

Department of Production & Management

Engineering

T e c h n i c a l U n i v e r s i t y o f C r e t e

École doctoral décision informatique

mathématiques organization

U n i v e r s i t é P a r i s D a u p h i n e

An Agent-based Workflow Management

System for Marketing Decision Support

by

Pavlos Delias

Submitted for the partial fulfillment of the

Requirements for the degree of

Doctor of Philosophy

September 2009

i

Declarations

I hereby declare that this submission is my own work and that, to the best of my

knowledge and belief, it contains no material previously published or written by another

person nor material which has been accepted for the award of any other degree or

diploma of the university or other institute of higher learning, except where due

acknowledgment has been made in the text.

Parts of the thesis have been published in academic journals or conference proceedings.

Please cite as appropriate when referring to this text.

© Copyright by Pavlos Delias, 2009

ii

The thesis is approved by:

1. Nikolaos Matsatsinis (advisor in Technical University of Crete)

2. Alexis Tsoukiás (advisor in Université Paris-Dauphine)

3. Athanasios Mygdalas

4. Yannis Siskos

5. Constantine Tsouros

6. Evangelos Grigoroudis

7. Yannis Marinakis

iii

Acknowledgements

This work is part of the 03ED375 research project, implemented within the

framework of the ―Reinforcement Programme of Human Research Manpower‖ (PENED)

and co-financed by National and Community Funds (75% from E.U.- European Social

Fund and 25% from the Greek Ministry of Development-General Secretariat of

Research and Technology).

iv

Contents

List of Abbreviations ... ix

List of Figures ... x

List of Tables ... xi

Short Vitae ... xii

1 Introduction .. 2

1.1 Practical and Theoretical Value .. 2

1.2 Motivation and Major Assumptions .. 3

1.3 Thesis Structure .. 4

2 State of the Art .. 7

2.1 Background .. 7

2.2 Research Agenda ... 8

2.2.1 Trends and Standards .. 8

2.2.2 Specifying the Requirements of a WFMS .. 9

2.2.3 Limitations of Existing Systems .. 9

2.3 The advantages of using an agent approach .. 11

2.4 Workflow Taxonomy .. 13

2.4.1 Classification Approaches .. 13

2.4.2 Agent Related Classification Approaches in WFMS 14

2.4.3 Rallying Agents and Web Services to Manage Workflows 15

2.4.4 Workflow Agents under the Grid Umbrella .. 16

3 A Functional Classification Scheme for Agent-involved

Workflow Management Systems ... 17

3.1 The All-embracing Mentality .. 18

3.2 Scheme Presentation ... 20

3.2.1 Process Definition Tools Component ... 20

v

3.2.2 Workflow Client Applications Interface .. 20

3.2.3 Invoked Applications Interface .. 21

3.2.4 Other Enactment Services Component (Workflow Interoperability

Interface) .. 22

3.2.5 Administration and Monitoring Tools Component 22

3.2.6 Workflow Enactment Service Component ... 23

3.3 How agents are used? (A survey of the Related Literature) 24

3.3.1 Process Definition Tools Component ... 24

3.3.2 Workflow Client Applications Interface .. 27

3.3.3 Invoked Applications Interface .. 29

3.3.4 Other Enactment Services Component (Workflow Interoperability

Interface) .. 31

3.3.5 Administration and Monitoring Tools Component 33

3.3.6 Workflow Enactment Service Component ... 34

3.4 Overall Metrics .. 40

4 Design and Implementation ... 42

4.1 Pivot Processes .. 43

4.1.1 Direct Mail Campaign Automation .. 44

4.1.1.1 Key actors involved ... 46

4.1.2 Customer Contact Center Management .. 47

4.1.2.1 Key actors involved ... 48

4.2 The WADE platform .. 49

4.3 Agents Communication Support ... 52

4.3.1 Interaction Protocols .. 52

4.3.2 Joined Interaction Protocols .. 54

4.3.3 Unspecified Interactions following a workflow logic 55

4.4 Business Logic Support ... 58

4.4.1 Rely on the Workflow Definition .. 59

vi

4.4.1.1 Importing an XPDL document ... 59

4.4.1.2 Construct a JAVA class containing the definition 61

4.4.2 Use an Application Engine and an application specific ontology 64

4.4.3 Business logic support using both methods in combination 69

4.5 Manual Intervention ... 70

4.6 Statefulness through Document-Centric Stigmergy .. 73

4.6.1 A supportive database schema ... 75

4.7 Process Monitoring & Auditing ... 79

4.7.1 Why is it important? ... 79

4.7.2 Implementing the monitoring component as a kernel service 79

4.7.3 Benefits and Cost ... 83

5 Results .. 85

5.1 The Graphical User Interface ... 86

5.1.1 Starting the application ... 86

5.1.2 Platform related actions ... 87

5.1.3 Workflow related actions .. 89

5.1.4 Application configuration and management related actions 92

5.1.5 Other actions .. 93

5.2 Evaluate the Prototype against the Classification Criteria 94

5.2.1 Process Definition Tools ... 94

5.2.1.1 Analyze, model, compose, describe, and document a Business Process .. 94

5.2.1.2 Process Definition Write / Edit ... 94

5.2.1.3 Definition retrieval ... 94

5.2.2 Workflow Client Applications .. 94

5.2.2.1 Worklist Handling .. 94

5.2.2.2 Process control .. 94

5.2.2.3 Data Handling .. 94

5.2.2.4 User Interface ... 95

vii

5.2.3 Invoked Applications .. 95

5.2.3.1 Worklist Handling .. 95

5.2.3.2 Process Control ... 95

5.2.3.3 Data Handling .. 95

5.2.3.4 Service Discovery .. 95

5.2.4 Workflow Interoperability .. 95

5.2.4.1 Common Interpretation of Process Definition ... 95

5.2.4.2 Workflow Data Interchange ... 96

5.2.5 Administration and Monitoring Tools ... 96

5.2.5.1 User / Role Management .. 96

5.2.5.2 Audit Management ... 96

5.2.5.3 Resource Control ... 96

5.2.5.4 Process Monitoring ... 96

5.2.6 Workflow Enactment Service ... 96

5.2.6.1 Runtime Control Environment ... 96

5.2.6.2 Definition Interpretation .. 97

5.2.6.3 Execution of Tasks .. 97

5.2.6.4 Scheduling ... 97

5.2.6.5 Data Functions ... 97

5.2.6.6 Task Assignment .. 97

5.2.6.7 Resource Allocation ... 97

5.3 Exploiting the Prototype to Deploy Algorithms. The Case of a Scheduling

Algorithm. .. 98

5.3.1 The algorithm‘s context and similar works ... 98

5.3.2 The resource allocation decision .. 101

5.3.3 Optimization Criteria ... 102

5.3.4 The scheduling algorithm .. 104

5.3.4.1 Expressing the optimization metric with a matrix representation 104

viii

5.3.4.2 Optimization in the Continuous Domain ... 106

5.3.4.3 Discrete approximation of the results .. 107

5.3.5 Evaluating the algorithm‘s performance ... 108

5.3.5.1 Defining parameters for the system‘s load condition 108

5.3.5.2 Efficiency criteria for evaluating the execution case 110

5.3.5.3 Efficiency criteria for evaluating the design case 111

5.3.6 Experimental Results ... 112

5.3.6.1 Testing the algorithm under different load conditions 113

5.3.6.2 Comparing the proposed algorithm with other approaches 116

6 Conclusions ... 119

6.1 Future Work .. 121

ix

List of Abbreviations

WF Workflow

WFMS Workflow Management Systems

WfMC Workflow Management Coalition

AWfMS Agent-involved Workflow Management Systems

GUI Graphical User Interface

WS Web Service

ICT Information and Communication Technology

CSCW Computer Supported Cooperative Work

API Application Programming Interface

FIPA Foundation for Intelligent Physical Agents

ACL Agent Communication Language

ECA Event-Condition-Action

PN Petri Net

BDI Belief-Desire-Intention

RPC Remote Procedure Call

ORB Object Request Brokers

XML Extensible Markup Language

XPDL XML Process Definition Language

HTML HyperText Markup Language

WWW World Wide Web

BPEL4WS Business Process Execution Language for Web Services

UDDI Universal Description, Discovery and Integration

AI Artificial Intelligence

SLA Service Level Agreement

AMS Agent Management System

DF Directory Facilitator

CFA Configuration Agent

CA Controller Agent

IP Interaction Protocol

FSM Finite State Machine

UML Unified Modeling Language

x

List of Figures

Figure 1 Workflow Reference Model - Components & Interfaces. source WfMC [66].19

Figure 2 The proposed classification scheme ..19

Figure 3 Distribution of the reviewed publications according to their type.41

Figure 4 Chronological distribution of the reviewed publications ...41

Figure 5 Basic steps in developing effective communications (source: [3, p. 541])45

Figure 6 Basic phases of the contact center management process ..48

Figure 7 The WADE-based application concept ...49

Figure 8 The WADE Architecture ...51

Figure 9 The workflow of the SolicitDesign class ...53

Figure 10 The contract net protocol implemented during an instance of the

SolicitiDesign workflow ..54

Figure 11 Join two interaction protocols during one process ...55

Figure 12 The ReviewDrafts workflow diagram ...56

Figure 13 Main interactions within a sample instance of the ReviewDrafts workflow

process..57

Figure 14 Mapping an ad-hoc message exchange pattern to a workflow class58

Figure 15 Workflow diagram of the PreparePiece process ...63

Figure 16 Class Diagram for the PreparePiece process and related tools64

Figure 17 The Contact Center Ontology ...67

Figure 18 Messages exchanged during the ontology-based workflow execution (Source:

Application runtime – JADE Sniffer Agent). ..68

Figure 19 The proposed database schema. ...76

Figure 20 A database schema which does not exploit application's features.78

Figure 21 Class Diagram of the monitoring package ...81

Figure 22 Basic behaviour of the monitoringWF service ...83

Figure 23 The application's starting screen..87

Figure 24 Starting the multi agent platform and providing domain information.88

Figure 25 The Platform pane after the initialization of the platform with a specific

configuration. ...89

Figure 26 The workflow pane ..90

Figure 27 Choosing to continue an existing instance ...91

Figure 28 Checking instance's requirements..91

xi

Figure 29 Providing workflow parameters ...92

Figure 30 Editing the configurations' files. ..93

Figure 31 The basic steps of spectral clustering ... 104

Figure 32 The waste factor versus granularity for different values of the low bound B. 114

Figure 33 The waste factor versus the number of pending tasks for three different

granularity values ... 115

Figure 34 The algorithm's efficiency versus granularity when different number of

iteration are used in the k-means descritization phase ... 116

Figure 35 Comparison of different algorithms when the tasks' load augments. The

granularity is fixed to 0.1% ... 116

Figure 36 Comparison of the waste factor versus granularity for different algorithms for

B=5 (left) and B=10 (right) .. 117

Figure 37 Tasks' overlapping versus the number of agents for different algorithms 118

List of Tables

Table 1 Classification of the existing literature in AWfMS. ..40

Table 2 SAP Business Workflow in Campaign Automation. Source:

http://help.sap.com/

saphelp_crm70/helpdata/EN/45/cbced6f771fae10000000a1553f6/content.htm45

Table 3 Importing a XPDL definition ...60

xii

Short Vitae

Pavlos Delias received his diploma in Production Engineering & Management from

Technical University of Crete in 2002. He received his Master Degree from the same

university in Management Engineering in 2005, and the next year was registered as a

PhD candidate under the cotutelle framework with Technical University of Crete and

Université Paris Dauphine.

He was awarded a scholarship from the Hellenic Foundation of Scholarships (IKY) for

his Master while his PhD is founded by the general secretary or research and

technology of the Hellenic ministry of Development. He is a research assistant in

projects concerning decision making and information technologies. Currently he is with

the Decision Support Systems Laboratory of the Technical University of Crete, Greece.

1

CCHHAAPPTTEERR 11

Introduction

Practical and
Theoretical

Value

Motivation
and Major

Assumptions

Thesis
Structure

2

1 Introduction

Workflow Management Systems (WFMS) are systems that define, create and manage

the execution of workflows through the use of software, interactions with workflow

participants and, where required, invocations of information technology tools and

applications [1]. They are typically used in organizations to provide administrative and

supervisory functions. On the other hand, software agents come along with a plentiful

terminology including agent architectures, multi-agent system architectures, agent

frameworks, and agent infrastructures [2].

This thesis focuses on examining the integration of these two fields, revealing the

stimulation and the advantages of such a mixing. In particular, thesis‘ overall goal is to

clear the vague picture of the consolidation of workflow management systems and

software agents and to provide a unifying framework for this intersected area.

In order to better demonstrate the results of elaborating on the unifying framework,

marketing was selected as the application domain. Marketing processes intrinsically fit

the workflow management concept because they are far more flexible and versatile than

production processes. In marketing domain [3], it is common for the process flows not to

be rigidly defined, heterogeneous resources to be involved, and high customization per

customer to be required. However, the regular activities required to carry out a

marketing process (e.g., writing a report, extracting data from databases, organizing

campaigns, schedule meetings, etc.) have good potentials to be monitored by information

systems. To such a context, automation prospects are significant and the application of

workflow logic has noteworthy contribution potentials. Although the focus is on the

marketing field, thesis‘ contributions are domain-abstract, i.e., they can be applied in

general to any business domain that requires the implementation of workflow logic.

1.1 Practical and Theoretical Value

Thesis‘ contribution is threefold. The first part concerns an extensive literature review

and a classification of existing works according to a pioneering classification scheme.

The proposed scheme exploits popular standards of the field in an attempt to catalog

what software agents can do in workflow management systems. Such tabulation is

unique in the literature as it is not just a simple summary of the sources, but it also has

an organizational pattern and combines both summary and synthesis. It gives a new

3

interpretation of existing material and it opens a new way to criticize works in the field.

The meticulous survey of the intersected area of Workflow Management Systems and

software agents, which is presented in this thesis, provides a handy guide to the topic. It

also provides a solid background for researchers that would like to direct their research

efforts at the field.

The second part refers to the design and development of a prototype workflow

management system utilizing the agent paradigm. Based on an open source platform

[4], the prototype demonstrates how a number of workflow management functions can

benefit from multi-agent systems‘ features. The development of a prototype is a valuable

apparatus to validate the unifying framework in the sense that it helps reveal possible

problem areas and provides new insights of the envisioned field. Since an analytical

documentation of the developed software is attached, the prototype may operate as a

practical basis for developers, should they need to re-use its components. Besides this

practical convenience, and the potentials of using the prototype as a ready-to-use

workflow management platform, the developed system can operate as a test-bed to test

specific algorithms or/and provide the general context to test the integration of

supplementary modules and services.

In fact, exploiting the prototype as a test-bed for specific algorithms is the matter of the

third contribution of the thesis. Considering the specific marketing business processes

that were elaborated, and the modus operandi of the multi-agent platform, a compelling

scheduling algorithm is proposed. The algorithm exploits concepts of the generalized

eigenvalue analysis to optimize a scheduling problem in tandem with resource allocation

issues. The algorithm is integrated in a particular business process, nevertheless, to test

algorithm‘s efficiency, and to compare it with other approaches many experiments were

conducted beyond the prototype‘s scope. Hence, the algorithm is serviceable as a distinct

unit, and it can be used outside the workflow context as well, as long as the modeling

themes are valid.

1.2 Motivation and Major Assumptions

Workflow Management Systems (WFMS) and software agents are both established

areas in research and in business environments as well. The former is a category of

business information systems, emerging to provide automation solutions, while the

4

latter supplies the information systems field with a serviceable paradigm. These two

disciplines (WFMS & agents) can be combined to produce effective tools; they can be

joined to ameliorate each other‘s niches. Indeed, such attempts exist in the literature as

this thesis exhaustively presents. Yet in these works, it is hard to distinguish a unifying

background which would be able to clarify the overall picture, make the researchers‘

contributions more identifiable and provide a solid basis for future advancements.

More specifically, so far, when considering joining the two disciplines, there were no

justified answers (positive or negative) of generic validity to the question ―Does it worth

to mix WFMS and agents?‖ Hopefully, the text that follows in the next chapters, it can

reply to this question. Without claiming that the agents‘ paradigm is the most suitable

to be applied in WFMS, this thesis puts on display the cases in which the blending of the

two areas seems promising. A major endeavor was to suggest a method to criticize works

of the field, so that involvement of the agents in WFMS is justified and relative research

is stimulated.

Eventually, this endeavor proved to be exceptionally broad as it cuts a generous swath

across many fields: workflow standards, terminology and glossary, process modeling

languages, workflow enactment services, human interactions, applications integration,

system architectures, implementation approaches, operational facilities, optimization

algorithms, multi-agent systems design, etc. Thus, in order to narrow this broad

spectrum, a critical assumption of this work is that the workflow management systems

field is described by the definitions of the Workflow Management Coalition1 (WfMC).

The WfMC ‗s terminology and glossary [1] are adopted throughout this text, leaving

outside the scope of the thesis the debate about what a workflow management system is.

1.3 Thesis Structure

This chapter provides a general overview of the problem and discloses the motivation to

research in the topic. The second chapter describes the general background and the

mainstream research efforts. In the third chapter, the classification scheme is

introduced and an extended survey matches existing works against the proposed

criteria. The fourth chapter explains the design and implementation concepts of the

prototype system that was developed, while the general results are presented in chapter

five. The results refer to the presentation of the actual software tool that it was

1 www.wfmc.org

5

developed and to the presentation of the scheduling algorithm as well. The

documentation of the source code of the tool is attached as an appendix. Finally, the

conclusions‘ chapter discusses the implications of the results and concludes the thesis.

6

CCHHAAPPTTEERR 22

State of the Art

Background

Research
Agenda

The advantages
of using an

agent approach

Workflow
Taxonomy

7

2 State of the Art

2.1 Background

Workflow Management Systems (WFMS) emerged in the Information Systems

landscape as a promising office information systems technology at the 70s. During the

80s, they have evolved into enactment machines of operational models. Their critical

feature of that time was that they were too rigid to support the integration of human

activities. This essential requirement advantaged the development of systems that could

support collaborative work. Singh and Huhns [5] support that ―Workflows have been

with us from the dawn of time‖ and sectionalize the systems into five generations:

Starting from the ―manual‖ ones which were a side-effect of bureaucracy, they continue

with the ―closed‖ ones that focused mainly on data processing and on the automation of

the existing manual activities. The third generation concerned the ―database-centric‖

systems. It was then when data and process appeared to decouple themselves. The next

generation refers to the current situation. This generation‘s systems provide the

separation of control from the application. Finally, Singh and Hunhs predict that the

next generation will incorporate agent-based systems.

Abott and Sarin [6] provide a different taxonomy of the WFMS. They name as the ―first

generation‖ systems the systems that were ―application-specific‖. Those systems were

tightly related to specific functions (e.g., document management) and they were closed

and proprietary. During the second generation, the workflow logic is separated from the

application one, while the integration of third-party tools becomes available. Current

situation is mapped on the third generation: Contemporary WFMS provide access to

other applications through APIs and they integrate third-party tools as well. They adopt

standards-based architectures and they become far more user-friendly. Abott and

Sarin‘s prediction for the next generation describes a ubiquitous environment,

interchange of data and control is the focal event.

Sheth and his colleagues [7] illustrated the evolution of the WF runtime system

architectures. Starting from centralized / one-engine early systems, the architectures

evolved to more distributed ones, including web-orientation and mobile-agents

enhancements. As depicted in [7] the evolution will continue by supporting organic

8

processes. In [8] a very explanatory figure demonstrating the history of automation and

workflow systems is provided.

Concluding, it is evident that the WFMS development keeps pace with the technological

evolution. Eventually, WFMS will make progress towards more open and ubiquitous

environments. As WFMS evolve, they reveal their interdisciplinary nature and

researchers are becoming more aware of it.

2.2 Research Agenda

2.2.1 Trends and Standards

The term ―workflow‖ (WF) is overloaded to the point where it is hard to distinguish what

a WFMS is meant to achieve. This happens mainly, because there is a variety of

scenaria where workflow technology is applied: diverging from Human WF to Document

Management, Business Rule-Driven WF, ISO certification claim, Process Controlling,

Composite WF for Service Oriented Architectures, Groupware, Grid Computing,

Enterprise Application Integration, just to name a few.

Due to its interdisciplinary nature, workflow research cuts a generous swath across

many fields. Storh et al. [9] propose to classify the active research efforts into 3

categories: Technical issues, Management and organizational issues, and Market,

Economic and Social issues. Li et al. [10] discern two trends in current workflow

research community. One trend embraces the Web Services (WS) paradigm and strives

to develop WS-related architectures and methodologies (Choreography, Orchestration,

Process Definition Interchange, Service Discovery, Messaging, Transports,

Interoperability, Security). The other focuses on overcoming the limitations of

traditional workflow management concerning adaptability and flexibility.

The interdisciplinary nature of workflow also led to a rather vexing effect: a bold

confusion in the WF-related standards. One can refer to [11, 12] and to pages 118-138 of

[8] for a discussion on the topic. Beyond any doubt, significant progress has been done in

the field, Workflow Management Coalition 2 (WfMC) acting as a vital catalyst.

Nevertheless, declaring my personal opinion, I share the view that as workflow

standards are still evolving, and as existing workflow systems support their own

2 www.wfmc.org

9

proprietary technologies, it will take some time for any standards to be settled down as

a global accepted reference [13].

2.2.2 Specifying the Requirements of a WFMS

WFMS are currently an active field of enterprise information systems. WfMC [14]

estimates that there are over 200 commercial WFMS and that hundreds of companies

integrate WFMS into their information and communication (ICT) infrastructure.

Besides the fundamental specifications of a WFMS (the description of which is beyond

the scope of this thesis), there are some functional requirements that could put added

value:

 WFMS should find a way to manage the dynamic nature of business processes.

As business processes become more volatile, and as they start crossing the

organization‘s boundaries, their interactions need a rather sophisticated

supervisor.

 Within business processes, many tasks are interrelated; responsibilities and

data are distributed [15, 16]. This natural concurrency demands efficient

techniques for task assignment, resource allocation and scheduling. Moreover,

in the case of multiple service providers, the WFMS should be able to

semantically discover the appropriate service providers; negotiate with them,

and finally allocate them the work.

 Failures and exceptions must be tackled adaptively and efficiently.

 Contemporary WFMS must be able to operate in a pervasive computing

environment. They should be able to integrate external applications, other

WFMS, heterogeneous devices and legacy systems.

 Operating in the web appears a sine qua non requirement, while supporting the

users with friendly and customizable interface would promote their application.

 Scalability, security, and reliability always remain critical requirements.

2.2.3 Limitations of Existing Systems

Considering the above requirements, many researchers have exposed the limitations of

existing systems [16-24]:

 WFMS lack of adaptability: most of them require an a priori representation of a

business process and all potential deviations from that process [20]. They suffer

from disadvantages such as not supporting the dynamic

10

incorporation/modification of process models, poor adaptability of process

models at runtime, and they are incapable of integrating distributed process

models [25]. The static workflow definition and its passive interpretation does

not allow WFMS to demonstrate flexible behavior and to deal with real-life

situations, such as fast changing customer requirements and enterprise goal

shifts [22, 26].

 They are unable to cope with dynamic changes in resource levels and task

availability, as they tend to lack the necessary tools to redistribute work items

automatically as and when required [18]. WFMS lack of resources management

facilities [18, 20, 23]. They focus on the administration of processes and they

pay less or even hardly any attention to the problems such as the resource

allocation and the resource restriction [27]. Resource conflicts are seldom

monitored as WFMS tend to manage independently resources in an

organization. This kind of conflicts may lead to wasteful architectures and to

declined quality of service, while it becomes even more critical in the case of

cross-organizational workflows. In addition, tasks are associated with users

(actors) rather than roles [17]. Role management is a feature that still does not

exist in many systems. In general, limited or non-existing optimization features

(e.g., scheduling, resource allocation etc.) are incorporated.

 Authors of [2, 20, 28-30] noticed very early that semantics is a feature that can

lift up workflow functionality and that existing systems lack of them. Through

the use of semantics the decisions will be further automated; negotiation among

actors will be enabled; optimization of processes and learning features will be

disposable, and compensation activities will have a formal basis to lie on.

Unfortunately, the use of semantics is still in infantile level of integration in

existing WFMS.

 WFMS can not respond in a reactive way to exceptions that may occur during

the execution of a process instance, and their exception handling is rather

inadequate [18, 19].

 WFMS operate in splendid isolation and they represent islands of automation

that provide inflexible tactical solutions [21]. They lack of heterogeneity [20]

and they have poor support of interoperability [31]. Although WfMC strives to

establish generic interfaces and to enable interoperability, when WFMS need to

exchange data they use proprietary APIs calls [23]. This fact limits significantly

their extensibility [16].

11

 Existing WFMS tend to be centralized while their runtime components are

based on the client-server model [32]. Relying on a single central control does

not allow systems to support reliable and consistent process execution with

acceptable failure resiliency, performance, and scalability. Additionally, existing

WFMS have a weak support of correctness and reliability [31].

2.3 The advantages of using an agent approach

Without any doubt, there is no single solution for all the WFMS problems and

limitations. Moreover, the decomposition of workflows into agent-oriented architectures

does not seem an appropriate solution at first sight, since workflows are intrinsically

addressed by procedural programs. Therefore, an additional challenge of building agent-

oriented workflow architectures lies in providing abstractions that maintain an explicit

representation of the control flow and of the global workflow behavior. Yet, software

agents constitute an attractive metaphor with significant potentials to advance the WF

development. In [33], Lange and Oshima promote the use of mobile agents in the

distributed systems field by demonstrating seven arguments. In the same paper, they

present a few application areas where the agents‘ paradigm could flourish (workflow is

indeed included). This section supports this claim by providing some extra justifications.

First of all, agents inherit three powerful characteristics from their object-oriented

nature: encapsulation, inheritance and polymorphism. This way, agents allow workflow

developers to customize WF objects through subclassing (for example, add a new role by

appending extra properties), and improve WF features through aggregation. Through

polymorphism, agents allow to mix and match existing features, dynamically add new

features, and adjust the system architecture to a particular domain more easily than

any procedural program.

In addition, mobility infuses agents with the ability of migration. This potential allows

one to decentralize a WFMS [34] and exploit the benefits of both distributed WFMS [31,

35, 36] and of the agents paradigm in distributed systems [33]. By their nature, agents

support heterogeneity. Using an abstract communication and coordination level, agents

can be incorporated into the varying hardware and operating systems architectures that

dwell in a business process [34]. This enhanced coordination ability allow agents to act

as configuration facilitators [37, 38] and advances them as a promising technology for

application integration [39]. Agents modular nature can provide highly reusable

12

workflow architectures [40] which not only are an alternative technology to existing

workflow systems but most importantly, they also offer an alternative vision of how

organizations can be structured and managed [20].

Agents (being autonomous) can relief WF engines from some computation load.

Consequently the engines‘ workloads shall be reduced favoring significantly WFMS

scalability [41]. They enable the recovery process as they are stateful entities,

contributing significantly to the fault tolerance of the system. The encapsulation of state

also supports the asynchronous execution of a business process, a popular case when

human participants are involved [34].

As a more general contribution, it shall be noticed that the agent paradigm supports the

vision of human substitution: the inherent autonomy of software agents can fulfill

activities on behalf of a human with an expected quality of service. Another core feature

of agents, reactivity, provides them with an intrinsic capability to adapt to dynamic

changes in the environment [40]. Actions do not need to be rigidly prescribed, since

agents can anticipate their environment timely as well as efficiently respond to the

changes that occur [16, 42].

Besides reactivity, pro-activeness can boost agents‘ intelligence. Agents can adopt

feedback mechanisms to guide themselves during future actions [16]. They can

implement intelligent decision-making techniques such as negotiation [15], semantics

[23, 43, 44], and planning [25, 45]. Moreover, agents are able to perform optimization

tasks as routing and scheduling [41, 46], task assignment [47], resource allocation [17].

In [27], Qiu et al. advocate that problems such as resource collision and low efficiency of

resource utilization can not be readily addressed unless agents join the system.

Nevertheless, designing an agent-based system is far more complicated than relying on

a traditional WFMS. One shall always balance the trade-off between design and

development complexity and efficiency and effectiveness. A list of cases when the agent

paradigm appears to be an eminently suitable technology for workflow management is

provided below:

 Process definitions can not describe entirely the problem solution [15], or can not

predict all possible paths of the process execution.

 Interactions among tasks and/or participants are fairly sophisticated [15], or

tasks themselves are rather complex.

13

 The processes comprise rich social interactions among the workflow participants.

 Applications that are modular, decentralized, and changeable [48].

 The environment demands asynchronous communication [49].

 The environment is radically heterogeneous.

 The applications call for extensive human participants integration [34], or imply

long tasks.

 An explicit organizational structure (with analytical description of job roles and

responsibilities per role) exists.

2.4 Workflow Taxonomy

2.4.1 Classification Approaches

It is hard to define the term workflow because it is an extremely broad concept. In a

previous section (2.2.1) just a few of its flavors were mentioned; one of course can find in

the literature a lot of additional applications. This variety is obviously inherited to the

WFMS as well. McCready [50] was the first that tried to shed a light to the confusing

field of WFMS, classifying them into three categories: administrative, production, and

ad hoc systems. Georgakopoulos et al. [31] noticed that the dimensions along which

WFMS are classified are:

 repetitiveness and predictability of workflows and tasks

 how the workflow is initiated and controlled, i.e., from human-controlled to

automated

 requirements for WFMS functionality

Stohr and Zhao [9] place these three categories along a flexibility axis; production

systems being the most rigid and specific and ad-hoc systems being the most flexible

ones. Leymann and Roller [51] introduce a new category of WFMS: the collaborative

ones. They plot WFMS on a two-axis area: Business value and Repetition. Van der Aalst

[52] uses two different axes: the centricity one (systems can be either information-

centric, either process centric) and the structure one (loose or tight). He distinguishes

the WFMS into collaborative, adaptive, and production.

14

Georgakopoulos et al. [31] characterize the WFMS by a single criterion: human

engagement. They use human-oriented systems (computer supported cooperative work -

CSCW) on the one side and system-oriented (Transaction Processing Systems) on the

other. Nutt [53] by his turn, refines the CSCW characterization along three axes:

Coordination support, Computation support, and Logical immersion. Verginadis [54]

proposes a classification approach according to the control of the processes. He

distinguish three categories: Systems that base their control on WF engines; systems

that use agents (in any shape), and systems that are based on the Web Services

paradigm.

2.4.2 Agent Related Classification Approaches in WFMS

The term ―agent-based workflow‖ was first introduced in 1996 [28], when Chang and

Scott labeled their approach as such. The first definitions emerged three years later [18,

21]. The first categorization of the Agent-involved WFMS (AWfMS) is provided in [55],

wherein authors distinguish two classes: Agent-based and Agent-enhanced workflow.

The former refers to systems where ―the software agents take full responsibility for

process provisioning, enactment and compensation, with each agent managing and

controlling a given activity or set of activities‖. The latter is ―a technique whereby

intelligent, distributed, autonomous software agents are used to improve the management

of business processes under the control of a workflow management system‖. This

distinction is preserved in [23] as well, wherein authors merely add an ultimate

conclusion that agent-based workflow systems are distributed systems consisting of

multiple agents and that the whole business process is formed by the pieces of sub-

networks within those agents. They also highlight the fact that in agent-enhanced

workflow, there is a Workflow Engine present, which controls the activities, and the

creation – elimination of agents as well. Verginadis [54] appends an additional class in

this classification: Agent-enabled systems. In the agent-enabled case, broker agents

enable workflow instances in distributed WF engines. They are used as front-end and

they communicate through APIs with the WF engines.

Joeris proposes a categorization according to agents functionality [46]. He distinguishes

three cases: Agents as cooperating actors, as a key infrastructure technology for building

WF engines, and mobile agents realizing a migrating workflow. The former case

concerns a role-based scenario, where agents adopt different roles and carry out the

relative tasks. The second case is the activity-based one: agents act as task coordinators

15

and workflow managers. Finally, the last case describes workflow instances migrating to

different ―service stations‖, where tasks can be performed. Mobile agents can control the

migration by selecting appropriate ―service stations‖ and can control the execution of

tasks and collect their results.

In this thesis, the general term ―Agent-involved workflow management systems‖

(AWfMS) is introduced, to refer to all the above cases, and in extend, to the overall

situation where agents and WFMS are crossed.

2.4.3 Rallying Agents and Web Services to Manage Workflows

Web services (WS) are an attractive infrastructure for workflow since not only they can

expose invokable operations but they can support as well an ordered set of messages

among them. The advances in WS composition and related technologies [11] point out

the high potential of WS for workflow. This paragraph delves into how agents can

enhance Web Services under the workflow concept.

Should anyone collate the workflow properties of the two technologies (WS and software

agents), he will indeed come up with a visible overlapping, as both the composition

languages of WS and the interaction protocols of agents share the same goals: They both

support structured communication among actors; they both distinguish the ―role‖

concept (termed either as partner [56], or role [57]), and they both support common flow

mechanisms. So, are the two technologies competing each other?

According to [58], these two technologies seem to be complementary as agents can

support WS deficiencies for workflow. More specifically, quoting Huhns: ―WS do not

possess any meta-level awareness; they do not inherently understand ontologies; nor they

are capable of proactive behaviors, namely: autonomous actions; intentional

communication and deliberatively cooperative behavior”. Since agents possess all the

above features, they come forward as a great supply.

Two general models of collaboration emerge [22]: The first suggests modeling the Web

Service as an agent and treating it as a semi-autonomous one. This way WS are

enhanced with FIPA-compliant communication, statefullness, and negotiation abilities

[59]. The second model proposes exploiting WS to describe the external behaviors of

agents. The latter approach seems to contribute more in interoperability issues while

preserving the flexible interaction patterns provided by agents.

16

However in the literature, research efforts seem to focus on designing agents that

support Web service composition. Vidal [60] exploits agents to overcome the static

nature of WS workflows while in [38] agents characterize web services and manage data

dealing with composition. In [61] agents forward the instructions of the WF Engine to

services via messages so that workflow planning based on semantic information is

achieved.

2.4.4 Workflow Agents under the Grid Umbrella

The common use of grid and agents is eloquently described by the aphorism of [62] that

―Brain meets Brawn‖, parallelizing agents with ―Brain‖ and Grid with ―Brawn‖. In this

context, agents can contribute by making the grid more autonomous and by providing to

it flexible behaviors. Since workflow management is one of grid core services, agents‘

contributions in this particular field shall be briefly discussed.

A natural usage of agents within the grid workflow framework is to exploit their

interaction protocols to provide workflow modeling [63] and to coordinate workflow

execution [64] in general. Such an approach would supply the system with the

advantage of using agents‘ reasoning models for a sophisticated execution control e.g.,

for abstracting the flow rules from the strategy that the actors involved may adopt

[63]. Moreover, as demonstrated in [64], agents consist a promising infrastructure

for the workflows of integration: They provide a flexible integration interface and a

reliable and fairly intelligent distributed control mechanism. Additional features of

agents, such as the brokering of services [65] and the semantic information

exchange [63] allows agents to get more involved in the grid workflow field.

17

CCHHAAPPTTEERR 33

A Functional
Classification

Scheme for
AWFMS

The All-embracing
Mentality

Scheme
Presentation

How agents are
used?

Overall Metrics

18

3 A Functional Classification Scheme for Agent-involved

Workflow Management Systems

3.1 The All-embracing Mentality

Section 2.4.2 presented how researchers classify Agent-involved Workflow Management

Systems (AWfMS). Although these approaches provide an abstract view of how agents

can be used in a WFMS, they offer very little information about what they can do. A

more specific cataloging of AWfMS is needed. In this thesis, a functional classification

scheme is proposed. A functional decomposition of workflow management in [8, p.101].

Ideally, a WFMS should implement all the functions described there (if not more).

However, when it comes to the information system perspective, different issues occur.

As section 2.2 demonstrated, the development of WFMS shall not lead to islands of

automation and systems must be operable in a more open and ubiquitous environment.

Therefore, the proposed schema promotes the use of the WfMC standards by suggesting

a functional decomposition along the Workflow Reference Model of WfMC [66].

A hierarchy of twenty four functions (utilities) under six branches is proposed (Figure 2).

Each branch is associated with a reference model component (Figure 1) so that the

proposed scheme fully adopts to the WfMC standards. Besides, WfMC [14] associates

every component with an interface, which enables products to conform and / or to

interoperate at a variety of levels. This allows mapping quite straightforwardly many

dissimilar approaches against a single, unifying framework.

Furthermore, as the reference model is quite popular (hundreds of citations appear in

the literature), the proposed scheme claims to be an animated framework. As the

reference model does not refer specifically to agents, there was a need to slightly modify

the described functions, by appending some functions that derive from agency. An

important notice is that the final scheme has a fair orientation towards the use of agents

in workflow, so it may not fit a functional classification of traditional WFMS. The

classification scheme is illustrated in Figure 2, and explained in detail in the next

paragraphs. With respect to the author‘s knowledge, no such standards-based

classification has been suggested so far.

19

Figure 1 Workflow Reference Model - Components & Interfaces. source WfMC [66].

Figure 2 The proposed classification scheme

Based on the proposed scheme, and trying to map each approach against it, a total

of 105 publications were reviewed, published from 1996 up to 2008 (see section 3.4 for

the summary statistics). When a publication described agents to perform any of the

functions listed in the scheme, a check mark was to the corresponded criterion

(function). There was no consideration of the extend that agents were used, just if they

Workflow API and Interchange formats

Workflow Enactment Service

Workflow Engine(s)

Process Definition Tools

Interface 1

Workflow Client

Applications
Invoked Applications

Interface 2 Interface 3

Administration &

Monitoring Tools

Interface 5 Other Workflow Enactment

Service(s)

Workflow

Engine(s)

Interface 4

Agent-Involved Workflow

 Management Systems

Invoked

 Applications

Other Workflow

 Enactment Services

Client

Applications

Administration &

 Monitoring Tools

Process Definition

 Tools

Workflow Enactment

 Service

Process

Control

Data Handling

Worklist

Handling

User Interface

Data

Handling

Service

Discovery

Process

Control

Worklist

Handling

Analyze, model,

compose,

 describe, and

document a Business

Process

Process Definition

Write / Edit

Definition Retrieval

Workflow Data

Interchange

Common

Interpretation

Of Process

Definition Audit

Management

Resources

Control

User / Role

Management

Process

Monitoring

Runtime Control

Environment
Definition

Interpretation

 Execution of

Tasks

Scheduling

Data Functions

Task Assignment

Resource

Allocation

20

were indeed used. In addition, the agent definition of [67] is adopted, which defines an

agent as a computer system, situated in some environment, that is capable of flexible

autonomous action in order to meet its design objectives. Finally, no distinction was

made between systems and methodologies.

3.2 Scheme Presentation

3.2.1 Process Definition Tools Component

The functions described by WfMC in this interface are summarized into three utilities:

1) Analyze, model, compose, describe, and document a Business Process:

This utility might seem a composite one, but actually the above functions share

something in common. These facilities are applied to the process definition

during build time. The resulting definition is not operable without agents.

2) Process Definition Write / Edit: Agents are capable and authorized to create,

edit, and delete objects within a Process Definition. They may also edit any of the

objects‘ properties.

3) Definition Retrieval: Agents may get attributes‘ values from a specific

definition. They can also retrieve a list of process definitions that fulfill certain

criteria and finally, they can retrieve the whole definition itself.

3.2.2 Workflow Client Applications Interface

This category embraces the interaction between client applications and the core WFMS

(usually the WF engine). Four distinct activities are listed:

1) Worklist Handling: Agents may query the worklist and present to the user the

relevant work items. They can query instances and fetch its details to the user.

In those queries, agents may search for work-item-level data or for attribute-level

ones. Moreover, they may undertake worklist-related notification tasks. Finally,

work item decomposition into atomic tasks, when takes place at the client side is

considered as a worklist handling operation.

2) Process Control: Agents act on behalf of a user in order to create, start,

suspend, resume, or even terminate a process instance. Finally, they are able to

21

shift the process status and to force a change of its state. They play the role of a

supervisor, otherwise played by humans.

3) Data Handling: According to [66], workflow data are sorted into three types:

WF control data, WF relevant data, and WF application data. In this criterion,

transactions on all these three types of data are included. Of course, in the case

of WF control data, agents communicate the data to the WF engine (or to the

alike enactment service) where eventually another agent receives the

information, so the corresponded criterion in the WF Enactment service interface

(see section 3.2.6) is checked as well.

4) User Interface: The explanation of this criterion is intuitive. Agents are the

connection tool between the user and the system. An agent is a user

representative. A graphical user interface is not considered a sufficient condition

in order to get a mark in this criterion. There has to be a fair mapping of the user

against an agent.

3.2.3 Invoked Applications Interface

The criteria included in this interface are reasonably similar with the previous

paragraph‘s ones. They expose agents as a promising technology, mainly due to agents‘

autonomy. Agents are expected to invoke tools or to be themselves the invoked ones.

Four patterns are identified:

1) Worklist Handling: The activities included here are the same with those of the

previous interface, except that agents do not communicate with users but with

applications.

2) Process Control: Two major approaches are distinguished under this heading.

The one is that agents control the applications that they invoke while the other

one is that agents are the invoked applications themselves. In the case that

agents invoke applications, they carry the orders of the enactment service

(usually a WF engine) to applications about starting, suspending, resuming or

even aborting. They are also responsible for the synchronization between

applications and the WF engine(s). In the case where agents themselves are the

invoked application, they have autonomous control of the instance execution.

22

3) Data Handling: Same as ―Data Handling‖ criterion of the previous branch. The

concern is in all three types of data.

4) Service Discovery: This is a function not explicitly included in the reference

model, but quite popular in the literature. The rise of Web services advanced

radically the field. Agents before invoking an application may semantically or

explicitly search for services that implement specific capabilities. Accessing

directories where services are catalogued, allows a mark in this criterion as well.

3.2.4 Other Enactment Services Component (Workflow Interoperability

Interface)

A fundamental objective of the WF standards and of the WfMC itself is to allow

workflow systems produced by different vendors to seamlessly interoperate. There are

different levels of interoperation and plenty of connection architectures. We summarized

merely two general interoperation utilities:

1) Common Interpretation of Process Definition: WfMS may or may not use

the same process definition language. In any case, agents are capable of

exchanging definitions, while in the case of different languages, they may map

the definitions on a common dialect. Agents may request objects and attributes

from the process definitions of one system and broadcast them into the WF

network as such.

2) Workflow Data Interchange: Herein the interchange of both WF control data

and of WF relevant data (i.e., state information, recovery points, process

state transitions, pre- and post-conditions, assignment messages) are

registered. Agents may explicitly transmit these data or they may play a

―gateway‖ role. In addition, any synchronization mechanism is considered as a

data interchange technique.

3.2.5 Administration and Monitoring Tools Component

Unless the WfMC standards are followed, there might be confusion between Workflow

Administration and Workflow Management utilities, as ―administration‖ and

―management‖ do not have always clear boundaries. Nevertheless, complying with the

WfMC specifications leads in distinguishing the following criteria:

23

1) User / Role Management: Agents represent individual users or roles. Actions

that may be classified as such are user/ role authorization; matching user to roles

and vice-versa; personalize system parameters, and agents behaving as proxies.

2) Audit Management: In this criterion two types of activities are registered:

evaluation and exception handling. These activities are not always separable,

thus they are merged into one category. As audit management it is considered

the recording of semantic log files; the transformation of log data into semantic

ones, and the mining of log data of the workflow instances in order to manipulate

exceptions. Additionally, agents that mine audit trails to perform optimization

tasks or to account review reports are registered as well.

3) Resource control: Agents check for resource conflicts; supervise process

concurrency with respect to the resource levels; set access parameters, and define

usage parameters.

4) Process Monitoring: A rather composite criterion. Herein we classify tasks

such as keeping log data (unless semantic ones); process supervising, and

querying process status. A single rule is applied to distinguish audit from

monitoring: If interpretation of data is required, the case falls to the audit side,

else it is classified as a monitoring activity.

3.2.6 Workflow Enactment Service Component

The enactment service supports the runtime environment of a WFMS. The operations

listed in this branch are the operations that regularly a WF Engine provides. In certain

cases a WF Engine is not present (at least not explicitly), but this does not modify the

set of operations that support runtime execution.

1) Runtime Control Environment: In this criterion, all approaches that employ

agents as runtime control mechanisms are registered. These mechanisms operate

as enactment engines. The control refers to a process scope and not to the atomic-

task level. Communication among system components and coordination are the

most visible runtime control activities.

2) Definition Interpretation: The focus is on the cases where agents are able to

interpret the process definition language. This criterion concerns just the

24

interpretation, the other definition-related activities are included in the criteria

set of the first component.

3) Execution of Tasks: Agents control, and partially or fully execute the atomic

tasks that are parts of a WF instance. It is common for agents to wrap other

services that finally execute the tasks. This case is indeed considered within this

utility.

4) Scheduling: Scheduling includes priority assignment, deadline scheduling,

routing, creating and supervising synchronization constraints. Agents may

perform these activities intelligently or not.

5) Data Functions: This is about the general case where agents are responsible for

data transactions. Once again, all data types are included, referring however to

data handling on the engine side.

6) Task Assignment: Agents decide about ―who is going to do what”. They have

authorities on the global worklist (when such an object exist)and they may edit

its content.

7) Resource Allocation: Agents decide about ―which resource should be allocated

to whom”. They implement optimization algorithms. Resources monitoring is an

activity registered with a different criterion (see 3.2.4).

3.3 How agents are used? (A survey of the Related Literature)

3.3.1 Process Definition Tools Component

1) Analyze, model, compose, describe, and document a BP: In this utility, a

great variety of approaches emerges. This diversity probably is a consequence of

the low-adaptation of process definition standards. We roughly categorize the

approaches into five types:

a) The agent language is exploited as a (pseudo-)process definition. FIPA

protocols are coupled with a process language [21]; Agent Communication

Language (ACL) is used to translate the workflow ontology [55], or agent

interactions take place on a speech-acts [68] manner.

25

b) The internal architecture of agents allows the encapsulation of the process

definition. Reactive agents anticipate their environment through

sophisticated representations like Spheres of Commitment [5], multi-plane

state machine [69], or tuples of variables [70, 71]. They often apply Event-

Condition-Action (ECA) rules that derive either from these representations

either directly from the workflow schemes [46]. Agents in [72] act as the

transitions in a Petri Net (PN) process model, wherein they trigger and they

are triggered by the process states (places in the PN). Reflective agents use

meta-levels activities to determine their behavior [73]. A Belief-Desire-

Intention (BDI) architecture is a case of reflective architecture that is used to

model the business process [74]. The workflow definition may also be coupled

with a specific role of a workflow participant. This happens in role-based

workflow modeling [42], where a role refers to the expected behavior patterns

an agent must perform.

c) Migrational Agents. The naming inspiration is after the ability of agents to

migrate from one host to another. Agents may be themselves the processes:

they may represent the process execution [34], or the process is an object that

is enhanced with the properties of agency [17]. Each agent carries the

knowledge about how it needs to be processed [41, 75]. A somewhat different

approach is when agents are not the entire definition but work-items that are

passed to different users and autonomously take care of their current position

and further itinerary [76, 77]. An even less complex approach is to model

agents as information carriers [78]. Letting agents carry pieces of information

while migrating allows (re)configuration of systems. The information as

imperative code for host-context exploration/instantiation is a technique used

in [79, 80].

d) Service composition. A popular approach, mainly because of the fruitful

integration of agents and Web Services. Agents may undertake the

realization of an abstract process definition through planning techniques [61],

or by providing brokering services [81]. They may also use their interactions

protocols as workflow patterns, in order to bind atomic Web services [63, 82].

e) Finally, a multi agent system can be designed to be application specific and to

serve specific business processes. There are some fixed components of

26

predefined functionality, but the rest of the functions are either loaded on the

fly [83], either designed at build time [15].

2) Process Definition Write / Edit: A simple case is to grant permissions to

agents to access the definitions repository. Agents may create and delete

definitions [59, 84] or create and delete process objects [85]. Changes on

processes may be applied either on the static definitions, either dynamically, on

the executing instance [86]. A more reflective approach is to let agents modify the

dependencies among activities [73]. Sometimes the agent that modifies the

definition is instructed by other agents [10], by Remote Procedure Calls (RPC)

[87], or even by users and RPC results [29]. In the cases that the definition is

encapsulated in the agents, it is obvious that the definitions can be altered by a

self-modification of the agent body. When BDI architecture is applied, the agent

may determine alternatives situations in which the goals can be achieved [74].

When the process definition is scripted in the body of agents, they can modify the

process by inserting their bodies into the run-time environment. Shepherdson et

al. [21] encoded the process definition into JAVA classes, so the JAVA agents

could modify those classes and re-compile them. A different approach is proposed

in [78]. The execution of the processes takes place at distributed processing

stations. Agents carry the process-update information while migrating from one

station to another. A planning agent is used in [61] to combine the static

definition, the user constraints and rules into an executable workflow. A reversed

approached is proposed in [69]. The process definition is typed on a blueprint.

This blueprint feeds an agent factory to create the corresponded agent.

3) Definition Retrieval: Whenever agents are used to model the business process,

as described in the first utility of this branch, the retrieval of the process

definition is quite straightforward. For the rest of the cases, two similar methods

are used: Either a specific agent is charged to retrieve the definition, or a special

mechanism fetches definitions to agents. In [24], a process agent is used to get

the workflow specification. In [59, 84] the process agent ask the definition from

the storage agent, who in its turn, access a database to get the information. The

trigger agent, used in [88], acts more or less the same since it transfers the

process definition to the other agents. The activity agent suggested in [89],

connects likewise the business process model with the system‘s agent hierarchy.

A coordination layer where agents dwell, is proposed in [22, 25] in order to

communicate with a workflow management layer to retrieve the definitions.

27

Object Request Brokers (ORB) is used as a mechanism to allow agents to

communicate with the WF Engine [90], while Blake [37, 38, 82, 91] utilizes a

representation parser that feeds the Global Workflow Management Agent with

the process definition.

3.3.2 Workflow Client Applications Interface

1) Worklist Handling: Worklist handling operations are addressed by a variety of

methods. The worklist-handler agent proposed in [92] is a visible example of how

agents support these operations. It enables work items to be passed from the

WFMS to users, and notifications of completion or other work status conditions,

to be passed between the user and the WFMS. A popular approach [32, 75, 76,

93, 94] is to let agents communicate directly with the workflow engine or the

worklist server. In these cases, agents act simply as data couriers that facilitate

information exchange. Personal agents that represent users [85, 95, 96] are a

generalization of this case. A different approach is to assign worklist handling

operations to control agents [97-99]. These agents have a more coordinative

substance and handling worklist is one among their duties. In [17, 100, 101],

worklist handling is also a duty for executor agents. Finally, worklist may have a

special representation (e.g., tuples [71], or workflow policy rules [101]) which

agents may access and interpret.

2) Process Control: Usually clients exploit the interface facilities to control the

processes. It is very popular for the special interface agents to encapsulate

process control abilities. Yanli [99] uses such an Interface Agent to provide

clients with process control, while a personal interface agent is also used in [102].

A personal agent carry out the control on behalf of the users in [103] as well. It

achieves this by communicating with users and Task Agents. The personal agent

of Chang [28], constructs HTML pages and invokes a WWW browser for those

pages. Users are able to invoke various tools through those pages. Transforming

web pages into a standardized GUI which supports the migration of agents is

proposed in [29]. The agents encapsulate all information and code required to

allow human users to interact directly with the agent itself or indirectly with a

remote service. The web is also the enactment environment of the personal agent

in [85]. Treating agents as Web objects allows each agent to have a Web page,

which is easily accessed by clients [83]. The web environment allows researchers

to follow the client/server architecture, where agents are client-side components

28

of Web applications while other functional WF components are their servers

[104]. More active approaches are also proposed: Clients may interact with

agents that execute the processes (Task agents in [46], and Actor agents in

[105]). A workflow coordinator in [32], initiates process instances requested by

users, by creating proxy agents and dispatching them to workflow engines.

Similarly, the users can control through their interface a stationary agent that

creates and dispatch a messenger agent into the right server for certain tasks

[106]. Agents being e-forms that accept users‘ invocations are suggested both in

[75, 77]. Budimac [76], generalizes this idea by conceptualizing mobile agents as

work-items that are circulated among users. In the case that users are related

with roles, agents represent them, inherit the permissions and prohibitions

governing the creation, usage, and deletion of the processes [42]. Gudes [107]

names these agents Alter-Egos.

3) Data Handling: As declared in section 3.2.2, this heading includes the

transactions that agents may realize in all the three types of WF data: WF

control data, WF relevant data, and WF application data. Concerning the control

data, one can consider the approaches used here as a spontaneous extension of

the approaches described during the previous criterion (Process Control). For the

rest types of data, there can be enumerated approaches like the Site Manager

Agents of Blake [38] who populate a data repository; the storage agent [28] who

is responsible for providing a uniform access mechanism (HTTP protocol) to

multiple database systems; the Manager Agent [100] who accepts user requests

for data, and the Agentboard [104] which is the repository for storing agent

properties (relevant data are captured as these properties). Interface agents are

commonly used to transfer data within the WFMS [26, 29, 71, 92, 99, 108]. An

agent may also be used as a gateway between the client and a legacy database of

the system [109], or it can even represent a part of the database itself [107].

Agents can also support the data integration in grid systems [110], where data

exchange is intense.

4) User Interface: Agents act as effective bridges between users and computers.

Such agents can make the human–computer interface more intuitive and

encourage types of interactions that might be difficult to evoke with a

conventional interface [40]. The simplest shape is agents that provide secretarial

functions [96] and act as a ―fairly dumb‖ assistant to support their user [95, 102].

A graphical user interface is often embedded [29, 99]. However, interface agents

29

can be more sophisticated. In [71], the interface agents are responsible for

collecting information about customers and orders. These agents also interact

with customers during order execution, informing them about order status and

possible problems. In [111], the interface is a mapping from input to output. An

agent receives tasks through its input. The output is a set of agents‘ behaviors.

Finally, this criterion‘s activities may be implemented not by a dedicated agent,

but by a more general one. For example, the management agent of [84] provides

among else the user interface for the human workflow manager.

3.3.3 Invoked Applications Interface

1) Worklist Handling: The approaches proposed for this utility are fairly similar

with the ones of the previous interface. Of course, in this case the ―users‖ are

replaced by ―applications‖. Agents act more autonomously in their interactions

with applications rather than with humans. The worklist agent proposed in [88,

103, 112] enriches its functionality by exploiting its autonomous collaboration

with other agents (register agent, personal agent).

2) Process Control: In section 3.2.3, two major approaches were distinguished

under this heading. The one is that agents control the applications that they

invoke while the other one is that agents are the invoked applications

themselves. The latter approach is used for instance in ADEPT [15], wherein

agents have control over the tasks that they may perform. The concept of service

agent is often applied: In [21], each agent is responsible for one or more service

offerings, where a service offering is some combination of workflow activities and

the resources that are contingent upon them. The service agent of [113] is an

agent on behalf of a service entity that is capable of providing certain facilities,

while in [93] service agents run in distributed containers and after receiving a

task assignment, they autonomously invoke the required services. The Role

Manager Agents [38] play a role in the workflow execution by fulfilling one or

more services as defined by the workflow policy in a centralized database. These

services may be Web Services or other services encapsulated by other agents. A

lot of researchers focus on the integration of Web services: A BPEL4WS

specification is used in [43, 45, 72] to allow agents coordinate a set of Web

Services. Applications or Web services are captured by resource agents [59],

while manager and process agents request task execution from them. In a similar

way in [24], agents are utilized to wrap services which are able to execute

30

workflow tasks. The process agent manages the execution flow of the tasks

according to the workflow's Event-Condition-Action (ECA) rules. It can enable,

disable, suspend or resume the tasks according to the workflow ECA rules. Once

more, the Workflow Provider Agent proposed in [114], controls the execution of

atomic processes involved into the business process by invoking, requesting, or

informing different Resource Provider Agents. The agents of [115] contain a WF

engine which calls Web Services where directed by the workflow. Zhao in [110],

utilizes Web Services as an interface for controlling legacy workflow engines. Of

course, his agents (Scenario managers) may control the legacy engine via

different interfaces: Web Services, Socket, or command line. A more general

concept is to consider agents as task managers [87]. Each one is implemented as

a CORBA object and exports certain public methods as an external interface,

including the process control methods. An interesting suggestion is that of [69]:

An agent considers the process as a finite state machine, thus it controls it

through state transitions – actions. All actions carried out by an agent are the

result of the execution of a certain strategy decided when in a specific state. The

decision making abilities of the agent and his strategy selection, eventually

provide him with the process control.

3) Data Handling: The methods proposed for this utility does not differ

significantly with those of the second interface criterion: ―Data Handling‖. They

are rather intuitive techniques of data exchange between agents and other

agents, agents and applications, and agent and Web services. In the first case,

messages of an agent language are transferred; in the second ad-hoc protocols are

used, and in the last one SOAP messages are the most popular approach.

4) Service Discovery: In this utility, agents appear to search and advertise

services as well. In the frequent case when Web Services are integrated, it is

common for a UDDI registry to be maintained. Agents operate on this registry

using a semantic tool, like DAML-S [45, 60, 61], and OWL-S [22], or explicitly

searching for the desired services. Of course, services are not always web ones.

They may refer to the services that a WF engine provides [110], to resources‘

monitors [100], or to active WF instances [116]. Once again, these services are

listed in a registry that agents can access. A third case is when agents are

themselves registered in a repository. They can be discovered by a Directory

Facilitator Agent [72, 99], by a peer agent through the use of an acquaintance

model [16], by a dispatcher agent [85], by a central agent [98], or even by a

31

special broker agent. Agents may get advertised to the broker by populating their

JAVA classes interfaces [49], using FIPA protocols to update broker knowledge

[21], or following a special brokering process that the system prescribes [81].

Wang [117] uses a information board to publish agents‘ beliefs. When a peer

agent searches for services, it enters the board and translates the beliefs into

capabilities. A negotiation-oriented approach is also proposed [63]: the contract

net protocol [118] is used in order to discover which agents can offer the required

services.

3.3.4 Other Enactment Services Component (Workflow Interoperability

Interface)

1) Common Interpretation of Process Definition: The ―common interpretation‖

concept in this criterion comes in three versions: the first one adheres to agents

that share a centrally-hosted, executing Workflow definition; the second one to

agents that are guided by a common definition, and the last one refers to the case

that the definition is collectively maintained. Concerning the first version, the

definition may be handled by a WFMS while agents execute its partial activities

[21]. The notion of a server that maintains the definitions is also supported in

[28]. The proposed server is an agent which accepts request from other agents for

process definition information retrieval. The model proposed by [41], besides

handling centrally the definitions, it segments a workflow definition into blocks,

and assigns each of them to a mobile agent. Merz [29, 34] launches the concept of

the Service Representation (SR). The SR encapsulates the definition while it is

developed and provided by a remote server. It is possible to store the SR

persistently and to suspend / resume interactions with the remote server. A sub-

category of this version is the use of a definition template. The template may be

hosted in a server and agents who execute a process instance based on that

template, communicate with the server when an exception occurs [75]. Agents

that transform definition templates into instances are also suggested in [24, 99].

In a similar way, agents may reason over the meta-model of the definition [10],

thus they are able to recognize and manage its variants. The approaches of the

second version are quite different. Buhler and Vidal, in a set of their works [45,

60, 72] apply a BPEL4WS definition to express an initial social order on agents.

A coordination dialogue among agents is utilized as the process definition in

[119]. It is distributed to the interested parties, while the distribution is achieved

32

by making the dialogue definition publicly available for download through a

repository. The methods that use a collective approach exploit the properties of

agency: A BDI architecture is used [74, 102] to represent the processes context.

Spheres of Commitment [120] and tuple centres [70, 71] are used for the same

purpose. A different approach is presented in both [78] and [116]: The workflow

object (which carries the definition among others) is moving from node

(processing station) to node as its state advances. Nodes are able of course to

understand the state of the object, operate on it and perform the required

activity, before advancing its state and forwarding it to the next destination.

2) Workflow Data Interchange: The use of two dimensions in order to group the

approaches is suggested: The first one is to group them along a ―distribution‖

criterion and the second one along the technique used. For the distribution scale,

two options are considered: the central and the distributed one. The former refers

to the case that a common point of reference is used to maintain the control

information (the point of reference may be a server [38], a special control or

monitor agent [24, 90, 121], or a shared repository like tuple centers [70] and

information board [117]). After the execution of an activity, an agent leaves its

stigma at that reference point, hence the status of the process is updated. This

way, the status of every process becomes transparent to all agents, allowing a

fair dissemination of the control information. The latter refers to a peer to peer

approach, when agents interchange the control data without the intervention of a

supervising entity. A peer to peer approach requires a formal interaction protocol

among agents. This protocol may be message oriented [63], dialogue-based [119],

definition-guided [87, 116], or even based on the mobility of agents [76, 78]. As

long as for the second dimension, numerous techniques are used. It is common to

allocate the control data interchange to a special agent [22, 24, 90, 97, 99, 103,

114, 121] who is either dedicated, or it has a more general function. No matter if

agents are special ones or not, they indeed use messages that contain control

data as a communication mean [24, 63, 97, 104, 119]. It is also popular for agents

to exchange not just messages but the entire process definitions in order to get

synchronized with the process execution [16, 26, 29, 41, 72]. Sometimes, they

even use themselves as the communications mean [32, 75, 76, 78, 79, 116]. They

migrate from host to host while the control data are embedded in them. Finally,

agents may use a reasoning mechanism to communicate the control information.

A merging agent who merges the execution plans of other agents [65]; a

33

backward chaining approach to form a provisioning plan [21], meta-data

interpretation [79], or deliberative reasoning over a BDI architecture [74] are

listed as such techniques.

3.3.5 Administration and Monitoring Tools Component

1) User / Role Management: A popular approach is the design of personal agents.

This kind of agents may provide the user interface for humans [76, 77, 86, 105]

supporting their communication with the system. Personal agents may also

perform more sophisticated actions like customizing the user‘s working

environment [28], filtering and coordinating his/her communication [47, 103], or

even managing his/her worklist [97]. Another popular approach that derives from

the natural abstraction of agents as autonomous actors is their mapping against

roles. A role is usually attributed with capabilities, goals, obligations,

permissions over resources, qualifications etc. [41, 98, 117]. Such a role-based

conceptualization can be extended to map the workflow of organizations [39], or

federations [111] on a multi-agent architecture. This is the case that a role refers

to an organic component of a process. Blake suggests that agents should behave

likewise, by adopting and fulfilling specific services [37, 38, 91]. Last and actually

least, agents are used to undertake user management activities [97]. Researchers

seem to prefer to let user management (authorization, authentication) to other

technologies than agents.

2) Audit Management: Approaches in this utility fall on two broad categories,

which indeed overlap in some parts. The first category refers to the evaluation

issue, while the second one includes approaches that strive to make the WFMS

fault tolerant. In the latter category, there are cases like special diagnostic

agents to handle exceptions [108, 117], negotiation [16, 99] or voting [81]

protocols . Agents may support the system by re-planning the process [21, 96] or

simply by identifying a consistent checkpoint to resume [98]. Concerning the

evaluation field, simulation claims as an efficient tool [82]. Performance agents

may also be incorporated in the system for evaluation reasons [28, 84, 92, 97,

106, 108]. Sophisticated features for audit, such as learning from previous

experiences [77], recommendation for future enactments [94], reputation

mechanism [122], and adaptation to modified instances [19], are fairly

advantaged by the features of agents. No matter the audit activity (exception

handling or evaluation) two basic update mechanisms are distinguished: A

34

bottom-up one, where agents communicate the error or the performance measure

to a central entity [90, 96, 98, 99], and a top-down mechanism, where a central

entity inspects the system to identify abnormalities or collect data [25, 84, 92, 97,

105]. An additional interesting feature is the use of agents to agree a specific

level of monitoring [40, 122] in order to reduce network traffic.

3) Resource control: A visible classification of the approaches in this criterion is

to distinguish the distributed from the central ones. The distribution perspective

allows agents to communicate each other on a peer-to-peer basis; checking

resources availability or priority rules. Resources may be associated directly with

agents [26, 96], thus resources‘ requests correspond to messages among agents,

or resources may be associated with static points on a net [116], thus requests

are registered there-in. Central approaches implement of course a central entity

which supervises resources and controls their conflicts, their availability, and

their accessibility. Guidelines for this supervision may be described in the

process plan [21, 120], or they can be general rules of the system (e.g. request

levels considered as thresholds) that the special entity guards [10, 17].

4) Process Monitoring: A typical technique is to dedicate a special agent of the

system in monitoring processes [59, 84, 85, 90, 92, 108, 117, 119]. It tracks and

monitors the status of all agents and operations of workflow processing, while it

is also responsible for the information storage. An analogous approach is to use

again a special agent, but not a dedicated one [21, 77, 83, 98, 100, 123]. This kind

of agents performs additional activities in parallel, often process management

and control activities. An inherent evolution of this technique is to distribute the

monitoring process: Agents being capable of reporting their status [17];

migrational agents [24], and agents as log-data carriers [78] are proposed.

Finally, less distributed but also collaborative approaches are suggested in [19]

and [97]. These approaches decompose the monitoring tasks and assign each of

them to a special agent. For instance, in [97], there is one agent to monitor the

progress of the workflow while another one focuses on monitoring the exchange of

messages.

3.3.6 Workflow Enactment Service Component

1) Runtime Control Environment: By definition, the runtime environment in

WFMS is provided by the WF Engine [1]. Still agents can provide runtime

35

services that may be used by the system components in an operable assembly.

The contribution of agents‘ technology in this function comes in three shapes:

a. A central agent acts as a WF Engine [108, 115] or as a facilitator to the

Engine [49].

b. Two distinct servers coexist: a server to manipulate agents and a server to

support workflow enactment [28, 75, 90, 97, 99]. A major issue in this

category is how to synchronize the functions of these two servers.

Solutions vary from attaching the agent server into the Workflow Engine

[32], up to creating a special interface between agents and the Engine

[28].

c. A multi – agent architecture. This case is unsurprisingly the most popular

one in AWfMS and the one that benefits the most from the agents‘

paradigm. Three sub-categories can be identified within this case:

i. Agents use a special representation language that encapsulates the

workflow behavior [4, 5, 42, 65, 71, 73, 120, 124].

ii. Communication and coordination is achieved though messaging

and agent communication protocols [10, 15, 17, 21, 46, 77, 81, 85,

96, 98, 113].

iii. Service-oriented architectures. Agents are not only used to

encapsulate (wrap) services, but also advertise, search and

coordinate them [24, 38, 82]. An inverse technique is to use a web-

services process scheme to coordinate agents [45, 60, 72].

2) Definition Interpretation: The interpretation of the process models is by

definition a fundamental function of WFMS. Usually, agents understand the

language of the process models, where process models exist as bare entities.

Nevertheless, agents are used as well when process models are more complex

notions. For instance, in Knowledge-driven processes [74, 125] a Beliefs – Desires

– Intentions (BDI) architecture is employed: agents have explicit goals to achieve

(desires), or events to handle (intentions) in order to carry out a process.

Likewise, in [29], the process is represented as an encapsulation of the agent‘s

local state. The WF engine executes operation invocations and passes agents on

to other engines. Each invocation advances the local state of an agent until the

process goal (the final agent‘s state) is reached. The concept of embedding the

process model into the agents‘ body, while agents are moving from node to node

(e.g., engine to engine, resource to resource) is also followed in [49, 80, 126].

36

Finally, agents can be used in ad-hoc WFMS, i.e., in systems which do not

support every process but just some pre-described, specific ones. In this case,

agents do not actually interpret the process definitions, yet they decipher some

process parameters [95, 100, 108].

3) Execution of Tasks: The automation of the process execution is fairly enhanced

with the use of agents. In AWfMS agents appear to autonomously execute

workflows: sometimes they undertake the whole process [84, 114], and sometimes

just the atomic tasks, according to their expertise and capacity [25, 85, 88, 99].

Besides this typical case, agents can be additionally exploited to control the

process [16, 21, 49, 70, 71], even if the actual execution is not their piecework. In

a slightly different way, agents may be themselves the subject of work: they

travel while they carry the necessary information. Their destinations (either

engines, machines, resources in general) act upon agents, so the process steps

forward [29, 32, 75, 77, 78]. Agents could even act upon themselves, by executing

an internal method or by modifying their state or behavior [73, 106, 111]. In a

different method, agents wrap services which do the actual work [24, 38, 60]. The

role of agents in this case is to provide a smooth integration framework and a

more convenient control mechanism for services.

4) Scheduling: By its nature, scheduling is an activity that is seldom individually

addressed. Usually it is coupled with task assignment or resource management

issues. However, trying to isolate the scheduling activities where agents are

involved, three broad categories are outlined: The first one exploits the context of

the agents‘ society. Agents follow some market-based procedure (i.e., negotiation)

[20, 96, 127], or some message exchange protocol [26, 63] to mutually agree on a

scheduling scheme. The second category includes a more central approach. The

WF Engine or another central entity applies either special rules [19, 46, 73, 101];

or provides scheduling modules to the agents [32, 80]; or utilizes special

techniques and algorithms (e.g., temporal logic [44], AI planning [65]), or finally

it follows some prioritization discipline [17, 106]. Some approaches that jointly

use methods of both these categories (negotiation together with some

optimization method [16, 21]) are also proposed. The last category of scheduling

methods in AWfMS relies on the mobility of agents: Agents have a complete

knowledge of their itinerary and they schedule themselves to travel from node to

node [34, 76, 78]. This category‘s methods, inherently distributed, do not

necessarily yield optimal scheduling efficiency.

37

5) Data Functions: This criterion actually refers to data handling on the engine

side. Three major styles can be identified concerning the involvement of agents

with WF relevant data and WF application data (WF control data concern more

the agents‘ functions within the ―Runtime Control Environment‖ criterion). The

first one is to use a special agent (like the Data Management Agent of [90]) or a

special kind of agents (Information agents of [40]). A different style is to assign

data functions to two or more dedicated collaborating agents. One can recognize

this style in [84, 121], where a Storage agent and a Monitor agent work together;

in the collaboration of the Trigger agent and the Personal agent in [112, 128], yet

in the cooperation of User agents with the WF Execution agent in [97]. Finally,

another style is to provide access mechanism to every agent that needs to access

external data-spaces [45, 82].

6) Task Assignment: Two major approaches appear to address the task allocation

issue in AWFMS:

a. The negotiation mode, where an agent negotiation context is applied [15,

20, 114, 127]. The Contract Net Protocol is broadly used [18, 63, 89, 113]

to allow agents to negotiate over a set of evaluation criteria. The

incorporation of Service Level Agreements (SLA‘s) to bind the negotiation

process is an intuitive way to quantify the evaluation criteria [16, 21].

b. The use of a hierarchical structure to dispatch tasks. The hierarchy may

refer to a central entity that is responsible to decide an allocation plan

and notify the task executors of it (e.g. a Dispatcher agent [85, 99], a

Coordination agent [98], a Decision Making agent [90] or even a Judging

machine [97]). The hierarchy may also refer to a brokering architecture

[81, 113] or even to special mobile agents [41, 47].

No matter the mode employed (negotiation or hierarchical), a popular method is

to match task demands against agents‘ abilities or agents‘ roles abilities [17, 24,

27, 42, 81, 88, 89, 98, 99, 103, 105, 113, 129]. The role acts as a filter to the

worklist so that a more efficient matching between agents and tasks is possible.

The Task Assignment problem within AWFMS is often addressed as an

optimization issue [17, 27, 127, 130] while various techniques like Reinforcement

Learning [122], Maximal Sequence Model [41], Support Vector Learning [21],

UPC theory [27] have been proposed.

7) Resource Allocation: An important notice is that the resource allocation

decision in AWfMS is a run-time decision and that agents are employed to

38

contribute to a dynamic allocation of resources. Under this context, the dominant

technique is negotiation [10, 16, 18, 20, 125] where agents claim for resources by

offering bids. Broker agents, who keep a registry of the available resources and

facilitate the negotiation process, are also suggested [22, 84, 121]. By its nature,

the Resource Allocation problem appears tightly related with scheduling [131] so

that scheduling techniques are attached either to negotiation [16] or to brokering

[99] to address more efficiently the allocation decision. Other techniques

proposed are ECA Rules [73], backward chaining [55], and UPC theory [27] that

enhances agents with a self-learning ability in order to avoid resource collision

and to allocate resources more efficiently.

Interface Criterion References

P
r
o

c
e
s
s
 D

e
fi

n
it

io
n

T
o

o
ls

Analyze, model, compose,

describe & document a BP

[4, 5, 15-17, 21, 28, 29, 34, 41, 42, 44, 46, 55, 61, 63,

65, 69-83, 85, 89, 103, 104, 115, 117, 126, 132]

WF Definition Write/ Edit [10, 21, 29, 59, 61, 69, 72-74, 78, 79, 83-87, 133]

Definition Retrieval

[15, 16, 21, 22, 24, 25, 27-29, 32, 34, 37, 38, 41-43,

45, 46, 55, 59-61, 69, 72, 75, 83, 84, 86, 87, 89-91,

93, 96, 99, 103, 104, 112, 113, 116, 119, 120, 123,

132-134]

C
li

e
n

t
A

p
p

li
c
a

ti
o

n
s

Worklist Handling
[17, 26, 28, 29, 32, 34, 70, 71, 75, 76, 85, 92-103,

112, 126, 128, 132, 133, 135]

Process Control
[17, 20, 25, 28, 29, 32, 34, 42, 46, 49, 75-77, 83, 85,

95, 99, 102-107, 123, 126, 132]

Data Handling

[17, 20, 26, 28, 29, 34, 37, 38, 47, 54, 71, 75, 77, 91,

92, 94-96, 98-100, 102, 104-110, 114, 123, 126, 132-

134]

User Interface

[2, 5, 17, 20, 25, 26, 28, 29, 34, 37-40, 42, 46, 49, 54,

55, 59, 70, 71, 76, 77, 83-86, 91, 92, 95-100, 102-112,

114, 116, 117, 120, 122, 128, 133-135]

In
v

o
k

e
d

A
p

p
li

c
a

ti
o

n
s

Worklist Handling

[17, 21, 22, 26, 28, 32, 34, 37, 38, 55, 59, 70, 71, 75,

81, 83-85, 89, 90, 92, 93, 97, 98, 100, 101, 103, 112,

113, 128, 132, 133]

Process Control
[15-17, 20-22, 24, 25, 29, 32, 34, 37, 38, 42, 43, 45,

46, 49, 54, 55, 59, 60, 63, 64, 69, 72, 75, 80-85, 87,

39

Interface Criterion References

91, 93, 97, 103, 104, 110, 113-115, 121, 123, 132-

134, 136]

Data Handling

[15-17, 20, 21, 24-26, 29, 34, 37, 38, 43, 47, 54, 55,

64, 65, 69, 72, 75, 80, 81, 83, 85, 87, 91, 92, 98, 100,

104, 109, 110, 116, 123, 126, 132-134, 136]

Service Discovery

[15-17, 21, 22, 24, 29, 34, 37, 38, 45, 49, 54, 55, 60,

61, 63, 65, 72, 81-83, 85, 91, 93, 98-100, 110, 113-

117, 119, 123, 133]

In
te

r
o

p
e
r
a

b
il

it
y

Common Interpretation of

Process Definition

[10, 21, 24, 28, 29, 34, 37, 38, 41-43, 45, 46, 54, 55,

60, 63, 64, 70-72, 74, 75, 78, 82, 83, 87, 91, 96, 99,

102, 104, 110, 116, 119, 120, 123, 132-134]

Workflow Data

Interchange

[15, 16, 21, 22, 24, 26, 28, 29, 32, 34, 37, 38, 41, 46,

47, 54, 55, 63-65, 70-72, 74-79, 82, 83, 87, 90, 91, 96,

97, 99, 100, 102-104, 106, 110, 113, 114, 116, 117,

119, 121-123, 126, 132-134]

A
d

m
in

is
tr

a
ti

o
n

 &
 M

o
n

it
o

r
in

g
 User/ Role Management

[2, 5, 17, 28, 37-39, 42, 47, 54, 59, 63, 77, 83-86, 89,

91, 95, 97, 101, 103, 107, 111, 114, 120, 129, 132-

134]

Audit Management

[2, 15-17, 19-21, 25, 28, 40, 43, 54, 59, 73, 77, 78, 81,

82, 84, 90, 92, 94, 96-99, 105, 106, 108, 116, 117,

122, 133]

Resource Control
[2, 10, 15-17, 20, 21, 26, 39, 42, 55, 59, 83, 84, 96,

98, 116, 120, 129]

Process Monitoring

[4, 15-17, 19-21, 24-26, 40, 41, 49, 54, 55, 59, 64, 75,

77, 78, 82-85, 87, 90, 92-94, 97-100, 106, 108, 117,

119-123, 126, 132, 133, 136]

W
F

 E
n

a
c
tm

e
n

t

Runtime Control

Environment

(Communication/

Coordination)

[4, 5, 10, 15-18, 20-22, 24-26, 28, 32, 34, 37-39, 41-

47, 49, 55, 61, 63-65, 69-86, 89-92, 95-100, 102-104,

106-108, 110, 113-115, 117, 119-121, 125, 126, 132-

134]

Definition Interpretation
[4, 5, 10, 15-17, 19-22, 24-26, 28, 32, 34, 37, 38, 41-

47, 54, 55, 59-61, 64, 69, 72, 73, 75-77, 79, 81-87, 89-

40

Interface Criterion References

94, 96-99, 102-104, 106, 107, 110, 112-116, 119-123,

128, 132-134, 136]

WF Instances Control or

Execution

[15-17, 20-22, 24-26, 28, 29, 32, 34, 37-39, 41-43, 45-

47, 49, 54, 59, 60, 63, 69-75, 77-80, 82-86, 89-91, 94,

97-101, 103, 104, 106, 107, 109, 111-117, 121, 123,

126, 128, 132-134, 136]

Scheduling

[15-17, 19-21, 26, 27, 32, 34, 41, 44, 46, 55, 61, 63,

65, 69, 73, 75-78, 80, 86, 87, 94, 96, 99, 101, 102,

105, 106, 115, 116, 126, 127, 132]

Data Functions

[15-17, 20, 21, 25, 26, 28, 29, 32, 34, 37-41, 43, 45,

54, 59, 70-72, 75-78, 82, 84, 86, 87, 90, 91, 94-97,

100, 104, 106, 108, 109, 112, 114, 116, 121, 122,

126, 128, 132-134]

Task Assignment

[5, 15-18, 20-22, 24-28, 39, 41, 42, 47, 60, 63, 64, 70,

75, 77, 81, 83, 85, 89, 90, 92, 93, 97-101, 103, 105,

106, 110-114, 116, 120, 122, 123, 125, 127-129, 132]

Resource Allocation
[10, 15-18, 20, 21, 26, 27, 55, 59, 73, 83, 84, 96, 99,

112, 116, 121, 125]

Table 1 Classification of the existing literature in AWfMS.

3.4 Overall Metrics

In order to thoroughly explore the intersection of Workflow Management Systems and

agents, a plethora of publications were reviewed. Their types are summarized in Figure

3, the category ―other‖ including technical reports, a PhD Thesis, a patent and an open

source development environment. In general, while searching for relative publications,

there were no limits about the publication mean or specific journals or conferences since

the topic of this study spans across different areas. Hopefully, the variety of 32 distinct

journals that were closely examined is a fine account of that endeavor. As long as for the

time period of the publications, it is illustrated in Figure 4. The reference period is

slightly longer than a decade (1996-2008), while the publications‘ chronological

distribution is fair enough.

41

Figure 3 Distribution of the reviewed publications according to their type.

Figure 4 Chronological distribution of the reviewed publications

43

40

14

8

0

5

10

15

20

25

30

35

40

45

50

Conference Papers &

Proceedings

Journal Articles Book Sections Other

9

6

15

11
10

8 8 8

14

12

4

0

2

4

6

8

10

12

14

16

… -1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 -…

42

CCHHAAPPTTEERR 44

Design and
Implementation

Pivot Processes

The WADE
platform

Agents
Communication

Support

Business Logic
Support

Manual
Intervention

Statefulness
through Document-
Centric Stigmergy

Process Monitoring
& Auditing

43

4 Design and Implementation

4.1 Pivot Processes

The proposed agent-involved workflow management system approach is domain

abstract, meaning that it could be applied to any domain, as long as the formalization

requirements hold. Actually, this is the role of workflow management systems, which

are introduced to separate process logic from business logic. However, the thesis theme,

as defined by the sponsor program, dictates that the proposed system should be applied

to the specific domain of marketing.

In point of fact, marketing is a very convenient domain for workflow management

applications: Marketing processes are far more flexible and versatile than production

processes since the process flows are not rigidly defined, heterogeneous resources are

involved, and high customization per customer is required. However, the regular

activities required to carry out a marketing process (e.g., writing a report, extracting

data from databases, organizing campaigns, schedule meetings, etc.) have good

potentials to be monitored by information systems. To such a context, automation

prospects are significant and tightly related with the workflow perspective.

In order to fit the marketing domain, two pivot processes are selected and implemented.

During the process selection procedure the following criteria were considered:

 The process is possibly long and comprises rich social interactions among the

participants.

 The process is fairly complex and interactions among activities and / or

participants are reasonably sophisticated

 The process environment is heterogeneous and demands asynchronous

communication

 The process demands extensive human participants integration

 The process has fair automation potentials.

Complying with the above criteria, the two pivot processes which were identified are the

direct mail campaign and the customer contact center management. Since no formal

workflow definitions exist in the literature neither it is available by corporate

organizations, the workflow definitions were built from scratch. The fundamental base

44

was the generic guidelines that handbooks of marketing provide [3, 137] and published

material from vendors where available. Moreover, the partner Next Step Ltd., a

company which operates in the marketing business and which is contributing to the

sponsor program, acted as a vital catalyst to the refinement of the definitions and to

their adjustment into the business reality. Finally, an ultimate filter for the process

definitions was the goal to exhibit the system features, i.e., some process elements were

regulated in such a way that the AWFMS features were visible.

4.1.1 Direct Mail Campaign Automation

Direct mail marketing refers to sending an advertisement, offer, announcement,

reminder or other item to a prospective customer. Kotler [3, p. 536] identifies direct-mail

marketing as a major marketing communication mode, and as an important mean to

inform, persuade and remind consumers about the brand. In fact, direct-mail campaigns

serve multiple communication objectives, such as producing prospect leads,

strengthening customer relationships, informing and educating customers, reminding

customers of offers, and reinforcing recent customer purchase decisions.

Direct mail marketing (as opposed to mass marketing e.g., advertisement) is a targeted

communication and is based on a one-to-one, brand-customer basis. It is becoming

increasingly popular, as it can be personalized, a quality of great importance in

demassified markets. Direct mail campaigns include a broad mixture of tools and

activities such as budgeting, forecasting, managing digital assets, and dealing with

complex scheduling requirements. Because of the proliferation of products and brands,

even larger number of market segments, fierceness of competition, and overall

acceleration of change, direct mail campaigns have become complex and their planning

and administrative decisions must be made under increasing time pressure. Indeed,

timing and sequencing activities within a campaign is one of the critical decision

variables [137].

The rough main activities of a marketing communication process (and thus of a direct

mail campaign) have been analytically described in popular handbooks of marketing [3]

(see Figure 5). However, it is clear that a campaign could focus on some special steps or

it could omit some others, it could execute the steps sequentially or parallelize the

process, according to the campaign's special requirements. Moreover, each step may

contain different activities in a variety of flows. Because of the above particularities,

every campaign may significantly differ from another.

45

Figure 5 Basic steps in developing effective communications (source: [3, p. 541])

 To support the management of direct mail campaigns, and provide organizations with

automation potentials, some vendors (SAP [Table 2], Microsoft3) provide marketing

campaign blueprints so that charting a campaign project and monitoring its workflow is

facilitated. In this thesis, the basic outline of a direct mail campaign process is

maintained, resulting in the detailed workflows described in the appendix.

Table 2 SAP Business Workflow in Campaign Automation. Source:

http://help.sap.com/ saphelp_crm70/helpdata/EN/45/cbced6f771fae10000000a1553f6/content.htm

Workflow templates for Campaign Automation

WS14000061 Transfer Target Group to Channel

WS14000062 Create Target Group

WS14000062 Create Target Group and Channel Transfer

WS14000064 Send E-Mail to Employee Responsible

3 http://ce.microsoft.com/en-us/templates/ TC012330891033.aspx?CategoryID=CT102115851033

Identify target
audience

Determine
Objectives

Design
Communications

Select Channels

Establish
Budget

Decide on Media
Mix

Measure results

46

WS14000065 Authorization by Employee Responsible

WS14000066 Adding a Business Partner to a Target Group

WS14000067 Deleting a Business Partner from a Target Group

WS14000068 Start Target Group Optimization

WS14000069 Transfer Respondent to Channel

WS14000070 Start Subsequent Step Without Executing

WS15100040 Start Media Campaign

4.1.1.1 Key actors involved

The job roles and the corresponding job titles may vary significantly. In this section, the

job roles, which are involved in the direct mail campaign which was implemented, are

described:

 Marketing Director: He / She directs the organization‘s overall marketing

and strategic planning programs, and corporate communications. The main

responsibilities of the director are to design, implement and facilitate the

organization‘s marketing plan; to support and facilitate the development and

implementation of sectional / marginal marketing plans; to plan and administer

the marketing operations budget; to oversee marketing development activities;

to develop and administer marketing database; supervise the staff of the

marketing department.

 Product Manager: The Product Manager is responsible for the product

planning and execution throughout the product lifecycle, including: gathering

and prioritizing product and customer requirements, defining the product

vision, and working closely with engineering, sales, marketing and support to

ensure revenue and customer satisfaction goals are met. The Product Manager's

job also includes ensuring that the product supports the organization's overall

strategy and goals. The Product Manager is expected to: Refine the product

strategy according to the business objectives; prioritize the features of a product

providing the appropriate justification; be an expert with respect to the

competition.

 Marketing Communicator: The marketing communicator (MarCom) supports

sales and marketing management with communications media and advertising

materials to effectively represent the company's products and services to

customers and prospects. He / She reviews literature in the assigned marketing

47

project, previous marketing materials used in the assignment area, and gathers

materials of competitive companies in the field. Additionally, the MarCom

researches, writes, develops sketches of supporting graphics, and consults with

printing firm representatives on the needs of the particular project; he /she

develops draft advertising text and layouts as part of campaign materials and

he is involved to the review and approval procedures.

 Marketing Assistant: The marketing assistant provides administrative

support to the staff of the Marketing Department. Duties include general

research, clerical, and project based work.

4.1.2 Customer Contact Center Management

A customer contact center is a central point in an enterprise, from which all customer

contacts are managed. The traditional contact centers were actually call centers,

wherein agents were answering phone calls. However, as new communication styles are

emerging, this type of contact centers is becoming obsolete. Customers want to reach

organizations via e-mails, messages from their cell phones, messages through the

organizations website, etc. So, organizations need to reach their customer using the

communications channels the customers desire. A major difference between the above

mentioned channels and the typical telephone line is that communication is getting

asynchronous. This feature alone requires for different management of a contact center.

Although the general business objectives and the performance drivers are independent

of the communication style, when an asynchronous mode is employed, a different

understanding of resource management tasks and concepts is required. Due to the

flexibility and versatility of asynchronous communication channels, answers to the

―who, what, when‖ should be redefined. An important part of managing the contact

center is providing schedules that are workable and help achieve business objectives. A

contact center is generally part of an organization‘s overall customer relationship

management and its management would usually be provided with special software.

In this thesis, the process described in [138] is adopted, as a typical scenario for contact

center management. In particular, the situation addressed is when a batch of customer

e-mails arrives to an organization‘s server, and the organization‘s staff struggles to

process them in a timely manner. E-mails concern one of the following topics:

WARRANTY, INSTALLATION, TROUBLESHOOTING, ERROR, SPECIFICATIONS,

and GENERAL, while the average processing time of serving an e-mail of a specific topic

48

is considered to be known. In addition, the organization has established some quality of

service standards, i.e., every mail must be served no later than six hours after its

arrival. The abstract phases of the process are illustrated in Figure 6.

Figure 6 Basic phases of the contact center management process

There are some general business objectives that the management process should

consider. These objectives are related to cost control (average cost of putting an agent

online, agents‘ occupancy, non-productive agent time, etc.), customer satisfaction

(response time, service level etc.) and employee satisfaction (fairness, supervisor support

etc.). These objectives should be translated into specific performance drivers and be

subjected to optimization techniques. An analytical application of an optimization

algorithm based on this process is presented in section 5.3.

4.1.2.1 Key actors involved

A contact center should have a supervisor, a manager, who normally is an organization‘s

executive. The supervisor of a contact center is responsible for the daily running and

management of the center through the effective use of resources with responsibility for

meeting, and possibly setting, customer service targets as well as planning areas of

improvement or development. Contact center executives ensure that incoming requests

are answered by staff within agreed time scales and in an appropriate manner. They

coordinate and motivate the center‘s staff. Typical work activities include defining

performance drivers for speed, efficiency, quality and other business objectives; planning

and managing the daily running of the center; maintaining up-to-date knowledge of its

staff capabilities and performance; organizing staffing, including shift patterns and the

Receive
mails

Pre-process
mails

Assign mails

Process
mails /
Resolve
requests

49

number of staff required to meet demand; improving performance by raising efficiency

etc.

The other key actor in a contact center is its contact agents. A contact center agent is a

person responsible for answering the queries of the customers. They are responsible to

satisfy customers and maintain good image for the company. A contact agent must

understand the impact of the language he/she uses while he/she should effectively deal

with the customers‘ questions or problems. A contact agent accepts its worklist form his

supervisor and he/she should perform his/her assigned tasks with punctuality.

4.2 The WADE platform

WADE (Workflow Agent Development Environment) is a software platform that

facilitates the development of distributed multi agent applications where agent tasks

can be defined according to the workflow metaphor [4]. WADE is built on top of JADE

[139], which provides a distributed runtime environment, the agent and behaviour (a

task performed by an agent) abstractions, peer to peer communication between agents

and basic agent lifecycle management and discovery mechanisms. An analytical

presentation of the WADE platform can be found in the WADE‘s web site4; however, the

main elements and features of the platform are explained in the following paragraphs.

Figure 7 The WADE-based application concept

4 http://jade.tilab.com/wade/index.html

• Specific Agents

• Domain Ontology

• Application Services

• etc.

Application

•Workflow definitions development

•Administration and fault tolerenceWADE

•Distributed runtime environment

•Agents Lifecycle Management

•Directory Facilitator
JADE

http://jade.tilab.com/wade/index.html

50

The abstract idea of a multi-agent application based on WADE is illustrated in Figure 7:

At the bottom, there is JADE which provides a FIPA-compliant multi-agent platform

that supports agents‘ creation and lifecycle management, the fundamental constructs of

Agent and Behaviour, yellow pages services and a distributed environment to deploy the

application. The next layer is provided by WADE, a tool to enhance with workflow

metaphors the JADE platform. Finally, on top of these, the application specific design is

set up.

WADE, in contrast with most workflow management systems, does not supply a single

workflow engine. It essentially provides an extension of the basic Agent class of the

JADE library called WorkflowEngineAgent that embeds a small and lightweight workflow

engine. That is, application specific agents that extend the WorkflowEngineAgent class

become workflow enabled. A second important point is the workflow definition

formalism that WADE uses, and which is the JAVA programming language. However,

the WADE view of a workflow class follows the XPDL meta-model, thus building a

workflow class turns out to be an ordinary process engineering task.

In order to deploy a multi-agent application on top of WADE, the basic WADE

components must be marshaled. The architecture design is illustrated in Figure 8,

where the main components are visible.

51

Figure 8 The WADE Architecture

 The Configuration Agent (CFA). It is always running in the Main Container

(along with the Agent Management System (AMD) and the directory facilitator

(DF), and it is responsible for interacting with the boot daemons and controlling

the application life cycle.

 Boot Daemons. A Boot Daemon is activated at each host. Each daemon is

responsible for activating the workflow containers in their local host.

 Controller Agents. Every container that needs to be workflow enabled must

contain a Controller Agent (CA). The CA is responsible for the supervising

activities in the local container and for all the fault tolerance mechanisms

provided by WADE.

In order to start a WADE-based application, the Main Container (including AMS, DF,

CFA) and the Boot Daemons should be set up and running. The Main Container is

launched accepting a property file (main.properties) to configure its parameters. An

additional file (types.xml) is read by the platform to define agent types and roles.

Finally, upon application‘s start-up, an application configuration is loaded. An

application configuration is a file that specifies, according to an XML based format,

Host 1Host 1

Container 2

CA

Boot Daemon

Laptop

Host 3

Container 5

CA

Container 6

CA

Container 7

CA

Boot Daemon

Workstation

Server Host

Main Container

CFAAMS DF

Container 4

CA

Boot Daemon

Host 2

Container 3

CA

Boot Daemon

Container 1

CA Application Specific

Agents

52

which hosts are involved, which containers must be executed in each host and which

agents must be activated in each container.

4.3 Agents Communication Support

Agents‘ communication in the application is inherently message-based, as the

application is built on top of JADE. The type of exchanged messages follows the FIPA-

ACL specification [140], which in turn is based on the work of [141]. In particular, the

agent communication language (ACL) used, stands on the speech act theory which

states that messages represent actions or communicative acts (called from this point and

on as performatives). Some simple and popular examples of such acts (performatives) are

the INFORM action, the PROPOSE, the REQUEST, the AGREE etc. In this section, the

focus is to present how agents‘ communication is enhanced by the workflow metaphor.

Three different styles are described, each per subsection. Moreover, this section exhibits

some workflow cases which agent-involved workflow management systems are

particularly suitable to implement and enact.

4.3.1 Interaction Protocols

Usually conversations among agents fall into typical patterns, i.e., they use the same

sequences of messages of the same performatives. FIPA has standardized some of the

these typical patterns and called them Interaction Protocols (IPs) [142]. FIPA

Interaction Protocols specifications deal with pre-agreed message exchange protocols for

ACL messages.

In the application developed, the inter-agent communication workflow logic is designed

to make agents sufficiently aware of the meanings and the goals of the messages

exchanged, so that an IP can instinctively implement the agent‘s planning process. This

design is inherently favored by the specified interaction protocols; as the planning

process frequently matches a sequence of communicate acts.

53

Figure 9 The workflow of the SolicitDesign class

To clarify the above statement, an illustrative example is presented. This example

concerns the SolicitDesign workflow class (see Figure 9). The general objective of this

process is to select a vendor who will produce the marketing piece at the most low price,

holding of course the specified requirements. The process accepts the piece requirements

as input, while at the output, it returns the name of the winning vendor (actually it

returns the identifier of the agent that represents the vendor). Vendor agents calculate

the offer that they might make (they may of course refuse to make any offer) by calling a

web service. The web service itself is called through another workflow class

(VendorOffer, see Appendix). The whole process (save the initialization & the finalization

code) can be mapped on the contract net interaction protocol specification [143]. Figure

10 demonstrates the sequence diagram that implements the contract net interaction

protocol and derives from the run of an instance of the SolicitDesign workflow class,

during a sample case of three available media vendors.

54

Figure 10 The contract net protocol implemented during an instance of the SolicitiDesign

workflow

In the above case a workflow class coincides with an interaction protocol. Definitely, the

same interaction protocol can be implemented outside a workflow class; however

exploiting the workflow metaphor facilitates the whole procedure, since the graphical

representation of a workflow allows smooth integration of interaction protocols with

external tools and activities.

4.3.2 Joined Interaction Protocols

A different case is when inside the scope of a process, two or more interaction protocols

must take place so that the process logic is realized. For instance, during the

EstablishTargetMarkets process, the Marketing Director communicates a checklist to the

Product Manager, requesting him to fill / refine the document. The product manager

replies either negatively (refuse) or positively (agree). In the latter case, he sends an

additional informative message at a later time notifying the results. These actions are

exactly described by the FIPA REQUEST Interaction Protocol, so the ―Communicate

List‖ activity within the EstablishTargetMarkets process implements it, carrying out a

piece of the process logic. However, the process logic requires that next, during the

―Arrange meeting‖ activity, the Director propose a date to the Manager in order to

arrange a bilateral meeting. The Manager can either accept or not. This interaction is

prescribed by the FIPA PROPOSE Interaction Protocol, which is implemented by the

―Arrange meeting‖ activity (see Figure 11). What is ultimately achieved is to join two

interaction protocols under a special workflow logic (herein a sequence). This style

55

represents the modeling of IPs as individual activities, as distinct puzzle pieces that can

be combined with other activities or tools to form a process according to the business

needs. An emerging advantage of this style is the reuse of the activities that implement

an IP, into different, potentially more complex, processes.

Figure 11 Join two interaction protocols during one process

4.3.3 Unspecified Interactions following a workflow logic

FIPA has specified eleven (11) typical patterns of messages exchange (Interaction

Protocols). Although these eleven protocols address the most popular interactions, it is

quite possible for an interaction pattern to happen following a different logic, not

specified in any FIPA protocol. In such a case, the workflow metaphor provides a good

mean to control the messages exchange under a well-structured marshal. Consider the

example of the ReviewDrafts workflow class, illustrated in Figure 12.

56

Figure 12 The ReviewDrafts workflow diagram

 According to the ReviewDrafts process, the Marketing Communicator waits for the

vendor to send a draft of the illustrations needed for the marketing piece. The

marketing Communicator shall review the draft and reply positively or negatively to the

vendor. The positive answer means that the drafts are accepted without any changes,

and that the vendor shall go into the production phase. A negative answer includes a

document explaining the modifications that are necessary. When the proposal is finally

accepted, the vendor notifies the communicator that it enters the production phase. The

whole process seems like the PROPOSE interaction protocol: The arrival of the draft is

announced through an ACL message of the PROPOSE perfomative while the answer is

another message either of the REJECT_PROPOSAL or the ACCEPT_PROPOSAL

perfomative. Nevertheless, there are two important differences that do not allow the

FIPA specified PROPOSE Interaction Protocol to be applied as it is. The first one is the

cardinality of the protocols occurrences. The propose – decision – counter propose –

decision pattern may be repeated over and over again until a positive answer takes

place. The second difference refers to the final action of this interaction, that is, the

57

notification (INFORM message) the vendor sends to the communicator when it is

entering the production phase.

Figure 13 Main interactions within a sample instance of the ReviewDrafts workflow process.

So, in such a case the workflow metaphor can be exploited to specify a new ad-hoc

interaction protocol. Figure 12 depicts the workflow diagram of the ReviewDrafts class

which eventually produces an exchange of messages that follows the sequence pattern

presented in Figure 13. In details, Figure 13 presents an iteration of the PROPOSE IP

for 3 times (actually until a positive answer happens) and a final informative

communication act. Apparently, by introducing a workflow class to represent the

interaction protocol, an effortless yet exact mapping is possible. Figure 14 demonstrates

how this mapping is achieved.

58

Figure 14 Mapping an ad-hoc message exchange pattern to a workflow class

4.4 Business Logic Support

The role of WFMS is not just to support the enactment of business processes but to

support the definition of the workflows as well. Agent-involved workflow management

PROPOSE

REJECT

REVIEW

ACCEPT

INFORM

LEGEND

59

systems inherent this role along with others process definition related features. During

the previous chapters, the various techniques that are used in existing approaches for

defining the workflow processes were described. In this section, the business logic

support framework of the proposed application is presented. Two different approaches

are proposed in order to better address the wide-ranging field of AWFMS. Their goal is

to allow a concise business logic representation that will yield rapid and predictable

development of workflow process models. The two approaches, although conceptually

different, they are not mutually exclusive and can be used in combination as it

demonstrated in subsection 4.4.3.

4.4.1 Rely on the Workflow Definition

This approach proclaims that the business logic is fully described in the workflow

definition, which orders agents to perform any necessary actions. This is probably the

most intuitive approach, which assigns every logical piece of work to an atomic activity

of the definition. Every activity is related with a performer, which takes over the

responsibility to carry out the task. This way, a workflow definition exploits the natural

distribution of agents. In this thesis, this approach is implemented by utilizing the

mechanisms provided by WADE.

4.4.1.1 Importing an XPDL document

XML Process Definition Language (XPDL) is actually a process definition meta-model

which provides a common method to access and describe process definitions. XPDL is an

open standard [144], which enables a process definition, generated by one modeling

tool, to be used as input to a number of different run-time products. So, XPDL is a

format for process definition interchange - it does not force a particular process model on

the execution environment. The real benefit of XPDL comes from the exchange of the

design of the process. XPDL is used today by more than 80 different products today to

exchange process definitions, and it is emerging as a de facto industry standard [145].

Concluding, for a workflow management system that visions to be interoperable, XPDL

support is a recommended feature.

60

Table 3 Importing a XPDL definition

XPDL code Resulting workflow class

<?xml version="1.0" encoding="UTF-8"

standalone="no"?>

<Package xmlns="http://www.wfmc.org/2002/XPDL1.0"

xmlns:xpdl="http://www.wfmc.org/2002/XPDL1.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" Id="auxiliary" Name="auxiliary"

xsi:schemaLocation="http://www.wfmc.org/2002/XPDL1.0

http://wfmc.org/standards/docs/TC-

1025_schema_10_xpdl.xsd">

 <PackageHeader>

 <XPDLVersion>1.0</XPDLVersion>

 </PackageHeader>

 <RedefinableHeader

PublicationStatus="UNDER_REVISION">

 <Author>Pavlos Delias</Author>

 <Version>0.8</Version>

 </RedefinableHeader>

 <WorkflowProcesses>

 <WorkflowProcess Id="SpectralScheduling"

Name="SpectralScheduling">

 <ProcessHeader>

 <Created>2009-07-30

09:02:19</Created>

 </ProcessHeader>

 <RedefinableHeader>

 <Author>Pavlos Delias</Author>

 </RedefinableHeader>

 <Participants>

 <Participant Id="Assigner" Name="Assigner">

 <ParticipantType Type="ROLE"/>

 </Participant>

 </Participants>

 <Activities>

 <Activity Id="Spectral_Scheduling"

Name="Spectral Scheduling">

 <Implementation>

 <No/>

 </Implementation>

 <Performer>Assigner</Performer>

 </Activity>

 <Activity Id="Begin_Iterations"

Name="Begin Iterations">

 <Implementation>

 <No/>

 </Implementation>

 <Performer>Assigner</Performer>

 <TransitionRestrictions>

 <TransitionRestriction>

 <Join Type="XOR"/>

 </TransitionRestriction>

 </TransitionRestrictions>

 </Activity>

 <Activity Id="FindTasksPerAgent"

Name="Find Tasks per Agent">

 <Implementation>

 <No/>

 </Implementation>

 <Performer>Assigner</Performer>

 <TransitionRestrictions>

 <TransitionRestriction>

 <Split Type="XOR">

 <TransitionRefs>

61

 <TransitionRef

Id="SpectralScheduling_tra4"/>

 <TransitionRef

Id="SpectralScheduling_tra3"/>

 </TransitionRefs>

 </Split>

 </TransitionRestriction>

 </TransitionRestrictions>

 </Activity>

 <Activity Id="Finalize"

Name="Finalize">

 <Implementation>

 <No/>

 </Implementation>

 <Performer>Assigner</Performer>

 </Activity>

 </Activities>

 <Transitions>

 <Transition

From="Spectral_Scheduling"

Id="SpectralScheduling_tra1" To="Begin_Iterations"/>

 <Transition From="Begin_Iterations"

Id="SpectralScheduling_tra2"

To="FindTasksPerAgent"/>

 <Transition From="FindTasksPerAgent"

Id="SpectralScheduling_tra3" To="Begin_Iterations">

 <Condition Type="OTHERWISE"/>

 </Transition>

 <Transition From="FindTasksPerAgent"

Id="SpectralScheduling_tra4" To="Finalize">

 <Condition Type="CONDITION"/>

 </Transition>

 </Transitions>

<ExtendedAttributes>

 <ExtendedAttribute

Name="StartOfWorkflow"

Value="Executor;Activity_1;100;50;NOROUTING"/>

 <ExtendedAttribute

Name="EndOfWorkflow"

Value="Executor;Activity_6;110;100;NOROUTING"/>

 <ExtendedAttribute

Name="ParticipantVisualOrder" Value="Executor;"/>

 </ExtendedAttributes>

 </WorkflowProcess>

 </WorkflowProcesses>

</Package>

Table 3 presents how a process definition, created as an XPDL document, can be

imported to the system, and result in a workflow class. In fact, what is presented is the

resulting workflow diagram. An important notice is that what is transferred from the

XPDL document to the system is the process flow (activities, transitions, conditions,

joins etc.). The actual implementation of the activities, transition conditions etc. shall of

course be defined in the system‘s language. Yet, using an XPDL definition allows the

system to interoperate with vendor specific tools or platforms by transferring process

models via a common exchange format.

4.4.1.2 Construct a JAVA class containing the definition

62

Since the proposed system is a software piece, written using a programming language

(JAVA), a simple way to communicate the business logic is to translate business logic

into the same programming language. This way has two major drawbacks:

1. The process designer must be familiar with JAVA programming or he/ she shall

work in tandem with a software developer.

2. The JAVA class developed, must adhere to a specific formalization, imposed by

the underlying software (in this case WADE)

In spite of these counterarguments, constructing a JAVA class to represent the business

logic is a very rich, powerful and efficient way to express business logic. In the next

paragraphs, the basic steps that should be followed in order to construct a JAVA class

that symbolizes a business process are explained:

Ultimately, what has to be done to create a workflow class according to the WADE

formalism is to build a finite state machine (FSM) model. A finite state machine is a

model of behavior composed of a finite number of states, transitions between those

states, and actions. Within the JADE concept, FSMs are used to describe complex agent

behaviors, defining states not necessarily as agents‘ internal states, but also as activities

(JAVA code pieces) that the agent should implement. A WADE workflow class is an

extension of a FSM, and from an UML perspective is similar to an activity diagram.

Activity diagrams themselves are used to show the flow of activities through the process.

Diagrams have branches and forks to describe conditions and parallel activities.

So, the first and fundamental step in constructing a workflow class is to express the

business logic into activity diagram concepts, i.e., activities and transitions. Process

designers are facilitated by a graphical editor so that they can visualize the mental

picture of the process that they hold, and get immediate feedback on the screen of this

visualization. In Figure 15, such a visualization of the ―PreparePiece‖ process is depicted.

As it can be seen, the PreparePiece process declares that the initial activity is to take

some media decisions about the marketing piece (e.g., the format of the piece –

Brochure, Flyer, Catalog etc.-, the amount of the pieces that will be produced, etc.).

These decisions are articulated in a document which is read during the second activity of

the model (―Read Media Decisions File‖). Next, a preparing activity transforms the

articulated data into distinct requirements for every cluster of customers, and a loop

begins. For each cluster, the business logic orders to solicit potential vendors that could

63

produce the marketing pieces according to the specified requirements and after selecting

one of them, to review their production iteratively until the piece artwork is approved.

Finally, some mandatory tasks (such as updating the database of the system, or

cleaning data) take place. In the PreparePiece process, the SolicitDesign and the Review

activities are composite activities, containing other workflow processes. The first two

activities (―Media Decisions‖ and ―Read Media Decisions File‖) are realized by invoking

external tools.

Figure 15 Workflow diagram of the PreparePiece process

The second step to construct the workflow class is to define the parameters that are

exchanged between this process and the external tools or other workflow processes. The

final step is to build the necessary classes for the relevant tools and workflows, so that

the business logic is fully represented. Figure 16 illustrates the resulting class diagram

for the PreparePiece.java class and the related class (tools and joined workflows). An

advantage of using JAVA classes to represent the business logic is that a typical feature

of object orientation, inheritance, can be exploited to create new process definitions by

extending the classes of the existing ones.

64

Figure 16 Class Diagram for the PreparePiece process and related tools

4.4.2 Use an Application Engine and an application specific ontology

Workflow processes are needed to be described formally and their models shall not let

any room for ambiguity, subjectivity or inaccuracy. Formal process languages can

achieve the above by providing a workflow definition. However, a different way to

achieve these goals is to use ontology to eliminate conceptual and terminological

confusion. Ontology is a representation vocabulary, often specialized to some domain or

subject matter. In other words, the representation vocabulary provides a set of terms

with which to describe the facts in some domain [146]. Of course, building ontology

requires an additional effort, in terms of profound analysis of the kind of objects and

Subflows

MediaDecisionsGUI

(generic)

SolicitDesign

(workflows)

ReviewDrafts

(workflows)

applications.directMail

+PREPARELOOPDATA_ACTIVITY : String = "PrepareLoopData"

+FINALIZE_ACTIVITY : String = "Finalize"

+CLUSTERLOOP_ACTIVITY : String = "ClusterLoop"

+READMEDIAFILE_ACTIVITY : String = "ReadMediaFile"

+MEDIADECISIONS_ACTIVITY : String = "MediaDecisions"

+PREPAREPIECESUBFLOWACTIVITY2_ACTIVITY : String = "PreparePieceSubflowActivity2"

+PREPAREPIECESUBFLOWACTIVITY1_ACTIVITY : String = "PreparePieceSubflowActivity1"

+MV : AID

-clustersMedia : File

-offers : HashMap<String, Offer>

-tempOfferquantity : int

-tempOfferFormat : MediaFormat

-iter : Iterator<String>

-processId : int

-defineActivities() : void

#executePreparePieceSubflowActivity1(s : Subflow) : void

#executePreparePieceSubflowActivity2(s : Subflow) : void

-defineTransitions() : void

#executeMediaDecisions(applications : ApplicationList) : void

#executeReadMediaFile(applications : ApplicationList) : void

#executeClusterLoop() : void

#executeFinalize() : void

#checkPreparePieceSubflowActivity2ToFinalize() : boolean

#executePrepareLoopData() : void

PreparePiece

(workflows)

-file : File

~myGUI : MediaDecisionsGUI = new MediaDecisionsGUI()

+execute() : void

MediaDecisions

(applications::directMail)

-file : File

-offers : HashMap<String, Offer> = new HashMap<String, Offer>()

+execute() : void

CreateOfferFromTxt

(applications::directMail)

65

relations that exist in the domain, but one can afford this effort by saving time from

building a workflow definition using a formal process language.

Within the agent-involved workflow management systems context, if we can manage to

use a domain-specific ontology to represent the aspects of a specific process, then i) we

can build formal descriptions of the business logic and ii) we can support the workflow

execution by feeding agents‘ communication and reasoning functions with the ontology

concepts. In this section, the above claim is supported by an example, the

ContactCenterOntology ontology which was used in the application developed to support

the process described in section 4.1.2.

Once again the first and fundamental step is to express the business logic with the basic

elements of the ontology, i.e., objects and relations among these objects. To comply with

JADE formalism, objects can be one out of the following types:

 Concepts, which are entities with a complex or simple structure that ―exist‖ in

the world that the domain refers.

 Agent Actions, which are special Concepts pointing to actions that can be

performed by agents.

 Predicates, which are expressions that are evaluated and can result in either true

or false.

The contact center domain ontology is presented in the class diagram of Figure 17. Some

explanations for this ontology follow:

 Concepts:

 Mail: Represents an e-mail that arrived at the system. Each mail has a specific

type (available types are enumerated in the MailType class), an estimated

duration based on its type, a timestamp denoting when it arrived and a second

one denoting until when it should be served. Finally, every mail has of course

its actual content.

 MailBatch: Actually a collection of Mail objects. It contains also a reference to the

file where the mail elements are saved.

 Sender & Receiver: These two entities are used to declare agents that have

exchanged messages. They are used for audit purposes and they are general

entities (not directly connected to the contact center domain)

66

 Task: This entity represents an atomic task that has to be carried out by an

employee of the center. In essence, this task is to read an e-mail and reply

according to its request.

 Worklist: Actually a collection of tasks. The entity contains also a reference to

the file where the Task objects are saved.

 Agent Actions:

 ReceiveMails: This action orders the performer agent to connect to a POP3 mail

server and get the mails that have arrived. The connection attributes

(username, password, and server) are also attributes of the class.

 SendMailBatch: This action specifies a list of mails and a receiver agent. The

receiver agent gets informed about all the mails that arrived during the current

time window.

 Read: The performer agent reads the file which is specified by this action

 AddWorklist: This action has two attributes, an agent and a worklist. The

performer agent publishes the worklist and announces the agent that should

perform it.

 Todo: This is an action of assignment. The performer agent assigns to another to

do a specific task (reply to a batch of mails) specified in the item attribute.

67

Figure 17 The Contact Center Ontology

Still, how does this ontology support the actual execution of the business process in an

AWFMS context? The truth is that the ontology alone is not capable of such a thing. It

has to be combined by another feature of agenthood: communication. Through message-

based communication an agent can include in the content-slot of the message an agent

action, so that the receiver agent, by receiving the message is ordered to perform that

action. A basic prerequisite for this is that both agents do understand, and are able to

interpret the same ontology.

68

In the application developed the following pattern is adopted: A central agent, called

ApplicationEngineAgent is responsible for hearing requests that concern actions related

to the contact center ontology. Such requests can be sent by any agent of the system

(e.g., often the GUIAgent). After receiving a message of the ContactCenterOntology, the

application engine agent serves the requested action. Serving an action for the

application engine means that either it performs it by its own, or it delegates it to

another more appropriate agent. The whole procedure is based on FIPA interaction

protocols (see Section 4.3.1). An example of ontology-based workflow execution is

illustrated in Figure 18.

Figure 18 Messages exchanged during the ontology-based workflow execution (Source:

Application runtime – JADE Sniffer Agent).

In Figure 18, a total of 20 messages are exchanged to achieve a single iteration of the

workflow process (not counting the 1st message which is irrelevant with the process).

More specifically:

69

 Message 2: The GUIAgent (myGui) request from the ApplicationEngineAgent

(Engine) to perform an action (set the process Id to the current process‘ id).

 Message 3: Like message 2, but the action this time is the ReceiveMails.

 Messages 4 & 5: The engine talks to the Directory Facilitator (df) to get the

address for the AssignmentAgent (Assigner).

 Message 6: According to the business logic, the engine asks from itself to self-

perform an action (prepare a mail batch to be sent)

 Message 7: The Engine sends a notification to myGui to inform him that his

request is served. This notification is send to keep accordance with the FIPA

interaction protocols. Due to agents‘ autonomy, there is no exact schedule of

when this kind of messages are sent.

 Message 8: The engine requests from the assigner to read the file he prepared

(serve the action Read).

 Message 9 & 10: The inner logic of the Read action is to execute another

workflow process. So, the assigner requests from himself to perform another

workflow and gets a positive reply (Once again, the reply is used to comply with

FIPA protocols)

 Messages 10-13: The assigner talks with the df to get informed about the

address of the ApplicationEngineAgent. A similar procedure was followed during

the initialization of the assigner to get informed about the available employees.

This procedure is recommended, because agents may move to different nodes

during the workflow execution.

 Message 14: The assigner requests from the engine to add a worklist to an

employee

 Message 20: The engine, following the previous request, asks from the employee

(Employee2) to carry out the specific worklist (Todo action).

 Messages 15-17, 18 and 21: Similar with the exact three previous steps, just

altering the name of the employee and its assigned tasks.

4.4.3 Business logic support using both methods in combination

In the previous paragraphs two different approaches to support business logic in

AWFMS were presented: Relying on the workflow definition and ontology-based

workflow execution. Both ways are accurate and powerful, and it depends on the

business logic needs to choose which one to implement. Yet, there is a possibility to use

both in combination, in order to tackle any special process needs. Actually, an example

70

of this case was described in the previous paragraph (messages 9&10 of the ontology-

based workflow execution - Figure 18). In that case, there is a workflow class

(SpectralScheduling) which defines the workflow logic of a specific sub-process (provide a

schedule for the tasks, considering the available resources). This workflow class makes

no use of the contact center ontology, however while serving an action of the ontology,

the workflow class is invoked by the agent who performs the ontology specified action.

So, ontology is used to achieve high-level coordination and business logic support, while

low-level operations are prescribed within workflow definitions, which in turn are

attached as ontology actions‘ components.

4.5 Manual Intervention

The term workflow signifies the automation of a business process which is defined

within a process definition. Workflow management systems are supposed to guarantee

that during run time, every process is executed according to its definition, typically with

little or no human intervention. Nevertheless, there are circumstances that a strict,

automatic execution of the definition does not produce the desired outcome. There are

some exceptional circumstances that the user needs to override the initial definition and

manually change the execution path of the process. For instance, the user may detect

invalid data in the process input data, or new information may have became available,

so the process needs to rewind and resume execution from a previous step. Moreover, in

a business environment, special events emerge (e.g., an ad-hoc agreement with a special

customer) that may lead to different process rules (e.g., a document is not delivering or a

deadline is getting loose). Ideally, the workflow administrator should have some tools to

handle these exceptional circumstances, and manually specify the activity node that the

system should execute next.

This lack of flexibility and the non existence of manual intervention support has been

early identified as a limitation of workflow management systems [30]. Systems that

didn‘t provide this functionality were noticed to irritate end users, who felt that the

systems were merely enforcing rigid rules [53]. Manual intervention can be expressed by

many ways: performing the tasks manually, skipping some tasks, modifying the control

flow, rewinding and repeating some tasks, providing manually values to evaluate

conditions etc.

71

In this thesis, manual intervention implies that a user can choose a specific point of a

process, and start execution from that point. Moreover, he/she can also choose to execute

just a special part of the process and not the entire workflow. To succeed in allowing

this, the notion of ―state‖ is incorporated. The concept of ―state‖ is analogous to a

milestone within a workflow. Typically, a milestone indicates the end of a stage and it

goes together with some specific deliverables. Thus, if there is a need to check if the

milestone is reached, it is sufficient to check if the deliverables are okay. This abstract

idea is adopted in the proposed system. In particular, the process designer indicates a

limited number of states that roughly split the workflow process into phases. A state is

actually the interval between two milestones: one indicating the starting point and the

other the finishing point. Often the finishing point is the process end. Following the

procedure, the designer associates a set of ―requirements‖ with every state. If the

requirements are indeed accomplished, the user may begin workflow execution from

that particular state. As it will be described in section 4.6, a ―requirement‖ is a synonym

for file. This technique allows end users to:

 Skip any number of activities, by providing manually the expected deliverables

 Rewind workflow execution to a previous step and repeat process execution for a

number of times

 Intervene to the outcomes of the workflow without obstructing the process

execution, by manually modifying the requirements‘ files.

 Execute just a part of the workflow, asynchronously if allowed by the business

logic

Consider for example the ―directMail‖ workflow, described in section 4.1.1. The states

identified are:

 "NOT_STARTED". The process instance has been created but it hasn‘t started

execution yet. It may be used to signify that a process id has been assigned to

the instance but no other action has been performed (e.g., workflow assignment)

 "ESTABLISH_MARKETS". This is the initial state of the workflow. The workflow has

been assigned and it is ready to start execution. The whole process will be

executed.

 "SEGMENTATION". The process instance will start execution from the segmentation

point, that is, it skips the ―EstablishTargetMarkets‖ step.

72

 "QUANTIFY_TAM". Starts the process from the quantification of the total available

market point. The steps of ―EstablishTargetMarkets‖ and ―Segmentation‖ are

skipped.

 "BUDGET_RF". Begins executing the budgeting of response factor. All the previous

steps are skipped.

 "PREPARE_PIECE". This state refers to the second phase of the process and if

selected, it orders to skip the entire marketing research phase (which includes

the states described previously).

 "LAUNCH_CAMPAIGN". This state orders that the two first phases (marketing

research and prepare piece) should be both skipped.

 "SINGLE_SOLICIT_DESIGN". While all the previous states indicate that the process

instances should start execution from a specific point and continue until the

whole workflow is completed, this state (along with others that hold a prefix

―SINGLE_‖) indicate that just a part of the work should be executed. This

particular state refers to soliciting vendors to design the artwork for one

marketing piece.

 "SINGLE_REVIEW_DRAFT". A state that applies the reviewing of the artwork of one

marketing piece and then terminates.

 "SINGLE_CREATE_JOB_SCHEDULE". This state refers to the CreateJobSchedules class

that the product manager implements to create work schedules for every group

of assistants.

 "SINGLE_ASSISTANT_LAUNCHING". This state is about the execution of a task by one

assistant. The reason to create such a state is that assistants may execute their

assigned task at a different time, and asynchronously publish the results of

their work.

When a state is selected as the starting point of a workflow execution, a requirements

check is performed. If this check returns a positive answer, then the user is able to

intervene to the process by altering the process starting point. This procedure is

explained in greater detail in section 4.6. The system assures that all states are related

to the correct process instances through a process id, which is passed as a formal

parameter to all the workflows and sub-workflows that correspond to a state.

Manual intervention may provide the AWFMS with flexibility, but it incurs an added

risk and cost. The risk associated with manual intervention is that when you override

the process definition with a subjective – manual manner, there is no guarantee that the

73

resulting process will be valid and sound. Moreover, when the requirements are fulfilled

manually, there is also no guarantee that they have the appropriate content format or

that they comply with the specified business rules. These factors make more error-prone

the process instances which were manually mediated. The additional cost is related with

the poor logging of manual activities. Since manual actions escape the system

monitoring, auditing and backtracking become no longer possible for those particular

instances.

4.6 Statefulness through Document-Centric Stigmergy

Statefulness refers to the capability of maintaining the status of a process, recognizing

at any moment what has been accomplished and what is yet to come, or at least what is

coming next. In the workflow management context, wrapping stateful behavior is an

innate requirement, which becomes crucial in case of long lasting workflows.

Two general modes to integrate this workflow functionality are popular [147]:

 The system determines the next task by querying the data contained in the

process instance itself. The system is unaware of the tasks that are already

realized and of the tasks that may follow. All state information is contained

within the process instance. Thus, the instance‘s data needs to indicate who is

assigned to that unit of work, and all history information about what happened

in the past. Examples of this style of implementation in an AWFMS context can

be found in [76, 78, 93]

 The system knows everything about the process instance, and the instance itself

doesn't contain any history or "stateful" information. In [54, 96] this general

implementation style is followed.

However in this thesis a different approach is proposed. This approach, presented in the

following paragraphs, can be characterized as a ―document-centric stigmergy‖, a novel

term, introduced here. Firstly, the use of ―stigmergy‖ is explained:

Stigmergy is formed from the Greek words ―στίγμα‖ (stigma – sign) and ―έργον‖ (ergon –

action), and it was coined in the 1950‘s by Grassé, a French entomologist who used the

term to describe the indirect communication taking place among individuals in social

insect societies [148]. Stigmergy captures the notion that agents‘ actions leave signs in

the environment. Thus, if all agents are capable to understand and interpret these

74

signs, they will determine their subsequent actions in such a way that the emergent

behavior of the system is the desired one. Stigmergy has been used as an optimization

tool by a plethora of researchers [149], exploited mainly as a simple yet effective

mechanism for agents‘ coordination. Nevertheless, the approach proposed here does not

follow the strict formulation, as described in [149]. It rather uses the conceptual

initiative of stigmergy to construct an organic design for workflow management.

Actually, although the mechanism of stigmergy is mostly popular in insects societies, its

original concept has indeed been analyzed as a coordination framework for collaborative

activities in other environments as well [150] (e.g., humans [151] or software agents

[152]).

In general, in order to apply a stigmergy mechanism the following elements should be

considered [151]:

 An environment, which is described by a state

 The dynamics of the environment, which governs the evolution of its state over

time

 The agents‘ sensors that allow agents to interpret the state of the environment

 The agents‘ actuators that allow agents to modify the environment

 A method that configures agents‘ actions based on the sensed state of the

environment.

In the proposed document-centric approach, these elements are defined as following:

 Environment: The environment should be directly related with the process

instance, and its state shall exhibit the current execution state. By setting the

environment to the process instance itself, a milestone in the process definition

can be used to declare the environment‘s state. For this purpose, the notion of

―state‖ which was described in section 4.5 can be exploited.

 Dynamics: States follow one another according to the process definition. Yet, a

state can not begin unless its requirements are fulfilled. These requirements

are the core of the document-centric approach. More specifically, a document (or

file in general) is an atomic piece of work of a process. Every document

corresponds to the results of one (or more) atomic activity, but the inverse does

not necessarily happen, since there may be some intermediate activities which

do not need to be stored to a file. However, storing results in a document is the

only way of saving process instances‘ data permanently. Documents are saved

75

during runtime (process execution) and usually they follow a particular

template. Thus, every document is a partial deliverable of a process instance

and has a specific time point when it is delivered. Each state comprises a set of

documents as it prerequisites. These documents are state requirements, and

they are specified by the process designer during build-time.

 Sensors: Documents‘ paths are stored to a database. Agents (workflow

performers) query the database to learn which requirements are fulfilled for a

particular process instance

 Actuators: When an agent performs a workflow, upon successful

implementation of some work units, it updates the database.

 Method: Agents perform a workflow according to its definition. They sense the

environment, interpret the signs and begin execution from a particular point

(state). They know what they should execute next since the can interpret the

process definition and realize the point at which the process instance exists.

4.6.1 A supportive database schema

An important capability of workflows is that they can be persisted (saved and reloaded

at a later time). Workflow persistence is especially important when developing

applications that coordinate human interactions, since those interactions could take a

long period of time. But persistence is also applicable to other types of applications.

Without persistence, the lifetime of workflows is limited. When the application is

eventually shut down, any workflow instances simply cease to exist. Workflow

persistence means to save the complete state of a workflow to a durable store such as a

database or SQL file.

Nevertheless, the database schema is an important aspect of the application. In this

section, a schema that is capable to support the document-centric stigmergy approach is

proposed (Figure 19). Save the ―monitor_details‖ table which is used for monitoring

reasons (see Section 4.7), the rest seven tables are exactly the tables that are needed to

store workflows according to the document-centric approach. In particular, each

workflow model has a specific process type, which corresponds to its definition. Process

types are stored in the process_type table which needs to contain just the name of the

process type (and maybe a short textual description). As discussed in section 4.5, for

every process type, the process designer indicates a few ―milestones‖ within its

definition. Each milestone corresponds to a ―state‖. Thus, the state table is

76

incorporated. Every state is related with a specific process type and a workflow class

that should be initiated upon the state‘s activation. Workflow classes are actually the

process definitions and they are stored to the workflows table, along with a hint of what

is the appropriate performer type. An important notice is that the database needs not to

store any additional information (e.g., regarding the flow of the activities, or the

performers‘ types hierarchy) since this piece of information is hard-copied either into the

body of the agents, or into the modular components of the application (e.g., workflow

classes maybe deployed by their .jar files).

Figure 19 The proposed database schema.

The process table refers to the process instance and it is used to track its execution

details, which are actually stored in the process_data_details table. As mentioned in the

previous section (4.6), the execution details (not referring to the monitored elements) are

documents (files) that are delivered during the runtime. The process_data_details table

is used to store the relative file paths. Every file is a ―requirement‖, and as such it is

defined within the requirement table. Finally, the state_requirements table is used to

model an m-to-n relationship between the requirements and the states, that is every

state may have zero or more requirements while a requirement may belong to one or

more states.

77

The great advantage of this schema is that is minimal respective to the application

needs. It fully exploits agents‘ statefulness and the application‘s programming language

to avoid storing large volume of data. Agents (as workflow performers) are fully

conscious of what is the workflow they are executing, which activity follows next, what

conditions will allow the transition to which activities, to whom they may delegate a

piece of work, what is their type and role and where they should address in order to get

informed about other agents or process related data.

For this advantage to become more evident, Figure 20 illustrates a database schema

that would be needed if the agents awareness was not exploited and process definition

were not hard-copied as JAVA classes, but they were stored to the database. The tables

shaded in blue are the tables used also in the minimal schema. Although the schema of

Figure 20 is not the only one that can respond to the issues mentioned in the previous

paragraph, it becomes apparent that unless we exploit agenthood and a stigmergy

approach, a significant overhead is added to the database, regarding process definition

data, execution auditing activities, participants‘ hierarchy and workflow implementation

details.

78

Figure 20 A database schema which does not exploit application's features.

79

4.7 Process Monitoring & Auditing

4.7.1 Why is it important?

Process monitoring and auditing in agent involved workflow management systems

include different tasks as described in section 3.2.5. In this thesis, these activities are

considered to be related with the tracking and the recording of log files, semantic and

not semantic. Logging provides a way to capture information about all the operations

that take place within the application. Once captured, the information can be used for

many purposes, but it is particularly useful for evaluating the application logic, auditing

its statistics and solving problematic issues.

4.7.2 Implementing the monitoring component as a kernel service

The monitoring component should be developed as a distinct manageable and

comprehensible module, adhering to the separation of concerns concept. In order to

comply with the approach of separation of concerns supported by JADE, the composition

filters approach is adopted [153]. The general idea of composition filters is that each

object is provided with two filter chains: an incoming and an outgoing. The incoming

chain uses the filters on the incoming messages while every outgoing message is filtered

before entering the outgoing queue.

The way that JADE uses to implement this approach is through a Service Manager. A

Service Manager resides in every node of the Platform (actually the Service Manager is

inherently present in the node that hosts the Main Container, while in the other nodes

there are Service Manager proxies), and it manages the activation of all the possible

services that are registered to the platform. Therefore, following this principle, the

monitoring component is developed as a special service (MonitoringWFService), so that it

can be smoothly integrated into the platform architecture.

The MonitoringWFService has an ultimate goal of recording the semantics of every

message exchanged in the platform. In order to support the debugging and the auditing

of a process, the elements that are recorder are:

 A unique id of the application thread, in which the message is exchanged. This

parameter express a single run of the application, and it is of course the same

for all the messages created during that run

80

 An id of the process during which the message is created. If the message does

not concern a specific process (e.g., concerns the platform initiation or the

import of a configuration) then this field is set to 0.

 A timestamp of the moment that the message is exchanged

 The performative of the message

 The sender agent

 The receiver agent

 The actual content in string format

 The ―inReplyTo‖ element which indicates if the message is a reply to another one

 The language used to encode the message

 The ontology based on which the message is created

 The conversation id, which indicates if the message is a part of a particular

conversation.

81

Figure 21 Class Diagram of the monitoring package

The MonitoringWFService, upon initialization, it accepts the parameters of the running

platform profile. As mentioned earlier (Section 4.2), the configuration parameters are set

in a properties file, during the build time. The parameters related to the monitoring

component are:

 The VERBOSE parameter

(marketingWF_monitoring_MonitoringWFService_verbose), which configures the

82

logging level. VERBOSE can be true or false, when it is true, all messages are

also printed to the standard output of the application.

 The APPLICATION_RUN parameter

(marketingWF_monitoring_MonitoringWFService_applicationRun), which associates

every run of the application with a unique id, so that log data can be grouped

along this variable as well.

The MonitoringWFService contains also an outgoing Filter as an inner class, which

specifies the accept() method as it can be seen in Figure 21. The accept() method

employs all the service logic, i.e., records every exchanged message to the application‘s

database, according to a predefined schema. The service is accessible to agents by a

special Helper (MonitoringWFHelperImpl) which is used by agents to indicate the id of the

current process. Figure 21 also depicts some additional classes: MonitoringWFProxy,

MonitoringWFSliceImpl, MonitoringWFSlice (interface). These classes are used to capture

every message exchanged, regardless of the container in which the agents that

generated them live. More particularly, when the monitoring service needs to interact

with a remote container, it previously retrieves a proxy of the service slice in that

container and then it calls the required methods. An illustrated example of how the

monitoring service behaves is presented in Figure 22. When an agent sends a message, a

(defined by JADE) command SEND_MESSAGE is generated. This command is transferred

vertically to all the outgoing service filters. Every filter invokes its accept() method and

if it returns a positive answer, the command is forwarded to the outgoing sink where it

is further processed. If the operation is to be performed by a remote agent, the outgoing

sink delegates the command as an HORIZONTAL_COMMAND to the service slice proxy at the

remote node, which in turn delegates the command to a target sink.

83

Figure 22 Basic behaviour of the monitoringWF service

An extra tool which is also related with the monitoring function is the facility to save a

text file containing the log data produced during the runtime and printed to the

standard output device. Yet, log data use mostly human-interpreted expressions of no

formal semantics, so the produced file can only be read by humans and does not allow

directly any kind of automatic evaluation. This function will be presented in greater

extend in the next section (see 5.1.5).

4.7.3 Benefits and Cost

Monitoring, implemented as a kernel service can generate and record detailed

information of semantic essence about the operation of the application. It is a totally

automated procedure that requires no human intervention (agents undertake the whole

effort). The information is stored to a database, so it can be evaluated on a later time.

The evaluation is supported by the audit trails, as the elements recorded are detailed

and properly formatted. Moreover, since errors in the workflow execution are also

announced by messages, the monitoring component can capture this kind of errors,

supporting the troubleshooting of the application. Debugging is supplied with an extra

Node B

Node A

Container 1

Agent1

Container 2

Agent2

Incoming Filter Chain

Filter of Service A

Filter of Service N

MonitoringWF source sink

ACCEPT

Outgoing Filter Chain

Filter of Service A

MonitoringWF Filter

Filter of Service N

SEND_MESSAGE

 Vertical Command

Perform operation

Node-to-Node interaction

HORIZONTAL COMMAND

MonitoringWF target sink

MonitoringWF slice

84

tool as the monitoring component addresses the multi-threaded and distributed nature

of the application, a nature that is not often addressed by debuggers. Finally, as the

monitoring service records the messages, it does need any maintenance with the

surrounding code and does not need any adjustments when the agents‘ code is modified.

Of course, the above benefits come at a cost: The monitoring adds runtime overhead,

from capturing every message and from registering it at the database. This limitation

can be critical if resources are limited. This is why the MonitoringWFService can be de-

activated before launching the platform if one just removes the relative line from the

configuration file. De-activating the MonitoringWFService has no other effect in the

application besides the lack of recording the messages to the database.

85

CCHHAAPPTTEERR 55

Results

The Graphical User
Interface

Evaluate the
Prototype against
the Classification

Criteria

Exploiting the
Prototype to Deploy

Algorithms

86

5 Results

The features discussed in the previous section reveal some of the advantages of mixing

software agents and workflow management systems. To support these features‘

elicitation a prototype system has been developed. It is an incipient version of a

workflow management system and it can be used for any of the following reasons:

 Developers and end-users experimenting with the prototype to see how the

system supports their work.

 Developers and end-users acquiring a concrete impression of the system‘s

capabilities.

 The prototype may serve as a basis for deriving a system specification.

 Facilitate rapid software development to validate business logic requirements.

 Operate as an experimental test-bed to test specific algorithms or/and provide

the general context to test the integration of supplementary modules and

services.

 The prototype application is presented analytically in the following subsections.

5.1 The Graphical User Interface

5.1.1 Starting the application

Upon starting the prototype application, a graphical user interface becomes visible to

the user (see Figure 23). The application uses the tabbed pane philosophy, that is, it

employs a distinct windowpane for each type of actions that are needed to be performed.

In the prototype version three conceptual sections are identified: Platform related

actions, Workflows related actions and management actions. An additional menu is

available at the top of the window, to control some general actions.

87

Figure 23 The application's starting screen

The application window is split in two horizontal parts (see Figure 23): A windowpane

that contains all the necessary controls for each tab (buttons, textboxes etc.) and a quite

large white text area, called ―Logger‖ at the bottom of the window. The Logger is visible

at every tab and it is used to capture the application‘s standard output, i.e., to print to

the screen the runtime logs. One can control what is and what is not printed to the

Logger by adjusting the log commands of the application‘s code.

5.1.2 Platform related actions

Although the prototype is a standalone application, in order to operate as a workflow

management system, it is necessary to activate the multi-agent platform. As described

in section 4.2, the underlying multi-agent platform is WADE. Thus, there are some

standards actions, prescribed by WADE, that are needed to be performed. These are the

following:

 Start the Boot Daemon. A single button to perform this command in provided

within the platform pane. The daemon is activated taking as arguments the

agents types file (types.xml) and the root configuration directory. Once the

Daemon is started, the button is disabled.

A menu to control

some generic

actions

Each tab

corresponds to a

different

windowpane. A Text area to

print the runtime

logs.

88

 Start the Main Container. The main container is the core container of JADE

(see section 4.2) which contains the AMS (agent management system) agent, the

directory facilitator and the configuration agent. Additionally, when the relative

button of the platform pane is pressed, besides the JADE platform that is being

initiated according to a configuration file, an agent that accompanies the

graphical interface (GUIAgent, see Appendix) is started as well in another

container.

After performing the two above actions, the platform should be on and working.

However, in order to start a specific workflow claim, a domain application, some

supplementary actions are required:

 Importing a platform’s configuration. A platform‘s configuration is a file

that indicates how many and which containers are active in the platform, where

each one resides (in what host), and what agents they contain. This

functionality is also provided by a single button, which upon clicked it opens a

dialog to prompt the user to select a configuration among the available ones (see

Figure 24).

 Starting the platform. Having imported a configuration, the multi-agent

platform is now ready to be deployed. Another button is provided for this action

(―Start the platform with active configuration‖ button).

Figure 24 Starting the multi agent platform and providing domain information.

The button to Start

the Main

Container

The button to Start

the Boot Daemon

The button to

import a domain

configuration

The dialog to

select a

configuration file

89

Besides the necessary actions, some extra facilities are provided such as exporting

current configuration (the current configuration may differ from the one imported, as

new agents may have been added or some agents may have been killed during the

application‘s runtime), saving the configuration that exists in the ―target‖ slot, stopping

the platform, a label to show the name of the active configuration and another label to

show the current platform status.

Having started both the Boot Daemon and the multi-agent platform with a specific

configuration, the Platform windowpane shall look like the one depicted in Figure 25.

The active configuration name will be visible in the text box under the ―Import

Configuration‖ button, and the platform‘s status will be visible in the textbox

underneath the ―Start Platform‖ button, while the Logger will contain all the logs that

will have been printed during the platform initialization. Notice that the button to start

the Main Container and the Boot Daemon are both disabled.

Figure 25 The Platform pane after the initialization of the platform with a specific

configuration.

5.1.3 Workflow related actions

The workflows windowpane contains three vertical sub-panels. The leftmost one

concerns process data actions and controls, the middle one the performers‘ control and

90

actions and the rightmost one contains the necessary control to handle the actual

workflow class execution.

As illustrated in Figure 26, the ―Process Data‖ panel allows the user to select a process

type among the available one (the combo box at the top of the panel), and to choose if

he/she will begin a new process instance or he/she rather resume an existing one that

has been suspended. According to that choice (starting a new instance or continuing an

existing one) the respective controls group is activated. In case of a new instance, just

the name of instance and a button to submit it are needed. In case of resuming an

existing instance, more information is needed in order to implement the features of

manual intervention and statefulness described in sections 4.5 and 4.6 respectively.

Figure 26 The workflow pane

In particular, based on the selected instance‘s process type, the available ―states‖, that a

process instance could be in, are identified. For example, in Figure 27, the selected

process instance‘s type is ―Direct Mail Campaign‖. As a result, twelve (12) possible

states are identified and are published to the respective combo box at the bottom of the

―Process Data‖ panel. This information is retrieved from the application‘s database. Let‘s

suppose that the user selects to resume execution from the ―SEGMENTATION‖ state.

Active Agents in the

platform, grouped by

type

Select a process type

Controls that refer to

existing processes are

disabled

91

Then, by pressing the button ―Check Requirements‖ (see Figure 28), the application

checks if the requirements that are related with the specific state exist for the particular

process instance. If yes, the file paths are printed to the Logger, and an ―OK‖ label

becomes visible. If at least one requirement does not exist, then a message declaring the

problem is printed.

In addition, when a state is selected, the rightmost panel, the ―Launch Workflow‖ panel

is activated. Since every state is related with a workflow class (see section 4.6), the

application can easily understand which workflow class needs to be executed. Thus, it

provides an indication of what is the appropriate agent type that it could execute the

respective workflow (see Figure 29, the red oval shape at the top). Then, the user can

focus on the performers‘ panel (in the middle of the windowpane) and in specific on the

tree list. By expanding an agent‘s type, users can see the available agents of that type in

the platform. By selecting one and pressing the ―Select agent‖ button, the name of the

agent that has been selected to perform the workflow becomes visible (see Figure 29).

Next, the user shall fill any parameters that a workflow class may need.

Figure 27 Choosing to continue an existing instance

Figure 28 Checking

instance's requirements

Continue an existing

process button is

checked

Querying the database,

identifies 12 states for

the current process type

The user may select a

state to start execution

for the selected process

instance

92

For example, in Figure 29, the workflow class needs only an integer value to be

specified. Having selected the performer agent and having provided the necessary

parameters, the user can start the workflow execution by pressing the ―Run‖ button.

Then, it is up to the business logic to call external applications, opens supplementary

graphical interfaces etc. in order to properly execute the workflow. During workflow

execution, logs are printed to the Logger.

Figure 29 Providing workflow parameters

5.1.4 Application configuration and management related actions

The third windowpane allows users to tune and manage some application‗s

configuration parameters. In particular, the ―Management‖ windowpane contains a text

editor where users can edit the three most important configuration files of the

application. Each file opens when its dedicated button is pressed. The ―Open JADE

configuration‖ button opens the main.properties file, which contains the multi-agent‘s

platform parameters (e.g., the name, the port, the services initiated etc.), the ―Open

WADE types file‖ button opens the types.xml file which contains information about the

role and the types of agents, and finally the ―Open a configuration file‖ button opens a

file dialog to prompt the user to select a platform‘s configuration file (see section 5.1.2).

Users can save the edited files by pressing the ―Save File‖ button.

The agent

selected to

perform the

workflow

A panel to insert

workflow

parameters

Available agents

for a specific

agents’ type

93

Figure 30 Editing the configurations' files.

5.1.5 Other actions

In addition to the platform, workflows and management actions described in the

previous sections, the prototype provides some supplementary facilities. These facilities

can be found in the application‘s menu and they are the following:

 Saving the log data to a file

 Retrieving the platform‘s current status and printing it to the Logger

 Open the application‘s documentation file

 Open a message dialog which contains general information.

One may have notice that the application does not contain any controls to handle agent-

related actions (start a new agent, kill an existing one, create a container etc.). As such

features are fully provided by JADE, the prototype encapsulates them by opening the

JADE graphical interface in a separate window. This is achieved by declaring the –gui

option in the main.properties file.

94

5.2 Evaluate the Prototype against the Classification Criteria

5.2.1 Process Definition Tools

5.2.1.1 Analyze, model, compose, describe, and document a Business Process

The ways that the application uses to model business processes are described in

section 4.4. Two are the possible modes: either built a workflow class in JAVA language,

or create a domain-specific ontology and exploit agents‘ communication to impose

workflow logic through interaction protocols.

5.2.1.2 Process Definition Write / Edit

The process definition (defined as a workflow class) results in an agent‘s behavior.

Agents are allowed to add a workflow to their behaviors‘ pool, but in general they are

not able to edit the process definition.

5.2.1.3 Definition retrieval

The application uses a special mechanism to fetch definitions to agents. This mechanism

accept as an input variable a state of a process type and returns the definition itself, the

requirements needed to allow its execution, the process parameters, and the appropriate

performer type (see sections 4.4.1.2 and 5.1.3)

5.2.2 Workflow Client Applications

5.2.2.1 Worklist Handling

The notion of worklist in not strictly defined inside the application. There may be ad-hoc

worklists, related to the special activities that the processes describe, but their handling

is also special and can not be criticized as an application feature.

5.2.2.2 Process control

Agents supervise workflow execution and they are authorized to start, suspend, resume

or even terminate an instance‘s execution. Since a workflow is an agent‘s behavior, an

instance can not be executed without the agent‘s support.

5.2.2.3 Data Handling

Agents handle application data as workflow class parameters, workflow relevant data as

their behaviors fields and workflow control data by notifying the Controller Agents and

other system components (e.g., Application Engine, Boot Daemons) about the status of

the workflow execution.

95

5.2.2.4 User Interface

The main application‘s interface is associated with a GUI agent which takes over the

user – platform communication. It is actually a bridge between the reactive graphical

interface and the proactive nature of agents. Application specific agents may also have

their own custom interface to communicate with business actors.

5.2.3 Invoked Applications

To realize the reference marketing business processes, numerous external applications

are invoked, like mail clients (MS Outlook), Office applications (MS Excel, MS Word),

technical computing software (MATLAB), databases (MySQL), operating system‘s

runtime, and Web Services.

5.2.3.1 Worklist Handling

Similarly with 5.2.2.1, no formal worklist handling is defined.

5.2.3.2 Process Control

Invoked applications, according to the WADE formalism and the XPDL meta-model, are

invoked through a workflow class as atomic activities (tool activities). Thus, the

workflow performers (agents) are responsible for the synchronization of the invoked

application and the rest workflow activities.

5.2.3.3 Data Handling

Similarly with 5.2.2.3, agents are responsible for all three types of data (Application,

Control and Workflow Relevant data).

5.2.3.4 Service Discovery

Discovery services are provided by the platform‘s directory facilitator (DF). The DF

maintains the services descriptions for all available agents in the platform. In addition,

for the agents that are workflow-enabled, properties like their type or their role are also

maintained and can be used as search filters.

5.2.4 Workflow Interoperability

5.2.4.1 Common Interpretation of Process Definition

The ―common interpretation‖ concept is applied by means of a single process definition

that guides multiple agents and that imposes an ordering on agents‘ behaviors. In

addition, the ontology approach is actually a collective preservation of a process model,

which ubiquitously exists in the agents behaviors.

96

5.2.4.2 Workflow Data Interchange

Agents interchange workflow data based on message-oriented formal interaction

protocols. As the system is built on top of JADE [139], which is a FIPA compliant

platform, agents may or may not reside to the same host or platform.

5.2.5 Administration and Monitoring Tools

5.2.5.1 User / Role Management

The system exploits the natural abstraction of agents as autonomous actors to map

them against business roles. The types.xml configuration file is used to declare during

build time the types and the roles to which each workflow-enabled agent class

corresponds. More in details an agent type has a name, a corresponding class and

possibly a set of properties that will apply to all agents of that type. Type management

is provided by WADE through the TypeManager class.

5.2.5.2 Audit Management

Audit management takes place in the system by semantically decoding the messages

that agents exchange during workflow execution, and by registering them into the

system‘s database (correlating them with the application runtime and the process

instance that they refer). Moreover, the audit trail, printed to the application‘s screen

during runtime can be saved and evaluated at a later time. Finally, the fault tolerance

mechanism provided by WADE is always present to handle any exceptions caught.

5.2.5.3 Resource Control

Although resource conflicts are avoided by allowing multithreaded workflow execution,

no additional formal resource control mechanism is designed.

5.2.5.4 Process Monitoring

Although the system does not record additional log data (except the ones referred

in 5.2.5.2), it does supervise processes through Boot Daemons and Controller Agents,

and it does query platform status through the actions specified in the Configuration

Ontology, provided by WADE.

5.2.6 Workflow Enactment Service

5.2.6.1 Runtime Control Environment

97

Agents‘ communication and coordination are achieved through messaging, interaction

protocols and proper workflow ontology. Although there is not central workflow engine,

agents encapsulate workflow logic by executing workflows as their behaviours.

5.2.6.2 Definition Interpretation

Agents are able to interpret the workflow definitions as the workflows are ultimately

agent behaviours.

5.2.6.3 Execution of Tasks

Agents control the atomic tasks that are parts of a WF instance, and they execute tasks

themselves or they delegate them to other agents. They may wrap other tools that

finally realize tasks‘ workload.

5.2.6.4 Scheduling

Workflows are added to agents‘ behaviours pool, each running in a different thread, and

they are executed preemptively, according to the default JAVA threads scheduling

model.

5.2.6.5 Data Functions

Agents are responsible for a plethora of data transactions, including querying the

database, reading files, getting workflow results, saving them to files etc. The system

uses a mixed style to handle data functions: Each agent has its own specified data

handling methods, but there also common access mechanisms that provide data access

utilities, like the marketing.wf.gui.DBGUIUtils class (see Appendix).

5.2.6.6 Task Assignment

Agents often decide ―who is going to do what‖ according to the general guidelines of the

business logic, specified in the workflow definition. In particular, they are able to

execute a task by themselves, or they can delegate it to another agent. Delegations are

usually decided based on agents‘ types or roles. However, although task assignment

takes place during runtime, task assignment decisions follow strictly the process

definition guidelines, and agents are not able to dynamically modify them.

5.2.6.7 Resource Allocation

Concerning domain-specific resources, allocation algorithms can be developed and

applied (see Section 5.3). Nevertheless, concerning resource application in platform-

level, the resource allocation facilities are provided be WADE and refer to policies that

allocate agents to containers.

98

5.3 Exploiting the Prototype to Deploy Algorithms. The Case of a

Scheduling Algorithm.

In this section the prototype is utilized as a test-bed to design and apply effective

algorithms. The domain background is supplied by the ―Customer Contact Center

Management‖ business process, described in section 4.1.2. In particular, the focus is in

designing an algorithm that will allow the supervisor of the contact center (the

AssignmentAgent – see Appendix) to dispatch the tasks to available contact agents, in

such a way that the derived schedule will optimally exploit the available resources

(agents). A preliminary version of this algorithm is presented in [130], while in [131] a

more analytical version, yet under a different modeling perspective, is described.

5.3.1 The algorithm’s context and similar works

The notion of resource is a fundamental concept in Workflow Management. It is a

resource (a human or a machine) that supports each execution of a workflow activity [1],

and imposes its execution constraints and limitations. Likewise, finding the most

appropriate resources is probably the most significant function of a workflow

management system (WfMS) [66]. Proper resource management should match each

atomic task with an allocation principle, and ultimately with the most suitable resource.

An allocation principle should support two decisions; the first refers to the execution

order of the tasks, while the second to the assignment of the tasks to the most

appropriate resources among the available ones [52]. The need for an appropriate

execution order of the tasks causes the resource allocation decision problem to become

tightly related with workflow scheduling. Although a large research effort has been

made to workflow scheduling [154-157], the methods proposed pay most attention to the

validation of the temporal constraints of the workflows while they hardly tackle the

resource constraints. On the other hand, when the focus is on the resources, most

attention is paid to modeling issues [158-161] while workflow scheduling is barely

addressed. The innovative approach proposed in this section simultaneously tackles

both the resource allocation and the workflow scheduling problem.

The combined problem, mentioned above, can be addressed either in build-time or in

run-time (in [162] this classification is mentioned as business process modeling issues

and implementation issues). Addressing the problem during build time allows a more

intent validation of the process model and a fair identification of the conflicts. Build-

99

time approaches are most appropriate for optimizing the workflows over their control

constraints. Nevertheless, they only use static information to schedule the tasks and to

allocate the resources. However, in workflow management systems, there are some real-

time issues (such as resource utilization, resources unavailability due to failures, actual

throughput etc) that should be considered. Not surprisingly, real-time issues can only be

tackled by run-time methodologies. In general, build-time methods optimize process

models to eliminate resource conflicts while run-time methods optimize workflow

scheduling and resource allocation respective to conflicts constraints.

As far as the build-time methods are concerned, a popular approach is to use a sound

process modeling approach -such as Petri-Nets- to model the workflows [154, 163], and

incorporate the allocation principles into the static process models. Researchers

following this approach, rely on the soundness of the process model to guide the

enactment of the process instances while they follow some common queuing disciplines

(First-In First-Out; Last-In First-Out; Shortest Processing Time; Earliest Due Date

[164]) for selecting the execution order of the tasks. A more sophisticated approach is to

use mining techniques to address the structural aspects of the workflows [165] and to

facilitate the automation of the execution (e.g., ECA rules used in [166]). A variation of

Petri-Nets, the so-called Resource-Constrained Workflow Nets, is introduced in [167] to

deal with resource conflicts. The authors of [167] present a method to assess the

sufficient amount of initial resources that guarantees successful termination of the

process. They indeed claim that the amount of resources calculated this way is

sufficient, no matter the scheduling policy used. The calculation of the sufficient amount

of resources is an important factor during the design process of the information system,

since overestimated piles of resources would eliminate resource conflicts but they will

also result in a wasteful architecture.

The above approaches, strive to verify the workflow specification during build-time by

checking the process model for inconsistencies and by optimizing the model‘s design.

However, optimizing the process design and minimizing resource conflicts, does not

routinely yield optimal resource management. There is a supplementary need to balance

resources utilization in order to maximize the benefit per resource ratio. Besides being a

matter of cost, a balanced workload may also result in better system performance.

Considering these additional issues, a stochastic Workflow Net modeling approach is

applied in [168] to optimize the process throughput. The optimization function considers

the execution time of the atomic tasks and the resource utilization in order to allocate

100

the available resources to bottleneck-prone tasks. Nevertheless, this algorithm needs a

special modeling of the processes, so that they can hardly be applied in the case of

multiple interoperating workflow management systems, each of them complying with

workflow specification language standards.

A different approach is to address the problem during run-time instead of build time. In

the WorkWeb system [96] resources are associated with agents. These agents mutually

communicate to reserve office resources and to check their availability. In [27], resource

allocation agents are employed to manage resource collisions and to optimize resource

utilization. Broker agents, which keep a registry of the available resources and

communicate with the runtime control environment, are also a common approach for

tackling the resource allocation problem in WfMS [22, 84, 99, 121]. However, in agent-

involved WfMS the dominant technique to dynamically assign resources is the

―negotiation‖ [10, 16, 18, 20, 26, 125]. The allocation procedure is optimized through

market mechanisms, since the negotiating agents accept the most profitable bid.

Negotiation is indeed a flexible mechanism, but one should ensure that human

resources would be able to keep in line with negotiating machines (e.g., broker agent)

and that the bilateral negotiations do not obstruct system scalability.

In essence, effective resource management in WfMS should examine resource allocation

together with task scheduling since these problems impose mutual constraints.

Optimizing the one factor subject to the other one constraints (e.g., minimizing resource

conflicts subject to temporal constraints or optimizing throughput or utilization subject

to resources constraints) is an admissible strategy, but ideally, there should be an

algorithm that would jointly optimize both. Coupled with an effective algorithm, a

WfMS should support an efficient control mechanism to ensure that the system will not

fail in case that any conflict occurs. Also, a WfMS should consider that it should be

functional and operable in an open and ubiquitous environment.

All the above considered, the target is to propose an effective algorithm within the

framework of a WfMS. Previous research in these critical workflow decision problems is

advanced with a threefold contribution: Firstly, the resource allocation problem is

addressed in tandem with workflow scheduling since the final output is both a process

scheduling plan and a resources reservation arrangement. Secondly, the two critical

factors of resource management, resource conflicts and resources utilization are jointly

optimized. A consistent modeling approach allows the transformation of data of both

these factors into a matrix format so that exploitation if the notion of generalized

101

eigenvalues and the Ky-Fan theorem [169] becomes available. Finally, the proposed

method can be exploited to assess the minimum amount of resources needed for proper

workflow enactment, namely to support the system design phase. However, the

method‘s primary goal is to be applied as a run-time mechanism, through the multi-

agent platform that supports the workflow management of the ―Customer Contact

Center Management‖ business process. In particular, to support the supervisor agents

to manage the allocation decisions for their registered resources.

5.3.2 The resource allocation decision

A Time Window 𝑇𝑊 is considered when 𝑁 tasks demand for execution. This time

window can be considered as a time interval after which a new allocation procedure is

activated. In the ―Customer Contact Center Management‖ (CCCM) case, the time

window equals the period of checking the incoming e-mails while a task corresponds to

serving a single mail. These tasks are denoted as 𝑇𝑖 , 𝑖 = 1,2 … , 𝑁 . Variable 𝑁 denotes the

overall number of tasks. A resource may be a machine; a human; or even a composite

resource (e.g., a human together with a machine). Nevertheless, in the CCCM case a

resource is equivalent with a contact agent. Atomic tasks do not request for specific

resources yet the demand to be timely served by anyone who is capable of serving them

(i.e., contact agents can serve incoming mails in contrast with other agent types –e.g.,

the AssignmentAgent – who can‘t).

A task‘s start time is denoted as 𝑆𝑇𝑖 and signifies the e-mail‘s arrival time. Six hours

later (see 4.1.2) is the task‘s deadline, called the finish time (𝐹𝑇𝑖). The necessary time to

serve an e-mail, i.e., its execution duration is symbolized with 𝑑𝑖 and as described in

section 4.1.2, it depends on the e-mail topic. Tasks are assumed to be assigned in a non-

preemptable, non-interruptible way. A task is said to be non-preemptable if once it

begins execution by an agent, it has to be completed by that agent. Additionally, a task

is said to be non-interruptible if once it starts execution it cannot be interrupted by other

tasks and resume execution later. Under this assumption, once a task has been assigned

to an agent for execution and another task requests for service during the execution

time interval, then, the latter task should be assigned either to another agent (which is

not reserved at the requested time interval) or undergo violation of its quality

requirement, i.e., its deadline.

To prevent this from happening, we define as 𝑧𝑖𝑗 the non-overlapping measure between

tasks 𝑇𝑖 and 𝑇𝑗 . Since non-overlapping is the desired situation, we define 𝑧𝑖𝑗 as

102

 𝑧𝑖𝑗 =
𝛼, 𝑇𝑖 , 𝑇𝑗 do not overlap

0, 𝑇𝑖 , 𝑇𝑗 overlap
 (1)

where 𝛼 > 0 any positive non-zero value.

Finally, we need to denote as 𝐴𝑚 the set of all tasks executed by the 𝑚𝑡ℎagent. Sets 𝐴𝑚 ,

for different agents m, m=1,2,…,M, are mutually exclusive, meaning that a task cannot

be split and executed collectively by different agents, assuming a non-interruptible

scheduling scenario.

5.3.3 Optimization Criteria

Recalling from section 5.3.1, an efficient allocation policy is the one that maximizes i)

the percentage of the active agents (optimizes the workload balancing) while ii)

simultaneously minimizes the distortion of the tasks‘ quality requirements. The first

condition is of critical importance for the system performance, since, otherwise,

resources are wasted (agent idleness) or not properly used (agent overloading). The

second condition states that the allocation policy should respect user‘s quality

parameters as much as possible. We evaluate violation of deadlines and non-dedicated

execution of tasks as quality metrics. When an agent executes at the same time more

than one activity, it will inevitably split his capacity across the activities. This will lead

to broken deadlines and potentially to reduced quality of the deliverable.

Based on the above mentioned requirements, we infer two optimization criteria:

 Workload balancing as the minimization of the non-overlapping measure among

tasks of different agents and

 Quality of Service (QoS) as the maximization of the same non-overlapping

measure among all the tasks dispatched to a specific agent.

Using equation (1), one can express the non-overlapping degree among tasks of different

agents as the sum of the non-overlapping degrees of all tasks assigned to the 𝑚𝑡ℎ agent

with the rest ones, normalized over the sum of non-overlapping degrees between tasks

in the 𝑚𝑡ℎ and all tasks, pending in the system. The corresponding equation is:

VjAi

ij

AjAi

ij

m

m

mm

z

z

W

,

,

(2)

103

where V is the set of the pending tasks (mails).

Low values of 𝑊𝑚 mean that many other agents in the system are concurrently active

with the 𝑚𝑡ℎ agent. On the contrary, as 𝑊𝑚 increases, the number of concurrently

active agents with the 𝑚𝑡ℎ one decreases. In the same way, we can express QoS as:

VjAi

ij

AjAi

ij

m

m

mm

z

z

Q

,

,

(3)

The numerator of (3) expresses the sum of the non-overlapping degrees for all tasks of

the 𝑚𝑡ℎ agent. The denominator of equations (2) and (3) expresses the non-overlapping

values of the tasks executed by agent m with all the N tasks including the ones that are

executed by the 𝑚𝑡ℎ agent. The denominator is used in (2) and (3) for normalization

purposes. Instead, optimizing only the numerator of (3) would favor the trivial solution

of one task per agent. The 𝑄𝑚 expresses a measure of the QoS violation for the tasks‘

assigned to the 𝑚𝑡ℎ agent. As 𝑄𝑚 increases, tasks‘ overlapping, thus QoS violation

decreases for the 𝑚𝑡ℎ agent.

It is quite straightforward to see that 𝑊𝑚 + 𝑄𝑚 = 1. Thus, taking into account all the M

available resources, the above optimization metrics can be generalized by defining a

measure W for the overall workload balancing and a measure Q for the overall QoS

violation as:

 𝑊 = 𝑊𝑚

𝑀

𝑚=1

 𝑄 = 𝑄𝑚

𝑀

𝑚=1

 (4)

The additive formula that is introduced for the generalization of the optimization

metrics does not distort at all the optimization algorithm, since 𝑊𝑚 and 𝑄𝑚 are

themselves additive formulas of positive values. The ultimate goal of the allocation

policy will be to maximize 𝑄 while simultaneously minimize𝑊. Combining equations (2),

(3) and (4), we get

 𝑊 + 𝑄 = 𝑀 (5)

recalling from section 5.3.2 that M stands for the number of the available agents.

Since M is a constant number, equation (5) means that maximization of Q

simultaneously yields a minimization of W and vice versa. Hence, in the specific context,

104

the two aforementioned optimization requirements are in fact identical and they can be

satisfied in parallel. Therefore, it is sufficient to optimize only one of the two criteria. In

this case, and without loss of generality, the choice is to minimize W, estimating an

optimal task assignment to the M agents, that is a scheduling policy which minimizes

the following equation:

 𝐴𝑚
 : 𝑚𝑖𝑛𝑊 = 𝑚𝑖𝑛

 𝑧𝑖𝑗𝑖∈𝐴𝑚 ,𝑗∉𝐴𝑚

 𝑧𝑖𝑗𝑖∈𝐴𝑚 ,𝑗∈𝑉
, ∀𝑚

𝑀

𝑚=1

 (6)

where 𝐴𝑚
 , is the estimated set of tasks executed by the 𝑚𝑡ℎagent.

5.3.4 The scheduling algorithm

The general idea behind the proposed algorithm is to treat the scheduling problem as a

clustering one. In particular, if the M agents are assumed to be M clusters (one cluster

per agent) then clustering the N tasks to those clusters will be equivalent to assigning

these tasks to the agents. Moreover, the ordering of tasks derives from their start times,

so the results are a valid scheduling scheme.

Optimization of equation (6) is a NP-complete problem. Even for the sample case of two

agents, (M=2), the optimization of (6) is practically impossible to be implemented for

large number of tasks. For this reason, an effective methodology is necessary. Spectral

clustering [170], appears to be a compelling algorithm for clustering approaches. An

overview of the basic steps of a spectral clustering algorithm is depicted in Figure 31.

The analytical mathematical formulation is explained in the next paragraph.

Figure 31 The basic steps of spectral clustering

5.3.4.1 Expressing the optimization metric with a matrix representation

Data to cluster

(tasks pending)

1

1 1

...

1

...

...

Affinity matrix

(tasks’ overlapping)

1.Find an optimization function

O(Affinity)

2. Create a matrix the columns of which

are the leading eigenvectors of O

Clustering

(k-means)

}
 M columns

105

At the beginning, a matrix 𝒁 = 𝑧𝑖𝑗 is denoted. Matrix Z contains the values of the non-

overlapping measure 𝑧𝑖𝑗 for all tasks 𝑇𝑖 and 𝑇𝑗 . Next, an indicator vector 𝒆𝑚 = ⋯ 𝑒𝑚
𝑢 … 𝑇

of size Nx1 is denoted. The elements 𝑒𝑚
𝑢 of this vector are given by

 𝑒𝑚
𝑢 =

1, if task 𝑇𝑢 is executed by agent 𝑚
0, Otherwise

 (7)

The indicator vector 𝒆𝑚 points out which tasks are allocated to whom. M different

indicator vectors exist, one per agent. Therefore, the optimization problem of (6)

corresponds to the estimation of the optimal indicator vectors 𝒆𝑚 , ∀𝑚, which minimize

equation (6). Consequently, equation (6) can be written as

 𝒆𝑚 , ∀𝑚: 𝑚𝑖𝑛𝑊 = 𝑚𝑖𝑛

 𝑧𝑖𝑗𝑖∈𝐴𝑚 ,𝑗∉𝐴𝑚

 𝑧𝑖𝑗𝑖∈𝐴𝑚 ,𝑗∈𝑉

𝑀

𝑚=1

 (8)

The main difficulty in (8) us that its right part is not expressed as a function of the

indicator vectors 𝒆𝑚 . Therefore, there is a need to re-write the right part of equation (8)

in a form of vector 𝒆𝑚 . For this reason, a diagonal matrix L is introduced as 𝑳 =

𝑑𝑖𝑎𝑔 ⋯ 𝑙𝑖 ⋯ . Elements 𝑙𝑖 , 𝑖 = 1,2, … , 𝑁 express the cumulative non-overlapping degree of

the task 𝑇𝑖 with all the remaining tasks. That is

 𝑙𝑖 = 𝑧𝑖𝑗

𝑗

 (9)

Using matrices L and Z, the numerator of (8) can be expressed as a function of vectors

𝒆𝑚 . In particular,

 𝒆𝑚
𝑇 𝑳 − 𝒁 𝒆𝑚 = 𝑧𝑖𝑗

𝑖∈𝐴𝑚 ,𝑗∉𝐴𝑚

 (10)

In a similar way, the denominator of (8) is related to the indicator vectors 𝒆𝑚 as follows

 𝒆𝑚
𝑇 𝑳𝒆𝑚 = 𝑧𝑖𝑗

𝑖∈𝐴𝑚 ,𝑗 ∈𝑉

 (11)

Thus, we can re-write (8) as

 𝒆𝑚 , ∀𝑚: min 𝑊 = min
𝒆𝒎

𝑻 𝑳 − 𝒁 𝒆𝒎

𝒆𝒎
𝑻 𝑳𝒆𝒎

𝑀

𝑚=1

 (12)

106

5.3.4.2 Optimization in the Continuous Domain

Assuming non-interruptible tasks, we allow agents either to undertake the whole task;

or let another agent do the work. That means that the coordinates of vectors 𝒆𝑚 take

binary values (1 for assignment, 0 otherwise). In other words, we can form the indicator

matrix = 𝒆1 ⋯𝒆𝑀 , the columns of which refer to the M system agents, while the rows

to the N tasks. Then, the rows of E have only one value equal to one while all the rest

values are zero. Optimization of (12) under the binary representation of the indicator

matrix E is still a NP hard problem. However, if we relax the indicator matrix E to take

values in continuous domain, then we can solve the problem in polynomial time. We call

𝑬𝑀 the relaxed version of the indicator matrix E. The elements of the relaxed matrix

take real values.

It can be proven [131] that in the continuous domain the right part of (12) can be written

as

 𝑊 = 𝑀 − 𝑡𝑟𝑎𝑐𝑒 𝒀𝑇𝑳−1 2 𝒁𝑳−1 2 𝒀 (13)

subject to 𝒀𝑇𝒀 = 𝑰 where Y is a matrix which is related to the matrix 𝑬𝑀 through the

following equation

 𝑳−1 2 𝒀 = 𝑬𝑀𝚲 (14)

and Λ any 𝑀 × 𝑀 matrix. By selecting Λ to be equal το the identity matrix I, the relaxed

indicator matrix 𝑬𝑀 (the matrix we are looking for) is calculated as

 𝑬𝑀 = 𝑳−1 2 𝒀 (15)

Minimization of the problem (13) is obtained through the Ky-Fan theorem [169]. The

Ky-Fan theorem states that the maximum value of the 𝑡𝑟𝑎𝑐𝑒 𝒀𝑇𝑳−1 2 𝒁𝑳−1 2 𝒀 subject to

the constraint 𝒀𝑇𝒀 = 𝑰 is equal to the sum of the M (M<N) largest eigenvalues of matrix

𝑳−1 2 𝒁𝑳−1 2 . Consequently,

 max 𝑡𝑟𝑎𝑐𝑒 𝒀𝑇𝑳−1 2 𝒁𝑳−1 2 𝒀 = 𝜆𝑖

𝑀

𝑖=1

 (16)

where 𝜆𝑖refers to the 𝑖𝑡ℎ large eigenvalue of matrix 𝑳−1 2 𝒁𝑳−1 2 . However, maximization

of (16) leads to minimization of W in (13). Thus, it is clear that the minimum value of W

will be

107

 min 𝑊 = 𝑀 − 𝜆𝑖

𝑀

𝑖=1

 (17)

The Ky-Fan theorem also states that this minimum value of (17) is obtained through the

matrix

 𝒀 = 𝑼 ∙ 𝑹 (18)

where U is a 𝑁 × 𝑀 matrix the columns of which are the eigenvectors of the M largest

eigenvalues of matrix 𝑳−1 2 𝒁𝑳−1 2 and R an arbitrary rotation matrix. Again, a simple

approach to select matrix R is to select the identity matrix (i.e., R=I) so that 𝒀 = 𝑼.

Finally, the optimal relaxed indicator matrix 𝑬𝑀
 is calculated in the continuous domain

as

 𝑬𝑀
 = 𝑳−1 2 𝑼 (19)

5.3.4.3 Discrete approximation of the results

The optimal matrix 𝑬𝑀
 of (19) has not the form of the indicator matrix E since its values

are continuous, while the elements of E are binary. Recalling that since a non-

interruptible, non-preemptable scheduling policy has been assumed, binary values are

the desired format. Consequently, in order to accept the optimal solution of (19) as a

solution, the continuous values of 𝑬𝑀
 should be rounded in a discrete form that

approximates matrix E.

One simple solution, regarding the rounding process, is to set the maximum value of

each row of matrix 𝑬𝑀
 to be equal to 1 and let the remaining values to be zeros.

However, such an approach yields unsatisfactory performance in case that there is not

any dominant maximum value at every row of 𝑬𝑀
 . Furthermore, it handles the rounding

process as N independent problems, implying that each task is delegated without

regarding the allocation of the others. An alternative approach, which is actually

adopted here, is to treat the N rows of matrix 𝑬𝑀
 as M-dimensional feature vectors.

Each one of these feature vectors indicates the association degree of each task and the

respective 𝑚𝑡ℎ system‘s agent.

More specifically, having normalized the rows of 𝑬𝑀
 , the k-means clustering algorithm is

applied, considering the rows of 𝑬𝑀
 as the population to be clustered in M classes. The

k-means algorithm comprises three phases, the initialization; the clustering

construction; and the updating phase.

108

 Initialization: In this phase, the algorithm arbitrarily selects a set of 𝑬𝑀
 ‗s

rows as centers of the classes that are to be constructed. The number of selected

rows equals M. That means that each class will contain the tasks assigned to

one agent.

 Clustering Construction: In this phase, the remaining rows of 𝑬𝑀
 are

clustered to the M classes using a metric distance. In particular, a row (namely

a task) is assigned to a class by comparing its vector with the class centers and

selecting as the appropriate class, the one with the most proximate center.

 Updating: After the classification, new centers are created as the means of all

vectors belonging to a class. In case that these centers are different from the

previous ones, a new process takes place and the algorithm moves on to the

clustering construction phase for further processing. On the contrary, if the new

centers are exactly the same with the previous ones, meaning that the same

task assignment have been concluded, no further processing is required and the

clustering is terminated.

The performance of the k-means algorithm highly depends on the initial selection of the

class centers. Thus, the effectiveness of the scheduling policy is actually influenced by

the selection of the initial matrix rows. In the proposed algorithm, to overcome such a

drawback and simultaneously to search for new possible solutions that will yield, in

relatively small time, a satisfactory approximation of the optimal solution in the discrete

domain, the experiment is repeated by selecting each time different rows for the

initialization, which in turn, will provide different solutions. Among all selections, the

minimum is returned as the finest approximation. To put things into perspective, the

execution of the algorithm assuming a set of 2000 tasks, when 50 iterations of the k-

means are used, takes around 40 seconds on a 2.00 GHz duo core processor.

5.3.5 Evaluating the algorithm’s performance

To evaluate the performance of the proposed algorithm, objective criteria should be

introduced. The evaluation criteria should be able to (a) compare the proposed strategy

with other techniques and (b) measure the algorithm effectiveness under different load

conditions. Cascading this evaluation need, parameters which characterize the system‘s

load condition should be introduced as well.

5.3.5.1 Defining parameters for the system’s load condition

109

An important parameter for characterizing the load of tasks requesting to be executed is

granularity (the quality of being composed of large or small grains – particles). This is

defined as the ratio of the average tasks‘ duration over the time window TW on which a

task allocation mechanism is activated.

 𝑔 =
𝐷

𝑇𝑊
 (20)

In the previous equation D is is the average duration of all tasks requesting for service,

i.e.,

 𝐷 =
𝑑𝑖

𝑁

𝑁

𝑖=1

 (21)

Granularity g is a measure of how demanding the pending tasks are in terms of

execution service time compared to the time window TW. High values of g, mean that

the pending tasks occupy a significant amount of the time and thus, tasks‘

overlapping is more probable. On the contrary, low values of g indicate that the

execution demands of the arrived tasks are small compared to the time window TW and

thus, a better allocation plan can be achieved. For instance, in the special case of g = 0.5,

corresponding to the fact that the average tasks‘ duration is the half of the time window

TW, tasks‘ overlapping is certain, save the extreme case that all tasks arrive

sequentially one after the other, and thus no gaps or overlapping are encountered.

Granularity is independent from the number N of the arrived tasks, which is also a

significant parameter that characterizes the load. Multiplying the number of the arrived

tasks N by the granularity g, we can derive a measure for system characterization as

 𝐵 =
𝑁𝐷

𝑇𝑊
= 𝑁 ∙ 𝑔 = 𝜆 ∙ 𝐷 (22)

where λ denotes the tasks‘ arrival rate defined as the ratio of the number of tasks, say N

arrived within a time window TW over this window, i.e., 𝜆 = 𝑁 𝑇𝑊 .

Parameter B is a low bound of number of the resources needed to achieve no task‘s

overlapping. This low bound B is smaller than the minimum number of resources 𝑀𝑜𝑝𝑡

required for no tasks‘ overlapping even using an exhaustive allocation strategy. It

should be mentioned that 𝑀𝑜𝑝𝑡 cannot be reached in real life scenarios, since the

exhaustive search algorithm is a NP-hard problem. That is,

110

 𝐵 ≤ 𝑀𝑜𝑝𝑡 (23)

The low bound B reaches the optimal value 𝑀𝑜𝑝𝑡 in the extreme case that the tasks

arrive one right after the other within the time horizon TW. For example, if g = 50%,

(i.e., the arrived tasks occupy for execution half of the window time) and N = 2,

the low bound of resources equals one, which coincides with the optimal value for

the number of resources, only in the extreme case of a sequential arrival of all the

tasks. Thus, B is an indicator for the number of resources required, which can be

estimated before the arrival of the tasks, i.e., during the design phase of the system

without being necessary to know the time constraints of the tasks, their arrival model,

and particular realization. It is clear that the performance of any applicable task

allocation scheme would yield higher values for the number of resources needed for no

tasks‘ overlapping than𝑀𝑜𝑝𝑡 .

5.3.5.2 Efficiency criteria for evaluating the execution case

The ―execution case‖ refers to a test methodology that considers a constant number of

agents and assigns the pending tasks to the available agents using a task allocation

strategy. Thus, this methodology is proper for dynamic allocation schemes during tasks

execution. In this case one objective criterion would be the percentage of the number of

tasks that undergo overlapping over the total number of tasks N involved in the task

allocation process. However, such a metric has the drawback that it depends on the

granularity values. More specifically, small granularity values result in very small

percentage values. To address this difficulty, the objective criterion created is the ratio

of the maximum number of overlapped tasks achieved through the application of a task

allocation strategy when a fixed number of agents is used, over the maximum number of

overlapped tasks that are generated from the specific simulation (specific time

constraints of the tasks) during the time window TW. That is

 𝐹 𝑆, 𝑀 =
𝐻(𝑆, 𝑀)

𝐻(𝐸𝑋)
 (24)

where S denotes the applied task allocation strategy, M the number of available

agents, 𝐻(𝑆, 𝑀) the maximum number of overlapped tasks in case of the task

allocation strategy S with M agents and 𝐻 𝐸𝑋 denotes the maximum number of the

overlapped tasks that have been generated from the experiment during the time

window TW. It is clear that as the number of M increases, the ratio 𝐹(𝑆, 𝑀) decreases

regardless of the strategy used, since more agents are available to satisfy the tasks time

111

constraints. In the special case that 𝑀 = 1, 𝐻(𝑆, 𝑀) ≡ 𝐻(𝐸𝑋) since all the tasks are

assigned to the only one available agent. Thus, 𝐹(𝑆, 𝑀) ≤ 1 for all M. Nevertheless,

𝐹(𝑆, 𝑀) expresses the amount of violation of tasks‘ constraints regardless of the degree of

such violation. That is, an instant overlapping between two tasks is handled with the

same way as a complete overlapping. To obtain a measure that also accounts for the

extent of overlapping, an alternative criterion is defined as

 𝐽 𝑆, 𝑀 =
𝐻(𝑆, 𝑀)

𝐷 ∙ 𝐻(𝐸𝑋)
 (25)

The 𝐽(𝑆, 𝑀) metric returns the sum of overlapping degrees among all considered tasks

within the time window TW using for allocation the strategy S and in case that M

agents are available. Moreover, the denominator of (25) multiplies the number 𝐻(𝐸𝑋) by

the average task duration transforming the metric units from number of items to time

duration. As a result, 𝐽(𝑆, 𝑀) expresses the percentage of violation of the tasks

constraints.

5.3.5.3 Efficiency criteria for evaluating the design case

The ―design case‖ is suitable for the system design phase. This way, the goal is to find

the minimum number of agents needed to achieve no tasks‘ overlapping. Thus, being

aware of the traffic statistics of the tasks arrived in the system, the platform can be

designed so as to guarantee satisfaction of the tasks‘ time constraints, with a

simultaneous maximization of the workload balancing of the available agents. In the

design case, the goal is to find the minimum number of agents required to eliminate

tasks‘ overlapping when tasks of known statistics arrive. This is expressed as

 𝑀𝑚𝑖𝑛 ∶ 𝐹 𝑆, 𝑀𝑚𝑖𝑛 = 0 (26)

It should be mentioned that𝑀𝑚𝑖𝑛 > 𝐻(𝐸𝑋). This is due to the fact that 𝐻(𝐸𝑋) actually

indicates that if the available agents equal the maximum number of overlaps, the

simultaneous occurrence of the tasks can be avoided. Thus, 𝐻 𝐸𝑋 is an ideal number

which provides no explanation on how these tasks will be assigned to agents. Instead,

𝑀𝑚𝑖𝑛 is the actual minimum number of agents derived by the application of the given

task allocation strategy after it assigns all the pending tasks to agents. Thus, the

quality of the algorithm can be measured by introducing a resolvability factor, defined as

the ratio

112

 𝜒 𝑠 =
𝑀𝑚𝑖𝑛

𝐵
 (27)

which actually indicates how many times the minimum number 𝑀𝑚𝑖𝑛 obtained by a task

allocation strategy exceeds the low bound B i.e., the number of agents that does not

yield any tasks‘ overlapping in the ideal case that all tasks arrive sequentially one after

the other. Hence, the algorithm‘s scheduling efficiency is defined as the inverse of the

resolvability factor𝜒(𝑆).

A drawback of the previous measure 𝜒(𝑆) is that it often under-estimates scheduling

efficiency since low bound B is times smaller than the number𝑀𝑚𝑖𝑛 . Ideally, the

algorithm‘s performance should be compared with the optimal case (i.e., the value𝑀𝑜𝑝𝑡)

instead of the underestimated number B. Due, however, to the NP-completeness of the

scheduling problem, the optimal number of resources 𝑀𝑜𝑝𝑡 cannot be found and thus

such a comparison is impossible. An alternative solution would be to use the number

𝐻 𝐸𝑋 which better approximates the number of agents required for no tasks‘

overlapping. Thus, the measure adopted for evaluating the performance of the proposed

algorithm during the design phase is the following ratio, called waste factor

 𝜁 𝑠 =
𝑀𝑚𝑖𝑛

𝐻(𝐸𝑋)
 (28)

Now, it is proper to re-define scheduling efficiency as the inverse of the waste

factor 𝜁(𝑆). Although 𝜁(𝑆) is a better bound for measuring algorithm efficiency than

𝜒(𝑆), it requires much more effort to calculate 𝜁(𝑆) since it is known only if an exact

realization of tasks arrival is given.

5.3.6 Experimental Results

Two fundamental input data are needed to generate sample data for testing the

algorithm. These are the tasks start times and their durations. In the experiments

conducted, both were randomly generated following a uniform distribution. Recalling

from section 4.1.2 that a task‘s duration depends on the mail‘s type, thus, what is

actually randomly generated is the mail type. In all experiments, 100 different

realizations were conducted, in order to remove possible noise. The results presented

here are the average of these realizations. In [131], a different experimental setup is

used; nevertheless, the proposed algorithm appears to outperform in all cases.

113

The proposed task allocation strategy is also compared against the greedy approach

and the min cut technique[171]. The greedy algorithm assigns tasks to the available

agents sequentially one after that other (a quasi First-In First-out approach). This

assignment takes into account the current load of the resources so that no tasks‘

overlapping is encountered. When a new task overlaps in time with some already

assigned tasks, an extra agent is assumed to be required. In this greedy manner, zero

overlapping is achieved. The greedy approach is implemented using two different

versions. The first, which is the simplest, randomly selects an agent for task allocation

provided that no tasks‘ overlapping occurs within this agent. This method is called

Greedy Algorithm-Approach A. The second implementation, initially finds all agents

that yield no overlapping of this task with the already assigned ones, for a given

task. Then, among these agents, it picks the one which after the task assignment will

have them minimum task load so that potentially more tasks can be assigned to this

later on, and load is somehow balanced. This method is called Greedy Algorithm-

Approach B. The other approach used for comparison is the min cut tree algorithm,

often used for graph clustering. In this approach, a graph is used, the nodes of which

correspond to the N tasks, whereas the edges show the non-overlapping degree between

two tasks. The graph is then divided into two clusters by the application of a minimum

cut technique. The minimum cut obtained through the use of a maximum flow algorithm

[172] corresponds to a two clusters partitioning. Since in the defined problem, the tasks

may be assigned to 𝑀 ≥ 2 resources, and thus a more clusters partitioning is needed, the

two-class approach is iteratively applied, until the number M is reached. Although, both

the proposed algorithm and Min Cut rely on graph partitioning, the concept of both

approaches is different since the latter does not involve the denominator of equations (2)

and (3). Therefore, without the denominator, the optimal solution tends to favor small

clusters, a fact which deteriorates the algorithm‘s efficiency.

5.3.6.1 Testing the algorithm under different load conditions

The tests carried out in this section are suitable for estimating the minimum number of

agents required to achieve no tasks‘ overlapping. In particular, the algorithm‘s efficiency

is plotted, when different load condition are applied. As discussed earlier, factor 𝜒(𝑆)

significantly deviates from the optimal value since it is compared with the low threshold

B. Thus, a more appropriate measure is the waste measure𝜁 𝑆 .

114

Figure 32 depicts the waste factor 𝜁 𝑆 versus granularity for different values of B (B =

1, 2, 5 and 10) in case that the proposed algorithm is used. The results are derived for

𝐵 ≥ 1 to test the efficiency of the algorithm in a rather loaded environment.

Figure 32 The waste factor versus granularity for different values of the low bound B.

For low granularity values, the waste factor 𝜁 𝑆 initially increases as granularity

increases but with a decreasing rate. This means that the factor remains bounded. It is

also observed that for high granularity degrees the waste increases as g also increases

since in this case the average duration of arrived tasks is comparable with the time

window TW.

In all cases 𝜁 𝑆 takes very satisfactory values, indicating that on the average the

proposed task algorithm allocates the atomic tasks close to the optimal solution. Figure

33 presents the waste 𝜁 𝑆 versus the number of tasks for different granularity levels. It

is observed that as the number of tasks increases the waste values also increases.

However, beyond a certain point, this increase is insignificant. This means the waste

converges for a large number of tasks. However the upper limit, even for a large number

of arrived tasks is close to the optimal value revealing the efficiency of the proposed task

allocation algorithm.

Another parameter (besides load conditions) that affects the algorithm‘s efficiency is the

number of iterations in the k-means algorithm for transforming the optimal solution in

the continuous domain into a discrete one (section 5.3.4.3). In particular, in Figure 34

10
-4

10
-3

10
-2

10
-1

1.25

1.3

1.35

1.4

1.45

Granularity (g = D/T)

w
as

te
 (

)

 B=1

 B=2

 B=5

 B=10

115

the results using 1, 30 and 50 iterations are illustrated. As expected, the performance is

improved as the number of iterations increases; however, there is a limit beyond of

which the improvement is slight. This means that a relatively small number of

iterations (around 50) is practically adequate to get the solution. In our experiments, a

maximum value of 50 iterations is used as the termination condition of the k-means

algorithm, unless clustering converge is achieved in earlier steps.

Figure 33 The waste factor versus the number of pending tasks for three different granularity

values

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
1.2

1.22

1.24

1.26

1.28

1.3

1.32

Number of Tasks

W
as

te
 (

)

Granularity 0.06%

Granularity 0.08%

Granularity 0.1%

116

Figure 34 The algorithm's efficiency versus granularity when different number of iteration are

used in the k-means descritization phase

5.3.6.2 Comparing the proposed algorithm with other approaches

In this paragraph, the results of the proposed scheduling strategy are compared to the

two versions of the greedy approach and the minimum cut tree graph partitioning. The

same experiments as in the previous paragraph are repeated, i.e., waste factor versus

granularity and waste factor versus the number of pending tasks.

Figure 35 Comparison of different algorithms when the tasks' load augments. The granularity is

fixed to 0.1%

10
-4

10
-3

10
-2

10
-1

1.24

1.26

1.28

1.3

1.32

1.34

1.36

1.38

1.4

1.42

Granularity (g = D/T)

W
as

te
 (

)

Iteration=1

Iteration=5

Iteration=30

Iteration=50

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

Number of Tasks

W
as

te
 (

)

Re.Co.Jo.Op.

The Min Cut Tree Algorithm

Greedy Algorithm: Approach B

Greedy Algorithm: Approach A

117

Figure 36 Comparison of the waste factor versus granularity for different algorithms for B=5

(left) and B=10 (right)

Figure 35 shows the effect of the waste factor ζ with respect to the number of tasks for a

granularity value of g=0.1% for the proposed algorithm and the other three compared

approaches. The same exponential performance as in Figure 33 is also derived. The

proposed algorithms results in much smaller waste compared to the other methods.

Figure 36 compares the performance of the proposed algorithm with the three

aforementioned schemes for B=5 and B = 10 versus granularity. In both cases, the

proposed task allocation algorithm outperforms the other approaches for all granularity

values.

A different testing set of experiments is when the algorithm‘s performance is evaluated

when the number of the available agents is constant. The evaluation metrics for such a

case are the 𝐹(𝑆, 𝑀) and the 𝐽(𝑆, 𝑀) criteria, introduced in equations (24) and (25). The

goal now is to estimate the percentage of tasks overlapping using the proposed task

allocation scheme for a given number of agents. The same objective criteria are also

used to compare the performance of the presented strategy with other algorithms.

10
-4

10
-3

10
-2

10
-1

10
0

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Granularity (g = D/TW)

w
a

s
te

(

)

The proposed Algorithm

The min cut algorithm

The greedy algorithm approach A

The greedy algorithm approach B

10
-4

10
-3

10
-2

10
-1

10
0

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Granularity (g = D/TW)

w
a

s
te

(

)

The proposed Algorithm

The min cut algorithm

The greedy algorithm approach A

The greedy algorithm approach B

118

Figure 37 Tasks' overlapping versus the number of agents for different algorithms

Figure 37 (left) plots the 𝐹(𝑆, 𝑀) versus the number of agents M for 0.1% granularity.

The value of 𝐹(𝑆, 𝑀)drops as M increases, while when 𝑀 = 𝑀𝑚𝑖𝑛 the 𝐹(𝑆, 𝑀)becomes

zero. It is observed that the proposed algorithm yields smaller deviations from the tasks‘

time constraints. Similar results are derived for the 𝐽(𝑆, 𝑀) criterion (Figure 37 (right)).

10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of Agents

A
m

o
u

n
t

o
f

T
as

k
 v

io
la

ti
o

n
 F

(

)

Proposed Algorithm

The Min Cut Tree Algorithm

Greedy Algorithm: Approach B

Greedy Algorithm: Approach A

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of Agents

P
er

ce
n

ta
g

e
o

f
T

as
k

 v
io

la
ti

o
n

 J
(

)

Proposed Algorithm

The Min Cut Tree Algorithm

Greedy Algorithm: Approach B

Greedy Algorithm: Approach A

119

CCHHAAPPTTEERR 66

Conclusions
Future
Work

120

6 Conclusions

The introductory section of this work claimed a threefold contribution. The first fold,

presented in chapter 0, is about a general classification scheme and an extended survey

of existing works. As chapter 0 demonstrated, a critical amount of publications aim their

attention to the intersection of these WFMS and agents. However, an overarching

contextualization of the intersected are was missing before this work‘s publication. This

thesis exploited popular standards of the workflow field to propose a unifying

framework, and to clarify the vague picture of Agent-involved Workflow Management

Systems.

As the integration of WFMS and agents is thoroughly examined, numerous integration

patterns and contribution potentials are described in terms of a WFMS functional

decomposition. The proposed classification scheme itself has a double contribution: Not

only it provides a guided map of the WFMS functions that can be enhanced by agents,

but it consists a reference text for researchers as well. The consolidation of WFMS and

software agents is indeed practical and attainable even without a clear picture of the

field, yet a unifying framework fairly encourages cross-fertilization.

The second fold, presented in chapter 0 and in section 5.1, concerns a prototype AWfMS.

The primal goal of the prototype is to exhibit how some features of workflow

management can be enhanced by agenthood, or the inverse, i.e., how multi-agent

systems can benefit from the application of workflow logics. Advanced features, such as

interaction protocols supporting the workflows, business logic support through a formal

process language, agents‘ behaviours or ontologies, manual intervention, statefulness,

and monitoring were designed and implemented, revealing the potential of mixing

agents and WFMS.

The third fold, presented in section 5.3, suggests an innovative strategy which

simultaneously tackles the problems of scheduling and task allocation. The proposed

method jointly optimizes the two critical factors of the defined problem (Workload

Balancing and Quality of Service). The proposed algorithm is evaluated under two

different environments. The first is appropriate for the execution phase, considers a

constant number of available agents and assigns the pending tasks to agents using the

proposed allocation strategy. The second evaluation environment is proper for the

system design phase. This way, the target is to find the minimum number of agents that

121

will result in zero overlapping, i.e., in no violation of the tasks‘ time constraints. Thus,

based on the traffic statistics of the tasks the system can be designed so that zero

violations in tasks temporal constraints are guaranteed, while a non-wasteful number of

agents are used. The algorithm‘s outperformance is evident for all granularity values,

and under different assumptions about the system‘s load conditions.

6.1 Future Work

This text in delivered in tandem with a software piece: the prototype, which was

described in the previous chapters and in the appendix. The prototype is a valuable tool

to facilitate future research. It allows allow for transparent and replicable testing of new

algorithms and computational tools with a reduced effort. Ideally, for each utility

described in section 3.2, an optimization algorithm can be developed and tested. In

particular, a topic which is already considered is the expansion of the scheduling

algorithm proposed (see section 5.3), in order to tackle dynamically the changes in the

workflow environment (new agents are added, existing agents are killed or fail to

respond, etc.). An additional research theme that is considered for the prototype is about

the integration of operative research allocation policies. More specifically, as resource

allocation patterns in workflow have been explicitly defined [161], a natural subsequent

step is to leverage those patterns in an multi-agent context.

An additional issue, regarding also the prototype is to consider an alternative

architecture. As the literature review demonstrated, there is a significant number of

cases where a more modular architecture is needed. A modular structural design will

allow breaking an enterprise application into multiple modules and thus an easier

management of cross-dependencies between them. As this kind of design finds its space

and in business environments (e.g., virtual enterprises) and as the Service Oriented

Architecture paradigm emerges, a more modular architecture of the prototype AWfMS

will make it keep a pace with mainstream technology advancements, thus it will

strengthen its practicality.

Considering the workflow concepts, a noteworthy matter with great potential emerges

from the results of this thesis: Developing a formal definition of stigmergy for workflow

processes. Although section 4.6 presented a way to incorporate stigmergy into the

workflow context, a more formal method is required to allow generalization.

122

Concluding, the above points exhibit the research challenges that the introduction of a

unifying framework brings forth. Starting from the work carried out during this thesis,

future research is facilitated and stimulated as well. The answer to the key question

―Does it worth mixing agents and WFMS‖ may be not unique, yet this thesis provides

less complicated way to anticipate the response.

123

References

[1] WfMC, "WfMC Standards, Terminology & Glossary," Report No: WfMC-TC-

1011, Workflow Management Coalition 1999.

[2] M. N. Huhns and M. P. Singh, "Workflow agents," Internet Computing, IEEE,

vol. 2, pp. 94-96, 1998.

[3] P. Kotler and K. L. Keller, Marketing Management, Twelfth ed. New Jersey:

Pearson Prentice Hall, 2006.

[4] WADE, "Workflow Agent Development Environment," 2008.

[5] M. P. Singh and M. N. Huhns, "Multiagent systems for workflow," International

Journal of Intelligent Systems in Accounting, Finance & Management, vol. 8, pp.

105-117, 1999.

[6] K. R. Abbott and S. K. Sarin, "Experiences with workflow management: issues

for the next generation," in Proceedings of the 1994 ACM conference on Computer

supported cooperative work, Chapel Hill, North Carolina, United States, 1994, pp.

113-120.

[7] A. P. Sheth, W. Van Der Aalst, and I. B. Arpinar, "Processes driving the

networked economy," IEEE Concurrency, vol. 7, pp. 18-31, 1999.

[8] M. z. Muehlen, Workflow-based Process Controlling. Berlin: Logos verlag, 2004.

[9] E. A. Stohr and J. L. Zhao, "Workflow Automation: Overview and Research

Issues," Information Systems Frontiers, vol. 3, pp. 281–296, 2001.

[10] H. Li and Z. Lu, "Decentralized workflow modeling and execution in service-

oriented computing environment," in Service-Oriented System Engineering, 2005.

SOSE 2005. IEEE International Workshop, Beijing, CHINA, 2005, pp. 29-34.

[11] S. Staab, W. van der Aalst, V. R. Benjamins, A. Sheth, J. A. Miller, C. Bussler, A.

Maedche, D. Fensel, and D. Gannon, "Web services: been there, done that?,"

Intelligent Systems, vol. 18, pp. 72-85, 2003.

[12] M. T. Schmidt, "The evolution of workflow standards," IEEE Concurrency vol. 7,

pp. 44-52, 1999.

[13] S. Meilin, Y. Guangxin, X. Yong, and W. Shangguang, "Workflow management

systems: a survey," in Communication Technology Proceedings, 1998. ICCT '98,

Beijing, China, 1998, pp. 20-26.

[14] WfMC, "The Workflow Management Coalition," [Online]. Available:

http://www.wfmc.org/

[15] N. R. Jennings, T. J. Norman, and P. Faratin, "ADEPT: an agent-based approach

to business process management," ACM SIGMOD Record, vol. 27, pp. 32-39,

1998.

[16] N. R. Jennings, T. J. Norman, P. Faratin, P. O'Brien, and B. Odgers,

"Autonomous Agents For Business Process Management," Applied Artificial

Intelligence, vol. 14, pp. 145-189, 2000.

[17] G. Fakas and B. Karakostas, "A workflow management system based on

intelligent collaborative objects," Information and Software Technology, vol. 41,

pp. 907-915, 1999.

[18] D. W. Judge, B. R. Odgers, J. W. Shepherdson, and Z. Cui, "Agent-enhanced

Workflow," BT Technology Journal, vol. 16, pp. 79-85, 1998.

[19] R. Muller, U. Greiner, and E. Rahm, "AGENTWORK: a workflow system

supporting rule-based workflow adaptation," Data & Knowledge Engineering, vol.

51, pp. 223-256, 2004.

http://www.wfmc.org/

124

[20] P. D. O'Brien and M. E. Wiegand, "Agent based process management: applying

intelligent agents to workflow," The Knowledge Engineering Review, vol. 13, pp.

161-174, July 1998 1998.

[21] J. W. Shepherdson, S. G. Thompson, and B. R. Odgers, "Decentralised Workflows

and Software Agents," BT Technology Journal, vol. 17, pp. 65-71, 1999.

[22] S. Wang, W. Shen, and Q. Hao, "An agent-based Web service workflow model for

inter-enterprise collaboration," Expert Systems with Applications, vol. 31, pp.

787-799, 2006.

[23] Y. Yan, Z. Maamar, and S. Weiming, "Integration of workflow and agent

technology for business process management," in The Sixth International

Conference on Computer Supported Cooperative Work in Design, London, Ont.,

Canada, 2001, pp. 420-426.

[24] L. Zeng, A. Ngu, B. Benatallah, and M. O'Dell, "An agent-based approach for

supporting cross-enterprise workflows," in Proceedings of the 12th Australasian

database conference Queensland, Australia 2001, pp. 123-130.

[25] Y. Qu, X. Sheng, and W. Jiao, "A Multi-Agent Based Model of Workflow

Management," in 10th International Conference on Computer Supported

Cooperative Work in Design, 2006. CSCWD '06. , Nanjing, China, 2006, pp. 1-5.

[26] L. Hongchen and S. Meilin, "Application of agents in workflow management

system," in Fifth Asia-Pacific Conference On Communications and Fourth

Optoelectronics and Communications Conference APCC/OECC '99, Beijing,

China, 1999, pp. 1068-1072.

[27] J. Qiu, C. Wang, and Y. He, "Research on application of intelligent agents in the

workflow management system," in 2005 IEEE Networking, Sensing and Control,

ICNSC2005, Tucson, Arizona, USA, 2005, pp. 827-830.

[28] J. W. Chang and C. T. Scott, "Agent-based workflow: TRP Support Environment

(TSE)," Computer Networks and ISDN Systems, vol. 28, pp. 1501-1511, 1996.

[29] M. Merz and W. Lamersdorf, "Crossing Organizational Boundaries with Mobile

Agents in Electronic Service Markets," Integrated Computer-Aided Engineering,

vol. 6, pp. 91 - 104, 1999.

[30] G. Alonso, D. Agrawal, A. E. Abbadi, and C. Mohan, "Functionality and

Limitations of Current Workflow Management Systems," IEEE Expert, vol. 12,

1997.

[31] D. Georgakopoulos, M. Hornick, and A. Sheth, "An overview of workflow

management: From process modeling to workflow automation infrastructure,"

Distributed and Parallel Databases, vol. 3, pp. 119-153, 1995.

[32] Y.-H. Suh, H. Namgoong, J.-J. Yoo, and D.-I. Lee, "Design of a Mobile Agent-

Based Workflow Management System," in Mobile Agents for Telecommunication

Applications: Third International Workshop, MATA 2001, Montreal, Canada,

August 14-16, 2001. Proceedings. vol. 2164, S. Pierre and R. Glitho, Eds.:

Springer Berlin / Heidelberg, 2001, pp. 93-102.

[33] D. B. Lange and M. Oshima, "Seven good reasons for mobile agents " Commun.

ACM, vol. 45, pp. 88-89, 1999.

[34] M. Merz, B. Liberman, and W. Lamersdorf, "Using Mobile Agents To Support

interorganizational Workflow Management," Applied Artificial Intelligence, vol.

11, pp. 551 - 572, 1997.

[35] G. A. Bolcer and R. N. Taylor, "Advanced Workflow Management Technologies,"

SOFTWARE PROCESS—Improvement and Practice, vol. 4, pp. 125–171, 1998.

[36] A. Sheth and K. J. Kochut, "Workflow applications to research agenda : Scalable

and dynamic work coordination and collaboration systems," in Workflow

Management Systems and Interoperability, NATO Advanced Study Institute on

Workflow Management Systems and Interoperability, Istanbul, Turkey, 1997.

125

[37] M. B. Blake and H. Gomaa, "Object-Oriented Modeling Approaches to Agent-

Based Workflow Services," in Software Engineering for Multi-Agent Systems II.

vol. 2940, C. Lucena, A. Garcia, A. Romanovsky, J. Castro, and P. Alencar, Eds.:

Springer Berlin / Heidelberg, 2004, pp. 111-128.

[38] M. B. Blake and H. Gomaa, "Agent-oriented compositional approaches to

services-based cross-organizational workflow," Decision Support Systems, vol. 40,

pp. 31-50, 2005.

[39] R. Kishore, H. Zhang, and R. Ramesh, "Enterprise integration using the agent

paradigm: foundations of multi-agent-based integrative business information

systems," Decision Support Systems, vol. 42, pp. 48-78, 2006.

[40] M. Wang, H. Wang, and D. Xu, "The design of intelligent workflow monitoring

with agent technology," Knowledge-Based Systems, vol. 18, pp. 257-266, 2005.

[41] J.-J. Yoo, D. Lee, Y.-H. Suh, and D.-I. Lee, "Scalable Workflow System Model

Based on Mobile Agents," in Intelligent Agents: Specification, Modeling, and

Application : 4th Pacific Rim International Workshop on Multi-Agents, PRIMA

2001, Taipei, Taiwan, July 28-29, 2001. Proceedings. vol. 2132, S.-T. Yuan and

M. Yokoo, Eds.: Springer Berlin / Heidelberg, 2001, pp. 222-236.

[42] L. Yu and B. F. Schmid, "A conceptual framework for agent-oriented and role-

based workflow modeling," in Proceedings of the CaiSE Workshop on Agent

Oriented Information Systems (AOIS99), 1999.

[43] P. Buhler, J. M. Vidal, and H. Verhagen, "Adaptive Workflow = Web Services +

Agents.," in ICWS '03, Las Vegas, Nevada, USA, 2003, pp. 131-137.

[44] M. P. Singh, "Distributed enactment of multiagent workflows: temporal logic for

web service composition," in Second international joint conference on Autonomous

agents and multiagent systems Melbourne, Australia 2003, pp. 907-914.

[45] P. A. Buhler and J. M. Vidal, "Towards Adaptive Workflow Enactment Using

Multiagent Systems," Information Technology and Management, vol. 6, pp. 61-87,

2005.

[46] G. Joeris, "Decentralized and Flexible Workflow Enactment Based on Task

Coordination Agents," in 2nd Int’l. Bi-Conference Workshop on Agent-Oriented

Information Systems (AOIS-2000@CAiSE*00), Stockholm, Sweden, 2000, pp. 41-

62.

[47] H. Stormer, "Task Scheduling in Agent-based Workflow," in Int. ICSC Symp. on

Multi-Agents and Mobile Agents in Virtual Organizations and E-Commerce

(MAMA’2000), Wollogong, Australia, 2000.

[48] H. V. D. Parunak, "Applications of distributed artificial intelligence in industry "

in Foundations of distributed artificial intelligence G. O'Hare and N. R. Jennings,

Eds.: John Wiley \& Sons, Inc., 1996, pp. 139-164.

[49] J. Meng, S. Helal, and S. Su, "An ad-hoc workflow system architecture based on

mobile agents and rule-based processing," in Proceedings of the 2000

international conference on artificial intelligence (ICAI2000), Las Vegas, 2000, pp.

245-251.

[50] S. McCready, "There is more than one kind of Workflow Software,"

Computerworld, vol. November 2, pp. 86–90, 1992.

[51] F. Leymann and D. Roller, Production Workflow: Concepts and Techniques.

Upper Saddle River, NJ: Prentice Hall PTR, 2000.

[52] W. M. P. v. d. Aalst and K. M. v. Hee, Workflow Management: Models, Methods,

and Systems. Cambridge, MA: MIT Press, 2002.

[53] G. J. Nutt, "The evolution towards flexible workflow systems," Distributed

Systems Engineering, vol. 3, pp. 276–294, 1996.

[54] G. Vergivadis, "Inter-Organizational Workflow Management Systems," National

Technical University of Greece, Athens, Greece, 2006.

126

[55] J. Shepherdson, S. Thompson, and B. Odgers, "Cross Organisational Workflow

Co-ordinated by Software Agents," in Cross-Organisational Workflow

Management and Co-ordination, San Francisco, USA, 1999.

[56] OASIS, "Web Services Business Process Execution Language (WSBPEL) TC,"

2008, [Online]. Available: http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=wsbpel

[57] FIPA, "Interaction Protocols Specifications," 2008, [Online]. Available:

http://www.fipa.org/repository/ips.php3

[58] M. N. Huhns, "Agents as Web services," Internet Computing, IEEE, vol. 6, pp. 93-

95, 2002.

[59] B. T. R. Savarimuthu, M. Purvis, M. Purvis, and S. Cranefield, "Agent-based

integration of Web Services with Workflow Management Systems," in

Proceedings of the fourth international joint conference on Autonomous agents

and multiagent systems The Netherlands 2005, pp. 1345-1346

[60] J. M. Vidal, P. Buhler, and C. Stahl, "Multiagent systems with workflows," IEEE

Internet Computing, vol. 8, pp. 76-82, 2004.

[61] J. Korhonen, L. Pajunen, and J. Puustjarvi, "Automatic composition of Web

service workflows using a semantic agent," in Proceedings IEEE/WIC

International Conference on Web Intelligence (WI 2003), Halifax, Canada, 2003,

pp. 566-569.

[62] I. Foster, N. R. Jennings, and C. Kesselman, "Brain meets brawn:why grid and

agents need each other," in Autonomous Agents and Multiagent Systems, 2004.

AAMAS 2004. Proceedings of the Third International Joint Conference on, 2004,

pp. 8-15.

[63] A. Barker and R. Mann, "Flexible Service Composition," in Cooperative

Information Agents X. vol. 4149, M. Klusch, M. Rovatsos, and T. R. Payne, Eds.:

Springer Berlin / Heidelberg, 2006, pp. 446-460.

[64] Z. Zhao, A. Belloum, C. D. Laat, P. Adriaans, and B. Hertzberger, "Using Jade

agent framework to prototype an e-Science workflow bus," in Seventh IEEE

International Symposium on Cluster Computing and the Grid, 2007. CCGRID

2007. , Rio de Janeiro, Brazil 2007, pp. 655-660.

[65] L. Cao, M. Li, J. Cao, and Y. Wang, "Introduction to an Agent-Based Grid

Workflow Management System," in Parallel and Distributed Processing and

Applications - ISPA 2005 Workshops. vol. 3759, G. Chen, Y. Pan, M. Guo, and J.

Lu, Eds., 2005, pp. 559-568.

[66] WfMC, "WfMC Standards, Workflow Reference Model " Report No: WfMC-TC-

1003, Workflow Management Coalition 1995.

[67] M. Wooldridge and N. R. Jennings, "Intelligent agents: Theory and practice.,"

The Knowledge Engineering Review, vol. 10, pp. 115–152, 1995.

[68] T. Winograd and F. Flores, Understanding Computers and Cognition: A New

Foundation for Design. Reading, MA: Addison-Wesley, 1987.

[69] K. Palacz and D. Marinescu, "An agent-based workflow management system," in

Proc. AAAI Spring Symposium Workshop Bringing Knowledge to Business

Processes, Standford University, CA, 1999.

[70] A. Omicini, A. Ricci, and N. Zaghini, "Distributed Workflow upon Linkable

Coordination Artifacts," in Coordination Models and Languages. vol. 4038, P.

Ciancarini and H. Wiklicky, Eds.: Springer Berlin / Heidelberg, 2006, pp. 228-

246.

[71] A. Ricci, A. Omicini, and E. Denti, "Virtual Enterprises and Worfklow

Management as Agent Coordination Issues," International Journal of

Cooperative Information Systems, vol. 11, pp. 355-379, 2002.

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://www.fipa.org/repository/ips.php3

127

[72] P. Buhler and J. M. Vidal, "Enacting BPEL4WS Specified Workflows with

Multiagent Systems," in Proceedings of the Workshop on Web Services and Agent-

Based Engineering, 2004.

[73] U. M. Borghoff, P. Bottoni, P. Mussio, and R. Pareschi, "Reflective Agents for

Adaptive Workflows," in 2nd International Conference on the Practical

Application of Intelligent Agents and Multi-Agent Technology (PAAM ‘97),

London, U. K., 1997, pp. 405-420.

[74] B.-H. Ooi, "A Multi-agent Approach to Business Processes Management in an

Electronic Market," in Intelligent Agents and Multi-Agent Systems. vol. 2891, J.

Lee and M. Barley, Eds.: Springer Berlin / Heidelberg, 2003, pp. 1-12.

[75] T. Cai, P. Gloor, and S. Nog, "DartFlow: A Workflow Management System on the

Web Using Transportable Agents," Report No: TR96-283, Dept. of Computer

Science, Dartmouth College, Hanover, Technical Report 1996.

[76] Z. Budimac, D. Pesovic, M. Ivanovic, and N. Ibrajter, "Lessons Learned From the

Implementation of a Workflow Management System Using Mobile Agents," Novi

Sad Journal of Mathematics, vol. 36, pp. 65-79, 2006.

[77] A. Inamoto, "Agent oriented system approach for workflow automation,"

International Journal of Production Economics, vol. 60-61, pp. 327-335, 1999.

[78] D. Barbara, S. Mehrotra, and M. Rusinkiewicz, "INCAs: Managing Dynamic

Workflows in Distributed Environments," Journal of Database Management, vol.

7, pp. 5-15, 1996.

[79] G. Kaiser and A. Dossick, "A Mobile Agent Approach to Lightweight Process

Workflow," in International Process Technology Workshop '99, 1999.

[80] G. Valetto, G. Kaiser, and G. S. Kc, "A Mobile Agent Approach to Process-Based

Dynamic Adaptation of Complex Software Systems," in Software Process

Technology: 8th European Workshop, EWSPT 2001, Witten, Germany, June 19-

21, 2001, Proceedings. vol. 2077, V. Ambriola, Ed.: Springer Berlin / Heidelberg,

2001, pp. 102-116.

[81] S. Helal, M. Wang, A. Jagatheesan, and R. Krithivasan, "Brokering Based Self

Organizing E-Service Communities," in Fifth International Symposium on

Autonomous Decentralized Systems (ISADS), Dallas, Texas, 2001, pp. 349-356.

[82] M. B. Blake, "Coordinating multiple agents for workflow-oriented process

orchestration," Information Systems and E-Business Management, vol. 1, pp. 387-

404, 2003.

[83] Q. Chen, U. Dayal, M. Hsu, and M. Griss, "Dynamic-Agents, Workflow and XML

for E-Commerce Automation," in EC-Web 2000. vol. 1875, K. Bauknecht, S. K.

Madria, and G. Pernul, Eds. London, UK: Springer Berlin / Heidelberg, 2000, pp.

314-323.

[84] L. Ehrler, M. Fleurke, M. Purvis, and B. T. R. Savarimuthu, "Agent-based

workflow management systems (WfMSs)," Information Systems and E-Business

Management, vol. 4, pp. 5-23, 2006.

[85] C. A. Marın and R. F. Brena, "Multiagent Architecture for Decentralized

Workflow Process Execution," Report No: CSI-RI-002, Center for Intelligent

Systems Tecnologico de Monterrey, Monterrey, Mexico, Technical Report March

9th 2005.

[86] J.-W. Wang, C.-C. Li, and F.-J. Wang, "Dynamic activities on an agent-based

workflow management system," in The 3rd ACS/IEEE International Conference

on Computer Systems and Applications, 2005. , 2005, p. 122.

[87] S. Das, K. Kochut, J. Miller, A. Sheth, and D. Worah, "ORBWork:A Reliable

Distributed CORBA-based Workflow Enactment System for METEOR 2,"

Report No: UGA-CS-TR-97-001, University of Georgia 1997.

128

[88] H. Stormer, "A Flexible Agent-Based Workflow System," in Fifth International

Conference on Autonomous Agents Montreal, Canada, 2001.

[89] H. Gou, B. Huang, W. Liu, S. Ren, and Y. Li, "An agent-based approach for

workflow management," in IEEE International Conference on Systems, Man, and

Cybernetics, 2000 Nashville, TN, USA, 2000, pp. 292-297.

[90] Q. Xu, R. Qiu, and F. Xu, "Agent-based workflow approach to the design and

development of cross-enterprise information systems," in IEEE International

Conference on Systems, Man and Cybernetics, 2003. , Washington, D.C., USA,

2003, pp. 2633- 2638.

[91] M. B. Blake, "An agent-based cross-organizational workflow architecture in

support of Web services," in Eleventh IEEE International Workshops on Enabling

Technologies: Infrastructure for Collaborative Enterprises, WET ICE 2002,

Pittsburgh, Pennsylvania, USA, 2002, pp. 176- 181.

[92] X. Manmin and L. Huaicheng, "Cooperative software agents for workflow

management system," in Fifth Asia-Pacific Conference On Communications and

Fourth Optoelectronics and Communications Conference APCC/OECC '99,

Beijing, China, 1999, pp. 1063-1067.

[93] J. Cao, J. Wang, S. Zhang, and M. Li, "A dynamically reconfigurable system

based on workflow and service agents," Engineering Applications of Artificial

Intelligence, vol. 17, pp. 771-782, 2004.

[94] M. Crowe and S. Kydd, "Agents and suggestions in a Web-based dynamic

workflow model," Automation in Construction, vol. 10, pp. 639-643, 2001.

[95] I. Hawryszkiewycz and J. Debenham, "A Workflow System Based on Agents," in

Database and Expert Systems Applications. vol. 1460, G. Quirchmayr, E.

Schweighofer, and T. J. M. Bench-Capon, Eds.: Springer Berlin / Heidelberg,

1998, pp. 135–143.

[96] H. Tarumi, K. Kida, Y. Ishiguro, K. Yoshifu, and T. Asakura, "WorkWeb

system—multi-workflow management with a multi-agent system " in Supporting

group work: the integration challenge, Phoenix, Arizona, United States 1997, pp.

299-308.

[97] C.-J. Huang, C. V. Trappey, and C. C. Ku, "A JADE-based Autonomous Workflow

Management System for Collaborative IC Design," in 11th International

Conference on Computer Supported Cooperative Work in Design, 2007. CSCWD

2007. , Melbourne, Australia 2007, pp. 777-782.

[98] T. Madhusudan, "An agent-based approach for coordinating product design

workflows," Computers in Industry, vol. 56, pp. 235-259, 2005.

[99] H. Yanli, Y. Haicheng, H. Weiping, Z. Wei, and H. Xinping, "Flexible Workflow

Driven Job Shop Manufacturing Execution and Automation Based on Multi

Agent System," in IEEE/WIC/ACM International Conference on Intelligent

Agent Technology, 2006. IAT '06. , Hong Kong, China 2006, pp. 695-699.

[100] T. Aye and K. M. L. Tun, "A Collaborative Mobile Agent-based Workflow

System," in 6th Asia-Pacific Symposium on Information and Telecommunication

Technologies, 2005. APSITT 2005 Yangon, Myanmar, 2005, pp. 59-65.

[101] G. Kappel, S. Rausch-Schott, and W. Retschitzegger, "A framework for workflow

management systems based on objects, rules and roles " ACM Computing

Surveys, vol. 32 p. 27, 2000.

[102] J. Debenham, "Constructing an intelligent multi-agent workflow system," in

Advanced Topics in Artificial Intelligence. vol. 1502: Springer Berlin / Heidelberg,

1998, pp. 119-130.

[103] H. Stormer and K. Knorr, "PDA- and Agent-based Execution of Workflow Tasks,"

in Informatik 2001 Conference, Vienna, Austria, 2001, pp. 968-973.

129

[104] G. Q. Huang, J. Huang, and K. L. Mak, "Agent-based workflow management in

collaborative product development on the Internet," Computer-Aided Design, vol.

32, pp. 133-144, 2000.

[105] S. Aknine and S. Pinson, "Agent Oriented Conceptual Modeling of Parallel

Workflow Systems," in Multiple Approaches to Intelligent Systems. vol. 1611:

Springer Berlin / Heidelberg, 1999, pp. 500-509.

[106] J.-Y. Kuo, "A document-driven agent-based approach for business processes

management," Information and Software Technology, vol. 46, pp. 373-382, 2004.

[107] E. Gudes and A. Tubman, "AutoWF--A secure Web workflow system using

autonomous objects," Data & Knowledge Engineering, vol. 43, pp. 1-27, 2002.

[108] D. Xu and H. Wang, "Multi-agent collaboration for B2B workflow monitoring,"

Knowledge-Based Systems, vol. 15, pp. 485-491, 2002.

[109] J. Liu, S. Zhang, and J. Hu, "A case study of an inter-enterprise workflow-

supported supply chain management system," Information & Management, vol.

42, pp. 441-454, 2005.

[110] Z. Zhao, A. Belloum, C. de Laat, P. Adriaans, and B. Hertzberger, "Distributed

execution of aggregated multi domain workflows using an agent framework," in

IEEE Congress on Services, 2007, Salt Lake City, UT, USA, 2007, pp. 183-190.

[111] H. Zhuge, J. Chen, Y. Feng, and X. Shi, "A federation-agent-workflow simulation

framework for virtual organisation development," Information & Management,

vol. 39, pp. 325-336, 2002.

[112] H. Stormer, K. Knorr, and J. H. P. Eloff, "A model for security in agent-based

workflows," INFORMATIK / INFORMATIQUE, pp. 24-29, 2000.

[113] S. Wang, W. Shen, and Q. Hao, "Agent based workflow ontology for dynamic

business process composition," in Proceedings of the Ninth InternationaI

Conference on Computer Supported Cooperative Work in Design, Coventry, UK,

2005, pp. 452-457.

[114] H. Jingjing, C. Yuanda, and Z. Zhen, "Workflow management system based on

agent for virtual enterprise," in The 8th International Conference on Computer

Supported Cooperative Work in Design, 2004, Xiamen China, 2004, pp. 373-378.

[115] J. Korhonen, L. Pajunen, and J. Puustjärvi, "Using Transactional Workflow

Ontology in Agent Cooperation," in First EurAsian Conference on Advances in

Information and Communication Technology (EURASIA-ICT 2002) Tehran, Iran,

2002.

[116] A. Schill and C. Mittasch, "Workflow management systems on top of OSF DCE

and OMG CORBA," Distributed Systems Engineering, vol. 3, pp. 250–262, 1996.

[117] H. Wang and D. Xu, "Collaborative multi-agents for workflow management," in

34th Annual Hawaii International Conference on System Sciences, 2001. , Maui,

Hawaii, 2001, p. 9 pp.

[118] R. G. Smith, "The Contract Net Protocol: High-Level Communication and Control

in a Distributed Problem Solver," IEEE Trans. Comput., vol. 29, pp. 1104-1113,

1980.

[119] L. Biegus and C. Branki, "InDiA: a framework for workflow interoperability

support by means of multi-agent systems," Engineering Applications of Artificial

Intelligence, vol. 17, pp. 825-839, 2004.

[120] A. K. Jain, M. I. V. Aparico, and M. P. Singh, "Agents for process coherence in

virtual enterprises," Communications of the ACM, vol. 42, pp. 62-69, 1999.

[121] B. T. R. Savarimuthu, M. Purvis, and M. Purvis, "Different Perspectives on

Modeling Workflows in an Agent Based Workflow Management System," in

Knowledge-Based Intelligent Information and Engineering Systems. vol. 3684, R.

Khosla, R. J. Howlett, and L. C. Jain, Eds.: Springer Berlin / Heidelberg, 2005,

pp. 208-214.

130

[122] D. Kaponis, L. Kamara, J. Pitt, and K. Clark, "A mechanism for trusted agent-

based workflow transport," in Engineering Societies in the Agents World '03

London, UK, 2003.

[123] J. Hickie, J. Kennedy, G. Koudouridis, V. Ouzounis, and M. Studley., "A

Scaleable Heterogeneous Architecture for Agent-Oriented Workflow

Management.," in International Joint Conference on Artificial Intelligence 1999

Stockholm, 1999.

[124] M. Sierhuis, W. J. Clancey, and R. J. J. V. Hoof, "Brahms: a multi-agent

modelling environment for simulating work processes and practices,"

International Journal of Simulation and Process Modelling, vol. 3, pp. 134 - 152,

2007.

[125] J. Debenham, "Who does what in a multiagent system for emergent process

management," in Ninth Annual IEEE International Conference and Workshop on

the Engineering of Computer-Based Systems (ECBS' 02), Lund, Sweden, 2002, pp.

35-40.

[126] Z. Budimac, M. Ivanovic, and A. Popovic, "Workflow Management System Using

Mobile Agents," in Advances in Databases and Information Systems: Third East

European Conference, ADBIS'99, Maribor, Slovenia, September 1999.

Proceedings. vol. 1691, J. Eder, I. Rozman, and TatjanaWelzer, Eds.: Springer

Berlin / Heidelberg, 1999, pp. 168-178.

[127] P. T. Harker and L. H. Ungar, "A market-based approach to workflow

automation," in Proceedings of NSF. Workshop on Workflows and Process

Automation in Information Systems: State of the Art and Future Directions. ,

Athens, GA, USA, 1996.

[128] H. Stormer, "A Flexible Agent-Based Workflow System," in Fifth International

Conference on Autonomous Agents Montreal, Canada, 2001.

[129] J. P. Moore, R. Inder, P. W. H. Chung, A. Macintosh, and J. Stader, "Who Does

What? Matching Agents to Tasks in Adaptive Workflow," in International

Conference on Enterprise Information Systems, 2000, pp. 181-185.

[130] P. Delias, A. Doulamis, and N. Matsatsinis, "A Joint Optimization Algorithm for

Dispatching Tasks in Agent-based Workflow Management Systems," in

Proceedings of the 10th International Conference on Enterprise Information

Systems, ICEIS 2008, Barcelona, Spain, 2008, pp. 199-206.

[131] P. Delias, A. Doulamis, and N. Matsatsinis, "Optimizing Resource Conflicts in

Workflow Management Systems," IEEE Transactions on Knowledge and Data

Engineering, (accepted) 2008.

[132] A. Padalkar, P. Nabar, S. Arora, and P. Naik, "SWIFT:scalable workflow

management system using mobile agents," Bombay: Kanwal Rekhi School of

Information Technology, 2000.

[133] C.-J. Huang, A. J. C. Trappey, and Y.-H. Yao, "Developing an agent-based

workflow management system for collaborative product design," Industrial

Management & Data Systems, vol. 106, pp. 680 - 699, 2006.

[134] M. B. Blake, "Agent-Based Communication For Distributed Workflow

Management Using JINI Technologies," International Journal on Artificial

Intelligence Tools, vol. 12, pp. 81-99, 2003.

[135] J. Debenham and S. Simoff, "Intelligent Agents that Span the Process

Management Spectrum," in 3rd International IEEE Conference on Intelligent

Systems, 2006 London 2006, pp. 386-389.

[136] A. T.-I. Yaung, "Workflow agent for a multimedia database system." vol. US

6,405,215 B1 USA: International Business Machines Corp., 2002.

[137] M. L. Roberts and P. D. Berger, Direct Marketing Management: Prentice Hall,

1999.

131

[138] R. A. Greve, R. Sharda, M. Kamath, and A. Kadam, "Modelling and analysis of e-

mail management for improved customer relationship management,"

International Journal of Simulation and Process Modelling, vol. 1, pp. 125 - 137,

2005.

[139] F. Bellifemine, A. Poggi, and G. Rimassa, "JADE: a FIPA2000 compliant agent

development environment," in Proceedings of the fifth international conference on

Autonomous agents Montreal, Quebec, Canada: ACM, 2001, pp. 216-217.

[140] FIPA, "FIPA ACL Message Structure Specification," Report No: SC00061G,

Foundation for Intelligent Physical Agents, Geneva, Switzerland 2002.

[141] M. D. Sadek, "Attitudes Mentales et Interaction Rationnelle: Vers une Theorie

Formelle de la Communication," These de Doctorat Informatique, Universite de

Rennes I, France, 1991.

[142] FIPA, "FIPA Interaction Protocol Library Specification," Report No: DC00025F,

Foundation of Intelligent Physical Agents, Geneva, Switzerland 2003.

[143] FIPA, "FIPA Contract Net Interaction Protocol Specification," Report No:

SC00029H, Foundation for Intelligent Physical Agents, Geneva, Switzerland

2002.

[144] WfMC, "XPDL - XML Process Definition Language," Report No: WFMC-TC-

1025, Workflow Management Coalition, Hingham, MA, USA, WfMC Specification

Documents 2008.

[145] WFMC, "XPDL Support & Resources," 2009, [Online]. Available:

http://www.wfmc.org/xpdl.html

[146] B. Chandrasekaran, J. R. Josephson, and V. R. Benjamins, "What Are

Ontologies, and Why Do we Need Them?," IEEE Intelligent Systems, vol. 14, pp.

20-26, 1999.

[147] P. Eeles, K. A. Houston, and W. Kozaczynski, Building J2EE™ Applications with

the Rational Unified Process. Indianapolis: Addison-Wesley Professional, 2003.

[148] P.-P. Grassé, "La reconstruction du nid et les coordinations interindividuelles

chezBellicositermes natalensis etCubitermes sp. la théorie de la stigmergie: Essai

d'interprétation du comportement des termites constructeurs," Insectes Sociaux,

vol. 6, pp. 41-80, 1959.

[149] M. Dorigo, E. Bonabeaub, and G. Theraulaz, "Ant algorithms and stigmergy,"

Future Generation Computer Systems, vol. 16, pp. 851-871, 2000.

[150] K. Schmidt and I. Wagner, "Ordering systems: Coordinative practices and

artifacts in architectural design and planning," Computer Supported Cooperative

Work, vol. 13, pp. 349-408, 2004.

[151] H. Van Dyke Parunak, "A Survey of Environments and Mechanisms for Human-

Human Stigmergy," in Environments for Multi-Agent Systems II, DannyWeyns,

H. V. D. Parunak, and F. Michel, Eds.: Springer Berlin / Heidelberg, 2006, pp.

163-186.

[152] A. Ricci, A. Omicini, M. Viroli, L. Gardelli, and E. Oliva, "Cognitive Stigmergy:

Towards a Framework Based on Agents and Artifacts," in Environments for

Multi-Agent Systems III, DannyWeyns, H. V. D. Parunak, and F. Michel, Eds.:

Springer Berlin / Heidelberg, 2007, pp. 124-140.

[153] M. Aksit, K. Wakita, J. Bosch, L. Bergmans, and A. Yonezawa, "Abstracting

Object Interactions Using Composition Filters," in ECOOP 1993 Workshop on

Object-Based Distributed Programming, 1993, pp. 152–184.

[154] W. M. P. v. d. Aalst, "The Application of Petri Nets to Workflow Management,"

Journal of Circuits, Systems, and Computers, vol. 8, pp. 21-66, 1998.

[155] N. Adam, V. Atluri, and W. Huang, "Modeling and analysis of workflows using

Petri nets," Journal of Intelligent Information Systems, vol. 10, pp. 131-158, 1998.

http://www.wfmc.org/xpdl.html

132

[156] H. Davulcu, M. Kifer, C. R. Ramakrishnan, and I. V. Ramakrishnan, "Logic

based modeling and analysis of workflows," in ACM Symposium on Principles of

Database Systems, Seattle, Washington, 1998, pp. 25-33.

[157] M. P. Singh, "Synthesizing distributed constrained events from transactional

workflow specifications," in Proceedings of 12th IEEE International Conference

on Data Engineering, New Orleans, LA, 1996, pp. 616-623.

[158] W. Du, J. Davis, Y. Huang, and M. Shan, "Enterprise workflow resource

management," in International Workshop on Research Issues in Data

Engineering, Sydney, Australia, 1999, pp. 108-115.

[159] Y. Huang and M. Shan, "Policies in a resource manager of workflow systems:

Modeling, enforcement and management.," in International Conference on Data

Engineering, 1999.

[160] M. z. Muhlen, "Resource modeling in workflow applications," in Workflow

Management Conference, Muenster, Germany, 1999, pp. 137-153.

[161] N. Russell, A. H. M. t. Hofstede, D. Edmond, and W. M. P. v. d. Aalst,

"WORKFLOW RESOURCE PATTERNS."

[162] A. Bajaj and S. Ram, "SEAM: A state-entity-activity-model for a well-defined

workflow development methodology," Knowledge and Data Engineering, IEEE

Transactions on, vol. 14, pp. 415-431, 2002.

[163] W. M. P. v. d. Aalst, "Three good reasons for using a Petri-net-based workflow

management system.," in Information and Process Integration in Enterprises:

Rethinking Documents. vol. 428, S. K. T. Wakayama, C.M. Khoong, S. Navathe,

J. Yates, Ed. Boston, MA: Kluwer Academic Publishers, 1998, pp. 161–182.

[164] M. Pinedo, Scheduling: Theory, Algorithms, and Systems (2nd ed.). New Jersey:

Prentice Hall, 2002.

[165] G. Greco, A. Guzzo, L. Ponieri, and D. Sacca, "Discovering expressive process

models by clustering log traces," Knowledge and Data Engineering, IEEE

Transactions on, vol. 18, pp. 1010-1027, 2006.

[166] B. Joonsoo, B. Hyerim, K. Suk-Ho, and K. Yeongho, "Automatic control of

workflow processes using ECA rules," Knowledge and Data Engineering, IEEE

Transactions on, vol. 16, pp. 1010-1023, 2004.

[167] K. v. Hee, A. Serebrenik, N. Sidorova, and M. Voorhoeve, "Soundness of

Resource-Constrained Workflow Nets," in Applications and Theory of Petri Nets

2005. vol. 3536: Springer Berlin / Heidelberg, 2005, pp. 250-267.

[168] H. A. Reijers, "Resource Allocation in Workflows," in Design and Control of

Workflow Processes: Business Process Management for the Service Industry. vol.

2617: Springer Berlin / Heidelberg, 2003, pp. 177-206.

[169] I. Nakic and K. Veselic, "Wielandt and Ky-Fan Theorem for Matrix Pairs," Linear

Algebra and its Applications, vol. 369, pp. 77-73, August 2003 2003.

[170] A. Y. Ng, M. I. Jordan, and Y. Weiss, "On Spectral Clustering: Analysis and an

algorithm," in Advances in Neural Information Processing Systems 14: MIT

Press, 2001, pp. 849--856.

[171] E. L. Johnson, A. Mehrotra, and G. L. Nemhauser, "Min-cut clustering,"

Mathematical Programming, vol. 62, pp. 133-151, 1993.

[172] S. Even, Graph Algorithms. NY, USA: W. H. Freeman & Co., 1979.

133

List of candidate's Publications

Related to Thesis Topic

P. Delias and N. F. Matsatsinis, "Multiple Criteria Decision Making in Multi-Agent

Systems," in The 18th International Conference on Multiple Criteria Decision Making -

MCDM 2006 Chania, Greece, 2006.

P. Delias and N. F. Matsatsinis, "The multiple criteria paradigm as a background for

agent methodologies," in 8th Annual International Workshop "Engineering Societies in

the Agents World", Athens, Greece, 2007, pp. 227-237.

P. Delias, "Workflow Management Systems and Agents. Do They Fit Together?," in 6th

Doctoral Consortium on Enterprise Information Systems, DCEIS 2008, Barcelona, Spain,

2008, pp. 3-11.

P. Delias, A. Doulamis, and N. Matsatsinis, "A Joint Optimization Algorithm for

Dispatching Tasks in Agent-based Workflow Management Systems," in Proceedings of

the 10th International Conference on Enterprise Information Systems, ICEIS 2008,

Barcelona, Spain, 2008, pp. 199-206.

P. Delias, A. Doulamis, and N. Matsatsinis, "Optimizing Resource Conflicts in Workflow

Management Systems," IEEE Transactions on Knowledge and Data Engineering,

(accepted) 2008.

P. Delias, K. Ntalianis, A. Doulamis, and N. Matsatsinis, "Automating Marketing

Campaign Management Through an Agent-based Workflow Management System," in

13th WSEAS International Conference on Communications, Rodos (Rhodes) Island,

Greece, 2009, pp. 37-45.

P. Delias, A. Doulamis, and N. Matsatsinis, "What Agents Can Do in Workflow

Management Systems," IEEE Transactions on Knowledge and Data Engineering, (under

review) 2009.

Related to the sponsor program topic

N. F. Matsatsinis, K. Lakiotaki, and P. Delias, "A System based on Multiple Criteria

Analysis for Scientific Paper Recommendation," in PCI' 2007 11th Panhellenic

Conference in Informatics, Patras, Greece, 2007, pp. 135-149.

K. Lakiotaki, P. Delias, V. Sakkalis, and N. Matsatsinis, "User profiling based on multi-

criteria analysis: the role of utility functions," Operational Research, vol. 9, pp. 3-16,

2009.

MarketingWF Documentation Page 134 of 361

Appendix Α

English Ελληνικά

Activity (Επιμέρους) εργασία

Actuators Μηχανισμοί κίνησης

Adjacency matrix Πίνακας γειτνίασης

Agent-based WFMS Βασισμένα σε πράκτορες ΔΡΕ

Agent-enhanced WFMS Ενισχυμένα από πράκτορες ΔΡΕ

Agent-involved WFMS ΔΡΕ με εμπλοκή της τεχνολογίας

πρακτόρων

Aggregation υγκρότηση

Audit Management Επιστασία

Build-time Χρόνος κατασκευής

Business Process Επιχειρηματική διαδικασία

Common Interpretation Από κοινού ερμηνεία

Coordination υντονισμός

Data Interchange Διαμοιρασμός δεδομένων

Direct mail campaign Διαφημιστική εκστρατεία διά αλληλογραφίας

Encapsulation Ενθυλάκωση

graph Γράφημα

Inheritance Κληρονομικότητα

Instance τιγμιότυπο

Interaction Protocol Πρωτόκολλo αλληλεπίδρασης

Interface Διεπαφή

Intervention Παρέμβαση

Manual Activity Χειροκίνητη εργασία

Message exchange pattern Μοτίβο ανταλλαγής μηνυμάτων

Mobility Κινητικότητα

non-interruptible μη διακοπτόμενου

non-preemptable μη προεκχωρήσιμου

Proactive Προνοητικός

Procedural Διαδικαστικό

Process Definition Ορισμός Διαδικασίας

Prototype Αρχέτυπο

Reactive Αναδραστικός

MarketingWF Documentation Page 135 of 361

Resource Allocation Εκχώρηση πόρων

Runtime Χρόνος εκτέλεσης

Runtime Control Environment Περιβάλλον Ελέγχου Εκτέλεσης

Scheduling Χρονοπρογραμματισμός

Statefulness Διατήρηση Κατάστασης

Transition Μετάβαση

User Interface Διεπιφάνεια Χρήστη

Workflow Ροή εργασιών

Workflow Enactment Service Υπηρεσία εκτέλεσης ροών εργασιών

Workflow Engine Μηχανή ΔΡΕ

Workflow Management System (WFMS) ύστημα Διαχείρισης Ροών Εργασιών (ΔΡΕ)

Workflow Monitoring Επίβλεψη ροών εργασιών

Worklist Λίστα εργασιών

MarketingWF Documentation Page 136 of 361

Appendix Β

Marketing Workflow Source Code Documentation

Package Summary Page

agents 137

agents.contactCenter 155

applications.contactCenter 164

applications.directMail 168

generic 190

marketing.wf.gui 209

monitoring 228

ontology 235

ontology.beans 245

util 253

util.objects 260

util.ws 263

util.ws.crm 280

workflows 287

workflows.auxiliary 332

Package agents

MarketingWF Documentation Page 137 of 361

Package agents

Class Summary Page

ApplicationEngineAgent

The Application Engine is used in case of ontology-based
workflow execution It receives requests from other
agents and serve the actions related to the domain
ontology either by its own or by delegating the actions to
other agents.

137

ApplicationEngineAgent.ApplicationEngineRe
questServer

A cyclic behaviour that listens if there are any requests
related to a specific domain ontology.

141

MarCom The class for the Marketing Communicator agent. 142

MarkAssistant The class for the Marketing Assistant agent. 144

MarketingDirector The class for the Marketing Director agent. 146

MediaVendor The class to represent a Vendor by an agent. 148

MediaVendor.ProposalServer
Inner Class ProposalServer This class serves the
incoming requests for media production

151

ProductManager The class for the Product Manager Agent. 152

Class ApplicationEngineAgent
agents

java.lang.Object

 jade.core.Agent

 com.tilab.wade.commons.WadeAgentImpl

 com.tilab.wade.performer.WorkflowEngineAgent

 agents.ApplicationEngineAgent

All Implemented Interfaces:

Runnable, jade.util.leap.Serializable, Serializable, jade.core.TimerListener,
com.tilab.wade.commons.WadeAgent

public class ApplicationEngineAgent

extends com.tilab.wade.performer.WorkflowEngineAgent

The Application Engine is used in case of ontology-based workflow execution It receives requests from other
agents and serve the actions related to the domain ontology either by its own or by delegating the actions to other
agents.

Author:
Pavlos Delias

Nested Class Summary Page

private

class
ApplicationEngineAgent.ApplicationEngineRequestServer

A cyclic behaviour that listens if there are any requests related to a specific domain
ontology.

141

Nested classes/interfaces inherited from class com.tilab.wade.performer.WorkflowEngineAgent

WorkflowEngineAgent.WorkflowExecutor

Class ApplicationEngineAgent

MarketingWF Documentation Page 138 of 361

Nested classes/interfaces inherited from class jade.core.Agent

Agent.Interrupted

Field Summary Page

private String BATCH_MAIL_REQUIREMENT 140

Connection conn 139

private String CONTACT_SCHEDULE_REQUIREMENT 140

Statement ins 139

private

jade.util.leap.List
mailsReceived 140

private int processId 139

ResultSet rs 139

private static long serialVersionUID 139

Statement stmt 139

Fields inherited from class com.tilab.wade.performer.WorkflowEngineAgent

ACTIVE_CNT_ATTRIBUTE, BUSY_EXECUTORS_ATTRIBUTE, codec, DEFAULT_WORKFLOW_TIMEOUT_ATTRIBUTE,

DONE_STATUS, ENQUEUED_CNT_ATTRIBUTE, EXECUTING_STATUS, executors, IDLE_STATUS, onto,

POOL_SIZE_ATTRIBUTE, SUSPENDED_STATUS, tbf, TERMINATING_STATUS, THREAD_CNT_ATTRIBUTE,

WAITING_STATUS, WORKFLOW_CNT_ATTRIBUTE

Fields inherited from class com.tilab.wade.commons.WadeAgentImpl

arguments, myLogger

Fields inherited from class jade.core.Agent

AP_ACTIVE, AP_DELETED, AP_IDLE, AP_INITIATED, AP_MAX, AP_MIN, AP_SUSPENDED, AP_WAITING,

D_ACTIVE, D_MAX, D_MIN, D_RETIRED, D_SUSPENDED, D_UNKNOWN, MSG_QUEUE_CLASS

Fields inherited from interface com.tilab.wade.commons.WadeAgent

ADMINISTRATOR_ROLE, AGENT_CLASSNAME, AGENT_LOCATION, AGENT_OWNER, AGENT_POOL, AGENT_ROLE,

AGENT_TYPE, BCA_AGENT_TYPE, CONFIGURATION_AGENT_TYPE, CONTROL_AGENT_TYPE, DUMP_ARGUMENTS,

HOSTADDRESS, HOSTNAME, JADE_ADDITIONAL_ARGS, JADE_PROFILE, JAVA_PROFILE, MDB_AGENT_TYPE,

MESSAGE_QUEUE_SIZE_ATTRIBUTE, NONE_OWNER, NULL, RAA_AGENT_TYPE, RESTARTING,

STARTUP_TIME_ATTRIBUTE, TRANSIENT_AGENT_ARGUMENT, WFENGINE_AGENT_TYPE, WORKFLOW_EXECUTOR_ROLE

Constructor Summary Page

ApplicationEngineAgent() 140

Method Summary Page

protected

void

agentSpecificSetup()
140

int getProcessId() 141

Mail processMessage(Message message)

Transforms an ACLMessage to a Mail object. 140

void receiveMail(String popServer, String popUser, String popPassword)

This method is used to fetch messages and process them from a specific account on a
specific Server.

140

private

String

saveList2XL(jade.util.leap.List items)

A method that save mail items to an Excel File 141

private

String

saveWorklist2XL(Worklist todo)

A method that saves a Worklist to an Excel File 141

Class ApplicationEngineAgent

MarketingWF Documentation Page 139 of 361

private

void

sendNotification(jade.content.onto.basic.Action actExpr,

jade.lang.acl.ACLMessage request, int performative, Object result)

This method sends back to the requester the result of an action in a uniform way regardless
of whether or not the action succeeded.

140

void serveAddWorklist(AddWorklist action, jade.content.onto.basic.Action actExpr,

jade.lang.acl.ACLMessage msg)

Serves the AddWorklist action of the ContactCenter Ontology.
140

void serveReceiveMails(ReceiveMails action, jade.content.onto.basic.Action actExpr,

jade.lang.acl.ACLMessage msg)

Serves the ReceiveMails action of the Contact Center Ontology.
140

void serveRequestsOf(RequestsOf action, jade.content.onto.basic.Action actExpr,

jade.lang.acl.ACLMessage msg)

A method used for audit purposes.
141

void serveSendMailBatch(SendMailBatch action, jade.content.onto.basic.Action actExpr,

jade.lang.acl.ACLMessage msg)

Serves the SendMailBatch Action of the ContactCenterOntology.
140

void serveSetProcess(SetProcess action, jade.content.onto.basic.Action actExpr,

jade.lang.acl.ACLMessage msg)

This method is used for the engine to share the current process Id with the GUI
140

void setProcessId(int processId) 141

private

void

updateDB(String file, String req)

Updates the DB rows by associating files with requirements 141

Methods inherited from class com.tilab.wade.performer.WorkflowEngineAgent

adjustControlInfo, afterMove, beforeMove, createExecutionId, createGenericError, dequeue,

enqueue, getActiveCnt, getBusyExecutors, getClassLoaderIdentifier, getCommitTimeout,

getDefaultWorkflowTimeout, getEnqueuedCnt, getExecutionContext, getExecutorsTableStatus,

getLanguage, getOntology, getPoolSize, getRollbackTimeout, getSuspendedCnt, getThreadCnt,

getWorkflowClassLoader, getWorkflowCnt, handleAbortedTransaction, handleBeginActivity,

handleBeginApplication, handleBeginWorkflow, handleCleanupWorkflow,

handleCommittedTransaction, handleCompletedSubflow, handleDelegatedSubflow,

handleEndActivity, handleEndApplication, handleEndWorkflow, handleError, handleEvent,

handleFailedTransaction, handleIncomingWorkflow, handleOpenedTransaction,

handleUnknownAction, isWorking, loadRollbackWorkflow, removeConversation, removeFromQueue,

reply, serveExecuteWorkflow, serveGetPoolSize, serveGetSessionStatus, serveGetWRD,

serveKillWorkflow, serveSetControlInfo, serveSetPoolSize, serveSetWRD, setPoolSize, takeDown

Methods inherited from class com.tilab.wade.commons.WadeAgentImpl

getAttributes, getDFDescription, getManagementResponder, getMessageQueueSize, getOwner,

getRole, getStartupTime, getType, setAttributes, setup

Methods inherited from class jade.core.Agent

addBehaviour, afterClone, beforeClone, blockingReceive, blockingReceive, blockingReceive,

blockingReceive, changeStateTo, clean, createMessageQueue, doActivate, doClone, doDelete,

doMove, doSuspend, doTimeOut, doWait, doWait, doWake, getAgentState, getAID, getAMS,

getArguments, getBootProperties, getContainerController, getContentManager, getCurQueueSize,

getDefaultDF, getHap, getHelper, getLocalName, getName, getO2AObject, getProperty,

getQueueSize, getState, here, isRestarting, join, notifyChangeBehaviourState,

notifyRestarted, postMessage, putBack, putO2AObject, receive, receive, removeBehaviour,

removeTimer, restartLater, restore, restoreBufferedState, run, send, setArguments,

setEnabledO2ACommunication, setGenerateBehaviourEvents, setO2AManager, setQueueSize,

waitUntilStarted, write

Field Detail
private static final long serialVersionUID
Connection conn
Statement stmt
Statement ins
ResultSet rs
private int processId

Class ApplicationEngineAgent

MarketingWF Documentation Page 140 of 361

private jade.util.leap.List mailsReceived
private final String BATCH_MAIL_REQUIREMENT
private final String CONTACT_SCHEDULE_REQUIREMENT

Constructor Detail
public ApplicationEngineAgent()

Method Detail
protected void agentSpecificSetup()

 throws com.tilab.wade.commons.AgentInitializationException

Overrides:

agentSpecificSetup in class com.tilab.wade.performer.WorkflowEngineAgent

Throws:
com.tilab.wade.commons.AgentInitializationException

public void receiveMail(String popServer,

 String popUser,

 String popPassword)

This method is used to fetch messages and process them from a specific account on a specific Server. The
server must be a POP3 one.

public Mail processMessage(Message message)

Transforms an ACLMessage to a Mail object.

Returns:
Mail

private void sendNotification(jade.content.onto.basic.Action actExpr,

 jade.lang.acl.ACLMessage request,

 int performative,

 Object result)

This method sends back to the requester the result of an action in a uniform way regardless of whether or
not the action succeeded. This informative message is required to match the FIPA REQUEST Interaction
Protocol

Parameters:

actExpr - The Action expression that embedded the served action

request - The message that embedded the request to serve the action

performative - The ACL performative to use in the reply

result - The result (if any) produced by the action in case of success or an error code in case of

failure.

public void serveAddWorklist(AddWorklist action,

 jade.content.onto.basic.Action actExpr,

 jade.lang.acl.ACLMessage msg)

Serves the AddWorklist action of the ContactCenter Ontology. Ultimately, it sends a message to an agent
containing the filepath of the file that represents the agent's worklist

public void serveSetProcess(SetProcess action,

 jade.content.onto.basic.Action actExpr,

 jade.lang.acl.ACLMessage msg)

This method is used for the engine to share the current process Id with the GUI

public void serveSendMailBatch(SendMailBatch action,

 jade.content.onto.basic.Action actExpr,

 jade.lang.acl.ACLMessage msg)

Serves the SendMailBatch Action of the ContactCenterOntology. Ultimately, it sends a message which
contains the path of the file that stores all the mails that have been received.

public void serveReceiveMails(ReceiveMails action,

 jade.content.onto.basic.Action actExpr,

 jade.lang.acl.ACLMessage msg)

Class ApplicationEngineAgent

MarketingWF Documentation Page 141 of 361

Serves the ReceiveMails action of the Contact Center Ontology. Actually, it calls the

receiveMail(String, String, String) method passing the arguments specified in the request

mesage.

public void serveRequestsOf(RequestsOf action,

 jade.content.onto.basic.Action actExpr,

 jade.lang.acl.ACLMessage msg)

A method used for audit purposes. It queries the DB and returns all messages exchanged between two
agents, specified within the RequestsOf.RequestsOf() action

private String saveWorklist2XL(Worklist todo)

A method that saves a Worklist to an Excel File

Returns:
file path

private String saveList2XL(jade.util.leap.List items)

A method that save mail items to an Excel File

Returns:
String - The file name of the saved file

private void updateDB(String file,

 String req)

Updates the DB rows by associating files with requirements

public void setProcessId(int processId)
public int getProcessId()

Class ApplicationEngineAgent.ApplicationEngineRequestServer
agents

java.lang.Object

 jade.core.behaviours.Behaviour

 jade.core.behaviours.SimpleBehaviour

 jade.core.behaviours.CyclicBehaviour

 agents.ApplicationEngineAgent.ApplicationEngineRequestServer

All Implemented Interfaces:

jade.util.leap.Serializable, Serializable

Enclosing class:

ApplicationEngineAgent

private class ApplicationEngineAgent.ApplicationEngineRequestServer

extends jade.core.behaviours.CyclicBehaviour

A cyclic behaviour that listens if there are any requests related to a specific domain ontology. If any, then the agent
decode the message and according to the action that the request specifies, it serves a different method

Author:
Pavlos Delias

Nested classes/interfaces inherited from class jade.core.behaviours.Behaviour

Behaviour.RunnableChangedEvent

Class ApplicationEngineAgent.ApplicationEngineRequestServer

MarketingWF Documentation Page 142 of 361

Field Summary Page

private

jade.lang.acl.MessageTemplate
template 142

Fields inherited from class jade.core.behaviours.Behaviour

myAgent, myEvent, NOTIFY_DOWN, NOTIFY_UP, parent, STATE_BLOCKED, STATE_READY, STATE_RUNNING

Constructor Summary Page

private ApplicationEngineAgent.ApplicationEngineRequestServer() 142

Method Summary Page

void action() 142

Methods inherited from class jade.core.behaviours.CyclicBehaviour

done

Methods inherited from class jade.core.behaviours.SimpleBehaviour

reset

Methods inherited from class jade.core.behaviours.Behaviour

actionWrapper, block, block, getBehaviourName, getDataStore, getExecutionState, getParent,

getRestartCounter, handle, handleBlockEvent, handleRestartEvent, isRunnable, onEnd, onStart,

restart, root, setAgent, setBehaviourName, setDataStore, setExecutionState

Field Detail
private jade.lang.acl.MessageTemplate template

Constructor Detail
private ApplicationEngineAgent.ApplicationEngineRequestServer()

Method Detail
public void action()

Overrides:

action in class jade.core.behaviours.Behaviour

Class MarCom
agents

java.lang.Object

 jade.core.Agent

 com.tilab.wade.commons.WadeAgentImpl

 com.tilab.wade.performer.WorkflowEngineAgent

 agents.MarCom

All Implemented Interfaces:

Runnable, jade.util.leap.Serializable, Serializable, jade.core.TimerListener,
com.tilab.wade.commons.WadeAgent

public class MarCom

extends com.tilab.wade.performer.WorkflowEngineAgent

Class MarCom

MarketingWF Documentation Page 143 of 361

The class for the Marketing Communicator agent. A typical job description for MarCom is that he/she is responsible
to assist sales and marketing management with communications media and advertising materials to effectively
represent the company's products and services to customers and prospects

Author:
Pavlos Delias

Nested classes/interfaces inherited from class com.tilab.wade.performer.WorkflowEngineAgent

WorkflowEngineAgent.WorkflowExecutor

Nested classes/interfaces inherited from class jade.core.Agent

Agent.Interrupted

Field Summary Page

private

Vector<jade.core.AID>
knownVendors 144

private static long serialVersionUID 144

Fields inherited from class com.tilab.wade.performer.WorkflowEngineAgent

ACTIVE_CNT_ATTRIBUTE, BUSY_EXECUTORS_ATTRIBUTE, codec, DEFAULT_WORKFLOW_TIMEOUT_ATTRIBUTE,

DONE_STATUS, ENQUEUED_CNT_ATTRIBUTE, EXECUTING_STATUS, executors, IDLE_STATUS, onto,

POOL_SIZE_ATTRIBUTE, SUSPENDED_STATUS, tbf, TERMINATING_STATUS, THREAD_CNT_ATTRIBUTE,

WAITING_STATUS, WORKFLOW_CNT_ATTRIBUTE

Fields inherited from class com.tilab.wade.commons.WadeAgentImpl

arguments, myLogger

Fields inherited from class jade.core.Agent

AP_ACTIVE, AP_DELETED, AP_IDLE, AP_INITIATED, AP_MAX, AP_MIN, AP_SUSPENDED, AP_WAITING,

D_ACTIVE, D_MAX, D_MIN, D_RETIRED, D_SUSPENDED, D_UNKNOWN, MSG_QUEUE_CLASS

Fields inherited from interface com.tilab.wade.commons.WadeAgent

ADMINISTRATOR_ROLE, AGENT_CLASSNAME, AGENT_LOCATION, AGENT_OWNER, AGENT_POOL, AGENT_ROLE,

AGENT_TYPE, BCA_AGENT_TYPE, CONFIGURATION_AGENT_TYPE, CONTROL_AGENT_TYPE, DUMP_ARGUMENTS,

HOSTADDRESS, HOSTNAME, JADE_ADDITIONAL_ARGS, JADE_PROFILE, JAVA_PROFILE, MDB_AGENT_TYPE,

MESSAGE_QUEUE_SIZE_ATTRIBUTE, NONE_OWNER, NULL, RAA_AGENT_TYPE, RESTARTING,

STARTUP_TIME_ATTRIBUTE, TRANSIENT_AGENT_ARGUMENT, WFENGINE_AGENT_TYPE, WORKFLOW_EXECUTOR_ROLE

Constructor Summary Page

MarCom() 144

Method Summary Page

protected void agentSpecificSetup() 144

static

com.tilab.wade.commons.AgentType

getMyType()
144

Vector<jade.core.AID> getVendors() 144

private void subscribeForVendors()

subscribe to the DF to keep the list of vendors up to date Vendors are
identified by their "position" property (set to "vendor")

144

Class MarCom

MarketingWF Documentation Page 144 of 361

Methods inherited from class com.tilab.wade.performer.WorkflowEngineAgent

adjustControlInfo, afterMove, beforeMove, createExecutionId, createGenericError, dequeue,

enqueue, getActiveCnt, getBusyExecutors, getClassLoaderIdentifier, getCommitTimeout,

getDefaultWorkflowTimeout, getEnqueuedCnt, getExecutionContext, getExecutorsTableStatus,

getLanguage, getOntology, getPoolSize, getRollbackTimeout, getSuspendedCnt, getThreadCnt,

getWorkflowClassLoader, getWorkflowCnt, handleAbortedTransaction, handleBeginActivity,

handleBeginApplication, handleBeginWorkflow, handleCleanupWorkflow,

handleCommittedTransaction, handleCompletedSubflow, handleDelegatedSubflow,

handleEndActivity, handleEndApplication, handleEndWorkflow, handleError, handleEvent,

handleFailedTransaction, handleIncomingWorkflow, handleOpenedTransaction,

handleUnknownAction, isWorking, loadRollbackWorkflow, removeConversation, removeFromQueue,

reply, serveExecuteWorkflow, serveGetPoolSize, serveGetSessionStatus, serveGetWRD,

serveKillWorkflow, serveSetControlInfo, serveSetPoolSize, serveSetWRD, setPoolSize, takeDown

Methods inherited from class com.tilab.wade.commons.WadeAgentImpl

getAttributes, getDFDescription, getManagementResponder, getMessageQueueSize, getOwner,

getRole, getStartupTime, getType, setAttributes, setup

Methods inherited from class jade.core.Agent

addBehaviour, afterClone, beforeClone, blockingReceive, blockingReceive, blockingReceive,

blockingReceive, changeStateTo, clean, createMessageQueue, doActivate, doClone, doDelete,

doMove, doSuspend, doTimeOut, doWait, doWait, doWake, getAgentState, getAID, getAMS,

getArguments, getBootProperties, getContainerController, getContentManager, getCurQueueSize,

getDefaultDF, getHap, getHelper, getLocalName, getName, getO2AObject, getProperty,

getQueueSize, getState, here, isRestarting, join, notifyChangeBehaviourState,

notifyRestarted, postMessage, putBack, putO2AObject, receive, receive, removeBehaviour,

removeTimer, restartLater, restore, restoreBufferedState, run, send, setArguments,

setEnabledO2ACommunication, setGenerateBehaviourEvents, setO2AManager, setQueueSize,

waitUntilStarted, write

Field Detail
private static final long serialVersionUID
private Vector<jade.core.AID> knownVendors

Constructor Detail
public MarCom()

Method Detail
protected void agentSpecificSetup()

 throws com.tilab.wade.commons.AgentInitializationException

Overrides:

agentSpecificSetup in class com.tilab.wade.performer.WorkflowEngineAgent

Throws:
com.tilab.wade.commons.AgentInitializationException

private void subscribeForVendors()

subscribe to the DF to keep the list of vendors up to date Vendors are identified by their "position" property
(set to "vendor")

public static com.tilab.wade.commons.AgentType getMyType()
public Vector<jade.core.AID> getVendors()

Class MarkAssistant
agents

java.lang.Object

 jade.core.Agent

 com.tilab.wade.commons.WadeAgentImpl

 com.tilab.wade.performer.WorkflowEngineAgent

 agents.MarkAssistant

Class MarkAssistant

MarketingWF Documentation Page 145 of 361

All Implemented Interfaces:

Runnable, jade.util.leap.Serializable, Serializable, jade.core.TimerListener,
com.tilab.wade.commons.WadeAgent

public class MarkAssistant

extends com.tilab.wade.performer.WorkflowEngineAgent

The class for the Marketing Assistant agent. Typically, The Marketing Assistant provides administrative support to
the staff of the Marketing Department. Duties include general research, clerical, and project based work.

Author:
Pavlos Delias

Nested classes/interfaces inherited from class com.tilab.wade.performer.WorkflowEngineAgent

WorkflowEngineAgent.WorkflowExecutor

Nested classes/interfaces inherited from class jade.core.Agent

Agent.Interrupted

Fields inherited from class com.tilab.wade.performer.WorkflowEngineAgent

ACTIVE_CNT_ATTRIBUTE, BUSY_EXECUTORS_ATTRIBUTE, codec, DEFAULT_WORKFLOW_TIMEOUT_ATTRIBUTE,

DONE_STATUS, ENQUEUED_CNT_ATTRIBUTE, EXECUTING_STATUS, executors, IDLE_STATUS, onto,

POOL_SIZE_ATTRIBUTE, SUSPENDED_STATUS, tbf, TERMINATING_STATUS, THREAD_CNT_ATTRIBUTE,

WAITING_STATUS, WORKFLOW_CNT_ATTRIBUTE

Fields inherited from class com.tilab.wade.commons.WadeAgentImpl

arguments, myLogger

Fields inherited from class jade.core.Agent

AP_ACTIVE, AP_DELETED, AP_IDLE, AP_INITIATED, AP_MAX, AP_MIN, AP_SUSPENDED, AP_WAITING,

D_ACTIVE, D_MAX, D_MIN, D_RETIRED, D_SUSPENDED, D_UNKNOWN, MSG_QUEUE_CLASS

Fields inherited from interface com.tilab.wade.commons.WadeAgent

ADMINISTRATOR_ROLE, AGENT_CLASSNAME, AGENT_LOCATION, AGENT_OWNER, AGENT_POOL, AGENT_ROLE,

AGENT_TYPE, BCA_AGENT_TYPE, CONFIGURATION_AGENT_TYPE, CONTROL_AGENT_TYPE, DUMP_ARGUMENTS,

HOSTADDRESS, HOSTNAME, JADE_ADDITIONAL_ARGS, JADE_PROFILE, JAVA_PROFILE, MDB_AGENT_TYPE,

MESSAGE_QUEUE_SIZE_ATTRIBUTE, NONE_OWNER, NULL, RAA_AGENT_TYPE, RESTARTING,

STARTUP_TIME_ATTRIBUTE, TRANSIENT_AGENT_ARGUMENT, WFENGINE_AGENT_TYPE, WORKFLOW_EXECUTOR_ROLE

Constructor Summary Page

MarkAssistant() 146

Method Summary Page

protected

void

agentSpecificSetup()
146

Methods inherited from class com.tilab.wade.performer.WorkflowEngineAgent

adjustControlInfo, afterMove, beforeMove, createExecutionId, createGenericError, dequeue,

enqueue, getActiveCnt, getBusyExecutors, getClassLoaderIdentifier, getCommitTimeout,

getDefaultWorkflowTimeout, getEnqueuedCnt, getExecutionContext, getExecutorsTableStatus,

getLanguage, getOntology, getPoolSize, getRollbackTimeout, getSuspendedCnt, getThreadCnt,

getWorkflowClassLoader, getWorkflowCnt, handleAbortedTransaction, handleBeginActivity,

handleBeginApplication, handleBeginWorkflow, handleCleanupWorkflow,

Class MarkAssistant

MarketingWF Documentation Page 146 of 361

handleCommittedTransaction, handleCompletedSubflow, handleDelegatedSubflow,

handleEndActivity, handleEndApplication, handleEndWorkflow, handleError, handleEvent,

handleFailedTransaction, handleIncomingWorkflow, handleOpenedTransaction,

handleUnknownAction, isWorking, loadRollbackWorkflow, removeConversation, removeFromQueue,

reply, serveExecuteWorkflow, serveGetPoolSize, serveGetSessionStatus, serveGetWRD,

serveKillWorkflow, serveSetControlInfo, serveSetPoolSize, serveSetWRD, setPoolSize, takeDown

Methods inherited from class com.tilab.wade.commons.WadeAgentImpl

getAttributes, getDFDescription, getManagementResponder, getMessageQueueSize, getOwner,

getRole, getStartupTime, getType, setAttributes, setup

Methods inherited from class jade.core.Agent

addBehaviour, afterClone, beforeClone, blockingReceive, blockingReceive, blockingReceive,

blockingReceive, changeStateTo, clean, createMessageQueue, doActivate, doClone, doDelete,

doMove, doSuspend, doTimeOut, doWait, doWait, doWake, getAgentState, getAID, getAMS,

getArguments, getBootProperties, getContainerController, getContentManager, getCurQueueSize,

getDefaultDF, getHap, getHelper, getLocalName, getName, getO2AObject, getProperty,

getQueueSize, getState, here, isRestarting, join, notifyChangeBehaviourState,

notifyRestarted, postMessage, putBack, putO2AObject, receive, receive, removeBehaviour,

removeTimer, restartLater, restore, restoreBufferedState, run, send, setArguments,

setEnabledO2ACommunication, setGenerateBehaviourEvents, setO2AManager, setQueueSize,

waitUntilStarted, write

Constructor Detail
public MarkAssistant()

Method Detail
protected void agentSpecificSetup()

 throws com.tilab.wade.commons.AgentInitializationException

Overrides:

agentSpecificSetup in class com.tilab.wade.performer.WorkflowEngineAgent
Throws:

com.tilab.wade.commons.AgentInitializationException

Class MarketingDirector
agents

java.lang.Object

 jade.core.Agent

 com.tilab.wade.commons.WadeAgentImpl

 com.tilab.wade.performer.WorkflowEngineAgent

 agents.MarketingDirector

All Implemented Interfaces:

Runnable, jade.util.leap.Serializable, Serializable, jade.core.TimerListener,
com.tilab.wade.commons.WadeAgent

public class MarketingDirector

extends com.tilab.wade.performer.WorkflowEngineAgent

The class for the Marketing Director agent. Typically, the marketing director is responsible to direct firm’s overall
marketing and strategic planning programs.

Author:
Pavlos Delias

Class MarketingDirector

MarketingWF Documentation Page 147 of 361

Nested classes/interfaces inherited from class com.tilab.wade.performer.WorkflowEngineAgent

WorkflowEngineAgent.WorkflowExecutor

Nested classes/interfaces inherited from class jade.core.Agent

Agent.Interrupted

Field Summary Page

private boolean checkListUploaded 148

private

com.tilab.wade.dispatcher.DispatchingCapabilities
dc 148

private boolean meetingOrganized 148

Fields inherited from class com.tilab.wade.performer.WorkflowEngineAgent

ACTIVE_CNT_ATTRIBUTE, BUSY_EXECUTORS_ATTRIBUTE, codec, DEFAULT_WORKFLOW_TIMEOUT_ATTRIBUTE,

DONE_STATUS, ENQUEUED_CNT_ATTRIBUTE, EXECUTING_STATUS, executors, IDLE_STATUS, onto,

POOL_SIZE_ATTRIBUTE, SUSPENDED_STATUS, tbf, TERMINATING_STATUS, THREAD_CNT_ATTRIBUTE,

WAITING_STATUS, WORKFLOW_CNT_ATTRIBUTE

Fields inherited from class com.tilab.wade.commons.WadeAgentImpl

arguments, myLogger

Fields inherited from class jade.core.Agent

AP_ACTIVE, AP_DELETED, AP_IDLE, AP_INITIATED, AP_MAX, AP_MIN, AP_SUSPENDED, AP_WAITING,

D_ACTIVE, D_MAX, D_MIN, D_RETIRED, D_SUSPENDED, D_UNKNOWN, MSG_QUEUE_CLASS

Fields inherited from interface com.tilab.wade.commons.WadeAgent

ADMINISTRATOR_ROLE, AGENT_CLASSNAME, AGENT_LOCATION, AGENT_OWNER, AGENT_POOL, AGENT_ROLE,

AGENT_TYPE, BCA_AGENT_TYPE, CONFIGURATION_AGENT_TYPE, CONTROL_AGENT_TYPE, DUMP_ARGUMENTS,

HOSTADDRESS, HOSTNAME, JADE_ADDITIONAL_ARGS, JADE_PROFILE, JAVA_PROFILE, MDB_AGENT_TYPE,

MESSAGE_QUEUE_SIZE_ATTRIBUTE, NONE_OWNER, NULL, RAA_AGENT_TYPE, RESTARTING,

STARTUP_TIME_ATTRIBUTE, TRANSIENT_AGENT_ARGUMENT, WFENGINE_AGENT_TYPE, WORKFLOW_EXECUTOR_ROLE

Constructor Summary Page

MarketingDirector() 148

Method Summary Page

protected

void

agentSpecificSetup()
148

boolean isCheckListUploaded() 148

boolean isMeetingOrganized() 148

void setCheckListUploaded(boolean checkListUploaded) 148

void setMeetingOrganized(boolean meetingOrganized) 148

Methods inherited from class com.tilab.wade.performer.WorkflowEngineAgent

adjustControlInfo, afterMove, beforeMove, createExecutionId, createGenericError, dequeue,

enqueue, getActiveCnt, getBusyExecutors, getClassLoaderIdentifier, getCommitTimeout,

getDefaultWorkflowTimeout, getEnqueuedCnt, getExecutionContext, getExecutorsTableStatus,

getLanguage, getOntology, getPoolSize, getRollbackTimeout, getSuspendedCnt, getThreadCnt,

getWorkflowClassLoader, getWorkflowCnt, handleAbortedTransaction, handleBeginActivity,

handleBeginApplication, handleBeginWorkflow, handleCleanupWorkflow,

handleCommittedTransaction, handleCompletedSubflow, handleDelegatedSubflow,

handleEndActivity, handleEndApplication, handleEndWorkflow, handleError, handleEvent,

handleFailedTransaction, handleIncomingWorkflow, handleOpenedTransaction,

Class MarketingDirector

MarketingWF Documentation Page 148 of 361

handleUnknownAction, isWorking, loadRollbackWorkflow, removeConversation, removeFromQueue,

reply, serveExecuteWorkflow, serveGetPoolSize, serveGetSessionStatus, serveGetWRD,

serveKillWorkflow, serveSetControlInfo, serveSetPoolSize, serveSetWRD, setPoolSize, takeDown

Methods inherited from class com.tilab.wade.commons.WadeAgentImpl

getAttributes, getDFDescription, getManagementResponder, getMessageQueueSize, getOwner,

getRole, getStartupTime, getType, setAttributes, setup

Methods inherited from class jade.core.Agent

addBehaviour, afterClone, beforeClone, blockingReceive, blockingReceive, blockingReceive,

blockingReceive, changeStateTo, clean, createMessageQueue, doActivate, doClone, doDelete,

doMove, doSuspend, doTimeOut, doWait, doWait, doWake, getAgentState, getAID, getAMS,

getArguments, getBootProperties, getContainerController, getContentManager, getCurQueueSize,

getDefaultDF, getHap, getHelper, getLocalName, getName, getO2AObject, getProperty,

getQueueSize, getState, here, isRestarting, join, notifyChangeBehaviourState,

notifyRestarted, postMessage, putBack, putO2AObject, receive, receive, removeBehaviour,

removeTimer, restartLater, restore, restoreBufferedState, run, send, setArguments,

setEnabledO2ACommunication, setGenerateBehaviourEvents, setO2AManager, setQueueSize,

waitUntilStarted, write

Field Detail
private boolean meetingOrganized
private boolean checkListUploaded
private com.tilab.wade.dispatcher.DispatchingCapabilities dc

Constructor Detail
public MarketingDirector()

Method Detail
protected void agentSpecificSetup()

 throws com.tilab.wade.commons.AgentInitializationException

Overrides:

agentSpecificSetup in class com.tilab.wade.performer.WorkflowEngineAgent

Throws:
com.tilab.wade.commons.AgentInitializationException

public void setMeetingOrganized(boolean meetingOrganized)
public boolean isMeetingOrganized()
public void setCheckListUploaded(boolean checkListUploaded)
public boolean isCheckListUploaded()

Class MediaVendor
agents

java.lang.Object

 jade.core.Agent

 com.tilab.wade.commons.WadeAgentImpl

 com.tilab.wade.performer.WorkflowEngineAgent

 agents.MediaVendor

All Implemented Interfaces:

Runnable, jade.util.leap.Serializable, Serializable, jade.core.TimerListener,
com.tilab.wade.commons.WadeAgent

public class MediaVendor

extends com.tilab.wade.performer.WorkflowEngineAgent

The class to represent a Vendor by an agent. A Media Vendor is considered a vendor organization to which the
base organization can outsource some of its functions.

Class MediaVendor

MarketingWF Documentation Page 149 of 361

Author:
Pavlos Delias

Nested Class Summary Page

private

class
MediaVendor.ProposalServer

Inner Class ProposalServer This class serves the incoming requests for media production
151

Nested classes/interfaces inherited from class com.tilab.wade.performer.WorkflowEngineAgent

WorkflowEngineAgent.WorkflowExecutor

Nested classes/interfaces inherited from class jade.core.Agent

Agent.Interrupted

Field Summary Page

private jade.lang.acl.MessageTemplate acceptProposalTemplate 150

private boolean calculated 150

private jade.lang.acl.ACLMessage CFP 150

private

com.tilab.wade.dispatcher.DispatchingCapabilities
dc 150

private double myOffer 150

private int myStyle 150

Fields inherited from class com.tilab.wade.performer.WorkflowEngineAgent

ACTIVE_CNT_ATTRIBUTE, BUSY_EXECUTORS_ATTRIBUTE, codec, DEFAULT_WORKFLOW_TIMEOUT_ATTRIBUTE,

DONE_STATUS, ENQUEUED_CNT_ATTRIBUTE, EXECUTING_STATUS, executors, IDLE_STATUS, onto,

POOL_SIZE_ATTRIBUTE, SUSPENDED_STATUS, tbf, TERMINATING_STATUS, THREAD_CNT_ATTRIBUTE,

WAITING_STATUS, WORKFLOW_CNT_ATTRIBUTE

Fields inherited from class com.tilab.wade.commons.WadeAgentImpl

arguments, myLogger

Fields inherited from class jade.core.Agent

AP_ACTIVE, AP_DELETED, AP_IDLE, AP_INITIATED, AP_MAX, AP_MIN, AP_SUSPENDED, AP_WAITING,

D_ACTIVE, D_MAX, D_MIN, D_RETIRED, D_SUSPENDED, D_UNKNOWN, MSG_QUEUE_CLASS

Fields inherited from interface com.tilab.wade.commons.WadeAgent

ADMINISTRATOR_ROLE, AGENT_CLASSNAME, AGENT_LOCATION, AGENT_OWNER, AGENT_POOL, AGENT_ROLE,

AGENT_TYPE, BCA_AGENT_TYPE, CONFIGURATION_AGENT_TYPE, CONTROL_AGENT_TYPE, DUMP_ARGUMENTS,

HOSTADDRESS, HOSTNAME, JADE_ADDITIONAL_ARGS, JADE_PROFILE, JAVA_PROFILE, MDB_AGENT_TYPE,

MESSAGE_QUEUE_SIZE_ATTRIBUTE, NONE_OWNER, NULL, RAA_AGENT_TYPE, RESTARTING,

STARTUP_TIME_ATTRIBUTE, TRANSIENT_AGENT_ARGUMENT, WFENGINE_AGENT_TYPE, WORKFLOW_EXECUTOR_ROLE

Constructor Summary Page

MediaVendor() 150

Method Summary Page

protected

void

agentSpecificSetup()
150

void calculateOfferWF(Offer o)

This method calls the execution of the VendorOffer workflow, passing an Offer argument 150

Class MediaVendor

MarketingWF Documentation Page 150 of 361

double getMyOffer() 150

boolean isCalculated() 151

void setCalculated(boolean calculated) 151

void setMyOffer(double myOffer) 150

Methods inherited from class com.tilab.wade.performer.WorkflowEngineAgent

adjustControlInfo, afterMove, beforeMove, createExecutionId, createGenericError, dequeue,

enqueue, getActiveCnt, getBusyExecutors, getClassLoaderIdentifier, getCommitTimeout,

getDefaultWorkflowTimeout, getEnqueuedCnt, getExecutionContext, getExecutorsTableStatus,

getLanguage, getOntology, getPoolSize, getRollbackTimeout, getSuspendedCnt, getThreadCnt,

getWorkflowClassLoader, getWorkflowCnt, handleAbortedTransaction, handleBeginActivity,

handleBeginApplication, handleBeginWorkflow, handleCleanupWorkflow,

handleCommittedTransaction, handleCompletedSubflow, handleDelegatedSubflow,

handleEndActivity, handleEndApplication, handleEndWorkflow, handleError, handleEvent,

handleFailedTransaction, handleIncomingWorkflow, handleOpenedTransaction,

handleUnknownAction, isWorking, loadRollbackWorkflow, removeConversation, removeFromQueue,

reply, serveExecuteWorkflow, serveGetPoolSize, serveGetSessionStatus, serveGetWRD,

serveKillWorkflow, serveSetControlInfo, serveSetPoolSize, serveSetWRD, setPoolSize, takeDown

Methods inherited from class com.tilab.wade.commons.WadeAgentImpl

getAttributes, getDFDescription, getManagementResponder, getMessageQueueSize, getOwner,

getRole, getStartupTime, getType, setAttributes, setup

Methods inherited from class jade.core.Agent

addBehaviour, afterClone, beforeClone, blockingReceive, blockingReceive, blockingReceive,

blockingReceive, changeStateTo, clean, createMessageQueue, doActivate, doClone, doDelete,

doMove, doSuspend, doTimeOut, doWait, doWait, doWake, getAgentState, getAID, getAMS,

getArguments, getBootProperties, getContainerController, getContentManager, getCurQueueSize,

getDefaultDF, getHap, getHelper, getLocalName, getName, getO2AObject, getProperty,

getQueueSize, getState, here, isRestarting, join, notifyChangeBehaviourState,

notifyRestarted, postMessage, putBack, putO2AObject, receive, receive, removeBehaviour,

removeTimer, restartLater, restore, restoreBufferedState, run, send, setArguments,

setEnabledO2ACommunication, setGenerateBehaviourEvents, setO2AManager, setQueueSize,

waitUntilStarted, write

Field Detail
private int myStyle
private double myOffer
private boolean calculated
private com.tilab.wade.dispatcher.DispatchingCapabilities dc
private jade.lang.acl.ACLMessage CFP
private jade.lang.acl.MessageTemplate acceptProposalTemplate

Constructor Detail
public MediaVendor()

Method Detail
protected void agentSpecificSetup()

 throws com.tilab.wade.commons.AgentInitializationException

Overrides:

agentSpecificSetup in class com.tilab.wade.performer.WorkflowEngineAgent

Throws:
com.tilab.wade.commons.AgentInitializationException

public void calculateOfferWF(Offer o)

This method calls the execution of the VendorOffer workflow, passing an Offer argument

public void setMyOffer(double myOffer)
public double getMyOffer()

Class MediaVendor

MarketingWF Documentation Page 151 of 361

public void setCalculated(boolean calculated)
public boolean isCalculated()

Class MediaVendor.ProposalServer
agents

java.lang.Object

 jade.core.behaviours.Behaviour

 jade.core.behaviours.SimpleBehaviour

 jade.core.behaviours.CyclicBehaviour

 agents.MediaVendor.ProposalServer

All Implemented Interfaces:

jade.util.leap.Serializable, Serializable

Enclosing class:

MediaVendor

private class MediaVendor.ProposalServer

extends jade.core.behaviours.CyclicBehaviour

Inner Class ProposalServer This class serves the incoming requests for media production

Nested classes/interfaces inherited from class jade.core.behaviours.Behaviour

Behaviour.RunnableChangedEvent

Field Summary Page

MediaVendor MV 152

Fields inherited from class jade.core.behaviours.Behaviour

myAgent, myEvent, NOTIFY_DOWN, NOTIFY_UP, parent, STATE_BLOCKED, STATE_READY, STATE_RUNNING

Constructor Summary Page

MediaVendor.ProposalServer() 152

Method Summary Page

void action() 152

private

MediaDecisionsGUI.MediaFormat

getFormat(String f)
152

private void serveAcceptProposal(jade.lang.acl.ACLMessage msg) 152

private void serveCFP(jade.lang.acl.ACLMessage msg) 152

Methods inherited from class jade.core.behaviours.CyclicBehaviour

done

Methods inherited from class jade.core.behaviours.SimpleBehaviour

reset

Methods inherited from class jade.core.behaviours.Behaviour

actionWrapper, block, block, getBehaviourName, getDataStore, getExecutionState, getParent,

getRestartCounter, handle, handleBlockEvent, handleRestartEvent, isRunnable, onEnd, onStart,

Class MediaVendor.ProposalServer

MarketingWF Documentation Page 152 of 361

restart, root, setAgent, setBehaviourName, setDataStore, setExecutionState

Field Detail
MediaVendor MV

Constructor Detail
public MediaVendor.ProposalServer()

Method Detail
public void action()

Overrides:

action in class jade.core.behaviours.Behaviour

private MediaDecisionsGUI.MediaFormat getFormat(String f)
private void serveCFP(jade.lang.acl.ACLMessage msg)
private void serveAcceptProposal(jade.lang.acl.ACLMessage msg)

Class ProductManager
agents

java.lang.Object

 jade.core.Agent

 com.tilab.wade.commons.WadeAgentImpl

 com.tilab.wade.performer.WorkflowEngineAgent

 agents.ProductManager

All Implemented Interfaces:

Runnable, jade.util.leap.Serializable, Serializable, jade.core.TimerListener,
com.tilab.wade.commons.WadeAgent

public class ProductManager

extends com.tilab.wade.performer.WorkflowEngineAgent

The class for the Product Manager Agent. Typically, The Product Manager is responsible for the product planning
and execution throughout the product lifecycle, including: gathering and prioritizing product and customer
requirements, defining the product vision, and working closely with engineering, sales, marketing and support to
ensure revenue and customer satisfaction goals are met. The Product Manager's job also includes ensuring that
the product supports the company's overall strategy and goals.

Author:
Pavlos Delias

Nested classes/interfaces inherited from class com.tilab.wade.performer.WorkflowEngineAgent

WorkflowEngineAgent.WorkflowExecutor

Nested classes/interfaces inherited from class jade.core.Agent

Agent.Interrupted

Field Summary Page

private Vector<jade.core.AID> assistants 154

private

jade.lang.acl.MessageTemplate
meeting_template 154

Fields inherited from class com.tilab.wade.performer.WorkflowEngineAgent

ACTIVE_CNT_ATTRIBUTE, BUSY_EXECUTORS_ATTRIBUTE, codec, DEFAULT_WORKFLOW_TIMEOUT_ATTRIBUTE,

Class ProductManager

MarketingWF Documentation Page 153 of 361

DONE_STATUS, ENQUEUED_CNT_ATTRIBUTE, EXECUTING_STATUS, executors, IDLE_STATUS, onto,

POOL_SIZE_ATTRIBUTE, SUSPENDED_STATUS, tbf, TERMINATING_STATUS, THREAD_CNT_ATTRIBUTE,

WAITING_STATUS, WORKFLOW_CNT_ATTRIBUTE

Fields inherited from class com.tilab.wade.commons.WadeAgentImpl

arguments, myLogger

Fields inherited from class jade.core.Agent

AP_ACTIVE, AP_DELETED, AP_IDLE, AP_INITIATED, AP_MAX, AP_MIN, AP_SUSPENDED, AP_WAITING,

D_ACTIVE, D_MAX, D_MIN, D_RETIRED, D_SUSPENDED, D_UNKNOWN, MSG_QUEUE_CLASS

Fields inherited from interface com.tilab.wade.commons.WadeAgent

ADMINISTRATOR_ROLE, AGENT_CLASSNAME, AGENT_LOCATION, AGENT_OWNER, AGENT_POOL, AGENT_ROLE,

AGENT_TYPE, BCA_AGENT_TYPE, CONFIGURATION_AGENT_TYPE, CONTROL_AGENT_TYPE, DUMP_ARGUMENTS,

HOSTADDRESS, HOSTNAME, JADE_ADDITIONAL_ARGS, JADE_PROFILE, JAVA_PROFILE, MDB_AGENT_TYPE,

MESSAGE_QUEUE_SIZE_ATTRIBUTE, NONE_OWNER, NULL, RAA_AGENT_TYPE, RESTARTING,

STARTUP_TIME_ATTRIBUTE, TRANSIENT_AGENT_ARGUMENT, WFENGINE_AGENT_TYPE, WORKFLOW_EXECUTOR_ROLE

Constructor Summary Page

ProductManager() 154

Method Summary Page

protected void agentSpecificSetup() 154

Vector<jade.core.AID> getAssistants() 154

static

com.tilab.wade.commons.AgentType

getMyType()
154

private void proposeResponderAction()

This method adds a cyclic behaviour to check if there are any
meeting proposals arrived, and if any properly respond to them.

154

private void subscribeForAssistants()

subscribe to the DF to keep the list of Marketing Assistants up to date
Assistants are identified by their "position" property (set to "assistant")

154

Methods inherited from class com.tilab.wade.performer.WorkflowEngineAgent

adjustControlInfo, afterMove, beforeMove, createExecutionId, createGenericError, dequeue,

enqueue, getActiveCnt, getBusyExecutors, getClassLoaderIdentifier, getCommitTimeout,

getDefaultWorkflowTimeout, getEnqueuedCnt, getExecutionContext, getExecutorsTableStatus,

getLanguage, getOntology, getPoolSize, getRollbackTimeout, getSuspendedCnt, getThreadCnt,

getWorkflowClassLoader, getWorkflowCnt, handleAbortedTransaction, handleBeginActivity,

handleBeginApplication, handleBeginWorkflow, handleCleanupWorkflow,

handleCommittedTransaction, handleCompletedSubflow, handleDelegatedSubflow,

handleEndActivity, handleEndApplication, handleEndWorkflow, handleError, handleEvent,

handleFailedTransaction, handleIncomingWorkflow, handleOpenedTransaction,

handleUnknownAction, isWorking, loadRollbackWorkflow, removeConversation, removeFromQueue,

reply, serveExecuteWorkflow, serveGetPoolSize, serveGetSessionStatus, serveGetWRD,

serveKillWorkflow, serveSetControlInfo, serveSetPoolSize, serveSetWRD, setPoolSize, takeDown

Methods inherited from class com.tilab.wade.commons.WadeAgentImpl

getAttributes, getDFDescription, getManagementResponder, getMessageQueueSize, getOwner,

getRole, getStartupTime, getType, setAttributes, setup

Methods inherited from class jade.core.Agent

addBehaviour, afterClone, beforeClone, blockingReceive, blockingReceive, blockingReceive,

blockingReceive, changeStateTo, clean, createMessageQueue, doActivate, doClone, doDelete,

doMove, doSuspend, doTimeOut, doWait, doWait, doWake, getAgentState, getAID, getAMS,

getArguments, getBootProperties, getContainerController, getContentManager, getCurQueueSize,

Class ProductManager

MarketingWF Documentation Page 154 of 361

getDefaultDF, getHap, getHelper, getLocalName, getName, getO2AObject, getProperty,

getQueueSize, getState, here, isRestarting, join, notifyChangeBehaviourState,

notifyRestarted, postMessage, putBack, putO2AObject, receive, receive, removeBehaviour,

removeTimer, restartLater, restore, restoreBufferedState, run, send, setArguments,

setEnabledO2ACommunication, setGenerateBehaviourEvents, setO2AManager, setQueueSize,

waitUntilStarted, write

Field Detail
private Vector<jade.core.AID> assistants
private jade.lang.acl.MessageTemplate meeting_template

Constructor Detail
public ProductManager()

Method Detail
protected void agentSpecificSetup()

 throws com.tilab.wade.commons.AgentInitializationException

Overrides:

agentSpecificSetup in class com.tilab.wade.performer.WorkflowEngineAgent

Throws:
com.tilab.wade.commons.AgentInitializationException

private void subscribeForAssistants()

subscribe to the DF to keep the list of Marketing Assistants up to date Assistants are identified by their
"position" property (set to "assistant")

public Vector<jade.core.AID> getAssistants()
private void proposeResponderAction()

This method adds a cyclic behaviour to check if there are any meeting proposals arrived, and if any
properly respond to them.

public static com.tilab.wade.commons.AgentType getMyType()

Package agents.contactCenter

MarketingWF Documentation Page 155 of 361

Package agents.contactCenter

Class Summary Page

AssignmentAgent This agent is responsible for assigning jobs to employees. 155

AssignmentAgent.ContactRequestServer
A cyclic behavior that helps the AssignmentAgent to listen for
requests related to the Contact Center ontology.

158

AssignmentAgent.Task A supporting class to map an e-mail to a Task object 159

ContactAgent The class to represent the employee of the Contact Center. 160

ContactAgent.ContactRequestServer
A Cyclic Behavior to support the agent to listen to requests
related to the contact center ontology.

162

Class AssignmentAgent
agents.contactCenter

java.lang.Object

 jade.core.Agent

 com.tilab.wade.commons.WadeAgentImpl

 com.tilab.wade.performer.WorkflowEngineAgent

 agents.contactCenter.AssignmentAgent

All Implemented Interfaces:

Runnable, jade.util.leap.Serializable, Serializable, jade.core.TimerListener,
com.tilab.wade.commons.WadeAgent

public class AssignmentAgent

extends com.tilab.wade.performer.WorkflowEngineAgent

This agent is responsible for assigning jobs to employees.

Author:
Pavlos Delias

Nested Class Summary Page

private

class
AssignmentAgent.ContactRequestServer

A cyclic behavior that helps the AssignmentAgent to listen for requests related to the
Contact Center ontology.

158

class AssignmentAgent.Task

A supporting class to map an e-mail to a Task object
159

Nested classes/interfaces inherited from class com.tilab.wade.performer.WorkflowEngineAgent

WorkflowEngineAgent.WorkflowExecutor

Nested classes/interfaces inherited from class jade.core.Agent

Agent.Interrupted

Field Summary Page

private

Vector<Integer>
deadlines 157

private

Vector<Integer>
durations 157

Class AssignmentAgent

MarketingWF Documentation Page 156 of 361

private Vector<Mail> mails 157

private

Vector<String>
names 157

private

Vector<Integer>
releaseTimes 157

private

Vector<jade.core.AID>
taskAgents 157

Fields inherited from class com.tilab.wade.performer.WorkflowEngineAgent

ACTIVE_CNT_ATTRIBUTE, BUSY_EXECUTORS_ATTRIBUTE, codec, DEFAULT_WORKFLOW_TIMEOUT_ATTRIBUTE,

DONE_STATUS, ENQUEUED_CNT_ATTRIBUTE, EXECUTING_STATUS, executors, IDLE_STATUS, onto,

POOL_SIZE_ATTRIBUTE, SUSPENDED_STATUS, tbf, TERMINATING_STATUS, THREAD_CNT_ATTRIBUTE,

WAITING_STATUS, WORKFLOW_CNT_ATTRIBUTE

Fields inherited from class com.tilab.wade.commons.WadeAgentImpl

arguments, myLogger

Fields inherited from class jade.core.Agent

AP_ACTIVE, AP_DELETED, AP_IDLE, AP_INITIATED, AP_MAX, AP_MIN, AP_SUSPENDED, AP_WAITING,

D_ACTIVE, D_MAX, D_MIN, D_RETIRED, D_SUSPENDED, D_UNKNOWN, MSG_QUEUE_CLASS

Fields inherited from interface com.tilab.wade.commons.WadeAgent

ADMINISTRATOR_ROLE, AGENT_CLASSNAME, AGENT_LOCATION, AGENT_OWNER, AGENT_POOL, AGENT_ROLE,

AGENT_TYPE, BCA_AGENT_TYPE, CONFIGURATION_AGENT_TYPE, CONTROL_AGENT_TYPE, DUMP_ARGUMENTS,

HOSTADDRESS, HOSTNAME, JADE_ADDITIONAL_ARGS, JADE_PROFILE, JAVA_PROFILE, MDB_AGENT_TYPE,

MESSAGE_QUEUE_SIZE_ATTRIBUTE, NONE_OWNER, NULL, RAA_AGENT_TYPE, RESTARTING,

STARTUP_TIME_ATTRIBUTE, TRANSIENT_AGENT_ARGUMENT, WFENGINE_AGENT_TYPE, WORKFLOW_EXECUTOR_ROLE

Constructor Summary Page

AssignmentAgent() 157

Method Summary
Pa
ge

protected void agentSpecificSetup() 157

private void createBatchfromXL(String filename)

Takes as input an Excel file and creates a batch of Mails 157

private void createInput4WF()

Supporting method to prepare the parameters of the workflow 157

private jade.lang.acl.ACLMessage prepareExecuteWorkflowRequest(com.tilab.wade.performer.de

scriptors.WorkflowDesc

riptor wd)

Prepares a message that requests execution of a workflow
according to the WorkflowDescriptor, provided as input parameter

158

private

com.tilab.wade.performer.descriptors.Wor

kflowDescriptor

prepareWorkflowDescriptor()

Prepares a SpectralScheduling workflow by filling its

parameters
157

void serveRead(Read action, jade.content.onto.basic.Action

actExpr, jade.lang.acl.ACLMessage msg)

Serves the Read action of the Contact Center ontology.
157

private void subscribeForTaskAgents()

subscribe to the DF to keep the list of Contact Agents up to
date Agents are identified by their "position" property (set to
"employee")

158

Methods inherited from class com.tilab.wade.performer.WorkflowEngineAgent

adjustControlInfo, afterMove, beforeMove, createExecutionId, createGenericError, dequeue,

Class AssignmentAgent

MarketingWF Documentation Page 157 of 361

enqueue, getActiveCnt, getBusyExecutors, getClassLoaderIdentifier, getCommitTimeout,

getDefaultWorkflowTimeout, getEnqueuedCnt, getExecutionContext, getExecutorsTableStatus,

getLanguage, getOntology, getPoolSize, getRollbackTimeout, getSuspendedCnt, getThreadCnt,

getWorkflowClassLoader, getWorkflowCnt, handleAbortedTransaction, handleBeginActivity,

handleBeginApplication, handleBeginWorkflow, handleCleanupWorkflow,

handleCommittedTransaction, handleCompletedSubflow, handleDelegatedSubflow,

handleEndActivity, handleEndApplication, handleEndWorkflow, handleError, handleEvent,

handleFailedTransaction, handleIncomingWorkflow, handleOpenedTransaction,

handleUnknownAction, isWorking, loadRollbackWorkflow, removeConversation, removeFromQueue,

reply, serveExecuteWorkflow, serveGetPoolSize, serveGetSessionStatus, serveGetWRD,

serveKillWorkflow, serveSetControlInfo, serveSetPoolSize, serveSetWRD, setPoolSize, takeDown

Methods inherited from class com.tilab.wade.commons.WadeAgentImpl

getAttributes, getDFDescription, getManagementResponder, getMessageQueueSize, getOwner,

getRole, getStartupTime, getType, setAttributes, setup

Methods inherited from class jade.core.Agent

addBehaviour, afterClone, beforeClone, blockingReceive, blockingReceive, blockingReceive,

blockingReceive, changeStateTo, clean, createMessageQueue, doActivate, doClone, doDelete,

doMove, doSuspend, doTimeOut, doWait, doWait, doWake, getAgentState, getAID, getAMS,

getArguments, getBootProperties, getContainerController, getContentManager, getCurQueueSize,

getDefaultDF, getHap, getHelper, getLocalName, getName, getO2AObject, getProperty,

getQueueSize, getState, here, isRestarting, join, notifyChangeBehaviourState,

notifyRestarted, postMessage, putBack, putO2AObject, receive, receive, removeBehaviour,

removeTimer, restartLater, restore, restoreBufferedState, run, send, setArguments,

setEnabledO2ACommunication, setGenerateBehaviourEvents, setO2AManager, setQueueSize,

waitUntilStarted, write

Field Detail
private Vector<Mail> mails
private Vector<String> names
private Vector<Integer> releaseTimes
private Vector<Integer> deadlines
private Vector<Integer> durations
private Vector<jade.core.AID> taskAgents

Constructor Detail
public AssignmentAgent()

Method Detail
protected void agentSpecificSetup()

 throws com.tilab.wade.commons.AgentInitializationException

Overrides:

agentSpecificSetup in class com.tilab.wade.performer.WorkflowEngineAgent
Throws:

com.tilab.wade.commons.AgentInitializationException

public void serveRead(Read action,

 jade.content.onto.basic.Action actExpr,

 jade.lang.acl.ACLMessage msg)

Serves the Read action of the Contact Center ontology. Ultimately, it reads the file specified in the input

message and invokes a workflow execution though the prepareWorkflowDescriptor() and the

prepareExecuteWorkflowRequest(WorkflowDescriptor) methods.

private void createInput4WF()

Supporting method to prepare the parameters of the workflow

private void createBatchfromXL(String filename)

Takes as input an Excel file and creates a batch of Mails

private com.tilab.wade.performer.descriptors.WorkflowDescriptor prepareWorkflowDescriptor()

Class AssignmentAgent

MarketingWF Documentation Page 158 of 361

Prepares a SpectralScheduling workflow by filling its parameters

Returns:

a com.tilab.wade.performer.descriptors.WorkflowDescriptor object

private jade.lang.acl.ACLMessage prepareExecuteWorkflowRequest(com.tilab.wade.performer.descri

ptors.WorkflowDescriptor wd)

Prepares a message that requests execution of a workflow according to the WorkflowDescriptor, provided
as input parameter

Returns:
a request message

private void subscribeForTaskAgents()

subscribe to the DF to keep the list of Contact Agents up to date Agents are identified by their "position"
property (set to "employee")

Class AssignmentAgent.ContactRequestServer
agents.contactCenter

java.lang.Object

 jade.core.behaviours.Behaviour

 jade.core.behaviours.SimpleBehaviour

 jade.core.behaviours.CyclicBehaviour

 agents.contactCenter.AssignmentAgent.ContactRequestServer

All Implemented Interfaces:

jade.util.leap.Serializable, Serializable

Enclosing class:

AssignmentAgent

private class AssignmentAgent.ContactRequestServer

extends jade.core.behaviours.CyclicBehaviour

A cyclic behavior that helps the AssignmentAgent to listen for requests related to the Contact Center ontology. If
there are any requests received, the agent decodes the message and serves the request bu calling the appropriate
methods.

Author:
Pavlos Delias

Nested classes/interfaces inherited from class jade.core.behaviours.Behaviour

Behaviour.RunnableChangedEvent

Field Summary Page

private

jade.lang.acl.MessageTemplate
template 159

Fields inherited from class jade.core.behaviours.Behaviour

myAgent, myEvent, NOTIFY_DOWN, NOTIFY_UP, parent, STATE_BLOCKED, STATE_READY, STATE_RUNNING

Class AssignmentAgent.ContactRequestServer

MarketingWF Documentation Page 159 of 361

Constructor Summary Page

private AssignmentAgent.ContactRequestServer() 159

Method Summary Page

void action() 159

Methods inherited from class jade.core.behaviours.CyclicBehaviour

done

Methods inherited from class jade.core.behaviours.SimpleBehaviour

reset

Methods inherited from class jade.core.behaviours.Behaviour

actionWrapper, block, block, getBehaviourName, getDataStore, getExecutionState, getParent,

getRestartCounter, handle, handleBlockEvent, handleRestartEvent, isRunnable, onEnd, onStart,

restart, root, setAgent, setBehaviourName, setDataStore, setExecutionState

Field Detail
private jade.lang.acl.MessageTemplate template

Constructor Detail
private AssignmentAgent.ContactRequestServer()

Method Detail
public void action()

Overrides:

action in class jade.core.behaviours.Behaviour

Class AssignmentAgent.Task
agents.contactCenter

java.lang.Object

 agents.contactCenter.AssignmentAgent.Task

Enclosing class:

AssignmentAgent

class AssignmentAgent.Task

extends Object

A supporting class to map an e-mail to a Task object

Author:
Pavlos Delias

Field Summary Page

private

int
deadline 160

private

String
name 160

private

int
processingTime 160

Class AssignmentAgent.Task

MarketingWF Documentation Page 160 of 361

private

int
releaseTime 160

Constructor Summary Page

AssignmentAgent.Task(Mail m, int cnt) 160

Method Summary Page

int getDeadline() 160

String getName() 160

int getProcessingTime() 160

int getReleaseTime() 160

void setDeadline(int deadline) 160

void setName(String name) 160

void setProcessingTime(int processingTime) 160

void setReleaseTime(int releaseTime) 160

Field Detail
private String name
private int processingTime
private int releaseTime
private int deadline

Constructor Detail
public AssignmentAgent.Task(Mail m,

 int cnt)

Method Detail
public void setName(String name)
public String getName()
public void setProcessingTime(int processingTime)
public int getProcessingTime()
public void setReleaseTime(int releaseTime)
public int getReleaseTime()
public void setDeadline(int deadline)
public int getDeadline()

Class ContactAgent
agents.contactCenter

java.lang.Object

 jade.core.Agent

 com.tilab.wade.commons.WadeAgentImpl

 com.tilab.wade.performer.WorkflowEngineAgent

 agents.contactCenter.ContactAgent

All Implemented Interfaces:

Runnable, jade.util.leap.Serializable, Serializable, jade.core.TimerListener,
com.tilab.wade.commons.WadeAgent

public class ContactAgent

extends com.tilab.wade.performer.WorkflowEngineAgent

The class to represent the employee of the Contact Center.

Author:
Pavlos Delias

Class ContactAgent

MarketingWF Documentation Page 161 of 361

Nested Class Summary Page

private

class
ContactAgent.ContactRequestServer

A Cyclic Behavior to support the agent to listen to requests related to the contact center
ontology.

162

Nested classes/interfaces inherited from class com.tilab.wade.performer.WorkflowEngineAgent

WorkflowEngineAgent.WorkflowExecutor

Nested classes/interfaces inherited from class jade.core.Agent

Agent.Interrupted

Fields inherited from class com.tilab.wade.performer.WorkflowEngineAgent

ACTIVE_CNT_ATTRIBUTE, BUSY_EXECUTORS_ATTRIBUTE, codec, DEFAULT_WORKFLOW_TIMEOUT_ATTRIBUTE,

DONE_STATUS, ENQUEUED_CNT_ATTRIBUTE, EXECUTING_STATUS, executors, IDLE_STATUS, onto,

POOL_SIZE_ATTRIBUTE, SUSPENDED_STATUS, tbf, TERMINATING_STATUS, THREAD_CNT_ATTRIBUTE,

WAITING_STATUS, WORKFLOW_CNT_ATTRIBUTE

Fields inherited from class com.tilab.wade.commons.WadeAgentImpl

arguments, myLogger

Fields inherited from class jade.core.Agent

AP_ACTIVE, AP_DELETED, AP_IDLE, AP_INITIATED, AP_MAX, AP_MIN, AP_SUSPENDED, AP_WAITING,

D_ACTIVE, D_MAX, D_MIN, D_RETIRED, D_SUSPENDED, D_UNKNOWN, MSG_QUEUE_CLASS

Fields inherited from interface com.tilab.wade.commons.WadeAgent

ADMINISTRATOR_ROLE, AGENT_CLASSNAME, AGENT_LOCATION, AGENT_OWNER, AGENT_POOL, AGENT_ROLE,

AGENT_TYPE, BCA_AGENT_TYPE, CONFIGURATION_AGENT_TYPE, CONTROL_AGENT_TYPE, DUMP_ARGUMENTS,

HOSTADDRESS, HOSTNAME, JADE_ADDITIONAL_ARGS, JADE_PROFILE, JAVA_PROFILE, MDB_AGENT_TYPE,

MESSAGE_QUEUE_SIZE_ATTRIBUTE, NONE_OWNER, NULL, RAA_AGENT_TYPE, RESTARTING,

STARTUP_TIME_ATTRIBUTE, TRANSIENT_AGENT_ARGUMENT, WFENGINE_AGENT_TYPE, WORKFLOW_EXECUTOR_ROLE

Constructor Summary Page

ContactAgent() 162

Method Summary Page

protected

void

agentSpecificSetup()
162

void serveTodo(Todo action, jade.content.onto.basic.Action actExpr,

jade.lang.acl.ACLMessage msg)

Serves the Todo action of the Contact Center ontology.
162

Methods inherited from class com.tilab.wade.performer.WorkflowEngineAgent

adjustControlInfo, afterMove, beforeMove, createExecutionId, createGenericError, dequeue,

enqueue, getActiveCnt, getBusyExecutors, getClassLoaderIdentifier, getCommitTimeout,

getDefaultWorkflowTimeout, getEnqueuedCnt, getExecutionContext, getExecutorsTableStatus,

getLanguage, getOntology, getPoolSize, getRollbackTimeout, getSuspendedCnt, getThreadCnt,

getWorkflowClassLoader, getWorkflowCnt, handleAbortedTransaction, handleBeginActivity,

handleBeginApplication, handleBeginWorkflow, handleCleanupWorkflow,

handleCommittedTransaction, handleCompletedSubflow, handleDelegatedSubflow,

handleEndActivity, handleEndApplication, handleEndWorkflow, handleError, handleEvent,

handleFailedTransaction, handleIncomingWorkflow, handleOpenedTransaction,

handleUnknownAction, isWorking, loadRollbackWorkflow, removeConversation, removeFromQueue,

reply, serveExecuteWorkflow, serveGetPoolSize, serveGetSessionStatus, serveGetWRD,

Class ContactAgent

MarketingWF Documentation Page 162 of 361

serveKillWorkflow, serveSetControlInfo, serveSetPoolSize, serveSetWRD, setPoolSize, takeDown

Methods inherited from class com.tilab.wade.commons.WadeAgentImpl

getAttributes, getDFDescription, getManagementResponder, getMessageQueueSize, getOwner,

getRole, getStartupTime, getType, setAttributes, setup

Methods inherited from class jade.core.Agent

addBehaviour, afterClone, beforeClone, blockingReceive, blockingReceive, blockingReceive,

blockingReceive, changeStateTo, clean, createMessageQueue, doActivate, doClone, doDelete,

doMove, doSuspend, doTimeOut, doWait, doWait, doWake, getAgentState, getAID, getAMS,

getArguments, getBootProperties, getContainerController, getContentManager, getCurQueueSize,

getDefaultDF, getHap, getHelper, getLocalName, getName, getO2AObject, getProperty,

getQueueSize, getState, here, isRestarting, join, notifyChangeBehaviourState,

notifyRestarted, postMessage, putBack, putO2AObject, receive, receive, removeBehaviour,

removeTimer, restartLater, restore, restoreBufferedState, run, send, setArguments,

setEnabledO2ACommunication, setGenerateBehaviourEvents, setO2AManager, setQueueSize,

waitUntilStarted, write

Constructor Detail
public ContactAgent()

Method Detail
protected void agentSpecificSetup()

 throws com.tilab.wade.commons.AgentInitializationException

Overrides:

agentSpecificSetup in class com.tilab.wade.performer.WorkflowEngineAgent
Throws:

com.tilab.wade.commons.AgentInitializationException

public void serveTodo(Todo action,

 jade.content.onto.basic.Action actExpr,

 jade.lang.acl.ACLMessage msg)

Serves the Todo action of the Contact Center ontology.

Class ContactAgent.ContactRequestServer
agents.contactCenter

java.lang.Object

 jade.core.behaviours.Behaviour

 jade.core.behaviours.SimpleBehaviour

 jade.core.behaviours.CyclicBehaviour

 agents.contactCenter.ContactAgent.ContactRequestServer

All Implemented Interfaces:

jade.util.leap.Serializable, Serializable

Enclosing class:

ContactAgent

private class ContactAgent.ContactRequestServer

extends jade.core.behaviours.CyclicBehaviour

A Cyclic Behavior to support the agent to listen to requests related to the contact center ontology. If any, the agent
properly decodes the message and serves the corresponding action

Author:
Pavlos Delias

Class ContactAgent.ContactRequestServer

MarketingWF Documentation Page 163 of 361

Nested classes/interfaces inherited from class jade.core.behaviours.Behaviour

Behaviour.RunnableChangedEvent

Field Summary Page

private

jade.lang.acl.MessageTemplate
template 163

Fields inherited from class jade.core.behaviours.Behaviour

myAgent, myEvent, NOTIFY_DOWN, NOTIFY_UP, parent, STATE_BLOCKED, STATE_READY, STATE_RUNNING

Constructor Summary Page

private ContactAgent.ContactRequestServer() 163

Method Summary Page

void action() 163

Methods inherited from class jade.core.behaviours.CyclicBehaviour

done

Methods inherited from class jade.core.behaviours.SimpleBehaviour

reset

Methods inherited from class jade.core.behaviours.Behaviour

actionWrapper, block, block, getBehaviourName, getDataStore, getExecutionState, getParent,

getRestartCounter, handle, handleBlockEvent, handleRestartEvent, isRunnable, onEnd, onStart,

restart, root, setAgent, setBehaviourName, setDataStore, setExecutionState

Field Detail
private jade.lang.acl.MessageTemplate template

Constructor Detail
private ContactAgent.ContactRequestServer()

Method Detail
public void action()

Overrides:

action in class jade.core.behaviours.Behaviour

Package applications.contactCenter

MarketingWF Documentation Page 164 of 361

Package applications.contactCenter

Class Summary Page

FindTasksPerAgent

This application uses the optimistic single-threaded execution strategy to
reassure that an AddWorklist request is send to the Application engine
when at least an assignment exists, and after all assignments are
decided.

164

SpectralSchedulingByMATLAB Calls MATLAB to execute a specific scheduling algorithm. 165

Class FindTasksPerAgent
applications.contactCenter

java.lang.Object

 com.tilab.wade.performer.Application

 com.tilab.wade.performer.BaseApplication

 applications.contactCenter.FindTasksPerAgent

public class FindTasksPerAgent

extends com.tilab.wade.performer.BaseApplication

This application uses the optimistic single-threaded execution strategy to reassure that an AddWorklist request is
send to the Application engine when at least an assignment exists, and after all assignments are decided.

Author:
Pavlos Delias

Field Summary Page

HashMap<String,Integer> assignments 165

Fields inherited from class com.tilab.wade.performer.Application

formalParams, myAgent, myExecutionId, myLogger, myName, mySessionId

Constructor Summary Page

FindTasksPerAgent() 165

Method Summary Page

private void createRequest(jade.core.AID engine)

Send an AddWorklist request to the engine agent, specified in the arguments The

method is synchronized to reassure that the assignments Map is ready.
165

private

Worklist

createWorklistFromMap(HashMap<String,Integer> map)

A Worklist is created through the assignments Map. 165

void execute() 165

private void fillAssignments()

The assignments are filtered and grouped by agent. 165

private

jade.core.AID

getApplicationEngine()

Supporting method that talks to the DF to retrieve the Application Engine Agent 165

Methods inherited from class com.tilab.wade.performer.BaseApplication

checkParameters, extract, fill, fillFormalParameters, getDataStore, setDataStore

Class FindTasksPerAgent

MarketingWF Documentation Page 165 of 361

Methods inherited from class com.tilab.wade.performer.Application

commit, fill, fill, fill, fill, fill, fireEvent, get, getControlInfo, getFormalParameters,

getModifier, getModifiers, getTracer, getTransactionManager, getValid, getWorkflowDescriptor,

getWorkflowFailureReason, getWorkflowLastErrorEvent, isTransactional, rollback, set,

setWorkflowFailureReason, trace, trace

Field Detail
HashMap<String,Integer> assignments

Constructor Detail
public FindTasksPerAgent()

Method Detail
public void execute()

 throws Throwable

Overrides:

execute in class com.tilab.wade.performer.Application

Throws:
Throwable

private synchronized void fillAssignments()

The assignments are filtered and grouped by agent. The map assignments is filled for the specified agent

private synchronized void createRequest(jade.core.AID engine)

Send an AddWorklist request to the engine agent, specified in the arguments The method is synchronized

to reassure that the assignments Map is ready.

private jade.core.AID getApplicationEngine()

Supporting method that talks to the DF to retrieve the Application Engine Agent

Returns:

jade.core.AID engine

private Worklist createWorklistFromMap(HashMap<String,Integer> map)

A Worklist is created through the assignments Map.

Returns:

Worklist worklist

Class SpectralSchedulingByMATLAB
applications.contactCenter

java.lang.Object

 com.tilab.wade.performer.Application

 com.tilab.wade.performer.BaseApplication

 applications.contactCenter.SpectralSchedulingByMATLAB

public class SpectralSchedulingByMATLAB

extends com.tilab.wade.performer.BaseApplication

Calls MATLAB to execute a specific scheduling algorithm. The data input are provided as FormalParameter by the

workflow class (SpectralScheduling) that calls this application

Author:
Pavlos Delias

Class SpectralSchedulingByMATLAB

MarketingWF Documentation Page 166 of 361

Field Summary Page

private

static

Object

lock
166

Fields inherited from class com.tilab.wade.performer.Application

formalParams, myAgent, myExecutionId, myLogger, myName, mySessionId

Constructor Summary Page

SpectralSchedulingByMATLAB() 166

Method Summary Page

private

String

createNamesStringFromVector(Vector<String> n)

Supportive method to create a String from a Vector. 166

private

String

createTimesStringFromVector(Vector<Integer> times)

Supportive method to create a String from a Vector. 166

void execute() 166

private void save(BufferedImage image, String ext) 167

private

BufferedImage

toBufferedImage(Image src)
167

Methods inherited from class com.tilab.wade.performer.BaseApplication

checkParameters, extract, fill, fillFormalParameters, getDataStore, setDataStore

Methods inherited from class com.tilab.wade.performer.Application

commit, fill, fill, fill, fill, fill, fireEvent, get, getControlInfo, getFormalParameters,

getModifier, getModifiers, getTracer, getTransactionManager, getValid, getWorkflowDescriptor,

getWorkflowFailureReason, getWorkflowLastErrorEvent, isTransactional, rollback, set,

setWorkflowFailureReason, trace, trace

Field Detail
private static Object lock

Constructor Detail
public SpectralSchedulingByMATLAB()

Method Detail
public void execute()

 throws Throwable

Overrides:

execute in class com.tilab.wade.performer.Application
Throws:

Throwable

private String createNamesStringFromVector(Vector<String> n)

Supportive method to create a String from a Vector. The String format is the required input data format for
the MATLAB engine

Returns:
String names

private String createTimesStringFromVector(Vector<Integer> times)

Supportive method to create a String from a Vector. The String format is the required input data format for
the MATLAB engine

Class SpectralSchedulingByMATLAB

MarketingWF Documentation Page 167 of 361

Returns:
String times

private BufferedImage toBufferedImage(Image src)
private void save(BufferedImage image,

 String ext)

Package applications.directMail

MarketingWF Documentation Page 168 of 361

Package applications.directMail

Class Summary Page

AssistantUpdateContacts
The marketing assistant executes the tasks specified in an Excel file,
updates the file and saves the updated version.

168

clusteringByMatlab This application calls MATLAB to execute a clustering algorithm. 169

CreateCustomersToContactXL
Creates an Excel File that contains all the customers that all marketing
assistants should contact through direct-mail.

170

CreateExcelForAssistant
An application that returns an Excel File with the tasks (customer
contacts) that one marketing assistant should perform.

171

CreateExcelFromMap
This application copies some specified ranges from an Excel File to
another.

172

CreateExcelSegmentation
This application takes the clustering MATLAB results and returns an Excel
File with clusters information.

173

CreateOfferFromTxt An application used to read a txt file and transform it into an Offer object. 174

ExecuteAssignClusters
Supporting application which opens and handles results from the
AssignClustersGUI GUI.

175

ExecuteReviewDraft
Supporting application which opens and handles results from the
ReviewDraftGUI GUI.

176

ExecuteROI
Supporting application which opens and handles results from the

MarketingROI GUI.
177

GatherTODOCustomers
Reads an Excel file with the customer clusters, and creates a new Excel
file as a worklist by joining customers from different clusters.

178

GetDataForClustering
It read an Excel file, and copies from it the data needed for the clustering
algorithm to another file It is called by the Segmentation workflow.

179

GetDataForScheduling
Reads an Excel File and identifies the data needed for the scheduling
algorithm.

180

GetDataForTAM
Supporting application that opens and handles the

GetExcelDataByRangeName GUI.
181

GetDataFromSchedule
Reads an Excel File that contains schedule data and copies them into two
Vectors.

183

mailTo Sends an e-mail using a pre-defined account. 184

MediaDecisions
Supporting application that opens and handles the results of a
MediaDecisionsGUI GUI.

185

RenameOrMoveFile A supporting application that performs some ordinary File actions. 186

SchedulingByMatlab Calls the MATLAB to apply a scheduling algorithm. 188

Enum Summary Page

RenameOrMoveFile.FileAction 187

Class AssistantUpdateContacts
applications.directMail

java.lang.Object

 com.tilab.wade.performer.Application

 com.tilab.wade.performer.BaseApplication

 applications.directMail.AssistantUpdateContacts

Class AssistantUpdateContacts

MarketingWF Documentation Page 169 of 361

public class AssistantUpdateContacts

extends com.tilab.wade.performer.BaseApplication

The marketing assistant executes the tasks specified in an Excel file, updates the file and saves the updated

version. This application is called by the AssistantLaunching workflow The parameters are passed and get

caught by the workflow class

Author:
Pavlos Delias

Fields inherited from class com.tilab.wade.performer.Application

formalParams, myAgent, myExecutionId, myLogger, myName, mySessionId

Constructor Summary Page

AssistantUpdateContacts() 169

Method Summary Page

void execute() 169

Methods inherited from class com.tilab.wade.performer.BaseApplication

checkParameters, extract, fill, fillFormalParameters, getDataStore, setDataStore

Methods inherited from class com.tilab.wade.performer.Application

commit, fill, fill, fill, fill, fill, fireEvent, get, getControlInfo, getFormalParameters,

getModifier, getModifiers, getTracer, getTransactionManager, getValid, getWorkflowDescriptor,

getWorkflowFailureReason, getWorkflowLastErrorEvent, isTransactional, rollback, set,

setWorkflowFailureReason, trace, trace

Constructor Detail
public AssistantUpdateContacts()

Method Detail
public void execute()

 throws Throwable

Overrides:

execute in class com.tilab.wade.performer.Application
Throws:

Throwable

Class clusteringByMatlab
applications.directMail

java.lang.Object

 com.tilab.wade.performer.Application

 com.tilab.wade.performer.BaseApplication

 applications.directMail.clusteringByMatlab

public class clusteringByMatlab

extends com.tilab.wade.performer.BaseApplication

This application calls MATLAB to execute a clustering algorithm. The input data parameters and the results are

handled by the Segmentation workflow, which calls this application

Class clusteringByMatlab

MarketingWF Documentation Page 170 of 361

Author:
Pavlos Delias

Fields inherited from class com.tilab.wade.performer.Application

formalParams, myAgent, myExecutionId, myLogger, myName, mySessionId

Constructor Summary Page

clusteringByMatlab() 170

Method Summary Page

void execute() 170

Methods inherited from class com.tilab.wade.performer.BaseApplication

checkParameters, extract, fill, fillFormalParameters, getDataStore, setDataStore

Methods inherited from class com.tilab.wade.performer.Application

commit, fill, fill, fill, fill, fill, fireEvent, get, getControlInfo, getFormalParameters,

getModifier, getModifiers, getTracer, getTransactionManager, getValid, getWorkflowDescriptor,

getWorkflowFailureReason, getWorkflowLastErrorEvent, isTransactional, rollback, set,

setWorkflowFailureReason, trace, trace

Constructor Detail
public clusteringByMatlab()

Method Detail
public void execute()

 throws Throwable

Overrides:

execute in class com.tilab.wade.performer.Application

Throws:
Throwable

Class CreateCustomersToContactXL
applications.directMail

java.lang.Object

 com.tilab.wade.performer.Application

 com.tilab.wade.performer.BaseApplication

 applications.directMail.CreateCustomersToContactXL

public class CreateCustomersToContactXL

extends com.tilab.wade.performer.BaseApplication

Creates an Excel File that contains all the customers that all marketing assistants should contact through direct-

mail. This application is called by the LaunchCampaign workflow, which manages the In/Out parameters

Author:
Pavlos Delias

Fields inherited from class com.tilab.wade.performer.Application

formalParams, myAgent, myExecutionId, myLogger, myName, mySessionId

Class CreateCustomersToContactXL

MarketingWF Documentation Page 171 of 361

Constructor Summary Page

CreateCustomersToContactXL() 171

Method Summary Page

void execute() 171

Methods inherited from class com.tilab.wade.performer.BaseApplication

checkParameters, extract, fill, fillFormalParameters, getDataStore, setDataStore

Methods inherited from class com.tilab.wade.performer.Application

commit, fill, fill, fill, fill, fill, fireEvent, get, getControlInfo, getFormalParameters,

getModifier, getModifiers, getTracer, getTransactionManager, getValid, getWorkflowDescriptor,

getWorkflowFailureReason, getWorkflowLastErrorEvent, isTransactional, rollback, set,

setWorkflowFailureReason, trace, trace

Constructor Detail
public CreateCustomersToContactXL()

Method Detail
public void execute()

 throws Throwable

Overrides:

execute in class com.tilab.wade.performer.Application
Throws:

Throwable

Class CreateExcelForAssistant
applications.directMail

java.lang.Object

 com.tilab.wade.performer.Application

 com.tilab.wade.performer.BaseApplication

 applications.directMail.CreateExcelForAssistant

public class CreateExcelForAssistant

extends com.tilab.wade.performer.BaseApplication

An application that returns an Excel File with the tasks (customer contacts) that one marketing assistant should

perform. It is called by the CreateJobSchedules workflow class, iteratively for every assistant

Author:
Pavlos Delias

Fields inherited from class com.tilab.wade.performer.Application

formalParams, myAgent, myExecutionId, myLogger, myName, mySessionId

Constructor Summary Page

CreateExcelForAssistant() 172

Class CreateExcelForAssistant

MarketingWF Documentation Page 172 of 361

Method Summary Page

void execute() 172

Methods inherited from class com.tilab.wade.performer.BaseApplication

checkParameters, extract, fill, fillFormalParameters, getDataStore, setDataStore

Methods inherited from class com.tilab.wade.performer.Application

commit, fill, fill, fill, fill, fill, fireEvent, get, getControlInfo, getFormalParameters,

getModifier, getModifiers, getTracer, getTransactionManager, getValid, getWorkflowDescriptor,

getWorkflowFailureReason, getWorkflowLastErrorEvent, isTransactional, rollback, set,

setWorkflowFailureReason, trace, trace

Constructor Detail
public CreateExcelForAssistant()

Method Detail
public void execute()

 throws Throwable

Overrides:

execute in class com.tilab.wade.performer.Application
Throws:

Throwable

Class CreateExcelFromMap
applications.directMail

java.lang.Object

 com.tilab.wade.performer.Application

 com.tilab.wade.performer.BaseApplication

 applications.directMail.CreateExcelFromMap

public class CreateExcelFromMap

extends com.tilab.wade.performer.BaseApplication

This application copies some specified ranges from an Excel File to another. As an intermediate mean, ranges are

stored to a HashMap. It is called by the CreateTAMFile.

Author:
Pavlos Delias

Fields inherited from class com.tilab.wade.performer.Application

formalParams, myAgent, myExecutionId, myLogger, myName, mySessionId

Constructor Summary Page

CreateExcelFromMap() 173

Method Summary Page

void execute() 173

Methods inherited from class com.tilab.wade.performer.BaseApplication

checkParameters, extract, fill, fillFormalParameters, getDataStore, setDataStore

Class CreateExcelFromMap

MarketingWF Documentation Page 173 of 361

Methods inherited from class com.tilab.wade.performer.Application

commit, fill, fill, fill, fill, fill, fireEvent, get, getControlInfo, getFormalParameters,

getModifier, getModifiers, getTracer, getTransactionManager, getValid, getWorkflowDescriptor,

getWorkflowFailureReason, getWorkflowLastErrorEvent, isTransactional, rollback, set,

setWorkflowFailureReason, trace, trace

Constructor Detail
public CreateExcelFromMap()

Method Detail
public void execute()

 throws Throwable

Overrides:

execute in class com.tilab.wade.performer.Application

Throws:
Throwable

Class CreateExcelSegmentation
applications.directMail

java.lang.Object

 com.tilab.wade.performer.Application

 com.tilab.wade.performer.BaseApplication

 applications.directMail.CreateExcelSegmentation

public class CreateExcelSegmentation

extends com.tilab.wade.performer.BaseApplication

This application takes the clustering MATLAB results and returns an Excel File with clusters information. The first
sheet contains the customers that each cluster includes, the second contains centroids data and the third sheet

contains some meta-data about the clusters. The application is called by the Segmentation workflow.

Author:
Pavlos Delias

Fields inherited from class com.tilab.wade.performer.Application

formalParams, myAgent, myExecutionId, myLogger, myName, mySessionId

Constructor Summary Page

CreateExcelSegmentation() 174

Method Summary Page

void execute() 174

static

double

getMaxValue(double[] numbers)
174

Methods inherited from class com.tilab.wade.performer.BaseApplication

checkParameters, extract, fill, fillFormalParameters, getDataStore, setDataStore

Methods inherited from class com.tilab.wade.performer.Application

commit, fill, fill, fill, fill, fill, fireEvent, get, getControlInfo, getFormalParameters,

Class CreateExcelSegmentation

MarketingWF Documentation Page 174 of 361

getModifier, getModifiers, getTracer, getTransactionManager, getValid, getWorkflowDescriptor,

getWorkflowFailureReason, getWorkflowLastErrorEvent, isTransactional, rollback, set,

setWorkflowFailureReason, trace, trace

Constructor Detail
public CreateExcelSegmentation()

Method Detail
public void execute()

 throws Throwable

Overrides:

execute in class com.tilab.wade.performer.Application

Throws:
Throwable

public static double getMaxValue(double[] numbers)

Class CreateOfferFromTxt
applications.directMail

java.lang.Object

 com.tilab.wade.performer.Application

 com.tilab.wade.performer.BaseApplication

 applications.directMail.CreateOfferFromTxt

public class CreateOfferFromTxt

extends com.tilab.wade.performer.BaseApplication

An application used to read a txt file and transform it into an Offer object. Actually, it returns a HashMap with all

the Offer objects as the value set. It is called by the PreparePiece workflow.

Formal Parameters

 file
 (OUTPUT) offers

Author:
Pavlos Delias

Fields inherited from class com.tilab.wade.performer.Application

formalParams, myAgent, myExecutionId, myLogger, myName, mySessionId

Constructor Summary Page

CreateOfferFromTxt() 175

Method Summary Page

void execute() 175

Methods inherited from class com.tilab.wade.performer.BaseApplication

checkParameters, extract, fill, fillFormalParameters, getDataStore, setDataStore

Methods inherited from class com.tilab.wade.performer.Application

commit, fill, fill, fill, fill, fill, fireEvent, get, getControlInfo, getFormalParameters,

Class CreateOfferFromTxt

MarketingWF Documentation Page 175 of 361

getModifier, getModifiers, getTracer, getTransactionManager, getValid, getWorkflowDescriptor,

getWorkflowFailureReason, getWorkflowLastErrorEvent, isTransactional, rollback, set,

setWorkflowFailureReason, trace, trace

Constructor Detail
public CreateOfferFromTxt()

Method Detail
public void execute()

 throws Throwable

Overrides:

execute in class com.tilab.wade.performer.Application

Throws:
Throwable

Class ExecuteAssignClusters
applications.directMail

java.lang.Object

 com.tilab.wade.performer.Application

 com.tilab.wade.performer.BaseApplication

 applications.directMail.ExecuteAssignClusters

public class ExecuteAssignClusters

extends com.tilab.wade.performer.BaseApplication

Supporting application which opens and handles results from the AssignClustersGUI GUI.

Formal Parameters

 fileName

 agents
 (OUTPUT) assignments

Author:
Administrator

Field Summary Page

AssignClustersGUI myGui 176

Fields inherited from class com.tilab.wade.performer.Application

formalParams, myAgent, myExecutionId, myLogger, myName, mySessionId

Constructor Summary Page

ExecuteAssignClusters() 176

Method Summary Page

void execute() 176

HashMap<String,Vector<jade.core.AID>> getAgents() 176

String getFileName() 176

void setAgents(HashMap<String,Vector<jade.core.AID>> agents) 176

void setFileName(String fileName) 176

Class ExecuteAssignClusters

MarketingWF Documentation Page 176 of 361

Methods inherited from class com.tilab.wade.performer.BaseApplication

checkParameters, extract, fill, fillFormalParameters, getDataStore, setDataStore

Methods inherited from class com.tilab.wade.performer.Application

commit, fill, fill, fill, fill, fill, fireEvent, get, getControlInfo, getFormalParameters,

getModifier, getModifiers, getTracer, getTransactionManager, getValid, getWorkflowDescriptor,

getWorkflowFailureReason, getWorkflowLastErrorEvent, isTransactional, rollback, set,

setWorkflowFailureReason, trace, trace

Field Detail
final AssignClustersGUI myGui

Constructor Detail
public ExecuteAssignClusters()

Method Detail
public void execute()

 throws Throwable

Overrides:

execute in class com.tilab.wade.performer.Application

Throws:
Throwable

public void setFileName(String fileName)
public String getFileName()
public void setAgents(HashMap<String,Vector<jade.core.AID>> agents)
public HashMap<String,Vector<jade.core.AID>> getAgents()

Class ExecuteReviewDraft
applications.directMail

java.lang.Object

 com.tilab.wade.performer.Application

 com.tilab.wade.performer.BaseApplication

 applications.directMail.ExecuteReviewDraft

public class ExecuteReviewDraft

extends com.tilab.wade.performer.BaseApplication

Supporting application which opens and handles results from the ReviewDraftGUI GUI.

Formal Parameters

 (OUTPUT) result

 (OUTPUT) fileName
 MarCom

Author:
Pavlos Delias

Field Summary Page

Thread myThread 177

ReviewDraftGUI review 177

Class ExecuteReviewDraft

MarketingWF Documentation Page 177 of 361

Fields inherited from class com.tilab.wade.performer.Application

formalParams, myAgent, myExecutionId, myLogger, myName, mySessionId

Constructor Summary Page

ExecuteReviewDraft() 177

Method Summary Page

void execute() 177

Methods inherited from class com.tilab.wade.performer.BaseApplication

checkParameters, extract, fill, fillFormalParameters, getDataStore, setDataStore

Methods inherited from class com.tilab.wade.performer.Application

commit, fill, fill, fill, fill, fill, fireEvent, get, getControlInfo, getFormalParameters,

getModifier, getModifiers, getTracer, getTransactionManager, getValid, getWorkflowDescriptor,

getWorkflowFailureReason, getWorkflowLastErrorEvent, isTransactional, rollback, set,

setWorkflowFailureReason, trace, trace

Field Detail
public Thread myThread
final ReviewDraftGUI review

Constructor Detail
public ExecuteReviewDraft()

Method Detail
public void execute()

 throws Throwable

Overrides:

execute in class com.tilab.wade.performer.Application
Throws:

Throwable

Class ExecuteROI
applications.directMail

java.lang.Object

 com.tilab.wade.performer.Application

 com.tilab.wade.performer.BaseApplication

 applications.directMail.ExecuteROI

public class ExecuteROI

extends com.tilab.wade.performer.BaseApplication

Supporting application which opens and handles results from the MarketingROI GUI.

Formal Parameters

 (OUTPUT) ROI file

Author:
Administrator

Class ExecuteROI

MarketingWF Documentation Page 178 of 361

Field Summary Page

Thread myThread 178

MarketingROI ROI 178

Fields inherited from class com.tilab.wade.performer.Application

formalParams, myAgent, myExecutionId, myLogger, myName, mySessionId

Constructor Summary Page

ExecuteROI() 178

Method Summary Page

void execute() 178

File getROIFile() 178

void setROIFile(File rOIFile) 178

Methods inherited from class com.tilab.wade.performer.BaseApplication

checkParameters, extract, fill, fillFormalParameters, getDataStore, setDataStore

Methods inherited from class com.tilab.wade.performer.Application

commit, fill, fill, fill, fill, fill, fireEvent, get, getControlInfo, getFormalParameters,

getModifier, getModifiers, getTracer, getTransactionManager, getValid, getWorkflowDescriptor,

getWorkflowFailureReason, getWorkflowLastErrorEvent, isTransactional, rollback, set,

setWorkflowFailureReason, trace, trace

Field Detail
public Thread myThread
final MarketingROI ROI

Constructor Detail
public ExecuteROI()

Method Detail
public void execute()

 throws Throwable

Overrides:

execute in class com.tilab.wade.performer.Application

Throws:
Throwable

public void setROIFile(File rOIFile)
public File getROIFile()

Class GatherTODOCustomers
applications.directMail

java.lang.Object

 com.tilab.wade.performer.Application

 com.tilab.wade.performer.BaseApplication

 applications.directMail.GatherTODOCustomers

public class GatherTODOCustomers

extends com.tilab.wade.performer.BaseApplication

Class GatherTODOCustomers

MarketingWF Documentation Page 179 of 361

Reads an Excel file with the customer clusters, and creates a new Excel file as a worklist by joining customers from

different clusters. It is called by the LaunchCampaign workflow.

Formal Parameters

 fileName

 groupOfAgents

 assignments

 (OUTPUT) todoLists

Author:
Pavlos Delias

Fields inherited from class com.tilab.wade.performer.Application

formalParams, myAgent, myExecutionId, myLogger, myName, mySessionId

Constructor Summary Page

GatherTODOCustomers() 179

Method Summary Page

void execute() 179

Methods inherited from class com.tilab.wade.performer.BaseApplication

checkParameters, extract, fill, fillFormalParameters, getDataStore, setDataStore

Methods inherited from class com.tilab.wade.performer.Application

commit, fill, fill, fill, fill, fill, fireEvent, get, getControlInfo, getFormalParameters,

getModifier, getModifiers, getTracer, getTransactionManager, getValid, getWorkflowDescriptor,

getWorkflowFailureReason, getWorkflowLastErrorEvent, isTransactional, rollback, set,

setWorkflowFailureReason, trace, trace

Constructor Detail
public GatherTODOCustomers()

Method Detail
public void execute()

 throws Throwable

Overrides:

execute in class com.tilab.wade.performer.Application

Throws:
Throwable

Class GetDataForClustering
applications.directMail

java.lang.Object

 com.tilab.wade.performer.Application

 com.tilab.wade.performer.BaseApplication

 applications.directMail.GetDataForClustering

public class GetDataForClustering

extends com.tilab.wade.performer.BaseApplication

Class GetDataForClustering

MarketingWF Documentation Page 180 of 361

It read an Excel file, and copies from it the data needed for the clustering algorithm to another file It is called by the

Segmentation workflow.

Formal Parameters

 rangeName

 sheetName

 fileName

 (OUTPUT) cells

Author:
Pavlos Delias

Fields inherited from class com.tilab.wade.performer.Application

formalParams, myAgent, myExecutionId, myLogger, myName, mySessionId

Constructor Summary Page

GetDataForClustering() 180

Method Summary Page

void execute() 180

Methods inherited from class com.tilab.wade.performer.BaseApplication

checkParameters, extract, fill, fillFormalParameters, getDataStore, setDataStore

Methods inherited from class com.tilab.wade.performer.Application

commit, fill, fill, fill, fill, fill, fireEvent, get, getControlInfo, getFormalParameters,

getModifier, getModifiers, getTracer, getTransactionManager, getValid, getWorkflowDescriptor,

getWorkflowFailureReason, getWorkflowLastErrorEvent, isTransactional, rollback, set,

setWorkflowFailureReason, trace, trace

Constructor Detail
public GetDataForClustering()

Method Detail
public void execute()

 throws Throwable

Overrides:

execute in class com.tilab.wade.performer.Application

Throws:
Throwable

Class GetDataForScheduling
applications.directMail

java.lang.Object

 com.tilab.wade.performer.Application

 com.tilab.wade.performer.BaseApplication

 applications.directMail.GetDataForScheduling

public class GetDataForScheduling

extends com.tilab.wade.performer.BaseApplication

Class GetDataForScheduling

MarketingWF Documentation Page 181 of 361

Reads an Excel File and identifies the data needed for the scheduling algorithm. It is called by the

CreateJobSchedules workflow.

Formal Parameters

 customersToContactFile

 (OUTPUT) customerNames
 (OUTPUT) processingTimes

Author:
Pavlos Delias

Fields inherited from class com.tilab.wade.performer.Application

formalParams, myAgent, myExecutionId, myLogger, myName, mySessionId

Constructor Summary Page

GetDataForScheduling() 181

Method Summary Page

void execute() 181

Methods inherited from class com.tilab.wade.performer.BaseApplication

checkParameters, extract, fill, fillFormalParameters, getDataStore, setDataStore

Methods inherited from class com.tilab.wade.performer.Application

commit, fill, fill, fill, fill, fill, fireEvent, get, getControlInfo, getFormalParameters,

getModifier, getModifiers, getTracer, getTransactionManager, getValid, getWorkflowDescriptor,

getWorkflowFailureReason, getWorkflowLastErrorEvent, isTransactional, rollback, set,

setWorkflowFailureReason, trace, trace

Constructor Detail
public GetDataForScheduling()

Method Detail
public void execute()

 throws Throwable

Overrides:

execute in class com.tilab.wade.performer.Application
Throws:

Throwable

Class GetDataForTAM
applications.directMail

java.lang.Object

 com.tilab.wade.performer.Application

 com.tilab.wade.performer.BaseApplication

 applications.directMail.GetDataForTAM

public class GetDataForTAM

extends com.tilab.wade.performer.BaseApplication

Class GetDataForTAM

MarketingWF Documentation Page 182 of 361

Supporting application that opens and handles the GetExcelDataByRangeName GUI. It is called by the

QuantifyTAM workflow.

Formal Parameters

 (OUTPUT) theFile
 (OUTPUT) rangeNames

Author:
Pavlos Delias

Field Summary Page

private File fileName 182

GetExcelDataByRangeName myGui 182

Thread myThread 182

private List<String> ranges 182

Fields inherited from class com.tilab.wade.performer.Application

formalParams, myAgent, myExecutionId, myLogger, myName, mySessionId

Constructor Summary Page

GetDataForTAM() 182

Method Summary Page

void execute() 182

File getFileName() 183

List<String> getRanges() 183

void setFileName(File fileName) 183

void setRanges(List<String> ranges) 183

Methods inherited from class com.tilab.wade.performer.BaseApplication

checkParameters, extract, fill, fillFormalParameters, getDataStore, setDataStore

Methods inherited from class com.tilab.wade.performer.Application

commit, fill, fill, fill, fill, fill, fireEvent, get, getControlInfo, getFormalParameters,

getModifier, getModifiers, getTracer, getTransactionManager, getValid, getWorkflowDescriptor,

getWorkflowFailureReason, getWorkflowLastErrorEvent, isTransactional, rollback, set,

setWorkflowFailureReason, trace, trace

Field Detail
final GetExcelDataByRangeName myGui
public Thread myThread
private File fileName
private List<String> ranges

Constructor Detail
public GetDataForTAM()

Method Detail
public void execute()

 throws Throwable

Class GetDataForTAM

MarketingWF Documentation Page 183 of 361

Overrides:

execute in class com.tilab.wade.performer.Application
Throws:

Throwable

public void setFileName(File fileName)
public File getFileName()
public List<String> getRanges()
public void setRanges(List<String> ranges)

Class GetDataFromSchedule
applications.directMail

java.lang.Object

 com.tilab.wade.performer.Application

 com.tilab.wade.performer.BaseApplication

 applications.directMail.GetDataFromSchedule

public class GetDataFromSchedule

extends com.tilab.wade.performer.BaseApplication

Reads an Excel File that contains schedule data and copies them into two Vectors. It is called by the

AssistantLaunching workflow.

Formal Parameters

 scheduleFileName

 (OUTPUT) customerNames
 (OUTPUT) processingTimes

Author:
Pavlos Delias

Fields inherited from class com.tilab.wade.performer.Application

formalParams, myAgent, myExecutionId, myLogger, myName, mySessionId

Constructor Summary Page

GetDataFromSchedule() 184

Method Summary Page

void execute() 184

Methods inherited from class com.tilab.wade.performer.BaseApplication

checkParameters, extract, fill, fillFormalParameters, getDataStore, setDataStore

Methods inherited from class com.tilab.wade.performer.Application

commit, fill, fill, fill, fill, fill, fireEvent, get, getControlInfo, getFormalParameters,

getModifier, getModifiers, getTracer, getTransactionManager, getValid, getWorkflowDescriptor,

getWorkflowFailureReason, getWorkflowLastErrorEvent, isTransactional, rollback, set,

setWorkflowFailureReason, trace, trace

Class GetDataFromSchedule

MarketingWF Documentation Page 184 of 361

Constructor Detail
public GetDataFromSchedule()

Method Detail
public void execute()

 throws Throwable

Overrides:

execute in class com.tilab.wade.performer.Application

Throws:
Throwable

Class mailTo
applications.directMail

java.lang.Object

 com.tilab.wade.performer.Application

 com.tilab.wade.performer.BaseApplication

 applications.directMail.mailTo

public class mailTo

extends com.tilab.wade.performer.BaseApplication

Sends an e-mail using a pre-defined account. Subject, content, recipients, and attachments are defined by the

Formal parameters. It is called by the EstablishTargetMarkets workflow.

Formal Parameters

 subject

 content

 recipient
 attachmentFile

Author:
Pavlos Delias

Fields inherited from class com.tilab.wade.performer.Application

formalParams, myAgent, myExecutionId, myLogger, myName, mySessionId

Constructor Summary Page

mailTo() 185

Method Summary Page

void execute() 185

Methods inherited from class com.tilab.wade.performer.BaseApplication

checkParameters, extract, fill, fillFormalParameters, getDataStore, setDataStore

Methods inherited from class com.tilab.wade.performer.Application

commit, fill, fill, fill, fill, fill, fireEvent, get, getControlInfo, getFormalParameters,

getModifier, getModifiers, getTracer, getTransactionManager, getValid, getWorkflowDescriptor,

getWorkflowFailureReason, getWorkflowLastErrorEvent, isTransactional, rollback, set,

setWorkflowFailureReason, trace, trace

Class mailTo

MarketingWF Documentation Page 185 of 361

Constructor Detail
public mailTo()

Method Detail
public void execute()

 throws Throwable

Overrides:

execute in class com.tilab.wade.performer.Application

Throws:
Throwable

Class MediaDecisions
applications.directMail

java.lang.Object

 com.tilab.wade.performer.Application

 com.tilab.wade.performer.BaseApplication

 applications.directMail.MediaDecisions

public class MediaDecisions

extends com.tilab.wade.performer.BaseApplication

Supporting application that opens and handles the results of a MediaDecisionsGUI GUI.

Formal Parameter

 (OUTPUT) file

Author:
Pavlos Delias

Field Summary Page

MediaDecisionsGUI myGUI 186

Fields inherited from class com.tilab.wade.performer.Application

formalParams, myAgent, myExecutionId, myLogger, myName, mySessionId

Constructor Summary Page

MediaDecisions() 186

Method Summary Page

void execute() 186

Methods inherited from class com.tilab.wade.performer.BaseApplication

checkParameters, extract, fill, fillFormalParameters, getDataStore, setDataStore

Methods inherited from class com.tilab.wade.performer.Application

commit, fill, fill, fill, fill, fill, fireEvent, get, getControlInfo, getFormalParameters,

getModifier, getModifiers, getTracer, getTransactionManager, getValid, getWorkflowDescriptor,

getWorkflowFailureReason, getWorkflowLastErrorEvent, isTransactional, rollback, set,

setWorkflowFailureReason, trace, trace

Class MediaDecisions

MarketingWF Documentation Page 186 of 361

Field Detail
final MediaDecisionsGUI myGUI

Constructor Detail
public MediaDecisions()

Method Detail
public void execute()

 throws Throwable

Overrides:

execute in class com.tilab.wade.performer.Application

Throws:
Throwable

Class RenameOrMoveFile
applications.directMail

java.lang.Object

 com.tilab.wade.performer.Application

 com.tilab.wade.performer.BaseApplication

 applications.directMail.RenameOrMoveFile

public class RenameOrMoveFile

extends com.tilab.wade.performer.BaseApplication

A supporting application that performs some ordinary File actions.

Formal Parameters

 oldFile
 (OUTPUT) newFile

Author:
Pavlos Delias

Nested Class Summary Page

static

enum
RenameOrMoveFile.FileAction 187

Fields inherited from class com.tilab.wade.performer.Application

formalParams, myAgent, myExecutionId, myLogger, myName, mySessionId

Constructor Summary Page

RenameOrMoveFile() 187

Method Summary Page

void execute() 187

Methods inherited from class com.tilab.wade.performer.BaseApplication

checkParameters, extract, fill, fillFormalParameters, getDataStore, setDataStore

Methods inherited from class com.tilab.wade.performer.Application

commit, fill, fill, fill, fill, fill, fireEvent, get, getControlInfo, getFormalParameters,

Class RenameOrMoveFile

MarketingWF Documentation Page 187 of 361

getModifier, getModifiers, getTracer, getTransactionManager, getValid, getWorkflowDescriptor,

getWorkflowFailureReason, getWorkflowLastErrorEvent, isTransactional, rollback, set,

setWorkflowFailureReason, trace, trace

Constructor Detail
public RenameOrMoveFile()

Method Detail
public void execute()

 throws Throwable

Overrides:

execute in class com.tilab.wade.performer.Application

Throws:
Throwable

Enum RenameOrMoveFile.FileAction
applications.directMail

java.lang.Object

 java.lang.Enum<RenameOrMoveFile.FileAction>

 applications.directMail.RenameOrMoveFile.FileAction

All Implemented Interfaces:

Comparable<RenameOrMoveFile.FileAction>, Serializable

Enclosing class:

RenameOrMoveFile

public static enum RenameOrMoveFile.FileAction

extends Enum<RenameOrMoveFile.FileAction>

Enum Constant Summary Page

RENAME_IN_PLACE 187

RENAME_MOVE 187

Constructor Summary Page

private RenameOrMoveFile.FileAction() 187

Method Summary Page

static

RenameOrMoveFile.FileAction

valueOf(String name)
187

static

RenameOrMoveFile.FileAction[]

values()
187

Enum Constant Detail
public static final RenameOrMoveFile.FileAction RENAME_IN_PLACE
public static final RenameOrMoveFile.FileAction RENAME_MOVE

Constructor Detail
private RenameOrMoveFile.FileAction()

Method Detail
public static RenameOrMoveFile.FileAction[] values()
public static RenameOrMoveFile.FileAction valueOf(String name)

Enum RenameOrMoveFile.FileAction

MarketingWF Documentation Page 188 of 361

Class SchedulingByMatlab
applications.directMail

java.lang.Object

 com.tilab.wade.performer.Application

 com.tilab.wade.performer.BaseApplication

 applications.directMail.SchedulingByMatlab

public class SchedulingByMatlab

extends com.tilab.wade.performer.BaseApplication

Calls the MATLAB to apply a scheduling algorithm. The MATLAB engine is called by synchronized statements to
assure non-existence of conflicts.

Formal Parameters

 names

 times

 num

 (OUTPUT) startTimes
 (OUTPUT) processors

Author:
Pavlos Delias

Field Summary Page

private

String
imageFileName 189

private

static

Object

lock
189

Fields inherited from class com.tilab.wade.performer.Application

formalParams, myAgent, myExecutionId, myLogger, myName, mySessionId

Constructor Summary Page

SchedulingByMatlab() 189

Method Summary Page

private

String

createNamesStringFromVector(Vector<String> n)

Transforms a Vector into an appropriate String to be entered into MATLAB 189

private

String

createTimesStringFromVector(Vector<Integer> t)

Transforms a Vector into an appropriate String to be entered into MATLAB 189

void execute() 189

private void save(BufferedImage image, String ext) 189

private

BufferedImage

toBufferedImage(Image src)
189

Methods inherited from class com.tilab.wade.performer.BaseApplication

checkParameters, extract, fill, fillFormalParameters, getDataStore, setDataStore

Class SchedulingByMatlab

MarketingWF Documentation Page 189 of 361

Methods inherited from class com.tilab.wade.performer.Application

commit, fill, fill, fill, fill, fill, fireEvent, get, getControlInfo, getFormalParameters,

getModifier, getModifiers, getTracer, getTransactionManager, getValid, getWorkflowDescriptor,

getWorkflowFailureReason, getWorkflowLastErrorEvent, isTransactional, rollback, set,

setWorkflowFailureReason, trace, trace

Field Detail
private String imageFileName
private static Object lock

Constructor Detail
public SchedulingByMatlab()

Method Detail
public void execute()

 throws Throwable

Overrides:

execute in class com.tilab.wade.performer.Application

Throws:
Throwable

private String createNamesStringFromVector(Vector<String> n)

Transforms a Vector into an appropriate String to be entered into MATLAB

Returns:
String MATLAB statement

private String createTimesStringFromVector(Vector<Integer> t)

Transforms a Vector into an appropriate String to be entered into MATLAB

Returns:
String MATLAB Statement

private BufferedImage toBufferedImage(Image src)
private void save(BufferedImage image,

 String ext)

Package generic

MarketingWF Documentation Page 190 of 361

Package generic

Class Summary Page

AssignClustersGUI A GUI to help assign clusters to agents. 190

GetExcelDataByRangeName Reads some specified cell areas (ranges) from an Excel File. 193

MarketingDirectorGui
A supportive GUI to help Marketing Director functions (e.g., upload the
checklist file)

195

MarketingROI A supportive GUI to help create a Return on Investment report. 196

MediaDecisionsGUI
A supportive GUI to specify media requirements for every cluster (customer
segment).

199

MediaDecisionsGUI.Cluster
An inner class used by the MediaDecisionsGUI to represent the cluster

notion
202

Product 204

ReviewDraftGUI A supportive GUI to help marketing communicator review artwork drafts. 205

Enum Summary Page

MediaDecisionsGUI.MediaFormat 204

Class AssignClustersGUI
generic

java.lang.Object

 java.awt.Component

 java.awt.Container

 java.awt.Window

 java.awt.Frame

 javax.swing.JFrame

 generic.AssignClustersGUI

All Implemented Interfaces:

Accessible, ImageObserver, MenuContainer, RootPaneContainer, Serializable,
TransferHandler.HasGetTransferHandler, WindowConstants

public class AssignClustersGUI

extends JFrame

A GUI to help assign clusters to agents.

Author:
Delias Pavlos

Field Summary Page

private

HashMap<String,Vector<jade.core.AID>>
agents 191

private

HashMap<String,Vector<String>>
assignments 191

private JButton btn_Assign 192

private JButton btn_Done 192

private JButton btn_Exit 192

Class AssignClustersGUI

MarketingWF Documentation Page 191 of 361

private JButton btn_Remove 192

private

HashMap<String,Vector<Double>>
clusters 191

private JComboBox cmb_Agents 192

private JComboBox cmb_Clusters 192

private boolean done 192

private JScrollPane jScrollPane1 192

private JScrollPane jScrollPane2 192

private JTree jtr_Assignments 192

private JLabel lbl_SelectAgents 192

private JLabel lbl_SelectCluster 192

private ExecuteAssignClusters myApp 191

private JTable tbl_ClusterData 192

Constructor Summary Page

AssignClustersGUI()

Creates new form AssignClustersGUI 192

Method Summary Page

private void assignCluster()

Assign a cluster to the selected agent, and removes the assigned
cluster from the clusters set.

192

private void btn_AssignActionPerformed(ActionEvent evt) 192

private void btn_DoneActionPerformed(ActionEvent evt) 192

private void btn_ExitActionPerformed(ActionEvent evt) 192

private void btn_RemoveActionPerformed(ActionEvent evt) 192

private void cmb_ClustersItemStateChanged(ItemEvent evt) 192

private void fillCombos() 192

HashMap<String,Vector<String>> getAssignments() 192

private void getClustersFromFile(String xlFile)

Reads the clusters' data from an Excel file with a specific format 192

ExecuteAssignClusters getMyApp() 192

private void initComponents()

This method is called from within the constructor to initialize the form. 192

boolean isDone() 192

void loadContent(String file, HashMap<String,Vector<jade.core.AID>>

ag)

Loads the Excel clusters file with the getClustersFromFile(String)

method and calls the fillCombos() method.

192

void setDone(boolean done) 192

void setMyApp(ExecuteAssignClusters myApp) 192

private void updateTable(String clusterName)

Supporting method to update the table model 192

private void UpdateTree(HashMap<String,Vector<String>> m)

Supporting method to refresh the graphical interface 192

Field Detail
private ExecuteAssignClusters myApp
private HashMap<String,Vector<Double>> clusters
private HashMap<String,Vector<jade.core.AID>> agents
private HashMap<String,Vector<String>> assignments

Class AssignClustersGUI

MarketingWF Documentation Page 192 of 361

private boolean done
private JButton btn_Assign
private JButton btn_Done
private JButton btn_Exit
private JButton btn_Remove
private JComboBox cmb_Agents
private JComboBox cmb_Clusters
private JScrollPane jScrollPane1
private JScrollPane jScrollPane2
private JTree jtr_Assignments
private JLabel lbl_SelectAgents
private JLabel lbl_SelectCluster
private JTable tbl_ClusterData

Constructor Detail
public AssignClustersGUI()

Creates new form AssignClustersGUI

Method Detail
public void loadContent(String file,

 HashMap<String,Vector<jade.core.AID>> ag)

Loads the Excel clusters file with the getClustersFromFile(String) method and calls the fillCombos()

method.

private void initComponents()

This method is called from within the constructor to initialize the form. WARNING: Do NOT modify this
code. The content of this method is always regenerated by the Form Editor.

private void btn_AssignActionPerformed(ActionEvent evt)
private void btn_RemoveActionPerformed(ActionEvent evt)
private void btn_DoneActionPerformed(ActionEvent evt)
private void btn_ExitActionPerformed(ActionEvent evt)
public void setMyApp(ExecuteAssignClusters myApp)
public ExecuteAssignClusters getMyApp()
private void updateTable(String clusterName)

Supporting method to update the table model

private void getClustersFromFile(String xlFile)

Reads the clusters' data from an Excel file with a specific format

private void fillCombos()
private void assignCluster()

Assign a cluster to the selected agent, and removes the assigned cluster from the clusters set.

private void UpdateTree(HashMap<String,Vector<String>> m)

Supporting method to refresh the graphical interface

private void cmb_ClustersItemStateChanged(ItemEvent evt)
public void setDone(boolean done)
public boolean isDone()
public HashMap<String,Vector<String>> getAssignments()

Class GetExcelDataByRangeName

MarketingWF Documentation Page 193 of 361

Class GetExcelDataByRangeName
generic

java.lang.Object

 java.awt.Component

 java.awt.Container

 java.awt.Window

 java.awt.Frame

 javax.swing.JFrame

 generic.GetExcelDataByRangeName

All Implemented Interfaces:

Accessible, ImageObserver, MenuContainer, RootPaneContainer, Serializable,
TransferHandler.HasGetTransferHandler, WindowConstants

public class GetExcelDataByRangeName

extends JFrame

Reads some specified cell areas (ranges) from an Excel File.

Author:
Pavlos Delias

Field Summary Page

private

DefaultListModel
allFieldsModel 194

private JButton btn_Browse 194

private JButton btn_Exit 194

private JButton btn_OK 194

private JButton btn_Select 194

private File excelFile 194

private

JFileChooser
fc 194

private

JFileChooser
jFileChooser1 194

private

JScrollPane
jScrollPane1 194

private

JScrollPane
jScrollPane2 194

private JLabel lbl_FilePath 194

private JList lst_AllFields 194

private JList lst_SelectedFields 194

private

GetDataForTAM
myApp 194

private int result 194

private

DefaultListModel
selectedFieldsModel 194

private static

long
serialVersionUID 194

private

JTextField
txt_FilePath 194

Constructor Summary Page

GetExcelDataByRangeName()

Creates new form GetExcelDataByRangeName 194

Class GetExcelDataByRangeName

MarketingWF Documentation Page 194 of 361

Method Summary Page

private void btn_BrowseActionPerformed(ActionEvent evt) 194

private void btn_ExitActionPerformed(ActionEvent evt) 194

private void btn_OKActionPerformed(ActionEvent evt) 194

private void btn_SelectActionPerformed(ActionEvent evt) 194

DefaultListModel getAllFieldsModel() 195

GetDataForTAM getMyApp() 195

private void getRangesFromFile()

Retrieves the named ranges from the excel file and update the jList components 194

int getResult() 195

private void getSelectedRanges()

Fills the application's List with the selected elements 194

private void initComponents() 194

void initListModels() 194

void setAllFieldsModel(DefaultListModel allFieldsModel) 195

void setMyApp(GetDataForTAM myApp) 195

void setResult(int result) 195

Field Detail
private static final long serialVersionUID
private GetDataForTAM myApp
private JFileChooser fc
private File excelFile
private int result
private DefaultListModel allFieldsModel
private DefaultListModel selectedFieldsModel
private JButton btn_Browse
private JButton btn_Exit
private JButton btn_OK
private JButton btn_Select
private JFileChooser jFileChooser1
private JScrollPane jScrollPane1
private JScrollPane jScrollPane2
private JLabel lbl_FilePath
private JList lst_AllFields
private JList lst_SelectedFields
private JTextField txt_FilePath

Constructor Detail
public GetExcelDataByRangeName()

Creates new form GetExcelDataByRangeName

Method Detail
private void initComponents()
private void btn_BrowseActionPerformed(ActionEvent evt)
private void btn_OKActionPerformed(ActionEvent evt)
private void btn_ExitActionPerformed(ActionEvent evt)
private void btn_SelectActionPerformed(ActionEvent evt)
private void getRangesFromFile()

Retrieves the named ranges from the excel file and update the jList components

private void getSelectedRanges()

Fills the application's List with the selected elements

public void initListModels()

Class GetExcelDataByRangeName

MarketingWF Documentation Page 195 of 361

public GetDataForTAM getMyApp()
public void setMyApp(GetDataForTAM myApp)
public DefaultListModel getAllFieldsModel()
public void setAllFieldsModel(DefaultListModel allFieldsModel)
public void setResult(int result)
public int getResult()

Class MarketingDirectorGui
generic

java.lang.Object

 java.awt.Component

 java.awt.Container

 java.awt.Window

 java.awt.Frame

 javax.swing.JFrame

 generic.MarketingDirectorGui

All Implemented Interfaces:

Accessible, ImageObserver, MenuContainer, RootPaneContainer, Serializable,
TransferHandler.HasGetTransferHandler, WindowConstants

public class MarketingDirectorGui

extends JFrame

A supportive GUI to help Marketing Director functions (e.g., upload the checklist file)

Author:
Delias Pavlos

Field Summary Page

private JButton btn_Browse 196

private JButton btn_Exit 196

private JButton btn_OK 196

private

JFileChooser
fc 196

private JLabel lbl_FilePath 196

private

MarketingDirector
myAgent 196

private

JTextField
txt_FilePath 196

Constructor Summary Page

MarketingDirectorGui()

Creates new form MarketingDirectorGui 196

MarketingDirectorGui(MarketingDirector agent) 196

Method Summary Page

private

void

btn_BrowseActionPerformed(ActionEvent evt)
196

private

void

btn_ExitActionPerformed(ActionEvent evt)
196

private

void

btn_OKActionPerformed(ActionEvent evt)
196

private

void

initComponents()

This method is called from within the constructor to initialize the form. 196

Class MarketingDirectorGui

MarketingWF Documentation Page 196 of 361

static

void

main(String[] args)
196

Field Detail
private MarketingDirector myAgent
private JFileChooser fc
private JButton btn_Browse
private JButton btn_Exit
private JButton btn_OK
private JLabel lbl_FilePath
private JTextField txt_FilePath

Constructor Detail
public MarketingDirectorGui()

Creates new form MarketingDirectorGui

public MarketingDirectorGui(MarketingDirector agent)

Method Detail
private void initComponents()

This method is called from within the constructor to initialize the form. WARNING: Do NOT modify this
code. The content of this method is always regenerated by the Form Editor.

private void btn_BrowseActionPerformed(ActionEvent evt)
private void btn_OKActionPerformed(ActionEvent evt)
private void btn_ExitActionPerformed(ActionEvent evt)
public static void main(String[] args)

Class MarketingROI
generic

java.lang.Object

 java.awt.Component

 java.awt.Container

 java.awt.Window

 java.awt.Frame

 javax.swing.JFrame

 generic.MarketingROI

All Implemented Interfaces:

Accessible, ImageObserver, MenuContainer, RootPaneContainer, Serializable,
TransferHandler.HasGetTransferHandler, WindowConstants

public class MarketingROI

extends JFrame

A supportive GUI to help create a Return on Investment report.

Author:
Pavlos Delias

Field Summary Page

private

JButton
btn_Calculate 198

private

JButton
btn_CreateReport 198

private

JButton
btn_Exit 198

Class MarketingROI

MarketingWF Documentation Page 197 of 361

private

JButton
btn_Save 198

private

double
costCustomer 198

private

double
costPiece 198

private

double
costResponse 198

static int CREATE 198

static int CREATE_AND_SAVE 198

private

JFileChooser
fc 198

private

JScrollPane
jScrollPane1 198

private

JScrollPane
jScrollPane2 198

private

JSeparator
jSeparator1 198

private

JLabel
lbl_ConversionRate 198

private

JLabel
lbl_NumberPieces 198

private

JLabel
lbl_ProfitSale 198

private

JLabel
lbl_ResponseRate 198

private

JLabel
lbl_TotalCosts 198

private

ExecuteROI
myApp 198

private int numBuyers 198

private int numResponders 198

private int result 198

private

double
ROI 198

static int SUCCESS 198

private

JTable
tbl_Results 198

private

double
totalProfit 198

private

JTextField
txt_ConversionRate 198

private

JTextField
txt_NumberPieces 198

private

JTextField
txt_ProfitSale 198

private

JTextField
txt_ResponseRate 198

private

JTextField
txt_TotalCosts 198

Constructor Summary Page

MarketingROI()

Creates new form MarketingROI 198

Method Summary Page

private

void

btn_CalculateActionPerformed(ActionEvent evt)
198

private

void

btn_CreateReportActionPerformed(ActionEvent evt)
199

private

void

btn_ExitActionPerformed(ActionEvent evt)
199

private

void

btn_SaveActionPerformed(ActionEvent evt)
199

Class MarketingROI

MarketingWF Documentation Page 198 of 361

private

void

calculate()

Calculates some ROI metrics based on GUI input data. 199

private

void

createReport(int action)

Creates a report in a .doc format using a document template and GUI's data. 199

ExecuteROI getMyApp() 199

int getResult() 199

private

void

initComponents()

This method is called from within the constructor to initialize the form. 198

static

void

main(String[] args)
199

void setMyApp(ExecuteROI myApp) 199

void setResult(int result) 199

private

void

showResults()

Refresh table model 199

Field Detail
private JFileChooser fc
private int numResponders
private int numBuyers
private double costResponse
private double costCustomer
private double totalProfit
private double costPiece
private double ROI
static final int CREATE
static final int CREATE_AND_SAVE
public static final int SUCCESS
private int result
private ExecuteROI myApp
private JButton btn_Calculate
private JButton btn_CreateReport
private JButton btn_Exit
private JScrollPane jScrollPane1
private JScrollPane jScrollPane2
private JSeparator jSeparator1
private JButton btn_Save
private JLabel lbl_ConversionRate
private JLabel lbl_NumberPieces
private JLabel lbl_ProfitSale
private JLabel lbl_ResponseRate
private JLabel lbl_TotalCosts
private JTable tbl_Results
private JTextField txt_ConversionRate
private JTextField txt_NumberPieces
private JTextField txt_ProfitSale
private JTextField txt_ResponseRate
private JTextField txt_TotalCosts

Constructor Detail
public MarketingROI()

Creates new form MarketingROI

Method Detail
private void initComponents()

This method is called from within the constructor to initialize the form. WARNING: Do NOT modify this
code. The content of this method is always regenerated by the Form Editor.

private void btn_CalculateActionPerformed(ActionEvent evt)

Class MarketingROI

MarketingWF Documentation Page 199 of 361

private void btn_CreateReportActionPerformed(ActionEvent evt)
private void btn_ExitActionPerformed(ActionEvent evt)
private void btn_SaveActionPerformed(ActionEvent evt)
public static void main(String[] args)

Parameters:

args - the command line arguments

private void calculate()

Calculates some ROI metrics based on GUI input data. The metrics calculated are visible to a Table

private void showResults()

Refresh table model

private void createReport(int action)

Creates a report in a .doc format using a document template and GUI's data.

public void setResult(int result)
public int getResult()
public void setMyApp(ExecuteROI myApp)
public ExecuteROI getMyApp()

Class MediaDecisionsGUI
generic

java.lang.Object

 java.awt.Component

 java.awt.Container

 java.awt.Window

 java.awt.Frame

 javax.swing.JFrame

 generic.MediaDecisionsGUI

All Implemented Interfaces:

Accessible, ImageObserver, MenuContainer, RootPaneContainer, Serializable,
TransferHandler.HasGetTransferHandler, WindowConstants

public class MediaDecisionsGUI

extends JFrame

A supportive GUI to specify media requirements for every cluster (customer segment). The specified requirements
may be saved to a text file

Author:
Pavlos Delias

Nested Class Summary Page

private

class
MediaDecisionsGUI.Cluster

An inner class used by the MediaDecisionsGUI to represent the cluster notion
202

static

enum
MediaDecisionsGUI.MediaFormat 204

Field Summary Page

private JButton btn_Assign 201

private JButton btn_Browse 201

private JButton btn_Done 201

private JButton btn_Publish 201

Class MediaDecisionsGUI

MarketingWF Documentation Page 200 of 361

private

HashMap<String,MediaDecisionsGUI.Cluster>
clusters 201

private JComboBox cmb_Clusters 201

private boolean done 201

private File excelFile 201

private JFileChooser fc 201

private JScrollPane jScrollPane1 201

private JLabel lbl_Budget 201

private JLabel lbl_MediaFormat 201

private JLabel lbl_Quantity 201

private JLabel lbl_Select 201

private JLabel lbl_SelectCluster 201

private boolean published 201

private File publishFile 201

private JRadioButton rdb_Brochure 201

private JRadioButton rdb_Catalog 201

private JRadioButton rdb_Flyer 201

private JRadioButton rdb_Guift 201

private ButtonGroup rdb_MediaFormat 201

private JTable tbl_ClusterData 201

private JTextField txt_Budget 201

private JTextField txt_FileName 201

private JTextField txt_Quantity 201

Constructor Summary Page

MediaDecisionsGUI()

Creates new form MediaDecisionsGUI 201

Method Summary Page

private

void

assignToCluster(String clusterName)

Cluster parameters are set 202

private

void

btn_AssignActionPerformed(ActionEvent evt)
201

private

void

btn_BrowseActionPerformed(ActionEvent evt)
201

private

void

btn_DoneActionPerformed(ActionEvent evt)
201

private

void

btn_PublishActionPerformed(ActionEvent evt)
201

private

void

cmb_ClustersItemStateChanged(ItemEvent evt)
201

void createTextFile()

Creates a text files that contains all the media requirements for all clusters 202

private

void

fillCombo()

Updates combo box data 202

private

void

getClustersFromFile(File xl)

Read an Excel file and gets cluster-related data 201

File getPublishFile() 202

private

void

initComponents()

This method is called from within the constructor to initialize the form. 201

boolean isDone() 202

boolean isPublished() 202

Class MediaDecisionsGUI

MarketingWF Documentation Page 201 of 361

static

void

main(String[] args)
201

void setDone(boolean done) 202

void setPublished(boolean published) 202

void setPublishFile(File publishFile) 202

private

void

txt_FileNameActionPerformed(ActionEvent evt)
201

private

void

updateTable(String clusterName)

Updates the table that presents the cluster's parameters 202

Field Detail
private JFileChooser fc
private File excelFile
private File publishFile
private boolean done
private boolean published
private HashMap<String,MediaDecisionsGUI.Cluster> clusters
private JButton btn_Assign
private JButton btn_Browse
private JButton btn_Done
private JButton btn_Publish
private JComboBox cmb_Clusters
private JScrollPane jScrollPane1
private JLabel lbl_Budget
private JLabel lbl_MediaFormat
private JLabel lbl_Quantity
private JLabel lbl_Select
private JLabel lbl_SelectCluster
private JRadioButton rdb_Brochure
private JRadioButton rdb_Catalog
private JRadioButton rdb_Flyer
private JRadioButton rdb_Guift
private ButtonGroup rdb_MediaFormat
private JTable tbl_ClusterData
private JTextField txt_Budget
private JTextField txt_FileName
private JTextField txt_Quantity

Constructor Detail
public MediaDecisionsGUI()

Creates new form MediaDecisionsGUI

Method Detail
private void initComponents()

This method is called from within the constructor to initialize the form. WARNING: Do NOT modify this
code. The content of this method is always regenerated by the Form Editor.

private void txt_FileNameActionPerformed(ActionEvent evt)
private void btn_BrowseActionPerformed(ActionEvent evt)
private void btn_AssignActionPerformed(ActionEvent evt)
private void btn_DoneActionPerformed(ActionEvent evt)
private void btn_PublishActionPerformed(ActionEvent evt)
private void cmb_ClustersItemStateChanged(ItemEvent evt)
public static void main(String[] args)

Parameters:

args - the command line arguments

private void getClustersFromFile(File xl)

Read an Excel file and gets cluster-related data

Class MediaDecisionsGUI

MarketingWF Documentation Page 202 of 361

private void fillCombo()

Updates combo box data

private void updateTable(String clusterName)

Updates the table that presents the cluster's parameters

private void assignToCluster(String clusterName)

Cluster parameters are set

public void createTextFile()

 throws IOException

Creates a text files that contains all the media requirements for all clusters

Throws:
IOException

public void setDone(boolean done)
public boolean isDone()
public void setPublished(boolean published)
public boolean isPublished()
public void setPublishFile(File publishFile)
public File getPublishFile()

Class MediaDecisionsGUI.Cluster
generic

java.lang.Object

 generic.MediaDecisionsGUI.Cluster

Enclosing class:

MediaDecisionsGUI

private class MediaDecisionsGUI.Cluster

extends Object

An inner class used by the MediaDecisionsGUI to represent the cluster notion

Author:
Pavlos Delias

Field Summary Page

private double budget 203

private String character 203

private

MediaDecisionsGUI.MediaFormat
format 203

private String name 203

private double percentage 203

private

HashMap<String,Object>
propertiesSet 203

private int quantity 203

private int size 203

Constructor Summary Page

MediaDecisionsGUI.Cluster() 203

Class MediaDecisionsGUI.Cluster

MarketingWF Documentation Page 203 of 361

Method Summary Page

double getBudget() 203

String getCharacter() 203

MediaDecisionsGUI.MediaFormat getFormat() 203

String getName() 203

double getPercentage() 203

int getQuantity() 203

int getSize() 203

String publish() 203

void setBudget(double budget) 203

void setCharacter(String character) 203

void setFormat(MediaDecisionsGUI.MediaFormat format) 203

void setName(String name) 203

void setPercentage(double percentage) 203

void setQuantity(int quantity) 203

void setSize(int size) 203

Field Detail
private String name
private String character
private int size
private double percentage
private MediaDecisionsGUI.MediaFormat format
private int quantity
private double budget
private HashMap<String,Object> propertiesSet

Constructor Detail
public MediaDecisionsGUI.Cluster()

Method Detail
public void setName(String name)
public String getName()
public void setCharacter(String character)
public String getCharacter()
public void setSize(int size)
public int getSize()
public void setPercentage(double percentage)
public double getPercentage()
public void setFormat(MediaDecisionsGUI.MediaFormat format)
public MediaDecisionsGUI.MediaFormat getFormat()
public void setQuantity(int quantity)
public int getQuantity()
public void setBudget(double budget)
public double getBudget()
public String publish()

Returns:
String represenation of cluster in form of 'Name#000#format'

Enum MediaDecisionsGUI.MediaFormat

MarketingWF Documentation Page 204 of 361

Enum MediaDecisionsGUI.MediaFormat
generic

java.lang.Object

 java.lang.Enum<MediaDecisionsGUI.MediaFormat>

 generic.MediaDecisionsGUI.MediaFormat

All Implemented Interfaces:

Comparable<MediaDecisionsGUI.MediaFormat>, Serializable

Enclosing class:

MediaDecisionsGUI

public static enum MediaDecisionsGUI.MediaFormat

extends Enum<MediaDecisionsGUI.MediaFormat>

Enum Constant Summary Page

BROCHURE 204

CATALOG 204

FLYER 204

GUIFT 204

UNSET 204

Constructor Summary Page

private MediaDecisionsGUI.MediaFormat() 204

Method Summary Page

static

MediaDecisionsGUI.MediaFormat

valueOf(String name)
204

static

MediaDecisionsGUI.MediaFormat[]

values()
204

Enum Constant Detail
public static final MediaDecisionsGUI.MediaFormat BROCHURE
public static final MediaDecisionsGUI.MediaFormat FLYER
public static final MediaDecisionsGUI.MediaFormat CATALOG
public static final MediaDecisionsGUI.MediaFormat GUIFT
public static final MediaDecisionsGUI.MediaFormat UNSET

Constructor Detail
private MediaDecisionsGUI.MediaFormat()

Method Detail
public static MediaDecisionsGUI.MediaFormat[] values()
public static MediaDecisionsGUI.MediaFormat valueOf(String name)

Class Product
generic

java.lang.Object

 generic.Product

public class Product

extends Object

Class Product

MarketingWF Documentation Page 205 of 361

Field Summary Page

private String checkListFile 205

private

boolean
CheckListLoaded 205

private

ProductManager
myManager 205

private String name 205

Constructor Summary Page

Product() 205

Method Summary Page

String getCheckListFile() 205

String getName() 205

boolean isCheckListLoaded() 205

void setCheckListFile(String checkListFile) 205

void setCheckListLoaded(boolean checkListLoaded) 205

void setName(String name) 205

Field Detail
private String name
private ProductManager myManager
private boolean CheckListLoaded
private String checkListFile

Constructor Detail
public Product()

Method Detail
public void setName(String name)
public String getName()
public void setCheckListLoaded(boolean checkListLoaded)
public boolean isCheckListLoaded()
public void setCheckListFile(String checkListFile)
public String getCheckListFile()

Class ReviewDraftGUI
generic

java.lang.Object

 java.awt.Component

 java.awt.Container

 java.awt.Window

 java.awt.Frame

 javax.swing.JFrame

 generic.ReviewDraftGUI

All Implemented Interfaces:

Accessible, ImageObserver, MenuContainer, RootPaneContainer, Serializable,
TransferHandler.HasGetTransferHandler, WindowConstants

public class ReviewDraftGUI

extends JFrame

Class ReviewDraftGUI

MarketingWF Documentation Page 206 of 361

A supportive GUI to help marketing communicator review artwork drafts. The review can be saved in a .doc format

Author:
Pavlos Delias

Field Summary Page

static int ACCEPT 207

private

ButtonGroup
buttonGroup1 207

private

JCheckBox
chk_Generate 207

private

JButton
cmd_Exit 207

private

JButton
cmd_OK 207

private

JFileChooser
fc 207

private

JLabel
jLabel1 207

private

JScrollPane
jScrollPane1 207

private

JScrollPane
jScrollPane2 207

private

JScrollPane
jScrollPane3 207

private

JScrollPane
jScrollPane4 207

private

JScrollPane
jScrollPane5 207

private

JScrollPane
jScrollPane6 207

private

JLabel
lbl_AdEasy 207

private

JLabel
lbl_Benefit 208

private

JLabel
lbl_Brand 208

private

JLabel
lbl_Identified 208

private

JLabel
lbl_Illustration 208

private

JLabel
lbl_MessageClear 208

private

jade.core.AID
MC 207

static int NEEDS_WORK 207

private

JRadioButton
rdb_Accept 208

private

JRadioButton
rdb_Reject 208

private

String
reportFileName 207

private int result 207

private

boolean
reviewed 207

private

JSlider
sld_AdEasy 208

private

JSlider
sld_Benefit 208

private

JSlider
sld_Brand 208

private

JSlider
sld_Identified 208

Class ReviewDraftGUI

MarketingWF Documentation Page 207 of 361

private

JSlider
sld_Illustration 208

private

JSlider
sld_MessageClear 208

private

JTextArea
txt_adEasy 208

private

JTextArea
txt_Benefit 208

private

JTextArea
txt_Brand 208

private

JTextArea
txt_Identified 208

private

JTextArea
txt_Illustration 208

private

JTextArea
txt_MessageClear 208

Constructor Summary Page

ReviewDraftGUI()

Creates new form ReviewDraftGUI 208

Method Summary Page

private

void

cmd_ExitActionPerformed(ActionEvent evt)
208

private

void

cmd_OKActionPerformed(ActionEvent evt)
208

private

void

createReport()

Creates a report document based on the GUI data. 208

String getReportFileName() 208

int getResult() 208

private

void

initComponents()

This method is called from within the constructor to initialize the form. 208

boolean isReviewed() 208

void setMC(jade.core.AID mC) 208

void setReportFileName(String reportFileName) 208

void setResult(int result) 208

void setReviewed(boolean reviewed) 208

Field Detail
private JFileChooser fc
private String reportFileName
private jade.core.AID MC
private int result
private boolean reviewed
public static final int ACCEPT
public static final int NEEDS_WORK
private ButtonGroup buttonGroup1
private JCheckBox chk_Generate
private JButton cmd_Exit
private JButton cmd_OK
private JLabel jLabel1
private JScrollPane jScrollPane1
private JScrollPane jScrollPane2
private JScrollPane jScrollPane3
private JScrollPane jScrollPane4
private JScrollPane jScrollPane5
private JScrollPane jScrollPane6
private JLabel lbl_AdEasy

Class ReviewDraftGUI

MarketingWF Documentation Page 208 of 361

private JLabel lbl_Benefit
private JLabel lbl_Brand
private JLabel lbl_Identified
private JLabel lbl_Illustration
private JLabel lbl_MessageClear
private JRadioButton rdb_Accept
private JRadioButton rdb_Reject
private JSlider sld_AdEasy
private JSlider sld_Benefit
private JSlider sld_Brand
private JSlider sld_Identified
private JSlider sld_Illustration
private JSlider sld_MessageClear
private JTextArea txt_Benefit
private JTextArea txt_Brand
private JTextArea txt_Illustration
private JTextArea txt_MessageClear
private JTextArea txt_adEasy
private JTextArea txt_Identified

Constructor Detail
public ReviewDraftGUI()

Creates new form ReviewDraftGUI

Method Detail
private void initComponents()

This method is called from within the constructor to initialize the form. WARNING: Do NOT modify this
code. The content of this method is always regenerated by the Form Editor.

private void cmd_ExitActionPerformed(ActionEvent evt)
private void cmd_OKActionPerformed(ActionEvent evt)
private void createReport()

Creates a report document based on the GUI data. The user is prompted to save the report.

public void setResult(int result)
public int getResult()
public void setReviewed(boolean reviewed)
public boolean isReviewed()
public void setReportFileName(String reportFileName)
public String getReportFileName()
public void setMC(jade.core.AID mC)

Package marketing.wf.gui

MarketingWF Documentation Page 209 of 361

Package marketing.wf.gui

Class Summary Page

DBGUIUtils
A supportive class to handle main application's GUI interactions
with the database.

209

GUIAgent The agent behind the main application's GUI. 211

MarketingWFAboutDialog 212

marketingWFMainGUI The main application's GUI. 214

marketingWFMainGUI.FilteredStream An auxiliary class to support printing the logs to the GUI Logger. 224

ParametersPanel A GUI supportive class. 225

ParametersPanel.Row 227

Class DBGUIUtils
marketing.wf.gui

java.lang.Object

 marketing.wf.gui.DBGUIUtils

public class DBGUIUtils

extends Object

A supportive class to handle main application's GUI interactions with the database. Connections, Statements and
results set are defined per method

Author:
Pavlos Delias

Field Summary Page

Connection conn 210

Statement ins 210

private

marketingWFMainGUI
myGui 210

ResultSet rs 210

Statement stmt 210

Constructor Summary Page

DBGUIUtils(marketingWFMainGUI gui) 210

Method Summary Page

boolean checkStateRequirements(String state, String process)

Performs a check if all requirements (files) necessary to begin the process
instance from the specified state exist.

211

String[] getAvailableTemplates()

Queries the database with "SELECT process_type.Name FROM
process_type;"

210

String[] getExistingProcesses(int typeId)

Get all process instances that belong to the specified process type 210

marketingWFMainGUI getMyGui() 211

Class DBGUIUtils

MarketingWF Documentation Page 210 of 361

int getProcessId(String name)

Returns a integer with the process instance id 210

String[] getStatesOfProcess(String processName)

Based on the process template, the possible states that an instance of this
template may be found are returned.

210

int getTypeId(String typeName)

Queries the database with SELECT process_type.Id FROM process_type
WHERE process_type.Name = 'typeName';

210

HashMap<String,String> getWFProperties(String state)

Based on the state specified, the workflow that should be started is identified,
and the appropriate performer types are returned

211

void insertNewProcess(String name, String template)

Inserts a new process instance for a specific process template. 210

void setMyGui(marketingWFMainGUI myGui) 211

Field Detail
private marketingWFMainGUI myGui
Connection conn
Statement stmt
Statement ins
ResultSet rs

Constructor Detail
public DBGUIUtils(marketingWFMainGUI gui)

Method Detail
public int getTypeId(String typeName)

Queries the database with SELECT process_type.Id FROM process_type WHERE process_type.Name =
'typeName';

Returns:
int process type Id

public String[] getAvailableTemplates()

Queries the database with "SELECT process_type.Name FROM process_type;"

Returns:
An Array of Strings, each specifying a process template

public void insertNewProcess(String name,

 String template)

Inserts a new process instance for a specific process template.

public int getProcessId(String name)

Returns a integer with the process instance id

Returns:
int The process instance id

public String[] getExistingProcesses(int typeId)

Get all process instances that belong to the specified process type

Returns:
An array of Strings

public String[] getStatesOfProcess(String processName)

Based on the process template, the possible states that an instance of this template may be found are
returned.

Class DBGUIUtils

MarketingWF Documentation Page 211 of 361

Returns:
An array of Strings, specifying the states of the process

public boolean checkStateRequirements(String state,

 String process)

Performs a check if all requirements (files) necessary to begin the process instance from the specified state
exist.

Parameters:

state - the state - milestone to start execution from

process - the process type

Returns:
An answer to the question are requirements fulfilled?

public HashMap<String,String> getWFProperties(String state)

Based on the state specified, the workflow that should be started is identified, and the appropriate
performer types are returned

Returns:
A map containing the appropriate performer types

public void setMyGui(marketingWFMainGUI myGui)
public marketingWFMainGUI getMyGui()

Class GUIAgent
marketing.wf.gui

java.lang.Object

 jade.core.Agent

 marketing.wf.gui.GUIAgent

All Implemented Interfaces:

Runnable, jade.util.leap.Serializable, Serializable, jade.core.TimerListener

public class GUIAgent

extends jade.core.Agent

The agent behind the main application's GUI. During its setup:Registers the ontologies (ContactCenterOntology,

com.tilab.wade.ca.ontology.DeploymentOntology,

com.tilab.wade.cfa.ontology.ConfigurationOntology.Retrieves the configuration Agent from the WADE

platformRetrieves the Controller agents form the WADE platformGets associated with the GUI
Author:

Pavlos Delias

Nested classes/interfaces inherited from class jade.core.Agent

Agent.Interrupted

Field Summary Page

private

jade.domain.FIPAAgentManagement.DFAgentDescription
caTemplate 212

private jade.core.AID cfa 212

private marketingWFMainGUI myGUI 212

Fields inherited from class jade.core.Agent

AP_ACTIVE, AP_DELETED, AP_IDLE, AP_INITIATED, AP_MAX, AP_MIN, AP_SUSPENDED, AP_WAITING,

Class GUIAgent

MarketingWF Documentation Page 212 of 361

D_ACTIVE, D_MAX, D_MIN, D_RETIRED, D_SUSPENDED, D_UNKNOWN, MSG_QUEUE_CLASS

Constructor Summary Page

GUIAgent() 212

Method Summary Page

jade.domain.FIPAAgentManagement.DFAgentDescription getCaTemplate() 212

jade.core.AID getCfa() 212

void retrieveStatus() 212

protected void setup() 212

Methods inherited from class jade.core.Agent

addBehaviour, afterClone, afterMove, beforeClone, beforeMove, blockingReceive,

blockingReceive, blockingReceive, blockingReceive, changeStateTo, clean, createMessageQueue,

doActivate, doClone, doDelete, doMove, doSuspend, doTimeOut, doWait, doWait, doWake,

getAgentState, getAID, getAMS, getArguments, getBootProperties, getContainerController,

getContentManager, getCurQueueSize, getDefaultDF, getHap, getHelper, getLocalName, getName,

getO2AObject, getProperty, getQueueSize, getState, here, isRestarting, join,

notifyChangeBehaviourState, notifyRestarted, postMessage, putBack, putO2AObject, receive,

receive, removeBehaviour, removeTimer, restartLater, restore, restoreBufferedState, run,

send, setArguments, setEnabledO2ACommunication, setGenerateBehaviourEvents, setO2AManager,

setQueueSize, takeDown, waitUntilStarted, write

Field Detail
private jade.core.AID cfa
private jade.domain.FIPAAgentManagement.DFAgentDescription caTemplate
private marketingWFMainGUI myGUI

Constructor Detail
public GUIAgent()

Method Detail
protected void setup()

Overrides:

setup in class jade.core.Agent

public void retrieveStatus()
public jade.core.AID getCfa()
public jade.domain.FIPAAgentManagement.DFAgentDescription getCaTemplate()

Class MarketingWFAboutDialog
marketing.wf.gui

java.lang.Object

 java.awt.Component

 java.awt.Container

 java.awt.Window

 java.awt.Dialog

 javax.swing.JDialog

 marketing.wf.gui.MarketingWFAboutDialog

All Implemented Interfaces:

Accessible, ImageObserver, MenuContainer, RootPaneContainer, Serializable,
TransferHandler.HasGetTransferHandler, WindowConstants

public class MarketingWFAboutDialog

extends JDialog

Class MarketingWFAboutDialog

MarketingWF Documentation Page 213 of 361

Author:
Pavlos Delias

Field Summary Page

private

JButton
cmd_Close 213

private

JScrollPane
jScrollPane1 213

private

JLabel
lbl_desc 213

private

JLabel
lbl_Logo 213

private

JLabel
lbl_Title 213

private

JTextArea
txt_Desc 213

Constructor Summary Page

MarketingWFAboutDialog(Frame parent, boolean modal)

Creates new form MarketingWFAboutDialog 213

Method Summary Page

private

void

cmd_CloseActionPerformed(ActionEvent evt)
213

private

void

initComponents()

This method is called from within the constructor to initialize the form. 213

static

void

main(String[] args)
213

Field Detail
private JButton cmd_Close
private JScrollPane jScrollPane1
private JLabel lbl_Logo
private JLabel lbl_Title
private JLabel lbl_desc
private JTextArea txt_Desc

Constructor Detail
public MarketingWFAboutDialog(Frame parent,

 boolean modal)

Creates new form MarketingWFAboutDialog

Method Detail
private void initComponents()

This method is called from within the constructor to initialize the form. WARNING: Do NOT modify this
code. The content of this method is always regenerated by the Form Editor.

private void cmd_CloseActionPerformed(ActionEvent evt)
public static void main(String[] args)

Parameters:

args - the command line arguments

Class marketingWFMainGUI

MarketingWF Documentation Page 214 of 361

Class marketingWFMainGUI
marketing.wf.gui

java.lang.Object

 java.awt.Component

 java.awt.Container

 java.awt.Window

 java.awt.Frame

 javax.swing.JFrame

 marketing.wf.gui.marketingWFMainGUI

All Implemented Interfaces:

Accessible, ImageObserver, MenuContainer, RootPaneContainer, Serializable,
TransferHandler.HasGetTransferHandler, WindowConstants,
com.tilab.wade.dispatcher.WorkflowResultListener

public class marketingWFMainGUI

extends JFrame

implements com.tilab.wade.dispatcher.WorkflowResultListener

The main application's GUI.

Author:
Pavlos Delias

Nested Class Summary Page

class marketingWFMainGUI.FilteredStream

An auxiliary class to support printing the logs to the GUI Logger.
224

Field Summary Page

private jade.core.AID applicationEngine 219

PrintStream aPrintStream 219

private

HashMap<com.tilab.wade.commons.AgentType,Vector<jade.core.AI

D>>

availableAgents

Hold the available agents per type
219

private ButtonGroup btnGrp_NewProcess 219

private boolean catchErrors 219

private jade.domain.FIPAAgentManagement.DFAgentDescription caTemplate 219

private jade.core.AID cfa 219

static long CFA_TIMEOUT 219

private JComboBox cmb_DefineTemplate 219

private JComboBox cmb_ExistingProcessName 219

private JComboBox cmb_ExistingProcessState 219

private JButton cmd_CheckStateReqs 219

private JButton cmd_ExportConfiguration 219

private JButton cmd_ImportConfiguration 219

private JButton cmd_NewProcess 219

private JButton cmd_OpenJadeConf 219

private JButton cmd_OpenPlatformConfFile 219

private JButton cmd_OpenWADEtypes 219

private JButton cmd_RefreshAgents 219

Class marketingWFMainGUI

MarketingWF Documentation Page 215 of 361

private JButton cmd_RunWF 219

private JButton cmd_SaveConfiguration 219

private JButton cmd_SaveManagementFiles 219

private JButton cmd_SelectPerformer 219

private JButton cmd_StartDaemon 219

private JButton cmd_StartMain 219

private JButton cmd_StartPlatform 219

private JButton cmd_StopPlatform 219

private int cnt 219

private int currentProcessId 219

private com.tilab.wade.dispatcher.DispatchingCapabilities dc 219

private JFileChooser GUIfc 219

private MonitoringWFService.MonitoringWFHelperImpl helper

A Service Helper for the monitoring
Service

219

private JMenu jMenu1 220

private JMenu jMenu2 220

private JMenuBar jMenuBar1 220

private JScrollPane jScrollPane1 220

private JScrollPane jScrollPane2 220

private JScrollPane jScrollPane3 220

private JScrollPane jScrollPane4 220

private JTree jtr_Performers 220

private int launcherCounter 219

private JLabel lbl_ActiveConfiguration 220

private JLabel lbl_AppropriatePerformer 220

private JLabel lbl_CheckReqsResult 220

private JLabel lbl_DefineTemplate 220

private JLabel lbl_ExistingProcessName 220

private JLabel lbl_ExistingProcessState 220

private JLabel lbl_Logo 220

private JLabel lbl_NewProcessName 220

private JLabel lbl_Performer 220

private JLabel lbl_PlatformStatus 220

private boolean logFile 219

private String logFileName 219

private JMenuItem mnu_About 220

private JMenuItem mnu_GetStatus 220

private JMenu mnu_Help 220

private JMenuItem mnu_OpenApi 220

private JMenuItem mnu_SaveLog 220

private JMenuItem mnu_Test1 220

private JMenuItem mnu_Test2 220

private JMenu mnu_Testing 220

private GUIAgent myAgent 219

private DBGUIUtils myDB 219

private ParametersPanel parametersPanel 219

Class marketingWFMainGUI

MarketingWF Documentation Page 216 of 361

private String platformStatus 219

private JPanel pnl_Architecture 220

private JPanel pnl_Configuration 220

private JPanel pnl_InnerPlatform 220

private JPanel pnl_Logger 220

private JPanel pnl_Management 220

private JScrollPane pnl_Parameters 220

private JPanel pnl_Performers 220

private JPanel pnl_Platform 220

private JPanel pnl_Process 220

private JPanel pnl_WFLauncher 220

private JPanel pnl_Workflows 220

private JRadioButton rdb_ExistingProcess 220

private JRadioButton rdb_NewProcess 220

private JTabbedPane tab_Sections 220

private JTextField txt_ActiveConfiguration 220

private JTextField txt_AppropriatePerformer 220

private JEditorPane txt_Editor 220

private JTextArea txt_Logger 220

private JTextField txt_NewProcessName 220

private JTextField txt_Performer 220

private JTextField txt_PlatformStatus 220

private JTextArea txt_WFEvents 220

private String workflowExecutionId 219

private String workflowToRun 219

Constructor Summary Page

marketingWFMainGUI()

Creates new form marketingWFMainGUI 220

Method Summary
Pag

e

private String buildConversationalId() 223

private void cmb_ExistingProcessNameActionPerformed(ActionEvent evt) 221

private void cmb_ExistingProcessStateActionPerformed(ActionEvent evt) 221

private void cmd_CheckStateReqsActionPerformed(ActionEvent evt) 221

private void cmd_ExportConfigurationActionPerformed(ActionEvent evt) 220

private void cmd_ImportConfigurationActionPerformed(ActionEvent evt) 220

private void cmd_NewProcessActionPerformed(ActionEvent evt) 221

private void cmd_OpenJadeConfActionPerformed(ActionEvent evt) 221

private void cmd_OpenPlatformConfFileActionPerformed(ActionEvent evt) 221

private void cmd_OpenWADEtypesActionPerformed(ActionEvent evt) 221

private void cmd_RefreshAgentsActionPerformed(ActionEvent evt) 221

private void cmd_RunWFActionPerformed(ActionEvent evt) 221

private void cmd_SaveConfigurationActionPerformed(ActionEvent evt) 220

private void cmd_SaveManagementFilesActionPerformed(ActionEvent evt) 221

private void cmd_SelectPerformerActionPerformed(ActionEvent evt) 221

Class marketingWFMainGUI

MarketingWF Documentation Page 217 of 361

private void cmd_StartDaemonActionPerformed(ActionEvent evt) 221

private void cmd_StartMainActionPerformed(ActionEvent evt) 221

private void cmd_StartPlatformActionPerformed(ActionEvent evt) 221

private void cmd_StopPlatformActionPerformed(ActionEvent evt) 221

private void configureAgentReferences()

The GUI sets up its reference with the configuration agent and the

application engine agent (ApplicationEngineAgent.
221

jade.lang.acl.ACLMessage createAppEngineRequest(jade.content.AgentAction action)

Prepares an ACLMessage to be send to the Application Engine
Agent

223

jade.lang.acl.ACLMessage createCfaRequest(jade.content.AgentAction action)

Prepares an ACLMessage to be send to the Configuration Agent 223

void fillStatesCombo()

Queries the database and finds process states according to process
type.

222

private

Vector<com.tilab.wade.commons.Agen

tType>

getAllAgentTypes()

Gets all the agent types that are defined within the types.xml file. 223

private void getAvailableAgents(Vector<com.tilab.wade.commons.AgentType>

types)

Gets all the agents that exist in the platform, grouping them by their
type.

223

private void getAvailableTemplates()

Queries the database to get the available process types, and
publish them to the respective combobox

221

int getCurrentProcessId() 224

MonitoringWFService.MonitoringWFHe

lperImpl

getHelper()
224

GUIAgent getMyAgent() 224

DBGUIUtils getMyDB() 224

String getPlatformStatus() 224

private jade.util.leap.List getWorkflowParameters(String workflowName)

It communicates with the Controller Agent of the local container to
get the parameters that are specified by the workflow definition (class)

223

private void getWorkflowProperties()

For a specified state of a process, it gets the workflow class that it

should be performed and it stores it into the workflowToRun field.
223

void handleAssignedId(jade.core.AID executor, String executionId) 224

void handleCheckRequirements()

This method is called when the "Check Requirements" button is
pressed.

222

private void handleException(String op) 224

private void handleException(String op, Exception e) 224

void handleExecutionCompleted(jade.util.leap.List results,

jade.core.AID executor, String executionId)
224

void handleExecutionError(com.tilab.wade.performer.ontology.Execut

ionError er, jade.core.AID executor, String executionId)
224

void handleExistingProcessNameSelected()

This process is called whenever the user selects a process instance
from the corresponded comboBox.

222

void handleExistingProcessSelection()

This method is called when the radio button "Existing Process" is
selected.

221

void handleExportConfiguration(String configurationName, String

configurationDesc, boolean override)

This method is called when the "Export Configuration" button is
pressed.

222

Class marketingWFMainGUI

MarketingWF Documentation Page 218 of 361

void handleImportConfiguration()

This method is called when the "Import Configuration" button is
pressed.

222

void handleLoadError(String reason) 224

void handleNewProcessAdded()

This method is called when the "Submit" button of the Workflow tab
is pressed.

222

void handleNewProcessSelection()

This method is called when the radio button "New process" is
selected.

221

void handleNotificationError(jade.core.AID executor, String

executionId)
224

void handleRunWorkflow(String wf)

This method starts execution of the workflow class specified in the
parameters.

222

void handleSaveConfiguration()

This method is called when the "Save Configuration" button is
pressed.

222

void handleSelectPerformer()

This method is called when the "Select Performer" button of the
workflows Tab is pressed.

222

void handleShutdownPlatform()

This method is called when the "Shutdown Platform" button is
pressed.

222

void handleStartBoot()

This method is called when the button "Start Boot Daemon" is
pressed.

221

void handleStartMain()

This method is called when the "Start Main Container" button is
pressed.

221

void handleStartupPlatform()

This method is called when the "Start Platform" button is pressed. 221

private void initComponents()

This method is called from within the constructor to initialize the
form.

220

private void jtr_PerformersValueChanged(TreeSelectionEvent evt) 221

void log(String s) 223

static void main(String[] args) 221

private void mnu_AboutActionPerformed(ActionEvent evt) 221

private void mnu_GetStatusActionPerformed(ActionEvent evt) 221

private void mnu_OpenApiActionPerformed(ActionEvent evt) 221

private void mnu_SaveLogActionPerformed(ActionEvent evt) 221

private void rdb_ExistingProcessActionPerformed(ActionEvent evt) 221

private void rdb_NewProcessActionPerformed(ActionEvent evt) 221

void saveLogFile()

Saves the Logger panel content to a file. 224

private String selectConfiguration()

Opens a dialog to select a platform's configuration file from the
default configuration directory.

222

private void serveNewContactCenter()

This method is called when a new process of the ContactCenter
type is submitted.

221

private void serveNewDirectMail()

This method is called when a new process of the DirectMail type is
submitted.

221

void setCurrentProcessId(int currentProcessId) 224

void setHelper(MonitoringWFService.MonitoringWFHelperImpl helper) 224

Class marketingWFMainGUI

MarketingWF Documentation Page 219 of 361

void setMyAgent(GUIAgent myAgent) 224

void setMyDB(DBGUIUtils myDB) 224

void setPlatformStatus(String status) 224

private void setProcessId2Engine(int id) 223

private void setProcessId2Monitor(int id) 223

private void startJADE()

Starts the JADE platform. 221

private void updateTree(HashMap<com.tilab.wade.commons.AgentType,Vector<ja

de.core.AID>> map)

A GUI supportive method to update the tree of the workflows Tab,
that presents all the available agents, grouped by type.

223

Field Detail
static final long CFA_TIMEOUT
private int cnt
private String platformStatus
private GUIAgent myAgent
private jade.core.AID cfa
private jade.core.AID applicationEngine
private jade.domain.FIPAAgentManagement.DFAgentDescription caTemplate
private int launcherCounter
private String workflowToRun
private ParametersPanel parametersPanel
private com.tilab.wade.dispatcher.DispatchingCapabilities dc
private String workflowExecutionId
private int currentProcessId
private MonitoringWFService.MonitoringWFHelperImpl helper

A Service Helper for the monitoring Service

private DBGUIUtils myDB
private HashMap<com.tilab.wade.commons.AgentType,Vector<jade.core.AID>> availableAgents

Hold the available agents per type

private boolean catchErrors
private boolean logFile
private String logFileName
PrintStream aPrintStream
private JFileChooser GUIfc
private ButtonGroup btnGrp_NewProcess
private JComboBox cmb_DefineTemplate
private JComboBox cmb_ExistingProcessName
private JComboBox cmb_ExistingProcessState
private JButton cmd_CheckStateReqs
private JButton cmd_ExportConfiguration
private JButton cmd_ImportConfiguration
private JButton cmd_NewProcess
private JButton cmd_OpenJadeConf
private JButton cmd_OpenWADEtypes
private JButton cmd_OpenPlatformConfFile
private JButton cmd_RefreshAgents
private JButton cmd_RunWF
private JButton cmd_SaveConfiguration
private JButton cmd_SaveManagementFiles
private JButton cmd_SelectPerformer
private JButton cmd_StartDaemon
private JButton cmd_StartMain
private JButton cmd_StartPlatform
private JButton cmd_StopPlatform

Class marketingWFMainGUI

MarketingWF Documentation Page 220 of 361

private JMenu jMenu1
private JMenu jMenu2
private JMenuBar jMenuBar1
private JScrollPane jScrollPane1
private JScrollPane jScrollPane2
private JScrollPane jScrollPane3
private JScrollPane jScrollPane4
private JTree jtr_Performers
private JLabel lbl_ActiveConfiguration
private JLabel lbl_AppropriatePerformer
private JLabel lbl_CheckReqsResult
private JLabel lbl_DefineTemplate
private JLabel lbl_ExistingProcessName
private JLabel lbl_ExistingProcessState
private JLabel lbl_NewProcessName
private JLabel lbl_Performer
private JLabel lbl_PlatformStatus
private JLabel lbl_Logo
private JMenuItem mnu_About
private JMenuItem mnu_GetStatus
private JMenu mnu_Help
private JMenuItem mnu_OpenApi
private JMenuItem mnu_SaveLog
private JMenuItem mnu_Test1
private JMenuItem mnu_Test2
private JMenu mnu_Testing
private JPanel pnl_Architecture
private JPanel pnl_Configuration
private JPanel pnl_InnerPlatform
private JPanel pnl_Logger
private JPanel pnl_Management
private JScrollPane pnl_Parameters
private JPanel pnl_Performers
private JPanel pnl_Platform
private JPanel pnl_Process
private JPanel pnl_WFLauncher
private JPanel pnl_Workflows
private JRadioButton rdb_ExistingProcess
private JRadioButton rdb_NewProcess
private JTabbedPane tab_Sections
private JTextField txt_ActiveConfiguration
private JTextField txt_AppropriatePerformer
private JEditorPane txt_Editor
private JTextArea txt_Logger
private JTextField txt_NewProcessName
private JTextField txt_Performer
private JTextField txt_PlatformStatus
private JTextArea txt_WFEvents

Constructor Detail
public marketingWFMainGUI()

Creates new form marketingWFMainGUI

Method Detail
private void initComponents()

This method is called from within the constructor to initialize the form. WARNING: Do NOT modify this
code. The content of this method is always regenerated by the Form Editor.

private void cmd_ImportConfigurationActionPerformed(ActionEvent evt)
private void cmd_ExportConfigurationActionPerformed(ActionEvent evt)
private void cmd_SaveConfigurationActionPerformed(ActionEvent evt)

Class marketingWFMainGUI

MarketingWF Documentation Page 221 of 361

private void cmd_StartMainActionPerformed(ActionEvent evt)
private void cmd_StartDaemonActionPerformed(ActionEvent evt)
private void rdb_NewProcessActionPerformed(ActionEvent evt)
private void rdb_ExistingProcessActionPerformed(ActionEvent evt)
private void cmd_NewProcessActionPerformed(ActionEvent evt)
private void cmd_CheckStateReqsActionPerformed(ActionEvent evt)
private void cmd_StartPlatformActionPerformed(ActionEvent evt)
private void cmd_StopPlatformActionPerformed(ActionEvent evt)
private void cmb_ExistingProcessNameActionPerformed(ActionEvent evt)
private void cmd_SelectPerformerActionPerformed(ActionEvent evt)
private void cmd_RefreshAgentsActionPerformed(ActionEvent evt)
private void jtr_PerformersValueChanged(TreeSelectionEvent evt)
private void cmd_RunWFActionPerformed(ActionEvent evt)
private void cmb_ExistingProcessStateActionPerformed(ActionEvent evt)
private void mnu_SaveLogActionPerformed(ActionEvent evt)
private void mnu_GetStatusActionPerformed(ActionEvent evt)
private void mnu_OpenApiActionPerformed(ActionEvent evt)
private void mnu_AboutActionPerformed(ActionEvent evt)
private void cmd_OpenJadeConfActionPerformed(ActionEvent evt)
private void cmd_OpenWADEtypesActionPerformed(ActionEvent evt)
private void cmd_SaveManagementFilesActionPerformed(ActionEvent evt)
private void cmd_OpenPlatformConfFileActionPerformed(ActionEvent evt)
public static void main(String[] args)

Parameters:

args - the command line arguments

private void startJADE()

Starts the JADE platform. To adjust platform's properties, a .properties file is used.

private void configureAgentReferences()

The GUI sets up its reference with the configuration agent and the application engine agent
(ApplicationEngineAgent.

private void getAvailableTemplates()

Queries the database to get the available process types, and publish them to the respective combobox

private void serveNewContactCenter()

This method is called when a new process of the ContactCenter type is submitted.

private void serveNewDirectMail()

This method is called when a new process of the DirectMail type is submitted.

public void handleStartMain()

This method is called when the "Start Main Container" button is pressed. Once the main container is
started, the button is disabled, i.e., users can not start a second Main Container

public void handleStartupPlatform()

This method is called when the "Start Platform" button is pressed. It actually sends a REQUEST message
to the Configuration Agent.

public void handleExistingProcessSelection()

This method is called when the radio button "Existing Process" is selected. It fetches available process
instances of the specified process type, and it enables / disables GUI controls.

public void handleNewProcessSelection()

This method is called when the radio button "New process" is selected. It enables / disables GUI controls.

public void handleStartBoot()

Class marketingWFMainGUI

MarketingWF Documentation Page 222 of 361

This method is called when the button "Start Boot Daemon" is pressed. It start the Boot Daemon on the
local host, taking as arguments the agents types file (types.xml) and the root configuration directory. Once
the Daemon is started, the button is disabled.

public void handleImportConfiguration()

This method is called when the "Import Configuration" button is pressed. It actually sends a REQUEST
message to the Configuration Agent.

public void handleSaveConfiguration()

This method is called when the "Save Configuration" button is pressed. It actually sends a REQUEST
message to the Configuration Agent.

public void handleExportConfiguration(String configurationName,

 String configurationDesc,

 boolean override)

This method is called when the "Export Configuration" button is pressed. It opens a dialog to get the
necessary input information. Ultimately, it sends a REQUEST message to the Configuration Agent.

public void handleShutdownPlatform()

This method is called when the "Shutdown Platform" button is pressed. It open a dialog to prompt the user
if he wishes a soft shutdown or not. It ultimately sends a REQUEST message to the Configuration Agent.

public void handleNewProcessAdded()

This method is called when the "Submit" button of the Workflow tab is pressed. It registers a new process
instance with the specified name and type with the database, and it starts serving the new process
instance execution, according to the process type.

public void handleExistingProcessNameSelected()

This process is called whenever the user selects a process instance from the corresponded comboBox. It
queries the database to get the process instance id and notifies the GUI, the Application Engine and the
monitor service.

public void handleSelectPerformer()

This method is called when the "Select Performer" button of the workflows Tab is pressed. It sets the
workflow to-be-performer to the selected agent.

public void handleCheckRequirements()

This method is called when the "Check Requirements" button is pressed. It queries the DB to check if the
required documents to begin the selected state exist for the specific process instance.

public void handleRunWorkflow(String wf)

This method starts execution of the workflow class specified in the parameters. The performer is specified

by another method (handleSelectPerformer() and the workflow parameters are specified through the

GUI interface.

Parameters:

wf - - The workflow class to be executed

public void fillStatesCombo()

Queries the database and finds process states according to process type.

private String selectConfiguration()

 throws Exception

Opens a dialog to select a platform's configuration file from the default configuration directory. Ultimately, it
sends a REQUEST message to the Configuration Agent, which performs the task.

Returns:
String - Configuration name

Throws:
Exception

Class marketingWFMainGUI

MarketingWF Documentation Page 223 of 361

private Vector<com.tilab.wade.commons.AgentType> getAllAgentTypes()

 throws Exception

Gets all the agent types that are defined within the types.xml file.

Returns:
Vector of AgentType

Throws:
Exception

private void getAvailableAgents(Vector<com.tilab.wade.commons.AgentType> types)

Gets all the agents that exist in the platform, grouping them by their type.

private void updateTree(HashMap<com.tilab.wade.commons.AgentType,Vector<jade.core.AID>> map)

A GUI supportive method to update the tree of the workflows Tab, that presents all the available agents,
grouped by type.

private void getWorkflowProperties()

For a specified state of a process, it gets the workflow class that it should be performed and it stores it into

the workflowToRun field. Additionally it find the appropriate performer type and it publishes it to the

txt_Performer field.

private jade.util.leap.List getWorkflowParameters(String workflowName)

 throws Exception

It communicates with the Controller Agent of the local container to get the parameters that are specified by
the workflow definition (class)

Parameters:

workflowName - the workflow class
Returns:

List - the parameters list
Throws:

Exception

private synchronized String buildConversationalId()
private void setProcessId2Monitor(int id)
private void setProcessId2Engine(int id)
void log(String s)
synchronized jade.lang.acl.ACLMessage createCfaRequest(jade.content.AgentAction action)

 throws jade.content.onto.OntologyException,

 jade.content.lang.Codec.CodecException

Prepares an ACLMessage to be send to the Configuration Agent

Parameters:

action - - The action that is requested for execution. Every action is specified in the package

Returns:
ACLMessage A REQUEST message

Throws:
jade.content.onto.OntologyException

jade.content.lang.Codec.CodecException

Codec.CodecException

synchronized jade.lang.acl.ACLMessage createAppEngineRequest(jade.content.AgentAction action)

 throws jade.content.onto.OntologyExcepti

on,

 jade.content.lang.Codec.CodecExce

ption

Prepares an ACLMessage to be send to the Application Engine Agent

Parameters:

action - The action that is requested for execution. Every action is specified in the package

Class marketingWFMainGUI

MarketingWF Documentation Page 224 of 361

Returns:
ACLMessage A REQUEST message

Throws:
jade.content.onto.OntologyException

jade.content.lang.Codec.CodecException

Codec.CodecException

private void handleException(String op,

 Exception e)
private void handleException(String op)
public GUIAgent getMyAgent()
public void setMyAgent(GUIAgent myAgent)
public void setMyDB(DBGUIUtils myDB)
public DBGUIUtils getMyDB()
public void saveLogFile()

Saves the Logger panel content to a file.

public void handleAssignedId(jade.core.AID executor,

 String executionId)

Specified by:

handleAssignedId in interface com.tilab.wade.dispatcher.WorkflowResultListener

public void handleExecutionCompleted(jade.util.leap.List results,

 jade.core.AID executor,

 String executionId)

Specified by:

handleExecutionCompleted in interface
com.tilab.wade.dispatcher.WorkflowResultListener

public void handleExecutionError(com.tilab.wade.performer.ontology.ExecutionError er,

 jade.core.AID executor,

 String executionId)

Specified by:

handleExecutionError in interface com.tilab.wade.dispatcher.WorkflowResultListener

public void handleLoadError(String reason)

Specified by:

handleLoadError in interface com.tilab.wade.dispatcher.WorkflowResultListener

public void handleNotificationError(jade.core.AID executor,

 String executionId)

Specified by:

handleNotificationError in interface com.tilab.wade.dispatcher.WorkflowResultListener

public void setCurrentProcessId(int currentProcessId)
public int getCurrentProcessId()
public void setHelper(MonitoringWFService.MonitoringWFHelperImpl helper)
public MonitoringWFService.MonitoringWFHelperImpl getHelper()
public void setPlatformStatus(String status)
public String getPlatformStatus()

Class marketingWFMainGUI.FilteredStream
marketing.wf.gui

java.lang.Object

 java.io.OutputStream

 java.io.FilterOutputStream

 marketing.wf.gui.marketingWFMainGUI.FilteredStream

All Implemented Interfaces:

Closeable, Flushable

Class marketingWFMainGUI.FilteredStream

MarketingWF Documentation Page 225 of 361

Enclosing class:

marketingWFMainGUI

class marketingWFMainGUI.FilteredStream

extends FilterOutputStream

An auxiliary class to support printing the logs to the GUI Logger.

Author:
Pavlos Delias

Constructor Summary Page

marketingWFMainGUI.FilteredStream(OutputStream aStream) 225

Method Summary Page

void write(byte[] b) 225

void write(byte[] b, int off, int len) 225

Constructor Detail
public marketingWFMainGUI.FilteredStream(OutputStream aStream)

Method Detail
public void write(byte[] b)

 throws IOException

Overrides:

write in class FilterOutputStream

Throws:
IOException

public void write(byte[] b,

 int off,

 int len)

 throws IOException

Overrides:

write in class FilterOutputStream

Throws:
IOException

Class ParametersPanel
marketing.wf.gui

java.lang.Object

 java.awt.Component

 java.awt.Container

 javax.swing.JComponent

 javax.swing.JScrollPane

 marketing.wf.gui.ParametersPanel

All Implemented Interfaces:

Accessible, ImageObserver, MenuContainer, ScrollPaneConstants, Serializable,
TransferHandler.HasGetTransferHandler

public class ParametersPanel

extends JScrollPane

Class ParametersPanel

MarketingWF Documentation Page 226 of 361

A GUI supportive class. It is used to handle the workflow parameters

Author:
Pavlos Delias

Nested Class Summary Page

private

class
ParametersPanel.Row 227

Field Summary Page

private

marketingWFMainGUI
launcherGUI 226

private

AbstractTableModel
model 226

private TableCellRenderer renderer 226

private

List<ParametersPanel.Row>
rows 226

private JTable table 226

Constructor Summary Page

ParametersPanel(marketingWFMainGUI launcherGUI) 226

Method Summary Page

boolean checkInputParameters() 226

private String getParameterMode(int mode) 226

jade.util.leap.List getParameters() 226

void reset() 226

void setFieldsEnabled(boolean enabled) 226

void setParameters(jade.util.leap.List parameters) 226

void setResult(jade.util.leap.List parameters) 226

Field Detail
private JTable table
private AbstractTableModel model
private TableCellRenderer renderer
private List<ParametersPanel.Row> rows
private marketingWFMainGUI launcherGUI

Constructor Detail
public ParametersPanel(marketingWFMainGUI launcherGUI)

Method Detail
public void setParameters(jade.util.leap.List parameters)
public jade.util.leap.List getParameters()
boolean checkInputParameters()
public void setResult(jade.util.leap.List parameters)
private String getParameterMode(int mode)
void setFieldsEnabled(boolean enabled)
void reset()

Class ParametersPanel.Row

MarketingWF Documentation Page 227 of 361

Class ParametersPanel.Row
marketing.wf.gui

java.lang.Object

 marketing.wf.gui.ParametersPanel.Row

Enclosing class:

ParametersPanel

private class ParametersPanel.Row

extends Object

Field Summary Page

private JLabel mode 227

private JLabel name 227

private

com.tilab.wade.performer.descriptors.Parameter
parameter 227

private JLabel type 227

private TableCellEditor valueEditor 227

private JComponent valueShower 227

Constructor Summary Page

ParametersPanel.Row(com.tilab.wade.performer.descriptors.Parameter parameter) 227

Method Summary Page

JLabel getMode() 227

JLabel getName() 227

com.tilab.wade.performer.descriptors.Parameter getParameter() 227

JLabel getType() 227

JComponent getValue() 227

TableCellEditor getValueEditor() 227

void resetValue() 227

Field Detail
private com.tilab.wade.performer.descriptors.Parameter parameter
private JLabel name
private JLabel type
private JLabel mode
private JComponent valueShower
private TableCellEditor valueEditor

Constructor Detail
public ParametersPanel.Row(com.tilab.wade.performer.descriptors.Parameter parameter)

Method Detail
public void resetValue()
public com.tilab.wade.performer.descriptors.Parameter getParameter()
public JComponent getValue()
public TableCellEditor getValueEditor()
public JLabel getName()
public JLabel getType()
public JLabel getMode()

Package monitoring

MarketingWF Documentation Page 228 of 361

Package monitoring

Interface Summary Page

MonitoringWFHelper This interface allow agents to interact directly with the MonitoringWF Service. 228

MonitoringWFSlice 234

Class Summary Page

MonitoringWFProxy
This is a class whose instances are proxies to a remote
slice.

229

MonitoringWFService
A kernel service used to semantically register all
messages that are exchanged among agent to the
database.

229

MonitoringWFService.MonitoringWFHelperImpl 232

MonitoringWFService.MonitoringWFSliceImpl 232

MonitoringWFService.OutgoingMontioringWFFi
lter

The filters do the actual work for a service. 233

Interface MonitoringWFHelper
monitoring

All Superinterfaces:

jade.core.ServiceHelper

All Known Implementing Classes:

MonitoringWFService.MonitoringWFHelperImpl

public interface MonitoringWFHelper

extends jade.core.ServiceHelper

This interface allow agents to interact directly with the MonitoringWF Service.

Author:
Pavlos Delias

Method Summary Page

void setProcessId(int id) 228

Methods inherited from interface jade.core.ServiceHelper

init

Method Detail
void setProcessId(int id)

Class MonitoringWFProxy

MarketingWF Documentation Page 229 of 361

Class MonitoringWFProxy
monitoring

java.lang.Object

 jade.core.SliceProxy

 monitoring.MonitoringWFProxy

All Implemented Interfaces:

MonitoringWFSlice, jade.util.leap.Serializable, Serializable, jade.core.Service.Slice

public class MonitoringWFProxy

extends jade.core.SliceProxy

implements MonitoringWFSlice

This is a class whose instances are proxies to a remote slice. When the MonitoringWFService needs to interact

with a slice on a remote node it first retrieves a proxy to that slice and then invokes the required methods. The
proxy has the main purpose of converting method calls into proper horizontal commands that will be sent to the
remote slice.

Author:
Pavlos Delias

Fields inherited from interface monitoring.MonitoringWFSlice

H_MONITORMESSAGE

Constructor Summary Page

MonitoringWFProxy() 229

Method Summary Page

void monitorMessage(jade.lang.acl.ACLMessage msg) 229

Methods inherited from class jade.core.SliceProxy

getNode, getService, serve, setNode

Constructor Detail
public MonitoringWFProxy()

Method Detail
public void monitorMessage(jade.lang.acl.ACLMessage msg)

 throws jade.core.IMTPException

Specified by:

monitorMessage in interface MonitoringWFSlice

Throws:
jade.core.IMTPException

Class MonitoringWFService
monitoring

java.lang.Object

 jade.core.BaseService

 monitoring.MonitoringWFService

All Implemented Interfaces:

jade.core.Service

Class MonitoringWFService

MarketingWF Documentation Page 230 of 361

public class MonitoringWFService

extends jade.core.BaseService

A kernel service used to semantically register all messages that are exchanged among agent to the database.

Author:
Pavlos Delias

Nested Class Summary Page

class MonitoringWFService.MonitoringWFHelperImpl 232

class MonitoringWFService.MonitoringWFSliceImpl 232

class MonitoringWFService.OutgoingMontioringWFFilter

The filters do the actual work for a service.
233

Nested classes/interfaces inherited from interface jade.core.Service

Service.Slice, Service.SliceProxy

Field Summary Page

static String APPLICATION_RUN 231

private String applicationRun 231

private

jade.core.ServiceHelper
helper 231

private

jade.core.Service.Slice
localSlice 231

static String NAME 231

private

jade.core.Filter
outFilter 231

private int processId 231

static String VERBOSE 231

private boolean verbose 231

Fields inherited from class jade.core.BaseService

MAIN_SLICE, myFinder, myLogger, THIS_SLICE

Fields inherited from interface jade.core.Service

ADOPTED_NODE, DEAD_NODE, DEAD_PLATFORM_MANAGER, DEAD_REPLICA, DEAD_SLICE, NEW_NODE,

NEW_REPLICA, NEW_SLICE, REATTACHED, RECONNECTED

Constructor Summary Page

MonitoringWFService() 231

Method Summary Page

void boot(jade.core.Profile p) 231

jade.core.Filter getCommandFilter(boolean direction) 231

jade.core.ServiceHelper getHelper(jade.core.Agent a) 231

Class<MonitoringWFSlice> getHorizontalInterface() 231

jade.core.Service.Slice getLocalSlice() 231

String getName() 231

int getProcessId() 232

Class MonitoringWFService

MarketingWF Documentation Page 231 of 361

void insertMSG2DB(jade.lang.acl.ACLMessage msg, jade.core.AID

receiverAID)
232

void setMyProcessId(int processId) 232

Methods inherited from class jade.core.BaseService

addAlias, clearCachedSlice, createInvokator, dump, getAllSlices, getAMSBehaviour,

getCommandSink, getFreshSlice, getIMTPManager, getLocalNode, getNumberOfSlices,

getOwnedCommands, getSlice, init, lookupAlias, shutdown, stringifySlice, submit

Field Detail
public static final String NAME
public static final String VERBOSE
public static final String APPLICATION_RUN
private boolean verbose
private int processId
private String applicationRun
private jade.core.Filter outFilter
private jade.core.Service.Slice localSlice
private jade.core.ServiceHelper helper

Constructor Detail
public MonitoringWFService()

Method Detail
public String getName()

Specified by:

getName in interface jade.core.Service

public void boot(jade.core.Profile p)

 throws jade.core.ServiceException

Specified by:

boot in interface jade.core.Service

Overrides:

boot in class jade.core.BaseService
Throws:

jade.core.ServiceException

public jade.core.Filter getCommandFilter(boolean direction)

Specified by:

getCommandFilter in interface jade.core.Service
Overrides:

getCommandFilter in class jade.core.BaseService

public jade.core.ServiceHelper getHelper(jade.core.Agent a)

Specified by:

getHelper in interface jade.core.Service

Overrides:

getHelper in class jade.core.BaseService

public Class<MonitoringWFSlice> getHorizontalInterface()

Specified by:

getHorizontalInterface in interface jade.core.Service

Overrides:

getHorizontalInterface in class jade.core.BaseService

public jade.core.Service.Slice getLocalSlice()

Specified by:

getLocalSlice in interface jade.core.Service

Overrides:

getLocalSlice in class jade.core.BaseService

Class MonitoringWFService

MarketingWF Documentation Page 232 of 361

public void setMyProcessId(int processId)
public int getProcessId()
public void insertMSG2DB(jade.lang.acl.ACLMessage msg,

 jade.core.AID receiverAID)

Class MonitoringWFService.MonitoringWFHelperImpl
monitoring

java.lang.Object

 monitoring.MonitoringWFService.MonitoringWFHelperImpl

All Implemented Interfaces:

MonitoringWFHelper, jade.core.ServiceHelper

Enclosing class:

MonitoringWFService

public class MonitoringWFService.MonitoringWFHelperImpl

extends Object

implements MonitoringWFHelper

Constructor Summary Page

MonitoringWFService.MonitoringWFHelperImpl() 232

Method Summary Page

void init(jade.core.Agent a) 232

void setProcessId(int id) 232

Constructor Detail
public MonitoringWFService.MonitoringWFHelperImpl()

Method Detail
public void setProcessId(int id)

Specified by:

setProcessId in interface MonitoringWFHelper

public void init(jade.core.Agent a)

Specified by:

init in interface jade.core.ServiceHelper

Class MonitoringWFService.MonitoringWFSliceImpl
monitoring

java.lang.Object

 monitoring.MonitoringWFService.MonitoringWFSliceImpl

All Implemented Interfaces:

jade.util.leap.Serializable, Serializable, jade.core.Service.Slice

Enclosing class:

MonitoringWFService

public class MonitoringWFService.MonitoringWFSliceImpl

extends Object

implements jade.core.Service.Slice

Class MonitoringWFService.MonitoringWFSliceImpl

MarketingWF Documentation Page 233 of 361

Constructor Summary Page

MonitoringWFService.MonitoringWFSliceImpl() 233

Method Summary Page

jade.core.Node getNode() 233

jade.core.Service getService() 233

jade.core.VerticalCommand serve(jade.core.HorizontalCommand cmd) 233

Constructor Detail
public MonitoringWFService.MonitoringWFSliceImpl()

Method Detail
public jade.core.Node getNode()

 throws jade.core.ServiceException

Specified by:

getNode in interface jade.core.Service.Slice

Throws:
jade.core.ServiceException

public jade.core.Service getService()

Specified by:

getService in interface jade.core.Service.Slice

public jade.core.VerticalCommand serve(jade.core.HorizontalCommand cmd)

Specified by:

serve in interface jade.core.Service.Slice

Class MonitoringWFService.OutgoingMontioringWFFilter
monitoring

java.lang.Object

 jade.core.Filter

 monitoring.MonitoringWFService.OutgoingMontioringWFFilter

Enclosing class:

MonitoringWFService

public class MonitoringWFService.OutgoingMontioringWFFilter

extends jade.core.Filter

The filters do the actual work for a service. This one check if the VerticalCommand is the one that the SErvice is
supposed to serve, and if yes, it sends the message to the mainSlice MonitoringWFSlice to store it in the

database

Author:
Pavlos Delias

Fields inherited from class jade.core.Filter

FIRST, INCOMING, LAST, OUTGOING

Class MonitoringWFService.OutgoingMontioringWFFilter

MarketingWF Documentation Page 234 of 361

Constructor Summary Page

MonitoringWFService.OutgoingMontioringWFFilter() 234

Method Summary Page

boolean accept(jade.core.VerticalCommand cmd) 234

Methods inherited from class jade.core.Filter

getPreferredPosition, isBlocking, isSkipping, postProcess, setBlocking, setPreferredPosition,

setSkipping

Constructor Detail
public MonitoringWFService.OutgoingMontioringWFFilter()

Method Detail
public boolean accept(jade.core.VerticalCommand cmd)

Overrides:

accept in class jade.core.Filter

Interface MonitoringWFSlice
monitoring

All Superinterfaces:

jade.util.leap.Serializable, Serializable, jade.core.Service.Slice

All Known Implementing Classes:

MonitoringWFProxy

public interface MonitoringWFSlice

extends jade.core.Service.Slice

Field Summary Page

String H_MONITORMESSAGE 234

Method Summary Page

void monitorMessage(jade.lang.acl.ACLMessage msg) 234

Methods inherited from interface jade.core.Service.Slice

getNode, getService, serve

Field Detail
public static final String H_MONITORMESSAGE

Method Detail
void monitorMessage(jade.lang.acl.ACLMessage msg)

 throws jade.core.IMTPException

Throws:
jade.core.IMTPException

Package ontology

MarketingWF Documentation Page 235 of 361

Package ontology

Interface Summary Page

ContactCenterVocabulary 238

Class Summary Page

AddWorklist 235

ContactCenterOntology 236

Read 240

ReceiveMails 241

RequestsOf 241

SendMailBatch 242

SetProcess 243

Todo 244

Class AddWorklist
ontology

java.lang.Object

 ontology.AddWorklist

All Implemented Interfaces:

jade.content.AgentAction, jade.content.Concept, jade.content.ContentElement, jade.util.leap.Serializable,
Serializable, jade.content.Term

public class AddWorklist

extends Object

implements jade.content.AgentAction

Field Summary Page

private

jade.core.AID
agent 235

private

Worklist
list 235

Constructor Summary Page

AddWorklist() 236

Method Summary Page

jade.core.AID getAgent() 236

Worklist getList() 236

void setAgent(jade.core.AID agent) 236

void setList(Worklist list) 236

Field Detail
private jade.core.AID agent
private Worklist list

Class AddWorklist

MarketingWF Documentation Page 236 of 361

Constructor Detail
public AddWorklist()

Method Detail
public void setAgent(jade.core.AID agent)
public jade.core.AID getAgent()
public void setList(Worklist list)
public Worklist getList()

Class ContactCenterOntology
ontology

java.lang.Object

 jade.content.onto.Ontology

 ontology.ContactCenterOntology

All Implemented Interfaces:

ContactCenterVocabulary, jade.util.leap.Serializable, Serializable

public class ContactCenterOntology

extends jade.content.onto.Ontology

implements ContactCenterVocabulary

Field Summary Page

private static

jade.content.onto.Ontology
theInstance

The singleton instance of this ontology
237

Fields inherited from interface ontology.ContactCenterVocabulary

ADD_WORKLIST, ADD_WORKLIST_2AGENT, ADD_WORKLIST_LIST, APPLICATION_RUN, CONVERSATION_ID,

IN_REPLY_TO, MAIL, MAIL_BATCH, MAIL_BATCH_FILE, MAIL_BATCH_ITEMS, MAIL_CONTENT,

MAIL_DURATION, MAIL_FT, MAIL_ST, MAIL_TYPE, ONTOLOGY, ONTOLOGY_NAME, PERFORMATIVE,

PERFORMATIVE_NAME, PROCESS_ID, READ, READ_FILE, RECEIVE_MAILS, RECEIVE_MAILS_PASS,

RECEIVE_MAILS_SERVER, RECEIVE_MAILS_USER, RECEIVER, RECEIVER_AGENT, REQUESTS_OF,

REQUESTS_OF_AGENT, REQUESTS_TO, REQUESTS_TO_AGENT, SEND_MAIL_BATCH, SEND_MAIL_BATCH_FILENAME,

SEND_MAIL_BATCH_ITEMS, SEND_MAIL_BATCH_TO_AGENT, SENDER, SENDER_NAME, SENDER_TYPE,

SET_PROCESS, SET_PROCESS_ID, TASK, TASK_NAME, TASK_ST, TIMESTAMP, TODO, TODO_ITEM, WORKLIST,

WORKLIST_FILE, WORKLIST_TASKS

Constructor Summary Page

ContactCenterOntology() 237

Method Summary Page

private void createAllActions() 237

private void createAllConcepts() 237

private void defineAllConcepts() 237

private void defineMailBatchConcept() 237

private void defineMailConcept() 237

private void definePerformativeConcept() 237

private void defineReceiverConcept() 237

private void defineSenderConcept() 237

private void defineTaskConcept() 238

private void defineWorklistConcept() 238

static

jade.content.onto.Ontology

getInstance()
237

Class ContactCenterOntology

MarketingWF Documentation Page 237 of 361

Methods inherited from class jade.content.onto.Ontology

add, add, checkIsTerm, createConceptSlotFunction, fromObject, fromObject, getActionNames,

getClassForElement, getConceptNames, getIntrospector, getName, getOwnActionNames,

getOwnConceptNames, getOwnPredicateNames, getPredicateNames, getSchema, getSchema, toObject,

toObject, toString, useConceptSlotsAsFunctions

Field Detail
private static final jade.content.onto.Ontology theInstance

The singleton instance of this ontology

Constructor Detail
public ContactCenterOntology()

Method Detail
public static final jade.content.onto.Ontology getInstance()
private void createAllConcepts()

 throws jade.content.onto.OntologyException

Throws:
jade.content.onto.OntologyException

private void createAllActions()

 throws jade.content.onto.OntologyException

Throws:
jade.content.onto.OntologyException

private void defineAllConcepts()

 throws jade.content.onto.OntologyException

Throws:
jade.content.onto.OntologyException

private void defineSenderConcept()

 throws jade.content.onto.OntologyException

Throws:
jade.content.onto.OntologyException

private void defineReceiverConcept()

 throws jade.content.onto.OntologyException

Throws:
jade.content.onto.OntologyException

private void definePerformativeConcept()

 throws jade.content.onto.OntologyException

Throws:
jade.content.onto.OntologyException

private void defineMailConcept()

 throws jade.content.onto.OntologyException

Throws:
jade.content.onto.OntologyException

private void defineMailBatchConcept()

 throws jade.content.onto.OntologyException

Throws:
jade.content.onto.OntologyException

Class ContactCenterOntology

MarketingWF Documentation Page 238 of 361

private void defineTaskConcept()

 throws jade.content.onto.OntologyException

Throws:
jade.content.onto.OntologyException

private void defineWorklistConcept()

 throws jade.content.onto.OntologyException

Throws:
jade.content.onto.OntologyException

Interface ContactCenterVocabulary
ontology

All Known Implementing Classes:

ContactCenterOntology

public interface ContactCenterVocabulary

Field Summary Page

String ADD_WORKLIST 239

String ADD_WORKLIST_2AGENT 239

String ADD_WORKLIST_LIST 239

String APPLICATION_RUN 239

String CONVERSATION_ID 239

String IN_REPLY_TO 239

String MAIL 239

String MAIL_BATCH 239

String MAIL_BATCH_FILE 239

String MAIL_BATCH_ITEMS 239

String MAIL_CONTENT 239

String MAIL_DURATION 239

String MAIL_FT 239

String MAIL_ST 239

String MAIL_TYPE 239

String ONTOLOGY 239

String ONTOLOGY_NAME 239

String PERFORMATIVE 239

String PERFORMATIVE_NAME 239

String PROCESS_ID 239

String READ 240

String READ_FILE 240

String RECEIVE_MAILS 240

String RECEIVE_MAILS_PASS 240

String RECEIVE_MAILS_SERVER 240

String RECEIVE_MAILS_USER 240

String RECEIVER 239

String RECEIVER_AGENT 239

String REQUESTS_OF 240

String REQUESTS_OF_AGENT 240

Interface ContactCenterVocabulary

MarketingWF Documentation Page 239 of 361

String REQUESTS_TO 240

String REQUESTS_TO_AGENT 240

String SEND_MAIL_BATCH 240

String SEND_MAIL_BATCH_FILENAME 240

String SEND_MAIL_BATCH_ITEMS 240

String SEND_MAIL_BATCH_TO_AGENT 240

String SENDER 239

String SENDER_NAME 239

String SENDER_TYPE 239

String SET_PROCESS 240

String SET_PROCESS_ID 240

String TASK 239

String TASK_NAME 239

String TASK_ST 239

String TIMESTAMP 239

String TODO 240

String TODO_ITEM 240

String WORKLIST 239

String WORKLIST_FILE 239

String WORKLIST_TASKS 239

Field Detail
public static final String ONTOLOGY_NAME
public static final String SENDER
public static final String RECEIVER
public static final String SENDER_NAME
public static final String SENDER_TYPE
public static final String RECEIVER_AGENT
public static final String PERFORMATIVE
public static final String PERFORMATIVE_NAME
public static final String TIMESTAMP
public static final String APPLICATION_RUN
public static final String PROCESS_ID
public static final String IN_REPLY_TO
public static final String ONTOLOGY
public static final String CONVERSATION_ID
public static final String MAIL
public static final String MAIL_TYPE
public static final String MAIL_ST
public static final String MAIL_FT
public static final String MAIL_DURATION
public static final String MAIL_CONTENT
public static final String MAIL_BATCH
public static final String MAIL_BATCH_ITEMS
public static final String MAIL_BATCH_FILE
public static final String TASK
public static final String TASK_NAME
public static final String TASK_ST
public static final String WORKLIST
public static final String WORKLIST_FILE
public static final String WORKLIST_TASKS
public static final String ADD_WORKLIST
public static final String ADD_WORKLIST_2AGENT
public static final String ADD_WORKLIST_LIST

Interface ContactCenterVocabulary

MarketingWF Documentation Page 240 of 361

public static final String TODO
public static final String TODO_ITEM
public static final String REQUESTS_OF
public static final String REQUESTS_OF_AGENT
public static final String REQUESTS_TO
public static final String REQUESTS_TO_AGENT
public static final String RECEIVE_MAILS
public static final String RECEIVE_MAILS_USER
public static final String RECEIVE_MAILS_PASS
public static final String RECEIVE_MAILS_SERVER
public static final String SEND_MAIL_BATCH
public static final String SEND_MAIL_BATCH_TO_AGENT
public static final String SEND_MAIL_BATCH_FILENAME
public static final String SEND_MAIL_BATCH_ITEMS
public static final String READ
public static final String READ_FILE
public static final String SET_PROCESS
public static final String SET_PROCESS_ID

Class Read
ontology

java.lang.Object

 ontology.Read

All Implemented Interfaces:

jade.content.AgentAction, jade.content.Concept, jade.content.ContentElement, jade.util.leap.Serializable,
Serializable, jade.content.Term

public class Read

extends Object

implements jade.content.AgentAction

Field Summary Page

private

String
file 240

Constructor Summary Page

Read() 240

Method Summary Page

String getFile() 240

void setFile(String file) 240

Field Detail
private String file

Constructor Detail
public Read()

Method Detail
public void setFile(String file)
public String getFile()

Class ReceiveMails

MarketingWF Documentation Page 241 of 361

Class ReceiveMails
ontology

java.lang.Object

 ontology.ReceiveMails

All Implemented Interfaces:

jade.content.AgentAction, jade.content.Concept, jade.content.ContentElement, jade.util.leap.Serializable,
Serializable, jade.content.Term

public class ReceiveMails

extends Object

implements jade.content.AgentAction

Field Summary Page

private

String
password 241

private

String
server 241

private

String
user 241

Constructor Summary Page

ReceiveMails() 241

Method Summary Page

String getPassword() 241

String getServer() 241

String getUser() 241

void setPassword(String password) 241

void setServer(String server) 241

void setUser(String user) 241

Field Detail
private String user
private String password
private String server

Constructor Detail
public ReceiveMails()

Method Detail
public void setUser(String user)
public String getUser()
public void setPassword(String password)
public String getPassword()
public void setServer(String server)
public String getServer()

Class RequestsOf
ontology

java.lang.Object

 ontology.RequestsOf

Class RequestsOf

MarketingWF Documentation Page 242 of 361

All Implemented Interfaces:

jade.content.AgentAction, jade.content.Concept, jade.content.ContentElement, jade.util.leap.Serializable,
Serializable, jade.content.Term

public class RequestsOf

extends Object

implements jade.content.AgentAction

Field Summary Page

private

jade.core.AID
agent 242

Constructor Summary Page

RequestsOf() 242

Method Summary Page

jade.core.AID getAgent() 242

void setAgent(jade.core.AID agent) 242

Field Detail
private jade.core.AID agent

Constructor Detail
public RequestsOf()

Method Detail
public void setAgent(jade.core.AID agent)
public jade.core.AID getAgent()

Class SendMailBatch
ontology

java.lang.Object

 ontology.SendMailBatch

All Implemented Interfaces:

jade.content.AgentAction, jade.content.Concept, jade.content.ContentElement, jade.util.leap.Serializable,
Serializable, jade.content.Term

public class SendMailBatch

extends Object

implements jade.content.AgentAction

Field Summary Page

private

String
fileName 243

private

jade.core.AID
toAgent 243

Constructor Summary Page

SendMailBatch() 243

Class SendMailBatch

MarketingWF Documentation Page 243 of 361

Method Summary Page

String getFileName() 243

jade.core.AID getToAgent() 243

void setFileName(String fileName) 243

void setToAgent(jade.core.AID toAgent) 243

Field Detail
private jade.core.AID toAgent
private String fileName

Constructor Detail
public SendMailBatch()

Method Detail
public void setToAgent(jade.core.AID toAgent)
public jade.core.AID getToAgent()
public void setFileName(String fileName)
public String getFileName()

Class SetProcess
ontology

java.lang.Object

 ontology.SetProcess

All Implemented Interfaces:

jade.content.AgentAction, jade.content.Concept, jade.content.ContentElement, jade.util.leap.Serializable,
Serializable, jade.content.Term

public class SetProcess

extends Object

implements jade.content.AgentAction

Field Summary Page

private

int
id 243

Constructor Summary Page

SetProcess() 243

Method Summary Page

int getId() 243

void setId(int id) 243

Field Detail
private int id

Constructor Detail
public SetProcess()

Method Detail
public void setId(int id)
public int getId()

Class Todo

MarketingWF Documentation Page 244 of 361

Class Todo
ontology

java.lang.Object

 ontology.Todo

All Implemented Interfaces:

jade.content.AgentAction, jade.content.Concept, jade.content.ContentElement, jade.util.leap.Serializable,
Serializable, jade.content.Term

public class Todo

extends Object

implements jade.content.AgentAction

Field Summary Page

private

String
item 244

Constructor Summary Page

Todo() 244

Method Summary Page

String getItem() 244

void setItem(String item) 244

Field Detail
private String item

Constructor Detail
public Todo()

Method Detail
public String getItem()
public void setItem(String item)

Package ontology.beans

MarketingWF Documentation Page 245 of 361

Package ontology.beans

Class Summary Page

Mail 245

MailBatch 247

Performative 248

Receiver 249

Sender 249

Task 250

Worklist 251

Enum Summary Page

Mail.MailType 246

Class Mail
ontology.beans

java.lang.Object

 ontology.beans.Mail

All Implemented Interfaces:

jade.content.Concept, jade.util.leap.Serializable, Serializable, jade.content.Term

Direct Known Subclasses:

MailBatch

public class Mail

extends Object

implements jade.content.Concept

Nested Class Summary Page

static

enum
Mail.MailType 246

Field Summary Page

private

String
content 246

private

long
duration 246

private

String
finishTime 246

private

String
startTime 246

private

String
type 246

Constructor Summary Page

Mail() 246

Class Mail

MarketingWF Documentation Page 246 of 361

Method Summary Page

String getContent() 246

long getDuration() 246

String getFinishTime() 246

String getStartTime() 246

String getType() 246

void setContent(String content) 246

void setDuration(long duration) 246

void setFinishTime(String finishTime) 246

void setStartTime(String startTime) 246

void setType(String type) 246

Field Detail
private String type
private String startTime
private String finishTime
private long duration
private String content

Constructor Detail
public Mail()

Method Detail
public void setType(String type)
public String getType()
public void setStartTime(String startTime)
public String getStartTime()
public void setFinishTime(String finishTime)
public String getFinishTime()
public void setContent(String content)
public String getContent()
public void setDuration(long duration)
public long getDuration()

Enum Mail.MailType
ontology.beans

java.lang.Object

 java.lang.Enum<Mail.MailType>

 ontology.beans.Mail.MailType

All Implemented Interfaces:

Comparable<Mail.MailType>, Serializable

Enclosing class:

Mail

public static enum Mail.MailType

extends Enum<Mail.MailType>

Enum Constant Summary Page

ERROR 247

GENERAL 247

Enum Mail.MailType

MarketingWF Documentation Page 247 of 361

INSTALLATION 247

SPECS 247

TROUBLESHOOTING 247

WARRANTY 247

Constructor Summary Page

private Mail.MailType() 247

Method Summary Page

static

Mail.MailType

valueOf(String name)
247

static

Mail.MailType[]

values()
247

Enum Constant Detail
public static final Mail.MailType WARRANTY
public static final Mail.MailType INSTALLATION
public static final Mail.MailType TROUBLESHOOTING
public static final Mail.MailType ERROR
public static final Mail.MailType SPECS
public static final Mail.MailType GENERAL

Constructor Detail
private Mail.MailType()

Method Detail
public static Mail.MailType[] values()
public static Mail.MailType valueOf(String name)

Class MailBatch
ontology.beans

java.lang.Object

 ontology.beans.Mail

 ontology.beans.MailBatch

All Implemented Interfaces:

jade.content.Concept, jade.util.leap.Serializable, Serializable, jade.content.Term

public class MailBatch

extends Mail

Nested classes/interfaces inherited from class ontology.beans.Mail

Mail.MailType

Field Summary Page

private String file 248

private

jade.util.leap.List
items 248

Constructor Summary Page

MailBatch() 248

Class MailBatch

MarketingWF Documentation Page 248 of 361

Method Summary Page

String getFile() 248

jade.util.leap.List getItems() 248

void setFile(String file) 248

void setItems(jade.util.leap.List items) 248

Methods inherited from class ontology.beans.Mail

getContent, getDuration, getFinishTime, getStartTime, getType, setContent, setDuration,

setFinishTime, setStartTime, setType

Field Detail
private String file
private jade.util.leap.List items

Constructor Detail
public MailBatch()

Method Detail
public void setFile(String file)
public String getFile()
public void setItems(jade.util.leap.List items)
public jade.util.leap.List getItems()

Class Performative
ontology.beans

java.lang.Object

 ontology.beans.Performative

All Implemented Interfaces:

jade.content.Concept, jade.util.leap.Serializable, Serializable, jade.content.Term

public class Performative

extends Object

implements jade.content.Concept

Field Summary Page

private

String
name 248

Constructor Summary Page

Performative() 248

Method Summary Page

String getName() 249

void setName(String name) 249

Field Detail
private String name

Constructor Detail
public Performative()

Class Performative

MarketingWF Documentation Page 249 of 361

Method Detail
public void setName(String name)
public String getName()

Class Receiver
ontology.beans

java.lang.Object

 ontology.beans.Receiver

All Implemented Interfaces:

jade.content.Concept, jade.util.leap.Serializable, Serializable, jade.content.Term

public class Receiver

extends Object

implements jade.content.Concept

Field Summary Page

private

jade.core.AID
agent 249

Constructor Summary Page

Receiver() 249

Method Summary Page

jade.core.AID getReceiverAgent() 249

void setReceiverAgent(jade.core.AID receiverAgent) 249

Field Detail
private jade.core.AID agent

Constructor Detail
public Receiver()

Method Detail
public void setReceiverAgent(jade.core.AID receiverAgent)
public jade.core.AID getReceiverAgent()

Class Sender
ontology.beans

java.lang.Object

 ontology.beans.Sender

All Implemented Interfaces:

jade.content.Concept, jade.util.leap.Serializable, Serializable, jade.content.Term

public class Sender

extends Object

implements jade.content.Concept

Field Summary Page

private

String
name 250

Class Sender

MarketingWF Documentation Page 250 of 361

private

String
type 250

Constructor Summary Page

Sender() 250

Method Summary Page

String getName() 250

String getType() 250

void setName(String name) 250

void setType(String type) 250

Field Detail
private String name
private String type

Constructor Detail
public Sender()

Method Detail
public void setName(String name)
public String getName()
public void setType(String type)
public String getType()

Class Task
ontology.beans

java.lang.Object

 ontology.beans.Task

All Implemented Interfaces:

jade.content.Concept, jade.util.leap.Serializable, Serializable, jade.content.Term

Direct Known Subclasses:

Worklist

public class Task

extends Object

implements jade.content.Concept

Field Summary Page

private

String
name 251

private

int
startTime 251

Constructor Summary Page

Task() 251

Method Summary Page

String getName() 251

int getStartTime() 251

Class Task

MarketingWF Documentation Page 251 of 361

void setName(String name) 251

void setStartTime(int startTime) 251

Field Detail
private String name
private int startTime

Constructor Detail
public Task()

Method Detail
public void setName(String name)
public String getName()
public void setStartTime(int startTime)
public int getStartTime()

Class Worklist
ontology.beans

java.lang.Object

 ontology.beans.Task

 ontology.beans.Worklist

All Implemented Interfaces:

jade.content.Concept, jade.util.leap.Serializable, Serializable, jade.content.Term

public class Worklist

extends Task

Field Summary Page

private String file 251

private

jade.util.leap.List
tasks 251

Constructor Summary Page

Worklist() 251

Method Summary Page

String getFile() 252

jade.util.leap.List getTasks() 252

void setFile(String file) 252

void setTasks(jade.util.leap.List tasks) 252

Methods inherited from class ontology.beans.Task

getName, getStartTime, setName, setStartTime

Field Detail
private String file
private jade.util.leap.List tasks

Constructor Detail
public Worklist()

Class Worklist

MarketingWF Documentation Page 252 of 361

Method Detail
public void setFile(String file)
public String getFile()
public void setTasks(jade.util.leap.List tasks)
public jade.util.leap.List getTasks()

Package util

MarketingWF Documentation Page 253 of 361

Package util

Class Summary Page

CheckForMails A Behavior to check periodically for mails. 253

ModifyDFDescription
A behaviour that is used to modify the agent's service description by adding a
property

254

WordProcessing Native interface to Word for Windows. 255

Class CheckForMails
util

java.lang.Object

 jade.core.behaviours.Behaviour

 jade.core.behaviours.SimpleBehaviour

 jade.core.behaviours.TickerBehaviour

 util.CheckForMails

All Implemented Interfaces:

jade.util.leap.Serializable, Serializable

public class CheckForMails

extends jade.core.behaviours.TickerBehaviour

A Behavior to check periodically for mails. It actually finds the reference to the Application Engine Agent and then it
sends to him a request through the createAppEngineRequest(AgentAction) method.

Author:
Pavlos Delias

Nested classes/interfaces inherited from class jade.core.behaviours.Behaviour

Behaviour.RunnableChangedEvent

Field Summary Page

jade.core.AID applicationEngine 254

Fields inherited from class jade.core.behaviours.Behaviour

myAgent, myEvent, NOTIFY_DOWN, NOTIFY_UP, parent, STATE_BLOCKED, STATE_READY, STATE_RUNNING

Constructor Summary Page

CheckForMails(jade.core.Agent a, long period) 254

Method Summary Page

jade.lang.acl.ACLMessage createAppEngineRequest(jade.content.AgentAction action)

Creates a messages that requests from the Application Engine Agent to

perform a ReceiveMails action.
254

protected void onTick() 254

Class CheckForMails

MarketingWF Documentation Page 254 of 361

Methods inherited from class jade.core.behaviours.TickerBehaviour

action, done, getTickCount, onStart, reset, reset, stop

Methods inherited from class jade.core.behaviours.Behaviour

actionWrapper, block, block, getBehaviourName, getDataStore, getExecutionState, getParent,

getRestartCounter, handle, handleBlockEvent, handleRestartEvent, isRunnable, onEnd, restart,

root, setAgent, setBehaviourName, setDataStore, setExecutionState

Field Detail
jade.core.AID applicationEngine

Constructor Detail
public CheckForMails(jade.core.Agent a,

 long period)

Method Detail
protected void onTick()

Overrides:

onTick in class jade.core.behaviours.TickerBehaviour

synchronized jade.lang.acl.ACLMessage createAppEngineRequest(jade.content.AgentAction action)

 throws jade.content.onto.OntologyExcepti

on,

 jade.content.lang.Codec.CodecExce

ption

Creates a messages that requests from the Application Engine Agent to perform a ReceiveMails action.

Returns:
ACLMessage - a REQUEST message

Throws:
jade.content.onto.OntologyException

jade.content.lang.Codec.CodecException

Codec.CodecException

Class ModifyDFDescription
util

java.lang.Object

 jade.core.behaviours.Behaviour

 jade.core.behaviours.SimpleBehaviour

 jade.core.behaviours.OneShotBehaviour

 util.ModifyDFDescription

All Implemented Interfaces:

jade.util.leap.Serializable, Serializable

public class ModifyDFDescription

extends jade.core.behaviours.OneShotBehaviour

A behaviour that is used to modify the agent's service description by adding a property

Author:
Pavlos Delias

Nested classes/interfaces inherited from class jade.core.behaviours.Behaviour

Behaviour.RunnableChangedEvent

Class ModifyDFDescription

MarketingWF Documentation Page 255 of 361

Field Summary Page

private jade.core.Agent myAgent 255

private

jade.domain.FIPAAgentManagement.Property
toAdd 255

Fields inherited from class jade.core.behaviours.Behaviour

myEvent, NOTIFY_DOWN, NOTIFY_UP, parent, STATE_BLOCKED, STATE_READY, STATE_RUNNING

Constructor Summary Page

ModifyDFDescription(jade.core.Agent A, jade.domain.FIPAAgentManagement.Property p) 255

Method Summary Page

void action() 255

Methods inherited from class jade.core.behaviours.OneShotBehaviour

done

Methods inherited from class jade.core.behaviours.SimpleBehaviour

reset

Methods inherited from class jade.core.behaviours.Behaviour

actionWrapper, block, block, getBehaviourName, getDataStore, getExecutionState, getParent,

getRestartCounter, handle, handleBlockEvent, handleRestartEvent, isRunnable, onEnd, onStart,

restart, root, setAgent, setBehaviourName, setDataStore, setExecutionState

Field Detail
private jade.core.Agent myAgent
private jade.domain.FIPAAgentManagement.Property toAdd

Constructor Detail
public ModifyDFDescription(jade.core.Agent A,

 jade.domain.FIPAAgentManagement.Property p)

Method Detail
public void action()

Overrides:

action in class jade.core.behaviours.Behaviour

Class WordProcessing
util

java.lang.Object

 util.WordProcessing

public class WordProcessing

extends Object

Native interface to Word for Windows. Simple version as presented via internet. To create a new document and to
serve bookmarks by your java application code like this:

 WordProcessing.createNewDocumentFromTemplate("SampleTemplate");

 WordProcessing

Class WordProcessing

MarketingWF Documentation Page 256 of 361

 .typeTextAtBookmark("AddressLine1", "O'Reilly & Associated, Inc.");

 WordProcessing.typeTextAtBookmark("AddressLine2", "Mr Miller");

 WordProcessing.typeTextAtBookmark("AddressLine3", "101 Moris Street");

 WordProcessing.typeTextAtBookmark("AddressLine4", "Sebastopol, CA 95472-9902");

 WordProcessing.typeTextAtBookmark("Salutation", "Dear Mr Miller,");

 WordProcessing.exec();

Author:
Christoph Mueller

Field Summary Page

private

static

boolean

noteNotMatchingBookmarks
257

private

static

File

wordInput
257

private

static

FileWriter

wordInputWriter
257

Constructor Summary Page

WordProcessing() 257

Method Summary Page

static

void

cancel()

Cancels the word processing. 258

static

void

changeDocumentDirectory(String documentDirectory)

Sets the document directory for future document saving. 258

static

void

closeDocument()

Closes the active document. 258

private

static

void

closeWordInput()

259

private

static

String

code(String stringToCode)

257

static

void

createNewDocumentFromTemplate(String templateName)

Creates a new document based on the desired template. 257

static

void

createNewDocumentFromTemplateToSelectByUser()

Triggers to the template selection dialog and creates a new document based on the chosen
template.

257

static

boolean

exec()

Starts the execution of the above instructions. 258

static

void

executeMacro(String macroName)

Executes an arbitrary WordBasic macro. 258

private

static

boolean

openWordInput()

259

private

static

void

output(String key, String value)

259

static

void

printAndForget()

Prints the document on the standard printer and closes the document without saving. 258

static

void

printAndForget(String printerName)

Prints the document on the specified printer and closes the document without saving. 258

static

void

printToPrinterToSelectByUserAndForget()

Triggers to the printer selection dialog, prints the document on the selected printer and
closes the document without saving.

258

static

void

quitApplication()

Quits the word processing application. 258

Class WordProcessing

MarketingWF Documentation Page 257 of 361

static

void

quitApplicationAfterWaiting(int milliseconds)

Quits the word processing application after a pause. 258

private

static

String

replaceAll(String stringToManipulate, String stringToReplace, String

replaceString) 258

static

void

saveDocumentAs(String documentName)

Saves the active document using the indicated name (usually without extension). 258

static

void

saveDocumentAsAndClose(String documentName)

Saves the active document using the indicated name and closes it. 258

static

void

setNoteNotMatchingBookmarks(boolean noteNotMatchingBookmarks)

Set the warning flag about not matching bookmarks Decides whether the user shall be
informed that the template didn't include certain bookmarks.

257

static

void

typeTextAtBookmark(String bookmark, String textToType)

Goes to the specified bookmark and types the desired text. 257

static

void

typeTextAtBookmark(String bookmark, String[] linesToType)

Goes to the specified bookmark and types the desired text with line feed. 257

Field Detail
private static final boolean noteNotMatchingBookmarks
private static File wordInput
private static FileWriter wordInputWriter

Constructor Detail
public WordProcessing()

Method Detail
public static void createNewDocumentFromTemplateToSelectByUser()

Triggers to the template selection dialog and creates a new document based on the chosen template.

public static void createNewDocumentFromTemplate(String templateName)

Creates a new document based on the desired template.

Parameters:

templateName - the name of the template to be used

public static void setNoteNotMatchingBookmarks(boolean noteNotMatchingBookmarks)

Set the warning flag about not matching bookmarks Decides whether the user shall be informed that the
template didn't include certain bookmarks.

Parameters:

noteNotMatchingBookmarks - whether the user should be warned

public static void typeTextAtBookmark(String bookmark,

 String textToType)

Goes to the specified bookmark and types the desired text.

Parameters:

bookmark - the bookmark where text type starts

textToType - the text to be included

public static void typeTextAtBookmark(String bookmark,

 String[] linesToType)

Goes to the specified bookmark and types the desired text with line feed.

Parameters:

bookmark - the bookmark where text type starts

linesToType - the lines to be included

private static String code(String stringToCode)

Class WordProcessing

MarketingWF Documentation Page 258 of 361

private static synchronized String replaceAll(String stringToManipulate,

 String stringToReplace,

 String replaceString)
public static void changeDocumentDirectory(String documentDirectory)

Sets the document directory for future document saving.

Parameters:

documentDirectory - the name of the directory

public static void saveDocumentAs(String documentName)

Saves the active document using the indicated name (usually without extension).

Parameters:

documentName - the name of the document

public static void saveDocumentAsAndClose(String documentName)

Saves the active document using the indicated name and closes it.

Parameters:

documentName - the name of the document

public static void closeDocument()

Closes the active document.

public static void printAndForget()

Prints the document on the standard printer and closes the document without saving.

public static void printAndForget(String printerName)

Prints the document on the specified printer and closes the document without saving.

Parameters:

printerName - the name of the desired printer

public static void printToPrinterToSelectByUserAndForget()

Triggers to the printer selection dialog, prints the document on the selected printer and closes the
document without saving.

public static void executeMacro(String macroName)

Executes an arbitrary WordBasic macro.

Parameters:

macroName - the name of the macro to be executed

public static void quitApplication()

Quits the word processing application.

public static void quitApplicationAfterWaiting(int milliseconds)

Quits the word processing application after a pause. This gives the word processing time to finish e.g. a
print job. This avoids dialogs by the word processing system wether the print job is to stop

Parameters:

milliseconds - waiting time in milliseconds prior leaving application

public static boolean exec()

Starts the execution of the above instructions. (This stacking is particularly helpful at large numbers of
standard letters.) Always use use this as the last method of a sequence.

public static void cancel()

Cancels the word processing.

Class WordProcessing

MarketingWF Documentation Page 259 of 361

private static void output(String key,

 String value)
private static boolean openWordInput()
private static void closeWordInput()

Package util.objects

MarketingWF Documentation Page 260 of 361

Package util.objects

Class Summary Page

ApplicationFile An auxiliary method to facilitate file functions. 260

CustomerRecord An supportive class to represent a Customer Record as a JAVA object. 261

Offer A supportive class to represent an vendor's Offer as a JAVA object. 262

Class ApplicationFile
util.objects

java.lang.Object

 util.objects.ApplicationFile

public class ApplicationFile

extends Object

An auxiliary method to facilitate file functions.

Author:
Pavlos Delias

Field Summary Page

private

String
myPath 260

Constructor Summary Page

ApplicationFile() 260

Method Summary Page

String getMyPath() 260

static

String

returnEscapedPath(String in)

This method accepts a filename as input and it returns the same filename with escaped
characters.

260

void setMyPath(String myPath) 260

Field Detail
private String myPath

Constructor Detail
public ApplicationFile()

Method Detail
public static String returnEscapedPath(String in)

This method accepts a filename as input and it returns the same filename with escaped characters.

Returns:
String - The filename containing the escaped characters for backslashes.

public void setMyPath(String myPath)
public String getMyPath()

Class CustomerRecord

MarketingWF Documentation Page 261 of 361

Class CustomerRecord
util.objects

java.lang.Object

 util.objects.CustomerRecord

public class CustomerRecord

extends Object

An supportive class to represent a Customer Record as a JAVA object.

Author:
Pavlos Delias

Field Summary Page

private

int
channel 261

private

int
ID 261

private

String
name 261

private

int
processingTime 261

Constructor Summary Page

CustomerRecord() 261

Method Summary Page

int getChannel() 261

int getID() 261

String getName() 261

int getProcessingTime() 261

void setChannel(int channel) 261

void setID(int ID) 261

void setName(String name) 261

void setProcessingTime(int processingTime) 262

Field Detail
private int ID
private String name
private int channel
private int processingTime

Constructor Detail
public CustomerRecord()

Method Detail
public int getID()
public void setID(int ID)
public int getChannel()
public void setChannel(int channel)
public String getName()
public void setName(String name)
public int getProcessingTime()

Class CustomerRecord

MarketingWF Documentation Page 262 of 361

public void setProcessingTime(int processingTime)

Class Offer
util.objects

java.lang.Object

 util.objects.Offer

public class Offer

extends Object

A supportive class to represent an vendor's Offer as a JAVA object.

Author:
Pavlos Delias

Field Summary Page

private

MediaDecisionsGUI.MediaFormat
format 262

private int quantity 262

Constructor Summary Page

Offer(int q, MediaDecisionsGUI.MediaFormat f) 262

Offer(int q, String format) 262

Method Summary Page

MediaDecisionsGUI.MediaFormat getFormat() 262

int getQuantity() 262

void setFormat(MediaDecisionsGUI.MediaFormat format) 262

void setQuantity(int quantity) 262

void setStringFormat(String f) 262

Field Detail
private int quantity
private MediaDecisionsGUI.MediaFormat format

Constructor Detail
public Offer(int q,

 MediaDecisionsGUI.MediaFormat f)
public Offer(int q,

 String format)

Method Detail
public void setQuantity(int quantity)
public int getQuantity()
public void setFormat(MediaDecisionsGUI.MediaFormat format)
public MediaDecisionsGUI.MediaFormat getFormat()
public void setStringFormat(String f)

Package util.ws

MarketingWF Documentation Page 263 of 361

Package util.ws

Interface Summary Page

CalculateVendorOffer 263

CalculateVendorOfferService 265

ContactCRM 269

ContactCRMService 271

Class Summary Page

CalculateVendorOfferPortBindingStub 264

CalculateVendorOfferServiceDescriptor 266

CalculateVendorOfferServiceLocator 267

ContactCRMPortBindingStub 270

ContactCRMServiceDescriptor 272

ContactCRMServiceLocator 273

CrmResult 275

MediaFormat 277

Interface CalculateVendorOffer
util.ws

All Superinterfaces:

Remote

All Known Implementing Classes:

CalculateVendorOfferPortBindingStub

public interface CalculateVendorOffer

extends Remote

Method Summary Page

double calculateOffer(int quantity, MediaFormat format, int myStyle) 263

Method Detail
double calculateOffer(int quantity,

 MediaFormat format,

 int myStyle)

 throws RemoteException

Throws:
RemoteException

Class CalculateVendorOfferPortBindingStub

MarketingWF Documentation Page 264 of 361

Class CalculateVendorOfferPortBindingStub
util.ws

java.lang.Object

 org.apache.axis.client.Stub

 util.ws.CalculateVendorOfferPortBindingStub

All Implemented Interfaces:

CalculateVendorOffer, Remote, Stub

public class CalculateVendorOfferPortBindingStub

extends org.apache.axis.client.Stub

implements CalculateVendorOffer

Field Summary Page

static

org.apache.axis.description.OperationDesc[]
_operations 264

private Vector cachedDeserFactories 264

private Vector cachedSerClasses 264

private Vector cachedSerFactories 264

private Vector cachedSerQNames 264

Fields inherited from class org.apache.axis.client.Stub

_call, cachedEndpoint, cachedPassword, cachedPortName, cachedProperties, cachedTimeout,

cachedUsername, maintainSession, maintainSessionSet, service

Constructor Summary Page

CalculateVendorOfferPortBindingStub() 265

CalculateVendorOfferPortBindingStub(URL endpointURL, Service service) 265

CalculateVendorOfferPortBindingStub(Service service) 265

Method Summary Page

private static void _initOperationDesc1() 265

double calculateOffer(int quantity, MediaFormat format, int myStyle) 265

protected

org.apache.axis.client.Call

createCall()
265

Methods inherited from class org.apache.axis.client.Stub

_createCall, _getCall, _getProperty, _getPropertyNames, _getService, _setProperty,

addAttachment, clearAttachments, clearHeaders, extractAttachments, firstCall, getAttachments,

getHeader, getHeaders, getPassword, getPortName, getResponseHeader, getResponseHeaders,

getResponseHeaders, getTimeout, getUsername, removeProperty, setAttachments, setHeader,

setHeader, setMaintainSession, setPassword, setPortName, setPortName, setRequestHeaders,

setTimeout, setUsername

Field Detail
private Vector cachedSerClasses
private Vector cachedSerQNames
private Vector cachedSerFactories
private Vector cachedDeserFactories
static org.apache.axis.description.OperationDesc[] _operations

Class CalculateVendorOfferPortBindingStub

MarketingWF Documentation Page 265 of 361

Constructor Detail
public CalculateVendorOfferPortBindingStub()

 throws org.apache.axis.AxisFault
public CalculateVendorOfferPortBindingStub(URL endpointURL,

 Service service)

 throws org.apache.axis.AxisFault
public CalculateVendorOfferPortBindingStub(Service service)

 throws org.apache.axis.AxisFault

Method Detail
private static void _initOperationDesc1()
protected org.apache.axis.client.Call createCall()

 throws RemoteException

Throws:
RemoteException

public double calculateOffer(int quantity,

 MediaFormat format,

 int myStyle)

 throws RemoteException

Specified by:

calculateOffer in interface CalculateVendorOffer

Throws:
RemoteException

Interface CalculateVendorOfferService
util.ws

All Superinterfaces:

Service

All Known Implementing Classes:

CalculateVendorOfferServiceLocator

public interface CalculateVendorOfferService

extends Service

Method Summary Page

CalculateVendorOffer getCalculateVendorOfferPort() 265

CalculateVendorOffer getCalculateVendorOfferPort(URL portAddress) 265

String getCalculateVendorOfferPortAddress() 265

Method Detail
String getCalculateVendorOfferPortAddress()
CalculateVendorOffer getCalculateVendorOfferPort()

 throws ServiceException

Throws:
ServiceException

CalculateVendorOffer getCalculateVendorOfferPort(URL portAddress)

 throws ServiceException

Throws:
ServiceException

Class CalculateVendorOfferServiceDescriptor

MarketingWF Documentation Page 266 of 361

Class CalculateVendorOfferServiceDescriptor
util.ws

java.lang.Object

 com.tilab.wade.performer.descriptors.webservice.ServiceDescriptor

 util.ws.CalculateVendorOfferServiceDescriptor

public class CalculateVendorOfferServiceDescriptor

extends com.tilab.wade.performer.descriptors.webservice.ServiceDescriptor

Field Summary Page

CalculateVendorOfferServiceLocator locator 266

static String NAMESPACE 266

static String SERVICE_NAME 266

Fields inherited from class com.tilab.wade.performer.descriptors.webservice.ServiceDescriptor

portDescriptors, SERVICE_DESCRIPTOR_SUFFIX

Constructor Summary Page

CalculateVendorOfferServiceDescriptor() 266

Method Summary Page

Remote getService() 266

String getServiceName() 266

private

void

setcalculateOfferParameters(jade.util.leap.List formalParams)
267

void setEndpointAddress(String endpointAddress) 267

Methods inherited from class com.tilab.wade.performer.descriptors.webservice.ServiceDescriptor

addOperationDescriptor, addPortDescriptor, getOperationDescriptor, getOperationNames,

getPortDescriptor, getPortNames, invoke

Field Detail
public static final String SERVICE_NAME
public static final String NAMESPACE
CalculateVendorOfferServiceLocator locator

Constructor Detail
public CalculateVendorOfferServiceDescriptor()

Method Detail
public Remote getService()

 throws ServiceException

Overrides:

getService in class
com.tilab.wade.performer.descriptors.webservice.ServiceDescriptor

Throws:
ServiceException

public String getServiceName()

Overrides:

getServiceName in class
com.tilab.wade.performer.descriptors.webservice.ServiceDescriptor

Class CalculateVendorOfferServiceDescriptor

MarketingWF Documentation Page 267 of 361

public void setEndpointAddress(String endpointAddress)

Overrides:

setEndpointAddress in class
com.tilab.wade.performer.descriptors.webservice.ServiceDescriptor

private void setcalculateOfferParameters(jade.util.leap.List formalParams)

Class CalculateVendorOfferServiceLocator
util.ws

java.lang.Object

 org.apache.axis.client.Service

 util.ws.CalculateVendorOfferServiceLocator

All Implemented Interfaces:

CalculateVendorOfferService, Referenceable, Serializable, Service

public class CalculateVendorOfferServiceLocator

extends org.apache.axis.client.Service

implements CalculateVendorOfferService

Nested classes/interfaces inherited from class org.apache.axis.client.Service

Service.HandlerRegistryImpl

Field Summary Page

private

String
CalculateVendorOfferPort_address 268

private

String
CalculateVendorOfferPortWSDDServiceName 268

private

HashSet
ports 268

Fields inherited from class org.apache.axis.client.Service

_call

Constructor Summary Page

CalculateVendorOfferServiceLocator() 268

CalculateVendorOfferServiceLocator(String wsdlLoc, QName sName) 268

CalculateVendorOfferServiceLocator(org.apache.axis.EngineConfiguration config) 268

Method Summary Page

CalculateVendorOffer getCalculateVendorOfferPort() 268

CalculateVendorOffer getCalculateVendorOfferPort(URL portAddress) 268

String getCalculateVendorOfferPortAddress() 268

String getCalculateVendorOfferPortWSDDServiceName() 268

Remote getPort(Class serviceEndpointInterface)

For the given interface, get the stub implementation. 268

Remote getPort(QName portName, Class serviceEndpointInterface)

For the given interface, get the stub implementation. 269

Iterator getPorts() 269

QName getServiceName() 269

void setCalculateVendorOfferPortEndpointAddress(String address) 268

void setCalculateVendorOfferPortWSDDServiceName(String name) 268

Class CalculateVendorOfferServiceLocator

MarketingWF Documentation Page 268 of 361

void setEndpointAddress(String portName, String address)

Set the endpoint address for the specified port name. 269

void setEndpointAddress(QName portName, String address)

Set the endpoint address for the specified port name. 269

Methods inherited from class org.apache.axis.client.Service

createCall, createCall, createCall, createCall, getAxisClient, getCacheWSDL, getCall,

getCalls, getEngine, getEngineConfiguration, getHandlerRegistry, getMaintainSession, getPort,

getReference, getTypeMappingRegistry, getWSDLDocumentLocation, getWSDLParser, getWSDLService,

setCacheWSDL, setEngine, setEngineConfiguration, setMaintainSession, setTypeMappingRegistry,

setTypeMappingVersion

Field Detail
private String CalculateVendorOfferPort_address
private String CalculateVendorOfferPortWSDDServiceName
private HashSet ports

Constructor Detail
public CalculateVendorOfferServiceLocator()
public CalculateVendorOfferServiceLocator(org.apache.axis.EngineConfiguration config)
public CalculateVendorOfferServiceLocator(String wsdlLoc,

 QName sName)

 throws ServiceException

Method Detail
public String getCalculateVendorOfferPortAddress()

Specified by:

getCalculateVendorOfferPortAddress in interface CalculateVendorOfferService

public String getCalculateVendorOfferPortWSDDServiceName()
public void setCalculateVendorOfferPortWSDDServiceName(String name)
public CalculateVendorOffer getCalculateVendorOfferPort()

 throws ServiceException

Specified by:

getCalculateVendorOfferPort in interface CalculateVendorOfferService
Throws:

ServiceException

public CalculateVendorOffer getCalculateVendorOfferPort(URL portAddress)

 throws ServiceException

Specified by:

getCalculateVendorOfferPort in interface CalculateVendorOfferService
Throws:

ServiceException

public void setCalculateVendorOfferPortEndpointAddress(String address)
public Remote getPort(Class serviceEndpointInterface)

 throws ServiceException

For the given interface, get the stub implementation. If this service has no port for the given interface, then
ServiceException is thrown.

Specified by:

getPort in interface Service
Overrides:

getPort in class org.apache.axis.client.Service

Throws:
ServiceException

Class CalculateVendorOfferServiceLocator

MarketingWF Documentation Page 269 of 361

public Remote getPort(QName portName,

 Class serviceEndpointInterface)

 throws ServiceException

For the given interface, get the stub implementation. If this service has no port for the given interface, then
ServiceException is thrown.

Specified by:

getPort in interface Service
Overrides:

getPort in class org.apache.axis.client.Service

Throws:
ServiceException

public QName getServiceName()

Specified by:

getServiceName in interface Service

Overrides:

getServiceName in class org.apache.axis.client.Service

public Iterator getPorts()

Specified by:

getPorts in interface Service

Overrides:

getPorts in class org.apache.axis.client.Service

public void setEndpointAddress(String portName,

 String address)

 throws ServiceException

Set the endpoint address for the specified port name.

Throws:
ServiceException

public void setEndpointAddress(QName portName,

 String address)

 throws ServiceException

Set the endpoint address for the specified port name.

Throws:
ServiceException

Interface ContactCRM
util.ws

All Superinterfaces:

Remote

All Known Implementing Classes:

ContactCRMPortBindingStub

public interface ContactCRM

extends Remote

Method Summary Page

CrmResult getResult(String customerName) 270

Interface ContactCRM

MarketingWF Documentation Page 270 of 361

Method Detail
CrmResult getResult(String customerName)

 throws RemoteException

Throws:
RemoteException

Class ContactCRMPortBindingStub
util.ws

java.lang.Object

 org.apache.axis.client.Stub

 util.ws.ContactCRMPortBindingStub

All Implemented Interfaces:

ContactCRM, Remote, Stub

public class ContactCRMPortBindingStub

extends org.apache.axis.client.Stub

implements ContactCRM

Field Summary Page

static

org.apache.axis.description.OperationDesc[]
_operations 271

private Vector cachedDeserFactories 271

private Vector cachedSerClasses 271

private Vector cachedSerFactories 271

private Vector cachedSerQNames 271

Fields inherited from class org.apache.axis.client.Stub

_call, cachedEndpoint, cachedPassword, cachedPortName, cachedProperties, cachedTimeout,

cachedUsername, maintainSession, maintainSessionSet, service

Constructor Summary Page

ContactCRMPortBindingStub() 271

ContactCRMPortBindingStub(URL endpointURL, Service service) 271

ContactCRMPortBindingStub(Service service) 271

Method Summary Page

private static void _initOperationDesc1() 271

protected

org.apache.axis.client.Call

createCall()
271

CrmResult getResult(String customerName) 271

Methods inherited from class org.apache.axis.client.Stub

_createCall, _getCall, _getProperty, _getPropertyNames, _getService, _setProperty,

addAttachment, clearAttachments, clearHeaders, extractAttachments, firstCall, getAttachments,

getHeader, getHeaders, getPassword, getPortName, getResponseHeader, getResponseHeaders,

getResponseHeaders, getTimeout, getUsername, removeProperty, setAttachments, setHeader,

setHeader, setMaintainSession, setPassword, setPortName, setPortName, setRequestHeaders,

setTimeout, setUsername

Class ContactCRMPortBindingStub

MarketingWF Documentation Page 271 of 361

Field Detail
private Vector cachedSerClasses
private Vector cachedSerQNames
private Vector cachedSerFactories
private Vector cachedDeserFactories
static org.apache.axis.description.OperationDesc[] _operations

Constructor Detail
public ContactCRMPortBindingStub()

 throws org.apache.axis.AxisFault
public ContactCRMPortBindingStub(URL endpointURL,

 Service service)

 throws org.apache.axis.AxisFault
public ContactCRMPortBindingStub(Service service)

 throws org.apache.axis.AxisFault

Method Detail
private static void _initOperationDesc1()
protected org.apache.axis.client.Call createCall()

 throws RemoteException

Throws:
RemoteException

public CrmResult getResult(String customerName)

 throws RemoteException

Specified by:

getResult in interface ContactCRM

Throws:
RemoteException

Interface ContactCRMService
util.ws

All Superinterfaces:

Service

All Known Implementing Classes:

ContactCRMServiceLocator

public interface ContactCRMService

extends Service

Method Summary Page

ContactCRM getContactCRMPort() 271

ContactCRM getContactCRMPort(URL portAddress) 271

String getContactCRMPortAddress() 271

Method Detail
String getContactCRMPortAddress()
ContactCRM getContactCRMPort()

 throws ServiceException

Throws:
ServiceException

ContactCRM getContactCRMPort(URL portAddress)

 throws ServiceException

Interface ContactCRMService

MarketingWF Documentation Page 272 of 361

Throws:
ServiceException

Class ContactCRMServiceDescriptor
util.ws

java.lang.Object

 com.tilab.wade.performer.descriptors.webservice.ServiceDescriptor

 util.ws.ContactCRMServiceDescriptor

public class ContactCRMServiceDescriptor

extends com.tilab.wade.performer.descriptors.webservice.ServiceDescriptor

Field Summary Page

ContactCRMServiceLocator locator 272

static String NAMESPACE 272

static String SERVICE_NAME 272

Fields inherited from class com.tilab.wade.performer.descriptors.webservice.ServiceDescriptor

portDescriptors, SERVICE_DESCRIPTOR_SUFFIX

Constructor Summary Page

ContactCRMServiceDescriptor() 272

Method Summary Page

Remote getService() 272

String getServiceName() 273

void setEndpointAddress(String endpointAddress) 273

private

void

setgetResultParameters(jade.util.leap.List formalParams)
273

Methods inherited from class com.tilab.wade.performer.descriptors.webservice.ServiceDescriptor

addOperationDescriptor, addPortDescriptor, getOperationDescriptor, getOperationNames,

getPortDescriptor, getPortNames, invoke

Field Detail
public static final String SERVICE_NAME
public static final String NAMESPACE
ContactCRMServiceLocator locator

Constructor Detail
public ContactCRMServiceDescriptor()

Method Detail
public Remote getService()

 throws ServiceException

Overrides:

getService in class
com.tilab.wade.performer.descriptors.webservice.ServiceDescriptor

Throws:
ServiceException

Class ContactCRMServiceDescriptor

MarketingWF Documentation Page 273 of 361

public String getServiceName()

Overrides:

getServiceName in class
com.tilab.wade.performer.descriptors.webservice.ServiceDescriptor

public void setEndpointAddress(String endpointAddress)

Overrides:

setEndpointAddress in class
com.tilab.wade.performer.descriptors.webservice.ServiceDescriptor

private void setgetResultParameters(jade.util.leap.List formalParams)

Class ContactCRMServiceLocator
util.ws

java.lang.Object

 org.apache.axis.client.Service

 util.ws.ContactCRMServiceLocator

All Implemented Interfaces:

ContactCRMService, Referenceable, Serializable, Service

public class ContactCRMServiceLocator

extends org.apache.axis.client.Service

implements ContactCRMService

Nested classes/interfaces inherited from class org.apache.axis.client.Service

Service.HandlerRegistryImpl

Field Summary Page

private

String
ContactCRMPort_address 274

private

String
ContactCRMPortWSDDServiceName 274

private

HashSet
ports 274

Fields inherited from class org.apache.axis.client.Service

_call

Constructor Summary Page

ContactCRMServiceLocator() 274

ContactCRMServiceLocator(String wsdlLoc, QName sName) 274

ContactCRMServiceLocator(org.apache.axis.EngineConfiguration config) 274

Method Summary Page

ContactCRM getContactCRMPort() 274

ContactCRM getContactCRMPort(URL portAddress) 274

String getContactCRMPortAddress() 274

String getContactCRMPortWSDDServiceName() 274

Remote getPort(Class serviceEndpointInterface)

For the given interface, get the stub implementation. 274

Remote getPort(QName portName, Class serviceEndpointInterface)

For the given interface, get the stub implementation. 275

Class ContactCRMServiceLocator

MarketingWF Documentation Page 274 of 361

Iterator getPorts() 275

QName getServiceName() 275

void setContactCRMPortEndpointAddress(String address) 274

void setContactCRMPortWSDDServiceName(String name) 274

void setEndpointAddress(String portName, String address)

Set the endpoint address for the specified port name. 275

void setEndpointAddress(QName portName, String address)

Set the endpoint address for the specified port name. 275

Methods inherited from class org.apache.axis.client.Service

createCall, createCall, createCall, createCall, getAxisClient, getCacheWSDL, getCall,

getCalls, getEngine, getEngineConfiguration, getHandlerRegistry, getMaintainSession, getPort,

getReference, getTypeMappingRegistry, getWSDLDocumentLocation, getWSDLParser, getWSDLService,

setCacheWSDL, setEngine, setEngineConfiguration, setMaintainSession, setTypeMappingRegistry,

setTypeMappingVersion

Field Detail
private String ContactCRMPort_address
private String ContactCRMPortWSDDServiceName
private HashSet ports

Constructor Detail
public ContactCRMServiceLocator()
public ContactCRMServiceLocator(org.apache.axis.EngineConfiguration config)
public ContactCRMServiceLocator(String wsdlLoc,

 QName sName)

 throws ServiceException

Method Detail
public String getContactCRMPortAddress()

Specified by:

getContactCRMPortAddress in interface ContactCRMService

public String getContactCRMPortWSDDServiceName()
public void setContactCRMPortWSDDServiceName(String name)
public ContactCRM getContactCRMPort()

 throws ServiceException

Specified by:

getContactCRMPort in interface ContactCRMService
Throws:

ServiceException

public ContactCRM getContactCRMPort(URL portAddress)

 throws ServiceException

Specified by:

getContactCRMPort in interface ContactCRMService
Throws:

ServiceException

public void setContactCRMPortEndpointAddress(String address)
public Remote getPort(Class serviceEndpointInterface)

 throws ServiceException

For the given interface, get the stub implementation. If this service has no port for the given interface, then
ServiceException is thrown.

Specified by:

getPort in interface Service
Overrides:

getPort in class org.apache.axis.client.Service

Class ContactCRMServiceLocator

MarketingWF Documentation Page 275 of 361

Throws:
ServiceException

public Remote getPort(QName portName,

 Class serviceEndpointInterface)

 throws ServiceException

For the given interface, get the stub implementation. If this service has no port for the given interface, then
ServiceException is thrown.

Specified by:

getPort in interface Service

Overrides:

getPort in class org.apache.axis.client.Service

Throws:
ServiceException

public QName getServiceName()

Specified by:

getServiceName in interface Service

Overrides:

getServiceName in class org.apache.axis.client.Service

public Iterator getPorts()

Specified by:

getPorts in interface Service
Overrides:

getPorts in class org.apache.axis.client.Service

public void setEndpointAddress(String portName,

 String address)

 throws ServiceException

Set the endpoint address for the specified port name.

Throws:
ServiceException

public void setEndpointAddress(QName portName,

 String address)

 throws ServiceException

Set the endpoint address for the specified port name.

Throws:
ServiceException

Class CrmResult
util.ws

java.lang.Object

 util.ws.CrmResult

All Implemented Interfaces:

Serializable

public class CrmResult

extends Object

implements Serializable

Class CrmResult

MarketingWF Documentation Page 276 of 361

Field Summary Page

static String _COLD 276

static String _FAILURE 276

static String _HOT 276

static String _PENDING 276

private static HashMap _table_ 276

private String _value_ 276

static CrmResult COLD 276

static CrmResult FAILURE 276

static CrmResult HOT 276

static CrmResult PENDING 276

private static

org.apache.axis.description.TypeDesc
typeDesc 276

Constructor Summary Page

protected CrmResult(String value) 276

Method Summary Page

boolean equals(Object obj) 277

static CrmResult fromString(String value) 277

static CrmResult fromValue(String value) 276

static

org.apache.axis.encoding.Deserializer

getDeserializer(String mechType, Class _javaType, QName

_xmlType)
277

static

org.apache.axis.encoding.Serializer

getSerializer(String mechType, Class _javaType, QName

_xmlType)
277

static

org.apache.axis.description.TypeDesc

getTypeDesc()

Return type metadata object 277

String getValue() 276

int hashCode() 277

Object readResolve() 277

String toString() 277

Field Detail
private String _value_
private static HashMap _table_
public static final String _PENDING
public static final String _HOT
public static final String _COLD
public static final String _FAILURE
public static final CrmResult PENDING
public static final CrmResult HOT
public static final CrmResult COLD
public static final CrmResult FAILURE
private static org.apache.axis.description.TypeDesc typeDesc

Constructor Detail
protected CrmResult(String value)

Method Detail
public String getValue()
public static CrmResult fromValue(String value)

 throws IllegalArgumentException

Throws:
IllegalArgumentException

Class CrmResult

MarketingWF Documentation Page 277 of 361

public static CrmResult fromString(String value)

 throws IllegalArgumentException

Throws:
IllegalArgumentException

public boolean equals(Object obj)

Overrides:

equals in class Object

public int hashCode()

Overrides:

hashCode in class Object

public String toString()

Overrides:

toString in class Object

public Object readResolve()

 throws ObjectStreamException

Throws:
ObjectStreamException

public static org.apache.axis.encoding.Serializer getSerializer(String mechType,

 Class _javaType,

 QName _xmlType)
public static org.apache.axis.encoding.Deserializer getDeserializer(String mechType,

 Class _javaType,

 QName _xmlType)
public static org.apache.axis.description.TypeDesc getTypeDesc()

Return type metadata object

Class MediaFormat
util.ws

java.lang.Object

 util.ws.MediaFormat

All Implemented Interfaces:

Serializable

public class MediaFormat

extends Object

implements Serializable

Field Summary Page

static String _BROCHURE 278

static String _CATALOG 278

static String _FLYER 278

static String _GUIFT 278

private static HashMap _table_ 278

static String _UNSET 278

private String _value_ 278

static MediaFormat BROCHURE 278

static MediaFormat CATALOG 278

static MediaFormat FLYER 278

Class MediaFormat

MarketingWF Documentation Page 278 of 361

static MediaFormat GUIFT 278

private static

org.apache.axis.description.TypeDesc
typeDesc 278

static MediaFormat UNSET 278

Constructor Summary Page

MediaFormat(String value) 278

Method Summary Page

boolean equals(Object obj) 278

static MediaFormat fromString(String value) 278

static MediaFormat fromValue(String value) 278

static

org.apache.axis.encoding.Deserializer

getDeserializer(String mechType, Class _javaType, QName

_xmlType)
279

static

org.apache.axis.encoding.Serializer

getSerializer(String mechType, Class _javaType, QName

_xmlType)
279

static

org.apache.axis.description.TypeDesc

getTypeDesc()

Return type metadata object 279

String getValue() 278

int hashCode() 279

Object readResolve() 279

String toString() 279

Field Detail
private String _value_
private static HashMap _table_
public static final String _BROCHURE
public static final String _FLYER
public static final String _CATALOG
public static final String _GUIFT
public static final String _UNSET
public static final MediaFormat BROCHURE
public static final MediaFormat FLYER
public static final MediaFormat CATALOG
public static final MediaFormat GUIFT
public static final MediaFormat UNSET
private static org.apache.axis.description.TypeDesc typeDesc

Constructor Detail
public MediaFormat(String value)

Method Detail
public String getValue()
public static MediaFormat fromValue(String value)

 throws IllegalArgumentException

Throws:
IllegalArgumentException

public static MediaFormat fromString(String value)

 throws IllegalArgumentException

Throws:
IllegalArgumentException

public boolean equals(Object obj)

Overrides:

equals in class Object

Class MediaFormat

MarketingWF Documentation Page 279 of 361

public int hashCode()

Overrides:

hashCode in class Object

public String toString()

Overrides:

toString in class Object

public Object readResolve()

 throws ObjectStreamException

Throws:
ObjectStreamException

public static org.apache.axis.encoding.Serializer getSerializer(String mechType,

 Class _javaType,

 QName _xmlType)
public static org.apache.axis.encoding.Deserializer getDeserializer(String mechType,

 Class _javaType,

 QName _xmlType)
public static org.apache.axis.description.TypeDesc getTypeDesc()

Return type metadata object

Package util.ws.crm

MarketingWF Documentation Page 280 of 361

Package util.ws.crm

Interface Summary Page

GetCustomerDataFromCRM 280

GetCustomerDataFromCRMService 282

Class Summary Page

GetCustomerDataFromCRMPortBindingStub 280

GetCustomerDataFromCRMServiceDescriptor 282

GetCustomerDataFromCRMServiceLocator 283

Interface GetCustomerDataFromCRM
util.ws.crm

All Superinterfaces:

Remote

All Known Implementing Classes:

GetCustomerDataFromCRMPortBindingStub

public interface GetCustomerDataFromCRM

extends Remote

Method Summary Page

String getRecord(int parameter) 280

Method Detail
String getRecord(int parameter)

 throws RemoteException

Throws:
RemoteException

Class GetCustomerDataFromCRMPortBindingStub
util.ws.crm

java.lang.Object

 org.apache.axis.client.Stub

 util.ws.crm.GetCustomerDataFromCRMPortBindingStub

All Implemented Interfaces:

GetCustomerDataFromCRM, Remote, Stub

public class GetCustomerDataFromCRMPortBindingStub

extends org.apache.axis.client.Stub

implements GetCustomerDataFromCRM

Class GetCustomerDataFromCRMPortBindingStub

MarketingWF Documentation Page 281 of 361

Field Summary Page

static

org.apache.axis.description.OperationDesc[]
_operations 281

private Vector cachedDeserFactories 281

private Vector cachedSerClasses 281

private Vector cachedSerFactories 281

private Vector cachedSerQNames 281

Fields inherited from class org.apache.axis.client.Stub

_call, cachedEndpoint, cachedPassword, cachedPortName, cachedProperties, cachedTimeout,

cachedUsername, maintainSession, maintainSessionSet, service

Constructor Summary Page

GetCustomerDataFromCRMPortBindingStub() 281

GetCustomerDataFromCRMPortBindingStub(URL endpointURL, Service service) 281

GetCustomerDataFromCRMPortBindingStub(Service service) 281

Method Summary Page

private static void _initOperationDesc1() 281

protected

org.apache.axis.client.Call

createCall()
281

String getRecord(int parameter) 282

Methods inherited from class org.apache.axis.client.Stub

_createCall, _getCall, _getProperty, _getPropertyNames, _getService, _setProperty,

addAttachment, clearAttachments, clearHeaders, extractAttachments, firstCall, getAttachments,

getHeader, getHeaders, getPassword, getPortName, getResponseHeader, getResponseHeaders,

getResponseHeaders, getTimeout, getUsername, removeProperty, setAttachments, setHeader,

setHeader, setMaintainSession, setPassword, setPortName, setPortName, setRequestHeaders,

setTimeout, setUsername

Field Detail
private Vector cachedSerClasses
private Vector cachedSerQNames
private Vector cachedSerFactories
private Vector cachedDeserFactories
static org.apache.axis.description.OperationDesc[] _operations

Constructor Detail
public GetCustomerDataFromCRMPortBindingStub()

 throws org.apache.axis.AxisFault
public GetCustomerDataFromCRMPortBindingStub(URL endpointURL,

 Service service)

 throws org.apache.axis.AxisFault
public GetCustomerDataFromCRMPortBindingStub(Service service)

 throws org.apache.axis.AxisFault

Method Detail
private static void _initOperationDesc1()
protected org.apache.axis.client.Call createCall()

 throws RemoteException

Throws:
RemoteException

Class GetCustomerDataFromCRMPortBindingStub

MarketingWF Documentation Page 282 of 361

public String getRecord(int parameter)

 throws RemoteException

Specified by:

getRecord in interface GetCustomerDataFromCRM

Throws:
RemoteException

Interface GetCustomerDataFromCRMService
util.ws.crm

All Superinterfaces:

Service

All Known Implementing Classes:

GetCustomerDataFromCRMServiceLocator

public interface GetCustomerDataFromCRMService

extends Service

Method Summary Page

GetCustomerDataFromCRM getGetCustomerDataFromCRMPort() 282

GetCustomerDataFromCRM getGetCustomerDataFromCRMPort(URL portAddress) 282

String getGetCustomerDataFromCRMPortAddress() 282

Method Detail
String getGetCustomerDataFromCRMPortAddress()
GetCustomerDataFromCRM getGetCustomerDataFromCRMPort()

 throws ServiceException

Throws:
ServiceException

GetCustomerDataFromCRM getGetCustomerDataFromCRMPort(URL portAddress)

 throws ServiceException

Throws:
ServiceException

Class GetCustomerDataFromCRMServiceDescriptor
util.ws.crm

java.lang.Object

 com.tilab.wade.performer.descriptors.webservice.ServiceDescriptor

 util.ws.crm.GetCustomerDataFromCRMServiceDescriptor

public class GetCustomerDataFromCRMServiceDescriptor

extends com.tilab.wade.performer.descriptors.webservice.ServiceDescriptor

Field Summary Page

GetCustomerDataFromCRMServiceLocator locator 283

static String NAMESPACE 283

static String SERVICE_NAME 283

Class GetCustomerDataFromCRMServiceDescriptor

MarketingWF Documentation Page 283 of 361

Fields inherited from class com.tilab.wade.performer.descriptors.webservice.ServiceDescriptor

portDescriptors, SERVICE_DESCRIPTOR_SUFFIX

Constructor Summary Page

GetCustomerDataFromCRMServiceDescriptor() 283

Method Summary Page

Remote getService() 283

String getServiceName() 283

void setEndpointAddress(String endpointAddress) 283

private

void

setgetRecordParameters(jade.util.leap.List formalParams)
283

Methods inherited from class com.tilab.wade.performer.descriptors.webservice.ServiceDescriptor

addOperationDescriptor, addPortDescriptor, getOperationDescriptor, getOperationNames,

getPortDescriptor, getPortNames, invoke

Field Detail
public static final String SERVICE_NAME
public static final String NAMESPACE
GetCustomerDataFromCRMServiceLocator locator

Constructor Detail
public GetCustomerDataFromCRMServiceDescriptor()

Method Detail
public Remote getService()

 throws ServiceException

Overrides:

getService in class
com.tilab.wade.performer.descriptors.webservice.ServiceDescriptor

Throws:
ServiceException

public String getServiceName()

Overrides:

getServiceName in class
com.tilab.wade.performer.descriptors.webservice.ServiceDescriptor

public void setEndpointAddress(String endpointAddress)

Overrides:

setEndpointAddress in class
com.tilab.wade.performer.descriptors.webservice.ServiceDescriptor

private void setgetRecordParameters(jade.util.leap.List formalParams)

Class GetCustomerDataFromCRMServiceLocator
util.ws.crm

java.lang.Object

 org.apache.axis.client.Service

 util.ws.crm.GetCustomerDataFromCRMServiceLocator

All Implemented Interfaces:

GetCustomerDataFromCRMService, Referenceable, Serializable, Service

Class GetCustomerDataFromCRMServiceLocator

MarketingWF Documentation Page 284 of 361

public class GetCustomerDataFromCRMServiceLocator

extends org.apache.axis.client.Service

implements GetCustomerDataFromCRMService

Nested classes/interfaces inherited from class org.apache.axis.client.Service

Service.HandlerRegistryImpl

Field Summary Page

private

String
GetCustomerDataFromCRMPort_address 284

private

String
GetCustomerDataFromCRMPortWSDDServiceName 284

private

HashSet
ports 284

Fields inherited from class org.apache.axis.client.Service

_call

Constructor Summary Page

GetCustomerDataFromCRMServiceLocator() 285

GetCustomerDataFromCRMServiceLocator(String wsdlLoc, QName sName) 285

GetCustomerDataFromCRMServiceLocator(org.apache.axis.EngineConfiguration config) 285

Method Summary Page

GetCustomerDataFromCRM getGetCustomerDataFromCRMPort() 285

GetCustomerDataFromCRM getGetCustomerDataFromCRMPort(URL portAddress) 285

String getGetCustomerDataFromCRMPortAddress() 285

String getGetCustomerDataFromCRMPortWSDDServiceName() 285

Remote getPort(Class serviceEndpointInterface)

For the given interface, get the stub implementation. 285

Remote getPort(QName portName, Class serviceEndpointInterface)

For the given interface, get the stub implementation. 285

Iterator getPorts() 286

QName getServiceName() 285

void setEndpointAddress(String portName, String address)

Set the endpoint address for the specified port name. 286

void setEndpointAddress(QName portName, String address)

Set the endpoint address for the specified port name. 286

void setGetCustomerDataFromCRMPortEndpointAddress(String address) 285

void setGetCustomerDataFromCRMPortWSDDServiceName(String name) 285

Methods inherited from class org.apache.axis.client.Service

createCall, createCall, createCall, createCall, getAxisClient, getCacheWSDL, getCall,

getCalls, getEngine, getEngineConfiguration, getHandlerRegistry, getMaintainSession, getPort,

getReference, getTypeMappingRegistry, getWSDLDocumentLocation, getWSDLParser, getWSDLService,

setCacheWSDL, setEngine, setEngineConfiguration, setMaintainSession, setTypeMappingRegistry,

setTypeMappingVersion

Field Detail
private String GetCustomerDataFromCRMPort_address
private String GetCustomerDataFromCRMPortWSDDServiceName
private HashSet ports

Class GetCustomerDataFromCRMServiceLocator

MarketingWF Documentation Page 285 of 361

Constructor Detail
public GetCustomerDataFromCRMServiceLocator()
public GetCustomerDataFromCRMServiceLocator(org.apache.axis.EngineConfiguration config)
public GetCustomerDataFromCRMServiceLocator(String wsdlLoc,

 QName sName)

 throws ServiceException

Method Detail
public String getGetCustomerDataFromCRMPortAddress()

Specified by:

getGetCustomerDataFromCRMPortAddress in interface GetCustomerDataFromCRMService

public String getGetCustomerDataFromCRMPortWSDDServiceName()
public void setGetCustomerDataFromCRMPortWSDDServiceName(String name)
public GetCustomerDataFromCRM getGetCustomerDataFromCRMPort()

 throws ServiceException

Specified by:

getGetCustomerDataFromCRMPort in interface GetCustomerDataFromCRMService
Throws:

ServiceException

public GetCustomerDataFromCRM getGetCustomerDataFromCRMPort(URL portAddress)

 throws ServiceException

Specified by:

getGetCustomerDataFromCRMPort in interface GetCustomerDataFromCRMService
Throws:

ServiceException

public void setGetCustomerDataFromCRMPortEndpointAddress(String address)
public Remote getPort(Class serviceEndpointInterface)

 throws ServiceException

For the given interface, get the stub implementation. If this service has no port for the given interface, then
ServiceException is thrown.

Specified by:

getPort in interface Service

Overrides:

getPort in class org.apache.axis.client.Service

Throws:
ServiceException

public Remote getPort(QName portName,

 Class serviceEndpointInterface)

 throws ServiceException

For the given interface, get the stub implementation. If this service has no port for the given interface, then
ServiceException is thrown.

Specified by:

getPort in interface Service
Overrides:

getPort in class org.apache.axis.client.Service

Throws:
ServiceException

public QName getServiceName()

Specified by:

getServiceName in interface Service

Overrides:

getServiceName in class org.apache.axis.client.Service

Class GetCustomerDataFromCRMServiceLocator

MarketingWF Documentation Page 286 of 361

public Iterator getPorts()

Specified by:

getPorts in interface Service
Overrides:

getPorts in class org.apache.axis.client.Service

public void setEndpointAddress(String portName,

 String address)

 throws ServiceException

Set the endpoint address for the specified port name.

Throws:
ServiceException

public void setEndpointAddress(QName portName,

 String address)

 throws ServiceException

Set the endpoint address for the specified port name.

Throws:
ServiceException

Package workflows

MarketingWF Documentation Page 287 of 361

Package workflows

Class Summary Page

BudgetRF A workflow class modelling the "Budget Response Factor" business process. 287

CreateJobSchedules
Considers all jobs that request for execution and all the available agents that can
perform them and produces a job schedule for each agent, storing it into an Excel
File.

290

DirectMailCampaign The overall Direct mail Campaign process. 294

EstablishTargetMarkets A workflow class to represent the Establish Target Markets business process. 297

LaunchCampaign The class to model the actual launching of a marketing campaign. 303

MarketResearch A workflow to represent the activities of the first phase of a marketing campaign. 308

PreparePiece The workflow class to model the "Prepare Marketing Piece" business process. 312

QuantifyTAM
A workflow model to represent the "Quantify Total Available Market" business
process.

316

ReviewDrafts
The workflow class to model the "Review Drafts of marketing artwork" business
process.

320

Segmentation The workflow class to model the business process "Find Market Segments". 324

SolicitDesign
A workflow class to model the business process "Solicit Vendor to subcontract
the artwork design".

327

Enum Summary Page

EstablishTargetMarkets.failureReason 302

Class BudgetRF
workflows

java.lang.Object

 jade.core.behaviours.Behaviour

 jade.core.behaviours.CompositeBehaviour

 jade.core.behaviours.SerialBehaviour

 jade.core.behaviours.FSMBehaviour

 com.tilab.wade.performer.WorkflowBehaviour

 workflows.BudgetRF

All Implemented Interfaces:

com.tilab.wade.performer.HierarchyNode, jade.util.leap.Serializable, Serializable

public class BudgetRF

extends com.tilab.wade.performer.WorkflowBehaviour

Class BudgetRF

MarketingWF Documentation Page 288 of 361

A workflow class modelling the "Budget Response Factor" business process.

Author:
Pavlos Delias

Nested classes/interfaces inherited from class jade.core.behaviours.Behaviour

Behaviour.RunnableChangedEvent

Field Summary Page

static String BUDGETRFTOOLACTIVITY1_ACTIVITY 289

private

jade.core.AID
marketingCommunicator 289

private

static long
serialVersionUID 289

static String UPDATEDB_ACTIVITY 289

Fields inherited from class com.tilab.wade.performer.WorkflowBehaviour

COLLECT_ASYNCH_SUBFLOWS_STATE, END_STATE, ERROR_STATE, FINAL, formalParams, INITIAL,

INITIAL_AND_FINAL, INTERMEDIATE, lastException, myLogger, rootExecutor, START_STATE

Fields inherited from class jade.core.behaviours.FSMBehaviour

currentName, lastStates

Fields inherited from class jade.core.behaviours.CompositeBehaviour

currentExecuted

Fields inherited from class jade.core.behaviours.Behaviour

myAgent, myEvent, NOTIFY_DOWN, NOTIFY_UP, parent, STATE_BLOCKED, STATE_READY, STATE_RUNNING

Constructor Summary Page

BudgetRF() 289

Class BudgetRF

MarketingWF Documentation Page 289 of 361

Method Summary Page

private

void

defineActivities()
289

private

void

defineTransitions()
290

protected

void

executeBudgetRFToolActivity1(com.tilab.wade.performer.ApplicationList

applications)
290

protected

void

executeUpdateDB()
290

Methods inherited from class com.tilab.wade.performer.WorkflowBehaviour

changeActivityOrder, checkModifier, checkTermination, commit, configure, deregisterActivity,

deregisterTransition, enterInterruptableSection, exitInterruptableSection,

fillFormalParameters, fireEvent, getAgent, getBindingManager, getBuildingBlock, getCurrent,

getDefaultPriority, getDescriptor, getExecutionContext, getExecutionId, getFormalParameters,

getLastErrorEvent, getLastException, getLimit, getModifier, getModifiers,

getOutgoingTransitions, getOwner, getRollbackWorkflow, getTracer, getTransactionManager,

handleBeginActivity, handleBeginApplication, handleEndActivity, handleEndApplication,

handleException, handleInconsistentFSM, handleStateEntered, handleUngroundedParameters,

hasJADEDefaultTransition, initRootExecutor, isError, isFireable, isInterrupted,

manageBindings, mark, onEnd, onStart, performApplication, performDynamicWebService,

performSubflow, performWebService, propagateException, registerActivity, registerActivity,

registerTransition, reinit, reset, resume, rollback, setDataStore, setError,

setFailureReason, setInterrupted, setUseDataStore, suspend, trace, trace

Methods inherited from class jade.core.behaviours.FSMBehaviour

deregisterDefaultTransition, deregisterState, deregisterTransition, forceTransitionTo,

getChildren, getLastExitValue, getName, getPrevious, getState, hasDefaultTransition,

registerDefaultTransition, registerDefaultTransition, registerFirstState, registerLastState,

registerState, registerTransition, registerTransition, resetStates, scheduleFirst,

scheduleNext, stringifyTransitionTable

Methods inherited from class jade.core.behaviours.SerialBehaviour

handle

Methods inherited from class jade.core.behaviours.CompositeBehaviour

action, done, handleBlockEvent, handleRestartEvent, registerAsChild, resetChildren, setAgent

Methods inherited from class jade.core.behaviours.Behaviour

actionWrapper, block, block, getBehaviourName, getDataStore, getExecutionState, getParent,

getRestartCounter, isRunnable, restart, root, setBehaviourName, setExecutionState

Methods inherited from interface com.tilab.wade.performer.HierarchyNode

getBehaviourName, getDataStore, root

Field Detail
private static final long serialVersionUID
public static final String UPDATEDB_ACTIVITY
public static final String BUDGETRFTOOLACTIVITY1_ACTIVITY
private jade.core.AID marketingCommunicator

Constructor Detail
public BudgetRF()

Method Detail
private void defineActivities()

Class BudgetRF

MarketingWF Documentation Page 290 of 361

protected void executeBudgetRFToolActivity1(com.tilab.wade.performer.ApplicationList applicati

ons)

 throws Exception

Throws:
Exception

protected void executeUpdateDB()

 throws Exception

Throws:
Exception

private void defineTransitions()

Class CreateJobSchedules
workflows

java.lang.Object

 jade.core.behaviours.Behaviour

 jade.core.behaviours.CompositeBehaviour

 jade.core.behaviours.SerialBehaviour

 jade.core.behaviours.FSMBehaviour

 com.tilab.wade.performer.WorkflowBehaviour

 workflows.CreateJobSchedules

All Implemented Interfaces:

com.tilab.wade.performer.HierarchyNode, jade.util.leap.Serializable, Serializable

public class CreateJobSchedules

extends com.tilab.wade.performer.WorkflowBehaviour

Class CreateJobSchedules

MarketingWF Documentation Page 291 of 361

Considers all jobs that request for execution and all the available agents that can perform them and produces a job
schedule for each agent, storing it into an Excel File.

Author:
Pavlos Delias

Nested classes/interfaces inherited from class jade.core.behaviours.Behaviour

Behaviour.RunnableChangedEvent

Class CreateJobSchedules

MarketingWF Documentation Page 292 of 361

Field Summary Page

static String ASSISTANTDOCUMENT_ACTIVITY 293

static String ASSISTANTWORKFLOW_ACTIVITY 293

static String CREATEDATAFORSCHEDULING_ACTIVITY 293

private int currentAssistant 294

private File currentAssistantFile 294

static String FINALIZE_ACTIVITY 293

static String INITIALIZE_ACTIVITY 293

private int numOfAssistants 293

private

ProductManager
PM 293

static String REGISTERASSISTANTXL_ACTIVITY 293

static String SCHEDULING_ACTIVITY 293

private static

long
serialVersionUID 293

private

Vector<String>
taskNames 293

private

Vector<Integer>
taskProcessingTimes 293

private

double[][]
taskStartTimes 293

private

double[][]
taskToAgents 293

Fields inherited from class com.tilab.wade.performer.WorkflowBehaviour

COLLECT_ASYNCH_SUBFLOWS_STATE, END_STATE, ERROR_STATE, FINAL, formalParams, INITIAL,

INITIAL_AND_FINAL, INTERMEDIATE, lastException, myLogger, rootExecutor, START_STATE

Fields inherited from class jade.core.behaviours.FSMBehaviour

currentName, lastStates

Fields inherited from class jade.core.behaviours.CompositeBehaviour

currentExecuted

Fields inherited from class jade.core.behaviours.Behaviour

myAgent, myEvent, NOTIFY_DOWN, NOTIFY_UP, parent, STATE_BLOCKED, STATE_READY, STATE_RUNNING

Constructor Summary Page

CreateJobSchedules() 294

Method Summary Page

protected

boolean

checkAssistantWorkflowToFinalize()
294

private

void

defineActivities()
294

private

void

defineTransitions()
294

protected

void

executeAssistantDocument(com.tilab.wade.performer.ApplicationList applications)
294

protected

void

executeAssistantWorkflow(com.tilab.wade.performer.Subflow s)
294

protected

void

executeCreateDataForScheduling(com.tilab.wade.performer.ApplicationList

applications)
294

protected

void

executeFinalize()
294

Class CreateJobSchedules

MarketingWF Documentation Page 293 of 361

protected

void

executeInitialize()
294

protected

void

executeRegisterAssistantXL()
294

protected

void

executeScheduling(com.tilab.wade.performer.ApplicationList applications)
294

Methods inherited from class com.tilab.wade.performer.WorkflowBehaviour

changeActivityOrder, checkModifier, checkTermination, commit, configure, deregisterActivity,

deregisterTransition, enterInterruptableSection, exitInterruptableSection,

fillFormalParameters, fireEvent, getAgent, getBindingManager, getBuildingBlock, getCurrent,

getDefaultPriority, getDescriptor, getExecutionContext, getExecutionId, getFormalParameters,

getLastErrorEvent, getLastException, getLimit, getModifier, getModifiers,

getOutgoingTransitions, getOwner, getRollbackWorkflow, getTracer, getTransactionManager,

handleBeginActivity, handleBeginApplication, handleEndActivity, handleEndApplication,

handleException, handleInconsistentFSM, handleStateEntered, handleUngroundedParameters,

hasJADEDefaultTransition, initRootExecutor, isError, isFireable, isInterrupted,

manageBindings, mark, onEnd, onStart, performApplication, performDynamicWebService,

performSubflow, performWebService, propagateException, registerActivity, registerActivity,

registerTransition, reinit, reset, resume, rollback, setDataStore, setError,

setFailureReason, setInterrupted, setUseDataStore, suspend, trace, trace

Methods inherited from class jade.core.behaviours.FSMBehaviour

deregisterDefaultTransition, deregisterState, deregisterTransition, forceTransitionTo,

getChildren, getLastExitValue, getName, getPrevious, getState, hasDefaultTransition,

registerDefaultTransition, registerDefaultTransition, registerFirstState, registerLastState,

registerState, registerTransition, registerTransition, resetStates, scheduleFirst,

scheduleNext, stringifyTransitionTable

Methods inherited from class jade.core.behaviours.SerialBehaviour

handle

Methods inherited from class jade.core.behaviours.CompositeBehaviour

action, done, handleBlockEvent, handleRestartEvent, registerAsChild, resetChildren, setAgent

Methods inherited from class jade.core.behaviours.Behaviour

actionWrapper, block, block, getBehaviourName, getDataStore, getExecutionState, getParent,

getRestartCounter, isRunnable, restart, root, setBehaviourName, setExecutionState

Methods inherited from interface com.tilab.wade.performer.HierarchyNode

getBehaviourName, getDataStore, root

Field Detail
private static final long serialVersionUID
public static final String REGISTERASSISTANTXL_ACTIVITY
public static final String FINALIZE_ACTIVITY
public static final String ASSISTANTWORKFLOW_ACTIVITY
public static final String ASSISTANTDOCUMENT_ACTIVITY
public static final String SCHEDULING_ACTIVITY
public static final String CREATEDATAFORSCHEDULING_ACTIVITY
public static final String INITIALIZE_ACTIVITY
private Vector<String> taskNames
private Vector<Integer> taskProcessingTimes
private double[][] taskStartTimes
private double[][] taskToAgents
private ProductManager PM
private int numOfAssistants

Class CreateJobSchedules

MarketingWF Documentation Page 294 of 361

private int currentAssistant
private File currentAssistantFile

Constructor Detail
public CreateJobSchedules()

Method Detail
private void defineActivities()
protected void executeInitialize()

 throws Exception

Throws:
Exception

private void defineTransitions()
protected void executeCreateDataForScheduling(com.tilab.wade.performer.ApplicationList applica

tions)

 throws Exception

Throws:
Exception

protected void executeScheduling(com.tilab.wade.performer.ApplicationList applications)

 throws Exception

Throws:
Exception

protected void executeAssistantDocument(com.tilab.wade.performer.ApplicationList applications)

 throws Exception

Throws:
Exception

protected void executeAssistantWorkflow(com.tilab.wade.performer.Subflow s)

 throws Exception

Throws:
Exception

protected void executeFinalize()

 throws Exception

Throws:
Exception

protected boolean checkAssistantWorkflowToFinalize()
protected void executeRegisterAssistantXL()

 throws Exception

Throws:
Exception

Class DirectMailCampaign
workflows

java.lang.Object

 jade.core.behaviours.Behaviour

 jade.core.behaviours.CompositeBehaviour

 jade.core.behaviours.SerialBehaviour

 jade.core.behaviours.FSMBehaviour

 com.tilab.wade.performer.WorkflowBehaviour

 workflows.DirectMailCampaign

All Implemented Interfaces:

com.tilab.wade.performer.HierarchyNode, jade.util.leap.Serializable, Serializable

Class DirectMailCampaign

MarketingWF Documentation Page 295 of 361

public class DirectMailCampaign

extends com.tilab.wade.performer.WorkflowBehaviour

The overall Direct mail Campaign process. It includes the basic steps as subflows.

Author:
Pavlos Delias

Nested classes/interfaces inherited from class jade.core.behaviours.Behaviour

Behaviour.RunnableChangedEvent

Field Summary Page

private

jade.core.AID
communicator 297

static String FINDAGENTS_ACTIVITY 297

static String LAUNCHCAMPAIGN_ACTIVITY 297

private

jade.core.AID
manager 297

static String MARKETRESEARCH_ACTIVITY 297

static String PREPAREMARKETINGPIECE_ACTIVITY 297

Fields inherited from class com.tilab.wade.performer.WorkflowBehaviour

COLLECT_ASYNCH_SUBFLOWS_STATE, END_STATE, ERROR_STATE, FINAL, formalParams, INITIAL,

INITIAL_AND_FINAL, INTERMEDIATE, lastException, myLogger, rootExecutor, START_STATE

Class DirectMailCampaign

MarketingWF Documentation Page 296 of 361

Fields inherited from class jade.core.behaviours.FSMBehaviour

currentName, lastStates

Fields inherited from class jade.core.behaviours.CompositeBehaviour

currentExecuted

Fields inherited from class jade.core.behaviours.Behaviour

myAgent, myEvent, NOTIFY_DOWN, NOTIFY_UP, parent, STATE_BLOCKED, STATE_READY, STATE_RUNNING

Constructor Summary Page

DirectMailCampaign() 297

Method Summary Page

private

void

defineActivities()
297

private

void

defineTransitions()
297

protected

void

executeFindAgents()

Contact the Directory Facilitator to get all the necessary references to agents 297

protected

void

executeLaunchCampaign(com.tilab.wade.performer.Subflow s)
297

protected

void

executeMarketResearch(com.tilab.wade.performer.Subflow s)
297

protected

void

executePrepareMarketingPiece(com.tilab.wade.performer.Subflow s)
297

Methods inherited from class com.tilab.wade.performer.WorkflowBehaviour

changeActivityOrder, checkModifier, checkTermination, commit, configure, deregisterActivity,

deregisterTransition, enterInterruptableSection, exitInterruptableSection,

fillFormalParameters, fireEvent, getAgent, getBindingManager, getBuildingBlock, getCurrent,

getDefaultPriority, getDescriptor, getExecutionContext, getExecutionId, getFormalParameters,

getLastErrorEvent, getLastException, getLimit, getModifier, getModifiers,

getOutgoingTransitions, getOwner, getRollbackWorkflow, getTracer, getTransactionManager,

handleBeginActivity, handleBeginApplication, handleEndActivity, handleEndApplication,

handleException, handleInconsistentFSM, handleStateEntered, handleUngroundedParameters,

hasJADEDefaultTransition, initRootExecutor, isError, isFireable, isInterrupted,

manageBindings, mark, onEnd, onStart, performApplication, performDynamicWebService,

performSubflow, performWebService, propagateException, registerActivity, registerActivity,

registerTransition, reinit, reset, resume, rollback, setDataStore, setError,

setFailureReason, setInterrupted, setUseDataStore, suspend, trace, trace

Methods inherited from class jade.core.behaviours.FSMBehaviour

deregisterDefaultTransition, deregisterState, deregisterTransition, forceTransitionTo,

getChildren, getLastExitValue, getName, getPrevious, getState, hasDefaultTransition,

registerDefaultTransition, registerDefaultTransition, registerFirstState, registerLastState,

registerState, registerTransition, registerTransition, resetStates, scheduleFirst,

scheduleNext, stringifyTransitionTable

Methods inherited from class jade.core.behaviours.SerialBehaviour

handle

Methods inherited from class jade.core.behaviours.CompositeBehaviour

action, done, handleBlockEvent, handleRestartEvent, registerAsChild, resetChildren, setAgent

Class DirectMailCampaign

MarketingWF Documentation Page 297 of 361

Methods inherited from class jade.core.behaviours.Behaviour

actionWrapper, block, block, getBehaviourName, getDataStore, getExecutionState, getParent,

getRestartCounter, isRunnable, restart, root, setBehaviourName, setExecutionState

Methods inherited from interface com.tilab.wade.performer.HierarchyNode

getBehaviourName, getDataStore, root

Field Detail
public static final String LAUNCHCAMPAIGN_ACTIVITY
public static final String PREPAREMARKETINGPIECE_ACTIVITY
public static final String MARKETRESEARCH_ACTIVITY
private jade.core.AID manager
private jade.core.AID communicator
public static final String FINDAGENTS_ACTIVITY

Constructor Detail
public DirectMailCampaign()

Method Detail
private void defineActivities()
protected void executeFindAgents()

 throws Exception

Contact the Directory Facilitator to get all the necessary references to agents

Throws:
Exception

protected void executeMarketResearch(com.tilab.wade.performer.Subflow s)

 throws Exception

Throws:
Exception

private void defineTransitions()
protected void executePrepareMarketingPiece(com.tilab.wade.performer.Subflow s)

 throws Exception

Throws:
Exception

protected void executeLaunchCampaign(com.tilab.wade.performer.Subflow s)

 throws Exception

Throws:
Exception

Class EstablishTargetMarkets
workflows

java.lang.Object

 jade.core.behaviours.Behaviour

 jade.core.behaviours.CompositeBehaviour

 jade.core.behaviours.SerialBehaviour

 jade.core.behaviours.FSMBehaviour

 com.tilab.wade.performer.WorkflowBehaviour

 workflows.EstablishTargetMarkets

All Implemented Interfaces:

com.tilab.wade.performer.HierarchyNode, jade.util.leap.Serializable, Serializable

Class EstablishTargetMarkets

MarketingWF Documentation Page 298 of 361

public class EstablishTargetMarkets

extends com.tilab.wade.performer.WorkflowBehaviour

A workflow class to represent the Establish Target Markets business process. The process must start with a clear
target audience in mind: potential buyers of the company's products, current users, deciders, or influencers;
individuals, groups, particular publics, or the general public. The target audience can potentially be profiled in terms
of the identified market segments Bilateral meetings facilitation activities are also included.

Author:
Pavlos Delias

Nested Class Summary Page

static

enum
EstablishTargetMarkets.failureReason 302

Nested classes/interfaces inherited from class jade.core.behaviours.Behaviour

Behaviour.RunnableChangedEvent

Field Summary Page

static String ARRANGEMEETING_ACTIVITY 301

Class EstablishTargetMarkets

MarketingWF Documentation Page 299 of 361

static String CHECKLISTAWARE_ACTIVITY 301

private File checkListFile 301

private boolean checkListRefined 301

private boolean checkListUploaded 301

static String COMMUNICATELIST_ACTIVITY 301

static String ENDSUCESS_ACTIVITY 301

static String FAILURE_ACTIVITY 301

static String KICKOFFMAIL_ACTIVITY 301

private MarketingDirector MD 301

private String meetingConversationId 301

private boolean meetingRealized 301

static String MEETINGREALIZED_ACTIVITY 301

static String NOTIFYDIRECTOR_ACTIVITY 301

static String NOTIFYMANAGER_ACTIVITY 301

private jade.core.AID productManager 301

private

EstablishTargetMarkets.failureReason
reason 301

private static long serialVersionUID 301

private

jade.lang.acl.MessageTemplate
template_CheckList 301

private

jade.lang.acl.MessageTemplate
template_DirectorReply 301

private

jade.lang.acl.MessageTemplate
template_meetingReply 301

Fields inherited from class com.tilab.wade.performer.WorkflowBehaviour

COLLECT_ASYNCH_SUBFLOWS_STATE, END_STATE, ERROR_STATE, FINAL, formalParams, INITIAL,

INITIAL_AND_FINAL, INTERMEDIATE, lastException, myLogger, rootExecutor, START_STATE

Fields inherited from class jade.core.behaviours.FSMBehaviour

currentName, lastStates

Fields inherited from class jade.core.behaviours.CompositeBehaviour

currentExecuted

Fields inherited from class jade.core.behaviours.Behaviour

myAgent, myEvent, NOTIFY_DOWN, NOTIFY_UP, parent, STATE_BLOCKED, STATE_READY, STATE_RUNNING

Constructor Summary Page

EstablishTargetMarkets() 301

Method Summary Page

protected

boolean

checkArrangeMeetingToMeetingRealized()
302

protected

boolean

checkCommunicateListToArrangeMeeting()
302

protected

boolean

checkGenerateCheckListToCommunicateList()
302

protected

boolean

checkMeetingRealizedToEndSucess()
302

protected

boolean

checkNotifyDirectorToCommunicateList()
302

Class EstablishTargetMarkets

MarketingWF Documentation Page 300 of 361

protected

boolean

checkNotifyManagerToArrangeMeeting()
302

private

void

defineActivities()
301

private

void

defineTransitions()
301

protected

void

executeArrangeMeeting()

Arrange meeting between MarketingDirector and ProductManager through the FIPA
PROPOSE Protocol.

302

protected

void

executecheckListAware()

Method to wait for the checklist upload. 301

protected

void

executeCommunicateList()

Find the product managers that should be notified based on their "product" property. 301

protected

void

executeEndSucess()
302

protected

void

executeFailure()
301

protected

void

executeKickOffMail(com.tilab.wade.performer.ApplicationList applications)
302

protected

void

executeMeetingRealized()

Waits for a notification that the meeting was indeed realized. 302

protected

void

executeNotifyDirector()
301

protected

void

executeNotifyManager()
302

void onStart() 301

Methods inherited from class com.tilab.wade.performer.WorkflowBehaviour

changeActivityOrder, checkModifier, checkTermination, commit, configure, deregisterActivity,

deregisterTransition, enterInterruptableSection, exitInterruptableSection,

fillFormalParameters, fireEvent, getAgent, getBindingManager, getBuildingBlock, getCurrent,

getDefaultPriority, getDescriptor, getExecutionContext, getExecutionId, getFormalParameters,

getLastErrorEvent, getLastException, getLimit, getModifier, getModifiers,

getOutgoingTransitions, getOwner, getRollbackWorkflow, getTracer, getTransactionManager,

handleBeginActivity, handleBeginApplication, handleEndActivity, handleEndApplication,

handleException, handleInconsistentFSM, handleStateEntered, handleUngroundedParameters,

hasJADEDefaultTransition, initRootExecutor, isError, isFireable, isInterrupted,

manageBindings, mark, onEnd, performApplication, performDynamicWebService, performSubflow,

performWebService, propagateException, registerActivity, registerActivity,

registerTransition, reinit, reset, resume, rollback, setDataStore, setError,

setFailureReason, setInterrupted, setUseDataStore, suspend, trace, trace

Methods inherited from class jade.core.behaviours.FSMBehaviour

deregisterDefaultTransition, deregisterState, deregisterTransition, forceTransitionTo,

getChildren, getLastExitValue, getName, getPrevious, getState, hasDefaultTransition,

registerDefaultTransition, registerDefaultTransition, registerFirstState, registerLastState,

registerState, registerTransition, registerTransition, resetStates, scheduleFirst,

scheduleNext, stringifyTransitionTable

Methods inherited from class jade.core.behaviours.SerialBehaviour

handle

Methods inherited from class jade.core.behaviours.CompositeBehaviour

action, done, handleBlockEvent, handleRestartEvent, registerAsChild, resetChildren, setAgent

Methods inherited from class jade.core.behaviours.Behaviour

actionWrapper, block, block, getBehaviourName, getDataStore, getExecutionState, getParent,

getRestartCounter, isRunnable, restart, root, setBehaviourName, setExecutionState

Class EstablishTargetMarkets

MarketingWF Documentation Page 301 of 361

Methods inherited from interface com.tilab.wade.performer.HierarchyNode

getBehaviourName, getDataStore, root

Field Detail
public static final String KICKOFFMAIL_ACTIVITY
private static final long serialVersionUID
public static final String ENDSUCESS_ACTIVITY
public static final String MEETINGREALIZED_ACTIVITY
public static final String ARRANGEMEETING_ACTIVITY
public static final String NOTIFYMANAGER_ACTIVITY
public static final String COMMUNICATELIST_ACTIVITY
public static final String FAILURE_ACTIVITY
public static final String NOTIFYDIRECTOR_ACTIVITY
public static final String CHECKLISTAWARE_ACTIVITY
private jade.lang.acl.MessageTemplate template_CheckList
private jade.lang.acl.MessageTemplate template_DirectorReply
private jade.lang.acl.MessageTemplate template_meetingReply
private File checkListFile
private boolean checkListUploaded
private boolean checkListRefined
private boolean meetingRealized
private jade.core.AID productManager
private MarketingDirector MD
private String meetingConversationId
private EstablishTargetMarkets.failureReason reason

Constructor Detail
public EstablishTargetMarkets()

Method Detail
private void defineActivities()
private void defineTransitions()
public void onStart()

Overrides:

onStart in class com.tilab.wade.performer.WorkflowBehaviour

protected void executecheckListAware()

 throws Exception

Method to wait for the checklist upload. The event is signified by an ACLMessage of the 'INFORM'
perfomative.

Throws:
Exception

protected void executeNotifyDirector()

 throws Exception

Throws:
Exception

protected void executeFailure()

 throws Exception

Throws:
Exception

protected void executeCommunicateList()

 throws Exception

Find the product managers that should be notified based on their "product" property. Gets the checkList file
through a FileChooser, sets the path as the content of the message and then waits for the managers
comments. The comments shold arrive as an ACLMessage of AGREE performative.

Class EstablishTargetMarkets

MarketingWF Documentation Page 302 of 361

Throws:
Exception

protected void executeNotifyManager()

 throws Exception

Throws:
Exception

protected void executeArrangeMeeting()

 throws Exception

Arrange meeting between MarketingDirector and ProductManager through the FIPA PROPOSE Protocol.

Throws:
Exception

protected void executeMeetingRealized()

 throws Exception

Waits for a notification that the meeting was indeed realized. The notification is an ACLMessage of
INFORM perfomative.

Throws:
Exception

protected boolean checkArrangeMeetingToMeetingRealized()
protected boolean checkGenerateCheckListToCommunicateList()
protected boolean checkCommunicateListToArrangeMeeting()
protected boolean checkNotifyDirectorToCommunicateList()
protected boolean checkNotifyManagerToArrangeMeeting()
protected void executeEndSucess()

 throws Exception

Throws:
Exception

protected boolean checkMeetingRealizedToEndSucess()
protected void executeKickOffMail(com.tilab.wade.performer.ApplicationList applications)

 throws Exception

Throws:
Exception

Enum EstablishTargetMarkets.failureReason
workflows

java.lang.Object

 java.lang.Enum<EstablishTargetMarkets.failureReason>

 workflows.EstablishTargetMarkets.failureReason

All Implemented Interfaces:

Comparable<EstablishTargetMarkets.failureReason>, Serializable

Enclosing class:

EstablishTargetMarkets

static enum EstablishTargetMarkets.failureReason

extends Enum<EstablishTargetMarkets.failureReason>

Enum EstablishTargetMarkets.failureReason

MarketingWF Documentation Page 303 of 361

Enum Constant Summary Page

arrangeMeeting 303

checkListDirector 303

checkListManager 303

meetingResult 303

Constructor Summary Page

private EstablishTargetMarkets.failureReason() 303

Method Summary Page

static

EstablishTargetMarkets.failureReason

valueOf(String name)
303

static

EstablishTargetMarkets.failureReason[]

values()
303

Enum Constant Detail
public static final EstablishTargetMarkets.failureReason checkListDirector
public static final EstablishTargetMarkets.failureReason checkListManager
public static final EstablishTargetMarkets.failureReason arrangeMeeting
public static final EstablishTargetMarkets.failureReason meetingResult

Constructor Detail
private EstablishTargetMarkets.failureReason()

Method Detail
public static EstablishTargetMarkets.failureReason[] values()
public static EstablishTargetMarkets.failureReason valueOf(String name)

Class LaunchCampaign
workflows

java.lang.Object

 jade.core.behaviours.Behaviour

 jade.core.behaviours.CompositeBehaviour

 jade.core.behaviours.SerialBehaviour

 jade.core.behaviours.FSMBehaviour

 com.tilab.wade.performer.WorkflowBehaviour

 workflows.LaunchCampaign

All Implemented Interfaces:

com.tilab.wade.performer.HierarchyNode, jade.util.leap.Serializable, Serializable

public class LaunchCampaign

extends com.tilab.wade.performer.WorkflowBehaviour

The class to model the actual launching of a marketing campaign. It contains customers' clusters assignment to

agents, getting customer info through CRM communication, the CreateJobSchedules subflow and database

Class LaunchCampaign

MarketingWF Documentation Page 304 of 361

update functions.

Author:
Pavlos Delias

Nested classes/interfaces inherited from class jade.core.behaviours.Behaviour

Behaviour.RunnableChangedEvent

Field Summary Page

static String ASSIGNCLUSTERS_ACTIVITY 307

private

HashMap<String,Vector<String>>
assignments 307

private Iterator characterIterator 307

private boolean charactersLeft 307

Connection conn 307

static String CREATESCHEDULE_ACTIVITY 306

private int customerNum 307

private String customerRecord 307

private Vector<Integer> customersIDs 307

static String FINALIZE_ACTIVITY 306

static String GATHERTODOCUSTOMERS_ACTIVITY 307

static String GETDATAFROMCRMWS_ACTIVITY 306

Class LaunchCampaign

MarketingWF Documentation Page 305 of 361

static String GROUPASSISTANTS_ACTIVITY 307

private

HashMap<String,Vector<jade.core.AID>>
groupOfAssistants 307

static String INITIALIZE_ACTIVITY 306

Statement ins 307

private String marketSegmentsFileName 307

static String PREPAREWSCALL_ACTIVITY 306

static String PREPAREXLDOC_ACTIVITY 306

static String PUTVECTORTOMAP_ACTIVITY 306

private Vector<CustomerRecord> records 307

static String REFINEAPPRESULTS_ACTIVITY 306

ResultSet rs 307

Statement stmt 307

private String tempCharacter 307

private Set<String> todoKeySet 307

private

HashMap<String,Vector<Integer>>
todoLists 307

static String UPDATEDBWITHXLFILE_ACTIVITY 306

private File XLfileName 307

Fields inherited from class com.tilab.wade.performer.WorkflowBehaviour

COLLECT_ASYNCH_SUBFLOWS_STATE, END_STATE, ERROR_STATE, FINAL, formalParams, INITIAL,

INITIAL_AND_FINAL, INTERMEDIATE, lastException, myLogger, rootExecutor, START_STATE

Fields inherited from class jade.core.behaviours.FSMBehaviour

currentName, lastStates

Fields inherited from class jade.core.behaviours.CompositeBehaviour

currentExecuted

Fields inherited from class jade.core.behaviours.Behaviour

myAgent, myEvent, NOTIFY_DOWN, NOTIFY_UP, parent, STATE_BLOCKED, STATE_READY, STATE_RUNNING

Constructor Summary Page

LaunchCampaign() 307

Method Summary Page

protected

boolean

checkprepareWSCallToGetDataFromCRMWS()
308

protected

boolean

checkPutVectortoMapToGetDataFromCRMWS()
308

private void defineActivities() 307

private void defineTransitions() 307

protected void executeAssignClusters(com.tilab.wade.performer.ApplicationList applications) 307

protected void executeCreateSchedule(com.tilab.wade.performer.Subflow s) 308

protected void executeFinalize() 308

protected void executeGatherTODOCustomers(com.tilab.wade.performer.ApplicationList

applications)
307

protected void executeGetDataFromCRMWS(com.tilab.wade.performer.WebService ws) 307

protected void executeGroupAssistants() 307

Class LaunchCampaign

MarketingWF Documentation Page 306 of 361

protected void executeInitialize()

An initial code activity to get the path of the 'MarketSegments' file. 308

protected void executeprepareWSCall() 307

protected void executePrepareXLDoc(com.tilab.wade.performer.ApplicationList applications) 308

protected void executePutVectortoMap() 307

protected void executeRefineAppResults() 307

protected void executeUpdateDBwithXLFile() 308

private

CustomerRecord

parseWSResult(String s)
308

Methods inherited from class com.tilab.wade.performer.WorkflowBehaviour

changeActivityOrder, checkModifier, checkTermination, commit, configure, deregisterActivity,

deregisterTransition, enterInterruptableSection, exitInterruptableSection,

fillFormalParameters, fireEvent, getAgent, getBindingManager, getBuildingBlock, getCurrent,

getDefaultPriority, getDescriptor, getExecutionContext, getExecutionId, getFormalParameters,

getLastErrorEvent, getLastException, getLimit, getModifier, getModifiers,

getOutgoingTransitions, getOwner, getRollbackWorkflow, getTracer, getTransactionManager,

handleBeginActivity, handleBeginApplication, handleEndActivity, handleEndApplication,

handleException, handleInconsistentFSM, handleStateEntered, handleUngroundedParameters,

hasJADEDefaultTransition, initRootExecutor, isError, isFireable, isInterrupted,

manageBindings, mark, onEnd, onStart, performApplication, performDynamicWebService,

performSubflow, performWebService, propagateException, registerActivity, registerActivity,

registerTransition, reinit, reset, resume, rollback, setDataStore, setError,

setFailureReason, setInterrupted, setUseDataStore, suspend, trace, trace

Methods inherited from class jade.core.behaviours.FSMBehaviour

deregisterDefaultTransition, deregisterState, deregisterTransition, forceTransitionTo,

getChildren, getLastExitValue, getName, getPrevious, getState, hasDefaultTransition,

registerDefaultTransition, registerDefaultTransition, registerFirstState, registerLastState,

registerState, registerTransition, registerTransition, resetStates, scheduleFirst,

scheduleNext, stringifyTransitionTable

Methods inherited from class jade.core.behaviours.SerialBehaviour

handle

Methods inherited from class jade.core.behaviours.CompositeBehaviour

action, done, handleBlockEvent, handleRestartEvent, registerAsChild, resetChildren, setAgent

Methods inherited from class jade.core.behaviours.Behaviour

actionWrapper, block, block, getBehaviourName, getDataStore, getExecutionState, getParent,

getRestartCounter, isRunnable, restart, root, setBehaviourName, setExecutionState

Methods inherited from interface com.tilab.wade.performer.HierarchyNode

getBehaviourName, getDataStore, root

Field Detail
public static final String UPDATEDBWITHXLFILE_ACTIVITY
public static final String INITIALIZE_ACTIVITY
public static final String FINALIZE_ACTIVITY
public static final String CREATESCHEDULE_ACTIVITY
public static final String PREPAREXLDOC_ACTIVITY
public static final String GETDATAFROMCRMWS_ACTIVITY
public static final String REFINEAPPRESULTS_ACTIVITY
public static final String PREPAREWSCALL_ACTIVITY
public static final String PUTVECTORTOMAP_ACTIVITY

Class LaunchCampaign

MarketingWF Documentation Page 307 of 361

public static final String GATHERTODOCUSTOMERS_ACTIVITY
public static final String ASSIGNCLUSTERS_ACTIVITY
public static final String GROUPASSISTANTS_ACTIVITY
private HashMap<String,Vector<jade.core.AID>> groupOfAssistants
private HashMap<String,Vector<String>> assignments
private HashMap<String,Vector<Integer>> todoLists
private String marketSegmentsFileName
private Set<String> todoKeySet
private Iterator characterIterator
private Vector<Integer> customersIDs
private int customerNum
private String customerRecord
private boolean charactersLeft
private Vector<CustomerRecord> records
private File XLfileName
private String tempCharacter
Connection conn
Statement stmt
Statement ins
ResultSet rs

Constructor Detail
public LaunchCampaign()

Method Detail
private void defineActivities()
protected void executeGroupAssistants()

 throws Exception

Throws:
Exception

protected void executeAssignClusters(com.tilab.wade.performer.ApplicationList applications)

 throws Exception

Throws:
Exception

private void defineTransitions()
protected void executeGatherTODOCustomers(com.tilab.wade.performer.ApplicationList application

s)

 throws Exception

Throws:
Exception

protected void executePutVectortoMap()

 throws Exception

Throws:
Exception

protected void executeprepareWSCall()

 throws Exception

Throws:
Exception

protected void executeRefineAppResults()

 throws Exception

Throws:
Exception

protected void executeGetDataFromCRMWS(com.tilab.wade.performer.WebService ws)

 throws Exception

Class LaunchCampaign

MarketingWF Documentation Page 308 of 361

Throws:
Exception

private CustomerRecord parseWSResult(String s)
protected void executeFinalize()

 throws Exception

Throws:
Exception

protected boolean checkPutVectortoMapToGetDataFromCRMWS()
protected void executePrepareXLDoc(com.tilab.wade.performer.ApplicationList applications)

 throws Exception

Throws:
Exception

protected void executeCreateSchedule(com.tilab.wade.performer.Subflow s)

 throws Exception

Throws:
Exception

protected boolean checkprepareWSCallToGetDataFromCRMWS()
protected void executeInitialize()

 throws Exception

An initial code activity to get the path of the 'MarketSegments' file.

Throws:
Exception

protected void executeUpdateDBwithXLFile()

 throws Exception

Throws:
Exception

Class MarketResearch
workflows

java.lang.Object

 jade.core.behaviours.Behaviour

 jade.core.behaviours.CompositeBehaviour

 jade.core.behaviours.SerialBehaviour

 jade.core.behaviours.FSMBehaviour

 com.tilab.wade.performer.WorkflowBehaviour

 workflows.MarketResearch

All Implemented Interfaces:

com.tilab.wade.performer.HierarchyNode, jade.util.leap.Serializable, Serializable

public class MarketResearch

extends com.tilab.wade.performer.WorkflowBehaviour

A workflow to represent the activities of the first phase of a marketing campaign. It is used to impose a workflow

order to other workflows:EstablishTargetMarkets

 Segmentation

 QuantifyTAM

Class MarketResearch

MarketingWF Documentation Page 309 of 361

 BudgetRF

Author:
Pavlos Delias

Nested classes/interfaces inherited from class jade.core.behaviours.Behaviour

Behaviour.RunnableChangedEvent

Field Summary Page

private

jade.core.AID
communicator 311

private

jade.core.AID
director 311

static String ESTABLISHTM_ACTIVITY 311

static String FINDAGENTS_ACTIVITY 311

private

jade.core.AID
manager 311

static String MARKETRESEARCHSUBFLOWJOINACTIVITY1_ACTIVITY 311

Class MarketResearch

MarketingWF Documentation Page 310 of 361

static String QUANTIFY_ACTIVITY 311

static String ROI_ACTIVITY 311

static String SEGMENTATION_ACTIVITY 311

private

static long
serialVersionUID 311

Fields inherited from class com.tilab.wade.performer.WorkflowBehaviour

COLLECT_ASYNCH_SUBFLOWS_STATE, END_STATE, ERROR_STATE, FINAL, formalParams, INITIAL,

INITIAL_AND_FINAL, INTERMEDIATE, lastException, myLogger, rootExecutor, START_STATE

Fields inherited from class jade.core.behaviours.FSMBehaviour

currentName, lastStates

Fields inherited from class jade.core.behaviours.CompositeBehaviour

currentExecuted

Fields inherited from class jade.core.behaviours.Behaviour

myAgent, myEvent, NOTIFY_DOWN, NOTIFY_UP, parent, STATE_BLOCKED, STATE_READY, STATE_RUNNING

Constructor Summary Page

MarketResearch() 311

Method Summary Page

private

void

defineActivities()
311

private

void

defineTransitions()
312

protected

void

executeEstablishTM(com.tilab.wade.performer.Subflow s)
311

protected

void

executeFindAgents()
312

protected

void

executeMarketResearchSubflowJoinActivity1(com.tilab.wade.performer.SubflowList

ss)
311

protected

void

executeQuantify(com.tilab.wade.performer.Subflow s)
311

protected

void

executeROI(com.tilab.wade.performer.Subflow s)
312

protected

void

executeSegmentation(com.tilab.wade.performer.Subflow s)
311

Methods inherited from class com.tilab.wade.performer.WorkflowBehaviour

changeActivityOrder, checkModifier, checkTermination, commit, configure, deregisterActivity,

deregisterTransition, enterInterruptableSection, exitInterruptableSection,

fillFormalParameters, fireEvent, getAgent, getBindingManager, getBuildingBlock, getCurrent,

getDefaultPriority, getDescriptor, getExecutionContext, getExecutionId, getFormalParameters,

getLastErrorEvent, getLastException, getLimit, getModifier, getModifiers,

getOutgoingTransitions, getOwner, getRollbackWorkflow, getTracer, getTransactionManager,

handleBeginActivity, handleBeginApplication, handleEndActivity, handleEndApplication,

handleException, handleInconsistentFSM, handleStateEntered, handleUngroundedParameters,

hasJADEDefaultTransition, initRootExecutor, isError, isFireable, isInterrupted,

manageBindings, mark, onEnd, onStart, performApplication, performDynamicWebService,

performSubflow, performWebService, propagateException, registerActivity, registerActivity,

registerTransition, reinit, reset, resume, rollback, setDataStore, setError,

setFailureReason, setInterrupted, setUseDataStore, suspend, trace, trace

Class MarketResearch

MarketingWF Documentation Page 311 of 361

Methods inherited from class jade.core.behaviours.FSMBehaviour

deregisterDefaultTransition, deregisterState, deregisterTransition, forceTransitionTo,

getChildren, getLastExitValue, getName, getPrevious, getState, hasDefaultTransition,

registerDefaultTransition, registerDefaultTransition, registerFirstState, registerLastState,

registerState, registerTransition, registerTransition, resetStates, scheduleFirst,

scheduleNext, stringifyTransitionTable

Methods inherited from class jade.core.behaviours.SerialBehaviour

handle

Methods inherited from class jade.core.behaviours.CompositeBehaviour

action, done, handleBlockEvent, handleRestartEvent, registerAsChild, resetChildren, setAgent

Methods inherited from class jade.core.behaviours.Behaviour

actionWrapper, block, block, getBehaviourName, getDataStore, getExecutionState, getParent,

getRestartCounter, isRunnable, restart, root, setBehaviourName, setExecutionState

Methods inherited from interface com.tilab.wade.performer.HierarchyNode

getBehaviourName, getDataStore, root

Field Detail
private static final long serialVersionUID
private jade.core.AID director
private jade.core.AID manager
private jade.core.AID communicator
public static final String FINDAGENTS_ACTIVITY
public static final String ROI_ACTIVITY
public static final String MARKETRESEARCHSUBFLOWJOINACTIVITY1_ACTIVITY
public static final String QUANTIFY_ACTIVITY
public static final String SEGMENTATION_ACTIVITY
public static final String ESTABLISHTM_ACTIVITY

Constructor Detail
public MarketResearch()

Method Detail
private void defineActivities()
protected void executeEstablishTM(com.tilab.wade.performer.Subflow s)

 throws Exception

Throws:
Exception

protected void executeSegmentation(com.tilab.wade.performer.Subflow s)

 throws Exception

Throws:
Exception

protected void executeQuantify(com.tilab.wade.performer.Subflow s)

 throws Exception

Throws:
Exception

protected void executeMarketResearchSubflowJoinActivity1(com.tilab.wade.performer.SubflowList

ss)

 throws Exception

Class MarketResearch

MarketingWF Documentation Page 312 of 361

Throws:
Exception

protected void executeROI(com.tilab.wade.performer.Subflow s)

 throws Exception

Throws:
Exception

private void defineTransitions()
protected void executeFindAgents()

 throws Exception

Throws:
Exception

Class PreparePiece
workflows

java.lang.Object

 jade.core.behaviours.Behaviour

 jade.core.behaviours.CompositeBehaviour

 jade.core.behaviours.SerialBehaviour

 jade.core.behaviours.FSMBehaviour

 com.tilab.wade.performer.WorkflowBehaviour

 workflows.PreparePiece

All Implemented Interfaces:

com.tilab.wade.performer.HierarchyNode, jade.util.leap.Serializable, Serializable

public class PreparePiece

extends com.tilab.wade.performer.WorkflowBehaviour

The workflow class to model the "Prepare Marketing Piece" business process. In determining message strategy,
management searches for appeals, themes, or ideas that will tie into the brand positioning and help to establish

Class PreparePiece

MarketingWF Documentation Page 313 of 361

points-of- parity or points-of-difference. A distinct piece will be developped for every market segment (cluster).

Author:
Pavlos Delias

Nested classes/interfaces inherited from class jade.core.behaviours.Behaviour

Behaviour.RunnableChangedEvent

Field Summary Page

static String CLUSTERLOOP_ACTIVITY 315

private File clustersMedia 315

static String FINALIZE_ACTIVITY 315

private Iterator<String> iter 315

static String MEDIADECISIONS_ACTIVITY 315

jade.core.AID MV 315

private HashMap<String,Offer> offers 315

static String PREPARELOOPDATA_ACTIVITY 315

Class PreparePiece

MarketingWF Documentation Page 314 of 361

static String PREPAREPIECESUBFLOWACTIVITY1_ACTIVITY 315

static String PREPAREPIECESUBFLOWACTIVITY2_ACTIVITY 315

static String READMEDIAFILE_ACTIVITY 315

private

MediaDecisionsGUI.MediaFormat
tempOfferFormat 315

private int tempOfferquantity 315

Fields inherited from class com.tilab.wade.performer.WorkflowBehaviour

COLLECT_ASYNCH_SUBFLOWS_STATE, END_STATE, ERROR_STATE, FINAL, formalParams, INITIAL,

INITIAL_AND_FINAL, INTERMEDIATE, lastException, myLogger, rootExecutor, START_STATE

Fields inherited from class jade.core.behaviours.FSMBehaviour

currentName, lastStates

Fields inherited from class jade.core.behaviours.CompositeBehaviour

currentExecuted

Fields inherited from class jade.core.behaviours.Behaviour

myAgent, myEvent, NOTIFY_DOWN, NOTIFY_UP, parent, STATE_BLOCKED, STATE_READY, STATE_RUNNING

Constructor Summary Page

PreparePiece() 315

Method Summary Page

protected

boolean

checkPreparePieceSubflowActivity2ToFinalize()
316

private

void

defineActivities()
315

private

void

defineTransitions()
315

protected

void

executeClusterLoop()
316

protected

void

executeFinalize()
316

protected

void

executeMediaDecisions(com.tilab.wade.performer.ApplicationList applications)
315

protected

void

executePrepareLoopData()
316

protected

void

executePreparePieceSubflowActivity1(com.tilab.wade.performer.Subflow s)
315

protected

void

executePreparePieceSubflowActivity2(com.tilab.wade.performer.Subflow s)
315

protected

void

executeReadMediaFile(com.tilab.wade.performer.ApplicationList applications)
316

Methods inherited from class com.tilab.wade.performer.WorkflowBehaviour

changeActivityOrder, checkModifier, checkTermination, commit, configure, deregisterActivity,

deregisterTransition, enterInterruptableSection, exitInterruptableSection,

fillFormalParameters, fireEvent, getAgent, getBindingManager, getBuildingBlock, getCurrent,

getDefaultPriority, getDescriptor, getExecutionContext, getExecutionId, getFormalParameters,

getLastErrorEvent, getLastException, getLimit, getModifier, getModifiers,

getOutgoingTransitions, getOwner, getRollbackWorkflow, getTracer, getTransactionManager,

handleBeginActivity, handleBeginApplication, handleEndActivity, handleEndApplication,

handleException, handleInconsistentFSM, handleStateEntered, handleUngroundedParameters,

hasJADEDefaultTransition, initRootExecutor, isError, isFireable, isInterrupted,

manageBindings, mark, onEnd, onStart, performApplication, performDynamicWebService,

performSubflow, performWebService, propagateException, registerActivity, registerActivity,

Class PreparePiece

MarketingWF Documentation Page 315 of 361

registerTransition, reinit, reset, resume, rollback, setDataStore, setError,

setFailureReason, setInterrupted, setUseDataStore, suspend, trace, trace

Methods inherited from class jade.core.behaviours.FSMBehaviour

deregisterDefaultTransition, deregisterState, deregisterTransition, forceTransitionTo,

getChildren, getLastExitValue, getName, getPrevious, getState, hasDefaultTransition,

registerDefaultTransition, registerDefaultTransition, registerFirstState, registerLastState,

registerState, registerTransition, registerTransition, resetStates, scheduleFirst,

scheduleNext, stringifyTransitionTable

Methods inherited from class jade.core.behaviours.SerialBehaviour

handle

Methods inherited from class jade.core.behaviours.CompositeBehaviour

action, done, handleBlockEvent, handleRestartEvent, registerAsChild, resetChildren, setAgent

Methods inherited from class jade.core.behaviours.Behaviour

actionWrapper, block, block, getBehaviourName, getDataStore, getExecutionState, getParent,

getRestartCounter, isRunnable, restart, root, setBehaviourName, setExecutionState

Methods inherited from interface com.tilab.wade.performer.HierarchyNode

getBehaviourName, getDataStore, root

Field Detail
public static final String PREPARELOOPDATA_ACTIVITY
public static final String FINALIZE_ACTIVITY
public static final String CLUSTERLOOP_ACTIVITY
public static final String READMEDIAFILE_ACTIVITY
public static final String MEDIADECISIONS_ACTIVITY
public static final String PREPAREPIECESUBFLOWACTIVITY2_ACTIVITY
public static final String PREPAREPIECESUBFLOWACTIVITY1_ACTIVITY
public jade.core.AID MV
private File clustersMedia
private HashMap<String,Offer> offers
private int tempOfferquantity
private MediaDecisionsGUI.MediaFormat tempOfferFormat
private Iterator<String> iter

Constructor Detail
public PreparePiece()

Method Detail
private void defineActivities()
protected void executePreparePieceSubflowActivity1(com.tilab.wade.performer.Subflow s)

 throws Exception

Throws:
Exception

protected void executePreparePieceSubflowActivity2(com.tilab.wade.performer.Subflow s)

 throws Exception

Throws:
Exception

private void defineTransitions()
protected void executeMediaDecisions(com.tilab.wade.performer.ApplicationList applications)

 throws Exception

Class PreparePiece

MarketingWF Documentation Page 316 of 361

Throws:
Exception

protected void executeReadMediaFile(com.tilab.wade.performer.ApplicationList applications)

 throws Exception

Throws:
Exception

protected void executeClusterLoop()

 throws Exception

Throws:
Exception

protected void executeFinalize()

 throws Exception

Throws:
Exception

protected boolean checkPreparePieceSubflowActivity2ToFinalize()
protected void executePrepareLoopData()

 throws Exception

Throws:
Exception

Class QuantifyTAM
workflows

java.lang.Object

 jade.core.behaviours.Behaviour

 jade.core.behaviours.CompositeBehaviour

 jade.core.behaviours.SerialBehaviour

 jade.core.behaviours.FSMBehaviour

 com.tilab.wade.performer.WorkflowBehaviour

 workflows.QuantifyTAM

All Implemented Interfaces:

com.tilab.wade.performer.HierarchyNode, jade.util.leap.Serializable, Serializable

public class QuantifyTAM

extends com.tilab.wade.performer.WorkflowBehaviour

Class QuantifyTAM

MarketingWF Documentation Page 317 of 361

A workflow model to represent the "Quantify Total Available Market" business process. Is actually orchestrates
marketing reports delivery in order to take the decisions.

Author:
Pavlos Delias

Nested classes/interfaces inherited from class jade.core.behaviours.Behaviour

Behaviour.RunnableChangedEvent

Field Summary Page

private

List<String>
excelRanges 319

static

String
GETDATAFROMXLS_ACTIVITY 319

private File inputExcelFile 319

private File outputExcelFile 319

private File outputPptFile 319

private

List<File>
PPT 319

static

String
QUANTIFYTAMROUTEACTIVITY1_ACTIVITY 319

Class QuantifyTAM

MarketingWF Documentation Page 318 of 361

static

String
RETURNPPT_ACTIVITY 319

static

String
RETURNXLS_ACTIVITY 319

static

String
UPDATEDB_ACTIVITY 319

static

String
WAITFORFILES_ACTIVITY 319

private

List<File>
XL 319

Fields inherited from class com.tilab.wade.performer.WorkflowBehaviour

COLLECT_ASYNCH_SUBFLOWS_STATE, END_STATE, ERROR_STATE, FINAL, formalParams, INITIAL,

INITIAL_AND_FINAL, INTERMEDIATE, lastException, myLogger, rootExecutor, START_STATE

Fields inherited from class jade.core.behaviours.FSMBehaviour

currentName, lastStates

Fields inherited from class jade.core.behaviours.CompositeBehaviour

currentExecuted

Fields inherited from class jade.core.behaviours.Behaviour

myAgent, myEvent, NOTIFY_DOWN, NOTIFY_UP, parent, STATE_BLOCKED, STATE_READY, STATE_RUNNING

Constructor Summary Page

QuantifyTAM() 319

Method Summary Page

private

void

defineActivities()
319

private

void

defineTransitions()
319

protected

void

executegetDataFromXLS(com.tilab.wade.performer.ApplicationList applications)
319

protected

void

executeReturnPPT(com.tilab.wade.performer.Subflow s)
320

protected

void

executeReturnXLS(com.tilab.wade.performer.Subflow s)
319

protected

void

executeUpdateDB()
319

protected

void

executeWaitForFiles(com.tilab.wade.performer.SubflowList ss)
320

Methods inherited from class com.tilab.wade.performer.WorkflowBehaviour

changeActivityOrder, checkModifier, checkTermination, commit, configure, deregisterActivity,

deregisterTransition, enterInterruptableSection, exitInterruptableSection,

fillFormalParameters, fireEvent, getAgent, getBindingManager, getBuildingBlock, getCurrent,

getDefaultPriority, getDescriptor, getExecutionContext, getExecutionId, getFormalParameters,

getLastErrorEvent, getLastException, getLimit, getModifier, getModifiers,

getOutgoingTransitions, getOwner, getRollbackWorkflow, getTracer, getTransactionManager,

handleBeginActivity, handleBeginApplication, handleEndActivity, handleEndApplication,

handleException, handleInconsistentFSM, handleStateEntered, handleUngroundedParameters,

hasJADEDefaultTransition, initRootExecutor, isError, isFireable, isInterrupted,

manageBindings, mark, onEnd, onStart, performApplication, performDynamicWebService,

performSubflow, performWebService, propagateException, registerActivity, registerActivity,

registerTransition, reinit, reset, resume, rollback, setDataStore, setError,

setFailureReason, setInterrupted, setUseDataStore, suspend, trace, trace

Class QuantifyTAM

MarketingWF Documentation Page 319 of 361

Methods inherited from class jade.core.behaviours.FSMBehaviour

deregisterDefaultTransition, deregisterState, deregisterTransition, forceTransitionTo,

getChildren, getLastExitValue, getName, getPrevious, getState, hasDefaultTransition,

registerDefaultTransition, registerDefaultTransition, registerFirstState, registerLastState,

registerState, registerTransition, registerTransition, resetStates, scheduleFirst,

scheduleNext, stringifyTransitionTable

Methods inherited from class jade.core.behaviours.SerialBehaviour

handle

Methods inherited from class jade.core.behaviours.CompositeBehaviour

action, done, handleBlockEvent, handleRestartEvent, registerAsChild, resetChildren, setAgent

Methods inherited from class jade.core.behaviours.Behaviour

actionWrapper, block, block, getBehaviourName, getDataStore, getExecutionState, getParent,

getRestartCounter, isRunnable, restart, root, setBehaviourName, setExecutionState

Methods inherited from interface com.tilab.wade.performer.HierarchyNode

getBehaviourName, getDataStore, root

Field Detail
public static final String WAITFORFILES_ACTIVITY
public static final String RETURNPPT_ACTIVITY
public static final String RETURNXLS_ACTIVITY
public static final String UPDATEDB_ACTIVITY
public static final String QUANTIFYTAMROUTEACTIVITY1_ACTIVITY
public static final String GETDATAFROMXLS_ACTIVITY
private List<String> excelRanges
private File inputExcelFile
private File outputExcelFile
private File outputPptFile
private List<File> XL
private List<File> PPT

Constructor Detail
public QuantifyTAM()

Method Detail
private void defineActivities()
protected void executegetDataFromXLS(com.tilab.wade.performer.ApplicationList applications)

 throws Exception

Throws:
Exception

private void defineTransitions()
protected void executeUpdateDB()

 throws Exception

Throws:
Exception

protected void executeReturnXLS(com.tilab.wade.performer.Subflow s)

 throws Exception

Throws:
Exception

Class QuantifyTAM

MarketingWF Documentation Page 320 of 361

protected void executeReturnPPT(com.tilab.wade.performer.Subflow s)

 throws Exception

Throws:
Exception

protected void executeWaitForFiles(com.tilab.wade.performer.SubflowList ss)

 throws Exception

Throws:
Exception

Class ReviewDrafts
workflows

java.lang.Object

 jade.core.behaviours.Behaviour

 jade.core.behaviours.CompositeBehaviour

 jade.core.behaviours.SerialBehaviour

 jade.core.behaviours.FSMBehaviour

 com.tilab.wade.performer.WorkflowBehaviour

 workflows.ReviewDrafts

All Implemented Interfaces:

com.tilab.wade.performer.HierarchyNode, jade.util.leap.Serializable, Serializable

public class ReviewDrafts

extends com.tilab.wade.performer.WorkflowBehaviour

The workflow class to model the "Review Drafts of marketing artwork" business process. The draft artwork is sent
by the vendor who has subcontracted the job, and it is reviewed. Either a negative answer is sent back with an
attached review report, or the artwork is approved.

Class ReviewDrafts

MarketingWF Documentation Page 321 of 361

Author:
Pavlos Delias

Nested classes/interfaces inherited from class jade.core.behaviours.Behaviour

Behaviour.RunnableChangedEvent

Field Summary Page

static String CHECKNEWMSG_ACTIVITY 323

static String CREATEMV_ACTIVITY 322

private

jade.lang.acl.ACLMessage
draftMsg 323

static String FAILURE_ACTIVITY 323

private boolean msgArrived 323

private jade.core.AID MV 322

static String NEGATIVE_ACTIVITY 323

private

jade.lang.acl.MessageTemplate
newMsg 323

static String NOTIFYVENDOR_ACTIVITY 323

static String POSITIVE_ACTIVITY 323

String reportFileName 322

static String REVIEWDRAFTSTOOL_ACTIVITY 323

private int reviewResult 323

static String SENDMAIL_ACTIVITY 323

Fields inherited from class com.tilab.wade.performer.WorkflowBehaviour

COLLECT_ASYNCH_SUBFLOWS_STATE, END_STATE, ERROR_STATE, FINAL, formalParams, INITIAL,

INITIAL_AND_FINAL, INTERMEDIATE, lastException, myLogger, rootExecutor, START_STATE

Fields inherited from class jade.core.behaviours.FSMBehaviour

currentName, lastStates

Fields inherited from class jade.core.behaviours.CompositeBehaviour

currentExecuted

Fields inherited from class jade.core.behaviours.Behaviour

myAgent, myEvent, NOTIFY_DOWN, NOTIFY_UP, parent, STATE_BLOCKED, STATE_READY, STATE_RUNNING

Constructor Summary Page

ReviewDrafts() 323

Method Summary Page

protected

boolean

checkCheckNewMsgToReviewDraftsTool()
323

protected

boolean

checkNotifyVendorToReviewDraftsTool()
323

protected

boolean

checkReviewDraftsToolToPositive()
323

private

void

defineActivities()
323

Class ReviewDrafts

MarketingWF Documentation Page 322 of 361

private

void

defineTransitions()
323

protected

void

executeCheckNewMsg()
323

protected

void

executeCreateMV()
323

protected

void

executeFailure()
323

protected

void

executeNegative()
323

protected

void

executeNotifyVendor()
323

protected

void

executePositive()
323

protected

void

executeReviewDraftsTool(com.tilab.wade.performer.ApplicationList applications)
323

protected

void

executeSendMAil(com.tilab.wade.performer.ApplicationList applications)
323

Methods inherited from class com.tilab.wade.performer.WorkflowBehaviour

changeActivityOrder, checkModifier, checkTermination, commit, configure, deregisterActivity,

deregisterTransition, enterInterruptableSection, exitInterruptableSection,

fillFormalParameters, fireEvent, getAgent, getBindingManager, getBuildingBlock, getCurrent,

getDefaultPriority, getDescriptor, getExecutionContext, getExecutionId, getFormalParameters,

getLastErrorEvent, getLastException, getLimit, getModifier, getModifiers,

getOutgoingTransitions, getOwner, getRollbackWorkflow, getTracer, getTransactionManager,

handleBeginActivity, handleBeginApplication, handleEndActivity, handleEndApplication,

handleException, handleInconsistentFSM, handleStateEntered, handleUngroundedParameters,

hasJADEDefaultTransition, initRootExecutor, isError, isFireable, isInterrupted,

manageBindings, mark, onEnd, onStart, performApplication, performDynamicWebService,

performSubflow, performWebService, propagateException, registerActivity, registerActivity,

registerTransition, reinit, reset, resume, rollback, setDataStore, setError,

setFailureReason, setInterrupted, setUseDataStore, suspend, trace, trace

Methods inherited from class jade.core.behaviours.FSMBehaviour

deregisterDefaultTransition, deregisterState, deregisterTransition, forceTransitionTo,

getChildren, getLastExitValue, getName, getPrevious, getState, hasDefaultTransition,

registerDefaultTransition, registerDefaultTransition, registerFirstState, registerLastState,

registerState, registerTransition, registerTransition, resetStates, scheduleFirst,

scheduleNext, stringifyTransitionTable

Methods inherited from class jade.core.behaviours.SerialBehaviour

handle

Methods inherited from class jade.core.behaviours.CompositeBehaviour

action, done, handleBlockEvent, handleRestartEvent, registerAsChild, resetChildren, setAgent

Methods inherited from class jade.core.behaviours.Behaviour

actionWrapper, block, block, getBehaviourName, getDataStore, getExecutionState, getParent,

getRestartCounter, isRunnable, restart, root, setBehaviourName, setExecutionState

Methods inherited from interface com.tilab.wade.performer.HierarchyNode

getBehaviourName, getDataStore, root

Field Detail
public static final String CREATEMV_ACTIVITY
private jade.core.AID MV
public String reportFileName

Class ReviewDrafts

MarketingWF Documentation Page 323 of 361

private boolean msgArrived
private int reviewResult
private jade.lang.acl.MessageTemplate newMsg
private jade.lang.acl.ACLMessage draftMsg
public static final String SENDMAIL_ACTIVITY
public static final String NEGATIVE_ACTIVITY
public static final String POSITIVE_ACTIVITY
public static final String REVIEWDRAFTSTOOL_ACTIVITY
public static final String FAILURE_ACTIVITY
public static final String NOTIFYVENDOR_ACTIVITY
public static final String CHECKNEWMSG_ACTIVITY

Constructor Detail
public ReviewDrafts()

Method Detail
private void defineActivities()
protected void executeCheckNewMsg()

 throws Exception

Throws:
Exception

protected void executeNotifyVendor()

 throws Exception

Throws:
Exception

protected void executeFailure()

 throws Exception

Throws:
Exception

protected void executeReviewDraftsTool(com.tilab.wade.performer.ApplicationList applications)

 throws Exception

Throws:
Exception

protected void executePositive()

 throws Exception

Throws:
Exception

protected void executeNegative()

 throws Exception

Throws:
Exception

protected void executeSendMAil(com.tilab.wade.performer.ApplicationList applications)

 throws Exception

Throws:
Exception

private void defineTransitions()
protected boolean checkCheckNewMsgToReviewDraftsTool()
protected boolean checkNotifyVendorToReviewDraftsTool()
protected boolean checkReviewDraftsToolToPositive()
protected void executeCreateMV()

 throws Exception

Throws:
Exception

Class ReviewDrafts

MarketingWF Documentation Page 324 of 361

Class Segmentation
workflows

java.lang.Object

 jade.core.behaviours.Behaviour

 jade.core.behaviours.CompositeBehaviour

 jade.core.behaviours.SerialBehaviour

 jade.core.behaviours.FSMBehaviour

 com.tilab.wade.performer.WorkflowBehaviour

 workflows.Segmentation

All Implemented Interfaces:

com.tilab.wade.performer.HierarchyNode, jade.util.leap.Serializable, Serializable

public class Segmentation

extends com.tilab.wade.performer.WorkflowBehaviour

The workflow class to model the business process "Find Market Segments". It orchestrates the application of a

clustering algorithm to the customer database.

Author:
Pavlos Delias

Class Segmentation

MarketingWF Documentation Page 325 of 361

Nested classes/interfaces inherited from class jade.core.behaviours.Behaviour

Behaviour.RunnableChangedEvent

Field Summary Page

private

double[][]
centroids 326

static

String
CLUSTERCUSTOMERS_ACTIVITY 327

private

double[][]
clusters 326

Connection conn 326

private

String
customerDataFileName 326

static

String
EXCELSEGMENTATION_ACTIVITY 327

static

String
GETCUSTOMERDATA_ACTIVITY 326

static

String
GETDATAFROMXLS_ACTIVITY 327

Statement ins 327

private

File
marketSegmentsFile 326

ResultSet rs 327

private

static

long

serialVersionUID
326

Statement stmt 326

static

String
UPDATEDB_ACTIVITY 326

private

double[][]
weights 326

Fields inherited from class com.tilab.wade.performer.WorkflowBehaviour

COLLECT_ASYNCH_SUBFLOWS_STATE, END_STATE, ERROR_STATE, FINAL, formalParams, INITIAL,

INITIAL_AND_FINAL, INTERMEDIATE, lastException, myLogger, rootExecutor, START_STATE

Fields inherited from class jade.core.behaviours.FSMBehaviour

currentName, lastStates

Fields inherited from class jade.core.behaviours.CompositeBehaviour

currentExecuted

Fields inherited from class jade.core.behaviours.Behaviour

myAgent, myEvent, NOTIFY_DOWN, NOTIFY_UP, parent, STATE_BLOCKED, STATE_READY, STATE_RUNNING

Constructor Summary Page

Segmentation() 327

Method Summary Page

private

void

defineActivities()
327

private

void

defineTransitions()
327

protected

void

executeclusterCustomers(com.tilab.wade.performer.ApplicationList applications)
327

Class Segmentation

MarketingWF Documentation Page 326 of 361

protected

void

executeexcelSegmentation(com.tilab.wade.performer.ApplicationList applications)
327

protected

void

executeGetCustomerData()
327

protected

void

executegetDataFromXLS(com.tilab.wade.performer.ApplicationList applications)
327

protected

void

executeSegmenationToolActivity1(com.tilab.wade.performer.ApplicationList

applications)
327

protected

void

executeUpdateDB()
327

Methods inherited from class com.tilab.wade.performer.WorkflowBehaviour

changeActivityOrder, checkModifier, checkTermination, commit, configure, deregisterActivity,

deregisterTransition, enterInterruptableSection, exitInterruptableSection,

fillFormalParameters, fireEvent, getAgent, getBindingManager, getBuildingBlock, getCurrent,

getDefaultPriority, getDescriptor, getExecutionContext, getExecutionId, getFormalParameters,

getLastErrorEvent, getLastException, getLimit, getModifier, getModifiers,

getOutgoingTransitions, getOwner, getRollbackWorkflow, getTracer, getTransactionManager,

handleBeginActivity, handleBeginApplication, handleEndActivity, handleEndApplication,

handleException, handleInconsistentFSM, handleStateEntered, handleUngroundedParameters,

hasJADEDefaultTransition, initRootExecutor, isError, isFireable, isInterrupted,

manageBindings, mark, onEnd, onStart, performApplication, performDynamicWebService,

performSubflow, performWebService, propagateException, registerActivity, registerActivity,

registerTransition, reinit, reset, resume, rollback, setDataStore, setError,

setFailureReason, setInterrupted, setUseDataStore, suspend, trace, trace

Methods inherited from class jade.core.behaviours.FSMBehaviour

deregisterDefaultTransition, deregisterState, deregisterTransition, forceTransitionTo,

getChildren, getLastExitValue, getName, getPrevious, getState, hasDefaultTransition,

registerDefaultTransition, registerDefaultTransition, registerFirstState, registerLastState,

registerState, registerTransition, registerTransition, resetStates, scheduleFirst,

scheduleNext, stringifyTransitionTable

Methods inherited from class jade.core.behaviours.SerialBehaviour

handle

Methods inherited from class jade.core.behaviours.CompositeBehaviour

action, done, handleBlockEvent, handleRestartEvent, registerAsChild, resetChildren, setAgent

Methods inherited from class jade.core.behaviours.Behaviour

actionWrapper, block, block, getBehaviourName, getDataStore, getExecutionState, getParent,

getRestartCounter, isRunnable, restart, root, setBehaviourName, setExecutionState

Methods inherited from interface com.tilab.wade.performer.HierarchyNode

getBehaviourName, getDataStore, root

Field Detail
public static final String UPDATEDB_ACTIVITY
public static final String GETCUSTOMERDATA_ACTIVITY
private static final long serialVersionUID
private double[][] weights
private double[][] clusters
private double[][] centroids
private String customerDataFileName
private File marketSegmentsFile
Connection conn
Statement stmt

Class Segmentation

MarketingWF Documentation Page 327 of 361

Statement ins
ResultSet rs
public static final String EXCELSEGMENTATION_ACTIVITY
public static final String CLUSTERCUSTOMERS_ACTIVITY
public static final String GETDATAFROMXLS_ACTIVITY

Constructor Detail
public Segmentation()

Method Detail
private void defineActivities()
protected void executegetDataFromXLS(com.tilab.wade.performer.ApplicationList applications)

 throws Exception

Throws:
Exception

protected void executeclusterCustomers(com.tilab.wade.performer.ApplicationList applications)

 throws Exception

Throws:
Exception

private void defineTransitions()
protected void executeexcelSegmentation(com.tilab.wade.performer.ApplicationList applications)

 throws Exception

Throws:
Exception

protected void executeSegmenationToolActivity1(com.tilab.wade.performer.ApplicationList applic

ations)

 throws Exception

Throws:
Exception

protected void executeGetCustomerData()

 throws Exception

Throws:
Exception

protected void executeUpdateDB()

 throws Exception

Throws:
Exception

Class SolicitDesign
workflows

java.lang.Object

 jade.core.behaviours.Behaviour

 jade.core.behaviours.CompositeBehaviour

 jade.core.behaviours.SerialBehaviour

 jade.core.behaviours.FSMBehaviour

 com.tilab.wade.performer.WorkflowBehaviour

 workflows.SolicitDesign

All Implemented Interfaces:

com.tilab.wade.performer.HierarchyNode, jade.util.leap.Serializable, Serializable

public class SolicitDesign

extends com.tilab.wade.performer.WorkflowBehaviour

Class SolicitDesign

MarketingWF Documentation Page 328 of 361

A workflow class to model the business process "Solicit Vendor to subcontract the artwork design". The contract
net negotiation protocol is used to accept the best offer.

Author:
Pavlos Delias

Nested classes/interfaces inherited from class jade.core.behaviours.Behaviour

Behaviour.RunnableChangedEvent

Field Summary Page

static String ACCEPTBEST_ACTIVITY 330

private double bestPrice 330

private

jade.lang.acl.ACLMessage
bestProposal 330

static String CFP_ACTIVITY 330

private String convId 330

static String FINALIZE_ACTIVITY 330

static String HANDLERESPONSES_ACTIVITY 330

static String INIT_ACTIVITY 330

private boolean isAssigned 330

Class SolicitDesign

MarketingWF Documentation Page 329 of 361

private

jade.lang.acl.MessageTemplate
myTemplate 330

static String NOVENDORS_ACTIVITY 330

private boolean noVendorsAvailable 330

private int repliesCnt 330

static String SOLICITVENDORS_ACTIVITY 330

private int totExpectedReplies 330

private Vector<jade.core.AID> vendors 330

Fields inherited from class com.tilab.wade.performer.WorkflowBehaviour

COLLECT_ASYNCH_SUBFLOWS_STATE, END_STATE, ERROR_STATE, FINAL, formalParams, INITIAL,

INITIAL_AND_FINAL, INTERMEDIATE, lastException, myLogger, rootExecutor, START_STATE

Fields inherited from class jade.core.behaviours.FSMBehaviour

currentName, lastStates

Fields inherited from class jade.core.behaviours.CompositeBehaviour

currentExecuted

Fields inherited from class jade.core.behaviours.Behaviour

myAgent, myEvent, NOTIFY_DOWN, NOTIFY_UP, parent, STATE_BLOCKED, STATE_READY, STATE_RUNNING

Constructor Summary Page

SolicitDesign() 330

Method Summary Page

protected

boolean

checkexistVendors()
331

protected

boolean

checkHandleResponsesToAcceptBest()
331

protected

boolean

checkSolicitVendorsToNoVendors()
331

protected

boolean

checkVendorFound()
331

private

void

defineActivities()
330

private

void

defineTransitions()
331

protected

void

executeAcceptBest()
331

protected

void

executeCFP()
331

protected

void

executeFinalize()
331

protected

void

executeHandleResponses()
331

protected

void

executeInit()
330

protected

void

executeNoVendors()
331

protected

void

executeSolicitVendors()
331

Methods inherited from class com.tilab.wade.performer.WorkflowBehaviour

changeActivityOrder, checkModifier, checkTermination, commit, configure, deregisterActivity,

deregisterTransition, enterInterruptableSection, exitInterruptableSection,

Class SolicitDesign

MarketingWF Documentation Page 330 of 361

fillFormalParameters, fireEvent, getAgent, getBindingManager, getBuildingBlock, getCurrent,

getDefaultPriority, getDescriptor, getExecutionContext, getExecutionId, getFormalParameters,

getLastErrorEvent, getLastException, getLimit, getModifier, getModifiers,

getOutgoingTransitions, getOwner, getRollbackWorkflow, getTracer, getTransactionManager,

handleBeginActivity, handleBeginApplication, handleEndActivity, handleEndApplication,

handleException, handleInconsistentFSM, handleStateEntered, handleUngroundedParameters,

hasJADEDefaultTransition, initRootExecutor, isError, isFireable, isInterrupted,

manageBindings, mark, onEnd, onStart, performApplication, performDynamicWebService,

performSubflow, performWebService, propagateException, registerActivity, registerActivity,

registerTransition, reinit, reset, resume, rollback, setDataStore, setError,

setFailureReason, setInterrupted, setUseDataStore, suspend, trace, trace

Methods inherited from class jade.core.behaviours.FSMBehaviour

deregisterDefaultTransition, deregisterState, deregisterTransition, forceTransitionTo,

getChildren, getLastExitValue, getName, getPrevious, getState, hasDefaultTransition,

registerDefaultTransition, registerDefaultTransition, registerFirstState, registerLastState,

registerState, registerTransition, registerTransition, resetStates, scheduleFirst,

scheduleNext, stringifyTransitionTable

Methods inherited from class jade.core.behaviours.SerialBehaviour

handle

Methods inherited from class jade.core.behaviours.CompositeBehaviour

action, done, handleBlockEvent, handleRestartEvent, registerAsChild, resetChildren, setAgent

Methods inherited from class jade.core.behaviours.Behaviour

actionWrapper, block, block, getBehaviourName, getDataStore, getExecutionState, getParent,

getRestartCounter, isRunnable, restart, root, setBehaviourName, setExecutionState

Methods inherited from interface com.tilab.wade.performer.HierarchyNode

getBehaviourName, getDataStore, root

Field Detail
public static final String NOVENDORS_ACTIVITY
public static final String FINALIZE_ACTIVITY
public static final String ACCEPTBEST_ACTIVITY
public static final String HANDLERESPONSES_ACTIVITY
public static final String CFP_ACTIVITY
public static final String SOLICITVENDORS_ACTIVITY
public static final String INIT_ACTIVITY
private Vector<jade.core.AID> vendors
private boolean noVendorsAvailable
private int totExpectedReplies
private int repliesCnt
private String convId
private jade.lang.acl.MessageTemplate myTemplate
private jade.lang.acl.ACLMessage bestProposal
private boolean isAssigned
private double bestPrice

Constructor Detail
public SolicitDesign()

Method Detail
private void defineActivities()
protected void executeInit()

 throws Exception

Class SolicitDesign

MarketingWF Documentation Page 331 of 361

Throws:
Exception

protected void executeSolicitVendors()

 throws Exception

Throws:
Exception

protected void executeCFP()

 throws Exception

Throws:
Exception

protected void executeHandleResponses()

 throws Exception

Throws:
Exception

protected void executeAcceptBest()

 throws Exception

Throws:
Exception

private void defineTransitions()
protected boolean checkHandleResponsesToAcceptBest()
protected boolean checkexistVendors()
protected void executeFinalize()

 throws Exception

Throws:
Exception

protected boolean checkVendorFound()
protected void executeNoVendors()

 throws Exception

Throws:
Exception

protected boolean checkSolicitVendorsToNoVendors()

Package workflows.auxiliary

MarketingWF Documentation Page 332 of 361

Package workflows.auxiliary

Class Summary Page

AssistantLaunching The actual performing of the campaign from the assistant-agent view. 332

CreateTAMFile A workflow class to implement a Subflow. 336

FetchPptFile A workflow class to implement a Subflow. 338

ProcessBatchMail
A workflow class implemented as an intermediate step of the Contact Center
Management process.

340

SpectralScheduling A workflow class to orchestrate the application of a scheduling algorithm. 343

VendorOffer

A workflow class to model the vendors inner behavior

346

Class AssistantLaunching
workflows.auxiliary

java.lang.Object

 jade.core.behaviours.Behaviour

 jade.core.behaviours.CompositeBehaviour

 jade.core.behaviours.SerialBehaviour

 jade.core.behaviours.FSMBehaviour

 com.tilab.wade.performer.WorkflowBehaviour

 workflows.auxiliary.AssistantLaunching

All Implemented Interfaces:

com.tilab.wade.performer.HierarchyNode, jade.util.leap.Serializable, Serializable

public class AssistantLaunching

extends com.tilab.wade.performer.WorkflowBehaviour

Class AssistantLaunching

MarketingWF Documentation Page 333 of 361

The actual performing of the campaign from the assistant-agent view. It opens the schedule document, contacts
the CRM through a Web Service to find additional customer info. The contact results are saved to an Excel

document.

Author:
Pavlos Delias

Nested classes/interfaces inherited from class jade.core.behaviours.Behaviour

Behaviour.RunnableChangedEvent

Field Summary Page

private int currentCustomerIndex 335

private

Vector<String>
customerNames 335

static String FINALIZE_ACTIVITY 335

private String myFile 335

private int numOfCustomers 335

static String OPENSCHEDULE_ACTIVITY 335

private

Vector<Integer>
processingTimes 335

private

CrmResult
res 335

private String scheduleImage 335

private String updatedFileName 335

Class AssistantLaunching

MarketingWF Documentation Page 334 of 361

static String UPDATEDOCUMENT_ACTIVITY 335

static String WS2CRM_ACTIVITY 335

Fields inherited from class com.tilab.wade.performer.WorkflowBehaviour

COLLECT_ASYNCH_SUBFLOWS_STATE, END_STATE, ERROR_STATE, FINAL, formalParams, INITIAL,

INITIAL_AND_FINAL, INTERMEDIATE, lastException, myLogger, rootExecutor, START_STATE

Fields inherited from class jade.core.behaviours.FSMBehaviour

currentName, lastStates

Fields inherited from class jade.core.behaviours.CompositeBehaviour

currentExecuted

Fields inherited from class jade.core.behaviours.Behaviour

myAgent, myEvent, NOTIFY_DOWN, NOTIFY_UP, parent, STATE_BLOCKED, STATE_READY, STATE_RUNNING

Constructor Summary Page

AssistantLaunching() 335

Method Summary Page

protected

boolean

checkOpenScheduleToWS2CRM()
336

protected

boolean

checkUpdateDocumentToFinalize()
335

private

void

defineActivities()
335

private

void

defineTransitions()
335

protected

void

executeFinalize()
335

protected

void

executeOpenSchedule(com.tilab.wade.performer.ApplicationList applications)
335

protected

void

executeUpdateDocument(com.tilab.wade.performer.ApplicationList applications)
335

protected

void

executeWS2CRM(com.tilab.wade.performer.WebService ws)
335

Methods inherited from class com.tilab.wade.performer.WorkflowBehaviour

changeActivityOrder, checkModifier, checkTermination, commit, configure, deregisterActivity,

deregisterTransition, enterInterruptableSection, exitInterruptableSection,

fillFormalParameters, fireEvent, getAgent, getBindingManager, getBuildingBlock, getCurrent,

getDefaultPriority, getDescriptor, getExecutionContext, getExecutionId, getFormalParameters,

getLastErrorEvent, getLastException, getLimit, getModifier, getModifiers,

getOutgoingTransitions, getOwner, getRollbackWorkflow, getTracer, getTransactionManager,

handleBeginActivity, handleBeginApplication, handleEndActivity, handleEndApplication,

handleException, handleInconsistentFSM, handleStateEntered, handleUngroundedParameters,

hasJADEDefaultTransition, initRootExecutor, isError, isFireable, isInterrupted,

manageBindings, mark, onEnd, onStart, performApplication, performDynamicWebService,

performSubflow, performWebService, propagateException, registerActivity, registerActivity,

registerTransition, reinit, reset, resume, rollback, setDataStore, setError,

setFailureReason, setInterrupted, setUseDataStore, suspend, trace, trace

Methods inherited from class jade.core.behaviours.FSMBehaviour

deregisterDefaultTransition, deregisterState, deregisterTransition, forceTransitionTo,

getChildren, getLastExitValue, getName, getPrevious, getState, hasDefaultTransition,

registerDefaultTransition, registerDefaultTransition, registerFirstState, registerLastState,

registerState, registerTransition, registerTransition, resetStates, scheduleFirst,

Class AssistantLaunching

MarketingWF Documentation Page 335 of 361

scheduleNext, stringifyTransitionTable

Methods inherited from class jade.core.behaviours.SerialBehaviour

handle

Methods inherited from class jade.core.behaviours.CompositeBehaviour

action, done, handleBlockEvent, handleRestartEvent, registerAsChild, resetChildren, setAgent

Methods inherited from class jade.core.behaviours.Behaviour

actionWrapper, block, block, getBehaviourName, getDataStore, getExecutionState, getParent,

getRestartCounter, isRunnable, restart, root, setBehaviourName, setExecutionState

Methods inherited from interface com.tilab.wade.performer.HierarchyNode

getBehaviourName, getDataStore, root

Field Detail
public static final String FINALIZE_ACTIVITY
public static final String UPDATEDOCUMENT_ACTIVITY
public static final String WS2CRM_ACTIVITY
public static final String OPENSCHEDULE_ACTIVITY
private String scheduleImage
private Vector<String> customerNames
private Vector<Integer> processingTimes
private CrmResult res
private int numOfCustomers
private int currentCustomerIndex
private String updatedFileName
private String myFile

Constructor Detail
public AssistantLaunching()

Method Detail
private void defineActivities()
protected void executeOpenSchedule(com.tilab.wade.performer.ApplicationList applications)

 throws Exception

Throws:
Exception

protected void executeWS2CRM(com.tilab.wade.performer.WebService ws)

 throws Exception

Throws:
Exception

private void defineTransitions()
protected void executeUpdateDocument(com.tilab.wade.performer.ApplicationList applications)

 throws Exception

Throws:
Exception

protected void executeFinalize()

 throws Exception

Throws:
Exception

protected boolean checkUpdateDocumentToFinalize()

Class AssistantLaunching

MarketingWF Documentation Page 336 of 361

protected boolean checkOpenScheduleToWS2CRM()

Class CreateTAMFile
workflows.auxiliary

java.lang.Object

 jade.core.behaviours.Behaviour

 jade.core.behaviours.CompositeBehaviour

 jade.core.behaviours.SerialBehaviour

 jade.core.behaviours.FSMBehaviour

 com.tilab.wade.performer.WorkflowBehaviour

 workflows.auxiliary.CreateTAMFile

All Implemented Interfaces:

com.tilab.wade.performer.HierarchyNode, jade.util.leap.Serializable, Serializable

public class CreateTAMFile

extends com.tilab.wade.performer.WorkflowBehaviour

A workflow class to implement a Subflow. A single-activity workflow, implemented as a subflow and not as an

activity because JOIN gateways are used in the parent process QuantifyTAM.

Author:
Pavlos Delias

Nested classes/interfaces inherited from class jade.core.behaviours.Behaviour

Behaviour.RunnableChangedEvent

Field Summary Page

static

String
CREATETAMFILETOOLACTIVITY1_ACTIVITY 337

Fields inherited from class com.tilab.wade.performer.WorkflowBehaviour

COLLECT_ASYNCH_SUBFLOWS_STATE, END_STATE, ERROR_STATE, FINAL, formalParams, INITIAL,

INITIAL_AND_FINAL, INTERMEDIATE, lastException, myLogger, rootExecutor, START_STATE

Fields inherited from class jade.core.behaviours.FSMBehaviour

currentName, lastStates

Fields inherited from class jade.core.behaviours.CompositeBehaviour

currentExecuted

Class CreateTAMFile

MarketingWF Documentation Page 337 of 361

Fields inherited from class jade.core.behaviours.Behaviour

myAgent, myEvent, NOTIFY_DOWN, NOTIFY_UP, parent, STATE_BLOCKED, STATE_READY, STATE_RUNNING

Constructor Summary Page

CreateTAMFile() 337

Method Summary Page

private

void

defineActivities()
337

protected

void

executeCreateTAMFileToolActivity1(com.tilab.wade.performer.ApplicationList

applications)
338

Methods inherited from class com.tilab.wade.performer.WorkflowBehaviour

changeActivityOrder, checkModifier, checkTermination, commit, configure, deregisterActivity,

deregisterTransition, enterInterruptableSection, exitInterruptableSection,

fillFormalParameters, fireEvent, getAgent, getBindingManager, getBuildingBlock, getCurrent,

getDefaultPriority, getDescriptor, getExecutionContext, getExecutionId, getFormalParameters,

getLastErrorEvent, getLastException, getLimit, getModifier, getModifiers,

getOutgoingTransitions, getOwner, getRollbackWorkflow, getTracer, getTransactionManager,

handleBeginActivity, handleBeginApplication, handleEndActivity, handleEndApplication,

handleException, handleInconsistentFSM, handleStateEntered, handleUngroundedParameters,

hasJADEDefaultTransition, initRootExecutor, isError, isFireable, isInterrupted,

manageBindings, mark, onEnd, onStart, performApplication, performDynamicWebService,

performSubflow, performWebService, propagateException, registerActivity, registerActivity,

registerTransition, reinit, reset, resume, rollback, setDataStore, setError,

setFailureReason, setInterrupted, setUseDataStore, suspend, trace, trace

Methods inherited from class jade.core.behaviours.FSMBehaviour

deregisterDefaultTransition, deregisterState, deregisterTransition, forceTransitionTo,

getChildren, getLastExitValue, getName, getPrevious, getState, hasDefaultTransition,

registerDefaultTransition, registerDefaultTransition, registerFirstState, registerLastState,

registerState, registerTransition, registerTransition, resetStates, scheduleFirst,

scheduleNext, stringifyTransitionTable

Methods inherited from class jade.core.behaviours.SerialBehaviour

handle

Methods inherited from class jade.core.behaviours.CompositeBehaviour

action, done, handleBlockEvent, handleRestartEvent, registerAsChild, resetChildren, setAgent

Methods inherited from class jade.core.behaviours.Behaviour

actionWrapper, block, block, getBehaviourName, getDataStore, getExecutionState, getParent,

getRestartCounter, isRunnable, restart, root, setBehaviourName, setExecutionState

Methods inherited from interface com.tilab.wade.performer.HierarchyNode

getBehaviourName, getDataStore, root

Field Detail
public static final String CREATETAMFILETOOLACTIVITY1_ACTIVITY

Constructor Detail
public CreateTAMFile()

Method Detail
private void defineActivities()

Class CreateTAMFile

MarketingWF Documentation Page 338 of 361

protected void executeCreateTAMFileToolActivity1(com.tilab.wade.performer.ApplicationList appl

ications)

 throws Exception

Throws:
Exception

Class FetchPptFile
workflows.auxiliary

java.lang.Object

 jade.core.behaviours.Behaviour

 jade.core.behaviours.CompositeBehaviour

 jade.core.behaviours.SerialBehaviour

 jade.core.behaviours.FSMBehaviour

 com.tilab.wade.performer.WorkflowBehaviour

 workflows.auxiliary.FetchPptFile

All Implemented Interfaces:

com.tilab.wade.performer.HierarchyNode, jade.util.leap.Serializable, Serializable

public class FetchPptFile

extends com.tilab.wade.performer.WorkflowBehaviour

A workflow class to implement a Subflow. A simple, two-activities workflow, implemented as a subflow and not as

an activity because JOIN gateways are used in the parent process QuantifyTAM.

Author:
Pavlos Delias

Nested classes/interfaces inherited from class jade.core.behaviours.Behaviour

Behaviour.RunnableChangedEvent

Field Summary Page

static

String
CHOOSEPPT_ACTIVITY 340

static

String
FETCHPPTFILETOOLACTIVITY1_ACTIVITY 340

private

File
ppt 340

private

static

long

serialVersionUID
340

Class FetchPptFile

MarketingWF Documentation Page 339 of 361

Fields inherited from class com.tilab.wade.performer.WorkflowBehaviour

COLLECT_ASYNCH_SUBFLOWS_STATE, END_STATE, ERROR_STATE, FINAL, formalParams, INITIAL,

INITIAL_AND_FINAL, INTERMEDIATE, lastException, myLogger, rootExecutor, START_STATE

Fields inherited from class jade.core.behaviours.FSMBehaviour

currentName, lastStates

Fields inherited from class jade.core.behaviours.CompositeBehaviour

currentExecuted

Fields inherited from class jade.core.behaviours.Behaviour

myAgent, myEvent, NOTIFY_DOWN, NOTIFY_UP, parent, STATE_BLOCKED, STATE_READY, STATE_RUNNING

Constructor Summary Page

FetchPptFile() 340

Method Summary Page

private

void

defineActivities()
340

private

void

defineTransitions()
340

protected

void

executeChoosePpt()
340

protected

void

executeFetchPptFileToolActivity1(com.tilab.wade.performer.ApplicationList

applications)
340

Methods inherited from class com.tilab.wade.performer.WorkflowBehaviour

changeActivityOrder, checkModifier, checkTermination, commit, configure, deregisterActivity,

deregisterTransition, enterInterruptableSection, exitInterruptableSection,

fillFormalParameters, fireEvent, getAgent, getBindingManager, getBuildingBlock, getCurrent,

getDefaultPriority, getDescriptor, getExecutionContext, getExecutionId, getFormalParameters,

getLastErrorEvent, getLastException, getLimit, getModifier, getModifiers,

getOutgoingTransitions, getOwner, getRollbackWorkflow, getTracer, getTransactionManager,

handleBeginActivity, handleBeginApplication, handleEndActivity, handleEndApplication,

handleException, handleInconsistentFSM, handleStateEntered, handleUngroundedParameters,

hasJADEDefaultTransition, initRootExecutor, isError, isFireable, isInterrupted,

manageBindings, mark, onEnd, onStart, performApplication, performDynamicWebService,

performSubflow, performWebService, propagateException, registerActivity, registerActivity,

registerTransition, reinit, reset, resume, rollback, setDataStore, setError,

setFailureReason, setInterrupted, setUseDataStore, suspend, trace, trace

Methods inherited from class jade.core.behaviours.FSMBehaviour

deregisterDefaultTransition, deregisterState, deregisterTransition, forceTransitionTo,

getChildren, getLastExitValue, getName, getPrevious, getState, hasDefaultTransition,

registerDefaultTransition, registerDefaultTransition, registerFirstState, registerLastState,

registerState, registerTransition, registerTransition, resetStates, scheduleFirst,

scheduleNext, stringifyTransitionTable

Methods inherited from class jade.core.behaviours.SerialBehaviour

handle

Methods inherited from class jade.core.behaviours.CompositeBehaviour

action, done, handleBlockEvent, handleRestartEvent, registerAsChild, resetChildren, setAgent

Class FetchPptFile

MarketingWF Documentation Page 340 of 361

Methods inherited from class jade.core.behaviours.Behaviour

actionWrapper, block, block, getBehaviourName, getDataStore, getExecutionState, getParent,

getRestartCounter, isRunnable, restart, root, setBehaviourName, setExecutionState

Methods inherited from interface com.tilab.wade.performer.HierarchyNode

getBehaviourName, getDataStore, root

Field Detail
public static final String CHOOSEPPT_ACTIVITY
private static final long serialVersionUID
private File ppt
public static final String FETCHPPTFILETOOLACTIVITY1_ACTIVITY

Constructor Detail
public FetchPptFile()

Method Detail
private void defineActivities()
protected void executeFetchPptFileToolActivity1(com.tilab.wade.performer.ApplicationList appli

cations)

 throws Exception

Throws:
Exception

protected void executeChoosePpt()

 throws Exception

Throws:
Exception

private void defineTransitions()

Class ProcessBatchMail
workflows.auxiliary

java.lang.Object

 jade.core.behaviours.Behaviour

 jade.core.behaviours.CompositeBehaviour

 jade.core.behaviours.SerialBehaviour

 jade.core.behaviours.FSMBehaviour

 com.tilab.wade.performer.WorkflowBehaviour

 workflows.auxiliary.ProcessBatchMail

All Implemented Interfaces:

com.tilab.wade.performer.HierarchyNode, jade.util.leap.Serializable, Serializable

public class ProcessBatchMail

extends com.tilab.wade.performer.WorkflowBehaviour

Class ProcessBatchMail

MarketingWF Documentation Page 341 of 361

A workflow class implemented as an intermediate step of the Contact Center Management process.

Author:
Pavlos Delias

Nested classes/interfaces inherited from class jade.core.behaviours.Behaviour

Behaviour.RunnableChangedEvent

Field Summary Page

static String FINDAGENTS_ACTIVITY 342

static String SENDMAILBATCHREQUEST_ACTIVITY 342

private

jade.core.AID
toAgent 342

Fields inherited from class com.tilab.wade.performer.WorkflowBehaviour

COLLECT_ASYNCH_SUBFLOWS_STATE, END_STATE, ERROR_STATE, FINAL, formalParams, INITIAL,

INITIAL_AND_FINAL, INTERMEDIATE, lastException, myLogger, rootExecutor, START_STATE

Fields inherited from class jade.core.behaviours.FSMBehaviour

currentName, lastStates

Fields inherited from class jade.core.behaviours.CompositeBehaviour

currentExecuted

Fields inherited from class jade.core.behaviours.Behaviour

myAgent, myEvent, NOTIFY_DOWN, NOTIFY_UP, parent, STATE_BLOCKED, STATE_READY, STATE_RUNNING

Constructor Summary Page

ProcessBatchMail() 342

Method Summary Page

private

void

defineActivities()
342

Class ProcessBatchMail

MarketingWF Documentation Page 342 of 361

private

void

defineTransitions()
343

protected

void

executeFindAgents()

Gets the reference for the Assignment Agent. 342

protected

void

executeSendMailBatchRequest()
343

Methods inherited from class com.tilab.wade.performer.WorkflowBehaviour

changeActivityOrder, checkModifier, checkTermination, commit, configure, deregisterActivity,

deregisterTransition, enterInterruptableSection, exitInterruptableSection,

fillFormalParameters, fireEvent, getAgent, getBindingManager, getBuildingBlock, getCurrent,

getDefaultPriority, getDescriptor, getExecutionContext, getExecutionId, getFormalParameters,

getLastErrorEvent, getLastException, getLimit, getModifier, getModifiers,

getOutgoingTransitions, getOwner, getRollbackWorkflow, getTracer, getTransactionManager,

handleBeginActivity, handleBeginApplication, handleEndActivity, handleEndApplication,

handleException, handleInconsistentFSM, handleStateEntered, handleUngroundedParameters,

hasJADEDefaultTransition, initRootExecutor, isError, isFireable, isInterrupted,

manageBindings, mark, onEnd, onStart, performApplication, performDynamicWebService,

performSubflow, performWebService, propagateException, registerActivity, registerActivity,

registerTransition, reinit, reset, resume, rollback, setDataStore, setError,

setFailureReason, setInterrupted, setUseDataStore, suspend, trace, trace

Methods inherited from class jade.core.behaviours.FSMBehaviour

deregisterDefaultTransition, deregisterState, deregisterTransition, forceTransitionTo,

getChildren, getLastExitValue, getName, getPrevious, getState, hasDefaultTransition,

registerDefaultTransition, registerDefaultTransition, registerFirstState, registerLastState,

registerState, registerTransition, registerTransition, resetStates, scheduleFirst,

scheduleNext, stringifyTransitionTable

Methods inherited from class jade.core.behaviours.SerialBehaviour

handle

Methods inherited from class jade.core.behaviours.CompositeBehaviour

action, done, handleBlockEvent, handleRestartEvent, registerAsChild, resetChildren, setAgent

Methods inherited from class jade.core.behaviours.Behaviour

actionWrapper, block, block, getBehaviourName, getDataStore, getExecutionState, getParent,

getRestartCounter, isRunnable, restart, root, setBehaviourName, setExecutionState

Methods inherited from interface com.tilab.wade.performer.HierarchyNode

getBehaviourName, getDataStore, root

Field Detail

private jade.core.AID toAgent

public static final String SENDMAILBATCHREQUEST_ACTIVITY
public static final String FINDAGENTS_ACTIVITY

Constructor Detail
public ProcessBatchMail()

Method Detail
private void defineActivities()
protected void executeFindAgents()

 throws Exception

Gets the reference for the Assignment Agent.

Class ProcessBatchMail

MarketingWF Documentation Page 343 of 361

Throws:
Exception

protected void executeSendMailBatchRequest()

 throws Exception

Throws:
Exception

private void defineTransitions()

Class SpectralScheduling
workflows.auxiliary

java.lang.Object

 jade.core.behaviours.Behaviour

 jade.core.behaviours.CompositeBehaviour

 jade.core.behaviours.SerialBehaviour

 jade.core.behaviours.FSMBehaviour

 com.tilab.wade.performer.WorkflowBehaviour

 workflows.auxiliary.SpectralScheduling

All Implemented Interfaces:

com.tilab.wade.performer.HierarchyNode, jade.util.leap.Serializable, Serializable

public class SpectralScheduling

extends com.tilab.wade.performer.WorkflowBehaviour

A workflow class to orchestrate the application of a scheduling algorithm.

Author:
Pavlos Delias

Nested classes/interfaces inherited from class jade.core.behaviours.Behaviour

Behaviour.RunnableChangedEvent

Field Summary Page

private int counter 345

private

jade.core.AID
currentAgent 345

static String FINALIZE_ACTIVITY 345

static String FINDPERAGENT_ACTIVITY 345

static String FINDPERAGENTTOFINALIZE_CONDITION 345

static String LOOP_ACTIVITY 345

static String SPECTRALSCHEDULINGTOOL_ACTIVITY 345

private

double[][]
taskStartTimes 345

private

double[][]
taskToAgents 345

Fields inherited from class com.tilab.wade.performer.WorkflowBehaviour

COLLECT_ASYNCH_SUBFLOWS_STATE, END_STATE, ERROR_STATE, FINAL, formalParams, INITIAL,

INITIAL_AND_FINAL, INTERMEDIATE, lastException, myLogger, rootExecutor, START_STATE

Class SpectralScheduling

MarketingWF Documentation Page 344 of 361

Fields inherited from class jade.core.behaviours.FSMBehaviour

currentName, lastStates

Fields inherited from class jade.core.behaviours.CompositeBehaviour

currentExecuted

Fields inherited from class jade.core.behaviours.Behaviour

myAgent, myEvent, NOTIFY_DOWN, NOTIFY_UP, parent, STATE_BLOCKED, STATE_READY, STATE_RUNNING

Constructor Summary Page

SpectralScheduling() 345

Method Summary Page

protected

boolean

checkFindPerAgentToFinalize()
345

private

void

defineActivities()
345

private

void

defineTransitions()
345

protected

void

executeFinalize()
345

protected

void

executeFindPerAgent(com.tilab.wade.performer.ApplicationList applications)
345

protected

void

executeLoop()
345

protected

void

executeSpectralSchedulingTool(com.tilab.wade.performer.ApplicationList

applications)

This tool calls MATLAB to solve the scheduling algorithm.
345

Methods inherited from class com.tilab.wade.performer.WorkflowBehaviour

changeActivityOrder, checkModifier, checkTermination, commit, configure, deregisterActivity,

deregisterTransition, enterInterruptableSection, exitInterruptableSection,

fillFormalParameters, fireEvent, getAgent, getBindingManager, getBuildingBlock, getCurrent,

getDefaultPriority, getDescriptor, getExecutionContext, getExecutionId, getFormalParameters,

getLastErrorEvent, getLastException, getLimit, getModifier, getModifiers,

getOutgoingTransitions, getOwner, getRollbackWorkflow, getTracer, getTransactionManager,

handleBeginActivity, handleBeginApplication, handleEndActivity, handleEndApplication,

handleException, handleInconsistentFSM, handleStateEntered, handleUngroundedParameters,

hasJADEDefaultTransition, initRootExecutor, isError, isFireable, isInterrupted,

manageBindings, mark, onEnd, onStart, performApplication, performDynamicWebService,

performSubflow, performWebService, propagateException, registerActivity, registerActivity,

registerTransition, reinit, reset, resume, rollback, setDataStore, setError,

setFailureReason, setInterrupted, setUseDataStore, suspend, trace, trace

Methods inherited from class jade.core.behaviours.FSMBehaviour

deregisterDefaultTransition, deregisterState, deregisterTransition, forceTransitionTo,

getChildren, getLastExitValue, getName, getPrevious, getState, hasDefaultTransition,

registerDefaultTransition, registerDefaultTransition, registerFirstState, registerLastState,

registerState, registerTransition, registerTransition, resetStates, scheduleFirst,

scheduleNext, stringifyTransitionTable

Methods inherited from class jade.core.behaviours.SerialBehaviour

handle

Methods inherited from class jade.core.behaviours.CompositeBehaviour

action, done, handleBlockEvent, handleRestartEvent, registerAsChild, resetChildren, setAgent

Class SpectralScheduling

MarketingWF Documentation Page 345 of 361

Methods inherited from class jade.core.behaviours.Behaviour

actionWrapper, block, block, getBehaviourName, getDataStore, getExecutionState, getParent,

getRestartCounter, isRunnable, restart, root, setBehaviourName, setExecutionState

Methods inherited from interface com.tilab.wade.performer.HierarchyNode

getBehaviourName, getDataStore, root

Field Detail
public static final String FINDPERAGENTTOFINALIZE_CONDITION
public static final String FINALIZE_ACTIVITY
public static final String FINDPERAGENT_ACTIVITY
public static final String LOOP_ACTIVITY
public static final String SPECTRALSCHEDULINGTOOL_ACTIVITY
private double[][] taskStartTimes
private double[][] taskToAgents
private int counter
private jade.core.AID currentAgent

Constructor Detail
public SpectralScheduling()

Method Detail
private void defineActivities()
protected void executeSpectralSchedulingTool(com.tilab.wade.performer.ApplicationList applicat

ions)

 throws Exception

This tool calls MATLAB to solve the scheduling algorithm.

Throws:
Exception

protected void executeLoop()

 throws Exception

Throws:
Exception

protected void executeFindPerAgent(com.tilab.wade.performer.ApplicationList applications)

 throws Exception

Throws:
Exception

protected void executeFinalize()

 throws Exception

Throws:
Exception

private void defineTransitions()
protected boolean checkFindPerAgentToFinalize()

 throws Exception

Throws:
Exception

Class VendorOffer

MarketingWF Documentation Page 346 of 361

Class VendorOffer
workflows.auxiliary

java.lang.Object

 jade.core.behaviours.Behaviour

 jade.core.behaviours.CompositeBehaviour

 jade.core.behaviours.SerialBehaviour

 jade.core.behaviours.FSMBehaviour

 com.tilab.wade.performer.WorkflowBehaviour

 workflows.auxiliary.VendorOffer

All Implemented Interfaces:

com.tilab.wade.performer.HierarchyNode, jade.util.leap.Serializable, Serializable

public class VendorOffer

extends com.tilab.wade.performer.WorkflowBehaviour

A workflow class to model the vendors inner behavior

Author:
Pavlos Delias

Nested classes/interfaces inherited from class jade.core.behaviours.Behaviour

Behaviour.RunnableChangedEvent

Field Summary Page

static

String
ACTUALWS_ACTIVITY 348

static

String
FINALIZEWSCALL_ACTIVITY 348

Class VendorOffer

MarketingWF Documentation Page 347 of 361

private

MediaFormat
format Error!

Bookmark
not

defined.

static

String
PREPAREWSCALL_ACTIVITY 348

Fields inherited from class com.tilab.wade.performer.WorkflowBehaviour

COLLECT_ASYNCH_SUBFLOWS_STATE, END_STATE, ERROR_STATE, FINAL, formalParams,

INITIAL, INITIAL_AND_FINAL, INTERMEDIATE, lastException, myLogger, rootExecutor,

START_STATE

Fields inherited from class jade.core.behaviours.FSMBehaviour

currentName, lastStates

Fields inherited from class jade.core.behaviours.CompositeBehaviour

currentExecuted

Fields inherited from class jade.core.behaviours.Behaviour

myAgent, myEvent, NOTIFY_DOWN, NOTIFY_UP, parent, STATE_BLOCKED, STATE_READY,

STATE_RUNNING

Constructor Summary Page

VendorOffer() 348

Method Summary Page

private

void

defineActivities()
348

private

void

defineTransitions()
348

protected

void

executeActualWS(com.tilab.wade.performer.WebService ws)
348

protected

void

executeFinalizeWSCall()
348

protected

void

executePrepareWSCall()
348

Methods inherited from class com.tilab.wade.performer.WorkflowBehaviour

changeActivityOrder, checkModifier, checkTermination, commit, configure,

deregisterActivity, deregisterTransition, enterInterruptableSection,

exitInterruptableSection, fillFormalParameters, fireEvent, getAgent,

getBindingManager, getBuildingBlock, getCurrent, getDefaultPriority,

getDescriptor, getExecutionContext, getExecutionId, getFormalParameters,

getLastErrorEvent, getLastException, getLimit, getModifier, getModifiers,

getOutgoingTransitions, getOwner, getRollbackWorkflow, getTracer,

getTransactionManager, handleBeginActivity, handleBeginApplication,

handleEndActivity, handleEndApplication, handleException, handleInconsistentFSM,

handleStateEntered, handleUngroundedParameters, hasJADEDefaultTransition,

initRootExecutor, isError, isFireable, isInterrupted, manageBindings, mark, onEnd,

onStart, performApplication, performDynamicWebService, performSubflow,

performWebService, propagateException, registerActivity, registerActivity,

registerTransition, reinit, reset, resume, rollback, setDataStore, setError,

setFailureReason, setInterrupted, setUseDataStore, suspend, trace, trace

Class VendorOffer

MarketingWF Documentation Page 348 of 361

Methods inherited from class jade.core.behaviours.FSMBehaviour

deregisterDefaultTransition, deregisterState, deregisterTransition,

forceTransitionTo, getChildren, getLastExitValue, getName, getPrevious, getState,

hasDefaultTransition, registerDefaultTransition, registerDefaultTransition,

registerFirstState, registerLastState, registerState, registerTransition,

registerTransition, resetStates, scheduleFirst, scheduleNext,

stringifyTransitionTable

Methods inherited from class jade.core.behaviours.SerialBehaviour

handle

Methods inherited from class jade.core.behaviours.CompositeBehaviour

action, done, handleBlockEvent, handleRestartEvent, registerAsChild,

resetChildren, setAgent

Methods inherited from class jade.core.behaviours.Behaviour

actionWrapper, block, block, getBehaviourName, getDataStore, getExecutionState,

getParent, getRestartCounter, isRunnable, restart, root, setBehaviourName,

setExecutionState

Methods inherited from interface com.tilab.wade.performer.HierarchyNode

getBehaviourName, getDataStore, root

Field Detail

private MediaFormat format
public static final String ACTUALWS_ACTIVITY
public static final String FINALIZEWSCALL_ACTIVITY
public static final String PREPAREWSCALL_ACTIVITY

Constructor Detail
public VendorOffer()

Method Detail
private void defineActivities()
protected void executePrepareWSCall()

 throws Exception

Throws:
Exception

protected void executeFinalizeWSCall()

 throws Exception

Throws:
Exception

private void defineTransitions()
protected void executeActualWS(com.tilab.wade.performer.WebService ws)

 throws Exception

Throws:
Exception

	List of Abbreviations
	List of Figures
	List of Tables
	Short Vitae
	Introduction
	Practical and Theoretical Value
	Motivation and Major Assumptions
	Thesis Structure

	State of the Art
	Background
	Research Agenda
	Trends and Standards
	Specifying the Requirements of a WFMS
	Limitations of Existing Systems

	The advantages of using an agent approach
	Workflow Taxonomy
	Classification Approaches
	Agent Related Classification Approaches in WFMS
	Rallying Agents and Web Services to Manage Workflows
	Workflow Agents under the Grid Umbrella

	A Functional Classification Scheme for Agent-involved Workflow Management Systems
	The All-embracing Mentality
	Scheme Presentation
	Process Definition Tools Component
	Workflow Client Applications Interface
	Invoked Applications Interface
	Other Enactment Services Component (Workflow Interoperability Interface)
	Administration and Monitoring Tools Component
	Workflow Enactment Service Component

	How agents are used? (A survey of the Related Literature)
	Process Definition Tools Component
	Workflow Client Applications Interface
	Invoked Applications Interface
	Other Enactment Services Component (Workflow Interoperability Interface)
	Administration and Monitoring Tools Component
	Workflow Enactment Service Component

	Overall Metrics

	Design and Implementation
	Pivot Processes
	Direct Mail Campaign Automation
	Key actors involved

	Customer Contact Center Management
	Key actors involved

	The WADE platform
	Agents Communication Support
	Interaction Protocols
	Joined Interaction Protocols
	Unspecified Interactions following a workflow logic

	Business Logic Support
	Rely on the Workflow Definition
	Importing an XPDL document
	Construct a JAVA class containing the definition

	Use an Application Engine and an application specific ontology
	Business logic support using both methods in combination

	Manual Intervention
	Statefulness through Document-Centric Stigmergy
	A supportive database schema

	Process Monitoring & Auditing
	Why is it important?
	Implementing the monitoring component as a kernel service
	Benefits and Cost

	Results
	The Graphical User Interface
	Starting the application
	Platform related actions
	Workflow related actions
	Application configuration and management related actions
	Other actions

	Evaluate the Prototype against the Classification Criteria
	Process Definition Tools
	Analyze, model, compose, describe, and document a Business Process
	Process Definition Write / Edit
	Definition retrieval

	Workflow Client Applications
	Worklist Handling
	Process control
	Data Handling
	User Interface

	Invoked Applications
	Worklist Handling
	Process Control
	Data Handling
	Service Discovery

	Workflow Interoperability
	Common Interpretation of Process Definition
	Workflow Data Interchange

	Administration and Monitoring Tools
	User / Role Management
	Audit Management
	Resource Control
	Process Monitoring

	Workflow Enactment Service
	Runtime Control Environment
	Definition Interpretation
	Execution of Tasks
	Scheduling
	Data Functions
	Task Assignment
	Resource Allocation

	Exploiting the Prototype to Deploy Algorithms. The Case of a Scheduling Algorithm.
	The algorithm’s context and similar works
	The resource allocation decision
	Optimization Criteria
	The scheduling algorithm
	Expressing the optimization metric with a matrix representation
	Optimization in the Continuous Domain
	Discrete approximation of the results

	Evaluating the algorithm’s performance
	Defining parameters for the system’s load condition
	Efficiency criteria for evaluating the execution case
	Efficiency criteria for evaluating the design case

	Experimental Results
	Testing the algorithm under different load conditions
	Comparing the proposed algorithm with other approaches

	Conclusions
	Future Work

