
 

 

 

 

 
 
 
 
 
 
 

 
 
 

PATTERN RECOGNITION APPROACHES  
IN DNA MICROARRAY ANALYSIS 

 
 
 

MICHAIL E. BLAZADONAKIS 

 
 
 
 
 
 
 
 
 
 

July 2008 

TECHNICAL UNIVERSITY OF
CRETE 

Department of Electronic &  
Computer Engineering 



 

 

 
 
 
 
 
 

 
 

PATTERN RECOGNITION APPROACHES  
IN DNA MICROARRAY ANALYSIS 

 
by 

MICHAIL E. BLAZADONAKIS 

A thesis submitted in partial fulfillment  
of the requirements for the degree of  

 
Doctor of Philosophy, PhD 

 
Chairperson of the Supervisor Committee: Professor Michalis Zervakis 

Professor Stavros Christodoulakis 

Professor George Stavrakakis 

Professor Nikos Sidiropoulos 

Associate Professor Evripidis Petrakis 

Associate Professor Konstantinos Balas 

Associate Professor Dimitris Fotiadis 

 

CHANIA, GREECE, July 2008

TECHNICAL UNIVERSITY OF
CRETE 

Department of Electronic &  
Computer Engineering 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Στην οικογένεια µου 
Χαρούλα, Κάλλια, και Μαριώ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Contents 
1 Introduction...................................................................................................................................1 

1.1 Studying the Genome.............................................................................................................2 
1.2 Selection of Genomic Markers ..............................................................................................7 
1.3 Algorithmic Approaches to the Problem .............................................................................10 
1.4 Background knowledge in terms of gene ontologies and pathways.....................................11 
1.5 State of the art in Gene Selection for Disease Diagnosis ....................................................14 

1.5.1 Breast Cancer..................................................................................................................14 
1.5.2 Leukemia ........................................................................................................................17 
1.5.3 Related Work..................................................................................................................19 

1.6 Our contribution..................................................................................................................20 
1.7 Thesis Overview ..................................................................................................................21 

References..........................................................................................................................................23 

2 Wrapper Filtering Criteria Via a Linear Neuron and Kernel Approaches...........................28 
2.1 Abstract ...............................................................................................................................28 
2.2 Introduction.........................................................................................................................29 
2.3 Methods ...............................................................................................................................30 

2.3.1 Background Knowledge on SVMs and GEMS ..............................................................30 
2.3.2 The RFE-SVM Method ..................................................................................................33 
2.3.3 Differentially Expressed Genes ......................................................................................34 
2.3.4 The RFE-LNW Approach...............................................................................................35 
2.3.5 Training the RFE-LNW..................................................................................................37 
2.3.6 Emphasizing Differentially Expressed Genes ................................................................40 
2.3.7 Incremental Versus Batch Learning ...............................................................................41 
2.3.8 Algorithmic Presentation of RFE-LNW .........................................................................42 
2.3.9 RFE-SVM and RFE-LNW .............................................................................................43 

2.4 The RFE-FSVs Approach ....................................................................................................45 
2.4.1 Algorithmic Presentation of RFE-FSVs .........................................................................48 

2.5 Applied Data Sets ................................................................................................................50 
2.5.1 Experimental Scenarios - Results ...................................................................................52 
2.5.2 Experimental Results on Leukemia ................................................................................54 
2.5.3 Experimental Results on Breast Cancer..........................................................................59 

2.6 On the Utilization of Kernels and Support Vectors .............................................................65 
2.7 Discussion and Conclusion .................................................................................................67 

References..........................................................................................................................................69 

3 The Linear Neuron as Marker Selector and Clinical Predictor in Cancer Gene Analysis...72 
3.1 Abstract ...............................................................................................................................72 
3.2 Introduction.........................................................................................................................72 
3.3 The RFE-LNW Ranking Criterion .......................................................................................74 
3.4 Cluster Quality Measure .....................................................................................................76 
3.5 ELOOCV  and 10-Fold Cross Validation............................................................................77 
3.6 Results .................................................................................................................................78 

3.6.1 ILOOCV – Cluster Quality Results ................................................................................80 
3.6.2 ELOOCV and 10-Fold Cross Validation........................................................................86 



 

3.6.3 Fusion of Selected Genes................................................................................................90 
3.6.4 Expression Profile Analysis of Selected Genes ..............................................................92 

3.7 Study of Bias........................................................................................................................95 
3.8 Benchmark Comparison of Results in Breast Cancer .........................................................97 
3.9 Discussion and Conclusions................................................................................................98 

References........................................................................................................................................101 

4 Revealing Significant Biological Knowledge via Gene Ontologies and Pathways...............104 
4.1 Abstract .............................................................................................................................104 
4.2 Introduction.......................................................................................................................104 
4.3 Methods .............................................................................................................................105 

4.3.1 The Hyper-geometric Probability Distribution.............................................................106 
4.3.2 The Global Test ............................................................................................................108 
4.3.3 Nearest Centroid Classifier...........................................................................................109 

4.4 Experimental Setup............................................................................................................110 
4.4.1 Building a Gene Ontology and Pathway Signature ......................................................110 
4.4.2 Statistical Significance of the Derived Result ..............................................................111 
4.4.3 Clinical Prediction Outcome.........................................................................................113 
4.4.4 Assessing Randomness of the Derived Result..............................................................113 

4.5 Conclusions .......................................................................................................................114 

References........................................................................................................................................115 

5 Integrating Biological Knowledge for Marker Gene Selection in Breast Cancer ...............117 
5.1 Abstract .............................................................................................................................117 
5.2 Introduction.......................................................................................................................118 
5.3 Gene Signature Overlap ....................................................................................................120 
5.4 Data Sets ...........................................................................................................................121 
5.5 Associating Gene Signatures and Pathways......................................................................122 
5.6 Building a Unified Pathway Signature..............................................................................126 
5.7 Cross Platform Validation of Integrated Signature...........................................................134 
5.8 Conclusions .......................................................................................................................136 

References........................................................................................................................................138 

Overall Conclusions and Open Research Directions.......................................................................141 

APPENDIX I.......................................................................................................................................144 

APPENDIX II .....................................................................................................................................165 

List of Author Publications Related to PhD Thesis .........................................................................169 
 
 



 

ΠΡΟΛΟΓΟΣ 
«Χαράς τονε τον άνθρωπο πού `χει φτερά στον ώµο,  
κι όµως γροικάται ταπεινά το ζάλο του στο δρόµο.»  

Κρητική µαντινάδα 

Το σύγγραµµα αυτό αποτελεί τη διδακτορική µου διατριβή η οποία εκπονήθηκε στο 
Πολυτεχνείο Κρήτης από τον Οκτώβριο του 2003 έως τον Ιούνιο του 2008, στο 
Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Ηλεκτρονικών Υπολογιστών. 
Κίνητρό µου για την προσπάθεια αυτή είναι το µεράκι για έρευνα και µάθηση, µαζί 
µε µια συνεχή ανησυχία και αναζήτηση για κάτι πέρα από τα δεδοµένα. Το 
αποτέλεσµα της δουλειάς αυτής θα το κρίνετε εσείς και οι µελλοντικοί ερευνητές, 
όµως καταθέτω ότι αποτελεί µια λεπτοµερή και ειλικρινή καταγραφή 
αποτελεσµάτων, µεθόδων και παρατηρήσεων, µιας διαρκούς, αγωνιώδους, αλλά και 
πολύ ενδιαφέρουσας προσπάθειας.  

Θέλω να ευχαριστήσω τον κ. Ζερβάκη Μιχάλη, Καθηγητή του Πολυτεχνείου Κρήτης 
για τη συνεχή και αδιάλειπτη παρακολούθηση, αλλά και το συντονισµό της εργασίας 
αυτής. Για τις πολύ εύστοχες παρατηρήσεις, πρωτοποριακές ιδέες και ερευνητικές 
κατευθύνσεις που µου έδειξε. Τέλος, τον ευχαριστώ σαν άνθρωπο, γιατί πραγµατικά 
βίωσε την όλη προσπάθεια, στηρίζοντάς µε τόσο επιστηµονικά όσο και ηθικά, ενώ ο 
χαρακτήρας και η προσωπικότητά του, µου επέτρεψαν να εκφραστώ ελεύθερα και να 
είµαι ο εαυτός µου. 

Ευχαριστώ όλους τους καθηγητές της συµβουλευτικής επιτροπής, για το χρόνο που 
αφιέρωσαν να µελετήσουν και να αξιολογήσουν την εργασία αυτή, για την 
υποστήριξη, την αµεσότητα και τη φιλικότητα τους, δηµιουργώντας ένα οικείο 
περιβάλλον συνεργασίας. 

Ευχαριστώ όλους τους φίλους-συναδέλφους και ερευνητές του Εργαστηρίου 
Ψηφιακής Επεξεργασίας Σηµάτων και Εικόνας για την άψογη και απρόσκοπτη 
συνεργασία, ιδιαίτερα ευχαριστώ τον Μιχάλη Κουνελάκη και τον Γιώργο Μανίκη για 
το χρόνο που αφιέρωσαν, τις ατελείωτες αλλά πολύ χρήσιµες συζητήσεις µας όλα 
αυτά τα χρόνια, γύρω από ερευνητικά θέµατα κοινού ενδιαφέροντος. 

Ευχαριστώ τους συναδέλφους ερευνητές, του Ινστιτούτου Μοριακής Βιολογίας και 
Βιοτεχνολογίας του Ιδρύµατος Τεχνολογίας και Έρευνας, για τη συνεργασία µας και 
για τα πολύ χρήσιµα σχόλια, παρατηρήσεις και κατευθύνσεις που µας πρότειναν. 

Ευχαριστώ την Γαλάτεια Μαλανδράκη, Γραµµατέα του Τµήµατος Αρχιτεκτόνων 
Μηχανικών του Πολυτεχνείου Κρήτης, οικογενειακή µας φίλη, για την πολύτιµη και 
άµεση βοήθειά της στη διεκπεραίωση διαφόρων θεµάτων, ιδιαίτερα στα πρώτα 
στάδια της προσπάθειας αυτής. 

Ευχαριστώ τους γονείς µου, που µου έδειξαν το µονοπάτι που βαδίζω σήµερα, που 
µου έµαθαν ότι ο δρόµος της γνώσης είναι πλούτος και που στηρίζουν µε όλες τους 
τις δυνάµεις την οικογένειά µου. Τα αδέρφια µου Γιώργη και Στεφανή για το 
ενδιαφέρον, την υποστήριξη και την αµέριστη συµπαράστασή τους σε ότι χρειάστηκα 
όλα αυτά τα χρόνια. 



 

Ευχαριστώ τα πεθερικά µου, που από την πρώτη στιγµή κατάλαβαν και 
συµπαραστάθηκαν στην προσπάθειά µου, ενώ η φροντίδα και η στήριξή τους σε ότι 
χρειαστήκαµε ήταν πάντα δεδοµένη.  

Αφήνω για το τέλος τις πιο θερµές µου ευχαριστίες για τη σύζυγο µου, Χαρούλα, 
γιατί υπήρξε ο πραγµατικός στυλοβάτης της προσπάθειας αυτής αλλά και της 
οικογένειάς µας, µεγαλώνοντας τα δύο µωρά κοριτσάκια µας, Κάλλια και Μαρία, 
ξεπερνώντας πολλές φορές τον εαυτό της. Χωρίς την πολύτιµη συµπαράστασή της 
δεν θα βρισκόµουν µπροστά σας σήµερα για να παρουσιάσω την εργασία αυτή. 

Μιχάλης Μπλαζαντωνάκης 
Χανιά, Ιούλιος 2008 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Thesis work was supported by Biopattern, IST EU funded project, Proposal/Contract 
no.: 508803, and "Gonotypos" projects funded by Greek Secretariat for Research and 
Technology as well as the Hellenic Ministry of Education. 
 



 

Abstract 
The release of the human genome working draft marked the biomedical discipline 

opening a new era in the fields of biology and medicine with the use of 

bioinformatics. In combination with the advent of microarray technology, scientists 

can now derive a vast amount of valuable information but the need still remains to 

understand and exploit it. DNA microarray technology allows researchers to study the 

behavior of thousands of genes in a single experiment, exploring and monitoring their 

expression in various diseases with the aim of understanding or discovering the 

biological mechanisms involved. Studying simultaneously this massive gene 

expression information is a difficult and very demanding task in many ways, making 

the use of computational and pattern recognition approaches a necessity. Among all 

thousands of genes studied, many might be irrelevant or redundant to a specific class 

discrimination problem. This vast amount of data which might contain noise along 

with redundant information needs to be processed in such a way so that the real 

valuable and useful knowledge is finally distilled. This “distillate” of marker genes 

then could be used by an expert to search, discover and understand the hidden 

biological mechanisms involved in the development of cancer. 

One may argue that this problem is a typical feature selection paradigm which 

could be faced efficiently through a number of typical pattern recognition and 

machine learning approaches. However the problem referred to as ‘curse of 

dimensionality’ is intensified, which may block the effectiveness of an approach. 

Usually, in such an application domain each sample (patient) is described though a set 

of genes, yielding a huge dimensional space (order of thousands) covered by a few 

(order of tenths) patients. Such a sparse covered space may befool a method to a 

random or unrealistic solution. 



 

The problem is mainly tackled by two types of approaches the filter and the 

wrapper approach, each one facing the problem from a quiet different perspective: the 

static one of the filter approach, and the dynamic one through the wrapper approach. 

Hybridization or integration of these two approaches is an interesting concept which 

is addressed in the thesis. 

In assessing the validity of the derived results we, as many others use various 

stringent statistical criteria. We take the statistical framework one step further, by 

studying several issues related to the stability and generalization of algorithmic 

performance. In addition, we expand our evaluation in assessing the biological 

significance of results achieved through the use of publicly available and widely 

accepted biological knowledge. This effort contributes in the establishment of an 

evaluation framework where the various examined methodologies could be tested in a 

subjective and fair manner leading to both statistical significant and biologically valid 

results. 

Integration of biological knowledge is an open problem in the field of marker 

gene selection. Based on the fact that different research teams propose different 

solutions, with minimal or no overlap at all among them, we propose an evolutionary 

process of assembling the biological knowledge contributed by different efforts 

towards a more unified and global approach. 
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CHAPTER 1 

1 Introduction 
Ever since Hippocrates, medicine is in a continuous search path for understanding and 

revealing the various “mechanisms” that trigger specific diseases, aiming in 

prognosis, early diagnosis and treatment. Such an aggressive disease which has long 

before challenged the medical community is cancer. Medical doctors have realized 

that patient’s differ in response to the followed treatment protocols; what is effective 

for the many may not be effective for the few or vise versa. This well verified and 

established fact is actually a foreboder of the so called personalized treatment. Having 

little understanding on what causes such differences and how to best account for 

them,  genomic data/knowledge could be of significant importance towards the aim of 

understanding and revealing the biological mechanisms hidden behind cancer. 

Another important issue that motivated research on genomic data is the fact that in 

many types of the disease, i.e. breast cancer, even though chemotherapy or hormonal 

therapy reduces the risk of distant metastasis by approximately 1/3, 70-80% of 

patients receiving this treatment would have survived without it [1]. In addition, 

despite recommendations by the college of American Pathologists that tumor grade 

should be used as a prognostic factor in breast cancer, the latest Breast Task Force of 

the American Joint Committee on Cancer did not include histological tumor grade in 

its staging criteria, because of insurmountable inconsistencies in histological grading 

between institutions. Concordance between two pathologists has been investigated 

and found to range from 50% to 85% [2]. Recent research has demonstrated that gene 

expression profiling could be much more effective in prognosis of breast cancer than 
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classic standard grading criteria [3] and also contributes to overcoming such 

inconsistencies that may exist among doctors or institutions. 

1.1 Studying the Genome 

With a few exceptions, every cell contains a copy of each of our 30000 genes or so 

which are expressed (turned on) or unexpressed (turned off) in different cell types. A 

gene is expressed when it is churning out molecules of messenger RNA (m-RNA).  

Thus, we would except a muscle cell to make m-RNA for the various muscle 

proteins such as actin and myosin but a muscle cell shouldn’t produce m-RNA for the 

pigment melanin or the hormone insulin for instance. Measuring the amount of m-

RNA produced by every gene that is expressed in a tissue sample, we could make an 

‘expression profile’ of the biological processes that are triggered in that cell. Then by 

comparing the different expression profiles among different tissues we may discover 

the biological mechanisms that make those cells different from each other. DNA 

microarray technology helps towards this direction by pin pointing all the differences 

in gene expression between two different cell types. 

The surface of DNA-microarray (Figure 1, Figure 2) is divided into thousands of 

spots, where each spot contains multiple copies of a unique DNA sequence which 

corresponds to a single gene. Using such a technology we can measure differences 

between healthy and cancerous cells. Cancer is basically a ‘gene disease’, many genes 

control the way cells grow divide and eventually die, when these genes stop working 

properly cell growth may spin out of control leading to tumor formation and cancer. 

In order to be able to prognose, diagnose, understand and treat cancer we should 

identify these genes. The so-called DNA microarray experiment assists researchers 

towards this task, and enables them to locate differences on the expression levels 
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Figure 1: The DNA  microarray measures the expression of thousands of genes in a single experiment. 
 

 

Figure 2: The surface of a DNA microarray is divided into thousands of spots, each spot contains 
multiple copies of a single gene 
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between cancerous and healthy cells. This is done by measuring the types of m-RNA 

found in both types of cells. To accomplish this, healthy and cancerous tissue samples 

are collected and isolated from the same patient. m-RNA is extracted from both tissue 

samples by dissolving them in a mixture of various organic solvents. The two samples 

are labeled with different colors; a red one (cy5) is used to label the cancerous tissue 

while a green color (cy3) is used for the healthy tissue. A biological process in which 

complementary part of the m-RNA strand is isolated and degraded into a labeled c-

RNA molecule takes place; this is known as the reverse transcriptase process. Next, 

the hybridization process helps in the completion of the experiment. Through such a  

 

Figure 3: Hybridization process of complementary DNA strands on the microarray surface. 

process when two complementary DNA strands are mixed together, they will soon 

find a correspondence base and pair with each other, it doesn’t matter where they 

come from they will do that even if they come from different sources (Figure 3). The 

labeled healthy tissue sample is fused onto the surface of the microarray (Figure 3), 

the c-DNA sequences then hybridize specifically with their corresponding gene 

sequences in the array. The same process is repeated on a different chip for the  
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Figure 4: Hybridized DNA microarray, red spots correspond to hybridized cancerous genes; an 
analogous hybridization scheme for the healthy tissue produces a green spotted microarray. 

 

Figure 5: The result of the DNA microarray experiment after the mixture of a double microarray 
experiment; we can visualize the green, red, yellow and black spots. 
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cancerous tissue sample, laser light is emitted to both microarrays which makes the 

hybridized areas to glow. 

After the completion of the experiment we have a red spotted array, i.e., an array 

with red color spots over the area that correspond to hybridized cancerous genes 

(Figure 4) and a corresponding green spotted array. Overlaying the two images into a 

single one (Figure 5 ), we can visualize green spots indicating that the specific genes 

have been expressed more in the healthy tissue than in the cancerous. Similarly we 

can visualize red spots which are interpreted in exactly the opposite way, or we can 

visualize yellow spots implying that the specific genes have expressed themselves in  

 

Figure 6: Expression profile analysis of genes after completion of the microarray experiment using log 
transformations. 

approximately the same manner in both situations; black spots correspond to non 

hybridized genes. Taking 10
5log
3

cy
cy

⎛ ⎞
⎜ ⎟
⎝ ⎠

 or 2
5log
3

cy
cy

⎛ ⎞
⎜ ⎟
⎝ ⎠

 of the intensities of the two color 

channels, we get a numeric representation of the expression level of each gene, where 

a negative value indicates a higher expression on the healthy tissue, positive values 

indicates a higher expression on the cancerous tissue while zero values indicate 
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approximately the same expression in both tissues. In a post experimental step the 

expression of each gene (after the log transformation) is kept in a separate cell in an 

m  by n  expression matrix M , where each row corresponds to the expression levels 

of a single gene, while each column corresponds to a different patient.The expression 

level  of each gene can be visualized in terms of a color map varying in a range from 

green to red for instance, with the mid-point being represented by black (Figure 6). A 

green colored cell (corresponds to a negative log ratio value) manifests that the 

specific gene has expressed itself more in the normal than in the pathological state, a 

red color in a cell (corresponds to a positive log ratio value) implies exactly the 

opposite, while a black color (corresponds to a zero log ratio value) means that the 

specific gene has expressed itself in exactly the same way in both situations. Colors 

are translated into numbers on a closed interval, [-3, +3] for instance, where -3, 0 and 

+3 indicate green, black and red, respectively. 

1.2 Selection of Genomic Markers 

The release of the human genome working draft [4] marked the biomedical discipline 

opening a new era in the fields of biology and medicine with the use of 

bioinformatics. In combination with the advent of microarray technology, scientists 

can now derive a vast amount of valuable information but the need still remains to 

understand and exploit it. DNA microarray technology allows researchers to study the 

behavior of thousands of genes in a single experiment, exploring and monitoring their 

expression in various diseases with the aim of understanding or discovering the 

biological mechanisms involved.  

Studying simultaneously the massive gene expression information could be a 

difficult and very demanding task in many ways. Among all thousands of genes 

studied, many might be irrelevant or redundant to a specific class discrimination 
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problem. Many studies have shown that by significantly reducing the number of 

genes, the generalization performance in classification can be increased; we 

selectively refer to [1], [5], [6], [7]. This leads to lowering significantly the cost of the 

experiment, without compromising its value. Furthermore, by focusing on a smaller 

but representative number of genes, scientists are highly assisted in their task to 

understand or discover the mechanisms involved in a specific disease, facilitating to 

early diagnosis, prognosis and drug discovery. 

From a pattern recognition point of view, one might argue that the above 

mentioned problem is a standard feature selection paradigm. This is not a simple task, 

however, since in such problems we have to face the so called ‘curse of 

dimensionality’. We are provided with a small number of samples (order of some 

tenths) compared to a very large number of features (genes at the order of thousands), 

rendering the solution quite ill posed and necessitating the use of prior information in 

the form of constraints for its regularization. This algorithmic issue provides an extra 

motive to significantly reduce the number of important genes, since the performance 

of any data mining procedure depends on the ratio between the number of training 

samples and the number of features.  

The primary goal of any gene selection method is to find a set of genes (markers) 

with size much smaller than the initial, which is able to describe the data set of 

interest fairly well both in terms of classification accuracy and quality. The first 

attribute (accuracy) relates to the ability of the selected genes to successfully classify 

samples into their correct class, whereas the quality attribute reflects the ability of 

each gene to clearly differentiate its expression between the states of interest. This 

fact has been implicitly implied in almost every gene selection study (we selectively 

refer to [14] - [18]) and has also been explicitly stated in [6], [19]-[21]. The concise 
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study of a small number of genes can help biologists to get significant insight into the 

genetic structure and mechanisms involved in a specific disease, which may lead to 

drug discovery and early diagnosis.   

The most important advantages of marker selection are summarized as: 

1. Classification accuracy can be improved by selecting a small but 

representative number of genes; we selectively refer to [6], [7]. 

2. Expression arrays recording the behavior of thousands of genes are 

impractical to be used and studied by biologists. The experts would prefer to 

monitor and study changes in a smaller set of genes [22], which will assist 

their task to discover the biological processes involved in the development of 

the disease. 

3. By reducing the number of genes to be studied, the cost of the examination 

is also significantly reduced. 

Marker selection studies usually address three commonly encountered types of 

objectives [23].  

1. Class comparison: Is the comparison of gene expression in different groups of 

specimens. The specific objective of such a study is to determine whether the 

expression profile of the derived gene signature is different between the 

classes.  

2. Class prediction studies give emphasis on developing a gene signature that 

actually predicts class membership of new samples on the basis of the 

expression levels of the genes in the derived gene signature. Finally,  

3. Class discovery is fundamentally different from class comparison or class 

prediction. In such studies the classes are not predefined and usually clustering 

methodologies are used to reveal possible discrete subsets of disease entities 



Chapter 1:                                                                                                                                                   Introduction 

 10

which possible define different disease subgroups. Using such an approach 

Golub et al. in [1] managed to discover the two basic types of leukaemia i.e., 

Acute Lymphoplastic Leukemia (ALL) and Acute Myeloid Leukemia (AML) 

but additionally it also discovered the two subtypes B-Cell and T-Cell of the 

ALL type. 

1.3 Algorithmic Approaches to the Problem 

Feature selection methods are divided into two categories [25], i.e. the so called Filter 

and Wrapper methods. Filter approaches give emphasis and focus on intrinsic 

characteristics of data neglecting however gene interactions [26], they rank genes 

according to how they score on various stochastic measures such as Fisher’s ratio, T-

statistics, 2χ  statistic, information gain, Pearson correlation and many others, the 

highest rank genes that give the maximum classification performance are the genes 

that constitute the final derived gene signature. A very close alternative to the Fisher’s 

coefficient that has been widely applied in the field of marker gene selection is given 

below: 

 ( )
( ) ( )
( ) ( )

i i
i

i i

g g
f g

g g
µ µ
σ σ

+ −

+ −

−
=

+
 (1.1) 

where, ( )igµ+ , ( )igµ− ,  ( )igσ+ , ( )igσ−  is the mean and standard deviation values 

of gene i  in positive and negative class respectively. Such a criterion aims at genes 

which differentiate their expression more in the two classes and hence it is searching 

for a gene signature that shares the intrinsic property of low intra-class but high inert-

class distance.  Wrapper methods on the other hand use a classifier to assign scores 

and rank genes; classifiers usually generate weight vectors which are used as gene 

scores. The genes are ranked according to such scores, the lowest rank gene(s) is (are) 

eliminated and the process continues in an iterative manner. In filter methods the 
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feature ranking criterion remains stable along the gene selection process while 

wrapper methods re-evaluate and dynamically update the criterion from iteration to 

iteration, thus an insignificant gene in one iteration, may become significant in the 

next or vise versa.. Another fundamental difference which should be emphasized is 

that filter methods focus on intrinsic data characteristics neglecting gene interactions 

while wrapper methods behave in exactly the opposite way underlying a major gap in 

the ‘philosophy’ of the two approaches. Although it has been demonstrated by various 

studies that wrapper methods outperform their filter alternatives accuracy-wise [6], 

[27], a little attention has been paid to the ‘quality’ aspect of the derived result. By the 

term quality we address the ability of a gene signature to significantly differentiate its 

expression from one class to the other; this aspect refers to the class comparison 

criterion addressed earlier in section 1.2. One aim of this study is to propose a 

methodological platform serving as a vehicle of bridging the gap between the two 

quite different philosophies but also provide an evaluation framework which takes 

into account not only the accuracy criterion but also additional quality aspects of the 

derived result. 

1.4 Background knowledge in terms of gene ontologies and 
pathways 

Gene Ontology project [28] provides a controlled vocabulary to describe gene and 

gene product attributes in any organisms. The Gene Ontology Biological Processes 

(GOBP) constitute basic background knowledge organizing genes into ensembles 

according to the biological process they participate [28]. Using ontologies we can find 

a collection of genes that are involved in a specific biological process or find the 

biological processes that a specific gene is involved to. Notice that while there are 

uniquely identified biological processes, a specific gene may be involved in more than 

one of them. Hence, we are given background biological knowledge on the genes that 
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constitute specific biological ‘mechanisms’ but also the mechanisms associated with a 

specific gene.  

GOBPs are structured as directed acyclic graphs, similar to hierarchies where a 

more specialized term (child) can be related to more than one less specialized terms 

(parents). Graph nodes are connected together through two relationships, the ‘is a’ and 

‘part of’ relationships. Using such relationships biologists can build up a biological 

process as the immune system process for instance, depicted in Figure 7. The GO 

consortium serves a broad variety of needs, assessing the problem of consistent 

descriptions of gene products in different databases. In this thesis we focus only on 

the GOBP components and primarily on the genes that constitute them, while a deeper 

and thorough analysis of the underlined processes and mechanisms used to assess 

project’s aim is beyond the scope of this work. For a more detail description on such 

aspects the interested reader may refer to [28]. 

A pathway on the other hand is a series of biochemical reactions occurring within a 

cell. Such processes are usually rapid, lasting on the order of milliseconds in the case 

of ion flux, or minutes for the activation of protein, but some can take hours and even 

days (as is the case with gene expression) to complete. To better organize the various 

biological concepts included in the pathway formation process, we present the 

hierarchical structure in Figure 8. Chromosomes induce genes that produce proteins 

used in chemical reactions occurring within a cell. A set of such chemical reactions 

serving a specific purpose constitutes a pathway [28]. For instance, the IL-10 anti-

inflammatory pathway is depicted in Figure 9, where we notice that additional 

pathways could contribute to the formation of a new one, while many pathways could 

react within a cell. Hence, GOBPs constitute a conceptual network of biological 

processes dynamically adapted and updated with evolving knowledge, while a 
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Figure 7: Bulding the gene ontology immune system process in temrs of is_a and part_of relationships. 

 

Figure 8:Pathway-Genome hierarchical structure. 

 

Figure 9: IL-10 Anti-Inflammatory signaling pathway. 

Red part_ of 

Blue is_a 
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pathway refers to very specific and strict biological  functions accomplished through a 

series of bioechemical reactions. GOBPs could be seen as candidates for constituting 

future pathways. 

In this thesis we focus on the 20 pathways published by NetPath [29], 10 of which 

are related to immune system (immune signaling pathways) and 10 related to cancer 

(cancer signaling pathways). In subsequent chapters we are using background 

knowledge provided through GOBPs and NetPath to either validate or enhance 

derived results. 

1.5 State of the art in Gene Selection for Disease Diagnosis 

In this section we focus on two application domains, namely breast cancer [1] and 

leukemia [5], we overview benchmark results derived in those domains, constituting a 

reference base line. 

1.5.1 Breast Cancer 

Laura Van’t Veer and colleagues in [1] derived a 70 gene signature, using a filter 

approach, able to discriminate between the two prognostic groups in breast cancer. 

The two prognostic groups correspond to those patients that after treatment or 

operation, a relapse didn’t occur for a period of at least 5 years and belong to the good 

prognosis group, while patients for whom a relapse occurred within a 5 year period 

correspond to the poor prognosis group.  

Classification on the training set of 78 patients is depicted in Figure 10 (panel b). 

Patients below the dashed line have a good prognosis profile while the prognosis is 

poor for patients above the dashed line. Classification on a test set of 19 new patients 

is depicted in Figure 10 (panel c) classifying correctly 19/17 patients (89.47%) 

success rate. The same gene signature was further validated on 295 patients [3] (234 

new patients + 61 patients that were included in the previous study [1]), Figure 11.  
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Figure 10: Supervised classification, patients correspond to rows, genes to columns. Genes are ordered 
according to their correlation coefficient with the two prognostic groups. Patients are ordered by the 
correlation coefficient to the average profile of the good prognosis group. Above the dashed line 
patients correspond to the good prognosis signature; below the dashed line the prognosis signature is 
poor. 
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Figure 11: Panel A shows the expression profile of the 70 marker genes (columns) in a series of 295 
patients (rows). Tumors are rank ordered according to their correlation with the previously determined 
average profile, while genes are ordered according to their correlation with the two prognostic groups. 
Panel B shows the time in years to distant metastasis as a first event for those in whom this occurred, 
and the total duration of follow up for all other patients. 
 

 

Figure 12: Survival prediction on the classification result of the 70-gene signature on a series of 295 
patients. The gene expression profiling (Panel A) produced more significantly differentiated survival 
curves corresponding to the two prognostic groups than the standard St. Gallen Criteria. 
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Taking follow up times of the 294 patients the classification result produces the 

survival curves depicted in Figure 12 (panel A), where we observe that the probability 

of reaching a 12 year survival for the good prognosis group is approximately 0.9, 

while the corresponding probability for the poor prognosis falls below 0.5, indicating 

that the expression profile analysis of the 70-gene signature could be applied as a 

reliable clinical outcome predictor. Additionally the survival prediction derived 

through the 70-gene signature outperforms significantly the one derived by the 

standard St. Gallen risk criteria, indicating that the derived gene signature can help 

doctors in deciding for the treatment protocol in a more effective and reliable 

approach. 

1.5.2 Leukemia 

Leukemia is basically distinguished in two types AML (Acute Myeloid Leukemia) 

and ALL (Acute Lymphoblastic Leukemia). Although the distinction between ALL 

and AML has been well established, no single test is currently available to establish 

the diagnosis. Rather, current clinical practice involves an experienced 

hematopathologist’s interpretation of the tumor’s morphology, histochemistry, 

immunophenotyping, and cytogenetic analysis, each performed in a separate, highly 

specialized laboratory. Although usually accurate, leukemia classification remains 

imperfect and errors do occur.  

Distinguishing ALL from AML is critical for successful treatment; chemotherapy 

regimens for ALL generally contain corticosteroids, vincristine, methotrexate, and L-

asparaginase, whereas most AML regimens rely on a backbone of daunorubicin and 

cytarabine. Although remissions can be achieved using ALL therapy for AML (and 

vice versa), cure rates are markedly diminished, and unwarranted toxicities are 

encountered. Golub et al. [5], using a filter method in combination with a variation of 
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Figure 13: The 50 genes mostly correlated with AML and ALL, each row corresponds to a gene and 
each column corresponds to a patient. Top panel shows genes more highly expressed in ALL , bottom 
panel shows genes more highly expressed in AML. 
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Fisher’s ratio derived a 50 gene signature that was able to discriminate between the 

two types of leukaemia. The 50-gene predictor in a leave one out cross validation 

procedure classified correctly 36/38 samples of the training set, while it classified 

perfectly 34 samples that were used as an independent test set. The expression of the 

50-gene signature on the training set is depicted in Figure 13. Applying a wrapper 

approach in combination with an SVM classifier Guyon et al. in [6] improved even 

further the result by deriving an 8-gene signature able to distinguish perfectly the two 

types of leukaemia. An even better result is reported in [7], where a wrapper method 

in combination with a Ridge Regression Classifier derived a 3-gene signature able to 

distinguish also perfectly between the AML and ALL type. Even though authors of 

these two studies did not report the gene names, still the results are very impressive 

opening the road to wrapper methods and pattern recognition approaches. 

1.5.3 Related Work 

To effectively address the problem of gene marker selection one has to take into 

account its various peculiarities. In this section we point out some important aspects 

of the problem along with related work. One such aspect that needs special attention 

is the existence of multiple equivalent solutions due to ‘curse of dimensionality’ 

which leads to a huge and sparsely covered search space; this issue has been 

addressed by Ein-Dor et al. in [8].  

Some studies distinguish the task of classification from that of feature selection, 

but many published results contradict each other. We refer to the study of Niijima and 

Kuhara [9], in which by applying a filter method along with a nearest mean classifier 

their results contradict the findings of Guyon et al. [6] in colon cancer. The selection 

of the training set could play a crucial and catalytic role on the selection of the final 

gene signature. This is issue has been addressed by Michiels et al.[10] showing the 
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strong dependence of a molecular signature on the patients selected to constitute the 

training set. The authors propose a strict approach for assessing the statistical validity 

of a gene signature, by appropriately derived confidence intervals. 

The aspect of bias in the gene selection problem is an issue that needs special 

attention and has been effectively addressed by R. Simon et al. [11] showing that 

wrapper methods introduce a large amount of bias when using internal evaluation 

criteria. Ambroise and McLachlan [12] verify this fact but also demonstrate that the 

bias is corrected when external evaluation criteria are used. 

Evaluating cross platform performance of a gene signature is still an open issue on 

the problem of marker gene selection. Experiments are conducted using a) different 

microarray platforms, b) different protocols, c) different populations and d) different 

experimental set up; some research groups use a double array while other groups use a 

single array experiment. Such differences raise limitations on the cross platform 

evaluation of results Yu et al. [13] address such issues and derive a 62-gene 

expression signature that could predict effectively the prognosis group of estrogen 

receptor positive patients in two different cross platform evaluation sets. 

1.6 Our contribution 

In this study we address the problem of marker gene selection, mostly from the view 

point of wrapper methods, revealing their advantages and disadvantages on various 

domains (diseases) of interest. It is evident to the reader by now that there are two 

quite different approaches addressing the problem of marker gene selection (section 

1.3), the Filter and the Wrapper one, each demonstrating its advantages and 

disadvantages depending on the application domain. Beyond results, comparison 

criteria, effectiveness or reliability of each approach, it becomes apparent that 

integration or hybridization of those two quite different approaches into a single task 
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could be an effective alternative to address the problem. Furthermore, integration of 

statistical results with biological knowledge is essential for validating any gene 

signature on a meaningful clinical basis. Thus, we propose  

1. An integration platform where filter and wrapper methods could be hybridized 

with one another aiming in the improvement of the produce result. 

2. Application of such an integration platform in breast cancer to derive 

comparable to the state of the art gene signatures. In addition we suggest an 

evaluation framework where the various methods could be tested in an 

objective, reliable and fair manner, using stringent statistic criteria. 

3. Besides the proposed statistical criteria which address the significance of 

results from a statistical point of view, we also propose a framework for 

biological validation and integration through appropriate use of GOBPs and 

Pathways. 

1.7 Thesis Overview 

The thesis is organized into 5 chapters following a conceptual evolution of results. 

Each chapter is accompanied with an abstract and an introduction section to assist 

reader’s focus, along with partial conclusion at the end of each chapter. In Chapter 2 

we proceed by proposing a framework where Filter and Wrapper approaches could be 

effectively hybridized with each other. The proposed approach is tested in comparison 

with a representative wrapper method based on support vector machines. We 

alternatively refer to our publications relative to the work assessed in this chapter 

[21], [30], [31], [32], [33], and [34]. In Chapter 3 we further validate our approach on 

additional data sets, but we also establish an evaluation framework where various 

methodologies could be evaluated in a fair and subjective manner. Through such an 

evaluation we derive at a promising 57-gene breast cancer signature [35], giving 
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significant statistical results compared to other bench mark studies. In Chapter 4, we 

assess the biological significance of the derived gene signature, demonstrating that 

besides its statistical importance it is also compliant with valid biological knowledge 

[36]. In Chapter 5 we investigate the biological knowledge hidden behind the 70-gene 

Van’t Veer’s signature (section 1.5.1). We proceed by integrating it with the 

knowledge hidden behind our 57-gene signature derived in Chapter 3, proposing a 

process of biological knowledge evolution, leading to an approach of unfolding the 

biological mechanisms which might be involved in breast cancer [37]. 
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CHAPTER 2 

2 Wrapper Filtering Criteria Via a Linear Neuron and 
Kernel Approaches 

2.1 Abstract 

Objective: In this chapter we aim at integrating the filter with the wrapper approaches 

by applying filter criteria in a recursive fashion, where weights are potentially 

adjusted from iteration to iteration, producing noticeable improvement on the 

generalization performance measured on independent test sets. 

Methods and Materials: Towards this direction we explore the behavior of two well 

known and broadly accepted pattern recognition approaches namely the Support 

Vector Machines (SVM) and a single Linear Neuron (LN), properly adapted to the 

problem of marker selection. Within this context we also show how the kernel ability 

of SVM could be employed in a practical manner to provide alternative ways to 

approach the problem of reliable marker selection. 

Results: We explore how the proposed approaches behave in two application domains 

(breast cancer and leukemia), achieving comparable with, or even better results than 

those reported in the related bibliography. An important advantage of these 

approaches is their ability to derive stable performance without deteriorating due to 

the complexity of the application domain. Validation is performed using Internal 

Leave One Out (ILOO) and 10-fold cross validation as well as independent test set 

evaluation. Results show that the proposed methodologies achieve remarkable 

performance and indicate that applying filter criteria in a wrapper fashion (‘wrapper 

filtering criteria’) provides a useful tool for marker selection. The contribution of this 

study is three-fold. First it provides a methodology for integrating the filter with the 

wrapper approach, second it introduces a fundamental pattern recognition component 
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namely the single neuron (which is a linear estimator) and explores its behavior on 

marker selection and third, it demonstrates an approach to exploit the kernel ability of 

SVMs in a practical and effective manner.  

2.2 Introduction  

Although it has been demonstrated that performance of wrapper methods is superior 

to those of filter [1], [2], many experts prefer using filter methods [3], [4], [5], [6]. In 

these studies mostly variations of Fisher’s ratio are used as the basic tool for marker 

selection, relying very much on desirable intrinsic characteristics of selected features, 

i.e. the differential expression of genes in the two classes of interest. This aspect is not 

addressed by wrapper methods that focus only on classification neglecting such 

characteristics. Even though a number of wrapper approaches based mostly on 

support vector machines have been introduced in the recent years [1], [7], [8], no 

attempt to addresses the concept of integrating the wrapper with the filter approaches 

has been addressed so far. One of the closest approaches to this direction is the Gene 

Expression Model Selector (GEMS) [9], [10]. It uses a filter criterion to rank genes, 

while the selection process prefers the top most genes that maximize classification 

performance. In this study we go one step further and address this integration concept 

along with the motive of embedding intrinsic data characteristics into classical pattern 

recognition tools, thus implanting filtering criteria into a wrapper operation, and 

eventually improving performance over existing wrapper methods. Our motive can 

also be seen as an attempt to bridge the gap between the two ‘philosophies’. One 

proposed method is based on a Linear Neuron (LN)  enriched with a variation of 

Fisher’s metric and is referred to as Recursive Feature Elimination based on Linear 

Neuron Weights (RFE-LNW). A second approach is based on SVMs and is referred 

to as RFE based on the Fisher’s metric and Support Vectors (RFE-FSVs). It makes 
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use of a fundamental property of support vector machines, which enables us to exploit 

various kernels in combination with the Fisher’s ratio. More details on these two 

methodologies are provided in sections that follow. The proposed algorithms are 

tested under the same conditions and using various types of experiments in order to 

reveal the consistency of their performance. 

A final point we address in this study is that of linearity. Due to the high 

dimensionality of the problem, most studies approach marker selection as a linear one 

using linear approaches. However, the field of interest is very complex with thousands 

of features and probably innumerable interconnections and dependencies among those 

features. A question of interest is immediately posed as: could non linear kernels help 

towards a better solution? The experimental section demonstrates that nonlinear 

approaches could indeed be useful to the process of marker selection, especially 

towards the end of the selection process where only a few markers have survived. 

2.3 Methods 

2.3.1 Background Knowledge on SVMs and GEMS 

SVM [11] attempts to find the best separating hyperplane to distinguish between the 

two classes of interest, positive (+1) and negative (-1). This is done by maximizing 

the distance 2
w

 between the two parallel lines ( ) 1b⋅ + =w x  and ( ) 1b⋅ + = −w x , 

which form the margin of separation of the two classes as shown in Figure 14. The 

final separating hyper-plane passes through the middle of this margin with 

equation ( ) 0b⋅ + =w x . The decision function then, is a function of the form: 

 ( ) ( )( )sgnf x b= ⋅ +w x  (2.1) 
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Figure 14: Illustration of the binary classification problem, showing the margin of separation between 
the two classes; circled points represent the support vectors. 

where w represents the direction vector of the hyper-plane. The sign of the value 

returned by equation (2.1) indicates the predicted class associated with example x , 

while ( )f x  indicates the confidence level of the resulting decision. The SVM 

problem can be equivalently formulated as follows: 
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By the duality theory, a tutorial of which can be found in [12], the problem can be 

transformed to the following maximization problem, whereλ represents the vector of 

Lagrange multipliers and iy  represents the label (either +1 or -1) of the ith sample: 
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Towards the solution of this problem, we obtain the following expression for the 

direction vector w : 

 
1

n

j j j
j

yλ
=

=∑w x  (2.4) 

which is actually an expansion of those training samples with non-zero jλ , i.e. the 

support vectors. It can be proved that support vectors lay on the borders of the class 

regions (as Figure 14 illustrates) and can be used to find b by substituting one of the 

support vectors to the following equation: 

 ( )( ) 1j jy b⋅ + =w x  (2.5) 

An important issue making SVMs very attractive is that they allow the use of 

kernels, so that the dot product in equation (2.3) can be replaced by a kernel function 

in the following form: 
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Besides the linear kernel in equation (2.3), other types of kernels such as polynomials 

of any degree, as well as Radial Basis Functions (RBF) can be used in the forms of: 
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For a detailed essay on SVM the interested reader may refer to [11]. 

GEMS (Gene Expression Model Selector) [9], [10] is a wrapper gene selection 

method that employees an SVM classifier to assist its task. The heart of GEMS 
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consists of a nested cross validation procedure presented in table 1. Gene selection is 

based on Fisher’s ranking criterion as in [3], which will be presented in more detail in 

the next section. At each cross validation cycle, the highest rank gene that also 

achieves the best classification performance across the nested cross validation 

procedure is selected as a significant one and it is added to the list of the previously 

selected genes, while the performance of the list is being recorded. The procedure 

continues iteratively until the pre-specified number of genes is selected. Finally, the 

list of genes achieving the highest classification accuracy is reported as the final set of 

markers. 

1 Repeat n times 
• Training set ← 1n−  subsets; 
• Testing set ← remaining subset; 

1.1 Repeat for 1 ( )i k number of posible C values= … : 
a. Repeat 1n−  times (for samples only in the training set) 

o Training_validation set ← 2n−  subsets; 
o Testing_validation set ← remaining subset; 
o Train an SVM classifier using parameter Ci ; 
o Test it on the Testing-validation set. 

b. Record ( )P i , the performance of the SVM classifier over 1n−  
Testing_validation sets. 

1.2 Determine jC  where ( )arg max 1j P i for i k= = … ; 
1.3 Train the SVM classifier on the training set using parameter jC . 
1.4 Test the classifier obtained in step 1.3 on the testing set. 
2. Return p , the best performance of the classifier over n  testing sets. 

Table 1: Nested cross validation process of the Gene Expression Model Selection (GEMS) procedure. 

2.3.2 The RFE-SVM Method 

The RFE-SVM method [1] is based on SVMs [11] and the idea of ranking features 

according to the absolute value of the components of the direction vector w . As 

expressed in equation (2.4), each individual component of w  is associated with an 

individual component of vector x , which is the expression level of an individual 

feature. Thus, every feature (gene) is multiplied by a weight; the larger the absolute 
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value of its weight, the more important that feature is according to RFE-SVM, in the 

sense that it contributes more to the decision function of equation (2.1). As a 

consequence, genes can be ranked according to the absolute value of the individual 

components of w . A general overview of the method is given in Table 2. 

1. Let m  be the initial number of features. 
2. While ( )0m ≥   
3. Estimate the direction vector w of the separating hyperplane 

using linear SVM. 
4. Rank features according to the components of w . 
5. Remove the feature with the smallest weight in absolute value 

( )1m m← − . More than one features can be removed in each 
iteration. 

6. Estimate classification accuracy of the m  surviving features 
using a linear SVM classifier. 

7. End While 
8. Output as marker genes the set of surviving features achieving 

maximum accuracy performance. 
Table 2: The Recursive Feature Elimination based on SVM (RFE-SVM) algorithm. 

2.3.3 Differentially Expressed Genes 

The basic idea behind the development of the proposed methodologies is the 

identification and eventually the selection of differentially expressed genes. This idea 

is not new in marker selection; it has been stated in various studies a number of which 

were cited in section 2.2. In all these studies domain experts are using variations of 

Fisher’s coefficient which is given by the following equation: 

 ( ) ( ) ( )( )
( ) ( )
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2

2 2
i i
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i i
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A variation of Fisher’s coefficient could be expressed as: 
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where, ( )igµ+ , ( )igµ− , ( )igσ+  and ( )igσ− are the means and standard deviations 

of the expressions of gene ig in positive and negative class respectively, n is the 

number of samples and 

 ( ) ( ) ( )( )
2

i i
i

g g
c g

µ µ+ −+
=  (2.10) 

Another variation of low computational cost is given as: 

 ( )
( ) ( )
( ) ( )3

i i
i

i i

g g
f g

g g
µ µ
σ σ

+ −

+ −

−
=

+
 (2.11) 

Elaborating more, one could easily verify that equation (2.8) as well as equations (2.9) 

and (2.11) essentially express the same concept. When using these equations to assign 

weights to a set of given genes, it is obvious that genes which differentiate more their 

expression in the two situations (say -3 in the pathological cases and +3 in the normal) 

are assigned higher weights than those which differentiate less between the two 

classes. Genes that express themselves in exactly the same way between the two 

situations (they take the same expression in both pathological and normal states) are 

assigned the minimum weight of zero. We propose to use such a metric in a wrapper 

fashion, embedded properly within the learning procedure of linear neurons and 

SVMs in order to assist the task of marker selection. 

2.3.4 The RFE-LNW Approach 

Most marker selection approaches applied to the field of DNA microarray, due to the 

high dimensionality of the data, use linear tools to assess the problem. RFE-SVM is 

such a method where a linear kernel is used to estimate the weight vector of the 

separating hyperplane, the absolute value of which is then used as the ranking 

criterion of genes. On the other hand, due to its design (a linear combination of 
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inputs) a Linear Neuron (LN) can also approximate any linear function. Thus, we 

propose to use such a Linear Neuron to approximate the separating hyper-plane 

between positive and negative classes. Taking advantage of such an open architecture, 

we could choose among a variety of learning schemes, or easily embed a new learning 

procedure properly adapted to the underlined problem while we could further expand 

to multilayer and multi-class formulations. This is applied as a single  

∑ f

2g

mg

u y

1g

 

Figure 15: A single neuron adapted to the marker selection problem. 

neuron network of m inputs (Figure 15), where m corresponds to the number of genes. 

Considering two possible outcomes at the output layer, namely output 0 for the 

negative class and 1 for the positive class, we can use such a Linear Neuron (LN) to 

approximate the separating hyper-plane that distinguishes the two classes of interest 

(negative, positive). More specifically, using the sigmoid function ( )f u  we obtain: 

 ( )1
1 uy f u

e
= =

+
 (2.12) 

 
1

m

i i
i

u w g
=

=∑  (2.13) 

 ( ) ( )1f u y y′ = −  (2.14) 

Note that ( ) 0f u′ ≥  since y  ranges 0 to 1. 
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2.3.5 Training the RFE-LNW 

In this section we provide the basic mathematical background of the training 

procedure used to iterate the weights of the Linear Neuron. The error function of a 

single neuron that is to be minimized is given by: 

 ( )2

1

1
2

n

j j
j

E d y
=

= −∑  (2.15) 

 where n corresponds to the number of samples, jd  represents the desirable neuron 

output associated with sample j  and jy  is the actual output produced by this neuron 

for the given sample. Through the gradient descent method for the minimization of 

equation (2.15), we update the weight iw  associated to gene ig  as follows: 
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We propose to influence the update through the Fisher’s metric in equation (2.9) as 

follows: 
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Finally 
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( ) ( )1

1 ij i
i i j j ij
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σ σ+ −=
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where t  represents current iteration, µ  is the learning rate and  

 ( )j j je d y= − . (2.17) 

working with signs, which is an idea introduced in resilient back propagation learning 

[13], we express (2.16) as follows: 

• In case that ( )2 1if g = , which is similar to the standard back-propagation 
procedure we get: 

 ( ) ( ) ( )
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i i j j ij
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w t w t e f u gµ
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• or in general: 
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Equation (2.18) is the basic gradient descent learning algorithm proven to drive the 

error function (2.15) to a minimum. Equation (2.19) also converges since by keeping 

the sign of the gradient we are heading towards the direction of the minimum, which 

eventually will be reached (except in cases when trapped to a local minimum) by 
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using the appropriate learning rate. In fact, we expect (2.19) to converge faster than 

(2.18) since je  and ( )jf u′  in (2.18) can take very small values resulting in low 

modifications of w , implying low modification of the error function and slowing 

down convergence [13]. Taking only the sign of the gradient in (2.19) we are heading 

towards the direction of the minimum taking ‘larger stable steps’ and speeding up 

convergence at least when the process is far from a minimum. This derivation is very 

helpful in its application of the marker selection process, since it forces the algorithm 

to converge much faster, especially at the first steps of the process where the number 

of attributes (genes) is extremely large. Equation (2.20) differs from (2.19) only in the 

coefficient ( )2 .f . Following the same reasoning, (2.20) can be proved to converge to a 

minimum, but in addition it takes into consideration and eventually measures through 

the summation term an approximation of the Fisher’s metric. Low dimensionality, 

however, may slow down convergence. As the process elevates and the problem 

dimensionality is significantly reduced, the samples over attributes ratio increases and 

the problem of estimating the separating hyperplane becomes harder, slowing down 

convergence. This necessitates the increase of either the number of epochs or the 

learning rate. At these last steps, equation (2.21) could be used to speed up 

convergence by using a variant learning rate j jd y− . It is straight forward to show 

that while we are far from the target j jd y−  will take a ‘large’ value speeding up 

convergence, but, while we are approaching the goal j jd y−  will start taking lower 

values, thus, slowing down convergence. In other words, at the last steps of the 

feature selection process we are heading towards the goal fast when we are far away 

from it, but we slow down when we are approaching the target for better fine tuning 

of the separating hyperplane. In our proposed iteration scheme, equation (2.20) in 
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combination with equation (2.21) are the final weight update rules used to asses the 

weights, while equations (2.18) and (2.19) are mostly used for explanation and 

justification purposes.  

As a concluding remark of this section, we point out that by training a single 

neuron with an appropriate learning procedure, we can eventually apply a filter 

criterion such as Fisher’s ratio in a wrapper fashion. 

2.3.6 Emphasizing Differentially Expressed Genes 

The selection of differentially expressed genes is a desirable goal of any marker 

selection approach [14]. Thus, we need to prove that among the extremely large 

number of genes our method is fed with, it will finally select markers that are 

expressed in a different way between the (two) situations of interest. Figure 16 shows 

the expression level of a hypothetical gene ig  in negative ( )0C =  and positive 

( )1C =  class respectively. In cases (a) and (b) the hypothetical gene is differentially 

expressed in the two classes of interest, green (negative values) in negative class and 

red (positive values) in positive class or visa versa. On the other hand, cases (c) and 

(d) show no differentiation in the expression level of the specific gene in the two 

situations of interest. Considering case (a) in combination with equation (2.19) and 

focusing on the negative class (green part), we notice that the term 

( )( ) ( ) 0j j ijsign e f u sign g′⋅ ⋅ ≥ holds; indeed 0je ≤  (since 0jd =  (2.17) and 

[ ]0 1jy ∈ ), ( )jf u′  from equation (2.14) is positive and 3ijg = − . Now focussing on 

the positive class (red part) of Figure 16 (a) and using the same reasoning we notice 

again that ( )( ) ( ) 0j j ijsign e f u sign g′⋅ ⋅ ≥ . Since the term je  in a realistic scenario is 

most often non zero, the summation term of equation (2.19) produces a positive result. 

Following about the same reasoning in case (b) of Figure 16 one may show that  
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Figure 16: Differentially expressed genes versu non differentially expressed 

equation (2.19) produces a negative result, while the summation term for this equation 

in cases (c) and (d) produces results close to zero since the term values in the two 

classes negate each other. If we now consider the absolute values of the assigned 

weights, we see that differentially expressed genes (cases (a) and (b)) take larger 

values than genes that do not differentiate their expression (cases (c) and (d)) in the 

two situations of interest. Notice on the contrary that equation (2.18) can not produce 

the same effect, since it depends on the value and not on the sign of term je  , which 

eventually could be very low and diminish the expected result. 

On the other hand, Equation (2.19) is unfair to differentially expressed genes since 

by taking only the sign value, genes that are more differentially expressed will be 

assigned the same weight with genes that are less differentially expressed. A more fair 

solution would be to assign higher weights to more differentially expressed genes, 

which is achieved by equation (2.20) where the magnitude term ( )2 if g  is also 

introduced. 

2.3.7 Incremental Versus Batch Learning 

Equations (2.18)-(2.21) update the weight term ( )1w t +  after all the examples are 

presented to the network, that is after the summation terms have been evaluated. This 

is referred to as batch training in neural network theory. Alternatively, one may 
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update the weights incrementally considering one sample at a time, in which case the 

summation terms can be dropped. To emphasize this update strategy we present the 

above set of equations again as follows: 

 ( ) ( ) ( )1i iw t w t ef u gµ ′+ = +  (2.22) 

 ( ) ( ) ( )( ) ( )1i iw t w t sign e f u sign gµ ′+ = + ⋅ ⋅ ⋅  (2.23) 

 ( ) ( ) ( )( ) ( ) ( )21i i iw t w t sign e f u sign g f gµ ′+ = + ⋅ ⋅ ⋅ ⋅  (2.24) 

 ( ) ( ) ( )( ) ( ) ( )21i i iw t w t d y sign e f u sign g f g′+ = + − ⋅ ⋅ ⋅ ⋅  (2.25) 

For the experiments conducted in this work, weights are updated in an incremental 

fashion, since for the specific domains it was proved to produce better results than the 

batch mode weight-update method. However, we think that this is a domain specific 

decision and we can not draw a safe general conclusion in favor of one or the other 

weight update mode. Note that for the experiments conducted in this work, equation 

(2.25) was applied from the point of 100 surviving genes up to the end for the process. 

2.3.8 Algorithmic Presentation of RFE-LNW 

Table 2 provides an algorithmic overview of RFE-LNW method as described in the 

previous sections. Notice that besides the advantage of using a single neuron as our 

only learning component, we have also managed to apply filter criteria in a true 

wrapper fashion, where weights are re-evaluated and potentially adapted from 

iteration to iteration. Indeed, by eliminating genes we are actually reducing the 

dimensionality of the problem and thus, the new estimated hyperplane is re-evaluated 

in a new reduced space with a new direction vector w . In real-world applications it 
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seems appropriate that gene weights are changing from iteration, to iteration since a 

large feature space with many insignificant genes can obscure the influence of truly 

1. Let m  be the initial number of features 

2. While ( )0m ≥  

3. Update the weight vector w  using equations (2.24) and (2.25). 

(For the experiments conducted in this study, equation (2.24) was used as 

long as the number of surviving features was greater than 100, whereas 

equation (2.25) was used otherwise). 

4. Rank the genes according to the absolute values of vector w . 

5. Remove the feature with the smallest weight in absolute value, 

( )1m m← − . More than one features can be removed in each iteration. 

6. Estimate the classification accuracy of the m  surviving features using a 

linear SVM classifier. 

7. End While 

8. Output as marker genes the set of surviving features achieving the best 

classification accuracy. 

Table 3: The RFE-LNW method, based on the weight assignment of a properly trained linear neuron. 

important ones, which become more relevant as the dimensionality of the problem 

reduces. Notice the difference with the filter method where the fisher metric of 

surviving genes remains stable along the entire phase of the feature selection process 

and so does the separating boundary it defines. 

2.3.9 RFE-SVM and RFE-LNW 

In this section we use a simple example to compare the proposed methodology (RFE-

LNW) with the well established RFE-SVM. It is well known that SVMs find the 

direction vector w  and the shifting parameter b  of a line that maximizes the distance 

between positive and negative classes of the given samples. Alternatively, through 

equations (2.20) or (2.24) RFE-LNW searches for approaching the direction vector w  

of the line that maximizes the ‘difference’ on the expression level of the selected 
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markers. The result of these two quiet different philosophies is demonstrated through 

the following simple example. Consider that we are given 4 samples, 2 negative and 2 

positive, which are depicted in Figure 17; negative samples are represented by 

asterisks while positive are represented by circles. These samples are described by 2 

genes each, defining a two dimensional space. Let g1 be the single descriptive marker 

on this toy domain, where a negative values of g1 designate the negative class while 

positive values designate the positive class.  

Letting the two systems operate on the examples given, we notice a quiet different 

behavior on their learning philosophies depicted in Figure 17. Since RFE-SVM tries 

to maximize the distance between the two given classes, it derives the dashed line. 

RFE-LNW on the other hand, using a learning rate of 0.1 and 200 epochs in 

combination with equation (2.24) discovered the underlined rule, expressed by the 

solid line in Figure 4. Through this simple example we aim at demonstrating that 

maximization of the distance between the two classes of interest may not always be 

the best choice for marker selection and that additional prior constraints reflecting the 

intrinsic domain properties might be necessary in order to derive not only 

stochastically but also biologically sound results. This is exactly a targeted advantage 

of our proposed methodological scheme which is demonstrated through the neuron 

but can also be extended to the SVM formulation as in the next section. An add-on 

advantage of the proposed approach is that it offers a general solution for using filter 

criteria in a wrapper fashion, allowing other filter criteria besides Fisher’s metric to be 

used as well. A drawback of the LNW compared to SVM formulation is that it suffers 

from the local minimum problem and requires the fine tuning of a number of 

parameters, such as the learning rate, number of epochs and the point in the feature 

selection process that switches to a variant learning rate through equation (2.25). 
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Figure 17: Illustration of learning differencies between the RFE-LNW and RFE-SVM methodologies. 

An alternative approach which makes use of SVMs and Fisher’s ratio is presented in 

the next section, referred to as RFE-FSVs method. This approach is based on SVMs 

and hence the local minimum problem is resolved. Besides, it has a smaller number of 

parameters to refine as is presented in subsequent sections. 

2.4 The RFE-FSVs Approach 

According to SVM theory, the direction vector w of the separating hyperplane is 

given by equation (2.4), as an expansion of the samples whose jλ ’s are non zero, i.e. 

the support vectors. Based on this equation the individual components of the direction 

vector w  could be found by: 

 
1

n

i j j ij
j

w y xλ
=

=∑  (2.26) 

Let SVs be the set of support vectors and S be the set of indices defined as: 

 { }:S k SVs= ∈kx  (2.27) 

Focusing only on support vectors (2.26) can be written as: 



Chapter 2:                                                  Wrapper Filtering Criteria Via a Linear Neuron and Kernel Approaches 

 46

 i j j ij
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We propose to introduce the metric (2.11) into the above formulation as: 
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s+ i s- i
i j j ij

s+ i s- i
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µ g - µ g
sign sign

σ g +σ g
w y xλ

∈
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where , , ,s s s sµ µ σ σ+ − + − , are the means and standard deviations of the support vectors 

for positive and negative classes. Note that in equation (2.29) the component iw′  is 

computed based only on the support vectors, since jλ  is zero for non support vectors 

and so does the Fisher metric utilized. Hence, the direction vector ′w  defined in 

equation (2.29) expresses a Fisher’s line that passes through the origin and retains the 

same direction sign with the line defined by the conventional SVMs approach. This 

new line can be used for defining the ranking criterion of surviving genes. Also note 

that by using different kinds of kernels we are supplied with different sets of support 

vectors and thus, different Fisher lines. Overall in the proposed RFE-FSVs 

methodology we propose to use the absolute values of the components of the direction 

vector ′w  defined in (2.29) as a new ranking criterion, while preserving the general 

structure and the iteration scheme of the conventional RFE-SVM approach. 

Besides the mathematical formulation of the proposed methodology, we will also 

attempt to reveal an intuitive reasoning hidden behind the RFE-FSVs method. As it 

was explained in section 2.3.2, support vectors lie on the margin of the separating 

hyperplane (Figure 14). A significant property of SVMs is that the learning process 

never changes as long as all support vectors remain the same. More specifically, the 

system learns the exact same separating hyperplane by keeping only the support 

vector samples (which might be only a small proportion of the entire data set) and 
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ignoring all remaining samples. The converse however is not true; by ignoring some 

or all of the support vectors, the system is forced to learn a different boundary of 

separation. This means that by keeping only a small proportion of the entire training 

set, namely the support vectors, the system learns the same rule as if the entire set was 

presented to it. Thus, SVMs are mostly based on quality rather than on quantity of the 

supplied samples, in the sense that a few but representative cases could be enough to 

derive the underling rule. Not representative samples, on the other hand, used as 

support vectors could lead to a peculiar solution such as the one presented in section 

2.3.9. In order to minimize such a side effect, kernels could play the role for locating 

appropriate and representative samples, as well as for better refining the separating 

hyperplane, since as the process progresses and dimensionality is reduced non-linear 

kernels could become better approximators. Furthermore, support vectors lie around 

the margin of separation between the two classes, which is the critical region to 

distinguish between the two situations of interest (Figure 14). Based on this property, 

one issue of particular algorithmic but also biological interest concerns the gene 

topology that forces a specific patient to cross the border of separation from one class 

to the other. The idea then behind the proposed methodology is to focus on the class 

borders and examine the factors that cause this misallocation. The borders are 

determined by the support vectors and by selecting different kinds of kernels we can 

obtain a variety of support vectors, which can also be viewed as different sets of 

domain representatives. Kernels then play the dual role of search engines that help us 

locate a representative subset of crucial samples, as well as for better fine tuning of 

the separating hyperplane, as dimensionality is decreased and linearity becomes 

questionable. The use of kernels could lead to an increase of the generalization 

performance of the selected markers by focusing on characteristic properties of the 
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problem domain. Notice that both proposed methodologies take into account intrinsic 

domain characteristics expressed through variations of the Fisher’s ratio. Also note 

that RFE-FSVs by using the support vectors focuses at the class borders, while RFE-

LNW on the other side aims on the entire class topology. In any case however, no safe 

conclusion can be drawn in favor of one or the other method as it seems to be a trade 

off situation and a domain specific dilemma. 

By enriching the proposed methodology (RFE-FSVs) with intrinsic characteristics 

towards the appropriate application of Fisher’s criterion in a wrapper fashion, genes 

are ranked according to the absolute values of the weight vector given by equation 

(2.29). The gene weights are changing and adjusted along the process, since the set of 

support vectors is not fixed in the entire evaluation phase. One argument that could be 

posed as a criticism for this approach is that since we work on a very large 

dimensional space there is an over fitting problem whenever a large proportion of the 

samples become support vectors. However, over fitting is not in fact a problem since 

we use the support vectors only for estimating the ranking criterion and classifying 

the training set. For classification purposes of new unseen samples a linear kernel is 

used as in the conventional RFE-SVM approach. Another criticism could be raised 

that the proposed method may degrade to the original filter one. Nevertheless, this is 

only true in the very seldom case where all samples are support vectors across the 

entire feature elimination process. A specific study addressing the above issues is 

conducted later in section 2.6. 

2.4.1 Algorithmic Presentation of RFE-FSVs 

We are now introducing the proposed feature selection method referred to as RFE 

based on Fisher’s metric and Support Vectors (RFE-FSVs) which is described in the 

Table 4 
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1. Let n  be the initial number of features 

2. While ( )0m ≥  

3. Create and train the SVM classifier using any type of kernel. 

4. Locate the Support Vectors (SVs). 

5. Based on the Support Vectors only rank the genes according to the value 

returned by equation (2.29). 

6. Remove the feature with the smallest weight in absolute value, 

( )1m m← − . More than one features can be removed in each iteration. 

7. Estimate the classification accuracy of the m  surviving features using a 

linear SVM classifier. 

8. End While 

9. Output as marker genes the set of surviving features achieving the best 

classification accuracy. 

Table 4: The Recursive Feature Elimination based on the Fisher's metric and Support Vectors (RFE-
FSVs) algorithm. 

Noteworthy aspects of the above implementation are the following:   

1. It provides an alternative way to embody a filtering criterion within a wrapper 

methodology, taking into consideration intrinsic characteristics of the data.  

2. By focusing only on the support vectors for ranking features, we can actually 

use any type of kernel (besides the linear one) to approach the problem of 

marker selection. 

3. Any type of correlation coefficient could be used as a criterion of feature 

ranking. 

4. By using various types of kernels, the proposed methodology can be directly 

applied to non-linearly separable problems. 

The performance of the proposed methodologies and the validation of their properties 

are elaborated in the next sections through direct application on two data sets. 
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2.5 Applied Data Sets 

The two data sets tested in this study are from the Leukemia and Breast Cancer (BC) 

application domains published in [3] and [4], respectively. Both data sets consist of a 

training set and an independent test set. The Leukemia domain contains 7129 genes, 

where the training set consists of 38 samples (27 ALL and 11 AML) and the test set 

of 34 samples (20 ALL and 14 AML), all normalized to a zero mean and standard 

deviation one, as suggested in the original publication [3]. The BC data set contains 

24481 genes and 78 samples on the training set, 44 of which is characterized negative 

and correspond to patients that remain disease free for a period of at least five years, 

whereas the remaining 34 are characterized positive and correspond to patients that 

developed a relapse within a period of five years. 293 genes expressing missing 

information for all 78 patients were removed and the remaining 13604 missing values 

were substituted using Expectation Maximization (EM) imputation [15]. The 

independent test set consists of 19 samples, 7 negative and 12 positive. 

In a first attempt to compare the two domains, we performed an unlabelled cluster 

evaluation procedure. Using all genes of the leukaemia domain, this process resulted 

in two main clusters. By assigning then the known labels to the clustered samples, the 

two classes (ALL and AML) were almost completely discovered with only one 

sample being misallocated. A hierarchical clustering in combination with a Pearson 

correlation and average linkage was used. On the contrary, the BC domain can not be 

appropriately clustered, leading to the conclusion that there is a lot of overlap between 

the two classes.  
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Figure 18: PCA analysis on two domains, where we observe that the Leukemia domain (on the left) 
presents almost no overlap which, is not the case in the BC domain (on the right). 

This result was also verified by a PCA evaluation performed on the two domains, 

the results of which are visualized in Figure 18 for the three principal components of 

each data set. We observe that in the Leukemia domain, (Figure 18 (A)) the two 

classes are well separated between each other, while in the BC domain (Figure 18 

(B)) there is a lot of overlap between the two classes and in fact they are very tightly 

bound within each other. Taking also into account the overall variance of the two 

domains, we notice that in the case of BC the variance is much smaller (0.06) 

compared to the 0.97 value of the leukemia domain. From the above analysis on the 

two domains, we can conclude that the BC data set is much less separable than the 

Leukemia one, making gene selection a much more difficult and intriguing problem. 

It is worth stressing the fact that no preprocessing step is conducted on any of the two 

domains in the subsequent experiments. In the original study on BC domain [4], two 

preprocessing steps were taken that lead to 231 final set of genes, on which the actual 

gene selection process was applied. 
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2.5.1 Experimental Scenarios - Results 

Three series of experimental scenarios are conducted on the tested domains and the 

accuracy evaluation criteria (reported in Appendix I) are appropriately assessed in the 

conducted experiments.  

ILOO Accuracy Performance 

In this first experimental scenario, the Internal Leave One Out Success Rate (ILOO-

SR) is assessed for both tested data sets. Even though it is not an unbiased estimator 

and it introduces a significant amount of bias [16], ILOO is used here only as a mean 

of demonstrating the learning ability of the tested methodologies on the training set 

and not as an actual measure of success rate estimator. For a more unbiased and more 

realistic results, we use independent test set and 10-fold cross validation strategies, 

which correct for any introduced bias [16]. 

Independent Test Set Evaluation and 10-Fold Cross Validation 

In the second series of experiments, independent test set evaluation is used to derive 

the final set of marker genes by feeding the training samples to the gene selection 

procedure and proceed as follows: For each iteration of the feature selection process a 

pre-specified number of genes is eliminated according to the scenario presented in 

column 2 of Table 1 (leukaemia data set) and Table 3 (BC data set) in Appendix I. A 

classifier is build from the training set based on the survived features while it is tested 

on the independent test set provided for the two data sets. The minimum set of genes 

achieving the highest classification accuracy is then reported as the final set of 

markers. 

In the third series of experiments, a 10-fold cross validation scheme is assessed 10 

times as follows: The training samples are randomly divided 10( ) 10folds ×  times into 

training groups consisting of 90% of the training set and test groups consisting of the 
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remaining 10%; such a validation scheme has been proposed by Kohavi in [17]. For 

each of the one hundred runs, a gene selection procedure similar to that used for the 

independent test set evaluation (previous paragraph) is applied, yielding both a set of 

marker genes and a classification accuracy measured on the corresponding test group 

by the selected markers. The overall average of the number of markers selected, as 

well as the accuracy performance achieved in each run by those markers on the 

corresponding test group is reported in order to assess the final cross validation 

performance of the methodology under consideration. Markers at the end of each one 

of the one hundred runs are selected according to the following rule: The set of 

marker genes of size less than or equal to 100 providing the highest classification 

accuracy on the corresponding test group but also classifying perfectly the training set 

are identified as the selected set of marker genes. 

In all previously conducted experiments, unless otherwise stated, RFE-LNW was 

applied with 0.01 learning rate and 3000 epochs up to 100 genes. Beyond 100 genes, a 

variant learning rate through equation (2.25) was applied with 200 epochs up to the 

end of the process. A linear SVM classifier was used for accuracy assessment in all 

experiments. TIGR-MEV version 3.1 was used as the expression profile viewer. Note 

that for RFE-FSVs method, even though a kernel was used as a tool to search for a 

representative set of support vectors and for classifying the training set, the accuracy 

of the method on the independent test set was estimated using a linear SVM classifier. 

GEMS Experiment 

We also conducted a series of experiments to compare the performance of the 

proposed methodologies to that of the GEMS approach. GEMS software [18] has 

been designed in such a way that it can not be applied directly in the previously 

described experimental procedures. It uses a 10-fold cross validation strategy similar 
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to that presented before, but it provides as a final set of marker genes those that 

succeed the best classification performance across the 10 runs of each fold. Such a 10-

fold cross validation strategy was applied 10 times, and hence 10 set of marker genes 

were given as possible candidates. Outside GEMS software then, we tested the 

prediction ability of those marker sets to the corresponding independent test sets 

(which have not been used in the 10-fold evaluation process) and the marker set 

achieving the best performance was the final derived marker set for this experimental 

scenario. The results of the proposed methodologies are tested in a similar manner, so 

that a direct comparison to GEMS can be performed. In this experimental set an 

additional test (Q-Statistic) [19] measuring the statistical significance of the derived 

results is applied, revealing some interesting characteristics of the underlined 

methodologies. Note that, for this last experimental step, a linear SVM classifier was 

used according to the parameter values returned by GEMS that were estimated 

appropriately during the 10-fold cross validation procedure. 

2.5.2 Experimental Results on Leukemia 

ILOO Accuracy Performance 

The ILOO (Internal Leave One Out) accuracy performances of  RFE-LNW and RFE-

FSVs are summarized in Table 1 of Appendix I. We point out that we took advantage 

of the ability of the RFE-FSVs method to employ various types of kernels and we 

present the results for a 4th degree polynomial kernel (RFE-FSVs-4DK) and a 

combination of an RBF and a 7th degree polynomial kernels (RFE-FSVs-RBF7DK). 

In the case of kernel combination, we use an RBF kernel with γ = 0.01 as long as the 

number of surviving genes is larger than 100, whereas a 7th degree polynomial kernel 

was used otherwise. With this learning scheme, we emphasize the fact that while 

dimensionality is still large, an RBF kernel which defines different class regions is 
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used as a means of locating support vectors and estimating feature weights, whereas 

as the process iterates and dimensionality decreases (making the class distinction 

problem even harder) a 7th degree polynomial kernel is used in place of the RBF. 

We observe from Table 1 of Appendix I that all methods perform well on the 

ILOO evaluation criterion with an average ILOO-SR of over 99%, implying that they 

can learn and generalize fairly well on the training set. 

Independent Test Set Evaluation and 10-Fold Cross Validation 

The performance of the two methods is also evaluated on an independent test set, the 

detailed results of which are presented in Table 2 of Appendix I. An overview of the 

result on the independent test set is also presented in the right part of Table 5 below. 

We point out that the 97.06% accuracy achieved by the RFE-FSVs-RBF7DK, which 

corresponds to one missed sample, is very close to the best results ever reported on 

this domain, i.e. 100% accuracy with three selected genes respectively in [20]. 

Another outstanding result was reported in 0 with the RFE-SVM method, where 8 

genes achieved 100% accuracy on the independent test set. Unfortunately, we are not 

given the gene names that achieved this remarkable performance on these two studies 

and we could not reproduce these results. Concerning the RFE-LNW and the RFE-

FSVs-4DK, an Independent Test Set Success Rate (ITS-SR) of 94.12% was achieved, 

which corresponds to two missed examples with only two genes. 

As a concluding remark on this set of experiments we point out that the proposed 

methodologies produce comparable results, very close to the highest accuracy 

reported in the international bibliography, establishing that application of filtering 

criteria in a wrapper manner can be effectively applied. Their main advantage 

however, will become evident in the harder domain of breast cancer examined next, 

demonstrating a consistently high performance on a variety of data sets. 
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 Training Set 

10 Fold Cross Validation 

Independent Test Set 

Method Success Rate Genes Success Rate Genes Sensitivity Specificity 

RFE-LNW 99.00% 3 94.12% 2 0.93 0.95 

RFE-FSVs-
4DK 

99.00% 2 94.12% 2 1.00 0.93 

RFE-FSVs-
RBF7DK 

99.75% 2 97.06% 3 0.93 1.00 

Table 5: Leukemia Domain: performance of the tested methodologies on the 10-fold cross validation 
scheme as well as on the independent test set. 

The selected markers for the proposed methodologies are reported in Table 6 where 

we notice that X95735 (Zyxin) is common to all marker selection schemes. We point 

out the fact that all reported genes except the M19507 were also included in the set of 

50 markers published by Golub et al. in [3]. 

The performance of the 10-Fold cross validation scheme is presented on the left 

part of Table 5, where we observe that the RFE-FSVs-RBF7DK is slightly the best 

performer with a 99.75% average accuracy over 100 runs. RFE-LNW and RFE-FSVs-

4DK achieved also very good results of 99% each. A very interesting fact that was 

revealed in this series of experiments is that the most frequently selected gene by all 

tested methodologies is X95735 which is responsible for the protein of zixyn. This 

has also been reported in various studies [21], [22], [23] to be a highly informative 

gene. X95735 was always selected by RFE-LNW methodology (100 times, perfect 

frequency rate), 75 times by the RFE-FSVs-4DK and 81 times by the RFE-FSVs-

RBF7DK, implying that the proposed methodologies comply with already established 

knowledge on the specific domain. 
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RFE-FSVs-4DK 

Accession Symbol Description 

X95735 ZYX zyxin 

U22376 MYB v-myb myeloblastosis viral oncogene homolog (avian) 

RFE-FSVs-RBF7DK 

M19507 MPO myeloperoxidase 

M23197 CD33 CD33 molecule 

X95735 ZYX zyxin 

RFE-LNW 

M27891 CST3 cystatin C (amyloid angiopathy and cerebral hemorrhage) 

X95735 ZYX zyxin 

Table 6: Leukemia Domain: Markers selected by tested methodologies; zyxin is common to all marker 
sets. 

GEMS Experiment 

GEMS was applied 10 times using a 10-fold cross validation strategy as described in 

section 2.5.1 (10x10 runs). The 10 marker sets derived through the 10-fold cross 

validation process are tested on the independent test and the one achieving the highest 

performance is recorded as the final result. We apply a similar methodology to the 

proposed gene selection procedures, but on the same average number of genes as  

those selected by GEMS. Ten marker sets are derived as possible outcomes as well 

and the one achieving the highest performance on the independent test set is recorded 

as the final score, Figure 19 provides a general overview of the derived results. GEMS 

selected 4 genes on the average with 61.76% maximum best performance. We 

measure the performance of the tested methodologies in a similar manner, i.e. for each 

one of the 10 folds, we record the set of 4-genes among the 10 runs that achieved the 

best accuracy performance. Then those 10 possible 4-gene candidates were tested on 
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Figure 19: Performance evaluation of the tested methodologies. Results are recorded at the level of 4 genes for all methods, 
since this is the average number of genes selected by GEMS along the 10-fold cross validation process. Significant difference on 
both classification accuracy and statistical significance is observed in favor of the proposed methodologies. 

the independent test set and the one achieving the highest classification accuracy was 

recorded. RFE-FSVs-4DK (Figure 6) is the best accuracy performer with 97.06% 

success rate (missing only one sample), while RFE-FSVs-RBF7DK and RFE-LNW 

succeeds also a remarkable performance of 94.12% (missing two samples). 

A possible explanation on the significant advantage of the proposed methodologies 

could be given by conducting an additional experiment measuring the statistical 

significance of the derived classification result on the final set of marker genes. For 

each one of the previously four marker sets, the statistical significance of the 

classification  result on the training set was measured using the Q-Statistic score 

introduced in [19]; the highest the value of the score the more significant the derived 

result is. Using such a score we can visualize in Figure 19 a significant statistical 

difference in favour of the proposed methodologies. GEMS achieved a score of 83.23 

units while the minimum performance reached by the proposed methodologies is 
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179.48 achieved by RFE-FSVs-RBF7DK. Notice the fact that RFE-LNW is the best 

performer on this test with a score of 238.35 units. 

2.5.3 Experimental Results on Breast Cancer 

In this domain, besides testing the two proposed methodologies we are also evaluating 

the results of the well known method referred to as RFE-SVM introduced in section 

2.3.2, for two reasons. First, to study the results of a representative wrapper method 

(such as RFE-SVM) and second, to study consistently the behavior of RFE-SVM on a 

‘harder’ domain such as BC. Notice that RFE-SVM has been extensively studied 

mainly on the Leukemia domain in reference 0. 

ILOO Accuracy Performance 

The ILOO detailed accuracy results of the tested methodologies are presented in 

Table 3 of Appendix I, where RFE-FSVs is applied with a 7th degree polynomial 

kernel (experimentally found to produce best results). Concerning the overall 

performance of the methodologies on the ILOO criterion, we observe that RFE-LNW 

(average performance 98.47%) is slightly better on the average than RFE-SVM 

(97.83%) and better than RFE-FSVs, which is still performing well with an average 

ILOO-SR of 86.42%. The RFE-SVM selection process was applied with various C 

values as reported in [24]; we present here the result for C = 1000; values of 10, 100, 

1000, 10000 produced almost identical results, while C values of less than 1 did not 

produce any better results. 

Independent Test Set Evaluation and 10-Fold Cross Validation 

A detailed report concerning the entire process of the test set evaluation is reported in 

Table 4 of Appendix I, while an overview of the performance of the methods is 

reported on the in the right part of Table 7. We observe that RFE-FSVs-7DK is 

superior to other methods, achieving a success rate of 94.74% (only one sample 

missed) by selecting 73 genes. We point out that Van’t Veer et al., [1] achieved a 
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success rate of 89.47% (two missed samples) by selecting 70 genes. The result 

produced by RFE-FSVs-7DK is also better than that reported in [20], where 8 genes 

give an accuracy of 89.47%, as well as the result reported in [26] where 44 genes gave 

an accuracy of 89.47%. 

RFE-LNW produces noticeable results as well. Note that by selecting 44 genes it 

gives a classification accuracy of 89.47%; a result also comparable to that reported in 

[1], [20] and [26], where 70, 8 and 44 markers respectively give the same 

classification result. RFE-SVM was tested with various C values as suggested in [24].  

More specifically, C values of 1, 10, 100, 1000 and 10000 as in ILOOCV produced 

approximately the same results and C values less than 1 did not produce any better  

 Training Set 

10 Fold Cross Validation 

Independent Test Set 

Method Genes Success 
 Rate 

Genes Success 
Rate 

Sensitivity Specificity 

RFE-SVM  33 76.00% 32 78.95% 0.75 0.86 

RFE-LNW 17 82.04% 44 89.47% 0.92 0.86 

RFE-FSVs-
7DK 

21 84.71% 73 94.74% 0.92 1.00 

Table 7: Breast Cancer Domain: Performance of the tested methodologies on the 10-Fold cross 
validation scheme as well as on the independent test set. 

results. Concerning the performance of RFE-SVM in general, we observe that it 

achieves a success rate of 78.95% (4 samples missed) by selecting 32 genes, which is 

a respectable result as well. Concerning the accuracy achieved by these 

methodologies in the tested domains, one may notice that the performance of RFE-

FSVs and/or RFE-LNW is quite remarkable and it is comparable or better to the best 
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published on BC domain, while both methodologies derive also high level results in 

the leukemia domain. 

Performance of the 10-Fold cross validation scheme is presented at the left part of 

Table 7. RFE-FSVs-7DK and RFE-LNW are the best performers on the cross 

validation scheme with about 85% mean accuracy and 21 markers for the former and 

82% mean accuracy and 17 markers for the latter ,over all 100 trials. This experiment 

reveals a substantial advantage of the proposed methodologies over the RFE-SVM, 

which achieved 76% mean accuracy and 33 markers. Thus, for ‘hard’ domains, where 

a lot of overlap exists between the two classes of interest, the application of filtering 

criteria in a wrapper fashion may be one of the keys for improving performance. 

Focusing on qualitative aspects of the derived results, we study the expression profiles 

of the markers selected by each method (i.e. the set of genes that gave the highest 

classification accuracy on the independent test set on the BC domain) by visualizing 

their behavior in Figure 20 (A, B, and C), where genes are ranked in increasing order 

according to Fisher’s metric given by ( ) ( )
( ) ( )

i i

i i
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µ µ
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. We can observe that the two 

proposed methodologies show a clear advantage over the RFE-SVM approach by 

clearly discriminating the classes of interest. 

More specifically, the RFE-FSVs (Figure 20-A) and RFE-LNW (Figure 20-B) 

methods select genes that share an intrinsic characteristic related to a significant 

difference in the expression of the selected markers from one (negative) to the other 

(positive) class. Markers selected by RFE-SVM Figure 20-C), on the other hand, are 

not as significantly differentiated between the two classes and thus, they hardly reflect 

differentially expressed regions; this is a drawback for domain experts, who are  
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(A) RFE-FSVs-7DK (73 Genes) 

 

(B) RFE-LNW (44 Genes) 

 

(C) RFE-SVM (32 Genes) 

 

Figure 20: Expression profile analysis of the selected markers derived by the tested methodologies in 
breast cancer; genes selected by the proposed methodologies (RFE-FSVs-7DK and RFE-LNW) 
demonstrate significantly higher expression variation between the two classes of interest than those 
selected by RFE-SVM. 



Chapter 2:                                                  Wrapper Filtering Criteria Via a Linear Neuron and Kernel Approaches 

 63

searching for genes that differentiate their expression significantly in the two classes 

of interest, as was pointed out by studies reported in the introduction section. 

On the leukemia domain, RFE-SVM methodology achieves outstanding results 

both in terms of classification accuracy as well as in terms of the expression profiles 

of the selected markers as reported in [1]. Nevertheless, it does not achieve the same 

level of result on the BC domain. This is due to the fact that BC is a ‘harder’ data set 

with a lot of overlap between the two classes as was presented in section 2.5, and thus 

the need for other constraint characteristics besides accuracy (such as differentiation 

on the expression level of the selected genes) becomes crucial. The two proposed 

methodologies show a more stable performance both in terms of accuracy as well as 

of the ‘quality’ of the expression profiles on the tested domains as illustrated in Figure 

20 (A) and Figure 20 (B).  

The genes selected by the tested methodologies are reported in Table 1, Table 2 

and Table 3 in Appendix II. A worth mentioning point is the fact that there are 18 

common genes found between the markers selected by RFE-LNW and RFE-FSVs 

while there are only 3 common genes between RFE-SVM and RFE-FSVs and 1 

common gene between RFE-SVM and RFE-LNW. 

Biological Relevance 

Proceeding one step further, we assess the biological significance of the derived result 

using the biological knowledge that might be hidden behind the underlined gene 

signatures discovered by the proposed methodologies in the previous paragraph. To 

assess such an approach we searched for the Gene Ontologies Biological Processes 

(GOBPs) [27] hidden behind the underlined gene signatures and measured their 

overlap with those GOBPs underlined by two well known and broadly accepted breast 

cancer signatures namely, Van’t Veer’s [4] and Wang’s [25], respectively. We locate 
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46 different GOBPs covered behind the 70-gene Van’t Veer’s signature and 71 

different GOBPs hidden behind the 76-gene Wang’s signature, while they share six 

GOBPs in common. Results are outlined in Table 8 where we notice that RFE-FSVs-

7DK demonstrates the highest degree of overlap with 18 GOBPs in common with 

Van’t Veer’s signature and 16 GOBPs common with Wang’s signature. RFE-LNW 

comes next with 8 and 16 GOBPs, respectively, in common with the underlined gene 

signatures. RFE-SVM shows the minimum overlap with 3 and 6 GOBPs, 

respectively.  

Method GO Overlap - Van't Veer GO Overlap - Wang 

RFE-FSVs-7DK 18 16 

RFE-LNW 8 16 

RFE-SVM 3 6 

Table 8: Breast Cancer Domain: GO overlap of the underlined methodologies with Van’t Veer’s and 
Wang’s signatures. RFE-FSVs-7DK and RFE-LNW demonstrate a significant overlap with both 
signatures. The overlap between Van’t Veer’s and Wang’s signatures in terms of GOs is 6. 

Regarding the absolute gene overlap, we report an impressive overlap of 17 genes 

(25% overlap)  found between the 73-gene signature of RFE-FSVs and the 70-gene 

Van’t Veer’s signature. RFE-LNW and RFE-SVM on the other hand demonstrated an 

overlap of 5 and 3 genes respectively. 

Taking into consideration the above results, we observe a strong evidence that the 

proposed methodologies search towards a biologically meaningful path. This evidence 

is obviously stronger for RFE-FSVs, which demonstrates a higher level of overlap 

both in terms of GOs and absolute genes, but evidence is also strong for RFE-LNW 

since it also demonstrates a significant degree of GO overlap. 

GEMS Experiment 

In this experimental procedure GEMS, and other approaches were applied in a similar 

manner as in leukemia data set in section 2.5.2. Results are visualized in Figure 21,  
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Figure 21: Performance evaluation of the tested methodologies along with GEMS. Results are 
recorded at the level of 55 genes, i.e., the average number of genes selected by GEMS. Significant 
difference in favor of the proposed methodologies is observed, both in terms of classification accuracy 
and statistical significance. 

where we notice a significant advantage of the proposed methodologies (RFE-LNW, 

RFE-FSVs-7DK) both in terms of accuracy performance and statistical significance.  

RFE-LNW achieved an accuracy performance of 89.47% on the independent test 

set (missing only 2 samples) while RFE-FSVs-7DK reached a success rate of 84.21% 

(missing 3 samples). Both GEMS and RFE-SVM reached an accuracy performance of 

68.43% (missing 6 samples). A significant advantage on the proposed methodologies 

is also noticed on the statistical significance of the derived result, as demonstrated in 

Figure 21 (Q-Statistic score), further supporting the over all advantage of the 

proposed selection approaches. 

2.6 On the Utilization of Kernels and Support Vectors 

In this section a final experiment was conducted to show the distribution of support 

vectors across the entire feature elimination process and addresses the over-fitting 

problem. Over-fitting occurs when a large proportion of samples become support  
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Figure 22: Support vector allocation by the kernels used on the Leukemia domain (upper graph) and 
on BC domain (lower graph). 

vectors and hence, the classifier can not generalize well on new unseen data. An 

extreme case of over- fitting exists when all training samples are support vectors.  

Results of the linear as well as of the polynomial kernels used in both tested 

domains are depicted in Figure 22. Notice that the scale in the horizontal axis of 

Figure 22 follows the arrangement of column 2 in Tables 1 and 3 of Appendix I 

respectively. We observe that by using polynomial kernels the average number of 

support vectors increases, as it is expected.  This verifies the fact that polynomial 

kernels are more sensitive to over fitting, since a large proportion of the samples 

become support vectors. Even though this is true especially when dimensionality is 

still very large (initial steps of the feature elimination process), it is not a drawback of 

the proposed methodology, since support vectors are only used to assess the ranking 

criterion and not for classification of new unseen data. More specifically, even though 

the training set is classified using a polynomial kernel, new unseen samples are tested 
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linearly where over-fitting is potentially much less of a problem. As depicted in 

Figure 22, the number of support vectors used by a linear kernel in both domains 

reduces drastically. A final comment regarding the RFE-FSVs method pertains to the 

possibility that it could degrade to the initial filter method only in the very seldom 

case where all samples are always kept as support vectors. In the case of kernel 

combination, as in leukaemia data set where an RBF kernel was combined with a 

polynomial one, we observe that (Figure 22 upper graph) up to the 300 surviving 

genes all samples are retained as support vectors but after this cut off point a 

significant decrease is observed, rendering the performance of our method quite 

different from that of a filter approach. 

2.7 Discussion and Conclusion 

Within the field of marker selection, wrapper approaches are very much dependent on 

the classifier or the pattern recognition approach used to assign the weights for 

ranking the features (genes). On the other hand, filter methods take into account only 

intrinsic characteristics of the data, such as the differentiation ability of each gene. 

Our aim in this study is to bring these two methodologies together by embedding 

filtering criteria in the wrapper ‘philosophy’ and integrate the two approaches. Special 

attention is given to Fisher’s ratio which has been extensively used; but other filter 

metrics can be considered as well. 

The methodologies proposed produce comparable results and at cases even better 

than the best reported, demonstrating that by wrapper filtering criteria we fully utilize 

the advantages of wrapper methods while on the other hand we are not neglecting the 

very important property of differential expression, which is mostly addressed by filter 

methods. This merging results to stable performance along different problem domains 
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demonstrated on two data sets, one considered ‘easier’ while the other considered a 

‘harder’ domain. 

 Alternatively, the proposed methodologies could be seen as a means of selecting 

markers that significantly differentiate their expression between positive and negative 

classes, but also lead to high classification performance. This aspect has not been 

addressed thoroughly within bioinformatics research, even though domain experts and 

biostatisticians either implicitly or explicitly are searching for it. 

Inspired by the results of this study, we proceed on to the next section, where the 

evaluation platform is further extended, completing the evaluation measures 

introduced here. We focus in RFE-LNW and compare its performance to that of RFE-

SVM using additional evaluation criteria, but with aim in deriving an effective and 

reliable gene signature through such an evaluation measure. Even though additional 

data sets are used for testing, special focus is paid in breast cancer for a final gene 

signature derivation. 
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CHAPTER 3 

3 The Linear Neuron as Marker Selector and Clinical 
Predictor in Cancer Gene Analysis 
 
3.1 Abstract 

Objective: Having established the integration of filter and wrapper methods by means 

of network structures, in this chapter we study the behavior of the linear neuron using 

more stringent evaluation criteria along with additional application domains. Special 

attention is paid in breast cancer, our aim is to show that the proposed methodology 

when used along with appropriately designed evaluation criteria leads to a statistically 

significant gene signature comparable to bench mark results in breast cancer. 

Methods and Materials: We explore the proposed approach in terms of accuracy 

evaluation criteria, which are used to assess the performance of the proposed 

methodology, but we also evaluate the produced results in terms of cluster quality and 

survival prediction. Cluster quality reflects the ability of the method to select 

differentially expressed genes, which in turn leads to better clustering and survival 

prediction. 

Results: We directly compare the proposed methodology with RFE-SVM, a well 

known and broadly accepted method demonstrating remarkable performance on 

various data sets of clinical interest. 

3.2 Introduction 

Among the various feature selection methods proposed, RFE-SVM [1] (see also 

section 2.3.2) is an approach that has shown remarkable results in leukemia [2] and 

colon cancer [3] datasets. However, depending on the data distribution and the 

complexity of the classification problem, the algorithmic design based on the 

philosophy of RFE-SVM may lead to ill-defined and ill-distinctive clusters of selected 
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gene signatures, as it is demonstrated in the results section and to some extend in 

chapter 2. This issue has been implicitly addressed in [4], showing that wrapper 

methods do not provide sufficient focus for further investigation (of their result) 

because many genes may be included by chance. In this study we go one step further 

and demonstrate that such a lack of focus could lead to the production of ill-

distinctive clusters, by-passed however, by the proposed RFE-LNW approach. The 

proposed network acts as a linear filter for classification producing more compact and 

distinct clusters of markers. 

The idea of applying a linear neuron to the problem of gene selection is a novel 

approach, introduced in chapter 2 and in study [5]. It is based on the ability of a single 

neuron to approximate any linear function. This idea absolutely complies with the 

philosophy of linear methods such as the RFE-SVM, which is based on linear support 

vector machines. In this study, we apply RFE-LNW in combination with an 

appropriately designed evaluation platform so that biologically relevant results are 

eventually derived. 

Besides methodology, another important issue concerning gene selection relates to 

the measures used for validation of the classification performance (prediction rule) of 

the selected markers. It is a common practice to assess the performance of a method 

by its Leave One Out Cross Validation (LOOCV) error. Two types of LOOCV 

schemes are generally considered and both are assessed in this study. The first one 

addresses the removal of the left-out sample before the selection of differentially 

expressed genes and the application of the prediction rule, while the second approach 

handles the removal of the left-out sample after the selection process but before the 

application of the prediction rule. The first is usually referred to as the External 
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LOOCV (ELOOCV) while the second is referred to as the Internal LOOCV 

(ILOOCV) [6].  

It is obvious that ELOOCV is a more unbiased estimator of the error rate since it is 

totally independent of the selection process. However, ILOOCV provides a measure 

that can not be neglected, as it expresses the training ability of a selection rule within 

the training set. In other words, ILOOCV indicates the selection rule(s) that can learn 

or generalize better on the training set. The ILOOCV scheme in combination with an 

independent test set was used to assess the performance of RFE-SVM in [1]. Towards 

a fair and statistically sound comparison of the methods in this study, we assess both 

of these measures in combination with a 10-fold cross validation process in all 

evaluation steps. Proceeding one step further than classification accuracy and cluster 

quality, we test the result derived through the ELOOCV procedure as a set of selected 

genes that can provide high classification accuracy on the independent test published 

by Van’t Veer et al. in [7]. In addition, this set of markers is proved to be an efficient 

survival predictor for the 234 new cases published by Van De Vijver et al. in [8]. 

To reveal the basic differences of the two underlined methodologies (RFE-SVM and 

RFE-LNW) we examine their learning ability on three data sets: a) the data set of 

Diffuse Large B-Cell lymphoma published in [9], b) the colon cancer data set in [3] 

and c) the breast cancer data set published by Van’t Veer et al. in [7]. 

3.3 The RFE-LNW Ranking Criterion 

Within RFE-SVM (see section 2.3.2) a linear kernel with equation (2.1) is used to 

estimate the weight vector of the separating hyperplane. On the other hand, a Linear 

Neuron (LN) can approximate any linear function. The architecture of such a network 

is depicted in Figure 15 (chapetr 0), where a single neuron fed by all inputs (genes) is 

actually the only learning component. We use such a linear neuron to approximate the 
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separating hyper-plane between positive and negative classes in the place of the linear 

SVM used in RFE-SVM. This is applied as a linear filter of m inputs, where m 

corresponds to the number of genes. For the appropriate operation of the proposed 

methodology we consider two possible outcomes at the output layer, namely output 0 

for the negative class and 1 for the positive class. We can then use such a network to 

approximate the separating hyper-plane, and hence the ranking criterion of genes. The 

rule that is used to iterate the linear neuron weights is given below and was further 

analyzed in section 2.3.4 

( ) ( ) ( )( ) ( )1i i i iw t w t sign e f u sign g Kµ ′+ = + ⋅ ⋅ ⋅ ⋅  (2.30) 
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where ( )igσ+ , ( )igσ− , ( )igµ+  and ( )igµ−  are the standard deviations and mean values 

of gene gi  in the positive and negative classes, respectively. A close alternative for 

the weight factor iK  is defined as:  
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Elaborating in equation (2.30) with either (2.31) and (2.32) or (2.33) we notice that 

by taking sign values the method proceeds towards the direction of the minimum, 

which eventually will be reached by selecting the appropriate learning rate and an 

adequate number of iterations (epochs). The idea of using the sign of the gradient 

instead of its actual value was instigated by resilient backpropagation method, which 

is used to speed up convergence [10].  
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The term iK  introduced in equation (2.31) or alternatively in (2.33) is a variation 

of Fisher’s coefficient and plays an important role in the gene selection problem. 

Elaborating on equations (2.30) and (2.31) or (2.32) one can easily verify that genes 

which differentiate their expression across samples in the two classes of interest i.e., 

green in negative class (-3 expression value) and red in positive class (+3 expression 

value) will take higher K  values than genes showing the same expression across 

samples within the two classes. By introducing term iK  in equation (2.30), we aim at 

assigning higher weight values to those genes that significantly differentiate their 

expression from negative to positive class (for more details refer to section 2.3.3). 

Employing the proposed learning procedure we are not only interested in a 

hyperplane that distinguishes the two classes of interest but we are also searching, 

through the coefficient iK , for a hyperplane that assigns higher weights to those 

genes that differentiate their expression more. Since the method is based on gradient 

descent, convergence is guaranteed but the algorithm may be trapped to a local 

minimum, which is a known problem of neural network methods.  In our 

methodology, however, the neural kernel is only used for ranking genes, rendering the 

requirement of a global minimum of less importance than in other optimization 

frameworks. Furthermore, the proposed methodology could be extended to a 

multilayer network and applied to non linear problems. 

3.4 Cluster Quality Measure 

The validity or quality of features that survive at each step of the elimination process 

is an issue of particular interest. Based on the desirable properties of markers, the 

surviving genes should form well defined clusters related to the pathology states of 

interest. In other words, the clusters of selected genes should express small intra-class 

but large inter-class distance [11]. One measure to asses cluster quality is known as 
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Davies-Bouldin (DB) index [12] that has been extensively used to assess cluster 

quality in various fields besides DNA microarray analysis [13], [14], [15]. The DB 

index for a partition U  that is composed of two clusters, namely PX  corresponding to 

the positive class and NX  to the negative class, is given by: 

( ) ( ) ( )
( ),
P N

P N

X X
DB U

X Xδ
∆ + ∆

=    (2.34) 

where ( ),P NX Xδ corresponds to inter-class distance given by: 
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where .  denotes set cardinality, ( ),d x y is the Euclidean distance between two 

samples x  and y and ( )PX∆ represents the intra-class distance given by: 
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with ( )NX∆ analogously defined. Optimization of the DB index minimizes intra-class 

distance while maximizing inter-class distance. Therefore, smaller values of DB 

reflect better clusters. 

3.5 ELOOCV  and 10-Fold Cross Validation 

As pointed out in section 3.2, ELOOCV is a more unbiased estimator for evaluating 

the performance of a prediction rule on a totally independent test set ([6], [16]). It is 

repeated as many times (say n) as the number of examples the training set. One 

sample is left out from the training process at each iteration, and then that left out 

sample is tested on the classifier produced by the remaining 1n−  samples. ELOO 

differs from ILOO in that the left out sample is not included in the training set during 

the gene selection phase. At each stage of the feature elimination process the training 
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set is used to construct the separating hyperplane on the space defined by the 

surviving genes (variables). Then the left out sample is tested using the generated 

hyperplane and either a success (1) or failure (0) is measured. When the process ends, 

we are left with an m n×  matrix  S  composed of 1s and 0s as its elements ijS , where 

m being the number of repetitions or number of cut off points according to the cut off 

strategy used in the ELOO iterations. The average vector A of m components is 

defined with elements: 

1

1 n

i ij
j

A S
n =

= ∑   (2.37) 

each measuring the average success rate on the performance of the examined 

methodology at the ith stage of the feature elimination process. The component of A 

where maximum accuracy is observed deserves special attention, since it indicates the 

optimal cut off point and thus, the number of markers at which the examined 

methodology achieved its best performance. This value can also be used as a measure 

of stability regarding the number of selected markers. At the extreme case for instance 

where all components of A take consistently low values, the examined methodology is 

not expressing any stable performance on the number of markers it selects, since there 

is not a clear stage where the algorithm (in most of the cases) achieves its best 

acceptable performance. 

3.6 Results 

Three different data sets are used to test the two methods: 

(1) The data set of Diffuse Large B-Cell Lymphoma (DLBCL) published in [9] 

consisting of 50 negative (non DLBCL) and 46 positive (DLBCL) patients 

described through a set of 4026 gene expression profiles. Missing values were 

substituted using (EM) imputation [17] and overall data set variance is 0.63, 
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i.e., variance of the distribution defined by the whole set of gene expression 

values across all samples. 

(2) The colon cancer data set published in [5] consisting of 2000 genes and 22 

normal as well as 40 tumor tissues. The data set was normalized to a zero 

mean and standard deviation of one as suggested in [5]; no missing values 

were encountered in this data set, overall variance is 0.98. 

(3) The data set provided by [7] in Breast Cancer (BC), consists of 24481 gene 

expression profiles and 78 samples, 44 of which correspond to patients that 

remain disease free for a period of at least five years, whereas 34 correspond 

to patients that relapsed within a period of five years. 293 genes express 

missing information for all 78 patients and were removed, while other missing 

values were substituted using Expectation Maximization (EM) imputation 

[17], overall data set variance is 0.06. We are also provided with a set of 19 

new samples [7] which is going to be used as an independent test set for 

evaluation purposes, as well as with a set of 234 new samples [8] used  to 

independently test clinical prediction outcome. 

Comparing these data sets we notice that BC consists of a significantly lager 

number of genes than the other two and it also expresses a significantly lower overall 

gene expression variance along the two classes. These two facts indicate that the BC 

data set could be proved the most complicated and the hardest one to classify. For this 

reason we employ it for elucidating additional properties of the proposed 

methodology. 

As explained in section 3.2, three series of computational steps are conducted. In 

the first series the ILOOCV along with the quality of the selected markers using the 

DB index is assessed, whereas in the second series the ELOOCV in combination with 
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a repetitive 10-fold process is considered for deriving a promising gene set (gene 

signature). In a third step the performance of the derived gene signature is tested as a 

clinical predictor in BC data set. 

3.6.1 ILOOCV – Cluster Quality Results 

The ILOOCV is used as a measure of estimating the learning ability of the studied 

methodologies rather than as a measure of independent generalization performance. 

Besides ILOOCV, we also measure the quality of the selected features (genes) in 

terms of low intra but high inter class distance. The DB index is used as a measure to 

asses this feature. In addition, we also measure the area under the ROC curve (AUC) 

across the entire feature elimination process as well as the number of common genes 

in the last seven elimination steps of the process (from 64 to 1 surviving gene).  

For the RFE-LNW approach, 300 epochs were used to train the network as long as 

the number of remaining features was greater than or equal to 1024 and after this 

point the number of epochs was fixed to 1000. A learning rate of 210−  was used and 

equation (2.30) was applied in combination with (2.31) as our iterative learning 

process. The parameter selection may vary from problem to problem or from run to 

run and should be appropriately defined. In our application a learning rate within the 

range of approximately 1 410 10− −⎡ ⎤⎣ ⎦most often provided satisfactory results. On the 

other hand, the optimal parameter selection is a problem which needs deeper 

investigation. For the steps conducted in this section the used parameters were 

experimentally tuned. We increase the number of epochs as we approach the end of 

the process for better approximation of the separating hyperplane. 

DLBCL Results 

In this data set RFE-LNW achieved an average accuracy of 97%, while the RFE-SVM 

reached an average accuracy of 95%. There exists a slight advantage of RFE-SVM up 
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to the point of 4 surviving genes. The overall performance of the two methods is 

depicted in Figure 23 (Panel 1) where we observe that the accuracy of RFE-LNW 

never drops below 90% (Figure 23, Panel 1.A), while the AUC measures follow about 

the same pattern (Figure 23-Panel 1.C). On the other hand, of particular interest are 

the last two steps of the process where we observe a significant difference in favour of 

RFE-LNW, which retains a success rate of over 90% while RFE-SVM drops to a rate 

of about 70%. This behaviour could be explained by studying the cluster quality 

measure (Figure 23-Panel 1.B). We observe that the difference of the DB index 

between the two tested methodologies takes its highest values in the same last steps, 

implying a connection between cluster quality and success rate. This fact could be 

further elaborated by looking at the number of common genes selected by the two 

tested methodologies within the range of 64 to 4 surviving genes (Figure 23, Panel 

1.D). We observe that within this interval the percentage of common over the total 

surviving genes varies from approximately 25% to 50%. Having a rather high number 

of common genes, the tested methodologies express only a small difference on 

success rate and AUC measures between them. In contrast, during the last two steps 

the tested methodologies take quiet different directions, verified by the fact that there 

are no common genes selected. In addition, returning to Figure 23 (Panel 1.B) we 

observe that RFE-SVM selects genes that decrease both cluster quality (higher DB 

index) and classification accuracy. The RFE-LNW on the other hand, selects genes 

that increase cluster quality and hence it is rewarded by retaining a high success rate, 

similar to the previous steps of the process. Considering the overall cluster quality of 

the selected markers, we notice an overall significant advantage of  RFE-LNW, as 

demonstrated in Figure 23 (Panel 1.B). 
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Figure 23: Performance of tested methodologies in DLBCL data set (Panel 1), in colon data set (Panel 
2) and in breast cancer (Panel 3); accuracy evaluation (A), quality evaluation index (B), Area Under the 
ROC curve (C) and common genes between methods (D). 



Chapter 3:                          The Linear Neuron as Marker Selector and Clinical Predictor in Cancer Gene Analysis 
 

 83

Colon Results 

In Colon data [3], RFE-LNW succeeded an average success rate of 91%, while RFE-

SVM reached an average rate of 89%. The learning performance of the underlying 

methods is presented in Figure 23 (Panel 2.A and 2.C), where we again notice that the 

performance of RFE-SVM falls significantly behind during the last two steps of the 

process, while in the previous steps both methods are almost equivalent. In the last 

steps of the process the performance of RFE-SVM falls at almost 60%, while RFE-

LNW retains a relatively high performance of above 80%. As in the previous steps, 

we verify that as long as there is not significant difference in the quality performance 

of the two methods (Figure 23, Panel 2.B), there are also insignificant differences in 

their accuracy performance (Figure 23 Panel 2.A). This connection between cluster 

quality and accuracy is further related with the number of common genes between the 

two processes (Figure 23 Panel 2.D), where we observe that up to the point of 16 

surviving features the percentage of common genes is rather high, varying between 

59% (at 64 surviving genes) to 44% (at 16 surviving genes). However, from the point 

of 8 surviving genes we verify abrupt reduction in the number of common genes 

along with significant difference on the quality performance in favor of RFE-LNW. 

BC Results 

In BC data set [7], both methods achieve an average success rate of 89%. Their 

learning performance is visualized in Figure 23; Panels 3.A and 3.C. A measure that 

implies differences in the applied approaches is the cluster quality index along with 

the number of genes they share. As depicted in Figure 23, Panel 3.D there is only one 

common gene shared between the two methods within the range of 64 to 4 surviving 

genes and as in the previous two cases, there are no common genes in the last two 

steps of the process. Concerning the quality performance of the selected markers 
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(Figure 23 Panel 3.B) a significant advantage of RFE-LNW over RFE-SVM is 

verified. Even though we can not make a direct connection between cluster quality 

and performance evaluation, as in the previous two cases, an indirect effect is 

elucidated by studying the quality of the 64 markers selected by each method in 

Figure 24.A and Figure 24.B.  

 (A) 

 

(B) 

 

Figure 24: The 64 markers selected by RFE-SVM method (Panel A); genes are not as significantly 
differentiated as in the case of RFE-LNW, resulting to “ill defined” expression regions of selected 
markers. The 64 markers selected by RFE-LNW (Panel B) demonstrate significant differences on their 
expression levels revealing four distinct regions. 

In those two figures genes are ranked in ascending order (from negative to positive 

values) according to Fisher’s correlation. The markers selected by RFE-SVM (Figure 

24.A), even though they show a local variation on their expression levels (unshaded 

regions of the graph), their expression difference between classes is not as significant 
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as in the case of RFE-LNW in Figure 24.B. Thus, RFE-SVM leads to ill-defined gene 

expression regions across classes, as mentioned earlier in the introduction section and  

demonstrates also the lack of focus problem encountered in wrapper methods [4]. An 

additional aspect related to this RFE-SVM inadequacy pertains to genes that do not 

significantly differentiate their expression across classes (Fisher’r ratio close to 0, i.e. 

genes expressed in almost the same way across classes), corresponding to the shaded 

regions in the two figures. We observe that this region is much wider in the case of 

RFE-SVM, while it is much smaller in the case of RFE-LNW (consists of only one 

gene), supporting the case that the proposed methodology indeed selects more 

significantly differentiated genes. Thus, the DB-index advantage for RFE-LNW over 

RFE-SVM might not be translated into direct influence on the classification accuracy, 

but certainly reflects qualitative differences in the set of selected genes as confirmed 

by the figures of the two presented gene sets. 

As a general concluding remark on these three results we state that the proposed 

methodology is able to generalize relatively well on the training set (as verified by the 

ILOOCV results), demonstrating also the convergence ability of the training method. 

Its accuracy performance on all tested data sets is comparable to that achieved by 

RFE-SVM. In 2 out of the 3 cases we observe an overall advantage of RFE-LNW 

during the last two steps of the selection process and a direct connection between 

cluster quality and accuracy performance. The third experimental step (on the more 

complex BC data set) reveals an indirect advantage of RFE-LNW related to the 

quality of the selected markers. As it is demonstrated by these results, RFE-LNW 

creates more compact and distinctive cluster of markers verified by the DBindex 

quality measure. 
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3.6.2 ELOOCV and 10-Fold Cross Validation 

We measure and present graphically the ELOO scores of the two methods on the 

same data sets as in the previous section, where tick points of the graphs represent the 

components of vector A  as described in equation (2.37). To train the RFE-LNW, 300 

epochs were used as long as the number of remaining features was greater than or 

equal to 1024 and 500 epochs afterwards. A learning rate of 210−  was used, except in 

the case of BC where a learning rate of 410− was employed. Notice that in contrast to 

the internal scheme, in external CV we are using smaller number of epochs in order to 

avoid close convergence and overtraining, so as to achieve better generalization 

performance. The learning rate for ELOOCV in the more complex BC data set was 

reduced to 410− for the same reason. These parameters, as in the case of ILOOCV, 

were assessed experimentally. 

Even though ELOOCV permits the study of algorithmic performance with less bias 

than ILOOCV, its main disadvantage is that it induces high variance on the estimated 

accuracy. Thus, besides evaluating ELOO we also evaluate in a similar manner the 

method of 10-fold cross validation that was repeated 100 times in our attempt to 

produce more reliable and robust results. The given set of 78 samples was randomly 

partitioned 100 times, such that 90% of it was used for training purposes while the 

remaining 10% was used as an independent test set. In each run the success rate at 

each cut off point is measured and finally the overall average at each point of the 

feature elimination process is plotted. 

DLBCL Results 

The overall ELOOCV accuracy of the selection process is presented in Figure 25 

(Pane 1.A), where it appears that the RFE-SVM performs better than the RFE-LNW 

up to 64 features. Nevertheless, after this step it starts reducing its performance until it 
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finally reaches around 70% in the last two steps of the process, as it was also reported 

in the ILOOCV result. The RFE-LNW on the other hand never falls below 90% in the 

entire phase of the selection process. In terms of absolute numbers, RFE-SVM 

reaches its best performance at 256 genes with 98% success rate. On the other hand 

RFE-LNW achieves its best performance at 128 with 94% success rate, but 

comparable performance is maintained at 4 genes with 93% success rate. As a 

conclusion, RFE-SVM achieves slightly better classification accuracy with a larger 

number of genes while RFE-LNW selects a smaller number of genes with slightly less 

accuracy but always preserved over 90%. The one gene that is most frequently 

selected by RFE-LNW (80/96 frequency rate) and achieves an accuracy of 

approximately 90% corresponds to GENE1637X (CCND2). This gene encodes the 

cyclin D2 protein involved in the phosphorylation of tumor suppressor protein Rb, 

which malfunctions in nearly all malignant gliomas as well as in many other solid 

tumors. Focusing on Rb, recent and very promising research in brain cancer [18] 

produces encouraging results even for therapeutic purposes. 

Concerning 10-fold cross validation, (Figure 25, panel 1.B) we notice that the 

performance curves follow a smoother pattern due to the lower variance of the 

produced result. The performance difference of the two methods in the last two steps 

of the process is still verified, even though it is not as significant as in the case of the 

ELOOCV. 

Colon Results 

The overall ELOOCV performance of the two methods is visualized in Figure 25 

(panel 2.A). We observe that RFE-LNW achieves its average best performance of 

85% with only one gene, implying that in the 85% of the cases it classifies correctly 

the left out sample by using only one gene, which is almost always the same (61/62  
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Figure 25: ELOOCV (A) and 10-fold (B) cross validation performance curves of the two methods in 
DLBCL (panel 1), colon cancer (panel 2) and BC (Panel 3) data sets. A significance difference is 
expressed in favour of RFE-LNW especially in breast cancer. 
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frequency rate) for all runs. Performance of over 80% is consistently maintained from 

the stage of 8 surviving genes. On the other hand RFE-SVM achieves its best 

performance of 84% at the 256 genes cut-off point. Then, from the point of 16 

surviving genes its performance drops below 80%. In this application the performance 

of RFE-LNW is better, since by selecting a smaller number of genes on the average 

(only one) it achieves better classification accuracy. The performance of RFE-SVM 

up to 16 genes is close or slightly better, at places, than that of RFE-LNW. We again 

emphasize the drop in the performance of the RFE-SVM method in the last steps of 

the process, a fact that was also verified in the ILOOCV results and was directly 

linked to the produced cluster quality. 

Concerning 10-fold cross validation (Figure 25, panel 2.B), maximum accuracy is 

still achieved by RFE-LNW with one gene, in complete agreement with the result 

derived by the ELOOCV procedure. Notice that the most frequently selected gene 

(80/100 frequency rate) is the one that was also selected by the ELOOCV process. 

This gene corresponds to M63391 (human desmin gene, complete cds), which 

belongs to the group of smooth muscle genes playing an important role in colon 

cancer [3]. The muscle index is a quantity used in [3] to reflect the muscle cell 

contents of a given sample. Most normal samples have higher muscle index than 

tumor samples. The specific gene has been reported in various studies as a very 

significant one in colon cancer, [20], [21], [24]. 

BC Results 

In this data set we notice significant differences in the performance of the two 

schemes, especially for small numbers of markers as demonstrated in Figure 25 

(Panel 3). Concerning the ELOO performance of RFE-LNW (Figure 25, panel 3.A), 

its maximum performance of 81% is achieved at 64 genes. We point out that those 64 
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genes may differ slightly from iteration to iteration (for different left out sample), so 

that for the specific data set we may end up with 78 different sets of 64 genes (since 

the training set consists of 78 samples). This ensemble of gene sets is further analyzed 

in the next section. Overall, the RFE-LNW achieves an average success rate of 81% 

with 64 genes, showing better generalization ability than that of RFE-SVM achieving 

67% average accuracy with 256 genes. This improved performance of RFE-LNW is 

consistently preserved through external cross validation from 64 to 2 genes. The same 

qualitative result is achieved in 10-fold cross validation (Figure 25, panel 3.B), where 

we notice that maximum performance is still achieved by RFE-LNW on the 64 genes 

cut off point in agreement with the results of the ELOO procedure. We again notice 

that the 10-fold cross validation procedure produces smoother learning curves due to 

the lower variance of the produced result. 

Wrapper methods have been accused for introducing a large amount of bias 

through their learning process [6]. Giving an appropriate computational set up, we 

demonstrate in APPENDIX I that the bias introduced through RFE-LNW, approaches 

that introduced by the filter method, while in APPENDIX II we provide a benchmark 

evolution of the gene selection problem in the applied BC data set. 

3.6.3 Fusion of Selected Genes 

Taking into account the promising results derived by the proposed methodology on 

the breast cancer data set, we proceed by examining the union of the different 78 and 

100 sets of 64 genes derived through the ELOO and the 10-fold procedures, 

respectively. This union results into two different supersets of markers; the first one 

contains 200 different genes, while the second one consists of 507 genes. Notice that 

the superset derived through the ELOO procedures is much smaller than that derived 

through the 10-fold cross validation, indicating a great amount of gene overlap. In 
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fact, half of the 64 genes (50%) overlap with each other in all runs (a frequency of 

78), while on the other hand only 6 genes overlap in all runs (a frequency of 100) of 

the 10-folld cross validation procedure. This result further emphasizes the role of the 

ELOO procedure as a stability measure, according to the discussion preceded in 

section 3.5. Another interesting but also logical result that was verified is that the 200 

genes derived through the ELOO process are a subset of the 507 genes derived 

through the 10-fold cross validation procedure. 

Gene Seq. ID Gene Accession Gene Seq. ID Gene Accession 
659 NM_001667 10538 NM_004911 
719 NM_001685 10643 NM_020974 
831 Contig43684 12259 NM_006544 
838 Contig13548_RC 12416 U90904 

1505 AF148505 12553 Contig64861_RC 
1623 Contig17273_RC 12572 AF055033 
1626 Contig35229_RC 13270 Contig5456_RC 
2819 NM_003376 13343 AL355708 
3224 NM_020120 13490 AK000365 
3232 NM_020123 13800 Contig47544_RC 
3742 Contig44713 13917 Contig65439 
3786 NM_002779 14762 AF160213 
3851 Contig6238_RC 15157 Contig11065_RC 
4952 NM_005007 15813 Contig50013_RC 
4966 AB018337 15874 Contig31312_RC 
5293 NM_003607 16474 Contig14882_RC 
6463 NM_012479 17778 NM_015984 
7012 NM_005219 18425 Contig63102_RC 
7126 NM_005243 19549 NM_000207 
7797 NM_013306 19840 NM_000272 
8071 NM_013360 19928 NM_000291 
8162 NM_013376 20891 BE739817_RC 
8910 NM_013438 23161 Contig41716_RC 
8976 NM_004701 23744 NM_000797 
8982 NM_004703 23889 Contig22253_RC 
9235 Contig33814_RC 23978 NM_002208 
9646 NM_006260 24016 NM_002224 
9874 NM_005594 24169 NM_002268 

10325 NM_007057   

Table 9: Sequence numbers and accessions of the 57-gene signature. 

A linear neuron similar to that presented in section 3.3 was trained on the available 

78 training samples, each described through the set of 200 ELOOCV genes and tested 

on the provided independent test set of 19 samples, described also by the same set of 
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genes. We emphasize that we focused on the 200 genes set since it is actually the 

intersection of the two supersets derived by 10-fold and ELOOCV procedures. One 

gene was eliminated per iteration and the set of surviving genes that gave the highest 

classification accuracy on the independent test set was selected as the final set of 

genes (signature). This procedure resulted at a set of 57 gene signature with an 

accuracy of 89.47% on the independent test set (missing only two samples), Van’t 

Veer et al. derived a set of 70 markers with the same accuracy in [7]. The systematic 

gene names of the 57 markers are reported in Table 9 

The learning procedure that was used at this stage is the variant learning rate 

scheme given below introduced in section 2.3.5 

( ) ( ) ( )( ) ( )1i i i iw t w t d y sign e f u sign g K′+ = + − ⋅ ⋅ ⋅ ⋅  (2.38) 

The term d y−  plays the role of a variant learning rate, which is decreasing as y 

approaches the goal d. In other words, we take larger step towards the target when 

being away from it, but we slow down the update process when approaching it. With 

this learning scheme, the only parameter that needs to be tuned is the number of 

epochs, which was set to 500. The weight factor iK  for this set of experimental steps 

was adaptively set through equation (2.33). 

3.6.4 Expression Profile Analysis of Selected Genes 

In this experimental step we study the clustering ability of the derived set of 57 genes 

in three data sets available for BC: a) the training data set of the 78 samples, b) the 

independent test set of the 19 samples and c) the cohort of the 234 new cases 

published by Van De Vijver et al. in [3]. Complete-linkage hierarchical clustering 

with Pearson distance measure was used on all three data sets. 
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Clustering on Training Set 

Clustering of the training set revealed two basic sets of clusters as depicted in Figure 

26.A. Using the follow up times published in [1], these two clusters yielded the 

Kaplan-Meir survival curve illustrated in Figure 26.B, indicating a significant 

difference on the survival prediction of the two clusters, with the good prognosis 

group being the one on the left of Figure 26.A. As a conclusion, we state that the 

profile of the selected markers through our methodology is a sufficient survival 

predictor on the training set. In the next experimental step we study the behavior of 

the selected genes on the independent test set of the 19 samples. 

Clustering on Test Set 

Hierarchical clustering on the independent test set derives, as in the case of the 

training set, two basic clusters depicted in Figure 26.C. These two clusters correspond 

to good and poor prognosis groups as revealed by the Kaplan-Meier survival analysis 

conducted (Figure 26.D), resulting also into significant difference on survival 

prediction. 

Clustering on 234 New Samples 

We also tested the expression profile of the selected 57 markers on the new cohort of 

234 samples published by Van De Vijver et al. in [3] . The clustering result on this 

new set of samples is illustrated in Figure 26.E. Two basic clustering groups were 

discovered corresponding, as in the previous two cases, to the two prognostic groups 

of good (green cluster) and poor (red cluster) clinical outcome. This fact is verified by 

the survival analysis depicted in Figure 26.F. The Kaplan-Meier curve derived in this 

experimental step is comparable to that of Van De Vijver et al. in [3], which further 

supports the valididty of the RFE-LNW method.Concluding this set of experimental 

step we emphasize that the proposed methodology manages to select a gene signature 
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Figure 26: Clustering results and Kaplan-Meier curves of the 57-gene signature on the training set (A, 
B); on the independent test set (C, D) and on the 234 new patients (E, F). The derived signature serves 
the purpose of a sufficient survival predictor in all tested cases. 
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which, besides its high classification accuracy on the training as well as on the 

independent test set of 19 samples, enables the discovery of two well distinguished 

prognostic groups. This was verified both on the training and on the independent test 

set. 

The fact that these markers could be used as successful survival predictors on the 

totally independent test set of 234 new is an encouraging result and demonstrates that 

the RFE-LNW complies well with clinical outcome, enhancing the conclusion that it 

is searching towards a meaningful biological path. We emphasize at this stage that no 

preprocessing step was applied to reduce the initial number of genes as was done in 

[1]. By employing such preprocessing we believe that the produced result could be 

further refined.  

For all conducted experimental steps the tested methodologies were implemented 

on MatLab platform. For the SVMs implementation, the osu-svm MatLab toolbox 

[22] was used. The MEV Ver. 4.0 [23] was employed for gene visualization and 

clustering results, while the SPSS statistical software was used for the Kaplan-Meier 

survival analysis. 

3.7 Study of Bias 

Wrapper methods have been criticized for introducing a selection bias to the feature 

selection process. Ambroise and McLachlan in [6] address this issue and point out 

that wrapper methods introduce a great amount of bias if the test set is also used in the 

feature selection process. This bias, however, is corrected when the test set is 

excluded from the feature selection process. In this study three basic steps of accuracy 

measuring experiments were taken, namely ILOO, ELOO and 10-fold cross 

validations. As we pointed out in the introduction we are aware of the fact that 

ILOOCV introduces bias to the feature selection process, but we used it only as a test 
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to measure the learning ability of the underlined methodologies on the training set 

and not as an actual measure for the final feature selection process. For the marker 

selection process instead, we used external evaluation procedures (ELOO and 10-

fold) in which case the test set is totally unknown to the feature selection process and 

thus any introduced bias is corrected. We address the above issues by conducting a 

special type of experiment similar to that presented in [6] with the aim of 

demonstrating the bias introduced by the various performed tests. We point out that 

for the specific experiment both RFE-LNW and RFE-SVM are used with the 

parameters of ELOO and 10-fold cross validation processes, since the final genes 

 

Figure 27: Bias variance of the tested methodologies. The RFE-LNW in the internal evaluation 
process approaches the bias of the Filter method, while both underlined methodologies correct for the 
selection bias when an external leave one out evaluation procedure is considered. 
ignature was derived through those two procedures. For this experiment we focused 

on the BC data set, where each sample is randomly selected and assigned also at 

random a positive or a negative label. This process results to a totally random set, on 

which a totally unbiased feature selection process will give the accuracy of the 

random guess (approximately 50%). Then our tested methodologies were applied to 

this set using both ILOO and ELOO valuation criteria. 

The results of the experiment are depicted in Figure 27, where we point out some 

interesting observations. First of all we observe that indeed both tested methods 
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introduce a large amount of bias in the case of the ILOO evaluation process, 

confirming the result of Ambroise and McLachlan. However, the bias introduced by 

RFE-LNW (green line) is significantly less, than that introduced by RFE-SVM (blue 

line) and almost approaches the bias introduced by the filter method (red line) that 

uses a variation of Fisher’s ratio as the feature ranking criterion. On the other hand, 

both methods correct for the selection bias when an external evaluation procedure, 

such as ELOO is used (green and blue dashed lines), since their performance 

approaches around 50%, as expected. 

As a concluding remark we emphasize two basic points: a) the proposed 

methodology, even though it falls into the category of the wrapper methods, 

introduces a bias that approaches that of the filter method and b) the evaluation 

criteria that were used as means of selecting the final set of markers genes correct for 

any selection bias. 

3.8 Benchmark Comparison of Results in Breast Cancer 

The fact that the strongest predictors for metastasis in breast cancer such as lymph 

node and histological grade fail to classify accurately breast tumors, lead the research 

community to DNA microarray analysis in order to identify a gene expression 

signature strongly predictive of the clinical outcome. One of the first studies that 

address this issue and has been considered as a benchmark is that of Van’t Veer et al. 

in [1]. A signature of 70 genes is shown to be able to distinguish between poor and 

good prognosis patients with a success rate of 89.5% on an independent test set of 19 

samples, while it gives a classification accuracy of 83% on the initial training set of 

78 samples. Even though the study has received criticism for not cross validating the 

feature selection step [16] and thus it gives overoptimistic estimates, the 70-gene 

signature has nonetheless shown success in the cross validation study of Van’t De 
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Vijver et al., [8]. The latter demonstrated that the 70-gene signature profile could be 

used as a sufficient survival predictor, outperforming classical clinical predictors, 

applied on a test cohort consisting of 234 new patients. 

Following this result other studies were reported from which we selectively refer to 

[25] and [26]. In the first one, ridge regression succeeded to classify the independent 

test set with a success rate of 89.5% by selecting only 8 genes as markers. This result 

however, is not cross validated through a repetitive external procedure and is not 

tested on the cohort of the 234 samples. In the second study the authors derived a 44 

gene signature achieving the same success rate on the independent test set. The result 

is cross validated through a repetitive 10-fold procedure; while the derived signature 

was tested using the 234 new samples producing also comparable Kaplan-Meier 

survival analysis as with [8]. Concluding we may state that the result derived through 

RFE-LNW is comparable to benchmark results, since the derived 57 gene signature 

gives a classification performance of 89.5% on the independent test set, while it 

produces comparable survival curve as with[8]. 

3.9 Discussion and Conclusions 

In this work we study the performance of two linear approaches, namely a linear 

Support Vector Machine and a Linear Neuron, embedded within the Recursive 

Feature Elimination approach for gene selection. Three series of computational 

experiments were conducted. In the first one the well established RFE-SVM method 

scheme was compared with the proposed RFE-LNW approach using appropriate 

measures of quality and accuracy. Results have shown that the RFE-LNW method 

derives better quality clusters of selected genes than the RFE-SVM, while the 

ILOOCV performance of the two methods revealed a connection between cluster 

quality and success rate. In the second set of computational experiments, ELOO and 
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10-fold cross validation performances were measured on three different data sets. The 

RFE-LNW showed more stable performance on external leave one out and resulted at 

a set of 57 markers with 89.47% (two samples missed) on the independent test set in 

breast cancer. The third computational step showed that the selected markers could be 

used as survival predictors on three different data sets including 234 new samples.  

The advantage introduced by the RFE-LNW is that it focuses and implicitly 

searches for differentially expressed genes, through the Fisher’s metric embedded 

within its learning process. This idea actually allows a filter criterion to be applied in 

a wrapper manner and hence it hybridizes characteristics of both wrapper and filter 

methods. This hybridization leads to the positive side effect of bias reduction as 

demonstrated in APPENDIX I by an appropriate experimental setup. A disadvantage 

of RFE-LNW is that it requires a number of parameters to be fine tuned, such as the 

learning rate, the number of epochs and the feature ranking criterion to be used. 

Besides, since it is based on neural network theory it may be trapped into a local 

minimum, which is a known problem to the neural network community. On the other 

hand, RFE-SVM may require only one parameter to be fine tuned, but it focuses only 

on classification performance and hence neglects intrinsic data characteristics, such as 

the variation on the expression levels of the selected genes. This inadequacy of RFE-

SVM was highlighted in the BC data set, where it was shown that it creates ill-defined 

clusters leading to poor generalization performance on the external evaluation tests.   

Furthermore, the SVM classifier is founded on the support vectors which are actually 

the basic fundamental samples of learning and could be considered as class 

representatives. Hence, the existence of a few but well represented samples could be 

enough to build an effective and efficient classifier. Nevertheless, absence of such 

representative samples could lead to poor generalization and low quality performance. 
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In such situations we need to embed intrinsic data characteristics into some form of a 

“background  knowledge” in order to assist the classification and as a consequence 

the feature selection task; such a “background  knowledge” can be implanted as a 

form of Fisher’s ratio (other metrics could be used as well) within the training 

procedure.  We emphasize that our aim in this study is not to provide a method that 

would eventually replace already existing and successful approaches, such as RFE-

SVM, but to show that the proposed methodology can provide a robust wrapper 

algorithmic scheme, especially when aiming implicitly at selecting differentially 

expressed genes. 

Proceeding onto the next chapter we examine the biological significance of the 57-

gene breast cancer signature and demonstrate that it points to useful biological 

knowledge, which in turn could be use to further refine derived results. 
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CHAPTER 4 

4 Revealing Significant Biological Knowledge via Gene 
Ontologies and Pathways 
 
4.1 Abstract 

Objective: Our objective in this study is to examine the biological significance of the 

57-gene signature derived in chapter 3, using published biological knowledge on gene 

functionalities and biological processes. 

Methods and Materials: Many scientific works in the field of bioinformatics and 

marker selection deal with the problem of deriving a gene signature using a variety of 

stochastic and/or pattern recognition approaches. Special focus is given on the 

statistical perspective of the derived result without paying much attention on its 

biological aspect and significance. We propose to use and rank significant biological 

knowledge, hidden behind the 57-gene signature, using hyper-geometric distribution 

probability, which in turn will be used for the generation of a new gene signature. We 

assess the statistical significance of the new derived signature using classical 

classification success rate measure, but we also assess the significance on the 

expression levels of marker genes through the global score (Q) statistic. 

Results: Using gene ontologies and pathways we assess the biological ‘meaning’ of 

the 57-gene signature and show that it points to valid biological knowledge. 

4.2 Introduction 

Most prognostic gene signatures derived so far were evaluated by applying stringent 

statistical criteria on the performance of individual genes, regardless of their 

biological functions. A very recent study [1] has demonstrated that by taking into 

account  previous biological knowledge provided through gene ontologies and 

pathways, significant results could be derived revealing the biological “mechanisms” 
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hidden behind ER-positive and ER-negative breast cancer patients. A significant 

result that has also been derived in the same study is that even though there is little or 

no overlap between the various published prognostic gene signatures when individual 

genes are taken into account, the situation is reversed when considering the biology 

hidden behind them. 

Inspired by the work presented in [1], we demonstrate that the 57-gene breast 

cancer signature derived in chapter 3 and published in [2] points to significant 

biological knowledge, which when considered as the starting point of a new gene 

selection procedure, produces a more significant result in terms of outcome prediction 

than the initial one, verifying the biological validity of the initial 57-gene signature. In 

order to associate genes in the signature with biological significance embedded in 

GOBPs and PWs, use the concept of hypergeometric distribution. Based on such a 

biological ranking we select a new signature. For the purpose of evaluating the 

significance of the derived results at the various stages of the procedure we use the 

global test in [3] to elaborate on the relation between gene signature and clinical 

outcome. The test is a score test which is used to assess a signature’s significance; the 

higher the score the more significant the signature is. In essence, the test assesses the 

correlation of gene expressions in the signature, with the clinical outcome on the 

available samples. It is build on the fact that genes in a signature are differentially 

expressed across classes and that genes with similar expression patterns point to the 

same outcome. 

4.3 Methods 

In this section we provide some background information on a set of criteria that will 

be used on this study and concern: a) the criteria that will be used to assess the 

significance of the biological knowledge hidden behind our 57-gene signature, b) the 
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criteria that will be used to assess the statistical significance of the derived gene 

signature(s) on the available data set and c) the classification approach that is used to 

assess prediction accuracy. Essential background knowledge on gene ontologies and 

pathways is provided in section  1.4. 

4.3.1 The Hyper-geometric Probability Distribution 

The Hyper Geometric Distribution Probability is a discrete probability distribution 

that describes the number of successes in a sequence of N draws, corresponding to the 

N genes constituting a specific PW or GOBP, from a finite population of M total 

genes without replacement: 

 ( ), ,

K M K
x N x

p f x M K N
M
N

−⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠= =

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (3.1) 

where x is the number of genes in the signature belonging in the pathway, M is the 

total number of genes in data, K the number of the pathway genes that exist in the data 

and N is the number of genes in the examined gene signature. In other words, it 

measures the probability of drawing among M total genes, x of them, such that they 

belong to a specific pathway of K genes, given that those x genes are also part of the 

N gene signature under consideration. The lower the value of p the most significant 

the examined pathway is, since it has a low probability of being selected at random. 

Note that for simplicity purposes we use the term pathway to designate both the 

pathway and the GOBP concepts.  

Elaborating now on equation (3.1), we underline some interesting aspects. Suppose 

that a pathway contains only one gene ( )1K =  and that gene ( )1x = has been selected 

in a signature consisting of only that one gene ( )1N = .Then for large M we get a p 
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(HGDP) value approximately zero. This implies that the specific pathway is an 

important one, since the probability of selecting genes of that pathway at random is 

close to zero.Consider now the inverse situation, let the number of genes constituting 

a pathway equals to the total number of genes ( )K M= , restricting actually our 

selection to only one pathway that would lead to a signature of N genes all selected 

from the same pathway ( )x K= . Then, for such a situation we get a p value of one, 

implying that the specific pathway is not a significant one since it gives a high 

probability of being a random guess. Let us considering a more realistic situation and 

focus in our gene signature of 57-genes being selected from a set  24188. Consider, 

for instance, the signal transduction pathway, which contains 3788 genes (during the 

period of our research), 2115 of which exist in our 24188 gene set ( )2115K = , which 

is pointed to by 14 different genes ( )14x =  in our 57-gene signature ( )57N = . This 

case yieldsa p value of 2.26E-04, ranking the specific pathway among the most 

important ones. Furthermore, indicating that a pathway could be important even if it 

consist of a large number of genes (provided that it contributes a large proportion of 

genes in the final gene signature), the fact that about 25% (14/57) genes of our gene 

signature are part of the signal transduction GOBP makes the specific ontology very 

important. 

Using such a metric we can assess the statistical significance of a pathway as to 

whether its selection in the final gene signature is a random result or not. Thus, 

ranking then the pathways according to their corresponding p-values leads to a ranked 

list of pathway significance. 
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4.3.2 The Global Test 

The global test [3] elaborates on the connection between gene expressions and clinical 

outcome. Suppose we are given gene expression measurements of n samples and m 

genes and we want to test if there is a close connection between gene expression 

patterns and clinical outcome. If a group of genes can be used to predict the clinical 

outcome, the gene expression patterns must differ for different clinical outcomes. 

Defining ijX x⎡ ⎤= ⎣ ⎦  as the n m×  data matrix containing the m genes of interest and Y as 

the 1n×  clinical outcome vector, we can model dependence of Y depends in X . In the 

model of [4] there is an interceptα , a length m  vector of regression coefficientsβ and 

a function h (logit function) such that: 

 ( ) 1

1

m

i ij j
j

E Y h xβ α β−

=

⎛ ⎞
⎜ ⎟= +
⎜ ⎟
⎝ ⎠

∑  (3.2) 

Testing whether there is a predictive effect of the gene expression on the clinical 

outcome is equivalent to testing the hypothesis:  

 0 1 2: 0mH β β β= = = =  (3.3) 

It can be shown that if 0H is true the test statistic Q  is derived by: 
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2
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Q

µ µ
µ

′− −
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where ( )1R m XX ′= , ( )1hµ α−=  is the expectation of Y under 0H and 2µ is the 

second moment ofY under 0H . Hence,Q is a score test which can be interpreted in 

two alternative ways as follows: 
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or as: 

 ( )( )
1 12

1 n n

ij i j
i j

Q R Y Yµ µ
µ = =

= − −∑∑  (3.6) 

Equation (3.5) indicates that genes with large variance have much more influence on 

the outcome of the test than genes with low variance. Since R is the gene covariance 

matrix and ( )( )Y Yµ µ ′− − is the covariance matrix of the clinical outcomes, equation 

(3.6) focuses on samples and checks whether samples with similar outcomes share 

also similar gene expression patterns. 

The global test is used in the experimental section of this chapter as a measure to 

assess the statistical significance on the expression of gene expressions within a gene 

signature on the outcome (label) of samples. 

4.3.3 Nearest Centroid Classifier 

For classification purposes we use the nearest centroid prediction rule [6]. Each 

patient is classified according to the distance between his/her signature and the two 

average profiles; the predicted class is the one closer to examined profile, by means of 

the Euclidean distance. Such a classifier can be formulated as follows: 

 ( ) ( )( )f x sign= − ⋅x c w  (3.7) 

where 

 
2
+

= + -c cc  (3.8) 

 + -= −w c c  (3.9) 

and +c , -c are the centroids of the positive and negative classes respectively. This 

method is similar to that used by Michiels et al. [7]; we use Euclidean distance instead 

of Pearson correlation. It is also a close alternative to the classification method used 

by Van’t Veer et al. [5] and Niijima et al. [8]. 
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4.4 Experimental Setup 

We consider the breast cancer data set published in [5] and examined extensively in 

chapters 2 and 3. We focus on the 57-gene signature derived in chapter 3 and 

published in [2], and assign to each one of its 57 genes the associated pathway (PW) 

[9] as well as the corresponding Gene Ontology Biological Process (GOBP) [10]. We 

compute the Hyper-Geometric Distribution Probability (HGDP) for each pathway and 

GOBP involved in the signature and rank GOBPs and PWs in ascending order 

according to their probability score, as a measure of assessing the randomness of 

selecting a specific GOBP/PW. In this way, we associate each individual gene in the 

signature with already known and published biological knowledge. In our study the 

most significant GOBP derived, which also provides a significant amount of genes is 

the “signal transduction” GOBP (GO:0007165) with HGDP of 2.26E-04, while the 

most significant pathway is the T-Cell receptor signalling pathway with HGDP of 

3.24E-02.  

4.4.1 Building a Gene Ontology and Pathway Signature 

In our attempt to engage right from the initial step of marker selection the GOBPs and 

PWs pointed by the 57-gene signature, we collect all genes included in GOBPs with a 

HGDP of less than 0.2 and enrich them with all genes indicated by the most 

significant pathway, namely the T-Cell receptor. This collection results in an 

ensemble of 4197 genes, which is used as the basis of a new gene selection process. 

We apply the liner neuron methodology in the same manner as in section 3.3, keeping 

the same cut off scenario as the one used for the experiments in section 2.5.2 and is 

illustrated in more detail in Appendix I. For comparison purposes with the result of 

[5], where a 70-gene signature is derived, we select a gene signature of size closest to 

70 that give the maximum classification accuracy on the independent test set. This 



Chapter 4:                                      Revealing Significant Biological Knowledge via Gene Ontologies and Pathways 

 111

selection rule resulted in 71 genes with a classification accuracy of 84.21% on the 

independent set of 19 samples (3 missing cases). Nearest neighbor classification was 

applied as a mean of classifying unknown samples according to their gene expression 

profile. Thus, a new sample is assigned to the class with the closest (Euclidean 

distance) mean expression profile. To train the linear neuron, the same parameters as 

those used to derive the 57 gene signature were applied i.e., 500 epochs were used as 

long as the number of surviving genes was less than or equal to 1024, 300 epochs 

were used afterwards, while the learning rate was set to 410− . 

4.4.2 Statistical Significance of the Derived Result 

The global test is used as a measure to asses the statistical significance of the 71-gene 

signature derived in the previous section. We measure the test statistic Q  which can 

be intuitively interpreted as the influence of genes and samples to the final result. 

Genes with large variance have much more influence on the outcome of the test 

statistic Q  than genes with lower variance (equation (3.5)), which is a desirable 

property in microarray analysis[11]. At the same time, the test examines whether 

samples with similar gene-expression patterns are correlated with similar outcomes 

through equation (3.6). To assess the Q  metric of the 71-gene signature, we applied a 

hierarchical clustering using Pearson Correlation Coefficient with complete linkage 

on the 234 new samples published by Van De Vijver et al. in [12], using those 71 

genes that constitute the signature. 

Hierarchical clustering revealed two main clusters with significant variation on the 

expression levels of genes (Figure 28), where rows correspond to genes and columns 

to patients. The Q  statistic of the two main clusters returned a value of 488.3, while 

the same test yielded a value of 367.41 when measured on the initial 57 gene 

signature and 416.96 on the 70-gene expression profile derived by  
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Figure 28: Hierarchical clustering applied on the 234 new patients (columns) of the 71-gene 
signatures (rows) reveals two main clusters with significance variation on the expression levels of 
selected genes. 

 

Figure 29: Kaplan-Meier survival analysis of clustering result using GOBP and PWs. It shows 
significant difference on survival prediction and reveals that the two clusters correspond to low (green) 
and high(red) risk groups. 
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Van’t Veer et al. [5]. Hence, according to the test the 71-gene signature is more 

significant than the aforementioned signatures, so that the use of background 

biological knowledge in terms of GOPBs and PWs helps in improving the statistical 

significance of the derived result. 

4.4.3 Clinical Prediction Outcome 

Using the clustering result derived in the previous section we asses the survival 

prediction outcome of the two underlined clusters of patients using Kaplan-Meier 

analysis illustrated in Figure 29. The analysis revealed significant difference on the 

survival prediction, indicating that the two clusters actually correspond to poor (red) 

and good (green) prognostic patient groups. 

4.4.4 Assessing Randomness of the Derived Result 

One question of particular interest is how likely a produced result of approximately 

same or higher statistical significance would have been produced using any set of 

4197 genes among the 24188 we are given initially? This question is a direct side 

effect of the random sample-prognosis correlation effect due to sparse coverage of the 

decision space. In a very high dimensionality space with a low coverage (few 

samples) the existence of more than one solution seems a logical consequence. 

Moreover, the existence of random gene combinations that may provide good 

correlation with the outcome is also possible. This issue has been addressed by Ein-

Dor et al. [14], demonstrating the existence of multiple solutions in Van’t Veer’s data 

set. Even though our 71-gene signature has been derived through an evolution process 

taking into account additional stringent evaluation criteria [2] along with background 

biological knowledge provided through GOBPs and PWs, we proceed in an 

evaluation procedure similar to Ein-Dor’s [14] and show how likely is to derive a 71-

gene signature with approximately the same Q statistical significance starting from 
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any set of 4197 genes. To answer such a question we repeatedly and randomly 

selected 4197 genes from the initial given set of 24188. Among 80 runs, only in three 

cases the derived 71-gene signature was approximately as significant as the proposed 

one. This indicates that our starting point of the 4197 genes is unlikely to have 

happened by chance (probability of randomness 3/80), indicating also that the initial 

57-gene signature, which was actually our information source, points indeed to 

significant biological knowledge, reducing substantially the uncertainty factor of the 

derived result. 

4.5 Conclusions 

In this chapter, we assess the problem of marker selection in a “reverse engineering” 

manner, closing a cycle in the process of selection. We usually start a marker 

selection procedure from a point of raw data and address it statistically as a 

dimensionality reduction paradigm. In this chapter, we take the derived result of such 

a process and proceed in a reverse way, in an attempt to improve its biological 

relevance by appropriately combining biological knowledge, while at the same time 

verifying the biological validity of our 57-gene signature. An added value of the 

proposed procedure is that it could be used to combine biological knowledge 

associated with different gene signatures, coming from different sources, aiming for 

further improvement of results.  

Proceeding onto the next chapter, we combine biological knowledge derived from 

different gene signatures in an attempt to reveal alternative biological mechanisms 

which might be trigger breast cancer. 
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CHAPTER 5 

5 Integrating Biological Knowledge for Marker Gene 
Selection in Breast Cancer 
 
5.1 Abstract  

Objectives: It is well known by now that published prognostic gene signatures share 

very few genes or no genes at all in common giving hand to criticism and disputation. 

An optimistic answer to the problem is that the solution may not be unique, while a 

pessimistic view leads to nihilism and depreciation. We, as well as others, believe in 

the positive side of things and view the derived solutions as part of more global one, 

where each individual signature intersects only a small part of it, sharing only crumbs 

with each other. We focus on such knowledge intersections by revealing common 

biological mechanisms hidden behind two or more gene signatures, which 

alternatively is used as a meta-knowledge towards a more global and unified solution.  

Furthermore, it is widely recognized that, one group’s signature does not perform 

well on another’s group’s data, due to incompatibilities of microarray technologies 

and the experimental design. We assess this cross-platform aspect, showing that 

searching for a more global and unified solution as above also help in overcoming 

such incompatibilities. 

Methods and Materials: Different genes may point at the same biological mechanisms 

or complementary protein processes, thus carrying indirect relationships. In this study 

we look behind a gene signature and reveal the biological knowledge it covers by 

means of biological processes and pathways. Based on the concept of HGPD (section 

4.3.1) we derive the significant biological mechanisms, by means of GOBPs and 

PWs, as in chapter 4. We perform this analysis on three BC signatures. We then 

merge the derived PWs and GOBPs and perform gene selection from the resulting set 
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of genes. The new signature is evaluated by means of its statistical significance (Q 

metric) and its predictive ability (survival analysis). Furthermore, the new signature 

derived from one data set is applied on a different dataset (cross-platform validation). 

Results: By riddling this biological knowledge we demonstrate that initial results are 

significantly improved statistically-wise, while  integration of biological knowledge 

from different sources (gene signatures) shows promise in unfolding the effects of 

biological mechanisms opening the road to more global solutions which are blocked 

by different experimental platforms or designs. 

5.2 Introduction 

Microarray technology has become a valuable tool in the hands of experts classifying 

breast tumors according to their prognosis, type, ER status, or response to treatment. 

An open problem for tackling breast cancer is the most appropriate treatment protocol 

that a specific patient should follow. Even though chemotherapy or hormonal therapy 

reduces the risk of distant metastasis by approximately 1/3, 70-80% of the patients 

receiving adjuvant treatment would have survived without it [1]. Additionally,  

insurmountable inconsistencies in histological grading constrained the American Joint 

Committee on Cancer to exclude histological tumor grading from its staging criteria 

[3]. Hence, increasing the prognostic value through the use of stable and robust 

markers is more than a necessity, a direction towards which microarray technology 

has contributed a lot. 

It is quite evident by now that simply acquiring microarray data is not enough; one 

must be able to extract meaningful information marking the need for collaboration 

among various scientific fields such as medicine, biology, statistics and computer 

science. Besides, “an understanding of both the biology and the computational 

methods is essential for tackling the associated data mining task without being 



Chapter 5:                                        Integrating Biological Knowledge for Marker Gene Selection in Breast Cancer 

 119

distracted the abundant fool’s gold” [4]. We extend this aspects to: simply generating 

a statistically significant results is not enough; any result should also be evaluated in 

terms of its biological significance, which in any case is more important than its 

statistical one. To establish this position we refer to the study of Van’t Veer et al. [1] 

which has received harsh criticism [5], [6] from a statistical point of view, when 

considering stringent statistical criteria. On the other hand, taking into account 

additional biological and medical criteria, FDA (Food and Drug Association) acted 

counter to statistical critisism  and approved the result of Van’t Veer et al. for 

commercial production [7]. It is the first clear product that profiles genetic activity, 

measuring the likelihood of tumor recurrence. It may help doctors in planning 

appropriate therapy for a patient when used in accordance with other clinical criteria 

and laboratory tests. On the same line, the European Organization for Research and 

Treatment of Cancer (EORTC) launched the MINDACT (Microarray In Node 

Negative Disease may avoid ChemoTherapy) project opening the road for randomized 

trials of the Van’t Veer’s result [8]. This is obviously a typical example of 

contradiction between statisticians and medical doctors, each one counting and 

evaluating results from a different and possibly diverse perspective. 

In this study we demonstrate that by appropriately adopting biological knowledge, 

statistical results are significantly improved. It is evident that published gene 

signatures have few or probably no genes at all in common. Recent studies however 

proved that even if there is no significant gene overlap between two different gene 

signatures there might be significant overlap when the biology hidden behind is taken 

into account [9]. Building on these steps, we collect significant biological information 

in terms of Gene Ontology Biological Processes (GOBPs) and Pathways (PWs) 

hidden behind the 57-gene signature (S1) published in [11], the derivation of which is 
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discussed extensively in chapter 3. The 70-gene signature (S2) published by Van’t 

Veer et al. in [1] and the 76-gene signature (S3) published by Wang et al. [10]. First 

we show that the three signatures indeed demonstrate significant biological overlap 

when GOBPs and PWs are considered, in complete accordance to [9]. Secondly, we 

demonstrate that statistical results are substantially improved when integrating the 

biological knowledge derived from S1 and S2. The derived results of such knowledge 

integration are evaluated  on the 234 new cases published in [12], as well as on the 

286 cases published in [10], which are assessed using a different microarray platform 

and experimental design. The proposed approach actually tackles two major problems 

in cancer gene selection: a) The minor or no overlap issue between different gene 

signatures at the gene level [13], and b) the cross platform evaluation of results by 

testing a predictor that is derived using a specific microarray platform and 

experimental design on another group’s data derived with a different experimental 

platform and protocol [15]. 

5.3 Gene Signature Overlap 

The concept of gene signature overlap can be seen at a four level of abstraction as 

follows. 

1. Gene-level overlap, assesses the number of common genes between two 

signatures. This iissue has been addressed before showing minimal or no 

overlap among the various signatures published in breast cancer [13], [15]. 

2. Pathway-level overlap, assesses the common pathways that exist between two 

gene signatures [14], [15]. 

3. Significant pathways overlap as measured by means of the HGDP introduced 

in chapter 4 section 4.3.1. Locating the pathways indicated to by the genes of a 

gene signature, we can produce a rank order list of significant pathways in 
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ascending order according to HGDP. We can then define pathway overlap by 

looking at the top ranked pathways derived by two or more signatures under 

consideration [14]. In this study we assess a pathway as significant when its 

HGDP is less than 0.05. 

4. We go one step further and define gene overlap within the significant 

pathways of two or more signatures. At this level we focus on the significant 

pathways of the signatures as defined above and assess the overlap of the 

ensemble of genes they define. In this form we essentially consider overlap of 

all genes that are functionally related with the ones involved in the original 

gene signature. Thus, we consider overlap among groups of genes, instead of 

genes themselves, at abstract level of functionality instead of expression. 

In the following sections we focus on the 4th level overlap, but we also consider 

overlap at the remaining three levels. 

5.4 Data Sets 

Two publicly available breast cancer data sets are used to assess and validate results. 

The data set of Van’t Veer et al. [1] described in more detail earlier in  chapters 2 and 

3. The 78 sample set of the data is used for training, the 19 additional samples were 

used for independent test set evaluation and the 234 new patients cohort is used as an 

extra validation set. In addition, the data published by Wang et al. [10] on BC is also 

employed for further validation purposes. It consists of 286 patients and 22283 genes; 

the whole data set is used for validation purposes, and for testing the cross platform 

prediction ability of a signature derived based on different experimental design and 

application platform. Based on this data set, we analyze our results according to 

disease recurrence. Hence, those patients for which no recurrence occurred are 
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characterized as the good prognosis group and belong to the negative class, while 

those for which a reoccurrence occurred belong to the positive class.  

5.5 Associating Gene Signatures and Pathways 

In this section we associate each one of the S1 and S2 signatures with significant 

GOBPs [19] and PWs [20] they are associated with, by assembling the GOBP and 

PW indicated by each of the genes in each signature. We rank in ascending order the 

associated GOBPs and PWs according to their p values (given by equation (3.1) and 

preserve only those with a p value of less than 0.05. Even though there exists minor 

overlap when absolute gene identifiers are taken into account between the two 

signatures (only 5 genes in common), the situation is significantly reversed when we 

focus on the biological knowledge provided through the GOBPs and PWs associated 

with the underlined signatures. Thus, by assembling the genes of GOBPs and PWs we 

end up with a collection of 5899 genes for the S1 signature, and 5860 genes for the S2 

signature. The interesting result is that the two signatures show a significant overlap 

of 52% (4031 genes in common). This demonstrates that the two signatures share 

significant biological knowledge overlap even though they reflect very small gene 

overlap. The GOBPs and PWs with associated information are given for S1 in Table 

10, Table 11, and for S2 in Table 12, Table 13. We also point out that even though 

there is only one significant GOBP in common between the two signatures (3rd level 

overlap, see section 5.3), i.e. the Signal Transduction (GO:0007165), this reflects a 

dominating overlap since it contributes 3788 genes in the final ensemble, while the 

remaining gene ontologies are contributing significantly less; note that one gene may 

contribute to more than one GOBPs and PWs. This fact highlights yet another aspect 

in biological knowledge overlap. Even though two signatures may seem to share an  
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GOBP - ID GOBP - Name GOBP - Num of Genes GOBP - Genes in Data Genes in Signature 
 

HGPD 
GO:0051084 de novo' posttranslational protein folding 10 6 2 0.000081

GO:0007165 signal transduction 3788 2115 14 0.000226

GO:0051649 establishment of cellular localization 1027 542 7 0.000236

GO:0006886 intracellular protein transport 556 314 5 0.000766

GO:0006573 valine metabolic process 2 1 1 0.002400

GO:0019859 thymine metabolic process 1 1 1 0.002400

GO:0030949 positive regulation of vascular endothelial growth  1 1 1 0.002400

GO:0051000 positive regulation of nitric-oxide synthase activity 1 1 1 0.002400

GO:0030036 actin cytoskeleton organization and biogenesis 216 135 3 0.003700

GO:0009966 regulation of signal transduction 543 293 4 0.004400

GO:0006101 citrate metabolic process 2 2 1 0.004700

GO:0045908 negative regulation of vasodilation 2 2 1 0.004700

GO:0045909 positive regulation of vasodilation 3 3 1 0.007000

GO:0007632 visual behavior 6 4 1 0.009400

GO:0031532 actin cytoskeleton reorganization 8 4 1 0.009400

GO:0045429 positive regulation of nitric oxide process 8 4 1 0.009400

GO:0007049 cell cycle 915 588 5 0.009800

GO:0009615 response to virus 98 65 2 0.009800

GO:0006091 generation of precursor metabolites and energy 602 387 4 0.010900

GO:0042177 negative regulation of protein catabolic process 7 5 1 0.011700

GO:0050715 positive regulation of cytokine secretion 14 5 1 0.011700

GO:0006006 glucose metabolic process 114 84 2 0.015800

GO:0050930 induction of positive chemotaxis 9 7 1 0.016300

GO:0007021 tubulin folding 8 8 1 0.018500

GO:0051056 regulation of small GTPase mediated signal
transduction 215 92 2 0.018600

GO:0007051 spindle organization and biogenesis 22 9 1 0.020800

GO:0007159 leukocyte adhesion 11 9 1 0.020800
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GOBP - ID GOBP - Name GOBP - Num of Genes GOBP - Genes in Data Genes in Signature 
 

HGPD 
GO:0007212 dopamine receptor signaling pathway 12 9 1 0.020800

GO:0006892 post-Golgi vesicle-mediated transport 26 10 1 0.023100

GO:0042994 cytoplasmic sequestering of transcription factor 12 10 1 0.023100

GO:0001570 vasculogenesis 23 11 1 0.025300

GO:0016310 phosphorylation 791 516 4 0.026000

GO:0000070 mitotic sister chromatid segregation 30 12 1 0.027600

GO:0050708 regulation of protein secretion 25 12 1 0.027600

GO:0006607 NLS-bearing substrate import into nucleus 14 14 1 0.032000

GO:0045664 regulation of neuron differentiation 25 15 1 0.034200

GO:0048167 regulation of synaptic plasticity 20 15 1 0.034200

GO:0046631 alpha-beta T cell activation 18 18 1 0.040800

Table 10: The 38 Significant GOBPs pointed to by the 57-Gene-Signature (S1). 

Pathway Genes in Pathway Genes in Data Genes in Signature HGPD
Tcell 359 318 3 0.0324 

Hedg 26 19 1 0.0429 

Table 11: The 2 significant pathways pointed to by the 57-Gene-Signature (S1) 
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GOBP - ID GOBP - Name GOBP - Num of Genes GOBP - Genes in Data Genes in Signature 
 

HGPD 
GO:0009653 anatomical structure morphogenesis 1068 740 8 0.0010 

GO:0006260 DNA replication 219 168 4 0.0013 

GO:0043627 response to estrogen stimulus 25 20 2 0.0015 

GO:0007165 signal transduction 3788 2115 14 0.0017 

GO:0001501 skeletal development 235 182 4 0.0017 

GO:0031333 negative regulation of protein complex assembly 1 1 1 0.0029 

GO:0031274 positive regulation of pseudopodium formation 5 1 1 0.0029 

GO:0000022 mitotic spindle elongation 2 1 1 0.0029 

GO:0030198 extracellular matrix organization and biogenesis 50 39 2 0.0055 

GO:0008065 establishment of blood-nerve barrier 2 2 1 0.0058 

GO:0006271 DNA strand elongation during DNA replication 3 2 1 0.0058 

GO:0009887 organ morphogenesis 390 290 4 0.0085 

GO:0006562 proline catabolic process 4 3 1 0.0086 

GO:0009113 purine base biosynthetic process 5 3 1 0.0086 

GO:0015012 heparan sulfate proteoglycan biosynthetic process 10 6 1 0.0171 

GO:0007586 digestion 97 76 2 0.0191 

GO:0006024 glycosaminoglycan biosynthetic process 21 10 1 0.0282 

GO:0030225 macrophage differentiation 11 10 1 0.0282 

GO:0006890 retrograde vesicle-mediated transport, Golgi to ER 16 12 1 0.0337 

GO:0006940 regulation of smooth muscle contraction 17 13 1 0.0364 

GO:0001836 release of cytochrome c from mitochondria 11 14 1 0.0390 

GO:0001837 epithelial to mesenchymal transition 12 14 1 0.0390 

GO:0016525 negative regulation of angiogenesis 18 14 1 0.0390 

GO:0006631 fatty acid metabolic process 185 123 2 0.0440 

Table 12: The 24 significant GOBPs pointed to by the 70-Gene-Signature (S2)
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Pathway Genes in Pathway Genes in Data Genes in Signature HGDP 
Wnt 114 112 3 0.0039 

TGF 1556 1182 9 0.0048 

AR 603 468 5 0.0091 

IL6 105 100 2 0.0310 

IL4 307 267 3 0.0349 

Table 13: Significant PWs pointed to by the 70-Gene-Signature (S2) 

insignificant number of common pathways, this overlap may prove to be significant 

when the genes of the overlapped pathways are taken into account. 

5.6 Building a Unified Pathway Signature 

Focusing first on S1, the signature succeeded an 89.47% success rate on the 

independent test while it demonstrated a significant distinction on survival prediction 

[11]. Classification on the 234 new cases published in [12] yields 66% AUC, which 

induces 74% sensitivity (true positive) and 59% specificity (true negative), as 

illustrated in Table 14. Considering now the collection of genes derived by the 

appropriately refined biological knowledge, i.e., taking those genes contained in the 

38 GOBPs and 2 PWs (Table 10, Table 11) but also exist in the data from the design 

 AUC SEN SPE 
S1 66% 74% 59% 
S1-BK (70-GS) 69% 80% 59% 
S2 69% 76% 62% 
S2-BK (70-GS) 71% 78% 63% 
S1S2-BK (69-GS) 73% 81% 64% 

Table 14: Results evolution using appropriately refined biological knowledge pointed to by GOBPs 
and PWs. 

of the experiment, we derived a collection of 3535 genes. By applying the filter 

selection method as described in section 2.3.3 equation (2.11), a 70-gene Biological 

Knowledge Signature (S1-BK) is extracted. Notice that there is a significant gene 

overlap (50 genes in common) between S1-BK and the 71-gene signature derived in 

chapter 4. This is despite the fact that the two signatures were derived using different  
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Class Comparison Survival Prediction 

 
  

 
A - Signature S1-BK Derived from S1 (57-Gene Signature) 

 
  

B - Signature S2-BK Derived from S2(70-Gene Signature) 

  
C - Signature S1S2-BK Derived from S1, S2 

Figure 30: Derived pathway signatures with the corresponding survival prediction curves based on our 
57 gene signature (panel A) and on the 70-gene Van’t Veer’s signature (panel B). In panel C the 
derived integrated signature is presented, along with the corresponding Kaplan Meier curve. 
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Gene ID Assecion Symbol Gene ID Assecion Symbol 

21256 NM_000419 ITGA2B 7489 NM_003875 GMPS 

23724 NM_000788 DCK 12359 NM_014584 ERO1L 

706 D25328 PFKP 9663 NM_006265 RAD21 

14957 AJ224741 MATN3 9646 NM_006260 DNAJC3 

10930 U17327 NOS1 8976 NM_004701 CCNB2 

10325 NM_007057 ZWINT 7126 NM_005243 EWSR1 

18891 NM_000127 EXT1 1831 NM_003239 TGFB3 

5358 NM_020386 HRASLS 5509 NM_002914 RFC2 

13130 NM_005915 MCM6 24169 NM_002268 KPNA4 

14796 Contig34634_RC GCN1L1 19933 NM_000296 PKD1 

8782 NM_006117 PECI 19549 NM_000207 INS 

11123 NM_007111 TFDP1 6494 NM_005192 CDKN3 

15594 NM_006931 SLC2A3 18109 NM_000017 ACADS 

497 NM_002358 MAD2L1 13800 Contig47544_RC ATP5E 

2131 X05610 COL4A2 9156 AF257175 PECI 

6214 NM_012429 SEC14L2 3524 NM_004163 RAB27B 

9274 NM_004798 KIF3B 8508 NM_003981 PRC1 

19928 NM_000291 PGK1 23744 NM_000797 DRD4 

1686 AF201951 MS4A7 12680 U82987 BBC3 

22267 NM_001282 AP2B1 17881 D13540 PTPN11 

23978 NM_002208 ITGAE 10827 NM_004994 MMP9 

659 NM_001667 ARL2 24016 NM_002224 ITPR3 

9033 NM_005444 RQCD1 6404 NM_005176 ATP5G2 

21356 NM_001168 BIRC5 13490 AK000365 ACO2 

12572 AF055033 IGFBP5 19891 NM_000286 PEX12 

24333 NM_000849 GSTM3 6541 NM_003748 ALDH4A1 

14063 NM_006763 BTG2 20891 BE739817_RC IFNAR1 

1201 NM_003163 STX1B 7459 NM_003862 FGF18 

23996 NM_002217 ITIH3 13309 NM_006681 NMU 

19840 NM_000272 NPHP1 6463 NM_012479 YWHAG 

21818 AB023216 KIAA0999 23198 Contig25991 ECT2 

7081 NM_004504 HRB 3224 NM_020120 UGCGL1 

6598 NM_003766 BECN1 7797 NM_013306 SNX15 

5019 NM_012310 KIF4A 21944 NM_001216 CA9 

11428 NM_005721 ACTR3    

Table 15: The 69 genes of the S1S2-BK gene signature 
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selection methods, while significant GOBPs and PWs were assessed using alternative 

HGPD criteria. For the extraction of S1-BK, the initial 78 samples were used for 

training and the additional 19-samples were used for testing, onto which S1-BK 

achieved a success rate of 84.47%. Evaluating now the performance of S1-BK on the 

234 samples cohort, we note a significant improvement over its predecessor S1. More 

specifically, the AUC measure is improved by 3 units (from 66% to 69%) while the 

sensitivity rate achieved an 80% success rate, improving substantially by 6 units, 

while the specificity rate on the other hand remained on the same level. We 

emphasize the increase in sensitivity, since the percentage of success rate in the true 

positive cases is very crucial to medical doctors; the cost of misclassifying a positive 

patient is much higher than the cost of  misclassifying a negative one. In addition, 

high sensitive percentage enables doctors to decide more accurately on the therapeutic 

protocol, which is very important in cancer since patients may avoid unnecessary 

toxic treatment. Returning to S1-BK signature depicted in Figure 30 (panel A), we 

also perform a class comparison of the derived classification result on the 234 new 

cases [12], in order to reveal expression level differences of the gene signature, if such 

exist, between the two classes. The class comparison is performed through a labeled 

clustering. Thus, the class label, derived through the classification process, is given as 

input to the clustering algorithm in order to avoid inter-mingling of samples between 

the two classes and at the same time reveal differences in the expression levels of 

selected genes. Such a clustering designates significant expression level differences of 

marker genes between the two classes (green and red part of the tree) as demonstrated 

in Figure 30 (panel A); rows correspond to genes columns to patients. Additionally, 

this clustering yields Kaplan-Meier survival prediction curves distinguishing 

significantly the two prognostic groups between each other, with the good prognosis 
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(green curve), associated to the green cluster result and the poor prognosis (red curve) 

associated with the red cluster result.  

Focusing on S2, the underlined gene signature achieves a success rate of 89.47% 

on the independent test set [1], while it gives 0.69 AUC translated to 76% sensitivity 

and 62% specificity on the 234 new patients data set [12]. Following the same 

scenario as in the case of S1 to exploit significant biological knowledge, i.e., the 

genes pointed by the top 24 GOBPs (Table 12) and the top 5 pathways (Table 13), we 

derive a collection of 3854 genes, which are again candidates for the derivation of a 

new biological knowledge signature. Applying the filter method as in the case of S1, 

the new derived signature consists of 70 genes that give an 89.47% success rate; we 

refer to this signature as S2-BK. When tested on the 234 cases, S2-BK improves its 

performance compared to its predecessor signature S2. More, specifically, AUC 

improves from 0.69 to 0.71, sensitivity from 0.76 to 0.78 and specificity from 0.62 to 

0.63, as illustrated in Table 14. Even though performance increase is not as significant 

as in the case of S1, improvement is still substantial indicating that biological 

knowledge is indeed useful for signature refinement and performance prediction . The 

corresponding class comparison and Kaplan-Meier analysis are depicted in panel B of 

Figure 30, leading to similar conclusions as in the case of S1 signature. 

Integrating now the biological knowledge reflected by both signatures results to a 

total ensemble of 4852 genes. Proceeding in a similar manner as before through the 

application of the filter method, a 69-gene signature is derived succeeding an 89.47% 

success rate on the independent test set of the 19 samples. This signature achieves an 

AUC rate of 0.73 with sensitivity and specificity rates of 81% and 64% respectively 

on the 234 new cases data set; we refer to this signature as S1S2-BK. Notice that by 

integrating the biological knowledge hidden behind the initial given gene signatures  
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Figure 31: Biological knowledge evolution process followed to derive the S1S2-BK gene signature; 
red – green part represents independent focus on a single signature, blue part represents biological 
knowledge integration. 

(S1 and S2), all measures are significantly increased compared to the ones derived by 

the initial S1 and S2 signatures.  

A class comparison and Kaplan Meier study of S1S2- BK is presented in Figure 30 

(panel C), indicating significant differentiation on the expression level of selected 

genes on the 234 cases cohort, while a clear difference on survival prediction curves 

corresponding to the two groups is also verified. We observe that the probability of 

survival for the good prognosis profile lies above 95% for a time interval of twelve 

years, which may increase doctor’s confidence on the therapeutic decision. Analyzing 

the result of the classification performance, S1S2-BK classified correctly 44/54 

positive cases and 115/180 negative ones. Focusing on the classification of negative 

patients we notice that 115 true negative patients are classified correctly, while 10 

positive are classified as false negatives. This implies that a doctor may decide with a 
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92% certainty (115/125) on not recommending chemotherapy to a negative patient 

that does not really needs it. The 69 genes constituting the S1S2-BK signature are 

listed in Table 15. 

To measure the statistical significance of the classification results on the derived 

gene signature, we use the global score (Q) test [18]. The higher the score of the test 

the more significant the underlined gene signature. The integrated gene signature is 

statistically more significant (Q = 451.98), while S1 gives a score of 367.41 and S2 a 

score of 416.96. Another interesting result that needs to be highlighted is, unlike their 

predecessors, the derived genes signatures that are extracted from biological 

knowledge share a significant amount of overlap. Specifically S1-BK and S2-BK 

share 45 genes in common (48% overlap), while S1S2-BK shares an average overlap 

of 75% with S1-BK and S2-BK, owing to the fact that both initial signatures share 

significant biological knowledge overlap. The process of deriving an integrated 

solution is graphically depicted in Figure 31 where each individual signature 

contributes to knowledge evolution (red – green iteration cycles). Dashed lines in the 

upper right corner indicate that the process may repeatedly evolve adopting signatures 

from different sources, which in turn contribute additional complementary 

knowledge.  

In such an evolving scheme we also considered the 76-gene Wang’s signature (S3) 

[10] and analyzed it the same manner as we did for S1 and S2. We found a 20% and a 

15% biological knowledge overlap with S1 and S2 respectively. Furthermore, 

integration of the biological knowledge between the three signatures resulted in a 

decrease of performance indicating that the biological knowledge offered by S3 is not 

adding complementary biological knowledge towards a statistical 
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Figure 32: Knowledge integration based on different data sets. 

improvement. This probably implies that the specific signature points to an alternative 

biological aspect, which when considered along with other signatures of similar 

perspective, could reveal complementary biological knowledge. This hypothesis could 

be further supported by the fact that the specific gene signature was not assessed 

explicitely through the expression profile of genes as S1 and S2, but rather through a 

Cox’s regression model based on ER tumor status , imposing a different philosophy 

on prediction and probably on the biology of the outcome [10]. Another aspect 

playing important role is the incompatibilities between microarray platforms. 

Signatures S1 and S2 were derived using AGILENT microarray technology while S3 

was derived using AFFYMETRIX chips. Chips are produced using genes from 

different PWs and GOBPs, so that different data sets may lead to different significant 

GOBPs and PWs assessing different aspects of biological relevance. Such differences 

may pave the way for an alternative integration approach, not assessed in this study, 

where biological significance is assessed on all available data sets and subsequent 

integration involves the total set of significant PWs and GOBPs. This integration 

approach is depicted in Figure 32, where significant biological knowledge (SBK) is 
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derived from different microarray platforms based on the same input signature. All 

significant PWs and GOBPs are then integrated resulting, resulting in in a pool of 

genes tested on the data, in order to derive a new integrated gene signature (IGS). In 

our case the different microarray platforms represent the Agilent Hu25K microarray 

that was used by the group of Van’t Veer, and the Affymetrix U133a used by Wang’s 

team. By appropriate application of HGPD (section 4.3.1) we can locate significant 

biological knowledge in terms of GOBPs and PWs derived from the genes in the 

signature and each gene chip. Focusing next on all genes associated with the joint set 

of significant PWs and GOBPs and returning to the initial dataset we derive a new 

integrated gene signature (IGS) by reapplying the feature selection method. 

5.7 Cross Platform Validation of Integrated Signature 

In this section we proceed by validating the S1S2-BK signature on the data set of 286 

patients published by Wang et al. [10] towards a multi-center study that addresses 

problems with transferring results to different platforms, data set and experimentation 

designs. Before however proceeding in such a validation, we test the survival 

prediction capability of the initial signatures S1 and S2 on these 286 new patients. We 

searched for the genes of those signatures in Wang’s data set. In the case of S1, we 

managed to locate 44 out of the 57 signature genes in the data while in the case of S2 

we located 52 genes out of 70 in the signature. Applying SOM clustering [23] on 

these common genes we tried to discover the two prognostic patients groups and 

performed Kaplan-Meier survival analysis on the derived groups, in order to test the 

significance of the clustering result, and thus, the significance of the signatures. The 

results of these tests are depicted in Figure 33, where we notice that the underlined 

signatures are not able to differentiate significantly between the two prognostic 

groups. This outcome shows that results are tightly bounded by the array platforms  
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Figure 33: Kaplan Meier survival analysis of initial signatures (S1 – left, S2 – right) on the 286 cases 
of wang’s data set. 

 
 

 

Figure 34: Class comparison (left) and Kaplan-Meier analysis (right) of the integrated signature on 
Wang’s data set. 
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and the design of the experiment [22]; Van’t Veer’s group performed a double array 

experiment on Agilent chips, while Wang’s group applied a single array experiment 

using Affymetrix chips. Performing the exact same experiment, but using the 

integrated gene signature (S1S2-BK) derived earlier, we managed to locate 116 genes 

in Wang’s data; notice that some gene symbols appear more than once in Wang’s data 

set. Examining the integrated signature in the same manner as before, SOM clustering 

revealed two groups of patients corresponding to the two prognostic groups. 

The clustered result is depicted in Figure 34 (left panel); to preserve the two groups 

derived by SOM but better organize the classes according to gene expressions, we 

depict the labelled hierarchical clustering of the SOM groups. The two clusters reveal 

significant difference on the gene expression profiles. These two clusters map a good 

(green) and a poor (red) prognostic group as verified by the Kaplan-Meier survival 

analysis in Figure 34 (right panel). Notice the substantial improvement of the 

integrated gene signature, derived by appropriatly coupling of biological knowledge, 

over the initial predecessor signatures S1 and S2 (Figure 33) . Also notice that, even 

though the difference on the survival prediction may not be as significant as in the 

case of Van’t Vijver data Figure 30, the difference at the crucial period of 5 years is 

still substantial with the good prognosis group achieving approximately an 80% 

probability of survival, while for the poor prognosis group the probability is below 

60%. 

5.8 Conclusions 

In this chapter we addressed the problem of overlap between derived gene signatures 

as well as that of testing on datasets from different centers. We begin with the 

assumption that even though two solutions may seem to share minor or no overlap, 

they are probably part of a more global solution, each one focusing on a different, 



Chapter5.                                         Integrating Biological Knowledge for Marker Gene Selection in Breast Cancer 

 137

complementary or overlapping part of the biological aspect of the problem. 

Experimental results demonstrated that when taking into account the biological 

knowledge behind gene signatures commonalities may be revealed, even though this 

may not be visible at gene level. Focusing on two such gene signatures, our signature 

consisting of 57 genes (S1) and the 70 gene Van’t Veer’s signature (S2), we showed 

that they share significant gene overlap (69%) at the biological level. Additionally, 

integration of the derived biological knowledge produces a statistically more 

significant signature, improving significantly the performance of the initial ones 

demonstrating reliable clinical prediction outcome on a dataset that was derived using 

different experimental design and microarray platform. This further enhances the 

value of these two gene signatures implying that the appropriately integrated signature 

does not  entirely dependent on the platform or experimental design, but it is 

associated directly with probable biological origin of the disease itself. 

Finally, we point out that the proposed approach is not competitive to different 

solutions in revealing or criticizing their weak or strong points but is rather taking 

advantage of the valuable crumbs of knowledge each one is contributing targeting at 

an evolution which will hopefully lead to a more global and unified solution. Until 

then we propose to view each individual result from a positive perspective and look 

for those valuable crumbs it probably has to offer. 
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Overall Conclusions and Open Research Directions 
In this thesis we assess the problem of gene marker selection in various domains of 

interest. We focused on the dynamic approach of wrapper method and enrich it with 

an appropriately adopted filter criterion i.e. a variation of Fisher’s ratio. This attempt 

resulted in an integration of both methods incorporating their advantages under a 

unified umbrella, producing more compact and distinct clusters of marker genes.  

Integration was achieved by appropriately adapting the learning procedure of a 

linear neuron embedding within its learning process a Fisher’s correlation criterion to 

assess intrinsic characteristics of data (RFE-LNW scheme). Even though a linear 

approach was applied through a linear neuron due to the characteristics of application 

domain, the method could be easily expanded to a multilayer perceptron and applied 

to non-linear problems. In addition, other correlation coefficients assessing intrinsic 

characteristics of data could be used in place of Fisher’s ratio. In addition, focusing on 

the margin of separation defined by an SVM classifier and marked by the support 

vectors, we considered the critical boundary region which dominates the classification 

of the good and poor prognosis patients. Following a criticism on the SVM operation 

we proposed an alternative gene ranking criterion on support vectors which define yet 

a second integrated approach (RFE_FSVs). 

Using such an integration approach, through the application of a linear neuron, 

along with an appropriate evaluation scheme we derived a promising breast cancer 

gene signature. Furthermore, we validated produced results using statistical criteria 

and compared it with other bench mark results in the field. In the last two chapters we 

also integrated the biological relevance of gene signatures in an attempt to validate 

them through the use of organized and published biological knowledge. This attempt, 

demonstrated that solutions appearing different at a first glance could actually show a 
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significant degree of biological overlap. This approach leads to a knowledge evolution 

process where biological information derived from different solutions could be 

integrated under a unified framework helping in unfolding the biological mechanisms 

hidden behind a disease. As a general conclusion we state that the present thesis leads 

to a methodological and biological integration of results.  

It seems though that an integrated approach has benefits over filter and wrapper 

techniques. However, none of the techniques can be claimed to be superior of others 

for all pathology areas where the data distributions and decision spaces may change 

the ranking of algorithms. There is a need to set up conditions for using each 

algorithm dependent on problem specifications. 

Further directions to our research emerge from important implications of Figure 

31, where we  search for those signatures which add complementary biological 

knowledge to the already accumulated, in a hope to understand and discover the 

biological mechanisms that trigger cancer. This knowledge, however, even though it 

has been associated with known biological processes does not carry biological 

evidence yet (except statistical evidence) that those processes are actually linked to 

the disease itself. This opens another research direction for validating the derived 

pathways outcome of cancer, leading to the design and implementation of appropriate 

biological experiments which may reveal possible new biomedical knowledge. 

Obviously this emphasizes the need of collaboration among different research fields 

and specialties for an effective tackling of the problem. On the other hand, aiming on 

specific and already known biological processes or pathways associated with the 

disease itself, is yet another search path worthwhile to address Additionally, despite 

research efforts, there is still the open problem, of associating histopathological level 

findings to a molecular level signature, which addresses a major challenge in cancer 
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histopathology, since it can overcome insurmountable inconsistencies in histological 

grading between institutions, assisting in avoiding unnecessary toxic treatments. Thus, 

integration of genomic with histopathological markers, along with their evaluation on 

the clinical benefits above and beyond established tests and indices aims, at the core 

of the problem and at the cellural mechanisms that trigger cancer. 
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APPENDIX I 

Accuracy Evaluation Criteria 
Accuracy evaluation is still an open question in the problem of marker selection. 

Various evaluation criteria have been used and reported in studies related to marker 

selection, each one serving its purpose within its context of use. In this section, we 

present an overview of the evaluation criteria that are used in our study with the aim 

of providing a systematic interpretation of their scope and effeciency within the field 

of marker selection. These measures assess the ability of the selected marker set to 

correctly separate the classes of interest. However, they do not reflect any clustering 

characteristics of the selected markers that could indicate gene expression 

differentiation among the classes of interest (intra class similarity or between class 

distance, similar to Fisher’s measure). Given a prediction rule R , the following 

accuracy criteria are assessed: 

Apparent Success Rate (ASR): It is the percentage of training features correctly 

classified by R . The use this metric must be with caution, since it reflects how well 

the given prediction rule has learned the training set without providing any insights 

into the generalization ability of the rule. It is also referred to as self test and is 

expected to be an over optimistic estimate of the algorithm’s true prediction accuracy. 

Leave One Out Success Rate  (LOO-SR): For the computation of this metric one 

sample is left out of the training set. The prediction rule is then derived with the 

remaining 1n −  samples and tested with the left out sample. The process is repeated 

until every sample is used as a test sample and finally the total mean accuracy is 

evaluated. In the problem of marker selection two different schemes of LOO success 
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rate can be assessed: The External (ELOO) and the Internal (ILOO) success rates 

[14]. In the ELOO, the removal of the left-out sample takes place before the selection 

of differentially expressed genes and application of the prediction rule. Alternatively, 

in the ILOO scheme the removal of the left-out sample takes place after the selection 

process but before the application of the prediction rule. In the ILOO scheme the 

entire training set is considered in the feature selection process and the LOO strategy 

is applied only in the evaluation phase. By these means, the ELOO evaluation 

methodology is an almost unbiased estimator, since the tested sample is totally 

unknown not only to the classifier, but to the entire selection process.  

 

Figure 35: ILOO success rate measures the generalization ability of the prediction rule on the training 
set, which could reflect its generalization ability on an independent test set. 

However, the use of different training sets at each iteration might lead to different sets 

of marker genes, where a post processing step is necessary to derive the optimal set of 

marker genes. On the other hand, ILOO evaluates a set of marker genes and a 

measure of how well a prediction rule can generalize on the training set. In other 

words it indicates how strict (close to the training set) or loose (far from the training 

set) the derived prediction rule is on its learning environment, i.e. the training set. To 

further illustrate the performance of ILOO we demonstrate the following scenario. 

Suppose we are given two different linear rules R1 and R2 produced by two different 

learning systems, which are used to classify a training set consisting of positive (+1) 
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and negative (-1) samples, as in Figure 35 (A). We are also given a test sample that is 

left out from the training procedure. Both derived rules classify correctly the training 

set (perfect ASR) as well as the left out sample. Nevertheless, R2 has a tendency to 

over learn the training set by being very close to the two classes (a strict rule), while 

R1 tries to maximize its distance between the two classes (a loose rule). Obviously R1 

has an advantage over R2 which can be revealed by the ILOO scheme in Figure 35 

(B). Indeed, since R2 has the tendency to be tightly bound to the border of the classes, 

when border line samples (white region of negative class in Figure 35 (B)), are left 

out and excluded from the training set, they will be misclassified in the testing phase, 

leading to lower ILOO measures for the R2 rule than the R1 rule. By this means, 

ILOO can be viewed as a measure of evaluating the learning performance of two or 

more different systems according to the prediction rule they derive on the training set. 

Independent Test Set Success Rate (ITS-SR): The prediction rule is induced using a 

given training set and is evaluated on an independent test set which is totally unknown 

to the process of deriving the prediction rule. 

Sensitivity (SN) and Specificity (SP): Reflects the percentage of True Positive (TP) 

and True Negative (TN) samples respectively which in case of a medical test are very 

essential. In ideal situations we expect these metrics to be as high as possible 

indicating that a classifier can distinguish between TP and TN cases effectively. In 

realistic situations however absolute success is not usually achieved rendering a high 

sensitivity results as a more desirable than a high specificity one. The cost of 

misclassifying a true positive patient is significantly higher than the cost of 

misclassifying a true negative one. Besides high sensitivity could assist doctors for 

deciding with higher confidence on the treatment protocol to be followed. 
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ROC and Precision Recall (PR) Curves, have been used to provide yet another 

detailed evaluation criterion for the overall performance of classifiers. Nevertheless, 

they are not directly applied to this work. SN and SP could be used instead as an 

indirect evaluator of the ROC or PR curves. 
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In the following tables the above presented measures are used to evaluate the 

performance of the underlined methodologies in leukemia (Tables 1 and 2) and breast 

cancer data set (Tables 3 and 4). The first two columns of the following tables refer to 

the cut off scenario (number of surviving genes per iteration) that were used in the 

backward elimination process, while the remaining columns refer to the performance 

of each tested methodology. We provide a list of the acronyms that are used to 

describe the various measures used: 

ILOO (Internal Leave One Out) 

ILOO – SR (Internal Leav One Out – Success Rate) 

ASR (Apparent Success Rate), i.e., self test estimation. 

SEN (Sensitivity) 

SP (Specificity) 

ITS – SR (Independent TestSet Success Rate) 
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Table 1  ILOO accuracy performance of RFE-LNW and RFE-FSVs, using a 4th  and a 

combination of RBF and a 7th degree polynomial kernel (Leukemia data set). 

    RFE-LNW RFE-FSVs-4DK RFE-FSVs-RBF7DK 

ITERATION GENES ILOO-SR ASR SEN SP ILOO-SR ASR SEN SP ILOO-SR ASR SEN SP 

1 7129 94.74 94.74 0.82 1.00 94.74 100.00 0.82 1.00 94.74 100.00 0.82 1.00

2 4096 97.37 94.74 0.91 1.00 97.37 100.00 0.91 1.00 97.37 100.00 0.91 1.00

3 2048 100.00 97.37 1.00 1.00 97.37 100.00 0.91 1.00 97.37 100.00 0.91 1.00

4 1024 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

5 900 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

6 800 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

7 700 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

8 600 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

9 500 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

10 400 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

11 300 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

12 200 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

13 190 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

14 180 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

15 170 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

16 160 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

17 150 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

18 140 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

19 130 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

20 120 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

21 110 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

22 100 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

23 99 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

24 98 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

25 97 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

26 96 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

27 95 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

28 94 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

29 93 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00
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    RFE-LNW RFE-FSVs-4DK RFE-FSVs-RBF7DK 

ITERATION GENES ILOO-SR ASR SEN SP ILOO-SR ASR SEN SP ILOO-SR ASR SEN SP 

30 92 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

31 91 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

32 90 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

33 89 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

34 88 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

35 87 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

36 86 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

37 85 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

38 84 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

39 83 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

40 82 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

41 81 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

42 80 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

43 79 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

44 78 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

45 77 100.00 100.00 1.00 1.00 97.37 100.00 0.91 1.00 100.00 100.00 1.00 1.00

46 76 100.00 100.00 1.00 1.00 97.37 100.00 0.91 1.00 100.00 100.00 1.00 1.00

47 75 100.00 100.00 1.00 1.00 97.37 100.00 0.91 1.00 100.00 100.00 1.00 1.00

48 74 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

49 73 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

50 72 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

51 71 100.00 100.00 1.00 1.00 97.37 100.00 0.91 1.00 100.00 100.00 1.00 1.00

52 70 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

53 69 100.00 100.00 1.00 1.00 97.37 100.00 0.91 1.00 100.00 100.00 1.00 1.00

54 68 100.00 100.00 1.00 1.00 97.37 100.00 0.91 1.00 100.00 100.00 1.00 1.00

55 67 100.00 100.00 1.00 1.00 97.37 100.00 0.91 1.00 100.00 100.00 1.00 1.00

56 66 100.00 100.00 1.00 1.00 97.37 100.00 0.91 1.00 100.00 100.00 1.00 1.00

57 65 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

58 64 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

59 63 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

60 62 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

61 61 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

62 60 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00
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    RFE-LNW RFE-FSVs-4DK RFE-FSVs-RBF7DK 

ITERATION GENES ILOO-SR ASR SEN SP ILOO-SR ASR SEN SP ILOO-SR ASR SEN SP 

63 59 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

64 58 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

65 57 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

66 56 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

67 55 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

68 54 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

69 53 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

70 52 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

71 51 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

72 50 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

73 49 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

74 48 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

75 47 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

76 46 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

77 45 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

78 44 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

79 43 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

80 42 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

81 41 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

82 40 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

83 39 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

84 38 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

85 37 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

86 36 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

87 35 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

88 34 100.00 100.00 1.00 1.00 97.37 100.00 0.91 1.00 100.00 100.00 1.00 1.00

89 33 100.00 100.00 1.00 1.00 97.37 100.00 0.91 1.00 100.00 100.00 1.00 1.00

90 32 100.00 100.00 1.00 1.00 97.37 100.00 0.91 1.00 100.00 100.00 1.00 1.00

91 31 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

92 30 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

93 29 100.00 100.00 1.00 1.00 97.37 100.00 0.91 1.00 100.00 100.00 1.00 1.00

94 28 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

95 27 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00
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    RFE-LNW RFE-FSVs-4DK RFE-FSVs-RBF7DK 

ITERATION GENES ILOO-SR ASR SEN SP ILOO-SR ASR SEN SP ILOO-SR ASR SEN SP 

96 26 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

97 25 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

98 24 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 97.37 100.00 0.91 1.00

99 23 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 97.37 100.00 0.91 1.00

100 22 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

101 21 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

102 20 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

103 19 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

104 18 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

105 17 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

106 16 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 97.37 100.00 0.91 1.00

107 15 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 97.37 100.00 0.91 1.00

108 14 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

109 13 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

110 12 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

111 11 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

112 10 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

113 9 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

114 8 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

115 7 97.37 100.00 0.91 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

116 6 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

117 5 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

118 4 92.11 100.00 0.82 0.96 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

119 3 92.11 100.00 0.82 0.96 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00

120 2 97.37 97.37 0.91 1.00 97.37 100.00 0.91 1.00 94.74 100.00 0.82 1.00

121 1 97.37 97.37 0.91 1.00 97.37 100.00 0.91 1.00 97.37 100.00 0.91 1.00

Average 99.74 99.85 0.99 1.00 99.61 100.00 0.99 1.00 99.76 100.00 0.99 1.00
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Table 2 Accuracy performance of the proposed methodologies on the independent 

test set in Leukemia data set, the 3rd degree polynomial kernel misses only one sample 

m(Leukemia data set). 

    RFE-LNW RFE-FSVs-4DK RFE-FSVs-RBF7DK 

ITERATION GENES ITS-SR ASR SEN SP ILOO-SR ASR SEN SP ILOO-SR ASR SEN SP 

1 7129 79.41 94.74 0.50 1.00 79.41 100.00 0.50 1.00 79.41 100.00 0.50 1.00

2 4096 82.35 94.74 0.57 1.00 82.35 100.00 0.57 1.00 82.35 100.00 0.57 1.00

3 2048 82.35 97.37 0.57 1.00 82.35 100.00 0.57 1.00 82.35 100.00 0.57 1.00

4 1024 85.29 100.00 0.64 1.00 82.35 100.00 0.57 1.00 82.35 100.00 0.57 1.00

5 900 85.29 100.00 0.64 1.00 82.35 100.00 0.57 1.00 82.35 100.00 0.57 1.00

6 800 85.29 100.00 0.64 1.00 82.35 100.00 0.57 1.00 82.35 100.00 0.57 1.00

7 700 85.29 100.00 0.64 1.00 82.35 100.00 0.57 1.00 82.35 100.00 0.57 1.00

8 600 85.29 100.00 0.64 1.00 82.35 100.00 0.57 1.00 82.35 100.00 0.57 1.00

9 500 88.24 100.00 0.71 1.00 85.29 100.00 0.64 1.00 85.29 100.00 0.64 1.00

10 400 88.24 100.00 0.71 1.00 82.35 100.00 0.57 1.00 82.35 100.00 0.57 1.00

11 300 88.24 100.00 0.71 1.00 88.24 100.00 0.71 1.00 88.24 100.00 0.71 1.00

12 200 88.24 100.00 0.71 1.00 88.24 100.00 0.71 1.00 88.24 100.00 0.71 1.00

13 190 88.24 100.00 0.71 1.00 88.24 100.00 0.71 1.00 88.24 100.00 0.71 1.00

14 180 85.29 100.00 0.64 1.00 88.24 100.00 0.71 1.00 88.24 100.00 0.71 1.00

15 170 85.29 100.00 0.64 1.00 88.24 100.00 0.71 1.00 88.24 100.00 0.71 1.00

16 160 85.29 100.00 0.64 1.00 88.24 100.00 0.71 1.00 88.24 100.00 0.71 1.00

17 150 85.29 100.00 0.64 1.00 88.24 100.00 0.71 1.00 88.24 100.00 0.71 1.00

18 140 85.29 100.00 0.64 1.00 88.24 100.00 0.71 1.00 88.24 100.00 0.71 1.00

19 130 88.24 100.00 0.71 1.00 88.24 100.00 0.71 1.00 88.24 100.00 0.71 1.00

20 120 91.18 100.00 0.79 1.00 88.24 100.00 0.71 1.00 91.18 100.00 0.79 1.00

21 110 91.18 100.00 0.79 1.00 91.18 100.00 0.79 1.00 94.12 100.00 0.86 1.00

22 100 91.18 100.00 0.79 1.00 88.24 100.00 0.71 1.00 94.12 100.00 0.86 1.00

23 99 88.24 100.00 0.71 1.00 88.24 100.00 0.71 1.00 94.12 100.00 0.86 1.00

24 98 88.24 100.00 0.71 1.00 88.24 100.00 0.71 1.00 94.12 100.00 0.86 1.00

25 97 88.24 100.00 0.71 1.00 91.18 100.00 0.79 1.00 94.12 100.00 0.86 1.00

26 96 88.24 100.00 0.71 1.00 91.18 100.00 0.79 1.00 94.12 100.00 0.86 1.00

27 95 88.24 100.00 0.71 1.00 94.12 100.00 0.86 1.00 94.12 100.00 0.86 1.00

28 94 88.24 100.00 0.71 1.00 91.18 100.00 0.79 1.00 94.12 100.00 0.86 1.00

29 93 88.24 100.00 0.71 1.00 91.18 100.00 0.79 1.00 94.12 100.00 0.86 1.00
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    RFE-LNW RFE-FSVs-4DK RFE-FSVs-RBF7DK 

ITERATION GENES ITS-SR ASR SEN SP ILOO-SR ASR SEN SP ILOO-SR ASR SEN SP 

30 92 88.24 100.00 0.71 1.00 91.18 100.00 0.79 1.00 94.12 100.00 0.86 1.00

31 91 88.24 100.00 0.71 1.00 88.24 100.00 0.71 1.00 94.12 100.00 0.86 1.00

32 90 88.24 100.00 0.71 1.00 88.24 100.00 0.71 1.00 94.12 100.00 0.86 1.00

33 89 88.24 100.00 0.71 1.00 88.24 100.00 0.71 1.00 94.12 100.00 0.86 1.00

34 88 88.24 100.00 0.71 1.00 91.18 100.00 0.79 1.00 94.12 100.00 0.86 1.00

35 87 88.24 100.00 0.71 1.00 88.24 100.00 0.79 0.95 94.12 100.00 0.86 1.00

36 86 88.24 100.00 0.71 1.00 88.24 100.00 0.79 0.95 94.12 100.00 0.86 1.00

37 85 88.24 100.00 0.71 1.00 88.24 100.00 0.79 0.95 94.12 100.00 0.86 1.00

38 84 88.24 100.00 0.71 1.00 82.35 100.00 0.64 0.95 94.12 100.00 0.86 1.00

39 83 88.24 100.00 0.71 1.00 82.35 100.00 0.64 0.95 94.12 100.00 0.86 1.00

40 82 88.24 100.00 0.71 1.00 85.29 100.00 0.71 0.95 94.12 100.00 0.86 1.00

41 81 88.24 100.00 0.71 1.00 85.29 100.00 0.71 0.95 94.12 100.00 0.86 1.00

42 80 88.24 100.00 0.71 1.00 88.24 100.00 0.71 1.00 94.12 100.00 0.86 1.00

43 79 91.18 100.00 0.79 1.00 88.24 100.00 0.71 1.00 94.12 100.00 0.86 1.00

44 78 91.18 100.00 0.79 1.00 88.24 100.00 0.71 1.00 94.12 100.00 0.86 1.00

45 77 91.18 100.00 0.79 1.00 91.18 100.00 0.79 1.00 94.12 100.00 0.86 1.00

46 76 91.18 100.00 0.79 1.00 91.18 100.00 0.79 1.00 94.12 100.00 0.86 1.00

47 75 91.18 100.00 0.79 1.00 91.18 100.00 0.79 1.00 94.12 100.00 0.86 1.00

48 74 94.12 100.00 0.86 1.00 91.18 100.00 0.79 1.00 94.12 100.00 0.86 1.00

49 73 94.12 100.00 0.86 1.00 91.18 100.00 0.79 1.00 94.12 100.00 0.86 1.00

50 72 94.12 100.00 0.86 1.00 91.18 100.00 0.79 1.00 94.12 100.00 0.86 1.00

51 71 88.24 100.00 0.71 1.00 91.18 100.00 0.79 1.00 94.12 100.00 0.86 1.00

52 70 88.24 100.00 0.71 1.00 91.18 100.00 0.79 1.00 94.12 100.00 0.86 1.00

53 69 94.12 100.00 0.86 1.00 91.18 100.00 0.79 1.00 94.12 100.00 0.86 1.00

54 68 94.12 100.00 0.86 1.00 91.18 100.00 0.79 1.00 94.12 100.00 0.86 1.00

55 67 94.12 100.00 0.86 1.00 94.12 100.00 0.86 1.00 94.12 100.00 0.86 1.00

56 66 94.12 100.00 0.86 1.00 94.12 100.00 0.86 1.00 94.12 100.00 0.86 1.00

57 65 94.12 100.00 0.86 1.00 91.18 100.00 0.79 1.00 94.12 100.00 0.86 1.00

58 64 94.12 100.00 0.86 1.00 94.12 100.00 0.86 1.00 94.12 100.00 0.86 1.00

59 63 94.12 100.00 0.86 1.00 94.12 100.00 0.86 1.00 94.12 100.00 0.86 1.00

60 62 94.12 100.00 0.86 1.00 94.12 100.00 0.86 1.00 94.12 100.00 0.86 1.00

61 61 94.12 100.00 0.86 1.00 94.12 100.00 0.86 1.00 94.12 100.00 0.86 1.00

62 60 94.12 100.00 0.86 1.00 94.12 100.00 0.86 1.00 94.12 100.00 0.86 1.00

63 59 94.12 100.00 0.86 1.00 94.12 100.00 0.86 1.00 94.12 100.00 0.86 1.00
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    RFE-LNW RFE-FSVs-4DK RFE-FSVs-RBF7DK 

ITERATION GENES ITS-SR ASR SEN SP ILOO-SR ASR SEN SP ILOO-SR ASR SEN SP 

64 58 94.12 100.00 0.86 1.00 94.12 100.00 0.86 1.00 94.12 100.00 0.86 1.00

65 57 94.12 100.00 0.86 1.00 94.12 100.00 0.86 1.00 94.12 100.00 0.86 1.00

66 56 94.12 100.00 0.86 1.00 91.18 100.00 0.79 1.00 94.12 100.00 0.86 1.00

67 55 94.12 100.00 0.86 1.00 91.18 100.00 0.79 1.00 94.12 100.00 0.86 1.00

68 54 94.12 100.00 0.86 1.00 94.12 100.00 0.86 1.00 94.12 100.00 0.86 1.00

69 53 94.12 100.00 0.86 1.00 91.18 100.00 0.79 1.00 91.18 100.00 0.79 1.00

70 52 94.12 100.00 0.86 1.00 91.18 100.00 0.79 1.00 91.18 100.00 0.79 1.00

71 51 94.12 100.00 0.86 1.00 94.12 100.00 0.86 1.00 94.12 100.00 0.86 1.00

72 50 94.12 100.00 0.86 1.00 94.12 100.00 0.86 1.00 94.12 100.00 0.86 1.00

73 49 94.12 100.00 0.86 1.00 94.12 100.00 0.86 1.00 94.12 100.00 0.86 1.00

74 48 94.12 100.00 0.86 1.00 91.18 100.00 0.79 1.00 94.12 100.00 0.86 1.00

75 47 94.12 100.00 0.86 1.00 91.18 100.00 0.79 1.00 91.18 100.00 0.79 1.00

76 46 94.12 100.00 0.86 1.00 88.24 100.00 0.71 1.00 94.12 100.00 0.86 1.00

77 45 94.12 100.00 0.86 1.00 91.18 100.00 0.79 1.00 91.18 100.00 0.79 1.00

78 44 91.18 100.00 0.79 1.00 91.18 100.00 0.79 1.00 94.12 100.00 0.86 1.00

79 43 91.18 100.00 0.79 1.00 91.18 100.00 0.79 1.00 94.12 100.00 0.86 1.00

80 42 94.12 100.00 0.86 1.00 91.18 100.00 0.79 1.00 94.12 100.00 0.86 1.00

81 41 94.12 100.00 0.86 1.00 94.12 100.00 0.86 1.00 91.18 100.00 0.79 1.00

82 40 94.12 100.00 0.86 1.00 91.18 100.00 0.79 1.00 91.18 100.00 0.79 1.00

83 39 94.12 100.00 0.86 1.00 91.18 100.00 0.79 1.00 88.24 100.00 0.79 0.95

84 38 94.12 100.00 0.86 1.00 91.18 100.00 0.79 1.00 88.24 100.00 0.79 0.95

85 37 94.12 100.00 0.86 1.00 94.12 100.00 0.86 1.00 88.24 100.00 0.79 0.95

86 36 94.12 100.00 0.86 1.00 85.29 100.00 0.64 1.00 88.24 100.00 0.79 0.95

87 35 85.29 100.00 0.64 1.00 85.29 100.00 0.64 1.00 88.24 100.00 0.79 0.95

88 34 85.29 100.00 0.64 1.00 85.29 100.00 0.64 1.00 88.24 100.00 0.79 0.95

89 33 85.29 100.00 0.64 1.00 85.29 100.00 0.64 1.00 91.18 100.00 0.86 0.95

90 32 85.29 100.00 0.64 1.00 85.29 100.00 0.64 1.00 91.18 100.00 0.86 0.95

91 31 85.29 100.00 0.64 1.00 85.29 100.00 0.64 1.00 88.24 100.00 0.79 0.95

92 30 88.24 100.00 0.71 1.00 85.29 100.00 0.64 1.00 91.18 100.00 0.86 0.95

93 29 85.29 100.00 0.64 1.00 85.29 100.00 0.64 1.00 91.18 100.00 0.86 0.95

94 28 85.29 100.00 0.64 1.00 85.29 100.00 0.64 1.00 91.18 100.00 0.86 0.95

95 27 85.29 100.00 0.64 1.00 85.29 100.00 0.64 1.00 88.24 100.00 0.79 0.95

96 26 82.35 100.00 0.57 1.00 85.29 100.00 0.64 1.00 88.24 100.00 0.79 0.95

97 25 82.35 100.00 0.57 1.00 85.29 100.00 0.64 1.00 91.18 100.00 0.86 0.95
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    RFE-LNW RFE-FSVs-4DK RFE-FSVs-RBF7DK 

ITERATION GENES ITS-SR ASR SEN SP ILOO-SR ASR SEN SP ILOO-SR ASR SEN SP 

98 24 82.35 100.00 0.57 1.00 85.29 100.00 0.64 1.00 94.12 100.00 0.86 1.00

99 23 82.35 100.00 0.57 1.00 85.29 100.00 0.64 1.00 94.12 100.00 0.86 1.00

100 22 82.35 100.00 0.57 1.00 85.29 100.00 0.64 1.00 94.12 100.00 0.86 1.00

101 21 82.35 100.00 0.57 1.00 88.24 100.00 0.71 1.00 91.18 100.00 0.86 0.95

102 20 82.35 100.00 0.57 1.00 88.24 100.00 0.71 1.00 91.18 100.00 0.86 0.95

103 19 82.35 100.00 0.57 1.00 88.24 100.00 0.71 1.00 88.24 100.00 0.79 0.95

104 18 82.35 100.00 0.57 1.00 82.35 100.00 0.57 1.00 91.18 100.00 0.86 0.95

105 17 85.29 100.00 0.64 1.00 76.47 100.00 0.50 0.95 88.24 100.00 0.79 0.95

106 16 82.35 100.00 0.57 1.00 76.47 100.00 0.50 0.95 88.24 100.00 0.79 0.95

107 15 85.29 100.00 0.64 1.00 76.47 100.00 0.50 0.95 88.24 100.00 0.79 0.95

108 14 85.29 100.00 0.64 1.00 82.35 100.00 0.57 1.00 91.18 100.00 0.79 1.00

109 13 85.29 100.00 0.64 1.00 82.35 100.00 0.57 1.00 91.18 100.00 0.79 1.00

110 12 85.29 100.00 0.64 1.00 82.35 100.00 0.57 1.00 91.18 100.00 0.79 1.00

111 11 85.29 100.00 0.64 1.00 82.35 100.00 0.57 1.00 91.18 100.00 0.79 1.00

112 10 82.35 100.00 0.57 1.00 82.35 100.00 0.57 1.00 91.18 100.00 0.79 1.00

113 9 82.35 100.00 0.57 1.00 82.35 100.00 0.57 1.00 91.18 100.00 0.79 1.00

114 8 82.35 100.00 0.57 1.00 82.35 100.00 0.57 1.00 85.29 100.00 0.64 1.00

115 7 91.18 100.00 0.79 1.00 88.24 100.00 0.71 1.00 82.35 100.00 0.57 1.00

116 6 94.12 100.00 0.86 1.00 85.29 100.00 0.64 1.00 79.41 100.00 0.50 1.00

117 5 82.35 100.00 0.64 0.95 88.24 100.00 0.71 1.00 82.35 100.00 0.57 1.00

118 4 88.24 100.00 0.71 1.00 88.24 100.00 0.79 0.95 79.41 100.00 0.50 1.00

119 3 88.24 100.00 0.71 1.00 88.24 100.00 0.79 0.95 97.06 100.00 0.93 1.00

120 2 94.12 97.37 0.93 0.95 94.12 100.00 0.93 0.95 94.12 100.00 0.93 0.95

121 1 91.18 97.37 0.93 0.90 91.18 100.00 0.93 0.90 91.18 100.00 0.93 0.90

Average 88.89 99.85 0.73 1.00 88.19 100.00 0.72 0.99 91.03 100.00 0.80 0.99
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Table 3 ILOO accuracy results of the tested methodologies on BC domain. 

  RFE-LNW RFE-SVM RFE-FSVs-7DK 

ITERATION GENES ILOO-SR ASR SEN SP ILOO-SR ASR SEN SP ILOO-SR ASR SEN SP

1 24188 62.82 97.44 0.59 0.66 62.82 100.00 0.59 0.66 62.82 100.00 0.59 0.66

2 16384 87.18 100.00 0.82 0.91 82.05 100.00 0.76 0.86 71.79 100.00 0.65 0.77

3 8192 98.72 100.00 0.97 1.00 93.59 100.00 0.91 0.95 84.62 100.00 0.76 0.91

4 4096 98.72 100.00 0.97 1.00 98.72 100.00 0.97 1.00 84.62 100.00 0.79 0.89

5 2048 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 85.90 100.00 0.79 0.91

6 1024 97.44 100.00 0.94 1.00 98.72 100.00 0.97 1.00 84.62 100.00 0.79 0.89

7 900 97.44 100.00 0.94 1.00 100.00 100.00 1.00 1.00 82.05 100.00 0.74 0.89

8 800 98.72 100.00 0.97 1.00 100.00 100.00 1.00 1.00 82.05 100.00 0.76 0.86

9 700 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 82.05 100.00 0.76 0.86

10 600 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 84.62 100.00 0.79 0.89

11 500 100.00 100.00 1.00 1.00 98.72 100.00 0.97 1.00 85.90 100.00 0.79 0.91

12 400 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 87.18 100.00 0.85 0.89

13 300 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 83.33 100.00 0.85 0.82

14 200 97.44 100.00 0.94 1.00 100.00 100.00 1.00 1.00 83.33 100.00 0.82 0.84

15 190 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 80.77 100.00 0.82 0.80

16 180 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 83.33 100.00 0.82 0.84

17 170 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 83.33 100.00 0.82 0.84

18 160 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 84.62 100.00 0.82 0.86

19 150 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 85.90 100.00 0.82 0.89

20 140 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 88.46 100.00 0.82 0.93

21 130 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 92.31 100.00 0.88 0.95

22 120 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 91.03 100.00 0.88 0.93

23 110 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 89.74 100.00 0.88 0.91

24 100 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 91.03 100.00 0.91 0.91

25 99 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 89.74 100.00 0.88 0.91

26 98 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 89.74 100.00 0.88 0.91

27 97 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 91.03 100.00 0.91 0.91

28 96 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 91.03 100.00 0.91 0.91

29 95 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 91.03 100.00 0.91 0.91

30 94 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 91.03 100.00 0.91 0.91

31 93 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 91.03 100.00 0.91 0.91

32 92 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 91.03 100.00 0.91 0.91
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  RFE-LNW RFE-SVM RFE-FSVs-7DK 

ITERATION GENES ILOO-SR ASR SEN SP ILOO-SR ASR SEN SP ILOO-SR ASR SEN SP

33 91 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 89.74 100.00 0.91 0.89

34 90 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 91.03 100.00 0.91 0.91

35 89 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 91.03 100.00 0.91 0.91

36 88 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 91.03 100.00 0.91 0.91

37 87 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 91.03 100.00 0.91 0.91

38 86 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 91.03 100.00 0.91 0.91

39 85 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 91.03 100.00 0.91 0.91

40 84 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 91.03 100.00 0.91 0.91

41 83 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 89.74 100.00 0.88 0.91

42 82 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 85.90 100.00 0.85 0.86

43 81 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 84.62 100.00 0.85 0.84

44 80 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 85.90 100.00 0.85 0.86

45 79 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 85.90 100.00 0.85 0.86

46 78 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 85.90 100.00 0.85 0.86

47 77 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 88.46 100.00 0.85 0.91

48 76 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 84.62 100.00 0.82 0.86

49 75 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 88.46 100.00 0.85 0.91

50 74 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 88.46 100.00 0.85 0.91

51 73 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 87.18 100.00 0.85 0.89

52 72 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 87.18 100.00 0.85 0.89

53 71 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 87.18 100.00 0.82 0.91

54 70 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 85.90 100.00 0.82 0.89

55 69 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 87.18 100.00 0.82 0.91

56 68 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 85.90 100.00 0.82 0.89

57 67 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 85.90 100.00 0.82 0.89

58 66 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 85.90 100.00 0.82 0.89

59 65 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 85.90 100.00 0.82 0.89

60 64 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 85.90 100.00 0.82 0.89

61 63 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 87.18 100.00 0.82 0.91

62 62 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 88.46 100.00 0.82 0.93

63 61 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 89.74 100.00 0.85 0.93

64 60 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 89.74 100.00 0.85 0.93

65 59 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 89.74 100.00 0.85 0.93

66 58 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 91.03 100.00 0.85 0.95
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  RFE-LNW RFE-SVM RFE-FSVs-7DK 

ITERATION GENES ILOO-SR ASR SEN SP ILOO-SR ASR SEN SP ILOO-SR ASR SEN SP

67 57 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 89.74 100.00 0.85 0.93

68 56 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 88.46 100.00 0.85 0.91

69 55 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 87.18 100.00 0.85 0.89

70 54 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 91.03 100.00 0.85 0.95

71 53 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 91.03 100.00 0.85 0.95

72 52 100.00 100.00 1.00 1.00 98.72 100.00 0.97 1.00 91.03 100.00 0.85 0.95

73 51 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 87.18 100.00 0.85 0.89

74 50 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 87.18 100.00 0.85 0.89

75 49 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 87.18 100.00 0.85 0.89

76 48 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 84.62 100.00 0.79 0.89

77 47 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 91.03 100.00 0.88 0.93

78 46 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 91.03 100.00 0.88 0.93

79 45 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 88.46 100.00 0.88 0.89

80 44 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 88.46 100.00 0.82 0.93

81 43 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 89.74 100.00 0.85 0.93

82 42 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 88.46 100.00 0.85 0.91

83 41 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 87.18 100.00 0.85 0.89

84 40 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 87.18 100.00 0.85 0.89

85 39 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 85.90 100.00 0.85 0.86

86 38 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 88.46 100.00 0.85 0.91

87 37 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 87.18 100.00 0.85 0.89

88 36 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 88.46 100.00 0.85 0.91

89 35 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 88.46 100.00 0.85 0.91

90 34 100.00 100.00 1.00 1.00 97.44 100.00 1.00 0.95 89.74 100.00 0.85 0.93

91 33 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 87.18 100.00 0.85 0.89

92 32 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 88.46 100.00 0.85 0.91

93 31 100.00 100.00 1.00 1.00 98.72 100.00 1.00 0.98 88.46 100.00 0.85 0.91

94 30 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 88.46 100.00 0.85 0.91

95 29 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 88.46 100.00 0.85 0.91

96 28 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 89.74 100.00 0.88 0.91

97 27 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 88.46 100.00 0.88 0.89

98 26 100.00 100.00 1.00 1.00 98.72 100.00 1.00 0.98 84.62 100.00 0.82 0.86

99 25 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 83.33 100.00 0.82 0.84

100 24 100.00 100.00 1.00 1.00 98.72 100.00 1.00 0.98 87.18 100.00 0.88 0.86
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  RFE-LNW RFE-SVM RFE-FSVs-7DK 

ITERATION GENES ILOO-SR ASR SEN SP ILOO-SR ASR SEN SP ILOO-SR ASR SEN SP

101 23 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 88.46 100.00 0.85 0.91

102 22 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 92.31 100.00 0.88 0.95

103 21 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 85.90 100.00 0.82 0.89

104 20 100.00 100.00 1.00 1.00 100.00 100.00 1.00 1.00 85.90 100.00 0.82 0.89

105 19 100.00 100.00 1.00 1.00 98.72 100.00 0.97 1.00 85.90 100.00 0.82 0.89

106 18 100.00 100.00 1.00 1.00 98.72 100.00 0.97 1.00 85.90 100.00 0.82 0.89

107 17 100.00 100.00 1.00 1.00 94.87 100.00 0.94 0.95 82.05 100.00 0.76 0.86

108 16 100.00 100.00 1.00 1.00 97.44 100.00 0.97 0.98 83.33 100.00 0.79 0.86

109 15 98.72 100.00 1.00 0.98 98.72 100.00 1.00 0.98 83.33 100.00 0.82 0.84

110 14 100.00 100.00 1.00 1.00 97.44 100.00 0.94 1.00 85.90 100.00 0.85 0.86

111 13 100.00 100.00 1.00 1.00 98.72 100.00 0.97 1.00 87.18 100.00 0.85 0.89

112 12 100.00 100.00 1.00 1.00 92.31 100.00 0.88 0.95 83.33 100.00 0.82 0.84

113 11 97.44 100.00 0.97 0.98 97.44 100.00 0.97 0.98 82.05 100.00 0.82 0.82

114 10 98.72 100.00 0.97 1.00 97.44 100.00 0.97 0.98 76.92 100.00 0.76 0.77

115 9 98.72 100.00 0.97 1.00 97.44 100.00 0.97 0.98 82.05 100.00 0.79 0.84

116 8 100.00 100.00 1.00 1.00 88.46 96.15 0.85 0.91 80.77 100.00 0.79 0.82

117 7 92.31 98.72 0.91 0.93 84.62 91.03 0.76 0.91 83.33 100.00 0.85 0.82

118 6 91.03 93.59 0.88 0.93 83.33 88.46 0.71 0.93 78.21 100.00 0.79 0.77

119 5 88.46 92.31 0.85 0.91 82.05 84.62 0.74 0.89 76.92 100.00 0.71 0.82

120 4 85.90 91.03 0.79 0.91 74.36 82.05 0.71 0.77 82.05 92.31 0.79 0.84

121 3 82.05 85.90 0.79 0.84 74.36 78.21 0.68 0.80 79.49 89.74 0.74 0.84

122 2 73.08 76.92 0.68 0.77 76.92 78.21 0.65 0.86 74.36 82.05 0.76 0.73

123 1 66.67 67.95 0.50 0.80 73.08 73.08 0.65 0.80 69.23 71.79 0.59 0.77

Average 98.47 99.22 0.98 0.99 97.83 98.96 0.97 0.98 86.42 99.48 0.84 0.88

 

 



APPENDIX I                                                                                                                   Accuracy Evaluation Criteria 

 161

Table 4 Performance of the tested methodologies on an independent test set on BC 

domain, RFE-LNW misses only one sample with 31 genes and 2 samples with 7 

genes. 

    RFE-LNW RFE-SVM RFE-FSVs-7DK 

ITERATION GENES ITS-SR ASR SEN SP ILOO-SR ASR SEN SP ILOO-SR ASR SEN SP 

1 24188 68.42 97.44 0.92 0.29 68.42 100.00 0.92 0.29 68.42 100.00 0.92 0.29

2 16384 68.42 100.00 0.92 0.29 68.42 100.00 0.92 0.29 68.42 100.00 0.92 0.29

3 8192 63.16 100.00 0.92 0.14 68.42 100.00 0.92 0.29 73.68 100.00 0.92 0.43

4 4096 57.89 100.00 0.92 0.00 63.16 100.00 0.75 0.43 68.42 100.00 0.92 0.29

5 2048 68.42 100.00 0.92 0.29 57.89 100.00 0.67 0.43 73.68 100.00 1.00 0.29

6 1024 63.16 100.00 0.92 0.14 57.89 100.00 0.67 0.43 73.68 100.00 1.00 0.29

7 900 63.16 100.00 0.92 0.14 57.89 100.00 0.67 0.43 84.21 100.00 1.00 0.57

8 800 63.16 100.00 0.92 0.14 52.63 100.00 0.67 0.29 78.95 100.00 1.00 0.43

9 700 73.68 100.00 1.00 0.29 57.89 100.00 0.67 0.43 78.95 100.00 1.00 0.43

10 600 73.68 100.00 1.00 0.29 57.89 100.00 0.75 0.29 78.95 100.00 1.00 0.43

11 500 68.42 100.00 1.00 0.14 63.16 100.00 0.75 0.43 78.95 100.00 1.00 0.43

12 400 68.42 100.00 1.00 0.14 63.16 100.00 0.75 0.43 73.68 100.00 1.00 0.29

13 300 68.42 100.00 1.00 0.14 63.16 100.00 0.75 0.43 68.42 100.00 1.00 0.14

14 200 68.42 100.00 1.00 0.14 68.42 100.00 0.67 0.71 73.68 100.00 0.92 0.43

15 190 68.42 100.00 1.00 0.14 73.68 100.00 0.67 0.86 84.21 100.00 1.00 0.57

16 180 68.42 100.00 1.00 0.14 68.42 100.00 0.58 0.86 84.21 100.00 1.00 0.57

17 170 68.42 100.00 1.00 0.14 68.42 100.00 0.67 0.71 78.95 100.00 1.00 0.43

18 160 63.16 100.00 0.92 0.14 68.42 100.00 0.67 0.71 73.68 100.00 0.92 0.43

19 150 63.16 100.00 0.92 0.14 68.42 100.00 0.67 0.71 68.42 100.00 0.92 0.29

20 140 63.16 100.00 0.92 0.14 68.42 100.00 0.58 0.86 63.16 100.00 0.92 0.14

21 130 63.16 100.00 0.92 0.14 68.42 100.00 0.67 0.71 68.42 100.00 0.92 0.29

22 120 63.16 100.00 0.92 0.14 68.42 100.00 0.67 0.71 63.16 100.00 0.92 0.14

23 110 63.16 100.00 0.92 0.14 68.42 100.00 0.67 0.71 63.16 100.00 0.92 0.14

24 100 63.16 100.00 0.92 0.14 68.42 100.00 0.67 0.71 73.68 100.00 0.92 0.43

25 99 63.16 100.00 0.92 0.14 68.42 100.00 0.67 0.71 78.95 100.00 0.92 0.57

26 98 63.16 100.00 0.92 0.14 68.42 100.00 0.67 0.71 78.95 100.00 0.92 0.57

27 97 63.16 100.00 0.92 0.14 68.42 100.00 0.67 0.71 78.95 100.00 0.92 0.57

28 96 63.16 100.00 0.92 0.14 73.68 100.00 0.75 0.71 78.95 100.00 0.92 0.57

29 95 63.16 100.00 0.92 0.14 73.68 100.00 0.75 0.71 78.95 100.00 0.92 0.57
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    RFE-LNW RFE-SVM RFE-FSVs-7DK 

ITERATION GENES ITS-SR ASR SEN SP ILOO-SR ASR SEN SP ILOO-SR ASR SEN SP 

30 94 63.16 100.00 0.92 0.14 73.68 100.00 0.75 0.71 78.95 100.00 0.92 0.57

31 93 63.16 100.00 0.92 0.14 73.68 100.00 0.75 0.71 78.95 100.00 0.92 0.57

32 92 63.16 100.00 0.92 0.14 78.95 100.00 0.83 0.71 78.95 100.00 0.92 0.57

33 91 63.16 100.00 0.92 0.14 73.68 100.00 0.75 0.71 78.95 100.00 0.92 0.57

34 90 63.16 100.00 0.92 0.14 73.68 100.00 0.75 0.71 78.95 100.00 0.92 0.57

35 89 63.16 100.00 0.92 0.14 73.68 100.00 0.75 0.71 78.95 100.00 0.92 0.57

36 88 63.16 100.00 0.92 0.14 73.68 100.00 0.75 0.71 78.95 100.00 0.92 0.57

37 87 68.42 100.00 0.92 0.29 73.68 100.00 0.75 0.71 78.95 100.00 0.92 0.57

38 86 63.16 100.00 0.92 0.14 73.68 100.00 0.75 0.71 84.21 100.00 0.92 0.71

39 85 63.16 100.00 0.92 0.14 73.68 100.00 0.75 0.71 84.21 100.00 0.92 0.71

40 84 63.16 100.00 0.92 0.14 73.68 100.00 0.75 0.71 84.21 100.00 0.92 0.71

41 83 68.42 100.00 0.92 0.29 73.68 100.00 0.75 0.71 84.21 100.00 0.92 0.71

42 82 68.42 100.00 0.92 0.29 73.68 100.00 0.75 0.71 89.47 100.00 0.92 0.86

43 81 68.42 100.00 0.92 0.29 73.68 100.00 0.75 0.71 89.47 100.00 0.92 0.86

44 80 68.42 100.00 0.92 0.29 73.68 100.00 0.75 0.71 84.21 100.00 0.92 0.71

45 79 73.68 100.00 0.92 0.43 73.68 100.00 0.75 0.71 84.21 100.00 0.92 0.71

46 78 73.68 100.00 0.92 0.43 73.68 100.00 0.75 0.71 84.21 100.00 0.92 0.71

47 77 73.68 100.00 0.92 0.43 73.68 100.00 0.75 0.71 84.21 100.00 0.92 0.71

48 76 78.95 100.00 0.92 0.57 73.68 100.00 0.75 0.71 89.47 100.00 0.92 0.86

49 75 78.95 100.00 0.92 0.57 78.95 100.00 0.83 0.71 89.47 100.00 0.92 0.86

50 74 78.95 100.00 0.92 0.57 78.95 100.00 0.83 0.71 89.47 100.00 0.92 0.86

51 73 73.68 100.00 0.92 0.43 68.42 100.00 0.67 0.71 94.74 100.00 0.92 1.00

52 72 78.95 100.00 0.92 0.57 68.42 100.00 0.67 0.71 89.47 100.00 0.92 0.86

53 71 78.95 100.00 0.92 0.57 73.68 100.00 0.75 0.71 84.21 100.00 0.92 0.71

54 70 78.95 100.00 0.92 0.57 73.68 100.00 0.75 0.71 73.68 100.00 0.92 0.43

55 69 78.95 100.00 0.92 0.57 63.16 100.00 0.58 0.71 78.95 100.00 0.92 0.57

56 68 78.95 100.00 0.83 0.71 63.16 100.00 0.58 0.71 84.21 100.00 0.83 0.86

57 67 78.95 100.00 0.83 0.71 57.89 100.00 0.58 0.57 84.21 100.00 0.92 0.71

58 66 78.95 100.00 0.83 0.71 63.16 100.00 0.67 0.57 73.68 100.00 0.83 0.57

59 65 78.95 100.00 0.83 0.71 68.42 100.00 0.75 0.57 73.68 100.00 0.83 0.57

60 64 78.95 100.00 0.83 0.71 78.95 100.00 0.75 0.86 73.68 100.00 0.83 0.57

61 63 73.68 100.00 0.83 0.57 68.42 100.00 0.67 0.71 68.42 100.00 0.83 0.43

62 62 73.68 100.00 0.83 0.57 68.42 100.00 0.67 0.71 68.42 100.00 0.83 0.43

63 61 73.68 100.00 0.92 0.43 68.42 100.00 0.58 0.86 68.42 100.00 0.83 0.43
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    RFE-LNW RFE-SVM RFE-FSVs-7DK 

ITERATION GENES ITS-SR ASR SEN SP ILOO-SR ASR SEN SP ILOO-SR ASR SEN SP 

64 60 78.95 100.00 0.92 0.57 63.16 100.00 0.50 0.86 68.42 100.00 0.83 0.43

65 59 73.68 100.00 0.92 0.43 63.16 100.00 0.50 0.86 68.42 100.00 0.83 0.43

66 58 73.68 100.00 0.92 0.43 63.16 100.00 0.50 0.86 68.42 100.00 0.92 0.29

67 57 68.42 100.00 0.83 0.43 63.16 100.00 0.50 0.86 68.42 100.00 0.83 0.43

68 56 73.68 100.00 0.92 0.43 57.89 100.00 0.50 0.71 68.42 100.00 0.75 0.57

69 55 68.42 100.00 0.83 0.43 63.16 100.00 0.58 0.71 68.42 100.00 0.75 0.57

70 54 78.95 100.00 0.83 0.71 68.42 100.00 0.58 0.86 73.68 100.00 0.83 0.57

71 53 78.95 100.00 0.83 0.71 63.16 100.00 0.58 0.71 78.95 100.00 0.83 0.71

72 52 78.95 100.00 0.83 0.71 68.42 100.00 0.58 0.86 78.95 100.00 0.83 0.71

73 51 78.95 100.00 0.83 0.71 68.42 100.00 0.67 0.71 68.42 100.00 0.83 0.43

74 50 78.95 100.00 0.83 0.71 63.16 100.00 0.58 0.71 68.42 100.00 0.83 0.43

75 49 78.95 100.00 0.83 0.71 63.16 100.00 0.58 0.71 68.42 100.00 0.83 0.43

76 48 84.21 100.00 0.83 0.86 68.42 100.00 0.58 0.86 68.42 100.00 0.83 0.43

77 47 89.47 100.00 0.92 0.86 78.95 100.00 0.75 0.86 73.68 100.00 0.75 0.71

78 46 89.47 100.00 0.92 0.86 68.42 100.00 0.58 0.86 63.16 100.00 0.75 0.43

79 45 89.47 100.00 0.92 0.86 73.68 100.00 0.67 0.86 68.42 100.00 0.75 0.57

80 44 89.47 100.00 0.92 0.86 68.42 100.00 0.58 0.86 63.16 100.00 0.67 0.57

81 43 78.95 100.00 0.83 0.71 73.68 100.00 0.67 0.86 63.16 100.00 0.67 0.57

82 42 78.95 100.00 0.83 0.71 68.42 100.00 0.67 0.71 68.42 100.00 0.67 0.71

83 41 78.95 100.00 0.83 0.71 78.95 100.00 0.75 0.86 68.42 100.00 0.67 0.71

84 40 78.95 100.00 0.83 0.71 73.68 100.00 0.67 0.86 63.16 100.00 0.67 0.57

85 39 73.68 100.00 0.75 0.71 78.95 100.00 0.75 0.86 78.95 100.00 0.75 0.86

86 38 78.95 100.00 0.83 0.71 78.95 100.00 0.75 0.86 78.95 100.00 0.75 0.86

87 37 78.95 100.00 0.83 0.71 78.95 100.00 0.75 0.86 73.68 100.00 0.75 0.71

88 36 78.95 100.00 0.83 0.71 78.95 100.00 0.75 0.86 73.68 100.00 0.75 0.71

89 35 84.21 100.00 0.92 0.71 78.95 100.00 0.75 0.86 73.68 100.00 0.75 0.71

90 34 84.21 100.00 0.92 0.71 78.95 100.00 0.75 0.86 68.42 100.00 0.75 0.57

91 33 78.95 100.00 0.83 0.71 73.68 100.00 0.75 0.71 68.42 100.00 0.67 0.71

92 32 78.95 100.00 0.83 0.71 78.95 100.00 0.75 0.86 63.16 100.00 0.58 0.71

93 31 78.95 100.00 0.83 0.71 73.68 100.00 0.75 0.71 63.16 100.00 0.58 0.71

94 30 78.95 100.00 0.83 0.71 68.42 100.00 0.67 0.71 63.16 100.00 0.58 0.71

95 29 73.68 100.00 0.83 0.57 68.42 100.00 0.67 0.71 68.42 100.00 0.67 0.71

96 28 73.68 100.00 0.75 0.71 73.68 100.00 0.67 0.86 68.42 100.00 0.58 0.86

97 27 73.68 100.00 0.83 0.57 73.68 100.00 0.67 0.86 52.63 100.00 0.67 0.29
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    RFE-LNW RFE-SVM RFE-FSVs-7DK 

ITERATION GENES ITS-SR ASR SEN SP ILOO-SR ASR SEN SP ILOO-SR ASR SEN SP 

98 26 73.68 100.00 0.75 0.71 73.68 100.00 0.67 0.86 57.89 100.00 0.67 0.43

99 25 73.68 100.00 0.75 0.71 73.68 100.00 0.67 0.86 57.89 100.00 0.67 0.43

100 24 68.42 100.00 0.75 0.57 68.42 100.00 0.58 0.86 63.16 100.00 0.67 0.57

101 23 68.42 100.00 0.75 0.57 68.42 100.00 0.58 0.86 57.89 100.00 0.67 0.43

102 22 68.42 100.00 0.75 0.57 63.16 100.00 0.50 0.86 63.16 100.00 0.67 0.57

103 21 73.68 100.00 0.83 0.57 63.16 100.00 0.50 0.86 63.16 100.00 0.67 0.57

104 20 73.68 100.00 0.83 0.57 68.42 100.00 0.58 0.86 57.89 100.00 0.67 0.43

105 19 73.68 100.00 0.83 0.57 63.16 100.00 0.50 0.86 57.89 100.00 0.67 0.43

106 18 73.68 100.00 0.83 0.57 63.16 100.00 0.50 0.86 68.42 100.00 0.83 0.43

107 17 68.42 100.00 0.75 0.57 68.42 100.00 0.58 0.86 68.42 100.00 0.75 0.57

108 16 73.68 100.00 0.83 0.57 63.16 100.00 0.50 0.86 57.89 100.00 0.83 0.14

109 15 68.42 100.00 0.75 0.57 57.89 100.00 0.42 0.86 57.89 100.00 0.83 0.14

110 14 68.42 100.00 0.75 0.57 57.89 100.00 0.42 0.86 57.89 100.00 0.75 0.29

111 13 63.16 100.00 0.58 0.71 68.42 100.00 0.58 0.86 52.63 100.00 0.67 0.29

112 12 52.63 100.00 0.42 0.71 68.42 100.00 0.58 0.86 52.63 100.00 0.67 0.29

113 11 57.89 100.00 0.50 0.71 73.68 100.00 0.67 0.86 52.63 100.00 0.67 0.29

114 10 52.63 100.00 0.50 0.57 68.42 100.00 0.58 0.86 68.42 100.00 0.75 0.57

115 9 47.37 100.00 0.42 0.57 73.68 100.00 0.67 0.86 63.16 100.00 0.75 0.43

116 8 47.37 100.00 0.42 0.57 78.95 96.15 0.75 0.86 63.16 100.00 0.75 0.43

117 7 47.37 98.72 0.42 0.57 68.42 91.03 0.58 0.86 63.16 100.00 0.75 0.43

118 6 47.37 93.59 0.42 0.57 63.16 88.46 0.50 0.86 63.16 100.00 0.75 0.43

119 5 42.11 92.31 0.33 0.57 63.16 84.62 0.50 0.86 52.63 100.00 0.58 0.43

120 4 52.63 91.03 0.33 0.86 68.42 82.05 0.58 0.86 47.37 92.31 0.50 0.43

121 3 42.11 85.90 0.33 0.57 68.42 78.21 0.58 0.86 42.11 89.74 0.42 0.43

122 2 57.89 76.92 0.42 0.86 73.68 78.21 0.75 0.71 47.37 82.05 0.42 0.57

123 1 36.84 67.95 0.42 0.29 73.68 73.08 0.67 0.86 63.16 71.79 0.58 0.71

Average 69.88 99.22 0.83 0.47 69.32 98.96 0.67 0.74 71.46 99.48 0.82 0.53
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APPENDIX II 

Marker Genes 
Table 1: Breast Cancer Domain: The 73-gene signature selected by RFE-FSVs-7DK. 

Accession Symbol Description 
AB002324 KIAA0326 zinc finger protein 629 

Contig51464_RC FLJ22477 F-box protein 31 

NM_001685 ATP5J ATP synthase, H+ transporting … 

NM_013361 ZNF223 zinc finger protein 223 

AL049689 LOC63923   

NM_000797 DRD4 dopamine receptor D4 

NM_001667 ARL2 ADP-ribosylation factor-like 2 

NM_015849 ELA2B elastase 2B 

NM_014489 FRAG1 FGF receptor activating protein 1 

AB002297 DOCK3 dedicator of cytokinesis 3 

NM_016017 LOC51630 CGI-70 protein 

NM_003674 CDK10 cyclin-dependent kinase 10 

Contig43684 FLJ23312 hypothetical protein FLJ23312 

AF052087 LOC58509 NY-REN-24 antigen 

Contig32125_RC     

Contig22253_RC FLJ21062 hypothetical protein FLJ21062 

Contig23356_RC     

NM_003862 FGF18 fibroblast growth factor 18 

Contig54742_RC     

NM_000127 EXT1 exostoses (multiple) 1 

NM_019028 ZDHHC13 zinc finger, DHHC-type containing 13 

AF160213 LOC56889 transmembrane 9 superfamily member 3 

NM_004703 RABEP1 rabaptin, RAB GTPase binding effector protein 1 

NM_000158 GBE1 glucan (1,4-alpha-), branching enzyme 1 

AF148505 ALDH6A1 aldehyde dehydrogenase 6 family, member A1 

U82987 BBC3 BCL2 binding component 3 

NM_000272 NPHP1 nephronophthisis 1 (juvenile) 

NM_013306 SNX15 sorting nexin 15 

NM_005176 ATP5G2 ATP synthase, H+ transporting, mitochondrial F0 complex… 

NM_016359 NUSAP1 nucleolar and spindle associated protein 1 

AL133603     

Contig49512_RC     

NM_002896 RBM4 RNA binding motif protein 4 

NM_013438 UBQLN1 ubiquilin 1 

Contig33814_RC     

NM_013360 ZNF222 zinc finger protein 222 

AJ011306 DKFZP586J0119 translation initiation factor eIF-2b delta subunit 

NM_005243 EWSR1 Ewing sarcoma breakpoint region 1 

NM_000436 OXCT1 3-oxoacid CoA transferase 1 

NM_003748 ALDH4A1 aldehyde dehydrogenase 4 family, member A1 

Contig52554_RC     

NM_019086 FLJ20674 hypothetical protein FLJ20674 
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Accession Symbol Description 
AF257175 PECI peroxisomal D3,D2-enoyl-CoA isomerase 

AA555029_RC     
NM_003079 SMARCE1 SWI/SNF related, matrix associated … 

Contig63102_RC FLJ11354   

Contig48328_RC     

NM_005219 DIAPH1 diaphanous homolog 1 (Drosophila) 

NM_014675 CROCC ciliary rootlet coiled-coil, rootletin 

Contig26388_RC     

NM_018433 JMJD1A jumonji domain containing 1A 

NM_005774 ZNF255 zinc finger protein 224 

Contig42933_RC     
Contig20217_RC     
BE739817_RC IFNAR1 interferon (alpha, beta and omega) receptor 1 

Contig11065_RC     
NM_020120 UGCGL1 UDP-glucose ceramide glucosyltransferase-like 1 

NM_016444 ZNF226 zinc finger protein 226 

NM_003239 TGFB3 transforming growth factor, beta 3 

M26880 UBC ubiquitin C 

Contig14882_RC     

NM_020974 SCUBE2 signal peptide, CUB domain, EGF-like 2 

AL080059     

Contig31312_RC     

NM_001661 ARL4D ADP-ribosylation factor-like 4D 

Contig47544_RC ATP5E ATP synthase, H+ transporting, mitochondrial F1 complex… 

NM_013376 SERTAD1 SERTA domain containing 1 

NM_018089 ANKZF1 ankyrin repeat and zinc finger domain containing 1 

NM_006544 EXOC5 exocyst complex component 5 

Contig44278_RC DKFZP434K114 WD repeat domain 21A 

Contig6238_RC     

Contig65439 FLJ21939   

NM_016448 DTL denticleless homolog (Drosophila) 
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Table 2: Breast Cancer Domain: The 44-gene signature selected by RFE-LNW. 

Accession Symbol Description 
NM_006544 EXOC5 exocyst complex component 5 

NM_013360 ZNF222 zinc finger protein 222 

NM_020123 TM9SF3 transmembrane 9 superfamily member 3 

NM_004953 EIF4G1 eukaryotic translation initiation factor 4 gamma, 1 

NM_004604 STX4 syntaxin 4 

Contig42746_RC   

NM_004721 MAP3K13 mitogen-activated protein kinase kinase kinase 13 

BE739817_RC IFNAR1 interferon (alpha, beta and omega) receptor 1 

NM_019886 CHST7 carbohydrate (N-acetylglucosamine 6-O) sulfotransferase 7 

X89657 ADAM3A ADAM metallopeptidase domain 3A (cyritestin 1) 

AJ011306 DKFZP586J0119 ranslation initiation factor eIF-2b delta subunit 

NM_005371 METTL1 methyltransferase like 1 

NM_001204 BMPR2 bone morphogenetic protein receptor, type II (serine/threonine kinase) 

Contig47544_RC ATP5E 
ATP synthase, H+ transporting, mitochondrial F1 complex, epsilon 
subunit 

NM_000207 INS insulin 

Contig57801_RC   

Contig412_RC FLJ22233 
olute carrier family 24 (sodium/potassium/calcium exchanger), 
 member 6 

Contig37160   

Y18643 METTL1 methyltransferase like 1 

NM_018042 SLFN12 schlafen family member 12 

NM_005243 EWSR1 Ewing sarcoma breakpoint region 1 

AL080059   

NM_002896 RBM4 RNA binding motif protein 4 

NM_005258 GCHFR GTP cyclohydrolase I feedback regulator 

NM_002833 PTPN9 protein tyrosine phosphatase, non-receptor type 9 

Contig44278_RC DKFZP434K114 WD repeat domain 21A 

NM_002704 PPBP pro-platelet basic protein (chemokine (C-X-C motif) ligand 7) 

NM_016448 DTL denticleless homolog (Drosophila) 

Contig15164_RC   

Contig40185_RC   

Contig14882_RC   

AF160213 LOC56889 transmembrane 9 superfamily member 3 

AB033036 RP13-347D8.3 KIAA1210 protein 

AL050204   

NM_003862 FGF18 fibroblast growth factor 18 

NM_013438 UBQLN1 ubiquilin 1 

Contig43684 FLJ23312 hypothetical protein FLJ23312 

AA555029_RC   

NM_005774 ZNF255 zinc finger protein 224 

NM_018964 SLC37A1 solute carrier family 37 (glycerol-3-phosphate transporter), member 1 

Contig56217_RC   

Contig32125_RC   

NM_005217 DEFA3 defensin, alpha 3, neutrophil-specific 

AF043324 NMT1 N-myristoyltransferase 1 
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Table 3: Breast Cancer Domain: The 32-gene signature selected by RFE-SVM. 

Accession Symbol Description 
Contig10750_RC     

Contig31000_RC     

Contig48328_RC     

AL080059     

NM_006398 UBD ubiquitin D 

NM_019851 FGF20 fibroblast growth factor 20 

NM_001062 TCN1 transcobalamin I (vitamin B12 binding protein, R binder family) 

NM_000067 CA2 carbonic anhydrase II 

NM_020974 SCUBE2 signal peptide, CUB domain, EGF-like 2 

NM_001756 SERPINA6 serpin peptidase inhibitor, clade A … 

NM_014665 LRRC14 leucine rich repeat containing 14 

Contig50950_RC     

Contig11072_RC     

NM_006551 SCGB1D2 secretoglobin, family 1D, member 2 

NM_001615 ACTG2 actin, gamma 2, smooth muscle, enteric 

Contig53371_RC     

AF131741 LOC441052 hypothetical gene supported by AF131741 

NC_001807 ND1 mitochondrially encoded NADH dehydrogenase 1 

AF221520 PRKCBP2 oligodendrocyte lineage transcription factor 2 

NM_005794 HEP27 dehydrogenase/reductase (SDR family) member 2 

Contig14836_RC     

Contig23399_RC     

AB033065 KIAA1239 KIAA1239 

Contig29617_RC     

Contig50396_RC     

Contig16202_RC     

Contig24609_RC     

NM_002809 PSMD3 proteasome (prosome, macropain) 26S subunit, non-ATPase, 3 

NM_003147 SSX2 synovial sarcoma, X breakpoint 2 

NM_003283 TNNT1 troponin T type 1 (skeletal, slow) 

Contig7755_RC MGC5395 AHNAK nucleoprotein 

Contig46304_RC     
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