +∞

−∞
e−

(m−σ2/2)2

2σ2 log2(1 + e−m)dm. (2.117)

Good approximations for J(σ) and its inverse, denoted J−1(I), can be found in Appendix D.

Finally, by applying the GA to the check-to-variable and state-to-variable messages, we get

[18, 20]

IiEV C(IAV , IES) = J
(√

σ2sv + (i− 1)σ2cv

)
(2.118)

= J
(√

(i− 1)J−1(IAV )2 + J−1(IES)2
)
, (2.119)

where IAV is the mutual information between the check-to-variable messages and the codeword

bits, IES is the mutual information between the state-to-variable messages and the codeword

bits, and IiEV C(IAV , IES) is usually called an elementary EXIT function. By averaging all

elementary EXIT functions over λ(x), we get the overall EXIT function for the variable-to-

check messages

IEV C(IAV , IES) =
∑
i

λiI
i
EV C(IAV , IES). (2.120)

As stated previously, this EXIT function allows us to compute the average mutual information

between the variable-to-check messages and the codeword bits for any given value of the average

mutual information between the incoming messages, from which the variable-to-check messages

are computed, and the codeword bits.

Accordingly, the EXIT function IiEV S describing the variable-to-state messages emanating

from a degree i variable node can be computed as

IiEV S(IAV ) = J
(√

iJ−1(IAV )
)
. (2.121)

By averaging over L(x), we get the overall EXIT function for the variable-to-state messages

IEV S(IAV ) =
∑
i

LiI
i
EV S(IAV ). (2.122)
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By exploiting the duality between the check nodes and the variable nodes, which holds

exactly for the BEC [21] and with good accuracy for the AWGN channel [22], it can be shown

that the EXIT function IiEC describing the messages emanating from a degree i check node can

be very well approximated as

IiEC(IAC) ≈ 1− J
(√

(i− 1)J−1(1− IAC)
)
, (2.123)

where IAC is the mutual information between the variable-to-check messages and the codeword

bits. Again, by averaging over ρ(x), we get the overall EXIT function for the check-to-variable

messages

IEC(IAC) =
∑
i

ρiI
i
EC(IAC). (2.124)

Note that, due to the iterative nature of the BP decoder, we have IAV = IEC and IAC = IEV C .

We now need to derive the EXIT function for the state-to-variable messages. We first briefly

present the existing results for the equal power case [12] and we will then proceed with the EXIT

functions for the unequal power case.

Equal Power: The mutual information between the state-to-variable messages towards user

1 and the codeword bits is the average mutual information over the two types of equiprobable

state nodes. Using (2.93) and (2.95), this can be calculated as [12]

I
[1]
ES(I

[2]
EV S , σ

2) =
1

2
J

(√
2F+1,+1

[
1

2
J−1

(
I
[2]
EV S

)2
, σ2
])

+
1

2
J

(√
2F+1,−1

[
1

2
J−1

(
I
[2]
EV S

)2
, σ2
])

.

(2.125)

Accordingly, for user 2, we have

I
[2]
ES(I

[1]
EV S , σ

2) =
1

2
J

(√
2F+1,+1

[
1

2
J−1

(
I
[1]
EV S

)2
, σ2
])

+
1

2
J

(√
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(2.126)

We can now combine (2.120), (2.122), and (2.125) to get the overall EXIT function for the

variable-to-state messages of user 1
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. Correspondingly, for user 2 we have
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where I
[1]
EV S =

∑
i L
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(√
iJ−1(I

[1]
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)
.

The expressions derived above are a generalization of the expressions found in [12]. These

expressions hold for any pair (λ[1](x), λ[2](x)) and not just for λ[1](x) = λ[2](x). Unfortunately,
as we will see below, they are not particularly convenient for efficient optimization, so in the
sequel we shall make the same assumptions as the ones found in [12].

Unequal Power: By using the mean update expressions (2.110) and (2.111) and proceed-
ing in accordance with the equal power case, for the state-to-variable messages towards user 1
we have
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(2.129)

Correspondingly, for the state-to-variable messages towards user 2 we have

I
[2]
ES(I

[2]
EV S , P1, P2) =

1

2
J

(√
2F

[2]
+

[
1

2
J−1

(
I
[2]
EV S

)2
, P1, P2

])
+

1

2
J

(√
−2F [2]

−

[
1

2
J−1

(
I
[2]
EV S

)2
, P1, P2

])
.

(2.130)

By substituting σ = µ2/2 in the approximation of J(σ), we have implicitly assumed that µ ≥ 0.

However, we have also assumed that user 2 transmits a codeword of type one-half, so at variable

nodes corresponding to −1 symbols the mean of the incoming messages will be negative. We

know that the entropy of a Gaussian random variable does not depend on its mean but solely

on its variance. For this reason, we negate F
[2]
− in the above expression to calculate the mutual

information between a density with variance −2µ ≥ 0 and the codeword bits.

We can now combine (2.120), (2.122) and (2.129) to get the overall EXIT function for the

variable-to-check messages of user 1 as follows
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. Correspondingly, by combining (2.120), (2.122) and

(2.130), for user 2 we have
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If we draw the EXIT function of the variable nodes with its input on the horizontal axis and

its output on the vertical axis, and the EXIT function of the check nodes with its input on the

vertical axis and its output on the horizontal axis, the resulting plot is called an EXIT chart.
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Chapter 3

Results

In this chapter, we describe the way in which EXIT charts can be used for the optimization of

LDPC code ensembles for the two-user GMAC. We present optimization results based on the

asymptotic analysis provided by EXIT charts, as well as Monte Carlo simulations for the Bit

Error Rate (BER) of specific finite length code instances drawn randomly from the optimized

code ensembles.

3.1 Optimization Procedure

As we have already mentioned, a sufficient condition for perfect decoding is that the mutual

information between the variable node output messages and the codeword bits (specifically,

IEV C) is larger than the mutual information between the variable node input messages and the

codeword bits (specifically, IAV ) [17]. Since IEC = IAV , an equivalent condition is that the

inverse of IEC lies strictly below IEV C for both users. Furthermore, it has been shown that it

is reasonable to constrain ρ[j](x) to be concentrated [16], i.e.

ρ[j](x) = xkj , kj ∈ N, j = 1, 2.

Then, IEC(IAC) = I
kj
EC(IAC) and the inverse of IEC(IAC), denoted IAC(IEC), can be easily

calculated by solving IEC(IAC) for IAC as follows

IAC(IEC) = 1− J

(
1√
kj − 1

J−1(1− IAC)

)
. (3.1)

This simplification is crucial since the optimization problems which we will state in the sequel

would otherwise be non-linear with respect to the coefficients of λ[j](x). This assumption also

simplifies the stability conditions so that (2.81) and (2.82) become

λ
[j]
2 <

exp
(
1/(2σ2)

)
(kj − 1)

, j = 1, 2, and λ
[j]
2 <

exp (Pj/2)

(kj − 1)
, j = 1, 2, (3.2)

respectively. In the sequel, we describe the optimization procedure for the equal and unequal

power cases.

Equal Power: For the equal power (and equal rate) case, we can assume, without loss of

generality, that the two users use codes that belong to the same ensemble [12]. This means that

λ[1](x) = λ[2](x) and ρ[1](x) = ρ[2](x) = xk, k ∈ N, (3.3)
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which in turn implies that L[1](x) = L[2](x). Since both users are described by exactly the same

EXIT chart, we only need to track a single EXIT chart. Thus, we will henceforth drop the user

index. Recall that the design rate r(λ(x), ρ(x)) of an LDPC code ensemble is defined as

r(λ(x), ρ(x)) = 1−
∑

i ρi/i∑
i λi/i

. (3.4)

So, maximizing the rate for fixed ρ(x) is equivalent to maximizing
∑

i λi/i, which results in

a linear objective function. However, the coefficients of L(x) are a non-linear function of the

optimization variables, so the optimization problem can definitely not be expressed as a linear

program without making an additional assumption. An assumption which eliminates the need

for the calculation of L(x) is the following. Assume that if a state node is connected to a degree

i variable node of user 1, then it is also connected to a degree i variable node of user 2. This

means that for any variable node of degree i, it holds that

IEV S(IAV ) = J
(√

iJ−1(IAV )
)
. (3.5)

This leads to the following simplified version of (2.127)
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2
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[
i

2
J−1(IAV )2, σ2

])]21/2
 ,

(3.6)

which corresponds exactly to the relation found in [12].

For a given target SNR or, equivalently, noise variance σ2, we wish to maximize the design

rate of the code ensemble while ensuring that BP converges to a vanishingly small probability

of error. By setting the maximum allowed variable node degree equal to some vmax ∈ N with

vmax > 2, the overall problem can be formulated as follows

maximize
λi

vmax∑
i=2

λi/i

subject to IAC(IEC) <

vmax∑
i=2

λiI
i
EV C(IAV , σ

2), (3.7)

λ2 <
exp

(
1/(2σ2)

)
(k − 1)

, (3.8)

vmax∑
i=2

λi = 1, (3.9)

λi ≥ 0, i = 2, . . . , vmax. (3.10)

This is a linear program, which can be solved very efficiently. We observed that the solutions

of this linear program are usually sparse, i.e. a limited number of coefficients is non-zero. This

property is desirable for simple code construction and decoding.

Unequal Power: In the unequal power case, we can no longer assume that both users employ
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codes from the same ensemble. We now need to jointly optimize two code ensembles and to find

another way to circumvent the non-linearity of L[j](x), j = 1, 2, with respect to the optimiza-

tion variables. This can be achieved as follows. First, we fix the target SNR for each user, i.e.

we fix P1 and P2. Note that P1 and P2 are system parameters, meaning that they are not to

be optimized. Then, we fix ρ[1](x) and ρ[2](x) as we did previously. Finally, we fix the variable

node degree distribution for one user and optimize the variable node degree distribution of the

other user. Since the EXIT chart for one user, say user 1, contains only L[2](x) and not L[1](x),

this optimization can be formulated as a linear program, as previously. So, for each user we

solve the following linear program, having fixed the degree distribution of the other user

maximize
λ
[j]
i

vmax∑
i=2

λ
[j]
i /i

subject to I
[j]
AC <

vmax∑
i=2

λ
[j]
i I

i,[j]
EV C , (3.11)

λ
[j]
2 <

exp (Pj/2)

(kj − 1)
, (3.12)

vmax∑
i=2

λ
[j]
i = 1, (3.13)

λ
[j]
i ≥ 0, i = 2, . . . , vmax. (3.14)

This procedure continues in an alternating fashion until some convergence criterion is met. In

extensive simulation studies, we have observed that convergence is reached very quickly and

that it is insensitive with respect to the starting point, i.e. the initial degree distribution. We

can not guarantee that this method does not get stuck at local maxima. However, as can be

seen in the next section, it is very effective. This procedure is repeated for several, well chosen,

(ρ[1](x), ρ[2](x)) pairs and the best result, in terms of sum-rate, is kept.

3.2 Results and Finite Length Performance

Equal Power: We set σ = 0.7945 which corresponds to a sum-rate of 1, i.e. r = 0.5 for each

user. Optimized degree distributions for the equal power case and for various values of vmax

can be seen in Table 3.1. We observe that when we increase vmax, the sum-rate increases and

for vmax = 200 we are only 0.0176 bits per channel use away from the maximal sum-rate.

In order to assess the finite length performance of the optimized ensembles, we created

random codes of length n = 105 for each user with no cycle removal. The maximum number of

BP decoding iterations was set to 200. For the code of the user who transmits the codeword of

type one-half, we had to create a specific encoder. Thus, a structure which allows for efficient

encoding was enforced [4] for this code. Since both codes belong to the same ensemble, their

performance is close to the ensemble average with probability that rises exponentially to 1 in

the blocklength. So, in Figure 3.1a we only plot the performance of one code for the sake of

simplicity. We observe that the codes’ performance is about 0.65 dB away from the Shannon

limit and about 0.30 dB away from the threshold computed by the EXIT chart method at a

BER of 10−5. The error floor is most probably due to the random construction we used.
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vmax 50 100 200

λ2 0.3098 0.2553 0.1841

λ3 0.3343 0.3138 0.2789

λ21 0.0561

λ22 0.0173 0.1592

λ23 0.2340

λ24 0.1363

λ25 0.1144

λ50 0.1053

λ100 0.1796

λ200 0.3216

ρ(x) x6 x7 x8

Rate 0.48734 0.48977 0.49122

Table 3.1: Optimized degree distributions for the equal power case.

(a) BER performance for n = 105. (b) EXIT chart.

Figure 3.1: Equal power optimization results for vmax = 100.

Finite-length performance could be further improved, both in the waterfall and in the er-

ror floor region, by using a more sophisticated construction method, like the Progressive Edge

Growth [23], ACE [24], and ACSE [25] algorithms, or one of their many variants. However,

this is beyond the scope of this work. The random construction suffices to demonstrate the

potential of this design method, especially for codes with relatively large blocklength.

Unequal Power: For the unequal power case, we explored two scenarios. In the first sce-

nario P1 and P2 were relatively close, while, in the second scenario the gap between P1 and P2

was significant. Due to the observed insensitivity with respect to the initial distribution, λ[1](x)

was always initialized to

λ[1](x) = 0.8x+ 0.2x(vmax−1). (3.15)

Optimized degree distributions for both scenarios, both users, and for various values of vmax

can be seen in Table 3.2. The corresponding EXIT charts can be seen in subfigures (a) and (b)

of Figures 3.2, 3.3, and 3.4.
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P1 = 1.5, P2 = 1 P1 = 1.75, P2 = 0.75

vmax 50 200 200

λ[1](x) λ[2](x) λ[1](x) λ[2](x) λ[1](x) λ[2](x)

λ2 0.2950 0.3668 0.2429 0.1853 0.1649 0.2159

λ3 0.3766 0.3529 0.3595 0.2762 0.4754 0.2559

λ8 0.0320

λ9 0.1181

λ12 0.0059 0.0489

λ13 0.1247 0.0705

λ21 0.3766

λ22 0.1433 0.2609

λ23 0.0800

λ32 0.0569 0.1239

λ33 0.0567 0.0171

λ42 0.1126

λ43 0.0370

λ50 0.1408

λ56 0.0036

λ57 0.0952

λ98 0.0631

λ99 0.1111

λ200 0.3054 0.2371

ρ[1] = x6 ρ[1] = x4 ρ[1] = x7 ρ[2] = x7 ρ[1] = x10 ρ[2] = x5

Rate 0.4984 0.3644 0.5060 0.3726 0.5756 0.3059

Table 3.2: Optimized degree distributions for the unequal power case.

The maximal sum-rate for the P1 = 1.5, P2 = 1 scenario is 0.8859 bits/channel use. The

code pair ensemble with vmax = 50 has a sum-rate which is only 0.0231 bits/channel use away

from the maximal sum-rate. By increasing vmax to 200, we can reduce this gap furher to only

0.0073 bits/channel use. In order to assess the first ensemble’s finite length performance, we

created random codes of length n = 50000 for each user. The performance of these codes can be

seen in Figure 3.2d. We observe that the resulting BER is less than 10−5 at an SNR only 0.55

dB away from the design SNR for both users, even for this moderate blocklength and random

construction. In order to assess the second ensemble’s finite length performance, we created

random codes of length n = 50000 for each user. The performance of theses codes can be seen

in Figure 3.3d. In this case, performance is even better, since the resulting BER is less than

10−5 at an SNR only 0.50 dB away from the design SNR for both users.

The maximal sum-rate for the scenario where P1 = 1.75, P2 = 0.75 is 0.8815 bits/channel use.

The code pair ensemble with vmax = 200 has a sum-rate which is only 0.0019 bits/channel use

away from the maximal sum-rate. In order to assess the ensemble’s finite length performance,

we created random codes of length n = 50000 for each user. The performance of theses codes

can be seen in Figure 3.4d. In this case, we observe that performance for user 1, who has a

higher rate, is similar to the previous cases, i.e. we get a BER of 10−5 at an SNR 0.5 dB away

from the design SNR. For the low rate user, however, results are not so good, as an error floor

starts becoming evident at a BER of 10−4. In our opinion, this can be explained in at least

two ways. First, in the low rate region, the Gaussian Approximation has been demonstrated to
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(a) EXIT chart for user 1. (b) EXIT chart for user 2.

(c) Rate pair and capacity region. (d) BER performance for n = 5 · 104.

Figure 3.2: Optimization results for P1 = 1.5 and P2 = 1 and vmax = 50.

have worse performance than its proposed alternative, the Erasure Channel Approximation [12].

Furthermore, for low rate codes with high vmax random code construction gives poor results,

particularly in terms of error floors [26]. This happens mainly because we have a parity-check

matrix of larger dimension where a random construction results in significantly more small

cycles. This may be the reason why our code has a relatively high error floor. However,

performance in the waterfall region is still good and we get a BER of 10−5 at approximately 0.9

dB away from the design SNR. Finite-length performance could be further improved by using

one of the construction methods mentioned previously.
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(a) EXIT chart for user 1. (b) EXIT chart for user 2.

(c) Rate pair and capacity region. (d) BER performance for n = 5 · 104.

Figure 3.3: Optimization results for P1 = 1.5 and P2 = 1 and vmax = 200.

(a) EXIT chart for user 1. (b) EXIT chart for user 2.

(c) Rate pair and capacity region. (d) BER performance for n = 5 · 104.

Figure 3.4: Optimization results for P1 = 1.75 and P2 = 0.75 and vmax = 200.
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Chapter 4

Conclusion

In this thesis, we developed an EXIT Chart based framework for the optimization of LDPC codes

for transmission over the unequal power two-user GMAC channel. We saw that, under some

assumptions, the optimization problem can be expressed as an alternating linear programming

problem, which can be solved very efficiently and which converges quickly. The resulting codes

are close to optimal, in terms of sum-rate, and exhibit very good finite-length behavior.

Future work includes the investigation of the Erasure Channel Approximation [12] for the

unequal power GMAC, as well as the derivation and implementation of full Density Evolution

for the evaluation of the asymptotic performance of our optimized ensembles. Application of

our design framework to larger systems, like relay channels, would also be of interest. A fourth

direction is the generalization of our framework to scenarios with more than two users with

arbitrary powers. We could also investigate the use of higher order modulations for the GMAC,

for example by using Bit-Interleaved Coded Modulation (BICM) [27], in order to achieve rates

in the high SNR region.

On a more practical side, a hardware implementation of the joint decoder could also be of

interest, mainly due to the complex nature of the state node update rule which would require

the use of a good approximation. Ways of constructing good codes of smaller length could also

be investigated by modifying existing algorithms (e.g. Progressive Edge Growth [23]) in order

to construct small and moderately sized two-user graphs with large girth.
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Appendix A

Derivation of F
[1]
+ , F

[1]
− , F

[2]
+ , and F

[2]
−

User 1

We will first rewrite the update rule for user 1 in order to proceed with the derivation of the

update rule for the means. By dividing both the nominator and the denominator of (2.34) with

the second term of the sum in the nominator, we get the following

sv[1](y, vs[2]) = log
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√
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√
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√
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= 2(
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√
P1
√
P2+vs[2] + 1
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√
P2+vs[2]) + 1

. (A.3)

We are interested in finding the mean of the above expression, i.e.

E
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= 2E
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log
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log
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)]
(A.5)

In order to evaluate the mean of the last two terms, we can use the property found in [12] which

states that for a Gaussian random variable w ∼ N (µ+ a, 2µ+ b), where a and b are real valued

constants, it holds that

E[log
(
1 + e±w

)
] =

1√
π

∫ +∞

−∞
e−z

2
log
(

1 + e±(
√
4µ+2bz+µ+a)

)
dz. (A.6)

Without loss of generality, we will henceforth assume that User 1 transmits the all-one codeword

and User 2 transmits a codeword of type one-half.

For x[1] = +
√
P1 and x[2] = +

√
P2, we have

y ∼ N
(√

P1 +
√
P2, 1

)
and vs[2] ∼ N (µ, 2µ) . (A.7)

Since vs[2] and y are statistically independent, the distribution of the exponent w of the first

term is

w ∼ N (2P2 + µ, 4P2 + 2µ) . (A.8)
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By applying the plus sign version of (A.6) we get

E
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Accordingly, the distribution of the exponent w of the second term is

w ∼ N
(

2P2 + 4
√
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√
P2 + µ, 4P2 + 2µ

)
. (A.10)

By applying the minus sign version of (A.6) we get
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(A.11)

So, for user 1 the mean update rule for the (+
√
P1,+

√
P2) state nodes is the following

F
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For x[1] = +
√
P1 and x[2] = −

√
P2, we have

y ∼ N
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√
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)
and vs[2] ∼ N (−µ, 2µ) . (A.12)

Since vs[2] and y are statistically independent, the distribution of the negation of the exponent

w of the first term is

− w ∼ N (2P2 + µ, 4P2 + 2µ) . (A.13)

By applying the minus sign version of (A.6) we get

E
[
log
(
e2
√
P2y−2

√
P1
√
P2+vs[2] + 1

)]
=

1√
π

∫ +∞

−∞
e−z

2
log
(

1 + e−
√
4µ+8P2z−µ−2P2

)
dz. (A.14)

Accordingly, the distribution of the exponent w of the second term is

w ∼ N
(

2P2 − 4
√
P1

√
P2 + µ, 4P2 + 2µ

)
. (A.15)

By applying the plus sign version of (A.6) we get

E
[
log
(
e−(2

√
P2y+vs[2]+2

√
P1
√
P2) + 1

)]
=

1√
π

∫ +∞

−∞
e−z

2
log
(

1 + e
√
4µ+8P2z+µ+2P2−4

√
P1
√
P2)
)
dz.

(A.16)

So, for user 1 the mean update rule for the (+
√
P1,−

√
P2) state nodes is the following

F
[1]
− (µ) =

1√
π

∫ +∞

−∞
e−z

2
log

(
1 + e−

√
4µ+8P2z−µ−2P2

1 + e
√
4µ+8P2z+µ+2P2−4

√
P1
√
P2)

)
dz + µ+ 2

(√
P1 −

√
P2

)2
.

(A.17)
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User 2

By following the same steps as previously, we can rewrite the update rule for user 2 as follows

sv[2](y, vs[1]) = log
e2
√
P1y−2

√
P1
√
P2+vs[1] + 1

e−2(
√
P2−
√
P1)y+vs[1] + e−(2

√
P2y+2

√
P1
√
P2)

(A.18)

= log
1

e−2(
√
P2−
√
P1)y+vs[1]

e2
√
P1y−2

√
P1
√
P2+vs[1] + 1

e−(2
√
P1y+2

√
P1
√
P2+vs[1]) + 1

(A.19)

= 2
(√

P2 −
√
P1

)
y − vs[1] + log

e2
√
P1y−2

√
P1
√
P2+vs[1] + 1

e−(2
√
P1y+2

√
P1
√
P2+vs[1]) + 1

(A.20)

We are interested in finding the mean of the above expression, i.e.

E
[
sv[2]

]
= E

[
2
(√

P2 −
√
P1

)
y − vs[1] + log

e2
√
P1y−2

√
P1
√
P2+vs[1] + 1

e−(2
√
P1y+2

√
P1
√
P2+vs[1]) + 1

]
(A.21)

= 2E
[(√

P2 −
√
P1

)
y
]
− E

[
vs[1]

]
+ E

[
log
(
e2
√
P1y−2

√
P1
√
P2+vs[1] + 1

)]
− E

[
log
(
e−(2

√
P1y+2

√
P1
√
P2+vs[1]) + 1

)]
(A.22)

As previously, for x[1] = +
√
P1 and x[2] = +

√
P2, we have

y ∼ N
(√

P2 +
√
P1, 1

)
and vs[1] ∼ N (µ, 2µ) . (A.23)

Since vs[1] and y are statistically independent, the distribution of the exponent w of the first

term is

w ∼ N (2P1 + µ, 4P1 + 2µ) . (A.24)

By applying (A.6) we get

E
[
log
(
e2
√
P2y−2

√
P1
√
P2+vs[1] + 1

)]
=

1√
π

∫ +∞

−∞
e−z

2
log
(

1 + e
√
4µ+8P1z+µ+2P1

)
dz. (A.25)

Accordingly, the distribution of the negation of the exponent w of the second term is

− w ∼ N
(

2P1 + 4
√
P1

√
P2 + µ, 4P1 + 2µ

)
. (A.26)

By applying the minus sign version of (A.6) we get

E
[
log
(
e−(2

√
P1y−2

√
P1
√
P2+vs[1]) + 1

)]
=

1√
π

∫ +∞

−∞
e−z

2
log
(

1 + e−
√
4µ+8P1z−µ−2P1−4

√
P1
√
P2

)
dz.

(A.27)

So, for user 2 the mean update rule for the (+
√
P1,+

√
P2) state nodes is the following

F
[2]
+ (µ) =

1√
π

∫ +∞

−∞
e−z

2
log

(
1 + e

√
4µ+8P1z+µ+2P1

1 + e−
√
4µ+8P1z−µ−2P1−4

√
P1
√
P2

)
dz − µ+ 2(P2 − P1). (A.28)

For x[1] = +
√
P1 and x[2] = −

√
P2, we have

y ∼ N
(√

P1 −
√
P2, 1

)
and vs[1] ∼ N (µ, 2µ) . (A.29)
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Since vs[1] and y are statistically independent, the distribution of the exponent w of the first

term is

w ∼ N
(

2P1 − 4
√
P1

√
P2 + µ, 4P1 + 2µ

)
. (A.30)

By applying the plus sign version of (A.6) we get

E
[
log
(
e2
√
P1y−2

√
P1
√
P2+vs[1] + 1

)]
=

1√
π

∫ +∞

−∞
e−z

2
log
(

1 + e
√
4µ+8P1z+µ+2P1−4

√
P1
√
P2

)
dz.

(A.31)

Accordingly, the distribution of the exponent w of the negation of the second term is

− w ∼ N (2P1 + µ, 4P1 + 2µ) . (A.32)

By applying the minus sign version of (A.6) we get

E
[
log
(
e−(2

√
P1y+vs[2]+2

√
P1
√
P2) + 1

)]
=

1√
π

∫ +∞

−∞
e−z

2
log
(

1 + e−
√
4µ+8P1z−µ−2P1

)
dz.

(A.33)

So, for user 2 the mean update rule for the (+
√
P1,−

√
P2) state nodes is the following

F
[2]
− (µ) =

1√
π

∫ +∞

−∞
e−z

2
log

(
1 + e

√
4µ+8P1z+µ+2P1−4

√
P1
√
P2

1 + e−
√
4µ+8P1z−µ−2P1

)
dz − µ− 2

(√
P2 −

√
P1

)2
.

(A.34)
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Appendix B

Derivation of I(X;M)

I(X;M) = H(X)−H(X|M) (B.1)

= 1− E
[
log2

(
1

pX|M (x|m)

)]
(B.2)

= 1−
∑
x=±1

∫ +∞

−∞
pX,M (x,m) log2

(
1

pX|M (x|m)

)
dm (B.3)

= 1−
∑
x=±1

pX(x)

∫ +∞

−∞
pM |X(m|x) log2

(
pM (m)

pM |X(m|x)PX(x)

)
dm (B.4)

= 1−
∑
x=±1

pX(x)

∫ +∞

−∞
pM |X(m|x) log2

(
1
2pM |X(m|+1) + 1

2pM |X(m|−1)

pM |X(m|x)pX(x)

)
dm (B.5)

= 1−

[
1

2

∫ +∞

−∞
pM |X(m|+1) log2

(
1
2pM |X(m|+1) + 1

2pM |X(m|−1)
1
2pM |X(m|+1)

)
dm

+
1

2

∫ +∞

−∞
pM |X(m|−1) log2

(
1
2pM |X(m|+1) + 1

2pM |X(m|−1)
1
2pM |X(m|−1)

)
dm

]
(B.6)

= 1−
[

1

2

∫ +∞

−∞
pM |X(m|+1) log2

(
pM |X(m|+1) + pM |X(m|−1)

pM |X(m|+1)

)
dm

+
1

2

∫ +∞

−∞
pM |X(−m|+1) log2

(
pM |X(−m|−1) + pM |X(−m|+1)

pM |X(−m|+1)

)
dm

]
(B.7)

= 1−
∫ +∞

−∞
pM |X(m|+1) log2

(
1 +

pM |X(m|−1)

pM |X(m|+1)

)
dm (B.8)

= 1−
∫ +∞

−∞
pM |X(m|+1) log2

(
1 +

pM |X(−m|+1)

pM |X(m|+1)

)
dm (B.9)

= 1−
∫ +∞

−∞
pM |X(m|+1) log2

(
1 + e−m

)
dm (B.10)

For steps (B.7) and (B.9), we used the fact that symmetry is preserved throughout the decoding

process, so the messages m will always have symmetric densities.
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Appendix C

Approximation for φ(x)

The following good approximation [16] can be used for φ(x)

φ(x) ≈
{

eαx
γ+β, x < 10,√

π
xe
−x

4

(
1− 20

7x

)
, x ≥ 10,

(C.1)

where α = −0.4527, β = 0.0218, and γ = 0.86. For the inverse function, φ−1(·), a lookup table

can be used.
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Figure C.1: Approximation for φ(x).
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Appendix D

Approximations for J(σ) and J−1(I)

The following good approximation [20] can be used for J(σ)

J(σ) ≈


aj1σ

3 + bj1σ
2 + cj1σ, 0 ≤ σ ≤ σ∗,

1− eaj2σ3+bj2σ
2+cj2σ+dj2 , σ∗ < σ ≤ 10,

1, σ > 10,

(D.1)

where σ∗ = 1.6363, dj2 = +0.0549608, and

aj1 = −0.0421061, aj2 = +0.00181491,

bj1 = +0.209252, bj2 = −0.142675,

cj1 = −0.00640081, cj2 = −0.0822054.

(D.2)

The following good approximation [20] can be used for J−1(I)

J−1(I) ≈
{
as1I

2 + bs1I + cs1
√
I, 0 ≤ I ≤ I∗

−as2 log2 (bs2(1− I))− cs2I, I∗ < I ≤ 1,
(D.3)

where I∗ = 0.3646, and
as1 = +1.09542, as2 = +0.706692,

bs1 = +0.214217, bs2 = +0.386013,

cs1 = +2.33727, cs2 = −1.75017.

(a) J(σ) (b) J−1(I)

Figure D.1: Approximations for J(σ) and J−1(I).
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