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Abstract

The critical need for effective processing of inference queries on massive amounts
of uncertain/probabilistic data arises naturally in numerous modern application do-
mains. At the same time, the widespread use of large-scale parallel infrastructures
(e.g., Hadoop-based clusters) has placed massive processing power at the fingertips of
users and applications around the globe, thus enabling fast data analytics over previ-
ously unimaginable volumes of real-life data. Still, due to the inherent difficulty and
complexity of probabilistic inference, the effective parallelization of such large-scale
inference queries continues to pose several difficult research challenges.

In this paper, we present BePadoop the first efficient, Hadoop-based exact infer-
ence algorithm (based on Belief Propagation (BP)) for large-scale probabilistic data
analysis. BePadoop relies on smart pre-processing of the graphical model and takes
advantage of the crucial observation that, during BP over the model’s junction tree
only a small slice of vertices are ready to send informative messages to their neigh-
bors; furthermore, these computations are independent of each other and can be effec-
tively parallelized. This also allows us to reduce the communication cost between the
Hadoop map and reduce phases. To further improve efficiency, we provide an alternate
representation for model cliques which has linear space requirements, thus drastically
reducing the size of each junction-tree vertex. Extensive experiments with BePadoop
over large probabilistic datasets have verified the effectiveness of our approach.
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Chapter 1

Introduction

Graphical models have been established as a powerful tool for a wide range of domains
that require processing of uncertain data such as medical diagnosis, natural language
processing, data mining and so forth. Inference on graphical models is an integral part
for such applications, thus a lot of effort has been put into the development of both ex-
act and approximate inference algorithms that, for example, can compute the marginal
distribution of a set of variables in a graphical model given some evidence. It has been
proven [3, 22] that both exact and approximate inference are NP-hard problems; fur-
thermore, the storage requirements for exact inference in generic graphs with cycles is
exponential. Thus, a lot of effort has been put into parallelizing graph algorithms [6, 9]
and easing the development of such algorithms. In recent years, the high availabil-
ity of processing power has given rise to Google’s MapReduce parallel programming
paradigm (introduced in [4]), which enables wider audience to develop parallel data
processing tools. As a result, machine learning, data mining [1] and approximate in-
ference [12] algorithms for large datasets are now publicly available. Additionally,
new vertex-centric paradigms have been proposed such as Pregel[19], GraphLab[17]
and PowerGraph[8], in order to simplify the development of parallel graph algorithms,
however, these models are not as widely deployed as MapReduce and work efficiently
only when the vertex function could either be factorized or is relatively small.

Belief Propagation (BP) is a widely adopted iterative message passing inference al-
gorithm, which is used in a wide variety of applications including computer vision [5],
statistical physics [24], information theory [20] and medical diagnosis. In order to
apply BP for exact inference on general graphical models, we must induce a new
acyclic hyper-graph (Junction Tree), which in most cases has larger storage require-
ments than the original graphical model. Various BP algorithms have been proposed
for exact inference on uncertain data [18, 23], but these algorithms are designed for
multicore systems with shared memory across all CPU rather than scalable cluster ar-
chitectures. In order to tackle an exact inference problem at a larger scale, in this work
we introduce BePadoop, a novel MapReduce algorithm for exact inference on massive
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1. INTRODUCTION

graphical models, that takes advantage of the parallel nature of exact inference both
structurally and computationally. We present a junction tree representation that tries to
circumvent the enormous storage requirements and, in fact, requires only linear space
requirements in terms of the original graphical model. The aforementioned represen-
tation also enables us to introduce a lazy message computation technique that reduces
the space requirements of huge messages. Additionally, through smart pre-processing,
BePadoop minimizes the number of iterations and the communication cost between
the Map and the Reduce phases.

The rest of the thesis is organized as follows. In Chapter 2, we provide background
knowledge for exact inference and the Apache Hadoop MapReduce framework and
then, we introduce and analyze our approach in chapter 3,next in chapter 4 we present
the related work and briefly discuss other frameworks, which were not chosen for
implementing our algorithm. In chapter 5 provides the experimental results and finally,
in chapter 6 we discuss future research directions and conclude this thesis.
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Chapter 2

Background

2.1 Graphical Models

Probability is a common notion in our day-to-day life, refering to the degree of confi-
dence that an event of uncertain nature will occur, such as the validation of a weather
report, and the result of rolling a dice, a football game or a medical test. The funda-
mental mathematical concept used to handle such events is that of random variables.
A random variable defines an association of the possible outcomes of each event to a
numeric value. Over the years, a large number of real-world applications have been de-
veloped to enable storing, processing and inference over a joint probability distribution
of random variables.

In general, representing a joint distribution P of a set of random variables X =
{x1, .., xn}, where each variable can take k values requires kn numbers. It becomes ap-
parent that naively generating a large table with kn values is inefficient and essentially
impossible for large k, n. However, for the vast majority of the problems at hand, each
random variable is correlated only with a small subset of random variables. Graphical
models [11, 14] are a well established tool for succintly representing joint probability
distributions over a large set of variables X = {x1, ..., xn} with limited correlations.
They have been used successfully in a wide range of domains including, computer vi-
sion, sensor networks, social networks and data integration systems. There is a large
number of different graphical models, but in most cases, a graphical model consists
of two components, a graph G(V,E) depicting the correlations between the random
variables and a set of functions over subsets of random variables called factors. In
terms of the directionality of the graph component, graphical models are divided into
two categories, directed and undirected graphical models.
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2. BACKGROUND

2.1.1 Directed Graphical Models

The class of directed graphical models, (that includes the popular Bayesian networks [10])
are used to represent causal or asymmetric interactions among a set of variables, using
a directed acyclic graph (DAG). Each node in the graph correpsonds to a random vari-
able, and for each directed edge from variable xi to variable xj , we refer to xi as parent
of xj , indicating that the value of xi directly influences xj’s possible value. In general,
variable xj can have a set of parent variables, denoted pa(xj). A factor is a conditional
probability table, that for each node xj quantifies the dependency of xj on its parents.
Consider the following example shown in Fig.2.1, where we have a simple bayesian
network for modeling whether we are going to be informed when our house’s alarm is
activated.

Figure 2.1: A simple Bayesian Network for modeling the event of one of our neighbors
calling us.

The probability distribution modelled by a directed graphical model can be factor-
ized as follows:

P (x1, .., xn) =
n∏
i=1

P (xi|pa(xi)) (2.1)

Note that in Equation 2.1, the factors associated with the graphical model are only
the conditional probability distributions over a node given its parents in the graph.
Since Bayesian networks are easy to design and interpret, they and their variants such
as Kalman filters, dynamic bayesian networks are extensively used in practice.
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2.2 Junction Tree

2.1.2 Undirected Graphical Models
Contrary to directed graphical models, undirected graphs or Markov networks are used
in problems where there is no natural directionality in the interactions between vari-
ables and the interactions are more symmetric. Some examples include the interactions
between atoms in a molecular structure, the dependencies between the values of pixels
of an image or modeling the effect of society on a an individual. The joint probability
is represented by an undirected graph, where each vertex vi corresponds to a random
variable xi and the edges capture the interactions between those variables, encoded by
factor functions1 {fi : Xi → <+|Xi ⊆ V }. Let a set of factors F over a set of variables
X = {x1, x2, ...xn}, then the joint probability is denoted by

p(X) ∝
∏
fi∈F

fi(Xi) (2.2)

An example of an undirected graphical model is shown in Fig 2.2a, which is a 3x3
grid pairwise Markov random field (MRF). Pairwise MRFs are widely used in the
computer vision domain for representing the correlation between adjacent pixels in
images. Each vertex corresponds to a random variable representing the value of the
respective pixel (black or white) and each edge to a factor depicting the interactions
between adjacent pixels. Neighboring pixels are more likely to have the same value.
Note, that contrary to the directed graphical models, the factors are not necessarily
probability distributions.

2.2 Junction Tree
In this thesis, we focus on junction trees. A junction tree is a cycle-free undirected
hyper-graph induced by a graphical model. It allows reusing work for several infer-
ence queries on the same graph. Alg. 1 shows the Hugin algorithm that is used for
creating a junction tree from a graphical model. In cases where we have a directed
graphical model we must first moralize the graph, by dropping the directionality of
the edges and connecting all parents of each vertex. The next step is to triangulate
the graph. A triangulated graph is a graph in which there is no chord-less cycle with
more than three vertices. To triangulate a graph, additional edges are added in order to
eliminate cycles of four or more vertices. Fig. 2.2b depicts one potential triangulated
graph resulting from Fig 2.2a. From the triangulated graph, we induce another graph
which is usually called clique graph2. The vertices of a clique graph are the maxi-
mal cliques of the triangulated graph for instance, in 2.2b, these maximum cliques
are: ABD,GHD,BCF, FHJ,BEHD,BEHF . Each clique Ci contains a subset

1with a lower case x we denote a random variable and with a capital X a set of random variables
2In the bibliography, a clique graph is also referred to as a cluster graph.
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2. BACKGROUND

(a) A 3x3 grid like pairwise Markov Random Field
of a 3x3 black and white image. For demonstration
purposes only, we have only included two factors
out of twelve

(b) The triangulated graph of Fig. 2.2a.
The edges, which are added due to trian-
gulation are marked with dotted lines.

Figure 2.2

of variables XCi
⊆ X and stores a factor function over these variables, called clique

potential and denoted by φCi
(XCi

). Each edge connecting two cliques Ci, Cj is asso-
ciated with a separator set Si,j = XCi

∩XCj
, which also represents the joint potential

of the separator’s variables φ(Si,j)
1. Furthermore, we assign to each edge connecting

cliques Ci, Cj a weight which is equal to the number of the common variables between
the cliques, |Ci ∩ Cj|. The final step to create a junction tree is to run a maximum-
weight spanning tree2 algorithm on the clique graph; the end product of all these five
steps is a junction tree of the original graph. After the construction of the junction

1we use φ to denote factors of the junction tree and f for factors of the original graphical model.
2A maximum-weight spanning tree can be found by running a minimum spanning tree algorithm

with negated weights.
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2.2 Junction Tree

tree, each factor of the original graphical model is assigned to one clique. Then, these
factors are multiplied to compute the value of each clique potential. Fig. 2.3 depicts
the junction tree of the 3x3 grid of Fig. 2.2a, cliques are denoted with ellipses and sep-
arator sets are marked with squares. The full joint probability distribution represented
by the original graphical model is computed by

p(X) =

∏
Ci∈C

φCi
(XCi

)∏
Si,j∈S

φ(Si,j)
(2.3)

.
By construction, a junction tree satisfies two important properties:

1. Family Preserving: each factor fi of the original graphical model must be as-
sociated with one clique Ci, such that all of the factor’s variables are present in
the clique. For example the factor of the edge AD in Fig. 2.2a can be associ-
ated only with the ABD clique, since there is no other clique that contains the
factor variables. On the other hand, the factor associated with the edge BE can
be assigned either to BEHD or BEHF. Note that, the assignment of factors af-
fects only the initial value of clique potentials and not the result of the message
passing algorithm, we present in the next section.

2. Running intersection property: If two cliques Ci, Cj contain the same variable
xi, then this variable xi must be in all cliques across the path from Ci to Cj .
Consider our exampmle, Fig. 2.3, ABD and BCF cliques have B variable in
common. So, B is present in all the cliques along the path that connects them.

These properties are very important in order to ensure that the induced junction tree
represents the original distribution, and that the marginal probabilities for each variable
present in more than one cliques agree with each other.

Algorithm 1: Hugin Algorithm for constructing a Junction Tree

Input: Graphical model g
Output: Junction Tree J

11 if g.directed then
2 g← Moralize (g)

3 g← Triangulate (g)
4 C ← FindMaximalCliques (g)
5 J ← MaximumSpanningTree (C)
6 return J
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2. BACKGROUND

BEHD BEHF

FHJ

BCFABD

GHD

HD FH

BFBD

BEH

Figure 2.3: The junction tree of the 3x3 MRF of Fig. 2.2a

Each clique/separator contains a subset of variables , whose joint potential is ex-
ponential in the number of states of a variable, thus in the worst case where all variables
are present in one vertex,1 the space complexity of a junction tree isO(max(dom(xi)

N),
where N is the total number of variables and dom(x) the domain of a variable x.

2.3 Belief Propagation
Given a graphical model, the most fundamental task is computing the marginal dis-
tribution of a set of graphical model’s variables. This task is usually referred to as
inference. Belief Propagation (BP) is a widely used message passing algorithm for
inference on graphical models. Vertices send messages to their neighboring vertices.
These messages encode the “belief” of the vertex about the marginal distribution of
their common variables. A vertex vi sends a message mi→j to a vertex vj by mul-
tiplying its own potential φi(XCi

) with all the incoming messages from its neighbors
except for the one coming from vj and then calculates the marginal distribution of their
common variables Si,j as shown in the equation below.

mi→j(Si,j) =
∑

XCi
\Si,j

φi(XCi
)
∏

k∈N(i)\j

mk→i(Sk,i) (2.4)

where N(i) denotes the neighbors of vertex i and Sk,i denotes the common variables
(i.e. the separator set) between two vertices vi, vk. As an example, Fig. 2.4 denotes
how the message from the vertex vBEHD to vBEHF is computed. Note that in Eq. 2.4,
messages are multi-dimensional arrays, and, as a result, the product is a point-wise
operation between tables of different sizes. A point-wise product (division) is obtained

1From this point the terms clique and vertex will be used interchangeably
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2.3 Belief Propagation

by multiplying (dividing) the outputs of two functions at each combination of common
domain values. A full example is shown in Fig 3.5, where three factors are multiplied
(A,AD,AB) to create ABD. For general graphs, BP is an approximate inference al-
gorithm that terminates when a convergence condition is satisfied. For example, the
difference between all the messages of two consecutive iterations is less than a user
defined value. An exact BP algorithm that follows the message passing protocol termi-
nates when all the vertices have produced all their messages. After BP terminates, we
can compute the marginal distribution of a variable xi by choosing a clique Cj which
contains xi and multiplying all the incoming messages with the initial distribution of
the clique and then summing out all the variables but xi as shown below:

belief(xi) =
∑

XCj
\xi

φj(XCj
)
∏

k∈N(j)

mk→j(Sk,j) (2.5)

Pearl [21] showed that if the graph has cycles then there are few convergence guar-
antees and in some practical cases BP may not converge at all. On the other hand,
when BP is employed on acyclic structures such as junction trees, is guaranteed to
compute exact marginals. Unfortunately, the computational complexity of exact infer-
ence is proven to be exponential in the size of the largest clique, which grows quickly
in loopy models with many variables. Thus, a lot of work has been put into devising
good approximate schemes [2, 7].

2.3.1 Message Passing Protocol
Most of the exact inference algorithms on junction trees respect the message passing
protocol, which decides when a given clique is allowed to pass a message to one of its
neighbors.

BP message passing protocol A clique can send a message to a neighboring clique
only when it has received messages from all of its other neighbors

A belief propagation algorithm that respects the above message passing protocol
is an iterative task, which sends the minimum number of messages for the conver-
gence of BP. When used on junction trees, BP results in a procedure that starts from
the leaves of the tree and propagates information up to the root vertex, which is an
arbitrary vertex chosen at the beginning. When all the information reaches the root,
the reverse procedure is initiated, so messages flow from the root down to the leaf ver-
tices. The upward procedure is usually referred to as forward pass and the latter as
backward pass. During the forward pass, each vertex vi sends only one message after
receiving deg(vi) − 1 messages, where deg(vi) = |N(vi)|. On the other hand, during
the backward pass each vertex receives the reverse message that it produced during the
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2. BACKGROUND

Figure 2.4: Message mBEHD→BEHF produced by multiplying clique’s distribu-
tion table φBEHD(XCBEHD

) with incoming messages tables mABD→BEHD(BD),
mGHD→BEHD(HD).

forward pass, and, as a result, each vertex has all the required messages to broadcast its
remaining messages to its neighbors. The message passing protocol has great impact
on parallel BP algorithms because it implies a structural parallelization which can be
exploited when running BP on junction trees. Additionally, by following the protocol,
we can guarantee that there are no redundant message computations in our algorithm,
since each vertex produces only one message for each of its edges.

2.4 Hadoop

Hadoop is a software framework that supports data-intensive distributed applications.
Hadoop was inspired by Google’s MapReduce framework [4] designed for batch pro-
cessing large amounts of data. Over the last couple of years a lot of applications have
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been developed and a wide variety of algorithms have been parallelized and imple-
mented in Hadoop’s setting.

MapReduce is a simple programming model composed by two stages, Map and
Reduce. A high level overview of the workflow is shown in Fig 2.5. During the map
phase, the input is split and each split is assigned to one Mapper. Each split is read as
series of key/value pairs and each pair is given to the Mappers as input. Mappers pro-
cess those pairs and output other key/value pairs themselves. Those pairs are then shuf-
fled and distributed to the reducers. Before the reduce phase takes place, all key/value
pairs are sorted by key and all the values with the same key are grouped together in a
list. Reducers take as input and process a key/list of values pair and output key/value
pairs. Note that each mapper/reducer is independent of all other mappers/reducers,
so they all can be run in parallel. On the other hand, there is a strict synchronization
barrier between the Map and Reduce stages.

Hadoop MapReduce provides programmers with high throughput, distributed filesys-
tem (HDFS) and fault tolerance services. When a mapper or reducer fails, Hadoop
automatically restarts it to another machine.

Despite the simple programming model and the benefits provided by Hadoop MapRe-
duce there are a lot of challenges when developing a MapReduce algorithm. There are
algorithms, for which an efficient port to the MapReduce paradigm is a non-trivial
task. An indicative example is some graph algorithms, which require a large number
of iterations accessing only a small portion of the graph. In such cases, Hadoop is not
the ideal framework to work with. Furthermore, the data shuffling cost (network com-
munication) between mappers and reducers is often the bottleneck in Hadoop MapRe-
duce. Generally, large network data transfers are slow even between machines that are
on the same high speed local network; thus, an iterative algorithm that unnecessarily
processes the full input in each iteration can be adversely affected by communication
cost.
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2. BACKGROUND

Figure 2.5: Workflow of Hadoop MapReduce
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Chapter 3

BePadoop

In this chapter we present our algorithm, BePadoop, an efficient MapReduce algorithm
for exact inference on large junction trees. In order to reduce the intermediate data be-
tween the Map and Reduce phases, BePadoop takes advantage of a direct corollary of
the Message Passing Protocol, namely that each vertex and each message is used only
twice; once during the forward pass and once during the backward pass. BePadoop
employs a ranking algorithm that ranks vertices according to the iteration vertices are
ready to send at least one message. As a result, given an iteration k BePadoop reads
only the vertex information required for that specific iteration. Moreover, to address
the exponential space requirements we introduce a new clique representation that has
linear space requirements in the factors assigned to each clique, in addition to a lazy
way for computing messages.

Apart from the space requirements of our problem, computational complexity is
another difficult problem that we must address. During an iteration, if there is a clique
that requires processing time significantly greater than the rest, then this clique will
dominate the time of that iteration. In order to process such huge cliques efficiently,
BePadoop effectively parallelizes their computation.

In the rest of this chapter, we first discuss the pre-processing steps we employ in
order to reduce communication cost. Then, we present the alternative representation
for the clique potential tables, which does not suffer from the aforementioned expo-
nential space requirements, followed by the introduction of a simple lazy computation
approach for message computation. Finally, we introduce our initialization procedure
and the two MapReduce jobs used by the BePadoop algorithm.

3.1 Ranking

BePadoop follows the message passing protocol, as a consequence, each vertex is used
exactly twice, once during the forward pass and another during the backward pass.
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3. BEPADOOP

The BePadoop Ranking procedure computes iterations of our algorithm at which each
vertex is used to produce messages. It is composed of two procedures - the forward and
backward ranking. Forward Ranking is a bottom up procedure starting from the leaf
vertices, which have forward rank equal to one. We rank vertex vi after deg(vi) − 1
of its neighbors have been forward ranked. So, the forward rank of vi, fw(vi), is
calculated by:

fw(vi) = max
vj∈N(vi)\unrankedneighbor

fw(vj) + 1

The procedure stops when all vertices have been forward ranked. Fig. 3.1a shows the
junction tree of Fig. 2.3 fully ranked. During the first iteration of the forward rank, we
assign forward rank equal to 1 to the leaf vertices. Then, we can forward rank the two
remaining junction tree vertices (BDEH,BEHF) with rank 2. These two vertices are
the root vertices of our junction tree; note that, in general a tree can have either one or
two roots. Now, we can start the backward rank of the junction tree. Contrary to the
forward rank, the backward rank is defined by a breadth first procedure starting from
the root vertices and going downwards to the leaf vertices. Let us give a more formal
definition of the forward and backward rank. We define the following quantities:

Definition 1 The eccentricity e(vi) of a vertex vi is the maximum distance from vi
to any other vertex. If the graph is a tree, then the eccentricity of a vertex vi is the
maximum distance of vi from any leaf node.

Definition 2 The ancestor of vi ancs(vi) is the neighbor of vi with maximum eccen-
tricity. ansc(vi) = arg maxvj∈N(vi)

e(vj)

Definition 3 The forward rank fw(vi) of a vertex vi is equal to fw(vi) =
max

vj∈N(vi)\ancs(vi)
e(vj) + 1. All leaf nodes vleaf have fw(vleaf ) = 1.

Definition 4 The backward rank bw(vi) of a vertex vi is equal to bw(vi) = bw(ancs(vi))+
1. When vi is the only root then the bw(vi) = fw(vi). In case the junction tree has
two roots, they are the ancestor of each other, as a consequence, the backward rank of
each root is equal to bw(vroots) = fw(vroots) + 1.

In practice, the forward rank of a vertex vi is the minimum iteration, that vi is ready
to send its first message. Similarly, backward rank is the minimum iteration, that vi can
send its remaining deg(vi) − 1 messages. One the greatest advantages of Ranking is
that it provides us with sets of vertices that can be processed in parallel. This is shown
by the following theorem:

Theorem 1 All vertices with the same forward (backward) rank fr (br) can be pro-
cessed in parallel as the computations for their outgoing message(s) produced during
rank fr (br) are independent of each other.
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Figure 3.1: On top, the fully ranked junction tree of 2.3 and below the forward and
backward pass iterations, when we choose as root a leaf node

Proof of theorem 1 We will prove the theorem for vertices with equal forward
ranks, but the same holds for the vertices with equal backward ranks. Suppose we
are at iteration k and there are two vertices vi, vj which have the same forward rank,
fw(vi) = fw(vj) = k,so they are ready to send one message. We are going to prove
that the only message each vertex vi, vj can produce is along the path that connects
them. Additionally, the computations for producing these messages are independent
of each other.

Since our graph is a tree, then there is a unique path between every pair of vertices.
Let p = 〈vi, vx, ..., vy, vj〉 be the unique path between vi and vj . We must first prove
that at kth iteration there has not been any messages produced along p, thus the only
message that vi and vj can produce is along the path that connects them. Since, we
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are at iteration k, vi, vj received deg(vi) − 1, deg(vj) − 1 messages respectively and
they are ready to send one message each. Any vertex v can send its first message af-
ter it has received deg(v) − 1 messages. Additionally, any intermediate vertex along
p has degree at least two, thus either vi or vj must first send a message for interme-
diate vertices to be ready for producing messages. As a result, the forward rank for
intermediate vertices along p is greater than the forward rank of both ends as shown
in Fig 3.2. Moreover, being at iteration k means that vj ,vi have received all their mes-
sages but one, specifically the one that will pass through p. Consequently,both vertices
can send one outgoing message each along p (mi→x,mj→y), but the computations for
those messages are independent from Eq. 2.4. Now, we must prove that vi, vj cannot
produce any other message during the given iteration to ensure that the computations
that will take place in vi and vj are independent. We follow the message passing pro-
tocol, thus only the messages along the edges 〈vi, vx〉,〈vj, vy〉 can be computed, since
all the other messages are dependent on messages that have not yet been produced. As
a consequence, we have that vi, vj can produce only the messages along p. Moreover,
the computations for those messages are independent of each other, because they are
not dependent on any message along path p. �

Figure 3.2: Two vertices vi, vj with equal rank k

Ranking identifies independent sets of vertices, thus, we can create for each rank
files that contain those independent sets in order to read in only the active portion of the
tree at a given iteration. Apart from vertices, we can extend a similar idea to messages,
as they are also used only twice in BP. As a result, by knowing both the forward
and backward ranks for each vertex, we can easily determine at which iterations each
message is used. Thus, we can further reduce the input of each iteration by storing
messages to files according to the ranks that are going to be used in a similar way
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as vertices. In simple words, ranking pre-computes all the required information for
each iteration. One side note: vertices with equal forward ranks do not necessarily
mean they will have equal backward ranks, so we duplicate vertex information into
their respective rank files during BePadoop’s initialization. Thus, we only read in
the necessary vertices at a given iteration in order to produce new messages, but we
never update them. Messages, in the same manner as vertices, are also duplicated into
files when they are produced, however they too do not need to be updated after their
generation.

Forward/Backward ranking a junction tree not only helps minimize the input of
each iteration, i.e., the amount of exchanged data, but also minimizes the number of
iterations required by our algorithm. The number of iterations in belief propagation
on junction trees is dependent on the choice of root, thus we must carefully choose the
vertex that will act as root. Since the forward and backward pass have equal numbers
of iterations, if we minimize the iterations for the former we also minimize iterations
needed by the latter. Intuitively, vertices that have the minimum eccentricity in the tree
are the best candidates for roots, and, there can be either one vertex or two vertices with
that property. Fortunately, it is not difficult to prove that forward ranking identifies the
vertices with the minimum eccentricity, thereby explicitly finding the optimal choice
of vertices to be used as roots. As a result, by choosing those vertices we minimize the
number of BePadoop’s iterations, in order for information to flow from leaf vertices
to the root and backwards. Fig 3.1b shows the number of iterations when a random
root is chosen, where the total number of iterations will be 6 compared to the optimal
3 iterations required by BePadoop.

3.2 Outlier Cliques

When processing vertices of a given rank there might be some cliques which require
significantly more time to be processed than the rest. This is usually the case either
because those cliques are bigger in size or have larger degree. Having a way to sys-
tematically identify these cliques is important, because we can then parallelize their
processing in order to handle them efficiently. Using Eq. 2.4,we can calculate the re-
quired number of multiplications and summations for computing an outgoing message.
As a result, we define the computation cost for processing clique Cj at rank r, denoted
by κrj , as the total number of operations required by the computation of all outgoing
messages of Cj at r. Assuming the cost distribution for each rank is Gaussian, we
introduce the notion of outlier cliques, which are all cliques that satisfy the following
conditions:

1. κrj ≥ µr + 2σr, where µr denotes the mean clique computation cost for rank r
and σr the standard deviation of the cost distribution at r and,
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2.
κrj−µr
µr
≥ p%, where p is a user defined threshold.

The assumption that cost distribution is a Gaussian coupled with our first condi-
tion limit the percent of outlier cliques to approximately 2% of all the rank’s vertices.
Moreover, we use the latter condition to filter cases where the relative difference be-
tween a possible outlier clique and the mean cost is not large enough to require special
handling. The percent value of p can be defined by the user with 100% as default value.
Our approach for characterizing outlier cliques is much better than using an arbitrary
static threshold because this requires from the user to have in-depth knowledge of the
dataset or the problem at hand, which in most cases is neither desirable nor feasible. It
is clear that identifying outlier cliques requires basic statistics of the cost distribution
for each rank. This data is extracted during the initialization of BePadoop.

3.3 Clique Representation
A factor fj(Xj) is a function that depicts the correlations between a set of variables
Xj . We represent a factor fj(Xj) with two components: a variable vector Vfj , which
contains the variables that are present in the factor and a table Tfj with the function’s
output values. Each clique Ci in a junction tree must capture the joint potential over a
subset XCi

⊂ X from the variables of the original graphical model. Naturally, in order
to represent φi(XCi

)1, we use the same representation as factors, namely a a variable
vector VXCi

and a table TXCi
, which captures the correlations between the variables

of XCi
. It is easy to see that the required space to represent any factor fj is equal to

the product of the variables’ domain sizes |fj(Xj)| =
∏

xi∈Xj
dom(xi). As a result,

both factors and cliques have exponential space complexity in the domain size of their
variables but, in most cases, factors are orders of magnitude smaller, because they
represent correlations on much smaller variable sets than cliques. Here, we propose an
alternative representation, which has linear space complexity in the number of factors
assigned to each clique.

During the construction of the junction tree, each factor fj from the original graph-
ical model is assigned to only one clique Ci. Let f (i)

j be the a factor fj that has
been assigned to Ci and Fi the set of all the factors assigned to Ci. The Clique’s
potential φi(XCi

) is computed by the point-wise product of the factors in Fi, i.e.,
φi(XCi

) =
∏

Fi
f
(i)
j . Instead of generating φi(XCi

) at initialization, we propose to
calculate on the fly the required values from the factor set Fi assigned to Ci. This
approach enables us to represent junction trees that would be otherwise impossible,
due to the size of the clique’s potential. Naturally, this comes with a price; there is an
increase in the computational cost since we calculate the point-wise product of Fi for

1Note that we use φi to denote the joint potential in a clique Ci and fj to denote a factor from the
original graphical model
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each value in φi(XCi
) on the fly. On the other hand, this is a price we gladly pay in

order to be able to process large graphical models, which induce junction trees with
huge cliques. Later, when we discuss the complexity of our approach, we will show
that this increase in computational cost is not an issue for our problem.

Let us go back and discuss a case of the point-wise multiplication where the two
tables are of different size; when the set of variables present in the smaller table Ts
is subset of the set of variables in the larger table Tl, then each value of Tl maps to
exactly one value of Ts. We denote as MTl

Ts
a mapping function for each potential value

of Tl to one value in Ts. When computing φi(XCi
) from Fi, we need such a mapping

function M
φi(XCi

)

f
(i)
j

, as the clique potential is a superset of all the assigned factors of the

original model. This is a consequence of the family preserving property of junction
trees, because if a factor fj(Xfj) is assigned to a clique Ci, then Xfj must be a subset

of XCi
. Thus, in order to represent φi(XCi

) we must create one mapping M
φi(XCi

)

f
(i)
j

for

each factor fj(Xfj) assigned to Ci that maps each value of φi(XCi
) to one value of fj .

Fig. 3.3 denotes how the potential of CABD from Fig. 3.5 is represented by the
three factors assigned to that clique. Fig. 3.3 shows also an example of computing the
value of a single index. The index is given as input to the mapping components which
map that index to an index in the factors (cells colored in light gray), then, we take the
product of those values and calculate the requested value.

We are now ready to introduce the mapping component called index-mapper,which
takes as input an index for a value of the larger table (φi(XCi

)) and returns the mapped
index of the smaller table (f (i)

j ). Before we give a detailed description of how an
index-mapper works, we describe the general idea behind it. In our example Fig. 3.3,
we observe that D changes its value in every row of the table ABD in ascending order
(D0, D1, D2). Then B changes its value every dom(D) values and A every dom(B) ∗
dom(D) values. We refer to this quantity as the stride of a variable xi in the table
Tφi of potential φi(XCi

), strd(T xiφi ). In our example we have that strd(TDCABD
) = 1 ,

strd(TBCABD
) = 3 and strd(TACABD

) = 9. Moreover, each variable has a certain number
of rows needed for a full iteration over its values, which is equal to the product of the
domain size of the variable and its stride. In the example shown in Fig. 3.3, we have
that the variable D needs 3 rows, B needs 9 and finally A requires 18 rows.

We claim that, given an index and a potential φi(XCi
), the following equation

computes the index (value) of a variable in a table.

val(φi(XCi
), xi, index) =

⌊
(index mod (dom(xi) ∗ strd(T xiφi )))

strd(T xiφi )

⌋
(3.1)

In Eq. 3.1 the nominator limits the possible values to the number of rows needed by xi
for a full iteration and by dividing with the stride of the variable we get the index of xi’s
value at that specific index of table Tφi(XCi

). To continue, in our example of Fig. 3.3,
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Figure 3.3: BePadoop’s clique representation. We represent clique’s factorCABD using
the three assigned factors(fAD, fA, fAB) and the respective mappings (MφABD(ABD)

fAD
,

M
φABD(ABD)
fA

, MφABD(ABD)
fAB

). The Cells in light gray show the example for computing
the value at index 5.

let us compute the values of A,B,D variables in φCABD for index 5 using Eq. 3.1:
For A we have:

val(φCABD
, A, 5) =

⌊
(5 mod (dom(A) ∗ strd(TAφCABD

)))

strd(TAφCABD
)

⌋
⇒

val(φCABD
, A, 5) =

⌊
(5 mod (2 ∗ 6))

6

⌋
⇒

val(φCABD
, A, 5) =

⌊
5

6

⌋
= 0

For B:

val(φCABD
, B, 5) =

⌊
(5 mod (dom(B) ∗ strd(TBφCABD

)))

strd(TBφCABD
)

⌋
⇒

val(φCABD
, B, 5) =

⌊
(5 mod (2 ∗ 3))

3

⌋
⇒

val(φCABD
, B, 5) =

⌊
5

3

⌋
= 1
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and, finally for D:

val(φCABD
, D, 5) =

⌊
(5 mod (dom(D) ∗ strd(TDφCABD

)))

strd(TDφCABD
)

⌋
⇒

val(φCABD
, D, 5) =

⌊
(5 mod (3 ∗ 1))

1

⌋
⇒

val(φCABD
, D, 5) =

⌊
2

1

⌋
= 2

Index-mappers in order to be able to compute the mapping of one index from the
clique factor φi(XCi

) to an index of factor fj , must also calculate the strides of each
variable in fj .The following equation is used by index-mappers to compute the mapped
index, mindx

fj
, in the factor fj given an index of a clique’s factor (φi):

mindex
fj

=
∑
xl∈Xfj

val(φi(XCi
), xl, index) ∗ strd(T xlfj ) (3.2)

To conclude our example of Fig 3.3, the index-mapper of factor fAD(AD) for the given
index, 5, computes:

m5
fAD

= val(φCABD
, A, 5) ∗ strd(TAfAD

) + val(φCABD
, D, 5) ∗ strd(TDfAD

)⇒
m5
fAD

= 0 ∗ 3 + 2 ∗ 1 = 2

In the same manner, we compute 0 as mapped index for fA(A) and 1 for factor
fAB(AB). At the beginning of index-mapper’s initialization, for each variable xl
present in the destination factor fj we pre-compute the stride of xl both in the clique’s
factor φi and in fj . Then, when we want to compute an index in fj , we use these
quantities and Eq. 3.2 to compute the required index. Of course, we use our clique
representation only when the required space is less than the naive approach. The space
complexity of an index mapper for a clique Ci and a destination factor fj is linear in
the number of variables of fj , as we keep three numbers for each variable xl ∈ Xfj .
The computational complexity of computing one mapped index is O(|Xfj |) and the
computational complexity of the initialization of an index-mapper is O(|XCi

|), since
computing a variable’s stride requires the product over the variables’ domain size with
greater index.

To conclude, let us discuss the advantages of our proposal. Fig. 3.4 shows the
space requirements of the naive approach, namely generating all clique’s potentials,
compared to our approach using index-mappers. We use almost half the space of the
naive approach for this small junction tree. In general, in order to represent a junction
tree (omitting the messages), we need space to store all the factors from the original
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Figure 3.4: The junction tree with the space requirements for both approaches: naive
and BePadoop(BPP). Each table is divided into three parts: the leftmost contains the
factors that have been assigned to this clique, in the middle there is the naive approach
and the rightmost section is the space requirements of the representation proposed by
BePadoop.

graphical model plus one index mapper for each factor, thus the overall space require-
ments for representing a junction tree are linear in the factors of the original graphical
model and the total number of factors variables, since each index-mapper keeps three
integers for each variable in a factor. Let F be all the factors in the original graphical
model, |fj| the size of factor fj and |Xfj | the number of variables in factor fj , then the
total space requirements of our represnetation is O(

∑
fj∈F |fj| +

∑
fj∈F |Xfj |). On

the other hand, we increase the computational complexity, but this does not affect the
dominant factor in the computational complexity of our problem. Normally, in order
to compute an outgoing message for a clique vi we do deg(vi) multiplications for each
value in φi(XCi

). The total number of values in a clique Ci is
∏

xl∈XCi
dom(xl), so

the overall complexity is O(|deg(vi)| ∗
∏

xl∈XCi
dom(xl)). By using our approach, we

must calculate on-the-fly each value, which we showed above that for each factor is
done inO(|Xfj |), as a result we have that to compute a single value of φi(XCi

) we need
O(
∑

fj∈Fi
|Xfj | operations. However, this may increase the overall complexity but the

main source of the high computational cost remains the
∏

xl∈XCi
dom(xl) factor for

large cliques.
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3.4 Lazy Computed Messages
Messages convey information about the joint distribution of common variables be-
tween two cliques,and, as a consequence, messages have also exponential space re-
quirements. Large cliques tend to have large messages, thus even though our alterna-
tive clique representation enable us to represent large cliques, message size remains a
significant problem. Our alternative representation gives us the opportunity to use a
similar idea during message computation in order to save space. In general, a message
is smaller in terms of size than a clique, but by using our clique representation this may
no longer be the case. Instead of computing and generating the complex message dis-
tribution, we could transfer all the information (clique’s potential and messages) that
generate the message and again calculate the required values on-the-fly. Obviously,
this representation cannot be used with all messages, thus we use it only when the
message size is larger than the information that is involved in the computations. We
define a message mi→j from a vertex vi to a vertex vj as a lazy computed message iff
it satisfies the following condition:∑

k∈N(i)\j

|mk→i(Sk,i)|real + |φi(XCi
)|real < |mi→j(Si,j)| (3.3)

where N(i) are the neighbors of the vertex vi. We should point out that on the
right side of the inequality we use the theoretical size of the message, which is equal
to
∏

xl∈Si,j
dom(xl), where Si,j are the variables present in message mi→j . On the

other hand, on the left side of the inequality we use the actual representation size i.e.
the actual size needed to represent clique potential and messages. Note that some
incoming messages may be lazily computed, and cliques can be represented through
the model factors.

In order to understand how we compute a message value on-the-fly, let us give some
useful insights on point-wise multiplication. Fig 3.5 depicts a point-wise multiplication
of three tables A,AB,AD. One value index from ABD matches to exactly one (index)
of the smaller tables (striped cells). On the other hand, one cell of the smaller table
maps to several values of the bigger table (light gray cells). Thus, we introduce a
new component, called index mapper iterator, that maps message indices to the set of
indices in the clique potential to enable the efficient to enable the efficient computation
of clique output messages.

The best way to demonstrate the internals of an index-mapper iterator is by a simple
example. In Fig 3.5, let ABD be the clique and the smaller tables to be its messages.
Additionally, AD is a lazily computed message and we want to compute the value at
index 3 ({A1, D0}). The values that {A1, D0} maps are {A1, B0, D0}, {A1, B1, D0},
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Figure 3.5: Point-wise multiplication between three factors A,AB,AD , which result in
the ABD).

{A1, B2, D0}. We observe that the common variables (A,D) are fixed to the values
dictated by the message index, while the remaining “free” variables (B) take all the
values of their domain. We iterate over the set of matching indices by finding the
first matching index and then systematically computing the next in order index. Using
Eq. 3.1, we can compute the index of each variable for the given index, i.e., A1, D0.
Then, in order to compute the first matching index we multiply each variable value with
its respective stride in the clique potential and sum those values. In our example, the
stride of A is 9, D’s 1 and B’s 3, so the first matching index is equal to 1∗9+0∗1 = 9,
which is the index of {A1, B0, D0}. The next value in order is {A1, B1, D0}. The value
can be computed by adding to the first matching index the result of the multiplication
of B’s value and its stride (9+1∗3 = 12). Fig 3.6 shows how the index mapper iterator
works for our example.

More formally, consider a clique Ci with variablesXCi
, a lazily computed message

mi→j of Ci with variables Si,j ⊂ XCi
, an index nmi→j

of mi→j and the index mapper
iterator that generates the set of indicesNCi

mi→j
ofCi given the nmi→j

. LetU = XCi
\Si,j

denote the set of “free” variables. We find the first matching index by decoding the
common variables and summing the result of the multiplication of the decoded variable
values for the nmi→j

with their respective strides in φCi
. Using a vector Vu, which tracks

the current values of the variables in U , we iterate over all the possible U ’s values and
for each such value, we carry out the same process as for the first matching index and
the result is added to the first matching index. In this moment we generate all the∏

u∈U dom(u) matching indices and their corresponding contributions to mi→j . Since
we use the strides of the clique’s variables and the vector Vu which, in worst case, is
in the same order as the number of clique variables, the space complexity is O(|XCi

|).
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Finally, the computational complexity for generating one index is linear in the number
of variables in U but, of course, the overall complexity for generating the NCi

mi→j
is

O(
∏

u∈U dom(u)).

Figure 3.6: Calculating the set of indexes that map to A1, D0. The vector with the
set of “free” variables in the clique takes all the possible values, which are decoded to
values multiplied by their stride and then added to the first matching index to compute
one index in the result set.

3.5 Belief Propagation in Hadoop

BePadoop is an efficient algorithm for exact belief propagation on Hadoop, which uses
two MapReduce jobs in parallel. By Theorem 1, vertices with equal rank can be pro-
cessed independently of each other. As a result, we can structurally parallelize BP
by splitting each set of vertices belonging to the same rank into independent subsets
(structural parallelization). Moreover, we can parallelize the computations for pro-
ducing the outgoing messages for each clique by dividing the clique potential into
smaller parts and calculating parts of the outgoing message in parallel (computation
parallelization). Then, by merging the partial results, we can compute the final out-
going message. Both types of parallelization have benefits for certain scenarios, thus
BePadoop uses a hybrid solution, where both techniques are exploited.

Structural parallelization is implemented by the Message Computation (MC) job
and message computation parallelization is implemented by the Parallel Message Com-
putation (PMComp) job. Note that PMComp is employed only on outlier cliques. In
Fig. 3.7, a high level overview of BePadoop is shown: We start by processing all the
vertices with rank 1 (leaf vertices). During each iteration we use MC to compute all
BP messages of that rank. At the same time, all outlier cliques ( which were detected
during the initialization ), are processed by PMComp. Finally, after we have processed
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all the ranks, we construct the calibrated junction tree and we are ready to answer prob-
abilistic queries. In the rest of this chapter, we discuss the initialization of BePadoop
followed by the presentation of the two MapReduce jobs .

3.6 BePadoop Initialization
Initialization is an integral part of BePadoop, since it is responsible for the pre-processing
of the junction tree. All the steps shown in Alg. 2 are implemented using MapReduce
jobs. We proceed by extracting the graph of the junction tree, and then ranking the
junction tree both forward and backward lines (1-5). Then, we split the junction tree
by rank and we partition each rank into K partitions. Each vertex vi is assigned to
partition kl according to the following formula: kl = HashKey(vi.rank + vi.id) mod
K. The Hashkey is produced using the md5 cpyptographic hash function. Partitioning
is important in order to better utilize cluster resources. Each partition is stored in a
separate file. Moreover, as we compute the partitions we keep some statistics (average
partition workload, total rank workload and average vertex workload), that will be used
to find outlier cliques. The last step before the main phase of BePadoop intialiazation
is one MapReduce job which detects outlier cliques and separates them from the rest
cliques of the partition to be processed differently. The FindOutlierCliques job (line
7) reads each partition and uses the statistics produced by the previous job to decide
whether a clique can be characterized as outlier. An important sidenote is that there
are cases when the partitions are not balanced in terms of computational cost. To deal
with such scenarios, we extend the notion of outlier cliques: If adding a clique Ci to
a partition kl results in exceeding the average partition workload, then Ci is character-
ized as outlier. As a result, in the end of the initialization we have split the junction
tree by rank and each rank is partitioned and stored in separate files. Moreover, these
partitions are further divided into two parts, one that will be processed by the MC job
and another that will provide the input of the PMComp job. We are now ready to get
into the two main BePadoop MapReduce Jobs.

3.6.1 Message Computation Job (MC)
Message Computation exploits Theorem 1 and processes independently vertices of the
same rank. At iteration i, MC reads all the vertices with rank equal to i and the respec-
tive incoming messages. During the map phase, we compute the outgoing messages of
each vertex and output them to reducers with a composite key. The key is composed
of a MD5 key, which is generated in the same way as for the vertices, together with
the rank and the id of the destination vertex. We use the MD5 key to store the message
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Algorithm 2: BePadoop Initialization
Input: Graphical model g
Output: Fully Ranked Graphical Model Splitted by rank

1 gl ← ExtractGraph (g);
2 gl ← ForwardRank (gl);
3 roots[]← FindRoots (gl);
4 gl ← BackwardRank (gl, roots);
5 gup ← UpdateGraphModel (gl, g);
6 splits[]← SplitIntoPartsByRank (gup);
7 mcPartitions, outlierPartitions← FindOutlierCliques (gup);
8 return splits ;

for the appropriate partition. Furthermore, we use rank and vertex id to totally order
messages, since we need the messages to be sorted by vertex id when stored to exploit
a similar idea as in the sort-merge goin algorithm. We provide more details on this in
the next paragraph.

Each reducer takes as input lists of messages, destined for the same partition, or-
dered by both the rank and id of the destination vertex. Reducers pack messages with
the same destination id and rank into an array and append those arrays into the respec-
tive message file. We need messages to be sorted, because we want to exploit the fact
that partition files are already sorted by vertex id (a byproduct of the initialization pro-
cedure). Thus, we can exploit a similar idea as in the sort-merge join algorithm, where
both relations are sorted by the join attribute prior the join phase, so that interleaved
linear scans will encounter joinable sets of tuples at the same time. That is also the case
in our problem, since partition files are sorted by vertex id and we ensure that message
files are also sorted by the destination vertex id. We can exploit the same idea in order
to read both the partition vertex file and the respective message files only once during
a given iteration.

In Alg. 3 the pseudo-code for the map function of each mapper task is shown. First,
the mapper reads the messages for the vertex vi (line 1). Next it initializes the outgoing
messages. Since we must iterate through all the possible values of the clique potential,
we need an efficient way to determine for each value (index) of the clique potential
the respective value (index) of each incoming and outgoing message. This is achieved
through the aforementioned index-mapper components, which are initialized for both
incoming and outgoing message in lines (2-4). In line 5, we find all the lazy computed
outgoing messages. Then, the calculation of the outgoing messages is initiated. We it-
erate over all possible values of the clique potential and multiply each clique value with
the respective values of all incoming messages. After we have calculated the point-
wise product for a certain index of the clique distribution, we add the result (line 12)
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Figure 3.7: High level overview of BePadoop BP. At each iteration we use two jobs
in parallel (MC,PMComp) to compute outgoing messages until we have processed
vertices with maximum ranks.

to all outgoing messages. Notice that during the backward rank, to produce the correct
message values, which are in accordance with Eq. 2.4, we must divide the value that
we add to each outgoing message with the appropriate value of the incoming message,
which has been produced during the forward pass along the same edge. Consider the
junction tree in Fig. 3.1a during the forward passCBDEH received two messages one
fromCABD and another fromCGHD. During the backward pass, when we calculate the
messagesmBDEH→ABD andmBDEH→GHD, we must divide with the appropriate values
of the two incoming messages produced during the forward rank namely,mABD→BDEH
andmGHD→BDEH . Before we output the messages (lines 18, 19), we generate the two
appropriate composite keys shown in lines 14 - 17.

Alg. 4 shows the reducer of the MC job. Each reducer uses an array to store mes-
sages with the same destination id and a variable to keep track of the current output
rank. As long as the messages have the same destination rank and vertex id, we add
them to the aforementioned array (line 29). If we encounter a message with different
destination vertex id, we flush the array to a file (lines 23 - 27). Lines 12 - 19 denote
that if we encounter a message with different destination rank, we flush the remaining
messages if they have not already been flushed and we create a new file for that rank.

3.6.2 Parallel Message Computation (PMComp)

MC utilizes cluster resources efficiently if all cliques have almost equal size but, when
outlier cliques exist, MC will be significantly slowed down as the time to process those
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Algorithm 3: Map function of the Mapper of MC Job. This function is executed
until the whole Mapper’s input is consumed

Input: rank r,partitionNumber p ,vertex vi
Output: Outgoing messages

1 vertex, incomingMsgs←ReadMessages (r, p, vi.id) ;
2 outgoingMsgs← InitializeOutgoingMessages () ;
3 inMsgmaps← InitializeIndexMappers (clique, incomingMsgs) ;
4 outMsgmaps← InitializeIndexMappers (clique, outgoingMsgs) ;
5 lazymsg ← FindLazyComputedMessages (outgoingMsgs,vertex) ;
6 for i = 0...Clique.factor.size do
7 tmpvalue← 1 ;
8 for msgindex = 0...incomingsMsgs.length do
9 tmpvalue *= incomingMsgs[msgindex] .

getValueByIndex(inMsgmaps[msgindex][i]) ;

10 for msgindex = 0...outgoingMsgs.length do
11 updateV alue← tmpvalue

valueofcounterMessage
;

12 outgoingMsgs[msgindex] .
addValueToIndex(updateValue,outMsgmaps[msgindex][i]) ;

13 for msg ∈ outgoingMsgs ∪ lazymsg do
14 MD5Key1←GetMDKey

(msg.destinationForwardRank,msg.destinationId) ;
15 MD5Key2←GetMDKey (msg.srcBackwardRank-1,msg.destinationId) ;
16 CompositeKey1← InitCompositeKey (

MD5Key1,msg.destinationForwardRank ,msg.destinationId );
17 CompositeKey2← InitCompositeKey (

MD5Key2,msg.srcBackwardRank-1, msg.destinationId );
18 output (CompositeKey1,msg) ;
19 output (CompositeKey2 ,msg) ;
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Algorithm 4: Reducer of MC Job
Input: compositeKey k, list of messages L
Output: Sorted By destination vertex id message files

22 outputMessages[]← empty ;
44 outputF ile← null ;
66 currentDestinationV ertex← −1 ;
88 for msg ∈ L do

1010 if outputRank 6= key.rank then
1212 {
1414 outputRank ← key.rank ;
15 if outputMessages 6= empty then
1717 outputF ile.flush(otuputMessages) ;

1919 outputF ile←initializeOutputFile (outputRank) ;

2121 if currentDestinationV ertex 6= msg.destinationId then
2323 {
2525 outputF ile.flush(otuputMessages) ;
2727 outputMessages[]← empty ;

2929 ouptutMessages.add(msg);

cliques will dominate the processing time for other mappers. Thus, the processing
of the whole rank will be slowed down. PMComp parallelizes the computations for
outlier vertices. More specifically,at iteration i, PMComp reads outlier cliques with
rank i and splits them into smaller pieces. PMComp mappers are almost identical with
the MC mappers. Apart from the fact that PMComp produce partial messages, the only
other difference is that they iterate over the split indices and not over the whole clique
potential. Moreover, PMComp reducers, instead of just appending messages to the
output array containing messages with the same destination vertex, they also merge
partial messages in order to create the final message. Note that we cannot simply
replace MC with PMComp -the overhead of splitting vertices and merging the partial
message makes such an approach impractical.

3.6.3 Complexity

Let us discuss the computational complexity of BePadoop main processing steps. Ex-
act inference is an NP-hard problem, thus, we cannot avoid exponential time com-
plexity. Here, we discuss the complexity of one iteration (rank) for each job. MC’s
complexity over a set of cliques Crank and messages Erank is O(Erank log(Erank) +∑

Ci∈Crank
(|φCi

|)), which is the complexity of sorting the keys of messages that are
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transmitted from mappers to reducers for the given input rank added to the sum of all
the clique sizes at that rank. Since, in most cases,

∑
Ci∈Crank

(|Ci|) >> Erank(logErank),
the computational complexity of MC could be simplified to O(

∑
Ci∈Crank

(|φCi
|)).

PComp computes partial messages, which are passed from mappers to reducers
and finally merged to the reducers, so the complexity is O(

∑
Ci∈Coutlier

(|φCi
|)) +M ∗

Eoutlierlog(Eoutlier) +M ∗Eoutlier), where M is the number of machines we split each
clique.As a consequence, following the same logic with MC PComp’s complexity can
be simplified to O(

∑
vi∈Voutlier

(|vi|))
M

).
In terms of space space complexity note that the space requirements for a junction

tree using our clique representation (without the messages) is linear in the factors of
the original graphical model. Unfortunately, not all messages can take advantage of
the lazy computation technique, thus, in the worst case scenario, we have exponential
space requirements. In general, the information produced by BePadoop has exponen-
tial complexity, due to the messages’ space requirements.

Finally, we discuss the communication cost of BePadoop in terms of messages
(Msg) and cliques (C) that we read and write from mappers and reducers. MC’s
mappers output each message only once but read it twice. On the other hand, MC
reducers output the produced messages twice. Thus, since vertices are used twice
(in the forward and backward pass), the total communication cost for all iterations is
2C + 5Msg = O(C +Msg).

The communication cost for PComp is very similar to MC. We read the outlier
cliques twice. We create splits equal to the number of the available map tasks and
each map task creates a partial message that has the same space requirements as the
final message. As a result, the total communication cost is the number of mappers
multiplied by the number of the outgoing messages Msgoutlier of outlier cliques added
to the size of outlier cliques. The number of the outlier cliques is expected to be
almost 3% of the total number of vertices. Additionally, we write each message twice,
so in worst case this would be 3% ∗ C + Msgoutlier ∗ mappers + 2 ∗Msgoutlier =
O(C +Msgoutlier ∗mappers).

Finally, we consider the communication cost of the initialization of our approach.
During initialization, we only pass from the mappers to the reducers the whole junc-
tion tree three times during the last three MapReduce jobs. Additionally, during the
ranking we use only the graph of the junction tree, which most of the times is orders of
magnitude smaller than the junction tree with the probabilistic notation. One sidenote
is that during the initialization there are no messages, so we read and write only the
cliques.

It must be stressed that our main algorithm communication cost is independent
of the number of iterations, since during each iteration only part of the junction tree
is processed. Tables 3.1,3.2 summarize the time and communication complexities of
BePadoop’s jobs.
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Job Computational
MC O(Erank log(Erank) +

∑
Ci∈Crank

(|φCi
|))

PComp (
∑

Ci∈Coutlier

(|φCi
|)) +M(Eoutlierlog(Eoutlier) + Eoutlier)

Init O(ClogC)
BePadoop O(

∑
Ci∈C(|φCi

|) + ElogE)

Table 3.1: The computational complexity for the two main jobs of Bepadoop algo-
rithm, BePadoop’s initialization and Bepadoop.

Job Communication
MC O(Crank +Msgrank)

PComp O(Coutlier + Eoutlier ∗mappers)
Init O(C)

BePadoop O(C +Msg)

Table 3.2: The communication complexity for the two main jobs of Bepadoop algo-
rithm, BePadoop’s initialization and Bepadoop.
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Chapter 4

Related Work

As the MapReduce framework successfully brought parallel programming to a wider
audience, a large number of algorithms have been ported ( including, e.g., search query,
information retrieval, approximate inference and several graph algorithms. On the
other hand, new frameworks have been proposed for developing parallel graph algo-
rithms, given the nontrivial difficulties in the efficient implementation of graph algo-
rithms in the MapReduce framework. Nevertheless, in the recent years, some design
patterns for developing graph algorithms have emerged. In this chapter, we start by
presenting the related work on inference in MapReduce. Then, we discuss some de-
sign patterns for graph algorithms and how they have been exploited in BePadoop.
Finally, we conclude by introducing the proposed frameworks for developing graph
algorithms and we give a brief explanation why we decided to implement BePadoop
over Hadoop.

4.1 MapReduce inference Algorithms
In [13] the authors introduce Generalized Iterative Matrix-Vector multiplication (GIM-
V), a generalization of normal matrix-vector multiplication M × v = v́, where M is
a n by n matrix,v a vector of size n and v́ =

∑n
j=1mi,jvj . GIM-V generalizes a

matrix-vector multiplication by introducing three methods:

1. combine2: multiply mi,j and vj .

2. combineAll: summarize the n multiplication results for node i.

3. assign: overwrite previous value vi with new result to make v́i.

Ha-LFP[12] is a system that use GIM-V in order to implement an approximate be-
lief propagation algorithm for pairwise Markov Random Fields. In contrast to BePadoop
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that employs ranking to minimize the communication cost between mappers and re-
ducers, HadoopBP uses the whole graphical model as input to each iteration. This
naturally introduces an extra communication bottleneck between mappers and reduc-
ers. As explained earlier, BePadoop uses only the active portion of junction tree at each
iteration that minimizes the communication between mappers and reducers, which can
be a crucial performance factor for large junction trees.

In [18], various parallel exact inference algorithms on multicore systems using
MapReduce are presented. To our knowledge, these are the only other exact inference
algorithms that use the MapReduce abstraction and are thoroughly described and pre-
sented1. The most efficient algorithm in [18] is a level-based MapReduce algorithm.
The level l of each clique is the number of of edges on the path from it to the root
of the junction tree. In each iteration, all the nodes at a certain level l are the input
for the map phase, where the outgoing messages are computed and during the reduce
phase the vertices of level l − 1 (l + 1) are updated during the forward (respectively
backward) pass. Since the level-based algorithm is designed for multicore systems
there are certain disadvantages when implemented in the Hadoop setting. First of all,
by randomly choosing a root node the number of iterations for a junction tree is not
minimized, which implies addtional communication cost. Moreover, by updating at
each iteration the vertices that receive messages, we at least double the computational
cost since each vertex is processed at least four times; two when it sends message and
two when it receives messages. Additionally, BePadoop handles potential bottleneck
(outlier) cliques more efficiently by parallelizing the computation of their messages.

4.2 Graphs and MapReduce
The MapReduce framework is widely accepted as a de facto tool for processing data
qt large scale. As a result, there have been a wide number of design proposals for
implementing algorithms on. Filtering is a method introduced in [15] which dictates
a design for implementing graph algorithms in the MapReduce framework. The main
idea behind filtering is to reduce the size of input for consecutive iterations until the
problem size fits into the memory of a single machine. Assuming the memory per
machine is super-linear in the number of vertices, the algorithms presented in the paper
run in a constant number of iterations. Our approach utilizes the selective input into
each iteration in a more sophisticated manner as it loads only the active vertices at
each iteration; furtheremore, for junction trees with the same diameter the number of
iterations in BePadoop remains the same independent of the number of the cliques. On
the other hand, the iterations required by filtering depend on the relation of the total

1Another exact MapReduce inference algorithm has been presented in Hadoop Summit 2010 by
Alexander Kozlov but there are no details about the implementation of the algorithm, except for the
presentation slides.
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available memory with the input size.
In [16], the authors give effective ways for optimizing the implementation of graph

algorithms. Apart from the use of combiners and in-mapper combining, which sug-
gests that mappers should emit aggregated results in order to reduce the number of
key-value pairs shuffled across the network, there is Schimmy, a design pattern that
separates the usual two data flows for a graph algorithm in MapReduce (one for the
graph structure and the other for the messages exchanged). This is achieved by par-
titioning the input graph into n files, such that the files are sorted by vertex id (done
by a simple MapReduce job). Then, a similar idea used in parallel sort-merge join
algorithm could be used when two relations are sorted, so that interleaved linear scans
will encounter joinable sets of tuples at the same time. The only data exchanged be-
tween mappers and reducers are the messages between vertices. BePadoop expands
this idea by partitioning each rank, without the need to read the whole junction tree in
each iteration.

4.3 Graph Frameworks

After the wide success of Mapreduce, a lot of work has been put to develop program-
matic frameworks that provide better computation abstractions for developing graph
algorithms for large datasets. Implementing graph algorithms has different porgram-
matic requirements than those of batch data processing. As a result, Google has in-
troduced the Pregel sysytem designed to address all the shortcomings of MapReduce
regarding the development of graph algorithms. After Pregel, some open source alter-
natives have been published (GoldenOrb and Girraph), which provided an open source
implementation of Pregel. Apart from Pregel-like systems, there have been frame-
works with different philosophy, but with the same goal of providing an easy to use
and simple programming model for distributed graph processing. All these systems
are discussed in the rest of this section.

4.3.1 Pregel

Pregel [19] is a bulk synchronous message passing, fault tolerant programming frame-
work designed by Google with a more vertex centric approach than the MapReduce’s
data-flow approach. Pregel is similar to MapReduce in respect that users use local op-
erations that are independent of each other and the system is responsible to combine
these independent actions in order to lift computation to large datasets. Despite the
higher level similarities, Pregel is focused on addressing the issues that arise when de-
veloping graph algorithms, contrary to the MapReduce framework which is primarily
inteded for batch data processing.
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Pregel’s design is influenced by Bulk Synchronous Parallel model, which defines
a computation as an iterative procedure of supersteps. A superstep consists of three
ordered stages:

1. Parallel Computation where independent computations done in parallel,

2. Communicationwhere data is exchanged between the processes and,

3. Barrier synchronization, where all processes wait until the communication is
finished.

In a similar way, Pregel divides the computation into a series of supersteps. In
Pregel there are two types of nodes; the master node which is the coordinator of the
system, and the worker nodes, that operate on the input data. The master node is
responsible for initiating each superstep and the workers for processing the vertices.
The graph is divided into partitions, which are distributed across the cluster. Each
vertex can be active or inactive and implements a compute method. The computation
in Pregel is done into series of supersteps. In each superstep, the compute method of
each vertex is executed. Moreover, each vertex can send messages to arbitrary vertices
of the graph, as well as alter the structure of the graph. All the messages are given
as input to the vertex at the start of each superstep. Pregel’s model has one major
disadvantage when used on our problem because the time requirements for processing
vertices is not always uniformly distributed. As a consequence, there can be a single
vertex, which dominates over the rest of the dataset in terms of time execution. This in
Pregel cannot be addressed with a straightforward manner, however, BePadoop splits
the workload for those outlier vertices to all the cluster nodes by using Parallel Message
Computation.

4.3.2 GraphLab,PowerGraph
GraphLab is an asynchronous distributed shared-memory framework, in which ver-
tices can access information on adjacent vertices and the respective edges. Power-
Graph is a generalization which combines the advantages of the models of both Pregel
and GraphLab, by dividing the computation of each vertex into three phases. The
first phase is gather, where information about adjacent vertices and edges is collected
through a generalized sum. The resulting sum is used in the apply phase to update the
vertex and finally the scatter phase that updates the data on adjacent edges. In spite of
the fact that describing BePadoop in both abstractions would be simpler we could not
effectively handle the outlier cliques, which is an important requirement of our prob-
lem. In general, these frameworks work very well when the vertex compute function
is relatively small or the computation can be factorized, however, when dealing with
exact inference the exponential computational cost causesg these assumptions to be
violated.
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Experimental Evaluation

To verify the effectiveness of BePadoop, we devised a wide range of experiments on
synthetic and real datasets. We compare BePadoop with a naive implementation of
our algorithm, where ranking is not used, so we can not take advantage of the parallel
computation. The naive implementation takes at each iteration i as input the whole
junction tree and all the messages produced up to i. The cliques that are ready output
their outgoing messages. The naive algorithm terminates, when all vertices have sent
all their messages. Apart from the naive approach, we also compare BePadop with the
aforementioned algorithm described in [18]1. To our knowledge, there is not another
exact inference algorithm for MapReduce paradigm. Since the algorithm is designed
for multicore systems, we ported the level based algorithm to the Apache Hadoop
MapReduce. In order to compare the three approaches we use the time required for
the calibration of the junction tree ( time for the forward and backward pass). All the
experiments were conducted on a cluster with 18 machines, equipped with the Intel
Xenon X3323 processor, 4 GB RAM and high speed ethernet connection (1GB/s). We
used the 1.0.3 version of Apache Hadoop and the 1.6.0 16 version of Oracle Java.

5.1 Sensitivity Analysis
The first set of experiments that we conducted was to evaluate the sensitivity of BePadoop
on different junction tree parameters:

1. domain size of each variable dom(xi)

2. number of variables in a clique (treewidth) w

3. number of cliques in a junction tree N

1From here on we refer to this algorithm in short as Phoenix, which is the name of the framework
that was developed on.
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4. the degree of each clique deg(vi)

5. diameter of the junction tree d

We generated synthetic datasets with various values for the aforementioned param-
eters, and, unless stated otherwise, we used the following default parameter values:
dom(xi) = 4, d = 8, w = 10, deg(vi) = 100 and N ' 100000. The variables of each
message are randomly selected from the powerset of the clique variables. Finally, we
conducted our analysis using all four possible configurations of BePadoop, i.e. using
lazy messages/parallel computation or not.

Sensitivity Analysis Results

Let us begin with the domain size of the variables, Fig. 5.1 (a) depicts BePadoop’s
running time when we increase the domain size of each variable. BePadoop exhibits
exponential increase in time as the domain size increases, which is a direct conse-
quence of the computational complexity for computing a message. Consider a clique
Ci with degree deg(Ci) and w variables with domain equal to k, then, the computa-
tional complexity for producing one message equals to deg(Ci)∗kw. For small domain
sizes, there is not significant difference in the running time between the four configu-
rations of BePadoop. On the other hand, for larger domain sizes using lazily computed
messages affects, negatively, the performance of BePadoop. As we discussed in 3.4,
there is an increase on the computational complexity when a clique uses lazily com-
puted messages to produce outgoing messages. Note that using the parallel message
computation job results in a 14% speedup when using lazy messages.There is a similar
exponential increase in the running time when the number of variables in a clique is
increased Fig. 5.1 (b) denotes the BePadoop’s running time for 6,8,10 variables in ev-
ery clique of the junction tree. In this case, there are no indicative differences between
the four configurations.

Fig. 5.1 (c) depicts the running time for junction trees with different diameters.
Since, the number of iterations of our algorithm is directly associated with the diameter
of the junction tree as the diameter of the junction tree increases so is the running time.
Notice that using lazily computed messages results in approximately 12% speed up.

Next, we examine the degree of each vertex, Fig. 5.1 (a), since we increase the
number of iterations that we must do over the clique potential to produce a message
(deg(Ci) ∗ kw) there is a linear increase in running time. The results of these experi-
ments provide us with some informative conclusions. First, greater degree in a vertex
implicates a higher probability to have large messages, thus, there would be more lazily
computed messages. As a consequence, there is a speed up in the overall process when
having a moderate number of lazy messages. Additionally, parallel message computa-
tion improves the overall performance and in certain cases there is a significant reduce
in the running time (notice the experiments for degree 1500 and lazy off). Finally, we
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discussthe effect of the total number of nodes. Increasing the total number of nodes,
results in a growth in the number of nodes processed by each rank, as a consequence,
the total running time will increase. Fig 5.1 (b) shows BePadoop’s running time with
different total number of cliques, where we have an upsurge in the running time for
250000 cliques, where the volume of data shuffled between the map and reduce phases
cannot be handled by the cluster we used to conduct the experiments. To conclude our
sensitivity analysis, we can safely state that in most cases using parallel computation
and lazily computed messages is beneficial to BePadoop and in some cases result in
significant improvement on the performance.

5.2 Comparison to other approaches and Scale up
We also compared BePadoop with two other approaches, a naive version of BePadop
and the Hadoop MapReduce version of the Phoenix algorithm. We used synthetic and
real datasets to compare the three approaches. The following default configuration
was used to generate the synthetic datasets 100000 nodes, diameter d = 8, degree
deg(vi) = 100 , 10 variables in each clique and domain size for each variable vi equal
to 3. We must stress that we generated smaller datasets than our senisitivity analysis
because for larger datasets both the naive and the Phoenix algorithm either could not
be run due to memory limitations or the overhead of the data shuffling stage made it
impractical. Fig 5.3b depicts the running time of the three algorithms on five datasets.
The first two datasets are synthetic. The former dataset was generated with 6 variables
per clique and the latter with variable domain size equal to 2.

Prior to the discussion of the results, let us first state some preliminaries which help
to understand better the results. The Phoenix algorithm was designed for multicore sys-
tems with shared memory across CPUs. Additionally, all distributions are represented
as full tables, thus, the representation of the junction tree is larger than BePadoop’s
representation,consequently, Phoenix shuffles more data between mappers and reduc-
ers. Moreover, a random junction tree vertex is chosen to be the root of the tree which
results in a suboptimal number of iterations. On the other hand, the Naive approach
uses BePadoop’s clique representations, but reads the whole input at each iteration.
As a consequence, there is higher communication cosst. Moreover, at each iteration
checking if a clique is ready to send a message, results in redundant computations.

Furthermore, we compared the three approaches using three real datasets. The first
real dataset is a snapshot of the Slashdot Zoo social graph with 78000 vertices and
400000 edges. We sampled a subgraph from the dataset and then we created pairwise
Markov Random Field graphical from that subgraph. For each vertex in the graph
we assigned a new random variable with domain size 4 and we also introduced for
each edge in the graph a factor for the interaction of two random variables. Then we
constructed the junction tree using the Huging algorithm. The Slashdot Zoo sampled
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(a) Running time for various domain sizes for the variables

(b) Running time for different number of vertices in the junction tree

(c) Running time for different diameter of the junction tree

Figure 5.1: Sensitivity Analysis for BePadoop for domain sizes, number of variables
in a clique and diameter
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(a) Running time for different degrees of the vertices in the junction tree

(b) Running time for different total number of nodes

Figure 5.2: Sensitivity Analysis for BePadoop for different degrees of the vertices and
total number of nodes
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graph contained 34000 vertices and 60000 edges and the resulting junction tree with
the maximum number of vertices has almost 6000 thousands cliques and diameter 44.
We followed the same procedure for a graph depicting edits of users to the wikipedia
talk pages with 2 million vertices and 5 million edges where the sampled subgraph con-
tained 71300 vertices and 88812 edges and its junction tree 7000 cliques and diameter
equal to 53. The last dataset was from Brightkite, a location-based social networking
service provider, where users shared their locations by checking-in. The sample had
33000 vertices and 50000 edges and the induced junction tree contained 9000 cliques
and had diameter of 62.

The last three datases in Fig. 5.3b denote the time required for the calibration of
the junction trees by the three approaches. The results are similar with the results on
the synthetic datasets, except for the fact that the naive performance has significantly
improved. BePadoop still remains the most efficient of the three, on the other hand, the
Phoenix algorithm is slightly the slowest between the three for two main reasons, first
there is higher communication cost as all the distributions are represented as tables and
second the number of iterations is larger than both naive and BePadoop. On the other
hand, both the large diameter of the junction tree and the small number of cliques fa-
vor the Naive approach as at each iteration the overhead for reading all the cliques and
its messages is less than the cost of deploying one MapReduce job, as a result, Naive
is faster than the Phoenix. However, BePadoop is at least 25% faster than the Naive
approach as it better utilizes the cluster resources with less communication and the par-
allel computation and almost always 40% more efficient than the Phoenix algorithm.
In conclusion, the results of the comparison between the three approaches are in favor
of BePadoop, as it better utilizes cluster resources and minimizes the communication
cost between the mappers and the reducers as well as the data read in during each it-
eration. Moreover, BePadoop minimizes the number of iterations which is crucial for
MapReduce algorithms.

Finally, we synthesized a set of datasets in order to evaluate the scalability of the
three algorithms. Fig 5.3a shows the results of these experiments, where our algorithm
has almost flat scale up as we increase the input size and increase respectively the
number of available machines. The time required by BePadoop for the junction tree
calibration is almost the same for all the four datasets. On the other hand, the naive
version of BePadoop exhibits the same problems with large input as before and does
not scale up well. Additionally, Phoenix algorithm exhibits an almost linear increase
as the size of the input increases.
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5.2 Comparison to other approaches and Scale up

(a) BePadoop scale up diagram

(b) Comparison of BePadoop with the Naive approach and MapReduce algorithm for multicore
systems
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5. EXPERIMENTAL EVALUATION
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Chapter 6

Future Work and Conclusion

BePadoop gives rise to new interesting problems that must be addressed such as how
to effectively compress a message distribution in order to surpass the memory limits of
a cluster. Additionally, we research how to approximate the message distribution rep-
resentations without having a large penalty to the overall inference solution. Thus, we
could develop an approximate inference algorithm that takes advantage of BePadoop’s
optimal number of iterations and the performance of an approximate algorithm.

To conclude, in this thesis, we presented the basics for exact inference and we in-
troduced BePadoop, a novel approach for exact inference on Hadoop MapReduce that
scales up well and presented solutions for some crucial problems that impede the exact
inference on large datasets i.e. clique representation, memory limitations, messages
size, communication cost. We analysed the sensitivity of BePadoop for various param-
eters of the junction tree and we showed that BePadoop’s optimizations not only do
not introduce a computational overhead in the already difficult problem of exact infer-
ence but in most cases improve the running time of BePadoop. Finally, we compared
BePadoop with two other algorithms and there were cases that BePadoop was an order
of magnitude faster than the other two approaches.
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