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ΣΥΝΟΨΗ 
 

Reconfigurable Architecture Structures for the BLAST DNA Sequencing Algorithm 

 

Η Υπνινγηζηηθή Μνξηαθή Βηνινγία ή Βηνπιεξνθνξηθή είλαη έλαο από ηνπο πιένλ 

αληαγωληζηηθνύο θιάδνπο ηεο επηζηήκεο ηνπ Ηιεθηξνληθνύ  Μεραληθνύ θαη Μεραληθνύ 

Ηιεθηξνληθώλ Υπνινγηζηώλ. Τα απνηειέζκαηα ηεο έξεπλαο ζηε Βηνπιεξνθνξηθή 

αλακέλεηαη λα δώζνπλ ηεξάζηηα ώζεζε ζε επηζηήκεο όπωο ε Βηνινγία θαη ε Ιαηξηθή, θαη 

λα νδεγήζνπλ ζε λέα θάξκαθα ή ζεξαπεπηηθέο κεζόδνπο. Η Βηνπιεξνθνξηθή 

απνηειείηαη από έλα κεγάιν ζύλνιν αιγνξίζκωλ, ζπλήζωο ππνινγηζηηθά πνιύπινθωλ, 

θαη ηεξάζηηεο ζπιινγέο δεδνκέλωλ πνπ απμάλνληαη κε κεγάινπο ξπζκνύο. Οη αιγόξηζκνη 

απηνί έρνπλ ζπλήζωο δηαθνξεηηθέο παξαιιαγέο αλάινγα κε ηε θύζε ή ην κέγεζνο ηωλ 

δεδνκέλωλ. Γηα ηελ επίιπζε νπνηνπδήπνηε πξνβιήκαηνο Βηνπιεξνθνξηθήο ζπλήζωο 

απαηηείηαη εθαξκνγή πεξηζζνηέξωλ ηνπ ελόο αιγνξίζκωλ. 

Ο αιγόξηζκνο BLAST, κε ηνλ νπνίν αζρνινύκαζηε ζηε ζπγθεθξηκέλε δηαηξηβή, 

είλαη ν πιένλ ρξεζηκνπνηνύκελνο θαη γλωζηόο ζηελ θνηλόηεηα ηεο Βηνπιεξνθνξηθήο. Ο 

ζπγθεθξηκέλνο αιγόξηζκνο ρξεζηκνπνηείηαη γηα ηελ αλαδήηεζε ελόο ηκήκαηνο ηνπ 

γελεηηθνύ πιηθνύ θάπνηνπ νξγαληζκνύ (εξώηεκα - query) ζε κία γελεηηθή βάζε 

δεδνκέλωλ. Τν απνηέιεζκα ηνπ αιγνξίζκνπ είλαη ν αξηζκόο εκθαλίζεωλ ηνπ εξωηήκαηνο 

θαζώο θαη ε ζέζε ηνπ κέζα ζηε βάζε, ελώ εμεηάδεηαη θαη αλ ππάξρεη θάπνηνπ είδνπο 

κεηάιιαμε ζηα δεδνκέλα ή θαθή απνθωδηθνπνίεζε (αιγόξηζκνο κε αθξηβνύο 

ηαπηνπνίεζεο).  

Η αλαδηαηαζζόκελε ινγηθή (FPGAs)  έρεη ρξεζηκνπνηεζεί ζε ζεηξά 

πξνβιεκάηωλ γηα ηελ επηηάρπλζε ηνπ ρξόλνπ εθηέιεζεο. Οη FPGAs έρνπλ 

ρξεζηκνπνηεζεί ζε αιγόξηζκνπο αθξηβνύο ηαπηνπνίεζεο ή Βηνπιεξνθνξηθήο, αιιά 

ιηγόηεξν εμειηγκέλνπο από ηνλ BLAST. Σηε δηαηξηβή απηή παξνπζηάδεηαη έλα ζύζηεκα 

βαζηζκέλν ζε αλαδηαηαζζόκελε ινγηθή ην νπνίν κπνξεί λα επηιύζεη ηνλ αιγόξηζκν 

BLAST αλεμάξηεηα κε ην κέγεζνο ή ηελ θύζε ηωλ δεδνκέλωλ. Ο αιγόξηζκνο έρεη 

κειεηεζεί ζε βάζνο θαη έρεη ζρεδηαζηεί κία αξρηηεθηνληθή ε νπνία εμειίρζεθε ζε 4 

δηαθνξεηηθέο εθδόζεηο. Η αξρηηεθηνληθή είλαη πξωηόηππε θαη είλαη ε κνλαδηθή έωο 

ζήκεξα πνπ πξνζθέξεη κία εληειώο γεληθή ιύζε. Έρεη πξνζνκνηωζεί εμαληιεηηθά θαη ε 



 

 

νξζή ιεηηνπξγία ηεο έρεη επηβεβαηωζεί. έλαληη ηωλ απνηειεζκάηωλ ηεο θνηλά απνδεθηήο 

έθδνζεο ινγηζκηθνύ (NCBI BLAST).  

Τν ηειηθό ζύζηεκα πινπνηήζεθε ζε εξγαζηεξηαθή θιίκαθα, θάηη πνπ απαηηνύζε 

ηελ επίιπζε ελόο κεγάινπ αξηζκνύ ζεκαληηθώλ ηερληθώλ πξνβιεκάηωλ.  

Η απόδνζε ηνπ ηειηθνύ ζπζηήκαηνο είλαη αλάινγε κε ηε θύζε θαη ην κέγεζνο 

ηωλ δεδνκέλωλ. Η επηηάρπλζε θπκαίλεηαη από κία έωο ηξεηο ηάμεηο κεγέζνπο ζε ζρέζε κε 

ζπκβαηηθνύο ππνινγηζηέο. 



 

 

ABSTRACT 

 

Reconfigurable Architecture Structures for the BLAST DNA Sequencing Algorithm 

 

Computational Molecular Biology or Bioinformatics is an emerging area for 

Electronic and Computer Engineering. Bioinformatics research results are expected to 

have a great impact on Biology and on Medical research, leading to new medicines or 

treatments for several diseases. The Bioinformatics area consists of several algorithms 

and datasets, leading to computationally challenging problems. Datasets have 

exponentially grown in size over the last few years, and the trend continues. The 

algorithms have several variations, depending on the size and the nature of datasets. 

Several algorithms are usually combined to solve bioinformatics problems. 

The BLAST algorithm is considered to be the most widely used one in the 

Bioinformatics community, and is used in many Bioinformatics problems, e.g. to find 

similarity between fragments of genetic data (query) and an organism (database), even if 

there are mutations or data that are not properly decoded (non exact match algorithm). 

Reconfigurable logic has been used in numerous problems to accelerate the 

execution time of many applications, FPGAs have been previously used to map exact 

matching algorithms or less sophisticated Βioinformatics algorithms vs. BLAST.  

This dissertation presents a system based on reconfigurable logic to implement 

the BLAST algorithm, regardless of data size or algorithm variation. The BLAST 

algorithm has been studied in depth and the corresponding architectures have been 

designed and evolved in four different generations. The architectures are original and 

unique in offering a completely general solution for all BLAST variations. All 

architectures have been thoroughly post place and route simulated and the results have 

been confirmed against results of the most broadly accepted version of software (the 

NCBI BLAST). In addition, a laboratory prototype system has been build on an off-the-

shelf platform and all major technical implementation problems have been solved, 

including I/O issues.  

The TUC BLAST system, which is presented in this work, is one to three orders 

of magnitude faster than a general purpose computer running the BLAST algorithm. 
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Chapter 1  

Introduction  
 

In this work, a class of computationally intensive problems that arise from the 

early 70s, Computational Molecular Biology problems or Bioinformatics, was exploited 

to find how these problems can be mapped to reconfigurable hardware efficiently. The 

best known and most widely used algorithm of Bioinformatics, BLAST, was selected for 

that purpose. We studied the algorithm in depth and we designed several different 

reconfigurable fabric-based architectures. We generalize this architecture in order to 

implement every variation of the algorithm and for every possible dataset. Designs 

achieve performance speedup of one to three orders of magnitude faster than a general 

purpose computer and better performance vs. any other published architecture from the 

―competition‖ researchers who have designed similar hardware solutions. An 

experimental platform was built to test these architectures extensively. In the course of 

this dissertation, several open problems regarding application specific reconfigurable 

hardware and data structures for reconfigurable logic were addressed, and several 

experiments and implementations have been made in actual hardware. 

1.1 FPGA Streaming Applications 

 

Since the late 1980s when FPGAs where first introduced, several computationally 

intensive problems have been mapped into that technology. Reconfigurable hardware 

proved to be a solution for performance boosting of several algorithms. Several 

projects[1][2] proved how efficiently this technology can be used; FPGAs offered orders 

of magnitude better performance vs. general purpose processors in specific problems. 

Eventually, FPGAs proved not only to be a cost effective rapid system prototyping 

platform vs. ASIC, but a versatile technology of choice for Image Processing[3][4][5], 

Automated Target Recognition[6],  Data Encryption[8][9][10], Factoring Large 

Numbers[11], DES [12], Elliptic Curve Cryptography Applications[13], Video 

Processing [14][15], String Pattern Matching [16], Golomb Ruler Derivation[17][18], 



 

 

FFT Implementations[19][20], Transitive Closure of Dynamic Graphs[21], Boolean 

Satisfiability[22], Data Compression[23], Speech Recognition [24], Genetic Algorithms 

for the Travelling Salesman Problem[25], and Arithmetic Applications [26][27] – to 

name a few. 

Nowadays modern devices offer significant resources in addition to the 

reconfigurable fabric. Special I/O transceivers, dedicated logic blocks for memory, 

powerful general purpose processors on chip, special modules for digital signal 

processing, and fast floating point operations are the best known features of a modern 

device. Even the reconfigurable fabric has been changed, offering more logic, better 

routing resources and run time reconfiguration characteristics. In addition, a large 

collection of functional Intellectual Property cores (IPs) is freely available to the designer 

through IP generator tools such as the Xilinx Core Generator, or, distributed by designers 

through web sites such as OpenCores[28]. 

All these available resources help designers to take up with new applications, with 

considerable results on network systems, [29][30][31] and especially on network 

intrusion detection systems [32] [33] [34] [35] [36] [36]. In general, these were the first 

class of applications that came from a new category, i.e. Data Streaming. 

Data streaming applications become much more significant these days due to the 

technological advances of FPGAs, mostly in the forms of I/O transceivers on a chip and 

large amount of available memory.    

1.2 Bioinformatics 

 

The application of information technology to the field of molecular biology is 

called Bioinformatics. The double-helix form of DNA was discovered in 1953, increasing 

the ability to manipulate biomolecular sequences and a huge amount of data was 

generated from laboratories all over the world. Since then several new problems have 

arisen. Biologists produce enormous amounts of data which has to be stored and 

organized in several databases, to process them, and to create new algorithms - usually of 

high complexity. Finally, and after all these processes, biologists get the data that they 

need in order to have their biological conclusions. Bioinformatics was initially developed 

since the early 1970s and nowadays it has a tremendous evolution, offering more accurate 

http://en.wikipedia.org/wiki/Molecular_biology


 

 

and powerful tools to biologists. On the other hand, rapid developments in genomic and 

other molecular research technologies offer raw data in at rates faster than Moore‘s law 

[37][39]. As a result, a geometrically progressing volume of data production has created 

huge databases containing DNA, RNA, and protein sequences. Such databases include 

GenBank [40], EMBL[40], PIR[42], GSDB [43], DDBJ [44], EBI [45], and Swiss-

Prot[46]. Sequence comparison, especially in DNA or protein databases is one of the 

most common computations that molecular biologists execute. This is the reason why 

bioinformatics is a challenging area after almost forty years of development.  

1.3 Contribution of this Thesis 

 

This thesis is one of the first systematic approaches to build special-purpose 

hardware for the computational biologists‘ algorithm of choice, BLAST. Internationally, 

there were two additional independent research efforts in this general area, against which 

this dissertation is compared, with distinct contributions vs. those of other groups. More, 

specifically, in this dissertation: 

 We developed architectures that map the BLAST algorithm for any size of 

query, any size of data base, and in any of its five variations more 

efficiently than any other implementation. 

 We have studied the algorithm, designed several architectures, built actual 

reconfigurable logic based hardware on several platforms, ran several 

experiments and further improved our design.  

 We have developed data structures in hardware which were appropriate 

for BLAST, vs. previous research efforts which were largely in algorithms 

suitable for simple, systolic array computations. Based on our know-how 

from the first architecture, successive iterations led to simpler, faster, and 

more general architectures for the same algorithm. 

 We have measured speedup against a general purpose processor that varies 

between one and three orders of magnitude, depending on input dataset 

and algorithm variation.  

 We showed that this form of computing is more cost effective, both in 

terms of the platform cost as well as in power requirements vs. general-



 

 

purpose computing. This result applies to reconfigurable processors for a 

general class of bioinformatics problems, and is not specific to BLAST 

only.  

 We have used a high-end platform and fast serial transfer protocol 

(Gigabit Ethernet), with a proper interface to a PC, in order to prove 

through experimental testing that I/O does not limit our design in general. 

This result is in its own right useful, as BLAST was thought to be so I/O 

intensive that any computational speedup through dedicated hardware 

would not be very useful due to I/O bottlenecks. Our research shows that 

there can be reconfigurable logic-based servers that run BLAST in its full 

complexity and with results rivalling those of grid computers at a fraction 

of the cost and energy requirements per calculation.  

 We have showed with our research that bioinformatics algorithms can be 

mapped efficiently to reconfigurable hardware and this can be a viable and 

promising research direction. 

 We also give a solution to FPGA streaming problems in which latency is 

not a limitation, and this approach can be generalized to other fields of 

applications. 

1.4 Thesis Organization 

 

In Chapter 2 we describe the main areas of Bioinformatics with a focus on 

database search algorithms, and more specifically to BLAST. In Chapter 3 we refer to all 

previous efforts for high performance architectures for Bioinformatics hardware with 

emphasis on genetic database search and BLAST algorithm implementations. In Chapters 

4 to 6 we describe all the proposed architectures of this work. Chapter 7 includes all 

system improvements that we have made during the implementation phase and in Chapter 

8 system implementations and verification on several FPGA platforms are presented. 

Chapter 9 refers to implementation issues, performance measurements and comparisons 

to the state of the art software and hardware, while Chapter 10 concludes and suggests 

future work. 

  



 

 

Chapter 2  

Bioinformatics Problems and Algorithms 
 

A brief introduction of bioinformatics problems is given in this chapter in order to 

increase the readability of this dissertation. Naturally, substantial literature exists and it 

should be consulted by readers who want a more in-depth knowledge of the field. This 

chapter also focuses on the specific problem of sequence comparison of genetic data and 

ends with the algorithm selection and its description. 

2.1 Bioinformatics Problems  

 

Bioinformatics consist of several problems of DNA and RNA data manipulation. 

These problems are separated to six main categories: 

a) Sequence comparison: This is the degree of matching between two or more 

long sequences (comprising typically of characters A,T,P,G, but possibly with 

as many as twenty characters). Biologists either use character sequence matches 

on their own or as part of almost any other problem category.  

b) Fragment assembly: Biologists try to assemble the complete genome of an 

organism from parts that came out of a sequencer.  

c) Physical mapping problem: This can be considered as fragment assembly on a 

larger scale. Fragments are much longer, and for this reason assembly 

techniques are completely different. The aim is to obtain the location of some 

markers along the original DNA molecule. 

d) Phylogenetic tree: Reconstruction of the tree of life in order to understand 

evolution. It is a complex problem and several methods have been developed. 

All of them are computationally demanding and several projects spend even 

millions of CPU hours on this problem.  

e) Genome rearrangements: It has been discovered that some organisms are 

genetically different, not so much at the sequence level, but in the order in 

which large similar chunks of their DNA appear in their respective genomes. 

Interesting mathematical models have been developed to study such 



 

 

differences. 

f) RNA structure prediction and protein structure prediction: The understanding of 

the biological function of molecules is actually at the heart of most problems in 

computational biology. Because molecules fold in three dimensions and 

because their function depends on the way they fold, a primary concern of 

scientists in the past several decades has been the discovery of their three-

dimensional structure, in particular for RNA and proteins. This has given rise to 

methods that try to predict a molecule's structure based on its primary sequence. 

 

In order to solve almost any problem of these categories bioinformatics 

researchers use a method which consists of several algorithms; a typical number is 4 to 5 

and usually 2 or 3 of them are computing intensive. 

All these problem categories are very important for biologists and the 

effectiveness of their solution has significant impact on research in molecular biology, 

new drug design, on new medical practice development, on genetic engineering, with 

main emphasis on genetic diseases and mostly on cancer research. All these problem 

categories have huge datasets and effectively all of the algorithms and methods that have 

been developed to solve these problems are of high complexity.  

The BLAST algorithm is considered to be the most significant among 

bioinformatics algorithms. BLAST software is considered as one of the most widely used 

bioinformatics programs [47] and BLAST is a component of many other algorithms [52]. 

For this reason there exists a common effort to improve the BLAST software. This effort 

is the end results from the work of many groups, and the coordination and final BLAST 

release takes place at the National Center for Biotechnology Information (NCBI), where 

BLAST is the main project of the Institute [40].   

Due to the wide use and the global acceptance of the BLAST algorithm from the 

scientific community, it was selected for speedup through special-purpose architecture in 

our work.  

 

 



 

 

2.2 Genetic Database Search Algorithms 

 

In 1970 Needleman and Wunch [48] developed an algorithm based on dynamic 

programming in order to produce an optimal global alignment of two sequences. 

However, as global alignment produced poor results for the biologists‘ needs, local 

alignment algorithms were preferred by the biologists, i.e. algorithms that try to find 

alignment between sub strings of the given sequences. Smith and Waterman [49] 

developed an algorithm for local alignment which uses dynamic programming as well 

and produces optimal results. However, its quadratic time complexity (O(mn) where m is 

the size of the database and n the size of the query) makes the Smith-Waterman algorithm 

unattractive as it is computationally too intensive.  

Due to the need for faster, if not fully optimal searches, heuristic algorithms were 

developed for the same problem, such as the FASTA [50] algorithm and subsequently its 

improvement, BLAST [51]. Both algorithms use a heuristic and provide near optimal 

local alignment, but their strong statistical background makes them a powerful tool for 

computational biologists today. At present, BLAST is the most popular algorithm not 

because it is faster than FASTA, which is arguable, but because its implementation is 

open source and there is also a web interface at the NCBI website [40]. This interface 

enables everyone to perform queries against biological databases.  

2.3 BLAST Algorithm Description 

 

BLAST is the acronym of Basic Local Alignment Search Tool and it has been 

introduced by Altschul et. al.  in 1990 [51]. Table 1 shows the different BLAST programs 

depending on the nature of the data to be processed (nucleotides have a four letter 

alphabet, amino acids have a twenty letter alphabet and there are cases of both forms 

involved in a search). It should be noted that when databases are mentioned, only the set 

of catalogued sequences are referred to and not any other database feature such as 

multiple access, fast retrieval etc. The outputs of the algorithm are the positions of 

substrings of the database and the query that have similarity as well the corresponding 

score. These pairs of database and query regions are called High Score Pairs (HSP). The 

score has significant value for biologists because it is used to compute several statistical 



 

 

variables, the most important of which is the e-value (which is discussed below). 

 

program Inputs 

Blastp Query: amino acid, database: amino acid  

Blastn Query: nucleotide, database: nucleotide  

Blastx Query: translated nucleotide sequence, database: amino acid  

Tblastn Query: amino acid, database: translated nucleotide sequence 

Tblastx Query: translated nucleotide sequence, database: translated 

nucleotide sequence 

 

Table 1: BLAST Versions 
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Figure 1: BLAST Algorithm Step 1 
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Figure 2: BLAST Algorithm Step 2 
 

The BLAST algorithm comprises of three steps. In the first step the query is 

compiled to form a list of all the contiguous substrings with length w, which are called 

W-mers. For example let the string ATGAACCTGAATACTGGGTTACCT be the query 

sentence of length 24 and let w, the length of W-mers, be equal to 8. The word list will 

contain 17 W-mers.  



 

 

ATGAACCT will be the first 

TGAACCTG will be the second 

GAACCTGA will be the third, etc. and 

GGTTACCT will be the last one. 

In the First Step the complete list of W-mers of the query is created. 

The Second step is the search of the database for ―hits‖. After the word list 

generation, the database sequences are searched for an exact match between any 

substring of the W-mers list and the database sequence. Every word of the word list that 

is found in the database is called a hit and it is possible to be part of a High Score Pair 

(HSP). The list of the generated ―hits‖ is processed in the third step, shown in Figure 3.  

Each substring which yielded a match in the second step is extended locally in 

both directions until the score of this substring no longer gets improved under the scoring 

rules. The scoring scheme typically used for amino acid sequences is derived from the 

PAM matrices. However, as both the query and the database consist of nucleotide 

sequences, a simpler scoring scheme is used in BLAST, where each match is scored with 

+5 and each mismatch is scored with -4. This scheme may produce results slightly 

different than those with the use of PAM or BLOSUM matrices but biologically it does 

not have significant impact. 

The PAM matrices were introduced by Margaret Dayhoff [77] in 1978 based on 

1572 observed mutations in 71 families of closely related proteins. PAM stands for Point 

Accepted Mutation (PAM) or Percent Accepted Mutation, and is a set of matrices used to 

score sequence alignments. Each matrix is twenty-by-twenty (for the twenty standard 

amino acids); which has the score for every pair of proteins.  

 

http://en.wikipedia.org/wiki/Margaret_Dayhoff
http://en.wikipedia.org/wiki/Matrix_%28mathematics%29
http://en.wikipedia.org/wiki/Sequence_alignment
http://en.wikipedia.org/wiki/Amino_acids
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 Figure 3: BLAST Algorithm Step 3 



 

 

 

 

Figure 4: PAM 250 Matrix 

 

BLOSUM (BLOcks of Amino Acid SUbstitution Matrix[78] is a substitution 

matrix used for sequence alignment of proteins. BLOSUM are used to score alignments 

between evolutionarily divergent protein sequences. BLOSUM is based on local 

alignments. BLOSUM was first introduced in a paper by Henikoff and Henikoff[78]. 

Figure 5 shows BLOSUM 62. 

 

Figure 5: BLOSUM 62(NCBI site) 

 

Detailed description of the scoring scheme for NCBI distribution of BLAST has 

not been published and for that reason it is not possible to calculate exactly the score as 

NCBI distribution does. 

http://en.wikipedia.org/wiki/BLOSUM#cite_note-0
http://en.wikipedia.org/wiki/Substitution_matrix
http://en.wikipedia.org/wiki/Substitution_matrix
http://en.wikipedia.org/wiki/Sequence_alignment
http://en.wikipedia.org/wiki/Protein


 

 

Chapter 3  

State of the Art  
 

3.1 Previous Work on Several Molecular Biology Problems 

 

 3.1.1 Previous Work on Genetic Database Search 

 

 The reconfigurable hardware community used DNA sequence matching and 

database search as one of the first problems to show how computationally intensive 

problems can be solved using FPGAs. The venerable Splash 2 platform was used during 

the early 1990s by Hoang et. al. [53][54] to solve this problem using the Smith Waterman 

algorithm. Later Guccione et. al. [55] used Jbits technology and both the Virginia Tech 

Configurable Computing Laboratory [56] and Nanyang Technological University [57] 

used run time reconfiguration for the same problem, also implementing the Smith 

Waterman algorithm. 

Common characteristic for all these projects is that they use problem of genetic 

database search in order to demonstrate the computational power of reconfigurable logic 

and use all the state of the art technology at the time to do it. 

3.1.2 Previous Efforts on BLAST 

 

Few academic approaches for the BLAST algorithm implementation have been 

done to date. The first is the RC – BLAST project [57] where the designers fully 

implemented the computationally heavy part of the NCBI BLAST algorithm but overall 

performance of this project was reported to be poor, even worse than the corresponding 

software implementation and no further efforts where given for this project. Even so, RC 

– BLAST remains important to date as the first full BLAST implementation in 

reconfigurable technology. 

 A more recent academic effort for DNA sequence matching and database search 

was presented at 2005 by the CAAD Lab at Boston University. The efforts of this group, 

though independent of this dissertation, parallel our own work and can be directly 



 

 

compared to the present thesis. They have implemented the BLAST algorithm for small 

queries of up to 800 elements [58] and it was extended and implemented later [60], 

providing significant (one order of magnitude) speedup against a software 

implementation. This project is called TreeBLAST. An extension of TreeBLAST 

presented at 2009 [78] was database prefiltering. This method had already been 

implemented and published from our own TUC research in 2008[79]. 

The parallel Mercury BLAST [61][62][63]architecture was introduced by 

Washington University in St. Louis, implementing BLASTn and offering a good speedup 

against software running on a general purpose computer. Mercury BLAST is a still going 

project and it seems that Washington University and the inventors intent to 

commercialize the results of their research [64]. Mercury BLAST also uses BLOOM 

filters, as TUC for database filtering but they use it for actual BLAST implementation 

and not for database formation.  

Most recently BLAST implementation using reconfigurable logic was presented 

from IRISA, CNRS at France and the Institute of Computing Technology at Beijing, 

China [65]. It is a board with reconfigurable logic coupled with a 64GB FLASH memory 

and it was used to implement the BLASTx/TBLASTn/TBLASTx algorithm.  

Multi-seed/ Multi-channel BLAST is the most recent effort from Chinese 

National University of Defense Technology which is also reports very interesting results 

for a generic architecture for BLAST algorithm[66][67]. 

In parallel with academic efforts, commercial efforts have taken place to run 

efficiently the BLAST algorithm, Timelogic Inc. reports for its system DeCypher [68] 

very impressive results on BLAST implementation, but without giving many details 

about data sets that were used to run experiments, the techniques that are used to measure 

its results, or even details for its system‘s number of chips or the I/O strategy used. For 

those reasons their results can not be compared to others. The University of California at 

Berkeley build the BEE engine as a configurable supercomputer and one of the 

applications for this project was the BLAST algorithm [69]. The BEE-2 engine was 

reported to be twice as fast as DeCypher without providing performance details and for 

this reason its results cannot be compared to others. The latest commercial effort was 

announced last year (2007) from Silicon Graphics (SGI) and a software company named 



 

 

Mitrionics announcing very impressive results but following Timelogic policy didn‘t give 

any detail at all [69]. The interest of well known companies about BLAST algorithm is an 

additional proof of its importance, and more over the use of reconfigurable logic for 

bioinformatics problems was selected as the No 5 trend for 2007 by the bioinformatics 

community [70] .  

Overall, Mercury BLAST, TreeBLAST, FPGA/FLASH and Multi-seed/ Multi-

channel BLAST are the most active projects, with very interesting architectures and 

results and can be considered as ―competitors‖ to TUC BLAST project. 

3.2 SW Implementations 

 

Collective efforts by many groups for DNA sequence matching and database 

search are collected at the National Center for Biotechnology Information (NCBI) [40] 

which dominates the area of providing open source tools to implement the BLAST 

algorithm. These implementations have been repeatedly used as computer benchmarks, 

by major computer manufacturers such as IBM[70], DELL[71], and Apple[73]. IBM uses 

the BLAST algorithm as a performance benchmark for its pSeries 375 MHz POWER3-II 

symmetric multiprocessor (SMP) and the 1.1 GHz POWER4 pSeries 690 Model 681, and 

provides detailed performance information for a large range of queries. DELL uses 

BLAST as a benchmark for streaming applications to compare four different computers: 

PowerEdge 3250 (with Intel Itanium processor at 1.5 GHz), PowerEdge 1750 (with Intel 

Xeon processor at 3.2 GHz), PowerEdge 1850 (with Intel Xeon processor at 3.2 GHz), 

and PowerEdge 1850 (with Intel Xeon processor at 3.6 GHz); with very large query 

sizes—94,000 words; 206,000 words; and 510,000 words. DELL does not provide 

detailed performance information but only relative performance and speed up. Apple also 

uses BLAST as a performance benchmark of its systems called dual 2 GHz PowerMac 

G5 and dual 800 MHz PowerMac G4, and they do provide detailed performance 

information such as execution time for several queries and databases. The use of the 

NCBI BLAST software as a benchmark for several computers shows the great 

importance of BLAST algorithm and how computationally demanding it is.  



 

 

Chapter 4  

TUC BLAST Architecture: 1
st

 Generation  
 

The first TUC BLAST generation was build in order to find out if reconfigurable 

hardware can offer performance boosting for the BLAST algorithm and to understand 

algorithm and the implementation problems deeply. The target technology was Xilinx 

Virtex 4. Algorithm study and design of the architecture was work for this thesis, whereas 

the VHDL modelling which is part of this work was the diploma thesis of C. Kozanitis. 

Three publications came out of this work [81][82][83].  

4.1 Architecture Analysis 

 

The Technical University of Crete (TUC) architecture, described in this chapter, 

was designed for BLASTn small query implementation (1000 letters) regardless of the 

data base size. Query sequences can be divided to three cases: small sequence which is 

between 100 to 2000 characters, medium which is between 2000 and 50000 characters, 

and large which  is between 50000 and 200000 characters. Data base size can also be 

divided at three cases; small, medium, and large. Small consists of 4.7 × 106 characters, 

medium is between 5 × 10
6
 and 200 ×10

6
, and large is between 200 × 10

6
 and 4 × 10

9 

characters. NCBI codes consist of several hundreds of files calculating the BLAST 

algorithm and exporting several numbers which have biological meaning. All these 

numbers are calculated based on the score of HSP. These calculations produce substantial 

computing load but the most significant part of the computation power is consumed to 

find every HSP and extend it, calculating its score. Previous efforts for hardware 

implementation of BLAST using profiling show that almost 80% of CPU time is spent on 

these calculations [57]. 

The TUC architecture is divided into N identical computing machines, each one 

of which implements all three steps of the algorithm. Input data have a width of 2N bits, 

and come from N different channels. Every channel drives one of the N computing 

engines. Every machine has two major subsystems, one for step 2 of the algorithm and 

one for step 3. The first step of the algorithm (the W-mer calculation) is precalculated 



 

 

before algorithm is run. The precalculation results are the first inputs for the machine and 

they are stored in the memory, together with their position in the query. After this 

procedure the data stream of the database starts to be processed and if a match is found 

the second component of the architecture is activated and starts to extend the match, thus 

implementing the third step of the algorithm. The general design of the architecture is 

shown in Figure 6. 

To illustrate in more detail, before each machine starts the database search, its 

setup mode asks for the precomputation of W-mers, with their position in the query and 

their loading to the corresponding memories. This procedure takes about 1000 cycles for 

1000-character long queries. The input of the system in normal mode (database search) is 

the database stream, one character for each machine. Only the 10 MSBs of W-mers are 

stored in memory and at the address which corresponds to their 12 LSBs. The stored bits 

are called W-mer tags. The width of the memory is 23 bits, 10 for the W-mer tag, 1 for 

valid, and the remaining 12 to show the position of the corresponding W-mer in the input 

query.  

4.2 Hit Finder Unit 

 

The Hit Finder Unit except for the W-mer memory that was previously described 

has an input buffer which is 2 bits wide (1 character) and one thousand positions deep, 

called Future memory. The data stream from the input channel passes through this buffer. 

As long as there is no hit the buffer operates as a FIFO, getting 2 new bits from the 

stream in every cycle and driving one shift register (22 bits long) that shifts 2 bits (one 

letter) per cycle. That shift register has one eleven letter long substring, which is 

compared with all the W-mers. The 12 LSB of the shift register address the W-mer 

memory in order to read the W-mer tag. The W-mer tag is compared with the remaining 

10 MSBs of the shift register. When a hit is found the Future memory continues to push 

its data to the shift register and starts to send them at the extension unit as well for the 3rd 

step of the algorithm. A new comparison is made during every cycle in which the shift 

register has new data. Conditions for a hit are to have two equal strings in the shift 

register and the W-mer memory, and the memory content to be valid. Figure 7 shows the 

Hit Finder Unit architecture. If a second hit comes when the previous is still extended the 



 

 

whole system goes to a stall mode. The system stops trying to find new hits and signals 

external devices to stop sending new data. In this case the extension unit operates in the 

normal mode. The Hit Finder unit stops normal operation but continues to pass the data 

stream to the extension unit. 

 

 

 

Figure 6: General Architecture Scheme of BLAST Machine 1st Generation 

 

4.3 Extension Unit 

 

The Extension Unit executes two comparisons in every cycle, according to the 

algorithm. It extents both sides and compares the two pairs of letters. The first pair comes 

from the query memory and the history memory and the remaining couple comes from 

the Query memory and the Future memory. The data from the input are buffered in the 

History and Future memories, as it can be seen in Figure 8. There are also counters and 

registers that keep several useful data, such as hit position for query and database, its 

length, and the score (which is the most important result to be calculated). Based on the 

score all the remaining useful data for biologists (e.g. e-value) can be calculated. 



 

 

 
 

Figure 7: Hit Finder Unit Architecture 

 

 

 

 

Figure 8: Step 3 Architecture 

 



 

 

4.4 Conclusions  

 

This design, of the first generation architecture, offered significant speedups 

which are presented in the corresponding chapter of this thesis, and proved that it was 

worth to put further effort on the BLAST algorithm. It also pointed the hard problems of 

a system design for the BLAST algorithm which were the memory amount limitations, 

I/O problems and algorithm step 3 efficient mapping at reconfigurable fabric. 

  



 

 

Chapter 5  

TUC BLAST Architecture: 2
nd

 Generation  
 

 

The aim of the design of the second TUC BLAST Generation was to build a more 

flexible architecture for BLASTn variation which could handle dataset of arbitrary size. 

Limitations of RAM and difficulties of mapping the 3
rd

 step of algorithm at 

reconfigurable logic were the main problems of the first generation that we had to solve. 

For that reason every available resourse of the FPGA had to be used. In order to maintain 

high performance and to get flexibility and a SW/HW system was finally proposed. This 

is also the first effort we know of in the literature, for which in-depth sizing calculations 

and SW/HW partitioning were incorporated in the architecture, especially regarding the 

resources for Step 3 of the algorithm. 

5.1 Software Hardware Partitioning 

 

The BLAST algorithm consists of the three steps shown in Chapter 2. The first 

step is the W-mer calculation which is not computationally intensive and takes a 

negligible amount of the total execution time. The second step is the comparison step 

which is computationally the most intensive and must be executed for all the elements of 

the database, i.e. several billions of elements. The third step of the algorithm is also 

computationally intensive for those elements which require it, however, it does not need 

to be executed for all the elements of the database but only for a small percentage of them 

(the hits from Step 2). According to these characteristics of the algorithm, and 

considering the target technology, partitioning of the algorithm to hardware and software 

implementations has to optimize the total execution time. 

Therefore, ideally we need a large reconfigurable fabric with sufficient on-board 

memory for Step 2 of the algorithm, and a fast processor for Step 3 of the algorithm, and 

sufficient aggregate input bandwidth (output is not an issue) so that the system will not be 

I/O starved. An initial thought for the target technology for this design was the use of the 

Virtex 4 family which consists of several units in addition to the reconfigurable fabric 



 

 

and routing resources. In more detail it consists of 2 Power PC, a large number of Block 

RAMs (called BRAM), up to 24 Rocket IO transceivers, and DSP units.  

 

 
 

Figure 9: TUC BLAST Machine Architecture 2nd Generation 

 

In the context of present research extensive studies of the algorithm were made. 

Many runs of the algorithm showed that only a very small number of the comparisons 

produce a HIT. Depending on the database and the length of the query the comparison 

may vary but the actual percentage of hits is typically 0.0046%. For every hit and 

depending on the query size, the execution unit consumes in the worst case time 

proportional to the size and in the mean case time proportional to one fourth of the query 

size. Making a rough calculation regarding the extension unit of the first generation 

architecture for one thousand element queries, such a unit remains 97.5% of the 

execution time inactive but it consumes 50% of the FPGA BRAM resources which are 

the critical for computation parallelisation . On the other hand in the same device there 

are two powerful IBM PowerPC 405 processor cores that can be exploited. Consequently, 

software/hardware partitioning can be done between Step 2 and Step 3 of the algorithm. 

Step 1 is the initialization of the hardware. Step 2 is executed on the reconfigurable fabric 

and its results are processed with software on the embedded Power PC. The general 



 

 

scheme of the second generation of this architecture is shown in Figure 9. The design 

overhead for this architecture is the hit switch unit which has to check for hits and to 

switch properly incoming results from each machine to the Power PC.  

 

5.2 Architecture Analysis 

 

5.2.1 2nd Step Unit 

 

In Figure 10 the new architecture for the second step of the BLAST algorithm is 

shown. Incoming data are coming from system I/O and have a width of 2 bits. Data are 

stored to a 1000-position deep FIFO, called Future Memory. The incoming data rate is 2 

bits per cycle. The output of the Future Memory FIFO drives the Shift Register and the 

Data Grouping Unit. The Data Grouping Unit is a unit where data are grouped in 16-bit 

words and then they are stored in the History Memory. The History Memory collects all 

data as long as they might be useful for the third step of the algorithm. If a HIT is found 

the data are driven to the Power PC for extension, else if a HIT is not found at the time 

window that these data are useful they are overwritten by new data coming from the 

Future Memory.   

The output of the Future Memory also drives a 24-bit Shift Register which has a 

width of 2 bits and a length of 12 bits. This register contains every possible W-mer and it 

is compared to the W-mer list. The W-mer list has been implemented as two 4K x 1 bit 

RAMs each, in which the 14 LSB and the 14 MSB of Shift Register are the input read 

addresses. If the content of both RAMs is 1 then there is a possible hit. The hit signal 

activates Control Unit which produces the possible Hit identity and writes it to HIT 

FIFO. It also produces several control signals, which are not shown in the figure, and 

collects all required data for extension to the History Memory Unit. When all the data are 

ready for the extension, the Control Unit signals that is ready for data transfer. When the 

lower layer of the design signals that is ready for the data transfer, the Control Unit drives 

the Hit FIFO and the History Memory. 

 

v  



 

 

 
Figure 10: 2nd Step Architecture 

 

The output of each machine goes to a Packaging Unit of the protocol part and 

then through a Packet Switch and a Packet FIFO to the OPB Bus (i.e. the interface 

between the reconfigurable fabric and the Power PC) and through it to the Power PC 

processor. It should be noted that in this implementation the hits that are found are 

potential hits. This is done because the examined string is not examined against the W-

mers but against two parts of the W-mers which are used in effect as a hashing function. 

With such an implementation the space that is needed for W-mer list is one BRAM or 2 

RAMs with 214 address space and not 224 address space which can not be implemented 

with the total BRAMs of a single device. The tradeoff of increased ―false hits‖ that will 

be properly weeded out is well worth the thousand-fold reduction of the on-board BRAM 

memory requirements.   

 

5.2.2 Communication Protocol (Step2 to PowerPC) 

 

The outputs of the Step 2 architecture are inputs to the communication protocol 

between the reconfigurable fabric and the PowerPC. The communication protocol 

consists of hardware and software implementation and operates data transfer through the 



 

 

OPB bus of the target technology. The hardware architecture is shown in Figure 10, 

where every Step 2 processing unit is connected with a packaging unit and their outputs 

are concatenated in 32 bit wide packets of variable length. Figure 11 shows the packet 

which consists of two words as a header and up to 64 packets of data. The length of a 

packet depends on whether a possible hit follows an earlier hit or not. If the possible hit 

does not follow an earlier hit then the data packet length will be 64 words of 32-bits of 

database data and two 32-bits words of hit id, because all the needed data have to be 

transmitted. If the possible hit follows an earlier hit then some of the required information 

has already been transmitted to the Power PC and only the remaining information has to 

be transmitted. The amount of information depends on the distance between two hits and 

it may need only the header of the packet to be transmitted without any data.  

The Packet Switch checks on every cycle if there is a HIT at any machine. When 

a HIT is detected then it starts to format the transfer packet, forming the header and then 

it starts to read all the data. All the information produced from the Packet Switch is 

written directly to the FIFO of the OPB bus. When the switching is complete, it waits for 

the next HIT. If several HITs are produced in the same cycle, then the HIT that comes 

from the same processing element is served. With that feature, when a machine has a 

succession of HIT‘s, which is quite possible to happen in this algorithm, then the new 

transfer packet will contain only the needed data and no data stream will be repeated. The 

remaining units are not starved, as the Power PC becomes the critical resource through 

which all possible hits will be serviced. 

 

Machine ID 
<14 bits> 

Packet Length 
<14 bits> 

Hit Id.  

<4 bits> 

Hit Id. <32 bits> 

Data <32 bits> 

Data <32 bits> 

Data <32 bits> 

Data <32 bits> 

………………. 

………………. 

Data <32 bits> 

Data <32 bits> 
 

Figure 11: Transfer Packet 
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Figure 12: Hardware Part of Protocol Architecture 

 

On the other end of the reconfigurable/fixed processor interface, the PLB bus of 

the Power PC runs the algorithm shown in Figure 12 to implement the software part of 

the communication protocol. The processor is activated when a ―non-empty‖ signal is 

true on the FIFO. Then it reads the first two data words and gets the machine id, the 

length of the packet and the possible hit id. With this information it reads the data packets 

that follow, storing them in order in a 1000 letter long array.  

Subsequently it calculates, according to possible hit information, the possible hit 

and determines if it is a HIT or not comparing with the W-mer list. If it is a HIT, then it 

executes the extension and if not it returns to the start to wait for a new possible hit. 

 

5.3  3rd Step Software Architecture 

 

The Extension Unit is activated when a possible HIT is confirmed as an actual 

HIT. The Score variable and indices are initialized to the proper values. The Score 



 

 

variable is initialized to 60 because the W-mer is an exact match of 12 characters. The 

indices are for the query and for the history memory. The database stream is extended to 

both directions of the query during every iteration. If the query character matches with 

the corresponding character of the data stream, then the Score value increased by 5 and if 

there is a mismatch it is decreased by 4. Comparing 2 sets of characters during every 

iteration the Score value can increase by 10 for two matches, by 1 for a match and a 

mismatch, or it can decrease by 8 for two mismatches. If the score value decreases then 

the extension stops and produces the higher score value as an output. 
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Figure 13: Extension step of BLAST Flowchart  



 

 

Chapter 6  

TUC BLAST Generic Architecture  
 

The second generation of TUC BLAST architecture solved the most significant 

problems that the first generation had. This architecture was designed for the first 

variation of the algorithm BLASTn. In order to have a more versatile architecture that 

could solve the complete set of the BLAST algorithm variations, the architecture should 

become more generic. The third generation architecture that was developed in the context 

of this dissertation is the TUC BLAST generic architecture. This work was described at 

[84]. 

6.1 Analysis of the BLAST Algorithm Variations  

 

The BLASTn algorithm, which was described in the previous chapters, is one of 

the five variations of the BLAST algorithm. The BLASTp variant which compares amino 

acids has a different alphabet of 20 letters instead of 4 and a different scoring scheme 

(during the third step of the algorithm) than BLASTn. The BLASTp scoring scheme uses 

matrices that can vary. The twenty letters require 5 bits lack in order to be represented vs. 

2 bits that are needed for BLASTn alphabet. The BLASTx, TBLASTn, and TBLASTx 

algorithms use translated database, queries, or both for comparison. According to this 

translation each character is represented with 6 bits for the twenty letters alphabet that is 

used. With 20 amino acids we would expect to require 5 bits to represent them, but due to 

the translation process we actually need more bits. The translation process is the 

representation of each amino acid as 3 nucleotides (one triplet), each of which is 2 bits 

wide and therefore this representation is 6 bits wide. As the database is read and the 

string comparisons are made it can not be determined even at the bit level when a triplet 

starts. Therefore a six bit sliding frame scheme is used to examine the 6-bit encoded 

amino acid against sequences that may possibly start at any bit of the database.    

The third step of BLASTx, TBLASTn, and TBLASTx follows the same rules as 

BLASTp. The typical size for W-mer is also different depending on BLAST version, 

BLASTn has 11 characters; BLASTp has 3 characters and BLASTx/TBLASTn/ 



 

 

TBLASTx has 6 characters each. Finally, BLASTx/TBLASTn/TBLASTx compares the 

six-frame conceptual translation products of a nucleic acid or protein sequence against a 

protein sequence or translation products. Table 2 shows all the differences that are of 

interest for a general system design. 

 BLASTn BLASTp BLASTx/TBLASTn/ 

TBLASTx 

Number of 

Alphabet letters 

 

4 20 20 

Bits 

Representing an 

Alphabet letter 

 

2 5 6 

3
rd

 step scoring 

scheme 

 

+5 similar 

-4  non similar 

PAM Matrices 

BLOSUM Matrices  

PAM Matrices 

BLOSUM Matrices 

Size of W-mer 

 

11 3 6 

Comparison Every 

character  

Every character Six bits Frame 

 

Table 2: Parameter Values for Different Versions of BLAST 

 

An additional extension to the second variant of the TUC architecture is the size 

of the query. Biologists report that a common length for a query is 1,000 to 10,000 

characters but many implementations in software or in other groups examine queries up 

to 200,000. Whereas this number is probably not of great use for present-day biologists‘ 

needs, one cannot preclude such queries and therefore they need to be supported as well.  

6.2 Datapath Variation 

 

Considering all these differences and the need to calculate the algorithm for 

longer queries several changes have been made to the second step of the algorithm. 

Figure 14 shows the datapath of the previously implemented architecture for BLASTn 

Step 2. Figures 15, and 16 show respectively the datapaths of the new, general 

architecture for BLASTn, BLASTp, and BLASTx/TBLASTn/TBLASTx respectively. 

The Data Input differs at each datapath depending on the bits that represent an 

alphabet letter. The BLASTn representation is 2 bits so the input to each processing 



 

 

element is 2 bits. For BLASTp the representation is 5 bits and consequently the input data 

are 5 bits for each processing element. For BLASTx/TBLASTn/TBLASTx the 

representation is 6 bits but the input is 1 bit at a time, due to the six bit frame translation. 

Each bit is a part of a translated word without an exact bound to which a letter belongs. 

With that restriction a six bit frame is needed to examine one bit at a time and for that 

reason the input data is on bit. Despite the obvious datapath similarities in Figures 14, 15, 

and 16 one can see that we really have three distinct cases, complete with different input 

bus widths, comparators, and registers, arising from the parameter values shown in Table 

2.  
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Figure 14: Second BLASTn Step Datapath (Same as the Second Variant of the TUC Architecture) 
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 Figure 15: Second BLASTp Step Datapath (New Architecture) 
 

  

The Future Memory entity is a shift register to buffer the part of the database that 

has not been examined yet for matches (but will be examined next) and is implemented 

using one Block RAM (BRAM) of the Xilinx FPGA. The BRAM structure is an on-chip 

static RAM that offers both high speed and a user-dependent datapath which can be quite 

wide or quite narrow, leading to a fast, customizable memory. This memory, however, is 

not as large as off-chip dynamic memory (DRAM), and therefore it is best used for local 



 

 

data or as a buffer.  Depending on the BLAST algorithm version the BRAM is 2, 5 or 1 

bits wide to match the input stream. One BRAM can store up to 18Kbits  which means 

9000 characters for BLASTn, 3500 characters for BLASTp, and 3000 characters for the 

BLASTx/TBLASTn/TBLASTx version.  
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 Figure 16: Second BLASTx / TBLASTn / TBLASTx Step Datapath (New Architecture) 
 

The Shift Register that is driven from the Future Memory unit is 2, 5 or 1 bits 

wide respectively to match the input stream and has 22, 15, or 18 bits depending on W-

mer size. The way the shift is done is one character for BLASTn and BLASTp, which 



 

 

means 2 bits or 5 bits respectively, and one bit for BLASTx/TBLASTn/TBLASTx 

version. 

The Data Grouping Unit concatenates local information to 32-bit words in order 

to pass those words to the PowerPC embedded processor via the OPB bus, i.e. the 

standard bus which facilitates communication between the reconfigurable processor and 

the fixed processor.  

The busses which are driven from the Shift Register unit are always 14 bits wide 

at every version. This width has been chosen to drive one BRAM as one dual memory. 

For BLASTn it represents 14 bits of the 22 of the W-mer for BLASTp it represents 14 

out of 15 bits and for BLASTx/TBLASTn/TBLASTx 14 it represents out of 18 bits of W-

mer. Covering more bits of the W-mer would increase the probability of a possible hit to 

be an actual hit at the expense of less efficient usage of the BRAM. The increase of the 

probability that a possible hit is an actual hit, however, is not necessarily a goal, 

especially when it takes valuable resources that can be used for more parallel engines to 

perform the second step of the algorithm. The reason for this non-obvious conclusion is 

that if the PowerPC is underutilized, if there are more ―false positives‖ which are weeded 

out in software the system throughput does not get worse, and if in fact the resources 

saved (at the expense of false positives during the second step) are used to increase 

parallelism in the second step of the algorithm, then the system-level throughput 

increases. The compromise of 14 bits was chosen after careful statistical analysis for 

several data sets, in order to match the reconfigurable processor speed to that of the fixed 

processor. It should be noted, however, that for different implementation technologies or 

different clock speeds of either the reconfigurable or the fixed processor, this number can 

vary. For the 14-bit wide memory the initial calculation of W-mers should be different 

depending on the version of BLAST algorithm, which means that with some data 

manipulation at the preprocessing level the general architecture keeps its basic structure 

without major changes. The remainder of the architecture for the second step remains the 

same as does the interface to the OPB bus. Whereas the datapath retains some similarities 

between BLAST versions, the corresponding control units are different, in order to 

account for W-mer size, alphabet size, and in the case of BLASTx/TBLASTn/TBLASTx 

for translations. The interface to the Power PC is identical for all versions of the 



 

 

algorithm and the communication protocol remains also the same, but the PowerPC 

software to evaluate whether a possible hit is an actual hit and perform the extension 

(third step of the BLAST algorithm) is different for each version of BLAST. 

The third step of the BLAST requires different scoring schemes depending on the 

version of the algorithm. In addition, different scoring schemes may be chosen by the 

system user, making this step ideally suited for software execution on the PowerPC. 

Implementing the third step of BLAST on the Power PC gives the user the flexibility to 

choose different scoring schemes at every time, as needed. 

6.3 Query Variations 

 

The query size in the first two variants of the TUC architecture (both for 

BLASTn) is 1000 and 5000 elements respectively. These sizes cover the typical size of a 

query but not every case. The published results of IBM and DELL report performance for 

BLAST with query sizes of 200,000 and 206,000 elements respectively. Whereas these 

sizes may have been chosen to optimize system performance, for an architecture to be 

truly general, arbitrarily high query sizes must be supported as well.   

For the general BLAST architecture reported in this work each machine can cover 

query sizes up to 9,000 elements for BLASTn, 3,500 elements for BLASTp and 3,000 

elements for BLASTx/TBLASTn/TBLASTx. Implementing larger query sizes in a single 

machine, whereas feasible, would place excessive BRAM demands on the design and 

thus reduce parallelism. The chosen solution was to perform data manipulation of the 

query as a means to extend the query size. In practical terms this allows for a direct 

space-time tradeoff and the ability to support arbitrarily large queries while maintaining a 

more-or-less constant system-level throughput. For example, a query size of BLASTn 

with size of 18,000 elements, can be calculated in two parallel machines, with the same 

data input and different initialization to each W-mer list. The first half of the query is 

calculated in one processing element and the other in the second processing element. 

Thus, the length of queries is not dependent on the W-mer list capacity but on the Future 

Memory size. For such an approach the software for the third step implementation on the 

PowerPC should keep more history data of fewer parallel elements. 



 

 

For all versions of the BLAST algorithm and the corresponding architectures it is 

possible that we want either to examine the same query against different parts of the 

database or different queries for the same part of the database. Therefore there is a part of 

the datapath that is common to all variants of the TUC architecture, which can be 

configured accordingly. Figures 17 and 18 show the datapath for each of the two cases. In 

Figure 17 each of the comparison units for the second step of BLAST has been initialized 

to the same query. The BIT Selector unit passes different portions of the database or 

different databases to each processing element. Figure 18 shows how the same 

implementation is initialized with different queries at each processing element and these 

queries are examined in parallel against the same database. 

 

 

 

Figure 17: Datapath for One Query and Several Databases 

 



 

 

6.4 Conclusions  

 

This general architecture takes advantage of unexploited FPGA resources without 

using for each general processing element more critical resources such as BRAM. Each 

processing element spends 4 BRAMs independently of the version of the algorithm that it 

implements. It spends slightly more logic to implement the versions of the algorithm 

other than BLASTn but without significant resource spending and consequently without 

clock speed reduction. More detailed results are presented at Chapter 9.  

 

 

 

Figure 18:  Datapath for Several Queries and a Common Database 
  



 

 

Chapter 7   

TUC BLAST Generic Architecture V.2 

 

The iterative process of multiple BLAST implementations allowed for in-depth 

understanding of both algorithmic issues and technology mapping issues. Indeed, several 

significant changes took place at the system implementation level without changing the 

system architecture too significantly in order to produce yet a new architecture generation 

but in order to produce a new version which will be referred as: TUC BLAST Generic 

Architecture V.2. In this chapter we describe several system improvements at the 

implementation level.  

Sections 7.1 and 7.2 describe architectural improvements that came out as each 

system was implemented and algorithm mapping to reconfigurable logic was better 

tuned. Sections 7.3, 7.4, and 7.5 describe improvements that came from algorithm study 

and better understanding. These three sections are the results of work that has been done 

with Prof. D. Pnevmaticatos, and fellow researchers Grigorios Crhysos, Panagiotis 

Afratis and Constantinos Galanakis, and it forms parts of P. Afratis‘ and C. Galanakis‘ 

diploma theses. Our contributions, highlighted here, address every stage of this work but 

they are mainly at the system architecture level and on how the stand alone system 

coupled with other processor. From this joint work three papers where 

published[80][85][86]. 

7.1 Processor and Switch Change 

 

In order to have a design that can be implemented with any Xilinx device 

(including that of the XUP5V and the DRC platform) a decision was made to change the 

hard-core Power PC processor with the soft-core MicroBlaze processor. The Power PC is 

significantly more powerful than MicroBlaze but to date the maximum number of Power 

PC processors in a single chip is two. On the other hand an up to date large Xilinx device 

can have up to 80 [74] MicroBlaze processors running in parallel. In addition, the first 



 

 

Virtex 5 Xilinx chips did not have any PowerPC processor initially and when the FX 

series (with PowerPC) was available the MHL has no access to such a device.  

 

 

Figure 19: General scheme of MicroBlaze Architecture 

 

 

The processor change was decided for reasons of design simplification and 

resulted in changes to the communication between the MicroBlaze processor and the 

reconfigurable logic design. In the place of the OPB bus, the FSL link which is available 

to the MicroBlaze processor was used for the communication. This change made the 

communication faster and simpler. The MicroBlaze can hold up to 8 FSL co-processors. 

Such a coprocessor can be a single BLAST Step 2 core or several connected with the 

proper glue logic. Use of FSL link eliminates the need of the switch between the several 

BLAST step 2 cores and the processor, which proved to be in the critical path, due to the 

significantly smaller number of these cores in every single processor. The general scheme 



 

 

(with a single BLAST step 2 core at every FSL) of the architecture after these changes 

can be shown at Figure 19. 

Machine ID<8 bits>  

Machine ID<6 bits>  Packet Length <2 bits> 

Packet Length <8 bits>  

Packet Length <4 bits> Hit Id. <4 bits> 

Data <8 bits> 

Data <8 bits> 

Data <8 bits> 

Data <8 bits> 

………………. 

………………. 

Data <8 bits> 

Data <8 bits> 
 

Figure 20: New Communication Protocol over FSL 

 

FSL is 8 bits wide while the OPB was 32 bits. This fact had a minor impact on the 

way that BLAST algorithm Step 2 core communicates with the processor. The protocol 

that was described at section 5.2.2 was changed slightly as we changed the width of the 

words but we kept the order of the bits, Figure 20 illustrates the protocol. 

7.2 Future Memory Elimination  

 

The critical resource of the designed architecture is the memory used for FIFOs 

implementation. As it is well known Xilinx devices have two kinds of memory; 

distributed memory which is mapped logic to be implemented and Block RAM (BRAM) 

memory which is mapped to embedded at the device, blocks of RAM. Only BRAM can 

be used for FIFOs implementation. Memory size is coarse grain with 36 Kb at every 

BRAM which is equal to 18,000 characters for BLASTn variation. In order to have fewer 

and consequently larger memory blocks the future memory of the datapath was merged to 

the FIFO called history memory. Some changes came to the control path of the design as 

when a HIT is detected Step 2 core does not immediately tries to send data to the 

MicroBlaze but waits for some cycles (according to query size) to collect the complete 

set of data that needs for the 3
rd

 step of the algorithm. Figure 21 shows the new datapath 

for BLASTn variation including the FSL interface.  



 

 

 

Figure 21: Simplified Datapath with FSL interface 

7.3 BLAST Algorithm Further Analysis and Filtering Potential 

 

To analyze the potential of BLAST algorithm, we built a set of software tools that 

implement BLAST searching. We ran these tools using several data sets that were 

provided from the NCBI site, and we compared the results against those of the original 

NCBI software. In our experiments we compared parts of Homo Sapiens (Human) 

(queries) against Chimpanzee‘s chromosomes (Pan Troglodytes) genome (database). The 

data exhibit a high degree of similarity which leads to high hit rate at the second step of 

the BLAST algorithm. We also used the BioPerf benchmark for BLASTn. 

In first place we investigated the load balance between the step 2 and the step 3 of 

the algorithm at the implementation of the second architecture. In order to do that several 

software tools were developed which had identical results with the NCBI software and 

model the newly designed TUC architecture. Through this analysis a fundamental 

observation was made. Step 3 of the algorithm performs the extension when Step 2 of the 

algorithm produces a hit. Sections of the database that lead to good matches of the query 

have more than 2 hits in the same area, and in general they do have a lot of hits when 

they are examined. Thus, it would be interesting to see if the converse was also true. If 



 

 

we have an area with a large number of hits does it mean that we have an area in which 

the BLAST algorithm will have many extensions? Data that have been extracted from the 

software tools were used and it has been proved that; if we filter the database and keep 

the portions that produce many hits we have all the portions of the database that we 

actually need to apply the BLAST algorithm. The eliminated portions of the database 

have no biological or other value. In order to state how to do this filtering we follow 

several steps. 
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Figure 22: Hit rate distribution for a window of 100 characters over the streaming database input, 

The two top circled areas are “of interest” i.e. they result in BLAST matches. The top horizontal line 

represents the optimal threshold (=5) to identify all these areas. Thresholds lees than 5 will produce 

more candidate regions without identifying more hits (drawn for Threshold=3), while thresholds 

greater than 5 will miss (some of) the hits reported by BLAST 

7.3.1 Prefiltering Window Size 

 

First, we investigated the effect of the window size, i.e. the width of the database 

region in which we measure the hit rate. Figure 23 plots ―Space‖ (i.e. the resulting 

percentage of the database that we need to process after prefiltering) versus window size: 

small values are better since they correspond to smaller input to the full BLAST 

processing. Since the query size may vary greatly, we express the window size as a 

percentage of the query length, ranging from 10% up to 100%. Intuitively, larger window 



 

 

sizes will produce more hits shifting the hit rate upwards. The results in Figure 23 lead to 

two conclusions. First, regarding window size, space is either unaffected or increases as 

the window size increases; hence a small window is both more effective and sufficient to 

capture the necessary information. Second, the effectiveness of pre-filtering varies 

greatly: we find cases where the results are excellent (the required space is in the range of 

3% or less of the database), while totally ineffective in other cases (chromosomes 12 and 

13) with space 100%, i.e. the entire database is candidate for match.  

 

Figure 23: Database Space (%) vs. window Size. 
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Figure 24: Database Space (%) vs. Threshold. 

 

7.3.2 Filtering Threshold 

 

The other main filtering parameter is the threshold. Figure 24 plots the database 

space versus a threshold that ranges between two and five. We see that as threshold 

increases there is a decrease in space, even for some of the ―difficult‖ cases (chromosome 

12) identified in the previous paragraph. However, the results for other queries, such as 

chromosome 13, are insensitive to increasing the threshold. Note that the choice of the 

threshold value is not straightforward. Setting the threshold too low results in a larger 

database space that needs to be processed. Setting the threshold too high we risk ignoring 

portions of the database that will produce actual hits. In the rest of this paper we use a 

threshold value of 2 based on the following observation: for the BLAST algorithm to 

begin the extension process we need at least one match. Since there will be at least one 

extension (otherwise the BLAST extension process stops), we will find another hit for a 

W-mer overlapping with the first. We tested all our results for all our runs and verified 

that indeed this threshold identifies all the reported NCBI BLAST results. To safely use 

larger threshold values we need to further understand the biological significance on the 

reported results. We believe that setting larger threshold values may omit only the least 

significant BLAST results while still report the high ranked ones. 
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Figure 25: Database Space (%) vs. Query size. 

 

7.3.3 Sensitivity on Query Size  

 

To understand the behavior of the ―difficult‖ cases such as of the chromosome 12 

and 13 queries, we analyzed our results and observed that all these cases correspond to 

very long queries in the order of many thousand characters. In Figure 25 we plot the 

effect of the query size on the resulting database space that must be searched for the 

queries that are not amenable to prefiltering. To produce small queries we use a prefix of 

the original query at a particular size. The trend in Figure 25 is very clear: large queries 

are not amenable to prefiltering, while small queries show great potential. A possible 

explanation for this behaviour is that a large query contains more distinct W-mers than a 

smaller one, so the probability of finding multiple hits between the database and any W-

mer is large. Prefiltering works very well for queries a few hundred characters long, and 

offers no improvement for queries longer than 5 thousand characters. 

7.3.4 Partitioned Queries  

 

The results from Figure 25 made clear that long queries, although very useful for 

biologists, cannot be handled effectively by prefiltering. However, the same results offer 

the solution to the problem: if the query is partitioned in smaller pieces and is processed 
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in parallel, we may achieve operation in the effective prefiltering region. Figure 26 

evaluates the partitioning potential. Starting with the original query size, we subdivide it 

to pieces of one thousand, 500, 250 characters and so on, evaluating the resulting 

database space that we need to search. As indicated from Figure 25, as the query size 

becomes smaller, the effectiveness of prefiltering increases. The best results are achieved 

for small sub-queries less than 250 characters, and for all the difficult queries pre-filtering 

achieves a 5-fold decrease in the space that needs to be explored (space = 20% of the 

database).  More important is the correlation of query and prefiltering potential: given the 

database and the query, we can determine the effectiveness of prefiltering, and the extent 

of required partitioning. 

 

Figure 26: Query partitioning effect to Database Space 

 

7.4 Bloom Filters 

 

All the previously described properties are based on the number of the hits that 

are produced by the second step of the algorithm. In order to find hits, comparisons 

should be performed between every W-mer and the complete database. These 

comparisons are 26 bit-wide (12 characters x 2 bits/character) and their number is almost 

equal to the size of query: the number of W-mers is equal to (query length – W-mer 

length + 1). For a 1,000 character query 989 W-mers are produced and need to be 
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compared to the database input at every location. There are several implementations 

proposed for this problem.  

A memory cache-like scheme was used at all TUC architectures. Using memories 

has the advantage that the size of the designed hardware is proportional to W-mer size 

which is constant and not to query size which varies. However, a single memory cannot 

be implemented due to its size (24 bits address) that can not fit to any reconfigurable 

device.  

Due to hardware implementation limitations, an alternative method is proposed 

that uses a Bloom Filter [77] to determine the occurrence of a W-mer of a query. By the 

properties of Bloom filters, this approach can produce false positives, hence we count 

probable hits instead of actual hits. We attempted to identify the optimum number of the 

hash functions and the optimum depth of the filter memories while taking into account 

the implementation idiosyncrasies of the Xilinx FPGAs, and after thorough experimental 

research we concluded that 4 distinct prime polynomials used as hash functions to 

address 4 filter memories with address 14 bits  was a good implementation trade-off. The 

4 hash functions reduce the 24-bit wide W-mers to four 14-bit wide addresses, which are 

used to address 4 independent, 1-bit wide memories. These memories are initialized by 

setting to 1 all the locations identified by the hashing of all the query W-mers. On 

database lookup, a (probable) hit is determined when all the addressed memory locations 

are set to 1. Those matches are called probable hits because such a match might not 

necessarily produce a hit in the original second step of BLAST. However, in Bloom 

filters negatives are always true, so if a match does not exist, it can never be reported 

falsely. The structure of the Bloom filter is illustrated at Figure 27. Hence a simple 

lookup in the memory and an AND gate (not shown in Figure 27) identify if the W-mer 

portion is a sub-match with some W-mer of the query. 
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Figure 27: Example of BRAMs preloading 
 

Since Virtex-5 BRAM blocks store 32kbits, are dual ported, and in their 32kx1 

configuration need 15 bits for addressing, we combined two independent filter memories 

into a single BRAM block. In this way, the Bloom Filter can be efficiently implemented 

using just two embedded BRAM blocks.  

 

7.5 BLAST Database Filter as an Autonomous System  

 

7.5.1 PreBLAST Architecture 

 

The implemented architecture, shown in Figure 28, takes as input the database 

stream. At every clock cycle a new character (2bits for BLASTn) is inserted in the shift 

register generating a new word of the database that has to be examined against all the W-

mers.  This 24-bit word is processed through the Bloom filters with the same hash 

functions that have been used to initialize the BRAMs four new 15-bit words are 

produced. The hashed values are used to address the four lookup tables and if all have a 

‗1‘ stored at these positions, a probable hit is reported.   



 

 

Figure 29 shows how the probable hits are counted for a certain window size. At 

every clock cycle the output of the probable hit is inserted in a shift register with length 

of window size. If a ‗1‘ is inserted then the Up/Down counter counts up and when an ‗1‘ 

is shifted out of the register the Up/Down counter counts down.  With this simple design 

the Up/Down counter has always the number of the possible hits for the certain time 

window. 

In this design there is also a position counter which counts the number of the 

characters that have been processed which is translated to the position of the database 

which is processed at the certain time.  If the value of the Up/Down counter exceeds the 

predefined threshold then the position of database that this happens is stored in a 

memory. When the value of the Up/Down counter decreases under the threshold then the 

position of database is stored again. Consequently every pair of the stored values in the 

memory is the tagged part of the database.  

In order to show the effectiveness of prefiltering we combined it with the 

Multiprocessor Platform for Embedded systems (M.PL.EM) [76].  We modified the way 

the MPLEM processor reads the database from its memory. Instead of initializing the 

memory controller and get the data in the row the memory controller  starts from the 

points where the output memory of the PreBLAST filter shows, up to the points that the 

―interesting‖ parts of the database ends.  

The MPLEM platform consists of MicroBlaze embedded processors which are 

not able to run the original NCBI software. For that reason a new software version of 

BLASTn algorithm was implemented and several experiments where tested. To verify the 

correctness, we run tests on a fully post-place and route simulation with up to 4 parallel 

MicroBlaze processors.  
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Figure 28: Data path of the designed system 
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Figure 29: Control path of the designed system 
  



 

 

Chapter 8   

System Implementation 
 

In this chapter all the systems that have been actually implemented on 

reconfigurable logic are described. Three platforms have been used to implement TUC 

BLAST. The XUP Virtex 2P platform was used initially in order to build the actual 

system for architecture verification. Then a DRC platform with Virtex 4 was used in 

cooperation with Synective Labs at Sweden but with no success due to problems during 

the integration phase. Finally a XUP Virtex 5 platform was used which offered enough 

resources including fast I/O for system building in small scale.   

8.1 XUP Virtex 2P Platform 

 

XUP Virtex 2P has a medium size device with XC30V2P with 136 embedded 

BRAMs and 2 PowerPC processors. The design that was implemented had finally four 

parallel Step 2 cores connected to 1 PowerPC. There was no input to the FPGA device 

from PC and RS 232 was used for output. The Xilinx tool Chipscope was used for 

internal signal checking and debugging through JTAG port. A controller connected with 

a preloaded ROM was used in order to give Inputs to the step 2 cores. Figure 30 shows 

the block diagram of the design.  

Using this platform, which was available at the time, helped us to build and run 

several small- and medium-scale tests to debug the design up to the point that it was 

integrated and to evaluate the performance. The clock speed was 100 Mhz and some 

results from these implementations are presented in the next chapter. 



 

 

 
 Figure 30: General Scheme of architecture of XUP V2P experiment 

 
 

8.2 I/O Issues  

 

The XUP Virtex 2P platform was proved to be very good for architecture 

verification, at least for runs with database up to 40,000 characters. In order to build a 

system that runs BLAST algorithm for any dataset with performance boosting I/O 

problem proved to be the bottleneck.  

8.2.1 Locally Stored Database 

 

Several solutions have been studied and efforts have been made in order to 

implement such solutions; one probable solution was the use of a large memory to store 

the database off-line. With a large database we could pass several queries and measure 

the overall throughput for several queries over one database. Such an approach bypasses 

the I/O problem as it adds an overhead time; time to load the database at the memory. 

The more queries that are loaded at the system the better performance the system has as 

the overhead gets smaller per query. These results are misleading as they are  

i) depended on the data set size (number of queries and data base size)  



 

 

ii) from biological point of view such a system is half useful. It works very 

well if we try to find several genes (queries) for example over one spices 

but it does not work well if we try to find one gene (query) over many 

spices. 

iii) for the proposed TUC architecture such an approach eliminates its 

generality as this architecture works for every database size for any query 

and it works either for one database with many queries or for many 

different databases and for one query. 

all these reasons make such an approach less attractive. Such an approach can be 

effective only if the available amount of memory is substantial percentage of the database 

size that the biologist is using. If for example Human DNA sequence is about four billion 

characters a memory of approximately one Gigabyte is needed for one spices database 

storing. 

8.2.2 PCIe Interface 

 

An alternative solution to the I/O problem is the use of PCIe interface. Several 

Xilinx platforms support such interface at the physical layer design and Xilinx CAD tools 

provide the higher level layers at the FPGA device. PCIe provides 2.5 Gbps baud rate and 

2 Gbps actual data rate per lane. Such a platform is available at MHL. it is the XUP V5 

platform which supports a single lane PCIe. A major problem using such a platform to 

connect to the PC which stores the database and the query is the driver that was needed 

for the operating system. Such a driver is available at MHL [87] for the Linux Operating 

System while Microsoft Research at Redmond provides a similar system [88] for 

Windows.  

Both systems provide the driver and a hardware wrapper in order to help the 

designer to use it. Due to driver problems, both systems had a speed of about 250 Mbps. 

With such an I/O speed. I/O remains the system performance bottleneck and such a 

system cannot be competitive to a general purpose high end processor. 

8.2.3 HyperTransport Protocol Interface  

 

http://www.in.gr/dictionary/lookup.asp?Word=substantial


 

 

Several boards with FPGA device and high end I/O are available in the market. 

Such a board is the DRC platform which connects a general purpose high end processor 

through HyperTransport protocol with an FPGA. The connection has speed up to 9.6 

GBps aggregate bandwidth.  Such platform was available at the Synective Labs available 

with the appropriate software and hardware wrappers in order to encapsulate any design. 

In order to connect the BLAST designs a communication protocol was developed. 

Inputs are the data bus which has width of 32 bits and four control signals Query 

Start which indicates that the data that are coming will be from query. Query Valid which 

indicates that the data are valid, and Data base Start and Data Base Valid which work the 

same way for the data base. When a hit has been found a packet of 8 32-bits words are 

send to the PC. Control signals are Dataout Start and Dataout Valid which work as the 

input control signals. The structure of the packet is shown at Figure 31. Due to 

integration difficulties it was not possible to have a complete system working properly. 

 

 

 

 

<Header of Packet -- with packet id> 

<Machine Number> 

<Start point at database> 

<End point at database> 

<Start point at query> 

<End point at query> 

<score> 

<End of Packet-- with packet id>  
 

Figure 31: Result packet Structure 

 

8.2.4 Gigabit Ethernet Interface 

 

An option for fast serial interface between reconfigurable devices and a PC is the 

use of Ethernet connection. Main manufacturers (including Xilinx) have embedded in the 

devices tranceivers that can be used for many interfaces including Ethernet. On Xilinx‘s  

boards other chips have been added in order to implement the physical layer for such 

interfaces as the Ethernet and the Aurora. At TUC a complete software/hardware system 



 

 

have been build called MTP[89] in order to give fast communication between the PC and 

an FPGA device.  

This system is sending ordered UTP packets over IP over Ethernet with a 

minimum overhead of 5 bytes per packet. This overhead gives a theoretical upper limit of 

956.32 Mbps of pure data. Due to limitations of processor and/or network device of the 

PC the actual speed that has been measured is up to 776.67 Mbps 

The query and the database are stored in a standard format called FASTA. Figure 

32 shows a part of such a file. In order to send from the PC to the device the dataset both 

files are modified in a single file. This file is binary and depending of the UTP packet 

length follows the MTP format for data packets. For example if the MTP packet size is 

512 bytes the 5 first bytes are D0000 then it follows with 512 bytes of data and then the 

next 5 bytes are D0001 and it continues. At the data field the 4 first bytes of the first 

packet are the length of the query and then the query follows 4 characters per byte for 

BLASTn. When the query ends then the 4 first bytes of the data field are the length of the 

data base and then data follows encoded in the same way.  

 

8.3 Universal Interface 

 

Glue logic between Gigabit and wrapper of the interface (in the device) at the 

reconfigurable device has been build in order to integrate the Gigabit Ethernet Interface 

with the designed architecture. This logic consists of a FIFO (FIFO_1) and a controller, 

Gigabit Ethernet Interface receives data in another FIFO (FIFO_2) has a simple control 

scheme. Figure 32 shows the general scheme of the Glue Logic 

 



 

 

 
 Figure 32: Glue Logic Architecture 

 

FIFO_1 can be an elastic buffer that has different clocks for Input Data and Output Data 

but also different widths. For example FIFO_2 width can be 8 bits and FIFO_1 can have 

Input width of 8 bits and Output width of 32 bits. Widths of the FIFO_1 are depending on 

Width of Input data, rate of incoming data and the consuming rate of the data from 

BLAST machines. 

Design of Glue logic is generic enough to be used with any kind of input wrapper 

(except Gigabit Ethernet Wrapper) that has an output FIFO with the standard control 

signals.  

  



 

 

8.4 XUP 5V Platform 

   

Digilent‘s XUP Virtex 5 Platform was available for large scale experiments. XUP 

5V has a medium size device XC5V LX110T and is equipped with one lane PCI express 

Interface and a single Gigabit Ethernet interface. It has 296 BRAMs twice as much as the 

device of XUP V2P that was used for system building.  
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Figure 33: Databases and Queries set-up 
 

In order to execute large scale experiments (e.g. database size of 1 GB) a fast 

serial interface had to be used. Such solutions were GigaBit Ethernet or PCIe interfaces. 

According to the environment (drivers, scripts etc) that have been developed to use these 

interfaces the data rates that have been measured were about 250 Mbps for PCIe interface 

and 850 Mbps for Gigabit Ethernet. Assuming a clock speed of 125MHz for our design 

(which is the speed of the Gigabit Ethernet Module) and the BLASTn variation of the 

algorithm implemented even four parallel BLAST machines need 1Gbps to be fed. Even 



 

 

the faster Gigabit Ethernet interface will lead to under utilization of the four BLASTn 

machines for this specific platform. Four parallel BLAST machines would cover less than 

25% of such a device. In order to exploit as much as it would be possible of the device 

resources it was decided to replicate BLAST machine design 16 times and have four 

different databases for four different queries.  Figure 33 shows the set-up for databases 

and queries. 

 
Figure 34: General Scheme of architecture of XUP V5 experiment 

 

 

We decided that these 16 machines will be organized by four and every  

quartet to be attached to a Microblaze processor. Due to Microblaze low computing 

power a second Microblaze is attached in a series and the calculations are divided 

between these two processors. The outputs of the four quartets are attached to another 

Microblaze also serial and this one is responsible to give the final result. Figure 34 shows 

the general scheme of the prototype at XUP Virtex 5 Platform. It has been calculated that 

the same setting with quartets scheme could be replicated for 66 times to the largest up to 

date Xilinx FPGA device XC6VSX475T for four different databases and 17 different 

queries. 



 

 

8.5 Technology Synopsis 

 

Table 3 presents all the main characteristics of the architectures that were 

presented in previous sections.  

Architecture 

name 

Algorithm 

Variations 

Query 

Size 

Database 

size 
I/O Microprocessor 

Critical 

Resources: 
Technology 

1st TUC 

Generation 
BLASTn 

up to 

1000 
any size 

No I/O 

consideration N/A BRAM Virtex 4 

        

2nd TUC 

Generation 
BLASTn 

any 

size 
any size 

No I/O 

consideration Power PC 
BRAM. 

PowerPC Virtex 4 

        

TUC Generic 

Generation 

BLASTn 

BLASTp 

BLASTx 

TBLASTn 

TBLASTx 

any 

size 
any size 

No I/O 

consideration 
Power PC 

BRAM, 

PowerPC 
Virtex 5 

        

TUC Generic 

Generation 

V.2 

BLASTn 

BLASTp 

BLASTx 

TBLASTn 

TBLASTx 

any 

size 
any size 

Interface that 

supports PCIe, 

Hypertransport, 

GigE, 

Implementation 

with GigE 

MicroBlaze BRAM Virtex 5 

Table 3: Synopsis of Technical Characteristics for the Different TUC BLAST Architectures 

  



 

 

Chapter 9 

Implementation Issues  
 

In this chapter all performance results that have been reported for software or 

hardware BLAST implementations in the literature are reported and compared against the 

performance of our architecture as were as our own software measurements. Due to the 

changes in technology as this project was implemented many measurements have been 

taken on several technologies, which were on high end devices at the time of the 

measurement. 

9.1 SW Performance 

 

Several results have been reported in the literature for software implementations 

of BLAST. IBM has reported several throughput measurements for its system IBM 375 

MHz POWER3-II symmetric multiprocessor (SMP) and the 1.1 GHz POWER4 pSeries 

690 Model 681[19]. IBM uses a set of several benchmarks depending on algorithm 

version, query size and database size. More specifically they use certain NCBI databases 

and a variety of queries that they report. Table 4 shows the set of benchmarks (NCBI 

files) that IBM used. 

 Small Query Medium Query Large Query 
BLASTn ensembl.dna ensembl.dna ensembl.dna 

BLASTp  drosoph.aa drosoph.aa drosoph.aa 

BLASTx/TBLASTn/

TBLASTx 
drosoph.aa drosoph.aa drosoph.aa 

 

Table 4: IBM Single Chip Throughput – Testbench Cases 

 

Tables 5 and 6 show the best throughput for several queries, depending on the 

BLAST version. Original times and database lengths that IBM provided refer to small 

queries, up to 2,000 characters, medium queries up to 50,000 characters and large queries 

up to 200,000 characters. For reasons of comparison Tables 5 and 6 have been formatted 

in this format.  

 

 

 



 

 

 

Query 

Length 

(Characters) 

BLASTn 

Throughput 

(characters10
6
/sec) 

BLASTp 

Throughput 

(characters10
6
/sec) 

BLASTx/TBLASTn 

TBLASTx 

Throughput 

(characters10
6
/sec) 

1,000 187.62 15.50 4.77 

2,000 187.62 15.50 4.77 

5,000 14.23 1.975 0.042 

10,000 14.23 1.975 0.042 

30,000 14.23 1.975 0.042 

50,000 4.16 0.35 0.05 

100,000 4.16 0.35 0.05 

150,000 4.16 0.35 0.05 

200,000 4.16 0.35 0.05 

 

Table 5: IBM Single Chip Throughput – Performance Results 
 

Query 

Length 

(Characters) 

BLASTn 

Throughput 

(characters 

10
6
/sec) 

BLASTp 

Throughput 

(characters 

10
6
/sec) 

BLASTx/TBLASTn 

TBLASTx 

Throughput 

(characters 10
6
/sec) 

1,000 1201.2 48.43 18.92 

2,000 1201.2 48.43 18.92 

5,000 159.36 9.90 1.374 

10,000 159.36 9.90 1.374 

30,000 159.36 9.90 1.374 

50,000 53.14 1.49 0.189 

100,000 53.14 1.49 0.189 

150,000 53.14 1.49 0.189 

200,000 53.14 1.49 0.189 

 

Table 6: IBM Multiprocessor System Throughput 

 

Besides the IBM-reported results, we conducted our own experiments with 

several processors depending on the design generation. 

9.1.1 TUC Measurements For the evaluation of the 1st generation 

 

We performed runs of BLAST-2.2.12 on a 2GHz Xeon with 2GB main memory 

running SUSE 9.1 Linux and the CPU usage was profiled. Five NCBI data bases of 

several sizes for a small query of 1000 letters were executed at the 2GHz Xeon and 

measured. The same experiment was repeated with a Intel Pentium M 1.7 GHz with 1 GB 

main memory running Windows XP professional and an Intel P4 2.66 GHz with 1 GB 

main memory running Windows 2000. For Computers running Windows Intel VTune 

Performance Analyzer 7.2 was used and every measurement repeated 5 times. The results 



 

 

of these experiments are respectively on Tables 7, 8 and 9. The averages in the tables are 

arithmetic averages. 

DataBase 

name 

Database 

Size 

(characters) 

Run 

Time 

(sec) 

Throughput 

(char 10
6
/sec) 

ecoli.nt 4,662,239 0.024 194.25  

drosoph.nt 122,655,632 0.482 258.33  

month.nt 386,242,580  1.753 220.56  

env_nt 1,061,221,997 1.190 891.63  

igSeqNt.ftptemp 44.419,359 1.397 31.77  

Average 323,840,361 0.968 319.25 

 

Table 7: Measurements on XEON 2 GHz / Linux 
 

DataBase 

name 

Database 

Size 

(characters) 

Run 

Time 

(sec) 

Throughput 

(char 10
6
/sec)) 

ecoli.nt 4,662,239 0.045 102.85  

drosoph.nt 122,655,632 0.364 337.32  

month.nt 386,242,580  1.303 296.50  

env_nt 1,061,221,997 3.670 289.19  

igSeqNt.ftptemp 44,419,359 0.174 255.43  

Average 323,840,361 1.111 256.26 
 

Table 8: Measurements on Intel M 1.7 GHz / Windows XP 
 

DataBase 

name 

Database 

Size 

(characters) 

Run 

Time 

(sec) 

Throughput 

(char 10
6
/sec)) 

ecoli.nt 4,662,239 0.039 118.45  

drosoph.nt 122,655,632 0.309 396.32  

month.nt 386,242,580  1.022 378.10  

env_nt 1,061,221,997 3.200 331.63  

igSeqNt.ftptemp 44,419,359 0.160  277.40 

Average 323,840,361 0.946  300.38  
 

Table 9: Measurements at Intel P4 2.66GHz / Windows 2000 

9.1.2 TUC Measurements for the evaluation of the 2nd Generation 
General Architecture 

 

Measurements were made at TUC with original NCBI software BLAST version 

2.2.15 for win32-ia32at an Intel Pentium 4 3.0GHz HT, IA-32 architecture, 512 MB 

RAM with the Microsoft Windows XP Pro operating system. The Intel-developed 

software tool Vtune Performance Analyzer 8.0 was used for the measurements. The 

database was NCBI IgSeqNt. for nucleic Acid and BLASTn and igSegProt for proteins 



 

 

and translated for the other versions of the algorithm. Table 10 shows that for several 

sizes of the query the respective throughput is depending on query size. The same 

datasets were used as test benches for the hardware performance evaluation. 

Query 

Length 

(Characters) 

BLASTn 

Throughput 

(char 10
6
/sec) 

BLASTp 

Throughput 

(char 10
6
/sec) 

BLASTx/TBLASTn 

TBLASTx 

Throughput 

(char 10
6
/sec) 

1,000 588.75 19.80 20.97 

2,000 409.15 12.72 13.12 

5,000 218.26 5.10 4.97 

10,000 129.32 3.02 2.75 

30,000 41.26 1.03 1.03 

50,000 36.13 0.59 0.55 

100,000 18.73 0.26 0.21 

150,000 12.91 0.15 0.11 

200,000 10.13 0.09 0.07 

 

Table 10: TUC Software Measurements on Intel Pentium 4 @ 3.00 GHz 

9.1.3 TUC Measurements for the evaluation of the TUC BLAST 
Generic Architecture V.2 

 

Lastly, several measurements have been made in order to compare the 

MicroBlaze version of the hardware on a high end device with an equivalent processor in 

terms of technology. We used an Intel Core 2 Duo E8400 at 3 GHz with 2 GB RAM and 

Microsoft Windows XP Professional Version 2002 Service Pack 3. For the measurements 

we used the latest available version of Intel(R) VTune(TM) Performance Analyzer 9.0. 

The software version that was used was downloaded from NCBI and is NCBI-BLAST-

2.2.19+-win32. The major change at this version is the separation of 

BLASTx/TBLASTn/TBLASTx. Instead of using the script BLASTall we used different 

executables that let the user test the different software performances of these variations. 

Table 11 shows the throughput values for several query sizes at any of the five BLAST 

variations.   

 

 

 

 

 



 

 

Query 

Length 

(Characters) 

BLASTn 

Throughput 

(char 

10
6
/sec) 

BLASTp 

Throughput 

(char 

10
6
/sec) 

BLASTx 

Throughput 

(char 

10
6
/sec) 

TBLASTn 

Throughput 

(char 

10
6
/sec) 

TBLASTx 

Throughput 

(char 

10
6
/sec) 

1,000 976.00 63.50 283.33 28.56 16.09 

2,000 815.51 42.63 166.94 14.75 9.23 

5,000 291.73 18.80 96.89 8.27 4.45 

10,000 219.58 9.26 55.23 4.92 2.60 

30,000 106.42 2.56 16.22 1.90 0.87 

50,000 95.48 1.68 11.38 1.09 0.58 

100,000 58.94 0.66 5.11 0.51 0.28 

150,000 32.37 0.43 3.29 0.35 0.19 

200,000 23.35 0.32 2.49 0.26 0.14 

 

Table 11: TUC Software Measurements on Intel Pentium Dual Core 2 @ 3.00 GHz 

9.2 HW Performance 

 

RC-BLAST was the first hardware implementation of BLAST but it will not be 

included in this comparison because the results were not competitive with software 

implementations even at the time when it was first reported. Table 8 shows the reported 

data that are available for Mercury BLAST and Treeblast. Mercury BLAST reports 

throughput of 96x10
6
 characters/sec for a single computing element, and 1400x106 

characters/sec for a complete system implementing BLASTn. TreeBlast reports 

throughput 110x10
6
 characters/sec per processing element but no further data except for 

relative performance and its queries are small - up to 600 elements for BLASTp (hence 

the results are optimistic as the entire queries can be mapped in BRAM). For TBLASTn 

the FPGA/FLASH architecture reports to be two and a half times faster than Timelogic 

DeCypher with an equivalent performance of 0.0034x10
6 

characters/sec throughput for a 

query of size 132,000x103. Due to the enormous size of the query no comparison can be 

made.  

 Mercury 

BLAST 

TreeBlast 

Query Length 

(Char.) 

BLASTn 

 

BLASTp 

 

 -  

600 - 110 

5000 1400 - 

 

Table 12: Hardware System Reported Throughputs 



 

 

9.3 TUC Performance 

9.3.1 TUC 1st generation 

 

The Technical University of Crete (TUC) 1st generation architecture was 

designed for BLASTn small query implementation (1000 letters) regardless of the data 

base size. It has been has been coded in VHDL and exhaustively post place-and-route 

simulated for the VIRTEX-4 family using the 4VFX140FF1517-11 device. 

The first experiment was the measurement of a single machine (N=1) which run 

at 121,20 MHz and consumed less than 1% of logic recources and 8 BRAMs. More 

specifically every single machine needs 8 Blocks of BRAM, 5 of which are given to the 

memory of W-mer, 1 is used for query, 1 for History Memory and 1 for Future Memory. 

On the other hand it consumed 744 out of 126,336 LUTs. That shows that the critical 

resource for implementing many parallel machines is the BRAMs and this restricts 

parallelisation to 69 for the specific device (it has 552 BRAMs divided by 8 BRAMs for 

each machine). The next implementation was for 60 parallel computing machines (N=60) 

where exactly 480 BRAMs (or 86%) where used but only 36% of the available LUTs 

were used. In the last experiment the critical resource BRAMs were exhausted using 552 

of them to create 69 parallel computing machines running at 100.36 MHz. As in the 

previous experiments the percentage of covering LUTs was low, only 42%. 

At the experiments above it was assumed that there will be an input data stream of 

up to 69 characters, 2 bits each in parallel at a speed of 100.39 MHz. For that data stream 

a 138 bit wide bus is needed, with a speed of 13.86 Gbps.  

Number 

of parallel 

Machines 

Number of 

FIFO16/RAMB16s 

(Total 552)           

Number of 4 

input LUTs 

(Total 126.336) 

1 8 1% 744 >1% 

60 480 86% 46,522 36% 

69 552  100% 53,836  42% 

 

Table 13: Area Demands of TUC Architecture 

 

 

 

 



 

 

Number of 

parallel 

Machines 

Speed 

(MHz) 

Width of 

Data 

Stream 

(characters) 

Actual 

Throughput 

(char 10
6
/sec) 

1 121 1 121.20  

60 103 60 6,192.58  

69 100 69 6,924.84  

 

Table 14: Speed and throughput of TUC Architecture 

 

9.3.2 TUC General architecture 

 

The design and implementation of the TUC BLASTn architecture has been 

reported in chapter 4 and several throughput figures where projected according to query 

size, system clock speed, and implementation of parallel processing elements. All 

measurements are for Xilinx 4 FPGA 4VFX140FF1517-11 device. Due to the use of 

similar architecture with the same level of parallelism and I/O structure, and without 

spending more resources for BLASTp and BLASTx/TBLASTn/TBLASTx 

implementation we have assumed that the clock speed remains unchanged. The key 

elements of this assumption were verified with post place and route results from the 

Xilinx tools. The clock speed was calculated according to post place and route timing 

information of Xilinx software 7.1.03 which includes Device speed data version:  

"ADVANCED 1.54 2005-05-25" and is 103 MHz. Calculations of throughput are based 

on a 100MHz clock in all versions, which is a conservative estimate. 

For the calculation of performance the first step of the algorithm has been ignored 

because it is performed off-line and only once for each query. The time needed for the 

first step is proportional to the query size and is the sum of the time that is needed to 

create he W-mer list from software plus the time that is needed to load this information to 

the TUC architecture. Every element of the W-mer list needs one cycle to be loaded and 

that means that is from 1,000 to 200,000 cycles depending on query size. Considering 

that the database size is several millions or billions of elements, which need several 

millions or billions of cycles to be processed, the time that is needed for the execution of 

the first step of the algorithm is negligible when compared to the total execution time.  

 

   



 

 

Algorithm Step No of Units Power 

PC/Unit  

LUT/Unit BRAM/Unit 

2
nd

 Step 

Processing 

element 

128 - 720 4 

Communication 

Protocol  

2 - 1,174 9 

3
rd

 Step 2 1 - - 

Total  2 94,508 521 

Total FPGA 

Resources 

 2  126,336 552 

Coverage 

Percentage 

 100% 74.80% 94.38% 

 

Table 15: FPGA Resources Used in the BLASTn Implementation 

 

Algorithm Step No of Units Power 

PC/Unit  

LUT/Unit BRAM/Unit 

2
nd

 Step 

Processing 

element 

128 - 750 4 

Communication 

Protocol  

2 - 1,174 9 

3
rd

 Step 2 1 - - 

Total  2 97,174 521 

Total FPGA 

Resources 

 2  126,336 552 

Coverage 

Percentage 

 100% 74.91% 94.38% 

 

Table 16: FPGA Resources Used in the BLASTp Implementation 

 

Algorithm Step No of Units Power 

PC/Unit  

LUT/Unit BRAM/Unit 

2
nd

 Step 

Processing 

element 

128 - 780 

 

4 

Communication 

Protocol  

2 - 1,174 9 

3
rd

 Step 2 1 - - 

Total  2 101,014 521 

Total FPGA 

Resources 

 2  126,336 552 

Coverage 

Percentage 

 100% 79.95% 94.38% 

 

Table 17: FPGA Resources Used in the BLASTx / TBLASTn / TBLASTx Implementation 

 

Tables 15, 16 and 17 show resource allocation of a system implemented on a 

Xilinx 4 FPGA 4VFX140FF1517-11. The results in these tables show that the critical 

resources remain identical and highly utilized in all versions of the BLAST algorithm, 



 

 

whereas the differences lie in data comparison units, control units, shift registers and 

some local busses. Therefore we can state that not only the architecture is general, but in 

terms of performance it strikes a good performance balance for all variants of the 

algorithm. 

 

Query 

Length 

(Characters) 

BLASTn 

Throughput 

(char 10
6
/sec) 

BLASTp 

Throughput 

(char 10
6
/sec) 

BLASTx/TBLASTn 

TBLASTx 

Throughput 

(char 10
6
/sec) 

1,000 8,192 8,192 1,365 

2,000 8,192 8,192 1,365 

5,000 8,192 4,096 683 

10,000 4,096 2,688 341 

30,000 2,048 896 128 

50,000 1,344 512 75 

100,000 640 256 32 

150,000 448 128 21 

200,000 320 128 11 

 

Table 18: TUC General Architecture System Performance 
 

The results in Table 18 show the projection of the TUC System for all major 

variants of BLAST and for a broad range of query sizes for any size of the database. 

Although these results are reported as projections, the fact that they come after detailed 

designs of the critical parts of the architecture and accurate timing simulations thereof 

means that they correspond to realistic performance that one can expect to achieve, even 

accounting for I/O issues. 

9.3.3 TUC Generic V.2 Architecture 

 

TUC Generic V.2 Architecture was implemented and post place and route 

simulated for a Virtex 5 XC5VLX330T. The measured period was 7.507ns or 

133.20MHz. At this architecture there are 20 MicroBlaze Processor with 8 2
nd

 step 

processing element each and 1 with 2 due to lack of memory blocks. Speed files that 

were used are ADVANCED 1.53, STEPPING level 0. 

Table 19 show the resources spend for the implementation of BLASTn variation. 

It is shown that also at this implementation number of BRAMs is the critical resource for 

the design. 



 

 

Table 20 shows the projected performance of the design for the several queries 

and all the algorithm variations. All the numbers have been calculated with clock 

frequency of 130MHz with the same method as in Table 18.  

Algorithm Step No of Units Virtex-5 

Slices 

36Kb BRAM  

2
nd

 Step Processing element 162 209 2 

Subtotal for 2
nd

 step   33,858 324 

3
rd

 Step MicroBlaze 21  283 - 

Subtotal for 3
rd

  step  5,943  

Total  39,801 324 

Total FPGA Resources  51,840 324 

Coverage Percentage  77% 100% 

 

Table 19: FPGA Resources Used in the TUC BLAST Generic Architecture V.2 

 
 

Query 

Length 

(Characters) 

BLASTn 

Throughput 

(char 10
6
/sec) 

BLASTp 

Throughput 

(char 10
6
/sec) 

BLASTx/TBLASTn 

TBLASTx 

Throughput 

(char 10
6
/sec) 

1,000 21,060 21,060 3,510 

2,000 21,060 21,060 3,510 

5,000 21,060 21,060 3,510 

10,000 21,060 10,530 1,755 

30,000 10,530 4,212 585 

50,000 5,265 2,340 351 

100,000 3,009 1,239 176 

150,000 2,106 842 117 

200,000 1,620 619 88 

 

Table 20: TUC BLAST Generic Architecture V.2 System Performance 

9.4 TUC Experimental Measurements  

 

The experimental measurements that are presented were made at the Diglent XUP 

V5 platform with an XC5V LX110T. As mentioned above at 8.4, 16 parallel BLAST 

machines were build, grouped at four quartets. Each of the quartets was mapped to device 

resources as it is shown at Table 21. 

 

 

 

 



 

 

 

 

 

 

 

Table 21: Device resource spend for each quartet 

 

For the certain platform the clock speed is 125 MHz which is also the clock speed 

that is needed for the Gigabit Ethernet Interface. Using 1000 long queries the actual 

throughput of the system is the actual speed of Gigabit Ethernet interface which is about 

500 Mbps to 800 Mbps or 250 Mchar to 400 Mchar for BLASTn variation of the 

algorithm that it was implemented. 

Using four replicates of the BLAST machine quartet the processed queries are 

four for four different databases. While the actual throughput has not been changed the 

actual computational effort is four times larger. That is the way that DeCypher measure 

the computational power of their architecture covering the throughput bottleneck. In 

order to have a direct comparison with this way of measurement the experimental 

platform has a potential of 1000 KaaMnt/sec to 1600 KaaMnt/sec. 

Table 22 shows five different databases and queries sets and actual execution 

times at a general purpose PC and the experimental platform. FPGA resources that are 

used for the specific experiment, are according to Table 21 are 20 per cent of the Virtex 5 

XC5V LX110T device, which is about one third of the larger Virtex 5 XC5VLX330T. 

The equivalent of the reconfigurable resources that were used for the specific experiment 

are the 6.7% of a large high end Virtex 5 XC5VLX330T device.  

Dataset Query 

Size 

DataBase 

Size 

Execution Time on Intel 

Pentium Dual Core 2 @ 

3.00 GHz(sec) 

 

Execution Time on 

XUP V5 @125Mhz 

 

Single Query 4 Queries (cycles) (sec) 

Dataset1 250 854,332 0.001 0.0035 318,706 0.0025 

Dataset2 250 1,985,136 0.002 0.0080 743,201 0.0059 

Dataset3 1,000 854,332 0.001 0.0035 449,641 0.0037 

Dataset4 1,000 1,985,136 0.002 0.0080 1,046,833 0.0071 

Dataset5 5,000 1,985,136 0.009 0.0825 1,364,512 0.0109 
 

Table 22: Execution times measured at experimental platform and corresponding run time on Intel 

Pentium Dual Core 2 @ 3.00 GHz 

Resource No of Units Total % Coverage 

Slices 6,710 69,120 9.7 

DSP48Es 7 64 10.9 

18Kb BRAM 128 148 21.6 



 

 

9.5 Comparisons and Speedups 

 

9.5.1 TUC 1st generation 

 

 

From Table 6 it can be shown that the fastest system throughput is achieved with 

the 16 processors Model 681 1.1 system, which has a throughput of 1,201.20 10
6
 

characters/sec. However the fastest single chip system is IBM Model 681 1.1 with 187.62 

10
6
 characters/sec. At these measurements I/O issues are not taking into consideration. 

Table 23 has the actual throughput for systems implementing BLAST algorithm 

and in Table 24 the SpeedUp of TUC architecture against the other systems.  

 

System Actual Throughput 
(10

6
 characters/sec) 

2GHz Xeon 319.25 

1.7 GHz Intel M 256.26 

2.66 GHz Intel P4 300.38 

TUC Architecture N=1 121.20 

TUC Architecture N=60 6,192.58 

TUC Architecture N=69 6,924.84 

IBM single chip 187.62 

IBM System 1,201.20 

 

Table 23: 1st TUC Generation Throughput 

 

 SpeedUp of  
TUC 

Architecture 

N=1 

SpeedUp of  
TUC 

Architecture 

N=60 

SpeedUp of  
TUC Architecture 

N=69 

2GHz Xeon 0.38 19.39 21.69 

1.7 GHz Intel M 0.47 24.16 27.02 

2.66 GHz Intel P4 0.40 20.61 23.05 

IBM single chip 0.65 33.00 36.90 

IBM System (16 chips) 0.10 5.15 5.76 

 

Table 24: 1st TUC Generation SpeedUp 

 

 

 

 

 



 

 

9.5.2 TUC General Architecture 

 

We have compared the TUC performance projections with measurements that 

have been reported from IBM or measured at TUC with software running on a Intel 

Pentium 4 and the results are shown in Tables 25, 26, and 27. These figures show that the 

general TUC architecture can be faster by tens up to more than one thousand times vs. a 

single chip such as a recent generation Pentium 4, or even hundreds of times faster than 

the IBM system with 16 1.1 GHz POWER4 pSeries 690 Model 681 processors. The 

speedup figure shows how many times one system is faster than another, e.g. for a query 

of 10000 characters, the TUC architecture running BLASTn is close to 32 times faster 

than a 3GHz Pentium 4 running the same code in software. Such results are most 

encouraging for hardware-accelerated BLAST execution.  

 

Query Length 

(Characters) 

TUC vs.  

IBM Single 

Chip 

TUC vs.  

IBM System 

TUC vs.  

Pentium 4 @ 3GHz 

1,000 43.66 6.82 13.91 

2,000 43.66 6.82 20.02 

5,000 575.69 51.41 37.53 

10,000 287.84 25.70 31.67 

30,000 143.92 12.85 49.64 

50,000 323.08 25.29 37.20 

100,000 153.85 12.04 34.17 

150,000 107.69 8.43 34.70 

200,000 76.92 6.02 32.59 

 

Table 25: Speedup of TUC for BLASTn 

 

 
Query Length 

(Characters) 

TUC vs.  

IBM Single 

Chip 

TUC vs.  

IBM System 

TUC vs.  

Pentium 4 @ 3GHz 

1,000 528.52 169.15 413.74 

2,000 528.52 169.15 644.03 

5,000 2,073.92 413.74 803.14 

10,000 1,361.01 271.52 890.07 

30,000 453.67 90.51 869.90 

50,000 1,462.86 343.62 867.80 

100,000 731.43 171.81 984.62 

150,000 365.71 85.91 853.33 

200,000 365.71 85.91 1,422.22 

 

Table 26: Speed up of TUC for BLASTp 

 

 



 

 

Query Length 

(Characters) 

TUC vs.  

IBM Single 

Chip 

TUC vs.  

IBM System 

TUC vs.  

Pentium 4 @ 3GHz 

1,000 286.16 72.15 65.09 

2,000 286.16 72.15 104.04 

5,000 16,261.90 497.09 137.42 

10,000 8,119.05 248.18 124.00 

30,000 3,047.62 93.16 124.27 

50,000 1,500.00 396.83 136.36 

100,000 640.00 169.31 152.38 

150,000 420.00 111.11 190.91 

200,000 220.00 58.20 157.14 

 

Table 27: Speed up of TUC for BLASTx  / TBLASTn / TBLASTx 

 

 
Figure 35: Speedup of TUC General Architecture vs. IBM Single Chip 
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Figure 36: Speedup of TUC General Architecture vs. IBM System 

 

 

Figure 37: Speedup of TUC General Architecture  vs. Pentium 4 @ 3GHz 
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Figures 35, 36, and 37 show the same speedup results with graphs, according to 

query size, for the general TUC architecture vs. a single IBM chip. IBM System with 16 

processors and a Pentium 4 @ 3GHz respectively for BLASTn, BLASTp and  

BLASTx/TBLASTn/TBLASTx. 

 

9.5.3 TUC General Architecture Comparison against Other Hardware 
Systems 

 

Unfortunately it is very difficult to make an apples-to-apples comparison between 

hardware implementations because there are no sufficient data published for other 

architectures to determine actual speedup. From the preliminary data reported for other 

hardware implementations based on similar technology, using the results from Table 11 

the TUC general architecture seems to be 5.85 times faster than Mercury Blast system 

and 74 times faster than TreeBLAST, with all three machines using implementation 

technology from the same year. We are careful to indicate that this seems to be the case, 

because hardware performance of other systems can only be inferred by published data 

and only in aggregate form. Although the following table is based on incomplete data 

(only aggregates have been published for the two architectures of this comparison), it was 

deemed appropriate as a rough estimate between the general TUC architecture and the 

FPGA/FLASH BLAST architecture. We can indirectly surmise some comparison data 

regarding the DeCypher engine for BLASTx/TBLASTnTBLASTx by converting the 

TUC throughput to the KaaMnt/sec units in Table 16. The KaaMnt is based on the 

multiplication on query size with the database size. The actual numbers that are reported 

for DeCypher are 182 KaaMnt/sec and for FPGA/FLASH BLAST architecture is 451 

KaaMnt/sec, but as the details of what these numbers represent are unpublished this 

comparison should be considered only as a rough estimate.  

 

 

 

 

 

 



 

 

Architecture Query 

Length 

(Kaa) 

BLASTx/TBLASTn 

TBLASTx 

Throughput 

KaaMnt/sec 

TUC General 

Architecture 

1 1,365 

2 2,730 

5 3,415 

10 3,410 

30 3,840 

50 3,750 

100 3,200 

150 3,150 

200 2,200 

DeCypher 132,000 182 

FPGA/FLASH 132,000 451 

 

Table 28: Performance of Hardware Implementations of BLAST 

 

9.5.4 TUC BLAST Generic Architecture V.2 

 

Speed up of the improved architecture is measured only against the general 

purpose CPU due to the fact that technology of all other chips is quiet old and such a 

comparison would be unfair against the high end device we use. Table 29 shows the 

speed ups for the latest version of TUC architecture against latest version of NCBI 

BLAST software running on a high end PC. 

 

Query 

Length 

(Characters) 

BLASTn 

 

BLASTp 

 

BLASTx 

 

TBLASTn 

 

TBLASTx 

 

1,000 21.58 331.65 12.39 122.90 218.15 

2,000 25.82 494.02 21.03 237.97 380.28 

5,000 72.19 1,120.21 36.23 424.43 788.76 

10,000 95.91 1,137.15 31.78 356.71 675.00 

30,000 98.95 1,645.31 36.07 307.89 672.41 

50,000 55.14 1,392.86 30.84 322.02 605.17 

100,000 51.05 1,877.27 34.44 345.10 628.57 

150,000 65.06 1,958.14 35.56 334.29 615.79 

200,000 69.38 1,934.38 35.34 338.46 628.57 

 

Table 29: Speed up of TUC BLAST Generic Architecture V.2 vs. Intel Core 2 Duo @ 3GHz (single 

core) 



 

 

All the measurements have been made running in one core, NCBI can run 

multithreaded with almost linear speed up in a multi-core processor.  Numbers in Table 

29 are illustrated at Figure 38. 

 

 

 

Figure 38: Speed up of TUC BLAST Generic Architecture V.2 vs. Intel Core 2 Duo @ 3GHz (single 

core) 

 

As mentioned at paragraph 9.4 several actual run were made at the experimental 

platform. According to Table 22 and Table 29, the Table 30 is formatted. At Table 30 is 

calculated the speedup of the experimental platform against the Intel Pentium Dual Core 

2 @ 3.00 GHz. It is also calculated the expected speedup considering Table 29 and the 

fact that only the equivalent of 6.7% of the reconfigurable resources of the Virtex 5 

XC5VLX330T are used.  Virtex 5 XC5VLX330T is the device that was used to calculate 

Table29. 
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Dataset Query 

Size 

DataBase Size Speedup XUP 

V5 vs. Intel 

Expected Speedup 

XUP V5 vs. Intel 

Dataset1 250 854,332 1.40 1.51 

Dataset2 250 1,985,136 1.36 1.51 

Dataset3 1,000 854,332 1.21 1.51 

Dataset4 1,000 1,985,136 1.31 1.51 

Dataset5 5,000 1,985,136 4.51 5.05 
 

Table 30: Run times measured at experimental platform and corresponding run time on Intel 

Pentium Dual Core 2 @ 3.00 GHz 
Actual speedup considered to be close to expected. Differences are due two 

reasons. For the small Queries of length 250 and 1000 bottleneck is the Data Input  rate 

as the Gigabit link works at 2/3 of the theoretical speed. For the Dataset5 with the 5,000 

characters Query, bottleneck proved to be the lack of  MicroBlaze computing power, for 

the 3rd step of the algorithm.  

9.6 Results Synopsis 

 

This thesis presents four different architectures to map the BLAST algorithm on 

reconfigurable logic and the respective performance achieved. There exist several 

research groups throughout the world which have presented their architectures and their 

results. As mentioned above, the BLAST algorithm has five different variations and its 

performance depends on query size. All these results have been presented in the previous 

sections of this chapter. Tables 31 and 32 summarize the most important results presented 

in this chapter. Table 31 presents the TUC architectures‘ performances vs. BLAST 

variation. 

 

 

 

 

 

 

 

 

 



 

 

Architecture 

 

BLASTn 

Throughput 

(char 10
6
/sec) 

BLASTp 

Throughput 

(char 10
6
/sec) 

BLASTx/TBLASTn 

TBLASTx 

Throughput 

(char 10
6
/sec) 

    

TUC 1st Generation 

(Query Size up to 

1000) 

6,925 N/A N/A 

    

TUC 2nd Generation 320-8,192 N/A N/A 

    

TUC BLAST Generic 

Architecture 
320-8,192 128-8,192 11-1,365 

    

TUC BLAST Generic 

Architecture V.2 
1,620-21,060 619-21,060 88-3,510 

 

Table 31: TUC BLAST Architectures Performance Synopsis 
 

Table 32 presents the speedup of the execution time achieved for the different 

TUC BLAST Architectures vs. the execution time of the NCBI BLAST version running 

on a personal computer. In order to have a fair comparison, NCBI software version and 

personal computer are of the same time that the TUC Architectures was developed. 

Architecture 

 

BLASTn 

 

BLASTp 

 

BLASTx/TBLASTn 

TBLASTx 
    

TUC 1st Generation 

(Query Size up to 

1000) 

23.05 N/A N/A 

    

TUC 2nd Generation 13.91-49.64 N/A N/A 

    

TUC BLAST Generic 

Architecture 
13.91-49.64 413.74-1,422.22 65.09-190.91 

    

TUC BLAST Generic 

Architecture V.2 
21.58-98.95 331.65-1,958.14 12.39-788.76 

 

Table 32: TUC BLAST Architectures SpeedUp Synopsis 

9.7 Performance Evaluation – Technology Impact 

 

We examine the performance of reconfigurable based hardware for BLAST 

algorithm since late 2005 when the first architecture was designed. and we evolve this 

architecture and its mapping to reconfigurable devices. At the same time a large common 



 

 

effort at NCBI offers significant upgrade of BLAST software from version 2.2.12 then to 

version 2.2.19+ today.  

Query 

Length 

(Characters) 

BLASTn 

 

BLASTp 

 

BLASTx 

 

TBLASTn 

 

TBLASTx 

 

1,000 1.66 3.21 13.51 1.36 0.77 

2,000 1.99 3.35 12.72 1.12 0.70 

5,000 1.34 3.69 19.49 1.66 0.90 

10,000 1.70 3.07 20.08 1.79 0.95 

30,000 2.58 2.49 15.75 1.84 0.84 

50,000 2.64 2.85 20.69 1.98 1.05 

100,000 3.15 2.54 24.33 2.43 1.33 

150,000 2.51 2.87 29.91 3.18 1.73 

200,000 2.31 3.56 35.57 3.71 2.00 

Average 2.21 3.07 21.34 2.12 1.14 

 

Table 33: Speed up of NCBI Software at 2008 technology vs. 2005 technology 

  

At technology level processors are two generations ahead from Pentium 4 to Core 

2 architecture, FPGAs that were used in first place were medium/large Virtex 4 and for 

the latest designs are the larger Virtex 5 devises. Taking into account the above 

technology evolvement and development of the BLAST implementations we can 

compare the software evolvement the hardware evolvement.  

Table 33 shows that there is a speed up from 2 to 3 to the most of the cases except 

the BLASTx and TBLASTx where the 3 software variations separate from the software 

that was running to a Pentium 4 to the up to date Pentium.  

The same calculations have been made for the hardware implementations from 2
nd

 

generation to TUC BLAST Generic Architecture V.2. At Table 34 it is shown that 

hardware improvement was 2.5 to 8 times. Improvement was bigger for large queries and 

this is can be explained to the larger amount of memory that is available to serve larger 

queries. 

 

 

 

 

 

 

 



 

 

Query 

Length 

(Characters) 

BLASTn 

 

BLASTp 

 

BLASTx 

 

TBLASTn 

 

TBLASTx 

 

1,000 2.57 2.57 2.57 2.57 2.57 

2,000 2.57 2.57 2.57 2.57 2.57 

5,000 2.57 5.14 5.14 5.14 5.14 

10,000 5.14 3.92 5.15 5.15 5.15 

30,000 5.14 4.70 4.57 4.57 4.57 

50,000 3.92 4.57 4.68 4.68 4.68 

100,000 4.70 4.84 5.50 5.50 5.50 

150,000 4.70 6.58 5.57 5.57 5.57 

200,000 5.06 4.84 8.00 8.00 8.00 

Average 4.04 4.41 4.86 4.86 4.86 

 

Table 34: Speed up of TUC Hardware Generic Architecture V.2 vs. Generation 1 

 

 

The same calculations, taking into account the first hardware generation for 

BLASTn variation with queries up to 1000 characters, are presented at Table 35. 

Generation 

HW 

Throughtput 

SW 

Throughtput Speed Up 
1 6,924 319.25 21.69 

2 8,192 588.75 13.91 

3 21,960 976.00 22.50 

 

Table 35: Speed up of NCBI SW and TUC HW 

9.8 Algorithm Sensitivity vs. Performance 

 

Running BLAST software is quite complicated and a lot of parameters are 

involved. There are a lot of options that have to do with the nature of genetic data and the 

biological analysis that the user of the software wants to do. One of the major options that 

a biologist has to determine in order to do genomic analysis with BLAST is its 

sensitivity.  As W-mers decrease in size the algorithm sensitivity increases. Sensitivity is 

directly linked to the size of the W-mer. W-mer size can vary from 4 to an arbitrary large 

number, where 28 is the size of W-mer in order to run MegaBLAST. If W-mer length or 

word_size (argument of BLAST) is set to 4 then the runs of the algorithm would be in the 

greatest sensitivity and will give more detailed results. If W-mer length sets to 28 then the 

runs of the algorithm would be in the smaller sensitivity and will give less detailed 

results.  

The smaller size of the W-mer the more computation time is needed to run the 

same datasets on a general purpose processor. All the measurements that have been taken 



 

 

are for W-mer with length of 11 which is typical. The TUC architecture performance 

does not get degraded and in some cases it can be improved when the W-mer length gets 

smaller. The design of the memory scheme needed for step 2 is proportional to the W-

mer length and can become smaller or stay the same. Step 3 is executed on the 

Microblaze which has only 8 engines for step 2 attached and thus there is no bottleneck. 

This approach has not been studied in depth with statistical analysis of BLAST algorithm 

for every length of W-mer and has to be proved experimentally, although some 

quantitative data are given on order to find out the potential of TUC design.  

Several measurements have been taken with an Intel Core 2 Duo E8400 at 3 GHz 

with 2 GB RAM and Microsoft Windows XP Professional Version 2002 SP3. It was used 

the latest available version of Intel(R) VTune(TM) Performance Analyzer 9.0. Table 36 

Shows for BLASTn and query length 1000 and several W-mers sizes the execution time 

of the Intel PC, the Virtex 5 and the respective speedup and figure 39 illustrates it.  

W-mer Size 

NCBI SW 

Throughtput 

(Char 10
6
/sec) 

TUC HW 

Throughtput 

(Char 10
6
/sec) 

Speed Up 

HW vs. SW 

4 1.13 

21,060 

18,582.24 

5 3.94 5,351.76 

6 13.66 1,541.28 

7 46.37 454.17 

8 96.00 219.37 

9 211.07 99.78 

10 347.58 60.59 

11 976.00 21.58 

 

Table 36: NCBI throughput according to W-mer Length 

 

http://www.in.gr/dictionary/lookup.asp?Word=quantitative


 

 

 

Figure 39: SpeedUp of TUC HW vs NCBI SW according to W-mer length 
  

9.9 Energy consumption  

 

This section presents the energy consumption issues for the TUC architectures 

resented above; although it was not in our initial intention to develop a low power 

system. We measured the energy consumption that was needed by the different 

implemented architectures to scan 10
6
 database characters.  

A high end board, like the HiTechGlobal HTG-LX330T, which is available at the 

MHL, is powered by a normal PC power supply of 400 watts. This board can achieve 

throughputs as mentioned in Table 19 (BLAST Generic Architecture V.2 System 

Performance). A PC was also used as the base platform for the high end board. The 

power consumption of the additional PC is also 400 watts. Thus, the whole system 

consumes in total approximately 800 watts. Table 37 shows the estimated energy 

consumption for such system per 10
6
 database characters. Although these calculations are 

approximate, they provide a reasonable and realistic estimate of what can be expected in 
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general, assuming a worst-case scenario both for the PC and for the reconfigurable 

hardware (i.e. fully used power supply).  

Query 

Length 

(Characters) 

BLASTn 

 

Joule/char 10
6
 

BLASTp 

 

Joule/char 10
6
 

BLASTx/TBLASTn 

TBLASTx 

Joule/char 10
6
 

1,000 0.0380 0.0380 0.2279 

2,000 0.0380 0.0380 0.2279 

5,000 0.0380 0.0380 0.2279 

10,000 0.0380 0.0760 0.4558 

30,000 0.0760 0.1899 1.3675 

50,000 0.1519 0.3419 2.2792 

100,000 0.2659 0.6457 4.5455 

150,000 0.3799 0.9501 6.8376 

200,000 0.4938 1.2924 9.0909 

 

Table 37: MicroBlaze Based System Energy Consumption 

 

A usual PC consumes 400 watts achieving performance for NCBI BLAST as it 

was measured at Table 11. Table 38 is calculated using the same metrics for energy 

consumption. 

Query 

Length 

(Characters) 

BLASTn 

Joule/char 

10
6
 

BLASTp 

Joule/char 

10
6
 

BLASTx 

Joule/char 

10
6
 

TBLASTn 

Joule/char 

10
6
 

TBLASTx 

Joule/char 

10
6
 

1,000 0.4098 6.2992 1.4118 14.0056 24.8602 

2,000 0.4905 9.3831 2.3961 27.1186 43.3369 

5,000 1.3711 21.2766 4.1284 48.3676 89.8876 

10,000 1.8217 43.1965 7.2424 81.3008 153.8462 

30,000 3.7587 156.2500 24.6609 210.5263 459.7701 

50,000 4.1894 238.0952 35.1494 366.9725 689.6552 

100,000 6.7866 606.0606 78.2779 784.3137 1,428.5714 

150,000 12.3571 930.2326 121.5805 1,142.8571 2,105.2632 

200,000 17.1306 1,250.0000 160.6426 1,538.4615 2,857.1429 

 

Table 38: PC System Energy Consumption 

 

According to Tables 37 and 38, Table 39 shows the energy efficiency (how many 

times less energy is consumed) of FPGA based system vs. normal PC.  

Table 39 and Table 29 show that power consumption is proportional to the speed 

up divided by a factor of 2. Table 39 shows also that FPGA based system can be up to 2 

orders of magnitude more efficient than a general purpose computer. Energy 

consumption is an issue of great importance for the large Bioinformatics projects. For 

example, a current study for phylogenomic alignments consists of almost 1,500 genes and 

requires 2.25 million CPU hours on an IBM BlueGene/L supercomputer. This shows that 

the energy consumption is one of the most important aspects of the project. 



 

 

 

Query 

Length 

(Characters) 

BLASTn 

PC/TUC 

architecture   

 

BLASTp 

PC/TUC 

architecture  

BLASTx 

PC/TUC 

architecture  

TBLASTn 

PC/TUC 

architecture  

TBLASTx 

PC/TUC 

architecture  

1,000 10.79 165.83 6.19 61.45 109.07 

2,000 12.91 247.01 10.51 118.98 190.14 

5,000 36.10 560.11 18.11 212.21 394.38 

10,000 47.96 568.57 15.89 178.35 337.50 

30,000 49.47 822.66 18.03 153.95 336.21 

50,000 27.57 696.43 15.42 161.01 302.59 

100,000 25.53 938.64 17.22 172.55 314.29 

150,000 32.53 979.07 17.78 167.14 307.89 

200,000 34.69 967.19 17.67 169.23 314.29 

 

Table 39: Energy Efficiency of TUC Architecture vs. PC 

 

As Table 39 is calculated on a real base model which considers the performance 

measurements and not energy or power measurements, it should be stretched as 

substantial evidence that FPGAs can be energy effective. This result can be applied only 

to applications that have a certain amount of data to compute, like bioinformatics and not 

to applications that work occasionally when data are produced, such as network 

applications.  Further research has to be done and more power measurements have to be 

taken in order to define the problem characteristics which make FPGAs energy efficient 

platforms.      

9.10 Cost effectiveness 

 

The system‘s cost effectiveness is another important issue to examine. The cost 

has to be considered into two different aspects: the cost to buy the systems and the 

operational cost. 

The cost to build a high-end FPGA-based system is approximately 8,500 Euros, 

e.g.  7,500 Euros for the FPGA board and 1,000 Euros for a personal computer. As the 

performance of the FPGA-based system is 20 to several hundred‘s times faster than the 

performance achieved by a personal computer and taking into account that the computer 

power consumption for the specific program costs from 20,000 Euros up to several 

hundred‘s thousands Euros, it can be concluded that the FPGA based system is from 2.5 

times cheaper. up to 100 times cheaper vs. the corresponding PC implementing the 



 

 

BLAST algorithm. These calculations are considered without the cost to develop 

hardware or software. 

The operational cost is mostly in the energy consumption, where FPGAs proved 

to be more efficient and the administration cost which is much higher for a PC farm than 

a single, FPGA-based system. 

 

  



 

 

Chapter 10  

Conclusions and Future Work 

 

10.1 Conclusions 

 

Concluding this thesis several points can be made according to technology impact, 

BLAST algorithm and Bioinformatics and hardware implementations.  

 

Technology 

 

FPGAs can offer significant speed up on algorithms in which the datapath can‘t 

be trivially mapped to parallel processing. As the devices get bigger and offer more 

components in addition to the reconfigurable fabric these algorithms can be better 

mapped to FPGAs by taking advantage of the resources. As in the general purpose 

processors, in the reconfigurable processors the amount of memory and the way that is 

organized is critical for system design. Another critical issue for such designs is the I/O, 

Xilinx devices offer significant resources for this problem but this is the one only aspect 

of the solution, in addition to the platform which is used and consequently the way in 

which the device is connected to the ―rest of the world‖.  

 

BLAST Algorithm 

 

This algorithm proved to be a challenging problem with great potential for design 

of hardware modules. There are 5 variations with many different configurations (W-mer 

length, scoring scheme etc.) that can be made and a generic hardware solution is 

impossible to be made without the use of a general purpose processor such as the 

PowerPC or the MicroBlaze, both of which were used in different implementations in this 

dissertation. The wide usage of the BLAST algorithm by biologists and the rate of the 

data that need to be processed, show that a platform with special-purpose hardware 

running BLAST efficiently can be very valuable to the scientific community.  



 

 

 

Bioinformatics 

 

BLAST is the most significant and widely used algorithm of bioinformatics. It‘s a 

streaming data algorithm where throughput rather than latency is significant. 

Bioinformatics algorithms are about one hundred in count, and most of them are 

computationally intensive. The TUC BLAST implementation shows that such problems 

with large memory needs, a lot of variations and different configuration or with I/O 

problems can be mapped efficiently on an FPGA and offer significant performance 

boosting.  

10.2 Towards a Reconfigurable Bioinformatics Processor 

 

As it has been mentioned before, bioinformatics is a research area and industry 

sector with explosive development. Genetic data generation is enormous and therefore 

their handling becomes an increasingly difficult problem. A generation of a 

bioinformatics processor is a challenge that can solve a real-world problem.  

For such BioProcessor with today technology two different approaches can been 

proposed. First, and the most obvious approach is a hardcore BioProcessor which fully 

implements a special instruction set which is designed to perform faster for the every 

common instruction that Bioinformatics algorithms perform. The main advantage of such 

a solution is that the performance for the common case would be very high due to clock 

speed, as it happens with the DSPs. On the other hand due to the fact that algorithms 

evolve continuously it is very difficult to develop a generic enough processor.  

A coarse-grain reconfigurable processor with specially designed available 

modules for bioinformatics could be a different approach. In such a device performance 

can be much better than a generic FPGA but not as fast as a fully custom processor. A 

reconfigurable part can be included together with a general-purpose hardcore processor.  

For both solutions the first step to implement is a very detailed statistical analysis 

of the characteristics of bioinformatics algorithms (or, at least the major ones), in order to 

find what are the common operations. Another very significant step is the specification of 



 

 

a standard interface between such a processor and the outside world which will be of very 

high speed and will help all applications to run on such a processor easily. 
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