

Technical University of Crete

Reconfigurable Architecture Structures for the BLAST

DNA Sequencing Algorithm

A DISSERTATION

SUBMITTED

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

of the degree

DOCTOR OF PHILOSOPHY

In the Field of Electronics & Computer Engineering

By

Euripides Sotiriades

Chania 2011

ΣΥΝΟΨΗ

Reconfigurable Architecture Structures for the BLAST DNA Sequencing Algorithm

Η Υπνινγηζηηθή Μνξηαθή Βηνινγία ή Βηνπιεξνθνξηθή είλαη έλαο από ηνπο πιένλ

αληαγωληζηηθνύο θιάδνπο ηεο επηζηήκεο ηνπ Ηιεθηξνληθνύ Μεραληθνύ θαη Μεραληθνύ

Ηιεθηξνληθώλ Υπνινγηζηώλ. Τα απνηειέζκαηα ηεο έξεπλαο ζηε Βηνπιεξνθνξηθή

αλακέλεηαη λα δώζνπλ ηεξάζηηα ώζεζε ζε επηζηήκεο όπωο ε Βηνινγία θαη ε Ιαηξηθή, θαη

λα νδεγήζνπλ ζε λέα θάξκαθα ή ζεξαπεπηηθέο κεζόδνπο. Η Βηνπιεξνθνξηθή

απνηειείηαη από έλα κεγάιν ζύλνιν αιγνξίζκωλ, ζπλήζωο ππνινγηζηηθά πνιύπινθωλ,

θαη ηεξάζηηεο ζπιινγέο δεδνκέλωλ πνπ απμάλνληαη κε κεγάινπο ξπζκνύο. Οη αιγόξηζκνη

απηνί έρνπλ ζπλήζωο δηαθνξεηηθέο παξαιιαγέο αλάινγα κε ηε θύζε ή ην κέγεζνο ηωλ

δεδνκέλωλ. Γηα ηελ επίιπζε νπνηνπδήπνηε πξνβιήκαηνο Βηνπιεξνθνξηθήο ζπλήζωο

απαηηείηαη εθαξκνγή πεξηζζνηέξωλ ηνπ ελόο αιγνξίζκωλ.

Ο αιγόξηζκνο BLAST, κε ηνλ νπνίν αζρνινύκαζηε ζηε ζπγθεθξηκέλε δηαηξηβή,

είλαη ν πιένλ ρξεζηκνπνηνύκελνο θαη γλωζηόο ζηελ θνηλόηεηα ηεο Βηνπιεξνθνξηθήο. Ο

ζπγθεθξηκέλνο αιγόξηζκνο ρξεζηκνπνηείηαη γηα ηελ αλαδήηεζε ελόο ηκήκαηνο ηνπ

γελεηηθνύ πιηθνύ θάπνηνπ νξγαληζκνύ (εξώηεκα - query) ζε κία γελεηηθή βάζε

δεδνκέλωλ. Τν απνηέιεζκα ηνπ αιγνξίζκνπ είλαη ν αξηζκόο εκθαλίζεωλ ηνπ εξωηήκαηνο

θαζώο θαη ε ζέζε ηνπ κέζα ζηε βάζε, ελώ εμεηάδεηαη θαη αλ ππάξρεη θάπνηνπ είδνπο

κεηάιιαμε ζηα δεδνκέλα ή θαθή απνθωδηθνπνίεζε (αιγόξηζκνο κε αθξηβνύο

ηαπηνπνίεζεο).

Η αλαδηαηαζζόκελε ινγηθή (FPGAs) έρεη ρξεζηκνπνηεζεί ζε ζεηξά

πξνβιεκάηωλ γηα ηελ επηηάρπλζε ηνπ ρξόλνπ εθηέιεζεο. Οη FPGAs έρνπλ

ρξεζηκνπνηεζεί ζε αιγόξηζκνπο αθξηβνύο ηαπηνπνίεζεο ή Βηνπιεξνθνξηθήο, αιιά

ιηγόηεξν εμειηγκέλνπο από ηνλ BLAST. Σηε δηαηξηβή απηή παξνπζηάδεηαη έλα ζύζηεκα

βαζηζκέλν ζε αλαδηαηαζζόκελε ινγηθή ην νπνίν κπνξεί λα επηιύζεη ηνλ αιγόξηζκν

BLAST αλεμάξηεηα κε ην κέγεζνο ή ηελ θύζε ηωλ δεδνκέλωλ. Ο αιγόξηζκνο έρεη

κειεηεζεί ζε βάζνο θαη έρεη ζρεδηαζηεί κία αξρηηεθηνληθή ε νπνία εμειίρζεθε ζε 4

δηαθνξεηηθέο εθδόζεηο. Η αξρηηεθηνληθή είλαη πξωηόηππε θαη είλαη ε κνλαδηθή έωο

ζήκεξα πνπ πξνζθέξεη κία εληειώο γεληθή ιύζε. Έρεη πξνζνκνηωζεί εμαληιεηηθά θαη ε

νξζή ιεηηνπξγία ηεο έρεη επηβεβαηωζεί. έλαληη ηωλ απνηειεζκάηωλ ηεο θνηλά απνδεθηήο

έθδνζεο ινγηζκηθνύ (NCBI BLAST).

Τν ηειηθό ζύζηεκα πινπνηήζεθε ζε εξγαζηεξηαθή θιίκαθα, θάηη πνπ απαηηνύζε

ηελ επίιπζε ελόο κεγάινπ αξηζκνύ ζεκαληηθώλ ηερληθώλ πξνβιεκάηωλ.

Η απόδνζε ηνπ ηειηθνύ ζπζηήκαηνο είλαη αλάινγε κε ηε θύζε θαη ην κέγεζνο

ηωλ δεδνκέλωλ. Η επηηάρπλζε θπκαίλεηαη από κία έωο ηξεηο ηάμεηο κεγέζνπο ζε ζρέζε κε

ζπκβαηηθνύο ππνινγηζηέο.

ABSTRACT

Reconfigurable Architecture Structures for the BLAST DNA Sequencing Algorithm

Computational Molecular Biology or Bioinformatics is an emerging area for

Electronic and Computer Engineering. Bioinformatics research results are expected to

have a great impact on Biology and on Medical research, leading to new medicines or

treatments for several diseases. The Bioinformatics area consists of several algorithms

and datasets, leading to computationally challenging problems. Datasets have

exponentially grown in size over the last few years, and the trend continues. The

algorithms have several variations, depending on the size and the nature of datasets.

Several algorithms are usually combined to solve bioinformatics problems.

The BLAST algorithm is considered to be the most widely used one in the

Bioinformatics community, and is used in many Bioinformatics problems, e.g. to find

similarity between fragments of genetic data (query) and an organism (database), even if

there are mutations or data that are not properly decoded (non exact match algorithm).

Reconfigurable logic has been used in numerous problems to accelerate the

execution time of many applications, FPGAs have been previously used to map exact

matching algorithms or less sophisticated Βioinformatics algorithms vs. BLAST.

This dissertation presents a system based on reconfigurable logic to implement

the BLAST algorithm, regardless of data size or algorithm variation. The BLAST

algorithm has been studied in depth and the corresponding architectures have been

designed and evolved in four different generations. The architectures are original and

unique in offering a completely general solution for all BLAST variations. All

architectures have been thoroughly post place and route simulated and the results have

been confirmed against results of the most broadly accepted version of software (the

NCBI BLAST). In addition, a laboratory prototype system has been build on an off-the-

shelf platform and all major technical implementation problems have been solved,

including I/O issues.

The TUC BLAST system, which is presented in this work, is one to three orders

of magnitude faster than a general purpose computer running the BLAST algorithm.

Acknowledgments

There is a large number of people who have contributed in different ways to this

dissertation, either in terms of content or in terms of support.

First, I would like to mention my friend and advisor, Apostolos Dollas. He has taught me

all these years (before and during my PhD studies) how to be a good researcher and

become a successful PhD student. Without his comments and direction it would be

impossible to present this dissertation.

I would like to thank Prof. Dionisios Pnevmatikatos for his interest and his active

collaboration at this dissertation. I would also like to thank Prof. Georgios Stamoulis as

member of the three-member dissertation committee for his support and useful

comments, especially in the first stages of my research.

I want to thank Asst. Prof. Yiannis Papaefstathiou who has also been involved actively at

my research, and the remaining members of my committee, Prof. Konstantinos

Kalaitzakis, Prof. Manolois Katevenis (of the U of Crete) and Prof. Georgios Stavrakakis

for their meaningful remarks.

I also want to thank, Christos Kozanitis for helping me in the development of the first

generation of the BLAST architecture; Panagiotis Afratis for his work at BLAST

algorithm analysis; Konstantinos Galanakis for his work with the Bloom filters and his

professional work with graphics at my presentation; Dimitris Vasilopoulos for the

implementation of the TCP/IP FPGA interface which has been used for the experiments;

finally, I would like to thank for his great help and active involvement at several stages of

this dissertation Grigorios Chrysos.

I would like to thank Kyprianos Papademetriou for his remarks, advice and his fine

cooperation all these years my friend and colleague.

Markos Kimionis and a large number of students of MHL provided intellectual and

emotional support during these years.

Finally, I would like to thank my family and my wife Athina for making my PhD

possible, and for being there when I needed them.

to everyone who supported me all this time,

 especially to Athina

and all the members of my family

CONTENTS

LIST OF FIGURES .. 11

LIST OF Tables ... 13

Chapter 1 ... 14

Introduction ... 14

1.1 FPGA Streaming Applications ... 14

1.2 Bioinformatics... 15

1.3 Contribution of this Thesis.. 16

1.4 Thesis Organization .. 17

Chapter 2 ... 18

Bioinformatics Problems and Algorithms .. 18

2.1 Bioinformatics Problems .. 18

2.2 Genetic Database Search Algorithms ... 20

2.3 BLAST Algorithm Description... 20

Chapter 3 ... 25

State of the Art .. 25

3.1 Previous Work on Several Problems of Molecular Biology 25

3.1.1 Previous Work on Genetic Database Search .. 25

3.1.2 Previous Efforts on BLAST .. 25

3.2 SW Implementations ... 27

Chapter 4 ... 28

TUC BLAST Architecture: 1
st
 Generation ... 28

4.1 Architecture Analysis.. 28

4.2 Hit Finder Unit .. 29

4.3 Extension Unit .. 30

4.4 Conclusions ... 32

Chapter 5 ... 33

TUC BLAST Architecture: 2
nd

 Generation .. 33

5.1 Software Hardware Partitioning ... 33

5.2 Architecture Analysis.. 35

5.2.1 2nd Step Unit ... 35

5.2.2 Communication Protocol .. 36

5.3 3
rd

 Step Software Architecture .. 38

Chapter 6 ... 41

TUC BLAST Generic Architecture .. 41

6.1 Analysis of the BLAST Algorithm Variations ... 41

6.2 Datapath Variation .. 42

6.3 Query Variations ... 48

6.4 Conclusions ... 50

Chapter 7 ... 51

TUC BLAST Generic Architecture V.2 ... 51

7.1 Processor and Switch Change ... 51

7.2 Future Memory Elimination ... 53

7.3 BLAST Algorithm Further Analysis and Filtering Potential 54

7.3.1 Prefiltering Window Size .. 55

7.3.2 Filtering Threshold .. 57

7.3.3 Sensitivity on Query Size .. 58

7.3.4 Partitioned Queries .. 58

7.4 Bloom Filters .. 59

7.5 BLAST Database Filter as an Autonomous System ... 61

7.5.1 PreBLAST Architecture.. 61

Chapter 8 ... 64

System Implementation .. 64

8.1 XUP Virtex 2P Platform ... 64

8.2 I/O Issues .. 65

8.2.1 Locally Stored Database ... 65

8.2.2 PCIe Interface ... 66

8.2.3 HyperTransport Protocol Interface .. 66

8.2.4 Gigabit Ethernet Interface .. 67

8.3 Universal Interface .. 68

8.4 XUP 5V Platform .. 70

8.5 Technology Synopsis .. 72

Chapter 9 ... 72

Implementation Issues .. 73

9.1 SW Performance ... 73

9.1.1 TUC Measurements For the evaluation of the 1st generation 74

9.1.2 TUC Measurements for the evaluation of the 2nd Generation General Architecture .. 75

9.1.3 TUC Measurements for the evaluation of the TUC BLAST Generic Architecture V.2 .. 76

9.2 HW Performance .. 77

9.3 TUC Performance ... 78

9.3.1 TUC 1st generation .. 78

9.3.2 TUC General architecture ... 79

9.3.3 TUC Generic V.2 Architecture ... 81

9.4 TUC Experimental Measurements .. 82

9.5 Comparisons and Speedups .. 84

9.5.1 TUC 1st generation .. 84

9.5.2 TUC General Architecture ... 85

9.5.3 TUC General Architecture Comparison against Other Hardware Systems 88

9.5.4 TUC BLAST Generic Architecture V.2 .. 89

9.6 Results Synopsis ... 91

9.7 Performance Evaluation – Technology Impact ... 92

9.8 Algorithm Sensitivity vs. Performance ... 94

9.9 Energy consumption ... 96

9.10 Cost effectiveness ... 98

Chapter 10 ... 100

Conclusions and Future Work .. 100

10.1 Conclusions .. 100

10.2 Towards a Reconfigurable Bioinformatics Processor 101

REFERENCES .. 102

Appendix A - Impact of this work .. 107

Appendix B – Relative Work .. 109

LIST OF FIGURES

Figure 1: BLAST Algorithm Step 1 ... 21

Figure 2: BLAST Algorithm Step 2 ... 21
Figure 3: BLAST Algorithm Step 3 ... 23
Figure 4: PAM 250 Matrix ... 24
Figure 5: BLOSUM 62(NCBI site)... 24
Figure 6: General Architecture Scheme of BLAST Machine 1st Generation 30

Figure 7: Hit Finder Unit Architecture ... 31
Figure 8: Step 3 Architecture .. 31

Figure 9: TUC BLAST Machine Architecture 2nd Generation.. 34

Figure 10: 2nd Step Architecture .. 36
Figure 11: Transfer Packet .. 37
Figure 12: Hardware Part of Protocol Architecture .. 38
Figure 13: Extension step of BLAST Flowchart .. 40

Figure 14: Second BLASTn Step Datapath (Same as the Second Variant of the TUC

Architecture) ... 44

Figure 15: Second BLASTp Step Datapath (New Architecture) 45
Figure 16: Second BLASTx / TBLASTn / TBLASTx Step Datapath (New Architecture)

... 46

Figure 17: Datapath for One Query and Several Databases ... 49
Figure 18: Datapath for Several Queries and a Common Database 50

Figure 19: General scheme of MicroBlaze Architecture .. 52
Figure 20: New Communication Protocol over FSL .. 53

Figure 21: Simplified Datapath with FSL interface .. 54
Figure 22: Hit rate distribution for a window of 100 characters over the streaming

database input, The two top circled areas are ―of interest‖ i.e. they result in BLAST

matches. The top horizontal line represents the optimal threshold (=5) to identify all these

areas. Thresholds lees than 5 will produce more candidate regions without identifying

more hits (drawn for Threshold=3), while thresholds greater than 5 will miss (some of)

the hits reported by BLAST .. 55
Figure 23: Database Space (%) vs. window Size. .. 56

Figure 24: Database Space (%) vs. Threshold. ... 57

Figure 25: Database Space (%) vs. Query size. .. 58

Figure 26: Query partitioning effect to Database Space ... 59
Figure 27: Example of BRAMs preloading .. 61
Figure 28: Data path of the designed system .. 63
Figure 29: Control path of the designed system ... 63
Figure 30: General Scheme of architecture of XUP V2P experiment 65

Figure 31: Result packet Structure .. 67
Figure 32: Glue Logic Architecture .. 69
Figure 33: Databases and Queries set-up .. 70
Figure 34: General Scheme of architecture of XUP V5 experiment 71
Figure 35: Speedup of TUC General Architecture vs. IBM Single Chip 86

Figure 36: Speedup of TUC General Architecture vs. IBM System 87

Figure 37: Speedup of TUC General Architecture vs. Pentium 4 @ 3GHz 87
Figure 38: Speed up of TUC BLAST Generic Architecture V.2 vs. Intel Core 2 Duo @

3GHz (single core) .. 90
Figure 39: SpeedUp of TUC HW vs NCBI SW according to W-mer length 96

LIST OF Tables

Table 1: BLAST Versions 21

Table 2: Parameter Values for Different Versions of BLAST 42
Table 3: Synopsis of Technical Characteristics for the Different TUC BLAST

Architectures 72
Table 4: IBM Single Chip Throughput – Testbench Cases 73
Table 5: IBM Single Chip Throughput – Performance Results 74

Table 6: IBM Multiprocessor System Throughput 74
Table 7: Measurements on XEON 2 GHz / Linux 75
Table 8: Measurements on Intel M 1.7 GHz / Windows XP 75

Table 9: Measurements at Intel P4 2.66GHz / Windows 2000 75
Table 10: TUC Software Measurements on Intel Pentium 4 @ 3.00 GHz 76
Table 11: TUC Software Measurements on Intel Pentium Dual Core 2 @ 3.00 GHz 77
Table 12: Hardware System Reported Throughputs 77

Table 13: Area Demands of TUC Architecture 78
Table 14: Speed and throughput of TUC Architecture 79

Table 15: FPGA Resources Used in the BLASTn Implementation 80
Table 16: FPGA Resources Used in the BLASTp Implementation 80
Table 17: FPGA Resources Used in the BLASTx / TBLASTn / TBLASTx

Implementation 80
Table 18: TUC General Architecture System Performance 81

Table 19: FPGA Resources Used in the TUC BLAST Generic Architecture V.2 82
Table 20: TUC BLAST Generic Architecture V.2 System Performance 82

Table 21: Device resource spend for each quartet 83
Table 22: Execution times measured at experimental platform and corresponding run

time on Intel Pentium Dual Core 2 @ 3.00 GHz 83
Table 23: 1st TUC Generation Throughput 84
Table 24: 1st TUC Generation SpeedUp 84

Table 25: Speedup of TUC for BLASTn 85
Table 26: Speed up of TUC for BLASTp 85
Table 27: Speed up of TUC for BLASTx / TBLASTn / TBLASTx 86

Table 28: Performance of Hardware Implementations of BLAST 89
Table 29: Speed up of TUC BLAST Generic Architecture V.2 vs. Intel Core 2 Duo @

3GHz (single core) 89
Table 30: Run times measured at experimental platform and corresponding run time on

Intel Pentium Dual Core 2 @ 3.00 GHz 91
Table 31: TUC BLAST Architectures Performance Synopsis 92
Table 32: TUC BLAST Architectures SpeedUp Synopsis 92

Table 33: Speed up of NCBI Software at 2008 technology vs. 2005 technology 93
Table 34: Speed up of TUC Hardware Generic Architecture V.2 vs. Generation 1 94
Table 35: Speed up of NCBI SW and TUC HW 94
Table 36: NCBI throughput according to W-mer Length 95
Table 37: MicroBlaze Based System Energy Consumption 97
Table 38: PC System Energy Consumption 97

Table 39: Energy Efficiency of TUC Architecture vs. PC 98

Chapter 1

Introduction

In this work, a class of computationally intensive problems that arise from the

early 70s, Computational Molecular Biology problems or Bioinformatics, was exploited

to find how these problems can be mapped to reconfigurable hardware efficiently. The

best known and most widely used algorithm of Bioinformatics, BLAST, was selected for

that purpose. We studied the algorithm in depth and we designed several different

reconfigurable fabric-based architectures. We generalize this architecture in order to

implement every variation of the algorithm and for every possible dataset. Designs

achieve performance speedup of one to three orders of magnitude faster than a general

purpose computer and better performance vs. any other published architecture from the

―competition‖ researchers who have designed similar hardware solutions. An

experimental platform was built to test these architectures extensively. In the course of

this dissertation, several open problems regarding application specific reconfigurable

hardware and data structures for reconfigurable logic were addressed, and several

experiments and implementations have been made in actual hardware.

1.1 FPGA Streaming Applications

Since the late 1980s when FPGAs where first introduced, several computationally

intensive problems have been mapped into that technology. Reconfigurable hardware

proved to be a solution for performance boosting of several algorithms. Several

projects[1][2] proved how efficiently this technology can be used; FPGAs offered orders

of magnitude better performance vs. general purpose processors in specific problems.

Eventually, FPGAs proved not only to be a cost effective rapid system prototyping

platform vs. ASIC, but a versatile technology of choice for Image Processing[3][4][5],

Automated Target Recognition[6], Data Encryption[8][9][10], Factoring Large

Numbers[11], DES [12], Elliptic Curve Cryptography Applications[13], Video

Processing [14][15], String Pattern Matching [16], Golomb Ruler Derivation[17][18],

FFT Implementations[19][20], Transitive Closure of Dynamic Graphs[21], Boolean

Satisfiability[22], Data Compression[23], Speech Recognition [24], Genetic Algorithms

for the Travelling Salesman Problem[25], and Arithmetic Applications [26][27] – to

name a few.

Nowadays modern devices offer significant resources in addition to the

reconfigurable fabric. Special I/O transceivers, dedicated logic blocks for memory,

powerful general purpose processors on chip, special modules for digital signal

processing, and fast floating point operations are the best known features of a modern

device. Even the reconfigurable fabric has been changed, offering more logic, better

routing resources and run time reconfiguration characteristics. In addition, a large

collection of functional Intellectual Property cores (IPs) is freely available to the designer

through IP generator tools such as the Xilinx Core Generator, or, distributed by designers

through web sites such as OpenCores[28].

All these available resources help designers to take up with new applications, with

considerable results on network systems, [29][30][31] and especially on network

intrusion detection systems [32] [33] [34] [35] [36] [36]. In general, these were the first

class of applications that came from a new category, i.e. Data Streaming.

Data streaming applications become much more significant these days due to the

technological advances of FPGAs, mostly in the forms of I/O transceivers on a chip and

large amount of available memory.

1.2 Bioinformatics

The application of information technology to the field of molecular biology is

called Bioinformatics. The double-helix form of DNA was discovered in 1953, increasing

the ability to manipulate biomolecular sequences and a huge amount of data was

generated from laboratories all over the world. Since then several new problems have

arisen. Biologists produce enormous amounts of data which has to be stored and

organized in several databases, to process them, and to create new algorithms - usually of

high complexity. Finally, and after all these processes, biologists get the data that they

need in order to have their biological conclusions. Bioinformatics was initially developed

since the early 1970s and nowadays it has a tremendous evolution, offering more accurate

http://en.wikipedia.org/wiki/Molecular_biology

and powerful tools to biologists. On the other hand, rapid developments in genomic and

other molecular research technologies offer raw data in at rates faster than Moore‘s law

[37][39]. As a result, a geometrically progressing volume of data production has created

huge databases containing DNA, RNA, and protein sequences. Such databases include

GenBank [40], EMBL[40], PIR[42], GSDB [43], DDBJ [44], EBI [45], and Swiss-

Prot[46]. Sequence comparison, especially in DNA or protein databases is one of the

most common computations that molecular biologists execute. This is the reason why

bioinformatics is a challenging area after almost forty years of development.

1.3 Contribution of this Thesis

This thesis is one of the first systematic approaches to build special-purpose

hardware for the computational biologists‘ algorithm of choice, BLAST. Internationally,

there were two additional independent research efforts in this general area, against which

this dissertation is compared, with distinct contributions vs. those of other groups. More,

specifically, in this dissertation:

 We developed architectures that map the BLAST algorithm for any size of

query, any size of data base, and in any of its five variations more

efficiently than any other implementation.

 We have studied the algorithm, designed several architectures, built actual

reconfigurable logic based hardware on several platforms, ran several

experiments and further improved our design.

 We have developed data structures in hardware which were appropriate

for BLAST, vs. previous research efforts which were largely in algorithms

suitable for simple, systolic array computations. Based on our know-how

from the first architecture, successive iterations led to simpler, faster, and

more general architectures for the same algorithm.

 We have measured speedup against a general purpose processor that varies

between one and three orders of magnitude, depending on input dataset

and algorithm variation.

 We showed that this form of computing is more cost effective, both in

terms of the platform cost as well as in power requirements vs. general-

purpose computing. This result applies to reconfigurable processors for a

general class of bioinformatics problems, and is not specific to BLAST

only.

 We have used a high-end platform and fast serial transfer protocol

(Gigabit Ethernet), with a proper interface to a PC, in order to prove

through experimental testing that I/O does not limit our design in general.

This result is in its own right useful, as BLAST was thought to be so I/O

intensive that any computational speedup through dedicated hardware

would not be very useful due to I/O bottlenecks. Our research shows that

there can be reconfigurable logic-based servers that run BLAST in its full

complexity and with results rivalling those of grid computers at a fraction

of the cost and energy requirements per calculation.

 We have showed with our research that bioinformatics algorithms can be

mapped efficiently to reconfigurable hardware and this can be a viable and

promising research direction.

 We also give a solution to FPGA streaming problems in which latency is

not a limitation, and this approach can be generalized to other fields of

applications.

1.4 Thesis Organization

In Chapter 2 we describe the main areas of Bioinformatics with a focus on

database search algorithms, and more specifically to BLAST. In Chapter 3 we refer to all

previous efforts for high performance architectures for Bioinformatics hardware with

emphasis on genetic database search and BLAST algorithm implementations. In Chapters

4 to 6 we describe all the proposed architectures of this work. Chapter 7 includes all

system improvements that we have made during the implementation phase and in Chapter

8 system implementations and verification on several FPGA platforms are presented.

Chapter 9 refers to implementation issues, performance measurements and comparisons

to the state of the art software and hardware, while Chapter 10 concludes and suggests

future work.

Chapter 2

Bioinformatics Problems and Algorithms

A brief introduction of bioinformatics problems is given in this chapter in order to

increase the readability of this dissertation. Naturally, substantial literature exists and it

should be consulted by readers who want a more in-depth knowledge of the field. This

chapter also focuses on the specific problem of sequence comparison of genetic data and

ends with the algorithm selection and its description.

2.1 Bioinformatics Problems

Bioinformatics consist of several problems of DNA and RNA data manipulation.

These problems are separated to six main categories:

a) Sequence comparison: This is the degree of matching between two or more

long sequences (comprising typically of characters A,T,P,G, but possibly with

as many as twenty characters). Biologists either use character sequence matches

on their own or as part of almost any other problem category.

b) Fragment assembly: Biologists try to assemble the complete genome of an

organism from parts that came out of a sequencer.

c) Physical mapping problem: This can be considered as fragment assembly on a

larger scale. Fragments are much longer, and for this reason assembly

techniques are completely different. The aim is to obtain the location of some

markers along the original DNA molecule.

d) Phylogenetic tree: Reconstruction of the tree of life in order to understand

evolution. It is a complex problem and several methods have been developed.

All of them are computationally demanding and several projects spend even

millions of CPU hours on this problem.

e) Genome rearrangements: It has been discovered that some organisms are

genetically different, not so much at the sequence level, but in the order in

which large similar chunks of their DNA appear in their respective genomes.

Interesting mathematical models have been developed to study such

differences.

f) RNA structure prediction and protein structure prediction: The understanding of

the biological function of molecules is actually at the heart of most problems in

computational biology. Because molecules fold in three dimensions and

because their function depends on the way they fold, a primary concern of

scientists in the past several decades has been the discovery of their three-

dimensional structure, in particular for RNA and proteins. This has given rise to

methods that try to predict a molecule's structure based on its primary sequence.

In order to solve almost any problem of these categories bioinformatics

researchers use a method which consists of several algorithms; a typical number is 4 to 5

and usually 2 or 3 of them are computing intensive.

All these problem categories are very important for biologists and the

effectiveness of their solution has significant impact on research in molecular biology,

new drug design, on new medical practice development, on genetic engineering, with

main emphasis on genetic diseases and mostly on cancer research. All these problem

categories have huge datasets and effectively all of the algorithms and methods that have

been developed to solve these problems are of high complexity.

The BLAST algorithm is considered to be the most significant among

bioinformatics algorithms. BLAST software is considered as one of the most widely used

bioinformatics programs [47] and BLAST is a component of many other algorithms [52].

For this reason there exists a common effort to improve the BLAST software. This effort

is the end results from the work of many groups, and the coordination and final BLAST

release takes place at the National Center for Biotechnology Information (NCBI), where

BLAST is the main project of the Institute [40].

Due to the wide use and the global acceptance of the BLAST algorithm from the

scientific community, it was selected for speedup through special-purpose architecture in

our work.

2.2 Genetic Database Search Algorithms

In 1970 Needleman and Wunch [48] developed an algorithm based on dynamic

programming in order to produce an optimal global alignment of two sequences.

However, as global alignment produced poor results for the biologists‘ needs, local

alignment algorithms were preferred by the biologists, i.e. algorithms that try to find

alignment between sub strings of the given sequences. Smith and Waterman [49]

developed an algorithm for local alignment which uses dynamic programming as well

and produces optimal results. However, its quadratic time complexity (O(mn) where m is

the size of the database and n the size of the query) makes the Smith-Waterman algorithm

unattractive as it is computationally too intensive.

Due to the need for faster, if not fully optimal searches, heuristic algorithms were

developed for the same problem, such as the FASTA [50] algorithm and subsequently its

improvement, BLAST [51]. Both algorithms use a heuristic and provide near optimal

local alignment, but their strong statistical background makes them a powerful tool for

computational biologists today. At present, BLAST is the most popular algorithm not

because it is faster than FASTA, which is arguable, but because its implementation is

open source and there is also a web interface at the NCBI website [40]. This interface

enables everyone to perform queries against biological databases.

2.3 BLAST Algorithm Description

BLAST is the acronym of Basic Local Alignment Search Tool and it has been

introduced by Altschul et. al. in 1990 [51]. Table 1 shows the different BLAST programs

depending on the nature of the data to be processed (nucleotides have a four letter

alphabet, amino acids have a twenty letter alphabet and there are cases of both forms

involved in a search). It should be noted that when databases are mentioned, only the set

of catalogued sequences are referred to and not any other database feature such as

multiple access, fast retrieval etc. The outputs of the algorithm are the positions of

substrings of the database and the query that have similarity as well the corresponding

score. These pairs of database and query regions are called High Score Pairs (HSP). The

score has significant value for biologists because it is used to compute several statistical

variables, the most important of which is the e-value (which is discussed below).

program Inputs

Blastp Query: amino acid, database: amino acid

Blastn Query: nucleotide, database: nucleotide

Blastx Query: translated nucleotide sequence, database: amino acid

Tblastn Query: amino acid, database: translated nucleotide sequence

Tblastx Query: translated nucleotide sequence, database: translated

nucleotide sequence

Table 1: BLAST Versions

ACGTAAATGCAG

Length of W-mer = 3

W-mer 1

W-mer 2
W-mer 10

W-mer 9
W-mer 3

ACG

CGT

 GTA

TAA

AAA

AAT

ATG

TGC

GCA

CAG

W-mer List

Figure 1: BLAST Algorithm Step 1

……………...TGCTTAAAGCCCA…………….

Data Base

Stream

ACGTAAAGCAGQuery

HIT Score = 15

Figure 2: BLAST Algorithm Step 2

The BLAST algorithm comprises of three steps. In the first step the query is

compiled to form a list of all the contiguous substrings with length w, which are called

W-mers. For example let the string ATGAACCTGAATACTGGGTTACCT be the query

sentence of length 24 and let w, the length of W-mers, be equal to 8. The word list will

contain 17 W-mers.

ATGAACCT will be the first

TGAACCTG will be the second

GAACCTGA will be the third, etc. and

GGTTACCT will be the last one.

In the First Step the complete list of W-mers of the query is created.

The Second step is the search of the database for ―hits‖. After the word list

generation, the database sequences are searched for an exact match between any

substring of the W-mers list and the database sequence. Every word of the word list that

is found in the database is called a hit and it is possible to be part of a High Score Pair

(HSP). The list of the generated ―hits‖ is processed in the third step, shown in Figure 3.

Each substring which yielded a match in the second step is extended locally in

both directions until the score of this substring no longer gets improved under the scoring

rules. The scoring scheme typically used for amino acid sequences is derived from the

PAM matrices. However, as both the query and the database consist of nucleotide

sequences, a simpler scoring scheme is used in BLAST, where each match is scored with

+5 and each mismatch is scored with -4. This scheme may produce results slightly

different than those with the use of PAM or BLOSUM matrices but biologically it does

not have significant impact.

The PAM matrices were introduced by Margaret Dayhoff [77] in 1978 based on

1572 observed mutations in 71 families of closely related proteins. PAM stands for Point

Accepted Mutation (PAM) or Percent Accepted Mutation, and is a set of matrices used to

score sequence alignments. Each matrix is twenty-by-twenty (for the twenty standard

amino acids); which has the score for every pair of proteins.

http://en.wikipedia.org/wiki/Margaret_Dayhoff
http://en.wikipedia.org/wiki/Matrix_%28mathematics%29
http://en.wikipedia.org/wiki/Sequence_alignment
http://en.wikipedia.org/wiki/Amino_acids

……………...TGCTTAAAGCCCA…………….

ACGTAAAGCAGQuery

Extension

First Iteration

Score = 25

Data Base

Stream

Match

+5

Match

+5

……………..TGCTTAAAGCCCA…………….

ACGTAAAGCAGQuery

Extension

Second Iteration

Score = 26

Data Base

Stream

MissMatch

-4

Match

+5

……………..TGCTTAAAGACCA…………….

ACGTAAAGCAGQuery

Extension

Third Iteration

Score = 27

Data Base

Stream

MissMatch

-4

Match

+5

……………..TGCTTAAAGACCA…………….

ACGTAAAGCAGQuery

Extension

Fourth Iteration

Score = 27

Data Base

Stream

MissMatch

-4

MissMatch

-4

Continue Extension

Continue Extension

Continue Extension

Stop Extension

 Figure 3: BLAST Algorithm Step 3

Figure 4: PAM 250 Matrix

BLOSUM (BLOcks of Amino Acid SUbstitution Matrix[78] is a substitution

matrix used for sequence alignment of proteins. BLOSUM are used to score alignments

between evolutionarily divergent protein sequences. BLOSUM is based on local

alignments. BLOSUM was first introduced in a paper by Henikoff and Henikoff[78].

Figure 5 shows BLOSUM 62.

Figure 5: BLOSUM 62(NCBI site)

Detailed description of the scoring scheme for NCBI distribution of BLAST has

not been published and for that reason it is not possible to calculate exactly the score as

NCBI distribution does.

http://en.wikipedia.org/wiki/BLOSUM#cite_note-0
http://en.wikipedia.org/wiki/Substitution_matrix
http://en.wikipedia.org/wiki/Substitution_matrix
http://en.wikipedia.org/wiki/Sequence_alignment
http://en.wikipedia.org/wiki/Protein

Chapter 3

State of the Art

3.1 Previous Work on Several Molecular Biology Problems

 3.1.1 Previous Work on Genetic Database Search

 The reconfigurable hardware community used DNA sequence matching and

database search as one of the first problems to show how computationally intensive

problems can be solved using FPGAs. The venerable Splash 2 platform was used during

the early 1990s by Hoang et. al. [53][54] to solve this problem using the Smith Waterman

algorithm. Later Guccione et. al. [55] used Jbits technology and both the Virginia Tech

Configurable Computing Laboratory [56] and Nanyang Technological University [57]

used run time reconfiguration for the same problem, also implementing the Smith

Waterman algorithm.

Common characteristic for all these projects is that they use problem of genetic

database search in order to demonstrate the computational power of reconfigurable logic

and use all the state of the art technology at the time to do it.

3.1.2 Previous Efforts on BLAST

Few academic approaches for the BLAST algorithm implementation have been

done to date. The first is the RC – BLAST project [57] where the designers fully

implemented the computationally heavy part of the NCBI BLAST algorithm but overall

performance of this project was reported to be poor, even worse than the corresponding

software implementation and no further efforts where given for this project. Even so, RC

– BLAST remains important to date as the first full BLAST implementation in

reconfigurable technology.

 A more recent academic effort for DNA sequence matching and database search

was presented at 2005 by the CAAD Lab at Boston University. The efforts of this group,

though independent of this dissertation, parallel our own work and can be directly

compared to the present thesis. They have implemented the BLAST algorithm for small

queries of up to 800 elements [58] and it was extended and implemented later [60],

providing significant (one order of magnitude) speedup against a software

implementation. This project is called TreeBLAST. An extension of TreeBLAST

presented at 2009 [78] was database prefiltering. This method had already been

implemented and published from our own TUC research in 2008[79].

The parallel Mercury BLAST [61][62][63]architecture was introduced by

Washington University in St. Louis, implementing BLASTn and offering a good speedup

against software running on a general purpose computer. Mercury BLAST is a still going

project and it seems that Washington University and the inventors intent to

commercialize the results of their research [64]. Mercury BLAST also uses BLOOM

filters, as TUC for database filtering but they use it for actual BLAST implementation

and not for database formation.

Most recently BLAST implementation using reconfigurable logic was presented

from IRISA, CNRS at France and the Institute of Computing Technology at Beijing,

China [65]. It is a board with reconfigurable logic coupled with a 64GB FLASH memory

and it was used to implement the BLASTx/TBLASTn/TBLASTx algorithm.

Multi-seed/ Multi-channel BLAST is the most recent effort from Chinese

National University of Defense Technology which is also reports very interesting results

for a generic architecture for BLAST algorithm[66][67].

In parallel with academic efforts, commercial efforts have taken place to run

efficiently the BLAST algorithm, Timelogic Inc. reports for its system DeCypher [68]

very impressive results on BLAST implementation, but without giving many details

about data sets that were used to run experiments, the techniques that are used to measure

its results, or even details for its system‘s number of chips or the I/O strategy used. For

those reasons their results can not be compared to others. The University of California at

Berkeley build the BEE engine as a configurable supercomputer and one of the

applications for this project was the BLAST algorithm [69]. The BEE-2 engine was

reported to be twice as fast as DeCypher without providing performance details and for

this reason its results cannot be compared to others. The latest commercial effort was

announced last year (2007) from Silicon Graphics (SGI) and a software company named

Mitrionics announcing very impressive results but following Timelogic policy didn‘t give

any detail at all [69]. The interest of well known companies about BLAST algorithm is an

additional proof of its importance, and more over the use of reconfigurable logic for

bioinformatics problems was selected as the No 5 trend for 2007 by the bioinformatics

community [70] .

Overall, Mercury BLAST, TreeBLAST, FPGA/FLASH and Multi-seed/ Multi-

channel BLAST are the most active projects, with very interesting architectures and

results and can be considered as ―competitors‖ to TUC BLAST project.

3.2 SW Implementations

Collective efforts by many groups for DNA sequence matching and database

search are collected at the National Center for Biotechnology Information (NCBI) [40]

which dominates the area of providing open source tools to implement the BLAST

algorithm. These implementations have been repeatedly used as computer benchmarks,

by major computer manufacturers such as IBM[70], DELL[71], and Apple[73]. IBM uses

the BLAST algorithm as a performance benchmark for its pSeries 375 MHz POWER3-II

symmetric multiprocessor (SMP) and the 1.1 GHz POWER4 pSeries 690 Model 681, and

provides detailed performance information for a large range of queries. DELL uses

BLAST as a benchmark for streaming applications to compare four different computers:

PowerEdge 3250 (with Intel Itanium processor at 1.5 GHz), PowerEdge 1750 (with Intel

Xeon processor at 3.2 GHz), PowerEdge 1850 (with Intel Xeon processor at 3.2 GHz),

and PowerEdge 1850 (with Intel Xeon processor at 3.6 GHz); with very large query

sizes—94,000 words; 206,000 words; and 510,000 words. DELL does not provide

detailed performance information but only relative performance and speed up. Apple also

uses BLAST as a performance benchmark of its systems called dual 2 GHz PowerMac

G5 and dual 800 MHz PowerMac G4, and they do provide detailed performance

information such as execution time for several queries and databases. The use of the

NCBI BLAST software as a benchmark for several computers shows the great

importance of BLAST algorithm and how computationally demanding it is.

Chapter 4

TUC BLAST Architecture: 1
st

 Generation

The first TUC BLAST generation was build in order to find out if reconfigurable

hardware can offer performance boosting for the BLAST algorithm and to understand

algorithm and the implementation problems deeply. The target technology was Xilinx

Virtex 4. Algorithm study and design of the architecture was work for this thesis, whereas

the VHDL modelling which is part of this work was the diploma thesis of C. Kozanitis.

Three publications came out of this work [81][82][83].

4.1 Architecture Analysis

The Technical University of Crete (TUC) architecture, described in this chapter,

was designed for BLASTn small query implementation (1000 letters) regardless of the

data base size. Query sequences can be divided to three cases: small sequence which is

between 100 to 2000 characters, medium which is between 2000 and 50000 characters,

and large which is between 50000 and 200000 characters. Data base size can also be

divided at three cases; small, medium, and large. Small consists of 4.7 × 106 characters,

medium is between 5 × 10
6
 and 200 ×10

6
, and large is between 200 × 10

6
 and 4 × 10

9

characters. NCBI codes consist of several hundreds of files calculating the BLAST

algorithm and exporting several numbers which have biological meaning. All these

numbers are calculated based on the score of HSP. These calculations produce substantial

computing load but the most significant part of the computation power is consumed to

find every HSP and extend it, calculating its score. Previous efforts for hardware

implementation of BLAST using profiling show that almost 80% of CPU time is spent on

these calculations [57].

The TUC architecture is divided into N identical computing machines, each one

of which implements all three steps of the algorithm. Input data have a width of 2N bits,

and come from N different channels. Every channel drives one of the N computing

engines. Every machine has two major subsystems, one for step 2 of the algorithm and

one for step 3. The first step of the algorithm (the W-mer calculation) is precalculated

before algorithm is run. The precalculation results are the first inputs for the machine and

they are stored in the memory, together with their position in the query. After this

procedure the data stream of the database starts to be processed and if a match is found

the second component of the architecture is activated and starts to extend the match, thus

implementing the third step of the algorithm. The general design of the architecture is

shown in Figure 6.

To illustrate in more detail, before each machine starts the database search, its

setup mode asks for the precomputation of W-mers, with their position in the query and

their loading to the corresponding memories. This procedure takes about 1000 cycles for

1000-character long queries. The input of the system in normal mode (database search) is

the database stream, one character for each machine. Only the 10 MSBs of W-mers are

stored in memory and at the address which corresponds to their 12 LSBs. The stored bits

are called W-mer tags. The width of the memory is 23 bits, 10 for the W-mer tag, 1 for

valid, and the remaining 12 to show the position of the corresponding W-mer in the input

query.

4.2 Hit Finder Unit

The Hit Finder Unit except for the W-mer memory that was previously described

has an input buffer which is 2 bits wide (1 character) and one thousand positions deep,

called Future memory. The data stream from the input channel passes through this buffer.

As long as there is no hit the buffer operates as a FIFO, getting 2 new bits from the

stream in every cycle and driving one shift register (22 bits long) that shifts 2 bits (one

letter) per cycle. That shift register has one eleven letter long substring, which is

compared with all the W-mers. The 12 LSB of the shift register address the W-mer

memory in order to read the W-mer tag. The W-mer tag is compared with the remaining

10 MSBs of the shift register. When a hit is found the Future memory continues to push

its data to the shift register and starts to send them at the extension unit as well for the 3rd

step of the algorithm. A new comparison is made during every cycle in which the shift

register has new data. Conditions for a hit are to have two equal strings in the shift

register and the W-mer memory, and the memory content to be valid. Figure 7 shows the

Hit Finder Unit architecture. If a second hit comes when the previous is still extended the

whole system goes to a stall mode. The system stops trying to find new hits and signals

external devices to stop sending new data. In this case the extension unit operates in the

normal mode. The Hit Finder unit stops normal operation but continues to pass the data

stream to the extension unit.

Figure 6: General Architecture Scheme of BLAST Machine 1st Generation

4.3 Extension Unit

The Extension Unit executes two comparisons in every cycle, according to the

algorithm. It extents both sides and compares the two pairs of letters. The first pair comes

from the query memory and the history memory and the remaining couple comes from

the Query memory and the Future memory. The data from the input are buffered in the

History and Future memories, as it can be seen in Figure 8. There are also counters and

registers that keep several useful data, such as hit position for query and database, its

length, and the score (which is the most important result to be calculated). Based on the

score all the remaining useful data for biologists (e.g. e-value) can be calculated.

Figure 7: Hit Finder Unit Architecture

Figure 8: Step 3 Architecture

4.4 Conclusions

This design, of the first generation architecture, offered significant speedups

which are presented in the corresponding chapter of this thesis, and proved that it was

worth to put further effort on the BLAST algorithm. It also pointed the hard problems of

a system design for the BLAST algorithm which were the memory amount limitations,

I/O problems and algorithm step 3 efficient mapping at reconfigurable fabric.

Chapter 5

TUC BLAST Architecture: 2
nd

 Generation

The aim of the design of the second TUC BLAST Generation was to build a more

flexible architecture for BLASTn variation which could handle dataset of arbitrary size.

Limitations of RAM and difficulties of mapping the 3
rd

 step of algorithm at

reconfigurable logic were the main problems of the first generation that we had to solve.

For that reason every available resourse of the FPGA had to be used. In order to maintain

high performance and to get flexibility and a SW/HW system was finally proposed. This

is also the first effort we know of in the literature, for which in-depth sizing calculations

and SW/HW partitioning were incorporated in the architecture, especially regarding the

resources for Step 3 of the algorithm.

5.1 Software Hardware Partitioning

The BLAST algorithm consists of the three steps shown in Chapter 2. The first

step is the W-mer calculation which is not computationally intensive and takes a

negligible amount of the total execution time. The second step is the comparison step

which is computationally the most intensive and must be executed for all the elements of

the database, i.e. several billions of elements. The third step of the algorithm is also

computationally intensive for those elements which require it, however, it does not need

to be executed for all the elements of the database but only for a small percentage of them

(the hits from Step 2). According to these characteristics of the algorithm, and

considering the target technology, partitioning of the algorithm to hardware and software

implementations has to optimize the total execution time.

Therefore, ideally we need a large reconfigurable fabric with sufficient on-board

memory for Step 2 of the algorithm, and a fast processor for Step 3 of the algorithm, and

sufficient aggregate input bandwidth (output is not an issue) so that the system will not be

I/O starved. An initial thought for the target technology for this design was the use of the

Virtex 4 family which consists of several units in addition to the reconfigurable fabric

and routing resources. In more detail it consists of 2 Power PC, a large number of Block

RAMs (called BRAM), up to 24 Rocket IO transceivers, and DSP units.

Figure 9: TUC BLAST Machine Architecture 2nd Generation

In the context of present research extensive studies of the algorithm were made.

Many runs of the algorithm showed that only a very small number of the comparisons

produce a HIT. Depending on the database and the length of the query the comparison

may vary but the actual percentage of hits is typically 0.0046%. For every hit and

depending on the query size, the execution unit consumes in the worst case time

proportional to the size and in the mean case time proportional to one fourth of the query

size. Making a rough calculation regarding the extension unit of the first generation

architecture for one thousand element queries, such a unit remains 97.5% of the

execution time inactive but it consumes 50% of the FPGA BRAM resources which are

the critical for computation parallelisation . On the other hand in the same device there

are two powerful IBM PowerPC 405 processor cores that can be exploited. Consequently,

software/hardware partitioning can be done between Step 2 and Step 3 of the algorithm.

Step 1 is the initialization of the hardware. Step 2 is executed on the reconfigurable fabric

and its results are processed with software on the embedded Power PC. The general

scheme of the second generation of this architecture is shown in Figure 9. The design

overhead for this architecture is the hit switch unit which has to check for hits and to

switch properly incoming results from each machine to the Power PC.

5.2 Architecture Analysis

5.2.1 2nd Step Unit

In Figure 10 the new architecture for the second step of the BLAST algorithm is

shown. Incoming data are coming from system I/O and have a width of 2 bits. Data are

stored to a 1000-position deep FIFO, called Future Memory. The incoming data rate is 2

bits per cycle. The output of the Future Memory FIFO drives the Shift Register and the

Data Grouping Unit. The Data Grouping Unit is a unit where data are grouped in 16-bit

words and then they are stored in the History Memory. The History Memory collects all

data as long as they might be useful for the third step of the algorithm. If a HIT is found

the data are driven to the Power PC for extension, else if a HIT is not found at the time

window that these data are useful they are overwritten by new data coming from the

Future Memory.

The output of the Future Memory also drives a 24-bit Shift Register which has a

width of 2 bits and a length of 12 bits. This register contains every possible W-mer and it

is compared to the W-mer list. The W-mer list has been implemented as two 4K x 1 bit

RAMs each, in which the 14 LSB and the 14 MSB of Shift Register are the input read

addresses. If the content of both RAMs is 1 then there is a possible hit. The hit signal

activates Control Unit which produces the possible Hit identity and writes it to HIT

FIFO. It also produces several control signals, which are not shown in the figure, and

collects all required data for extension to the History Memory Unit. When all the data are

ready for the extension, the Control Unit signals that is ready for data transfer. When the

lower layer of the design signals that is ready for the data transfer, the Control Unit drives

the Hit FIFO and the History Memory.

v

Figure 10: 2nd Step Architecture

The output of each machine goes to a Packaging Unit of the protocol part and

then through a Packet Switch and a Packet FIFO to the OPB Bus (i.e. the interface

between the reconfigurable fabric and the Power PC) and through it to the Power PC

processor. It should be noted that in this implementation the hits that are found are

potential hits. This is done because the examined string is not examined against the W-

mers but against two parts of the W-mers which are used in effect as a hashing function.

With such an implementation the space that is needed for W-mer list is one BRAM or 2

RAMs with 214 address space and not 224 address space which can not be implemented

with the total BRAMs of a single device. The tradeoff of increased ―false hits‖ that will

be properly weeded out is well worth the thousand-fold reduction of the on-board BRAM

memory requirements.

5.2.2 Communication Protocol (Step2 to PowerPC)

The outputs of the Step 2 architecture are inputs to the communication protocol

between the reconfigurable fabric and the PowerPC. The communication protocol

consists of hardware and software implementation and operates data transfer through the

OPB bus of the target technology. The hardware architecture is shown in Figure 10,

where every Step 2 processing unit is connected with a packaging unit and their outputs

are concatenated in 32 bit wide packets of variable length. Figure 11 shows the packet

which consists of two words as a header and up to 64 packets of data. The length of a

packet depends on whether a possible hit follows an earlier hit or not. If the possible hit

does not follow an earlier hit then the data packet length will be 64 words of 32-bits of

database data and two 32-bits words of hit id, because all the needed data have to be

transmitted. If the possible hit follows an earlier hit then some of the required information

has already been transmitted to the Power PC and only the remaining information has to

be transmitted. The amount of information depends on the distance between two hits and

it may need only the header of the packet to be transmitted without any data.

The Packet Switch checks on every cycle if there is a HIT at any machine. When

a HIT is detected then it starts to format the transfer packet, forming the header and then

it starts to read all the data. All the information produced from the Packet Switch is

written directly to the FIFO of the OPB bus. When the switching is complete, it waits for

the next HIT. If several HITs are produced in the same cycle, then the HIT that comes

from the same processing element is served. With that feature, when a machine has a

succession of HIT‘s, which is quite possible to happen in this algorithm, then the new

transfer packet will contain only the needed data and no data stream will be repeated. The

remaining units are not starved, as the Power PC becomes the critical resource through

which all possible hits will be serviced.

Machine ID
<14 bits>

Packet Length
<14 bits>

Hit Id.

<4 bits>

Hit Id. <32 bits>

Data <32 bits>

Data <32 bits>

Data <32 bits>

Data <32 bits>

……………….

……………….

Data <32 bits>

Data <32 bits>

Figure 11: Transfer Packet

Packaging

Unit

Packaging

Unit

Packaging

Unit

Packaging

Unit

Packet

Switch

Packet
FIFO

32
 b
its

32
 b
its

32
 b
its

32
 b
its

32
 b
its

1
6

 b
its

3
6

 b
its

1
6

 b
its

3
6

 b
its

1
6

 b
its

3
6

 b
its

1
6

 b
its

3
6

 b
its

32
 bi

ts

OPB

Bus

2 nd Step BLAST

ARCHITECTURE

Figure 12: Hardware Part of Protocol Architecture

On the other end of the reconfigurable/fixed processor interface, the PLB bus of

the Power PC runs the algorithm shown in Figure 12 to implement the software part of

the communication protocol. The processor is activated when a ―non-empty‖ signal is

true on the FIFO. Then it reads the first two data words and gets the machine id, the

length of the packet and the possible hit id. With this information it reads the data packets

that follow, storing them in order in a 1000 letter long array.

Subsequently it calculates, according to possible hit information, the possible hit

and determines if it is a HIT or not comparing with the W-mer list. If it is a HIT, then it

executes the extension and if not it returns to the start to wait for a new possible hit.

5.3 3rd Step Software Architecture

The Extension Unit is activated when a possible HIT is confirmed as an actual

HIT. The Score variable and indices are initialized to the proper values. The Score

variable is initialized to 60 because the W-mer is an exact match of 12 characters. The

indices are for the query and for the history memory. The database stream is extended to

both directions of the query during every iteration. If the query character matches with

the corresponding character of the data stream, then the Score value increased by 5 and if

there is a mismatch it is decreased by 4. Comparing 2 sets of characters during every

iteration the Score value can increase by 10 for two matches, by 1 for a match and a

mismatch, or it can decrease by 8 for two mismatches. If the score value decreases then

the extension stops and produces the higher score value as an output.

Initialize I,I’,J,J’;

New Score =

Score

New Score <

Score

Query(I) =

DB(I’)

Query(J) =

DB(J’)

Score = New

Score;

New Score = New

Score+5

New Score = New

Score-4

New Score = New

Score-4

New Score = New

Score+5

I++

I’++

J++

J’++

Hit Id UpDate

Y

Y

N

N

N

Y

END

Print Score

Figure 13: Extension step of BLAST Flowchart

Chapter 6

TUC BLAST Generic Architecture

The second generation of TUC BLAST architecture solved the most significant

problems that the first generation had. This architecture was designed for the first

variation of the algorithm BLASTn. In order to have a more versatile architecture that

could solve the complete set of the BLAST algorithm variations, the architecture should

become more generic. The third generation architecture that was developed in the context

of this dissertation is the TUC BLAST generic architecture. This work was described at

[84].

6.1 Analysis of the BLAST Algorithm Variations

The BLASTn algorithm, which was described in the previous chapters, is one of

the five variations of the BLAST algorithm. The BLASTp variant which compares amino

acids has a different alphabet of 20 letters instead of 4 and a different scoring scheme

(during the third step of the algorithm) than BLASTn. The BLASTp scoring scheme uses

matrices that can vary. The twenty letters require 5 bits lack in order to be represented vs.

2 bits that are needed for BLASTn alphabet. The BLASTx, TBLASTn, and TBLASTx

algorithms use translated database, queries, or both for comparison. According to this

translation each character is represented with 6 bits for the twenty letters alphabet that is

used. With 20 amino acids we would expect to require 5 bits to represent them, but due to

the translation process we actually need more bits. The translation process is the

representation of each amino acid as 3 nucleotides (one triplet), each of which is 2 bits

wide and therefore this representation is 6 bits wide. As the database is read and the

string comparisons are made it can not be determined even at the bit level when a triplet

starts. Therefore a six bit sliding frame scheme is used to examine the 6-bit encoded

amino acid against sequences that may possibly start at any bit of the database.

The third step of BLASTx, TBLASTn, and TBLASTx follows the same rules as

BLASTp. The typical size for W-mer is also different depending on BLAST version,

BLASTn has 11 characters; BLASTp has 3 characters and BLASTx/TBLASTn/

TBLASTx has 6 characters each. Finally, BLASTx/TBLASTn/TBLASTx compares the

six-frame conceptual translation products of a nucleic acid or protein sequence against a

protein sequence or translation products. Table 2 shows all the differences that are of

interest for a general system design.

 BLASTn BLASTp BLASTx/TBLASTn/

TBLASTx

Number of

Alphabet letters

4 20 20

Bits

Representing an

Alphabet letter

2 5 6

3
rd

 step scoring

scheme

+5 similar

-4 non similar

PAM Matrices

BLOSUM Matrices

PAM Matrices

BLOSUM Matrices

Size of W-mer

11 3 6

Comparison Every

character

Every character Six bits Frame

Table 2: Parameter Values for Different Versions of BLAST

An additional extension to the second variant of the TUC architecture is the size

of the query. Biologists report that a common length for a query is 1,000 to 10,000

characters but many implementations in software or in other groups examine queries up

to 200,000. Whereas this number is probably not of great use for present-day biologists‘

needs, one cannot preclude such queries and therefore they need to be supported as well.

6.2 Datapath Variation

Considering all these differences and the need to calculate the algorithm for

longer queries several changes have been made to the second step of the algorithm.

Figure 14 shows the datapath of the previously implemented architecture for BLASTn

Step 2. Figures 15, and 16 show respectively the datapaths of the new, general

architecture for BLASTn, BLASTp, and BLASTx/TBLASTn/TBLASTx respectively.

The Data Input differs at each datapath depending on the bits that represent an

alphabet letter. The BLASTn representation is 2 bits so the input to each processing

element is 2 bits. For BLASTp the representation is 5 bits and consequently the input data

are 5 bits for each processing element. For BLASTx/TBLASTn/TBLASTx the

representation is 6 bits but the input is 1 bit at a time, due to the six bit frame translation.

Each bit is a part of a translated word without an exact bound to which a letter belongs.

With that restriction a six bit frame is needed to examine one bit at a time and for that

reason the input data is on bit. Despite the obvious datapath similarities in Figures 14, 15,

and 16 one can see that we really have three distinct cases, complete with different input

bus widths, comparators, and registers, arising from the parameter values shown in Table

2.

1 BIT

1 BIT

Future Memory
Shift

Register

Hits FIFO

History Memory

W
-m

e
r L

is
t

Control Unit

2 BITS

2 BITS

36 BITS

14 BITS14 BITS

1 BIT

36 BITS
16 BITS

Control

SignalsData Base Elements Hit Identity

Data Grouping Unit

16 BITS

9000 positions
22 BITS

Figure 14: Second BLASTn Step Datapath (Same as the Second Variant of the TUC Architecture)

1 BIT

1 BIT

Future Memory
Shift

Register

Hits FIFO

History Memory

W
-m

e
r L

is
t

Control Unit

5 BITS

5 BITS

36 BITS

14 BITS14 BITS

1 BIT

36 BITS
32 BITS

Control

SignalsData Base Elements Hit Identity

Data Grouping Unit

32 BITS

15 bits3500 positions

512 lines

W-mer Length = 3

letters

or 5 bits

 Figure 15: Second BLASTp Step Datapath (New Architecture)

The Future Memory entity is a shift register to buffer the part of the database that

has not been examined yet for matches (but will be examined next) and is implemented

using one Block RAM (BRAM) of the Xilinx FPGA. The BRAM structure is an on-chip

static RAM that offers both high speed and a user-dependent datapath which can be quite

wide or quite narrow, leading to a fast, customizable memory. This memory, however, is

not as large as off-chip dynamic memory (DRAM), and therefore it is best used for local

data or as a buffer. Depending on the BLAST algorithm version the BRAM is 2, 5 or 1

bits wide to match the input stream. One BRAM can store up to 18Kbits which means

9000 characters for BLASTn, 3500 characters for BLASTp, and 3000 characters for the

BLASTx/TBLASTn/TBLASTx version.

1 BIT

1 BIT

Future Memory
Shift

Register

Hits FIFO

History Memory

W
-m

e
r L

is
t

Control Unit

1 BIT

1 BIT

36 BITS

14 BITS14 BITS

1 BIT

36 BITS
32 BITS

Control

SignalsData Base Elements Hit Identity

Data Grouping Unit

32 BITS

18 bits3000 positions

512 lines

W-mer Length = 3

letters

or 6 bits

 Figure 16: Second BLASTx / TBLASTn / TBLASTx Step Datapath (New Architecture)

The Shift Register that is driven from the Future Memory unit is 2, 5 or 1 bits

wide respectively to match the input stream and has 22, 15, or 18 bits depending on W-

mer size. The way the shift is done is one character for BLASTn and BLASTp, which

means 2 bits or 5 bits respectively, and one bit for BLASTx/TBLASTn/TBLASTx

version.

The Data Grouping Unit concatenates local information to 32-bit words in order

to pass those words to the PowerPC embedded processor via the OPB bus, i.e. the

standard bus which facilitates communication between the reconfigurable processor and

the fixed processor.

The busses which are driven from the Shift Register unit are always 14 bits wide

at every version. This width has been chosen to drive one BRAM as one dual memory.

For BLASTn it represents 14 bits of the 22 of the W-mer for BLASTp it represents 14

out of 15 bits and for BLASTx/TBLASTn/TBLASTx 14 it represents out of 18 bits of W-

mer. Covering more bits of the W-mer would increase the probability of a possible hit to

be an actual hit at the expense of less efficient usage of the BRAM. The increase of the

probability that a possible hit is an actual hit, however, is not necessarily a goal,

especially when it takes valuable resources that can be used for more parallel engines to

perform the second step of the algorithm. The reason for this non-obvious conclusion is

that if the PowerPC is underutilized, if there are more ―false positives‖ which are weeded

out in software the system throughput does not get worse, and if in fact the resources

saved (at the expense of false positives during the second step) are used to increase

parallelism in the second step of the algorithm, then the system-level throughput

increases. The compromise of 14 bits was chosen after careful statistical analysis for

several data sets, in order to match the reconfigurable processor speed to that of the fixed

processor. It should be noted, however, that for different implementation technologies or

different clock speeds of either the reconfigurable or the fixed processor, this number can

vary. For the 14-bit wide memory the initial calculation of W-mers should be different

depending on the version of BLAST algorithm, which means that with some data

manipulation at the preprocessing level the general architecture keeps its basic structure

without major changes. The remainder of the architecture for the second step remains the

same as does the interface to the OPB bus. Whereas the datapath retains some similarities

between BLAST versions, the corresponding control units are different, in order to

account for W-mer size, alphabet size, and in the case of BLASTx/TBLASTn/TBLASTx

for translations. The interface to the Power PC is identical for all versions of the

algorithm and the communication protocol remains also the same, but the PowerPC

software to evaluate whether a possible hit is an actual hit and perform the extension

(third step of the BLAST algorithm) is different for each version of BLAST.

The third step of the BLAST requires different scoring schemes depending on the

version of the algorithm. In addition, different scoring schemes may be chosen by the

system user, making this step ideally suited for software execution on the PowerPC.

Implementing the third step of BLAST on the Power PC gives the user the flexibility to

choose different scoring schemes at every time, as needed.

6.3 Query Variations

The query size in the first two variants of the TUC architecture (both for

BLASTn) is 1000 and 5000 elements respectively. These sizes cover the typical size of a

query but not every case. The published results of IBM and DELL report performance for

BLAST with query sizes of 200,000 and 206,000 elements respectively. Whereas these

sizes may have been chosen to optimize system performance, for an architecture to be

truly general, arbitrarily high query sizes must be supported as well.

For the general BLAST architecture reported in this work each machine can cover

query sizes up to 9,000 elements for BLASTn, 3,500 elements for BLASTp and 3,000

elements for BLASTx/TBLASTn/TBLASTx. Implementing larger query sizes in a single

machine, whereas feasible, would place excessive BRAM demands on the design and

thus reduce parallelism. The chosen solution was to perform data manipulation of the

query as a means to extend the query size. In practical terms this allows for a direct

space-time tradeoff and the ability to support arbitrarily large queries while maintaining a

more-or-less constant system-level throughput. For example, a query size of BLASTn

with size of 18,000 elements, can be calculated in two parallel machines, with the same

data input and different initialization to each W-mer list. The first half of the query is

calculated in one processing element and the other in the second processing element.

Thus, the length of queries is not dependent on the W-mer list capacity but on the Future

Memory size. For such an approach the software for the third step implementation on the

PowerPC should keep more history data of fewer parallel elements.

For all versions of the BLAST algorithm and the corresponding architectures it is

possible that we want either to examine the same query against different parts of the

database or different queries for the same part of the database. Therefore there is a part of

the datapath that is common to all variants of the TUC architecture, which can be

configured accordingly. Figures 17 and 18 show the datapath for each of the two cases. In

Figure 17 each of the comparison units for the second step of BLAST has been initialized

to the same query. The BIT Selector unit passes different portions of the database or

different databases to each processing element. Figure 18 shows how the same

implementation is initialized with different queries at each processing element and these

queries are examined in parallel against the same database.

Figure 17: Datapath for One Query and Several Databases

6.4 Conclusions

This general architecture takes advantage of unexploited FPGA resources without

using for each general processing element more critical resources such as BRAM. Each

processing element spends 4 BRAMs independently of the version of the algorithm that it

implements. It spends slightly more logic to implement the versions of the algorithm

other than BLASTn but without significant resource spending and consequently without

clock speed reduction. More detailed results are presented at Chapter 9.

Figure 18: Datapath for Several Queries and a Common Database

Chapter 7

TUC BLAST Generic Architecture V.2

The iterative process of multiple BLAST implementations allowed for in-depth

understanding of both algorithmic issues and technology mapping issues. Indeed, several

significant changes took place at the system implementation level without changing the

system architecture too significantly in order to produce yet a new architecture generation

but in order to produce a new version which will be referred as: TUC BLAST Generic

Architecture V.2. In this chapter we describe several system improvements at the

implementation level.

Sections 7.1 and 7.2 describe architectural improvements that came out as each

system was implemented and algorithm mapping to reconfigurable logic was better

tuned. Sections 7.3, 7.4, and 7.5 describe improvements that came from algorithm study

and better understanding. These three sections are the results of work that has been done

with Prof. D. Pnevmaticatos, and fellow researchers Grigorios Crhysos, Panagiotis

Afratis and Constantinos Galanakis, and it forms parts of P. Afratis‘ and C. Galanakis‘

diploma theses. Our contributions, highlighted here, address every stage of this work but

they are mainly at the system architecture level and on how the stand alone system

coupled with other processor. From this joint work three papers where

published[80][85][86].

7.1 Processor and Switch Change

In order to have a design that can be implemented with any Xilinx device

(including that of the XUP5V and the DRC platform) a decision was made to change the

hard-core Power PC processor with the soft-core MicroBlaze processor. The Power PC is

significantly more powerful than MicroBlaze but to date the maximum number of Power

PC processors in a single chip is two. On the other hand an up to date large Xilinx device

can have up to 80 [74] MicroBlaze processors running in parallel. In addition, the first

Virtex 5 Xilinx chips did not have any PowerPC processor initially and when the FX

series (with PowerPC) was available the MHL has no access to such a device.

Figure 19: General scheme of MicroBlaze Architecture

The processor change was decided for reasons of design simplification and

resulted in changes to the communication between the MicroBlaze processor and the

reconfigurable logic design. In the place of the OPB bus, the FSL link which is available

to the MicroBlaze processor was used for the communication. This change made the

communication faster and simpler. The MicroBlaze can hold up to 8 FSL co-processors.

Such a coprocessor can be a single BLAST Step 2 core or several connected with the

proper glue logic. Use of FSL link eliminates the need of the switch between the several

BLAST step 2 cores and the processor, which proved to be in the critical path, due to the

significantly smaller number of these cores in every single processor. The general scheme

(with a single BLAST step 2 core at every FSL) of the architecture after these changes

can be shown at Figure 19.

Machine ID<8 bits>

Machine ID<6 bits> Packet Length <2 bits>

Packet Length <8 bits>

Packet Length <4 bits> Hit Id. <4 bits>

Data <8 bits>

Data <8 bits>

Data <8 bits>

Data <8 bits>

……………….

……………….

Data <8 bits>

Data <8 bits>

Figure 20: New Communication Protocol over FSL

FSL is 8 bits wide while the OPB was 32 bits. This fact had a minor impact on the

way that BLAST algorithm Step 2 core communicates with the processor. The protocol

that was described at section 5.2.2 was changed slightly as we changed the width of the

words but we kept the order of the bits, Figure 20 illustrates the protocol.

7.2 Future Memory Elimination

The critical resource of the designed architecture is the memory used for FIFOs

implementation. As it is well known Xilinx devices have two kinds of memory;

distributed memory which is mapped logic to be implemented and Block RAM (BRAM)

memory which is mapped to embedded at the device, blocks of RAM. Only BRAM can

be used for FIFOs implementation. Memory size is coarse grain with 36 Kb at every

BRAM which is equal to 18,000 characters for BLASTn variation. In order to have fewer

and consequently larger memory blocks the future memory of the datapath was merged to

the FIFO called history memory. Some changes came to the control path of the design as

when a HIT is detected Step 2 core does not immediately tries to send data to the

MicroBlaze but waits for some cycles (according to query size) to collect the complete

set of data that needs for the 3
rd

 step of the algorithm. Figure 21 shows the new datapath

for BLASTn variation including the FSL interface.

Figure 21: Simplified Datapath with FSL interface

7.3 BLAST Algorithm Further Analysis and Filtering Potential

To analyze the potential of BLAST algorithm, we built a set of software tools that

implement BLAST searching. We ran these tools using several data sets that were

provided from the NCBI site, and we compared the results against those of the original

NCBI software. In our experiments we compared parts of Homo Sapiens (Human)

(queries) against Chimpanzee‘s chromosomes (Pan Troglodytes) genome (database). The

data exhibit a high degree of similarity which leads to high hit rate at the second step of

the BLAST algorithm. We also used the BioPerf benchmark for BLASTn.

In first place we investigated the load balance between the step 2 and the step 3 of

the algorithm at the implementation of the second architecture. In order to do that several

software tools were developed which had identical results with the NCBI software and

model the newly designed TUC architecture. Through this analysis a fundamental

observation was made. Step 3 of the algorithm performs the extension when Step 2 of the

algorithm produces a hit. Sections of the database that lead to good matches of the query

have more than 2 hits in the same area, and in general they do have a lot of hits when

they are examined. Thus, it would be interesting to see if the converse was also true. If

we have an area with a large number of hits does it mean that we have an area in which

the BLAST algorithm will have many extensions? Data that have been extracted from the

software tools were used and it has been proved that; if we filter the database and keep

the portions that produce many hits we have all the portions of the database that we

actually need to apply the BLAST algorithm. The eliminated portions of the database

have no biological or other value. In order to state how to do this filtering we follow

several steps.

Threshold = 5

6

2

3

5

4

1

0

Threshold = 3

Figure 22: Hit rate distribution for a window of 100 characters over the streaming database input,

The two top circled areas are “of interest” i.e. they result in BLAST matches. The top horizontal line

represents the optimal threshold (=5) to identify all these areas. Thresholds lees than 5 will produce

more candidate regions without identifying more hits (drawn for Threshold=3), while thresholds

greater than 5 will miss (some of) the hits reported by BLAST

7.3.1 Prefiltering Window Size

First, we investigated the effect of the window size, i.e. the width of the database

region in which we measure the hit rate. Figure 23 plots ―Space‖ (i.e. the resulting

percentage of the database that we need to process after prefiltering) versus window size:

small values are better since they correspond to smaller input to the full BLAST

processing. Since the query size may vary greatly, we express the window size as a

percentage of the query length, ranging from 10% up to 100%. Intuitively, larger window

sizes will produce more hits shifting the hit rate upwards. The results in Figure 23 lead to

two conclusions. First, regarding window size, space is either unaffected or increases as

the window size increases; hence a small window is both more effective and sufficient to

capture the necessary information. Second, the effectiveness of pre-filtering varies

greatly: we find cases where the results are excellent (the required space is in the range of

3% or less of the database), while totally ineffective in other cases (chromosomes 12 and

13) with space 100%, i.e. the entire database is candidate for match.

Figure 23: Database Space (%) vs. window Size.

Window size vs Database Space %

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Window Size

D
a

ta
b

a
s

e
 S

p
a

c
e

 %

chr7

chr3

chrX

chr12

chr13

Figure 24: Database Space (%) vs. Threshold.

7.3.2 Filtering Threshold

The other main filtering parameter is the threshold. Figure 24 plots the database

space versus a threshold that ranges between two and five. We see that as threshold

increases there is a decrease in space, even for some of the ―difficult‖ cases (chromosome

12) identified in the previous paragraph. However, the results for other queries, such as

chromosome 13, are insensitive to increasing the threshold. Note that the choice of the

threshold value is not straightforward. Setting the threshold too low results in a larger

database space that needs to be processed. Setting the threshold too high we risk ignoring

portions of the database that will produce actual hits. In the rest of this paper we use a

threshold value of 2 based on the following observation: for the BLAST algorithm to

begin the extension process we need at least one match. Since there will be at least one

extension (otherwise the BLAST extension process stops), we will find another hit for a

W-mer overlapping with the first. We tested all our results for all our runs and verified

that indeed this threshold identifies all the reported NCBI BLAST results. To safely use

larger threshold values we need to further understand the biological significance on the

reported results. We believe that setting larger threshold values may omit only the least

significant BLAST results while still report the high ranked ones.

Threshold vs Database size %

0%

20%

40%

60%

80%

100%

120%

2 3 4 5

Threshold

D
a

ta
b

a
s

e
 s

iz
e

 % chr7

chr3

chrX

chr12

chr13

Figure 25: Database Space (%) vs. Query size.

7.3.3 Sensitivity on Query Size

To understand the behavior of the ―difficult‖ cases such as of the chromosome 12

and 13 queries, we analyzed our results and observed that all these cases correspond to

very long queries in the order of many thousand characters. In Figure 25 we plot the

effect of the query size on the resulting database space that must be searched for the

queries that are not amenable to prefiltering. To produce small queries we use a prefix of

the original query at a particular size. The trend in Figure 25 is very clear: large queries

are not amenable to prefiltering, while small queries show great potential. A possible

explanation for this behaviour is that a large query contains more distinct W-mers than a

smaller one, so the probability of finding multiple hits between the database and any W-

mer is large. Prefiltering works very well for queries a few hundred characters long, and

offers no improvement for queries longer than 5 thousand characters.

7.3.4 Partitioned Queries

The results from Figure 25 made clear that long queries, although very useful for

biologists, cannot be handled effectively by prefiltering. However, the same results offer

the solution to the problem: if the query is partitioned in smaller pieces and is processed

Database % Space vs Query Size

0%

20%

40%

60%

80%

100%

120%

1 1001 2001 3001 4001 5001

Query Size

D
a

ta
b

a
s

e
 S

p
a

c
e

 %

chr3

chr7

chr13

chr17

chr21

in parallel, we may achieve operation in the effective prefiltering region. Figure 26

evaluates the partitioning potential. Starting with the original query size, we subdivide it

to pieces of one thousand, 500, 250 characters and so on, evaluating the resulting

database space that we need to search. As indicated from Figure 25, as the query size

becomes smaller, the effectiveness of prefiltering increases. The best results are achieved

for small sub-queries less than 250 characters, and for all the difficult queries pre-filtering

achieves a 5-fold decrease in the space that needs to be explored (space = 20% of the

database). More important is the correlation of query and prefiltering potential: given the

database and the query, we can determine the effectiveness of prefiltering, and the extent

of required partitioning.

Figure 26: Query partitioning effect to Database Space

7.4 Bloom Filters

All the previously described properties are based on the number of the hits that

are produced by the second step of the algorithm. In order to find hits, comparisons

should be performed between every W-mer and the complete database. These

comparisons are 26 bit-wide (12 characters x 2 bits/character) and their number is almost

equal to the size of query: the number of W-mers is equal to (query length – W-mer

length + 1). For a 1,000 character query 989 W-mers are produced and need to be

Database Space % vs Query Size Partitioning

0%

20%

40%

60%

80%

100%

120%

Query 1000 500 250 150 100

Length of Query parts

D
a

ta
b

a
s

e
 S

p
a

c
e

 %

chr13

chrY

chr14

chr17

compared to the database input at every location. There are several implementations

proposed for this problem.

A memory cache-like scheme was used at all TUC architectures. Using memories

has the advantage that the size of the designed hardware is proportional to W-mer size

which is constant and not to query size which varies. However, a single memory cannot

be implemented due to its size (24 bits address) that can not fit to any reconfigurable

device.

Due to hardware implementation limitations, an alternative method is proposed

that uses a Bloom Filter [77] to determine the occurrence of a W-mer of a query. By the

properties of Bloom filters, this approach can produce false positives, hence we count

probable hits instead of actual hits. We attempted to identify the optimum number of the

hash functions and the optimum depth of the filter memories while taking into account

the implementation idiosyncrasies of the Xilinx FPGAs, and after thorough experimental

research we concluded that 4 distinct prime polynomials used as hash functions to

address 4 filter memories with address 14 bits was a good implementation trade-off. The

4 hash functions reduce the 24-bit wide W-mers to four 14-bit wide addresses, which are

used to address 4 independent, 1-bit wide memories. These memories are initialized by

setting to 1 all the locations identified by the hashing of all the query W-mers. On

database lookup, a (probable) hit is determined when all the addressed memory locations

are set to 1. Those matches are called probable hits because such a match might not

necessarily produce a hit in the original second step of BLAST. However, in Bloom

filters negatives are always true, so if a match does not exist, it can never be reported

falsely. The structure of the Bloom filter is illustrated at Figure 27. Hence a simple

lookup in the memory and an AND gate (not shown in Figure 27) identify if the W-mer

portion is a sub-match with some W-mer of the query.

w-mer

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Bits Array

(16k bits)

HF1(w)

HF2(w)

HF3(w)

HF4(w)

4 Hash

Functions 0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

Bits Array

(16k bits)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

Bits Array

(16k bits)

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

Bits Array

(16k bits)

k

Figure 27: Example of BRAMs preloading

Since Virtex-5 BRAM blocks store 32kbits, are dual ported, and in their 32kx1

configuration need 15 bits for addressing, we combined two independent filter memories

into a single BRAM block. In this way, the Bloom Filter can be efficiently implemented

using just two embedded BRAM blocks.

7.5 BLAST Database Filter as an Autonomous System

7.5.1 PreBLAST Architecture

The implemented architecture, shown in Figure 28, takes as input the database

stream. At every clock cycle a new character (2bits for BLASTn) is inserted in the shift

register generating a new word of the database that has to be examined against all the W-

mers. This 24-bit word is processed through the Bloom filters with the same hash

functions that have been used to initialize the BRAMs four new 15-bit words are

produced. The hashed values are used to address the four lookup tables and if all have a

‗1‘ stored at these positions, a probable hit is reported.

Figure 29 shows how the probable hits are counted for a certain window size. At

every clock cycle the output of the probable hit is inserted in a shift register with length

of window size. If a ‗1‘ is inserted then the Up/Down counter counts up and when an ‗1‘

is shifted out of the register the Up/Down counter counts down. With this simple design

the Up/Down counter has always the number of the possible hits for the certain time

window.

In this design there is also a position counter which counts the number of the

characters that have been processed which is translated to the position of the database

which is processed at the certain time. If the value of the Up/Down counter exceeds the

predefined threshold then the position of database that this happens is stored in a

memory. When the value of the Up/Down counter decreases under the threshold then the

position of database is stored again. Consequently every pair of the stored values in the

memory is the tagged part of the database.

In order to show the effectiveness of prefiltering we combined it with the

Multiprocessor Platform for Embedded systems (M.PL.EM) [76]. We modified the way

the MPLEM processor reads the database from its memory. Instead of initializing the

memory controller and get the data in the row the memory controller starts from the

points where the output memory of the PreBLAST filter shows, up to the points that the

―interesting‖ parts of the database ends.

The MPLEM platform consists of MicroBlaze embedded processors which are

not able to run the original NCBI software. For that reason a new software version of

BLASTn algorithm was implemented and several experiments where tested. To verify the

correctness, we run tests on a fully post-place and route simulation with up to 4 parallel

MicroBlaze processors.

BRAM

1bit x

16k

BRAM

1bit x

16k

BRAM

1bit x

16k

BRAM

1bit x

16k

24 bits

1
4

 A
d

d
re

s
s
in

g
 B

it
s

HF1(w) HF2(w) HF3(w) HF4(w)

24 bits
2 bits 2 bits

Shift Register

Probable

Hit

Probable

Hit

2 bits
2 bits

Shift Register

HF1(w) HF2(w) HF3(w) HF4(w)

1
4

 A
d

d
re

s
s
in

g
 B

it
s

1
4

 A
d

d
re

s
s
in

g
 B

it
s

1
4

 A
d

d
re

s
s
in

g
 B

it
s

1
4

 A
d

d
re

s
s
in

g
 B

it
s

1
4

 A
d

d
re

s
s
in

g
 B

it
s

1
4

 A
d

d
re

s
s
in

g
 B

it
s

1
4

 A
d

d
re

s
s
in

g
 B

it
s

Figure 28: Data path of the designed system

Shift Register

(Window Size)

Up / Down Counter
Down

Control Unit

Position Counter

32 bits

BRAM

32 x 10k

Space

Memory

10k

Address

Data

32 bits

Probable HITS

Up

Figure 29: Control path of the designed system

Chapter 8

System Implementation

In this chapter all the systems that have been actually implemented on

reconfigurable logic are described. Three platforms have been used to implement TUC

BLAST. The XUP Virtex 2P platform was used initially in order to build the actual

system for architecture verification. Then a DRC platform with Virtex 4 was used in

cooperation with Synective Labs at Sweden but with no success due to problems during

the integration phase. Finally a XUP Virtex 5 platform was used which offered enough

resources including fast I/O for system building in small scale.

8.1 XUP Virtex 2P Platform

XUP Virtex 2P has a medium size device with XC30V2P with 136 embedded

BRAMs and 2 PowerPC processors. The design that was implemented had finally four

parallel Step 2 cores connected to 1 PowerPC. There was no input to the FPGA device

from PC and RS 232 was used for output. The Xilinx tool Chipscope was used for

internal signal checking and debugging through JTAG port. A controller connected with

a preloaded ROM was used in order to give Inputs to the step 2 cores. Figure 30 shows

the block diagram of the design.

Using this platform, which was available at the time, helped us to build and run

several small- and medium-scale tests to debug the design up to the point that it was

integrated and to evaluate the performance. The clock speed was 100 Mhz and some

results from these implementations are presented in the next chapter.

 Figure 30: General Scheme of architecture of XUP V2P experiment

8.2 I/O Issues

The XUP Virtex 2P platform was proved to be very good for architecture

verification, at least for runs with database up to 40,000 characters. In order to build a

system that runs BLAST algorithm for any dataset with performance boosting I/O

problem proved to be the bottleneck.

8.2.1 Locally Stored Database

Several solutions have been studied and efforts have been made in order to

implement such solutions; one probable solution was the use of a large memory to store

the database off-line. With a large database we could pass several queries and measure

the overall throughput for several queries over one database. Such an approach bypasses

the I/O problem as it adds an overhead time; time to load the database at the memory.

The more queries that are loaded at the system the better performance the system has as

the overhead gets smaller per query. These results are misleading as they are

i) depended on the data set size (number of queries and data base size)

ii) from biological point of view such a system is half useful. It works very

well if we try to find several genes (queries) for example over one spices

but it does not work well if we try to find one gene (query) over many

spices.

iii) for the proposed TUC architecture such an approach eliminates its

generality as this architecture works for every database size for any query

and it works either for one database with many queries or for many

different databases and for one query.

all these reasons make such an approach less attractive. Such an approach can be

effective only if the available amount of memory is substantial percentage of the database

size that the biologist is using. If for example Human DNA sequence is about four billion

characters a memory of approximately one Gigabyte is needed for one spices database

storing.

8.2.2 PCIe Interface

An alternative solution to the I/O problem is the use of PCIe interface. Several

Xilinx platforms support such interface at the physical layer design and Xilinx CAD tools

provide the higher level layers at the FPGA device. PCIe provides 2.5 Gbps baud rate and

2 Gbps actual data rate per lane. Such a platform is available at MHL. it is the XUP V5

platform which supports a single lane PCIe. A major problem using such a platform to

connect to the PC which stores the database and the query is the driver that was needed

for the operating system. Such a driver is available at MHL [87] for the Linux Operating

System while Microsoft Research at Redmond provides a similar system [88] for

Windows.

Both systems provide the driver and a hardware wrapper in order to help the

designer to use it. Due to driver problems, both systems had a speed of about 250 Mbps.

With such an I/O speed. I/O remains the system performance bottleneck and such a

system cannot be competitive to a general purpose high end processor.

8.2.3 HyperTransport Protocol Interface

http://www.in.gr/dictionary/lookup.asp?Word=substantial

Several boards with FPGA device and high end I/O are available in the market.

Such a board is the DRC platform which connects a general purpose high end processor

through HyperTransport protocol with an FPGA. The connection has speed up to 9.6

GBps aggregate bandwidth. Such platform was available at the Synective Labs available

with the appropriate software and hardware wrappers in order to encapsulate any design.

In order to connect the BLAST designs a communication protocol was developed.

Inputs are the data bus which has width of 32 bits and four control signals Query

Start which indicates that the data that are coming will be from query. Query Valid which

indicates that the data are valid, and Data base Start and Data Base Valid which work the

same way for the data base. When a hit has been found a packet of 8 32-bits words are

send to the PC. Control signals are Dataout Start and Dataout Valid which work as the

input control signals. The structure of the packet is shown at Figure 31. Due to

integration difficulties it was not possible to have a complete system working properly.

<Header of Packet -- with packet id>

<Machine Number>

<Start point at database>

<End point at database>

<Start point at query>

<End point at query>

<score>

<End of Packet-- with packet id>

Figure 31: Result packet Structure

8.2.4 Gigabit Ethernet Interface

An option for fast serial interface between reconfigurable devices and a PC is the

use of Ethernet connection. Main manufacturers (including Xilinx) have embedded in the

devices tranceivers that can be used for many interfaces including Ethernet. On Xilinx‘s

boards other chips have been added in order to implement the physical layer for such

interfaces as the Ethernet and the Aurora. At TUC a complete software/hardware system

have been build called MTP[89] in order to give fast communication between the PC and

an FPGA device.

This system is sending ordered UTP packets over IP over Ethernet with a

minimum overhead of 5 bytes per packet. This overhead gives a theoretical upper limit of

956.32 Mbps of pure data. Due to limitations of processor and/or network device of the

PC the actual speed that has been measured is up to 776.67 Mbps

The query and the database are stored in a standard format called FASTA. Figure

32 shows a part of such a file. In order to send from the PC to the device the dataset both

files are modified in a single file. This file is binary and depending of the UTP packet

length follows the MTP format for data packets. For example if the MTP packet size is

512 bytes the 5 first bytes are D0000 then it follows with 512 bytes of data and then the

next 5 bytes are D0001 and it continues. At the data field the 4 first bytes of the first

packet are the length of the query and then the query follows 4 characters per byte for

BLASTn. When the query ends then the 4 first bytes of the data field are the length of the

data base and then data follows encoded in the same way.

8.3 Universal Interface

Glue logic between Gigabit and wrapper of the interface (in the device) at the

reconfigurable device has been build in order to integrate the Gigabit Ethernet Interface

with the designed architecture. This logic consists of a FIFO (FIFO_1) and a controller,

Gigabit Ethernet Interface receives data in another FIFO (FIFO_2) has a simple control

scheme. Figure 32 shows the general scheme of the Glue Logic

 Figure 32: Glue Logic Architecture

FIFO_1 can be an elastic buffer that has different clocks for Input Data and Output Data

but also different widths. For example FIFO_2 width can be 8 bits and FIFO_1 can have

Input width of 8 bits and Output width of 32 bits. Widths of the FIFO_1 are depending on

Width of Input data, rate of incoming data and the consuming rate of the data from

BLAST machines.

Design of Glue logic is generic enough to be used with any kind of input wrapper

(except Gigabit Ethernet Wrapper) that has an output FIFO with the standard control

signals.

8.4 XUP 5V Platform

Digilent‘s XUP Virtex 5 Platform was available for large scale experiments. XUP

5V has a medium size device XC5V LX110T and is equipped with one lane PCI express

Interface and a single Gigabit Ethernet interface. It has 296 BRAMs twice as much as the

device of XUP V2P that was used for system building.

Query 1

Query 1

Query 1

Query 1

2 bits

2 bits

2 bits

2 bits

Query 2

Query 2

Query 2

Query 2

2 bits

2 bits

2 bits

2 bits

Query 3

Query 3

Query 3

Query 3

2 bits

2 bits

2 bits

2 bits

Query 4

Query 4

Query 4

Query 4

2 bits

2 bits

2 bits

2 bits

Database 1

Database 2

Database 3

Database 4

BLAST Machine 1

BLAST Machine 16

BLAST Machine 2

BLAST Machine 15

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
..

Figure 33: Databases and Queries set-up

In order to execute large scale experiments (e.g. database size of 1 GB) a fast

serial interface had to be used. Such solutions were GigaBit Ethernet or PCIe interfaces.

According to the environment (drivers, scripts etc) that have been developed to use these

interfaces the data rates that have been measured were about 250 Mbps for PCIe interface

and 850 Mbps for Gigabit Ethernet. Assuming a clock speed of 125MHz for our design

(which is the speed of the Gigabit Ethernet Module) and the BLASTn variation of the

algorithm implemented even four parallel BLAST machines need 1Gbps to be fed. Even

the faster Gigabit Ethernet interface will lead to under utilization of the four BLASTn

machines for this specific platform. Four parallel BLAST machines would cover less than

25% of such a device. In order to exploit as much as it would be possible of the device

resources it was decided to replicate BLAST machine design 16 times and have four

different databases for four different queries. Figure 33 shows the set-up for databases

and queries.

Figure 34: General Scheme of architecture of XUP V5 experiment

We decided that these 16 machines will be organized by four and every

quartet to be attached to a Microblaze processor. Due to Microblaze low computing

power a second Microblaze is attached in a series and the calculations are divided

between these two processors. The outputs of the four quartets are attached to another

Microblaze also serial and this one is responsible to give the final result. Figure 34 shows

the general scheme of the prototype at XUP Virtex 5 Platform. It has been calculated that

the same setting with quartets scheme could be replicated for 66 times to the largest up to

date Xilinx FPGA device XC6VSX475T for four different databases and 17 different

queries.

8.5 Technology Synopsis

Table 3 presents all the main characteristics of the architectures that were

presented in previous sections.

Architecture

name

Algorithm

Variations

Query

Size

Database

size
I/O Microprocessor

Critical

Resources:
Technology

1st TUC

Generation
BLASTn

up to

1000
any size

No I/O

consideration N/A BRAM Virtex 4

2nd TUC

Generation
BLASTn

any

size
any size

No I/O

consideration Power PC
BRAM.

PowerPC Virtex 4

TUC Generic

Generation

BLASTn

BLASTp

BLASTx

TBLASTn

TBLASTx

any

size
any size

No I/O

consideration
Power PC

BRAM,

PowerPC
Virtex 5

TUC Generic

Generation

V.2

BLASTn

BLASTp

BLASTx

TBLASTn

TBLASTx

any

size
any size

Interface that

supports PCIe,

Hypertransport,

GigE,

Implementation

with GigE

MicroBlaze BRAM Virtex 5

Table 3: Synopsis of Technical Characteristics for the Different TUC BLAST Architectures

Chapter 9

Implementation Issues

In this chapter all performance results that have been reported for software or

hardware BLAST implementations in the literature are reported and compared against the

performance of our architecture as were as our own software measurements. Due to the

changes in technology as this project was implemented many measurements have been

taken on several technologies, which were on high end devices at the time of the

measurement.

9.1 SW Performance

Several results have been reported in the literature for software implementations

of BLAST. IBM has reported several throughput measurements for its system IBM 375

MHz POWER3-II symmetric multiprocessor (SMP) and the 1.1 GHz POWER4 pSeries

690 Model 681[19]. IBM uses a set of several benchmarks depending on algorithm

version, query size and database size. More specifically they use certain NCBI databases

and a variety of queries that they report. Table 4 shows the set of benchmarks (NCBI

files) that IBM used.

 Small Query Medium Query Large Query
BLASTn ensembl.dna ensembl.dna ensembl.dna

BLASTp drosoph.aa drosoph.aa drosoph.aa

BLASTx/TBLASTn/

TBLASTx
drosoph.aa drosoph.aa drosoph.aa

Table 4: IBM Single Chip Throughput – Testbench Cases

Tables 5 and 6 show the best throughput for several queries, depending on the

BLAST version. Original times and database lengths that IBM provided refer to small

queries, up to 2,000 characters, medium queries up to 50,000 characters and large queries

up to 200,000 characters. For reasons of comparison Tables 5 and 6 have been formatted

in this format.

Query

Length

(Characters)

BLASTn

Throughput

(characters10
6
/sec)

BLASTp

Throughput

(characters10
6
/sec)

BLASTx/TBLASTn

TBLASTx

Throughput

(characters10
6
/sec)

1,000 187.62 15.50 4.77

2,000 187.62 15.50 4.77

5,000 14.23 1.975 0.042

10,000 14.23 1.975 0.042

30,000 14.23 1.975 0.042

50,000 4.16 0.35 0.05

100,000 4.16 0.35 0.05

150,000 4.16 0.35 0.05

200,000 4.16 0.35 0.05

Table 5: IBM Single Chip Throughput – Performance Results

Query

Length

(Characters)

BLASTn

Throughput

(characters

10
6
/sec)

BLASTp

Throughput

(characters

10
6
/sec)

BLASTx/TBLASTn

TBLASTx

Throughput

(characters 10
6
/sec)

1,000 1201.2 48.43 18.92

2,000 1201.2 48.43 18.92

5,000 159.36 9.90 1.374

10,000 159.36 9.90 1.374

30,000 159.36 9.90 1.374

50,000 53.14 1.49 0.189

100,000 53.14 1.49 0.189

150,000 53.14 1.49 0.189

200,000 53.14 1.49 0.189

Table 6: IBM Multiprocessor System Throughput

Besides the IBM-reported results, we conducted our own experiments with

several processors depending on the design generation.

9.1.1 TUC Measurements For the evaluation of the 1st generation

We performed runs of BLAST-2.2.12 on a 2GHz Xeon with 2GB main memory

running SUSE 9.1 Linux and the CPU usage was profiled. Five NCBI data bases of

several sizes for a small query of 1000 letters were executed at the 2GHz Xeon and

measured. The same experiment was repeated with a Intel Pentium M 1.7 GHz with 1 GB

main memory running Windows XP professional and an Intel P4 2.66 GHz with 1 GB

main memory running Windows 2000. For Computers running Windows Intel VTune

Performance Analyzer 7.2 was used and every measurement repeated 5 times. The results

of these experiments are respectively on Tables 7, 8 and 9. The averages in the tables are

arithmetic averages.

DataBase

name

Database

Size

(characters)

Run

Time

(sec)

Throughput

(char 10
6
/sec)

ecoli.nt 4,662,239 0.024 194.25

drosoph.nt 122,655,632 0.482 258.33

month.nt 386,242,580 1.753 220.56

env_nt 1,061,221,997 1.190 891.63

igSeqNt.ftptemp 44.419,359 1.397 31.77

Average 323,840,361 0.968 319.25

Table 7: Measurements on XEON 2 GHz / Linux

DataBase

name

Database

Size

(characters)

Run

Time

(sec)

Throughput

(char 10
6
/sec))

ecoli.nt 4,662,239 0.045 102.85

drosoph.nt 122,655,632 0.364 337.32

month.nt 386,242,580 1.303 296.50

env_nt 1,061,221,997 3.670 289.19

igSeqNt.ftptemp 44,419,359 0.174 255.43

Average 323,840,361 1.111 256.26

Table 8: Measurements on Intel M 1.7 GHz / Windows XP

DataBase

name

Database

Size

(characters)

Run

Time

(sec)

Throughput

(char 10
6
/sec))

ecoli.nt 4,662,239 0.039 118.45

drosoph.nt 122,655,632 0.309 396.32

month.nt 386,242,580 1.022 378.10

env_nt 1,061,221,997 3.200 331.63

igSeqNt.ftptemp 44,419,359 0.160 277.40

Average 323,840,361 0.946 300.38

Table 9: Measurements at Intel P4 2.66GHz / Windows 2000

9.1.2 TUC Measurements for the evaluation of the 2nd Generation
General Architecture

Measurements were made at TUC with original NCBI software BLAST version

2.2.15 for win32-ia32at an Intel Pentium 4 3.0GHz HT, IA-32 architecture, 512 MB

RAM with the Microsoft Windows XP Pro operating system. The Intel-developed

software tool Vtune Performance Analyzer 8.0 was used for the measurements. The

database was NCBI IgSeqNt. for nucleic Acid and BLASTn and igSegProt for proteins

and translated for the other versions of the algorithm. Table 10 shows that for several

sizes of the query the respective throughput is depending on query size. The same

datasets were used as test benches for the hardware performance evaluation.

Query

Length

(Characters)

BLASTn

Throughput

(char 10
6
/sec)

BLASTp

Throughput

(char 10
6
/sec)

BLASTx/TBLASTn

TBLASTx

Throughput

(char 10
6
/sec)

1,000 588.75 19.80 20.97

2,000 409.15 12.72 13.12

5,000 218.26 5.10 4.97

10,000 129.32 3.02 2.75

30,000 41.26 1.03 1.03

50,000 36.13 0.59 0.55

100,000 18.73 0.26 0.21

150,000 12.91 0.15 0.11

200,000 10.13 0.09 0.07

Table 10: TUC Software Measurements on Intel Pentium 4 @ 3.00 GHz

9.1.3 TUC Measurements for the evaluation of the TUC BLAST
Generic Architecture V.2

Lastly, several measurements have been made in order to compare the

MicroBlaze version of the hardware on a high end device with an equivalent processor in

terms of technology. We used an Intel Core 2 Duo E8400 at 3 GHz with 2 GB RAM and

Microsoft Windows XP Professional Version 2002 Service Pack 3. For the measurements

we used the latest available version of Intel(R) VTune(TM) Performance Analyzer 9.0.

The software version that was used was downloaded from NCBI and is NCBI-BLAST-

2.2.19+-win32. The major change at this version is the separation of

BLASTx/TBLASTn/TBLASTx. Instead of using the script BLASTall we used different

executables that let the user test the different software performances of these variations.

Table 11 shows the throughput values for several query sizes at any of the five BLAST

variations.

Query

Length

(Characters)

BLASTn

Throughput

(char

10
6
/sec)

BLASTp

Throughput

(char

10
6
/sec)

BLASTx

Throughput

(char

10
6
/sec)

TBLASTn

Throughput

(char

10
6
/sec)

TBLASTx

Throughput

(char

10
6
/sec)

1,000 976.00 63.50 283.33 28.56 16.09

2,000 815.51 42.63 166.94 14.75 9.23

5,000 291.73 18.80 96.89 8.27 4.45

10,000 219.58 9.26 55.23 4.92 2.60

30,000 106.42 2.56 16.22 1.90 0.87

50,000 95.48 1.68 11.38 1.09 0.58

100,000 58.94 0.66 5.11 0.51 0.28

150,000 32.37 0.43 3.29 0.35 0.19

200,000 23.35 0.32 2.49 0.26 0.14

Table 11: TUC Software Measurements on Intel Pentium Dual Core 2 @ 3.00 GHz

9.2 HW Performance

RC-BLAST was the first hardware implementation of BLAST but it will not be

included in this comparison because the results were not competitive with software

implementations even at the time when it was first reported. Table 8 shows the reported

data that are available for Mercury BLAST and Treeblast. Mercury BLAST reports

throughput of 96x10
6
 characters/sec for a single computing element, and 1400x106

characters/sec for a complete system implementing BLASTn. TreeBlast reports

throughput 110x10
6
 characters/sec per processing element but no further data except for

relative performance and its queries are small - up to 600 elements for BLASTp (hence

the results are optimistic as the entire queries can be mapped in BRAM). For TBLASTn

the FPGA/FLASH architecture reports to be two and a half times faster than Timelogic

DeCypher with an equivalent performance of 0.0034x10
6

characters/sec throughput for a

query of size 132,000x103. Due to the enormous size of the query no comparison can be

made.

 Mercury

BLAST

TreeBlast

Query Length

(Char.)

BLASTn

BLASTp

 -

600 - 110

5000 1400 -

Table 12: Hardware System Reported Throughputs

9.3 TUC Performance

9.3.1 TUC 1st generation

The Technical University of Crete (TUC) 1st generation architecture was

designed for BLASTn small query implementation (1000 letters) regardless of the data

base size. It has been has been coded in VHDL and exhaustively post place-and-route

simulated for the VIRTEX-4 family using the 4VFX140FF1517-11 device.

The first experiment was the measurement of a single machine (N=1) which run

at 121,20 MHz and consumed less than 1% of logic recources and 8 BRAMs. More

specifically every single machine needs 8 Blocks of BRAM, 5 of which are given to the

memory of W-mer, 1 is used for query, 1 for History Memory and 1 for Future Memory.

On the other hand it consumed 744 out of 126,336 LUTs. That shows that the critical

resource for implementing many parallel machines is the BRAMs and this restricts

parallelisation to 69 for the specific device (it has 552 BRAMs divided by 8 BRAMs for

each machine). The next implementation was for 60 parallel computing machines (N=60)

where exactly 480 BRAMs (or 86%) where used but only 36% of the available LUTs

were used. In the last experiment the critical resource BRAMs were exhausted using 552

of them to create 69 parallel computing machines running at 100.36 MHz. As in the

previous experiments the percentage of covering LUTs was low, only 42%.

At the experiments above it was assumed that there will be an input data stream of

up to 69 characters, 2 bits each in parallel at a speed of 100.39 MHz. For that data stream

a 138 bit wide bus is needed, with a speed of 13.86 Gbps.

Number

of parallel

Machines

Number of

FIFO16/RAMB16s

(Total 552)

Number of 4

input LUTs

(Total 126.336)

1 8 1% 744 >1%

60 480 86% 46,522 36%

69 552 100% 53,836 42%

Table 13: Area Demands of TUC Architecture

Number of

parallel

Machines

Speed

(MHz)

Width of

Data

Stream

(characters)

Actual

Throughput

(char 10
6
/sec)

1 121 1 121.20

60 103 60 6,192.58

69 100 69 6,924.84

Table 14: Speed and throughput of TUC Architecture

9.3.2 TUC General architecture

The design and implementation of the TUC BLASTn architecture has been

reported in chapter 4 and several throughput figures where projected according to query

size, system clock speed, and implementation of parallel processing elements. All

measurements are for Xilinx 4 FPGA 4VFX140FF1517-11 device. Due to the use of

similar architecture with the same level of parallelism and I/O structure, and without

spending more resources for BLASTp and BLASTx/TBLASTn/TBLASTx

implementation we have assumed that the clock speed remains unchanged. The key

elements of this assumption were verified with post place and route results from the

Xilinx tools. The clock speed was calculated according to post place and route timing

information of Xilinx software 7.1.03 which includes Device speed data version:

"ADVANCED 1.54 2005-05-25" and is 103 MHz. Calculations of throughput are based

on a 100MHz clock in all versions, which is a conservative estimate.

For the calculation of performance the first step of the algorithm has been ignored

because it is performed off-line and only once for each query. The time needed for the

first step is proportional to the query size and is the sum of the time that is needed to

create he W-mer list from software plus the time that is needed to load this information to

the TUC architecture. Every element of the W-mer list needs one cycle to be loaded and

that means that is from 1,000 to 200,000 cycles depending on query size. Considering

that the database size is several millions or billions of elements, which need several

millions or billions of cycles to be processed, the time that is needed for the execution of

the first step of the algorithm is negligible when compared to the total execution time.

Algorithm Step No of Units Power

PC/Unit

LUT/Unit BRAM/Unit

2
nd

 Step

Processing

element

128 - 720 4

Communication

Protocol

2 - 1,174 9

3
rd

 Step 2 1 - -

Total 2 94,508 521

Total FPGA

Resources

 2 126,336 552

Coverage

Percentage

 100% 74.80% 94.38%

Table 15: FPGA Resources Used in the BLASTn Implementation

Algorithm Step No of Units Power

PC/Unit

LUT/Unit BRAM/Unit

2
nd

 Step

Processing

element

128 - 750 4

Communication

Protocol

2 - 1,174 9

3
rd

 Step 2 1 - -

Total 2 97,174 521

Total FPGA

Resources

 2 126,336 552

Coverage

Percentage

 100% 74.91% 94.38%

Table 16: FPGA Resources Used in the BLASTp Implementation

Algorithm Step No of Units Power

PC/Unit

LUT/Unit BRAM/Unit

2
nd

 Step

Processing

element

128 - 780

4

Communication

Protocol

2 - 1,174 9

3
rd

 Step 2 1 - -

Total 2 101,014 521

Total FPGA

Resources

 2 126,336 552

Coverage

Percentage

 100% 79.95% 94.38%

Table 17: FPGA Resources Used in the BLASTx / TBLASTn / TBLASTx Implementation

Tables 15, 16 and 17 show resource allocation of a system implemented on a

Xilinx 4 FPGA 4VFX140FF1517-11. The results in these tables show that the critical

resources remain identical and highly utilized in all versions of the BLAST algorithm,

whereas the differences lie in data comparison units, control units, shift registers and

some local busses. Therefore we can state that not only the architecture is general, but in

terms of performance it strikes a good performance balance for all variants of the

algorithm.

Query

Length

(Characters)

BLASTn

Throughput

(char 10
6
/sec)

BLASTp

Throughput

(char 10
6
/sec)

BLASTx/TBLASTn

TBLASTx

Throughput

(char 10
6
/sec)

1,000 8,192 8,192 1,365

2,000 8,192 8,192 1,365

5,000 8,192 4,096 683

10,000 4,096 2,688 341

30,000 2,048 896 128

50,000 1,344 512 75

100,000 640 256 32

150,000 448 128 21

200,000 320 128 11

Table 18: TUC General Architecture System Performance

The results in Table 18 show the projection of the TUC System for all major

variants of BLAST and for a broad range of query sizes for any size of the database.

Although these results are reported as projections, the fact that they come after detailed

designs of the critical parts of the architecture and accurate timing simulations thereof

means that they correspond to realistic performance that one can expect to achieve, even

accounting for I/O issues.

9.3.3 TUC Generic V.2 Architecture

TUC Generic V.2 Architecture was implemented and post place and route

simulated for a Virtex 5 XC5VLX330T. The measured period was 7.507ns or

133.20MHz. At this architecture there are 20 MicroBlaze Processor with 8 2
nd

 step

processing element each and 1 with 2 due to lack of memory blocks. Speed files that

were used are ADVANCED 1.53, STEPPING level 0.

Table 19 show the resources spend for the implementation of BLASTn variation.

It is shown that also at this implementation number of BRAMs is the critical resource for

the design.

Table 20 shows the projected performance of the design for the several queries

and all the algorithm variations. All the numbers have been calculated with clock

frequency of 130MHz with the same method as in Table 18.

Algorithm Step No of Units Virtex-5

Slices

36Kb BRAM

2
nd

 Step Processing element 162 209 2

Subtotal for 2
nd

 step 33,858 324

3
rd

 Step MicroBlaze 21 283 -

Subtotal for 3
rd

 step 5,943

Total 39,801 324

Total FPGA Resources 51,840 324

Coverage Percentage 77% 100%

Table 19: FPGA Resources Used in the TUC BLAST Generic Architecture V.2

Query

Length

(Characters)

BLASTn

Throughput

(char 10
6
/sec)

BLASTp

Throughput

(char 10
6
/sec)

BLASTx/TBLASTn

TBLASTx

Throughput

(char 10
6
/sec)

1,000 21,060 21,060 3,510

2,000 21,060 21,060 3,510

5,000 21,060 21,060 3,510

10,000 21,060 10,530 1,755

30,000 10,530 4,212 585

50,000 5,265 2,340 351

100,000 3,009 1,239 176

150,000 2,106 842 117

200,000 1,620 619 88

Table 20: TUC BLAST Generic Architecture V.2 System Performance

9.4 TUC Experimental Measurements

The experimental measurements that are presented were made at the Diglent XUP

V5 platform with an XC5V LX110T. As mentioned above at 8.4, 16 parallel BLAST

machines were build, grouped at four quartets. Each of the quartets was mapped to device

resources as it is shown at Table 21.

Table 21: Device resource spend for each quartet

For the certain platform the clock speed is 125 MHz which is also the clock speed

that is needed for the Gigabit Ethernet Interface. Using 1000 long queries the actual

throughput of the system is the actual speed of Gigabit Ethernet interface which is about

500 Mbps to 800 Mbps or 250 Mchar to 400 Mchar for BLASTn variation of the

algorithm that it was implemented.

Using four replicates of the BLAST machine quartet the processed queries are

four for four different databases. While the actual throughput has not been changed the

actual computational effort is four times larger. That is the way that DeCypher measure

the computational power of their architecture covering the throughput bottleneck. In

order to have a direct comparison with this way of measurement the experimental

platform has a potential of 1000 KaaMnt/sec to 1600 KaaMnt/sec.

Table 22 shows five different databases and queries sets and actual execution

times at a general purpose PC and the experimental platform. FPGA resources that are

used for the specific experiment, are according to Table 21 are 20 per cent of the Virtex 5

XC5V LX110T device, which is about one third of the larger Virtex 5 XC5VLX330T.

The equivalent of the reconfigurable resources that were used for the specific experiment

are the 6.7% of a large high end Virtex 5 XC5VLX330T device.

Dataset Query

Size

DataBase

Size

Execution Time on Intel

Pentium Dual Core 2 @

3.00 GHz(sec)

Execution Time on

XUP V5 @125Mhz

Single Query 4 Queries (cycles) (sec)

Dataset1 250 854,332 0.001 0.0035 318,706 0.0025

Dataset2 250 1,985,136 0.002 0.0080 743,201 0.0059

Dataset3 1,000 854,332 0.001 0.0035 449,641 0.0037

Dataset4 1,000 1,985,136 0.002 0.0080 1,046,833 0.0071

Dataset5 5,000 1,985,136 0.009 0.0825 1,364,512 0.0109

Table 22: Execution times measured at experimental platform and corresponding run time on Intel

Pentium Dual Core 2 @ 3.00 GHz

Resource No of Units Total % Coverage

Slices 6,710 69,120 9.7

DSP48Es 7 64 10.9

18Kb BRAM 128 148 21.6

9.5 Comparisons and Speedups

9.5.1 TUC 1st generation

From Table 6 it can be shown that the fastest system throughput is achieved with

the 16 processors Model 681 1.1 system, which has a throughput of 1,201.20 10
6

characters/sec. However the fastest single chip system is IBM Model 681 1.1 with 187.62

10
6
 characters/sec. At these measurements I/O issues are not taking into consideration.

Table 23 has the actual throughput for systems implementing BLAST algorithm

and in Table 24 the SpeedUp of TUC architecture against the other systems.

System Actual Throughput
(10

6
 characters/sec)

2GHz Xeon 319.25

1.7 GHz Intel M 256.26

2.66 GHz Intel P4 300.38

TUC Architecture N=1 121.20

TUC Architecture N=60 6,192.58

TUC Architecture N=69 6,924.84

IBM single chip 187.62

IBM System 1,201.20

Table 23: 1st TUC Generation Throughput

 SpeedUp of
TUC

Architecture

N=1

SpeedUp of
TUC

Architecture

N=60

SpeedUp of
TUC Architecture

N=69

2GHz Xeon 0.38 19.39 21.69

1.7 GHz Intel M 0.47 24.16 27.02

2.66 GHz Intel P4 0.40 20.61 23.05

IBM single chip 0.65 33.00 36.90

IBM System (16 chips) 0.10 5.15 5.76

Table 24: 1st TUC Generation SpeedUp

9.5.2 TUC General Architecture

We have compared the TUC performance projections with measurements that

have been reported from IBM or measured at TUC with software running on a Intel

Pentium 4 and the results are shown in Tables 25, 26, and 27. These figures show that the

general TUC architecture can be faster by tens up to more than one thousand times vs. a

single chip such as a recent generation Pentium 4, or even hundreds of times faster than

the IBM system with 16 1.1 GHz POWER4 pSeries 690 Model 681 processors. The

speedup figure shows how many times one system is faster than another, e.g. for a query

of 10000 characters, the TUC architecture running BLASTn is close to 32 times faster

than a 3GHz Pentium 4 running the same code in software. Such results are most

encouraging for hardware-accelerated BLAST execution.

Query Length

(Characters)

TUC vs.

IBM Single

Chip

TUC vs.

IBM System

TUC vs.

Pentium 4 @ 3GHz

1,000 43.66 6.82 13.91

2,000 43.66 6.82 20.02

5,000 575.69 51.41 37.53

10,000 287.84 25.70 31.67

30,000 143.92 12.85 49.64

50,000 323.08 25.29 37.20

100,000 153.85 12.04 34.17

150,000 107.69 8.43 34.70

200,000 76.92 6.02 32.59

Table 25: Speedup of TUC for BLASTn

Query Length

(Characters)

TUC vs.

IBM Single

Chip

TUC vs.

IBM System

TUC vs.

Pentium 4 @ 3GHz

1,000 528.52 169.15 413.74

2,000 528.52 169.15 644.03

5,000 2,073.92 413.74 803.14

10,000 1,361.01 271.52 890.07

30,000 453.67 90.51 869.90

50,000 1,462.86 343.62 867.80

100,000 731.43 171.81 984.62

150,000 365.71 85.91 853.33

200,000 365.71 85.91 1,422.22

Table 26: Speed up of TUC for BLASTp

Query Length

(Characters)

TUC vs.

IBM Single

Chip

TUC vs.

IBM System

TUC vs.

Pentium 4 @ 3GHz

1,000 286.16 72.15 65.09

2,000 286.16 72.15 104.04

5,000 16,261.90 497.09 137.42

10,000 8,119.05 248.18 124.00

30,000 3,047.62 93.16 124.27

50,000 1,500.00 396.83 136.36

100,000 640.00 169.31 152.38

150,000 420.00 111.11 190.91

200,000 220.00 58.20 157.14

Table 27: Speed up of TUC for BLASTx / TBLASTn / TBLASTx

Figure 35: Speedup of TUC General Architecture vs. IBM Single Chip

1

10

100

1000

10000

100000

1000 5000 30000 100000 200000

Sp
e

e
d

U
p

Query Size

Speedup of TUC General Architecture vs.
IBM Single Chip

BLASTn

BLASTp

BLASTx/TBLAS
Tn/TBLASTx.

Figure 36: Speedup of TUC General Architecture vs. IBM System

Figure 37: Speedup of TUC General Architecture vs. Pentium 4 @ 3GHz

1

10

100

1000

1000 5000 30000 100000 200000

Sp
e

e
d

U
p

Query Size

Speedup of TUC General Architecture vs.
IBM System

BLASTn

BLASTp

BLASTx/TBLA
STn/TBLASTx.

1

10

100

1000

10000

1000 5000 30000 100000 200000

Sp
e

e
d

U
p

Query Size

Speedup of TUC General Architecture vs.
Pentium 4 @ 3GHz

BLASTn

BLASTp

BLASTx/TBLAS
Tn/TBLASTx.

Figures 35, 36, and 37 show the same speedup results with graphs, according to

query size, for the general TUC architecture vs. a single IBM chip. IBM System with 16

processors and a Pentium 4 @ 3GHz respectively for BLASTn, BLASTp and

BLASTx/TBLASTn/TBLASTx.

9.5.3 TUC General Architecture Comparison against Other Hardware
Systems

Unfortunately it is very difficult to make an apples-to-apples comparison between

hardware implementations because there are no sufficient data published for other

architectures to determine actual speedup. From the preliminary data reported for other

hardware implementations based on similar technology, using the results from Table 11

the TUC general architecture seems to be 5.85 times faster than Mercury Blast system

and 74 times faster than TreeBLAST, with all three machines using implementation

technology from the same year. We are careful to indicate that this seems to be the case,

because hardware performance of other systems can only be inferred by published data

and only in aggregate form. Although the following table is based on incomplete data

(only aggregates have been published for the two architectures of this comparison), it was

deemed appropriate as a rough estimate between the general TUC architecture and the

FPGA/FLASH BLAST architecture. We can indirectly surmise some comparison data

regarding the DeCypher engine for BLASTx/TBLASTnTBLASTx by converting the

TUC throughput to the KaaMnt/sec units in Table 16. The KaaMnt is based on the

multiplication on query size with the database size. The actual numbers that are reported

for DeCypher are 182 KaaMnt/sec and for FPGA/FLASH BLAST architecture is 451

KaaMnt/sec, but as the details of what these numbers represent are unpublished this

comparison should be considered only as a rough estimate.

Architecture Query

Length

(Kaa)

BLASTx/TBLASTn

TBLASTx

Throughput

KaaMnt/sec

TUC General

Architecture

1 1,365

2 2,730

5 3,415

10 3,410

30 3,840

50 3,750

100 3,200

150 3,150

200 2,200

DeCypher 132,000 182

FPGA/FLASH 132,000 451

Table 28: Performance of Hardware Implementations of BLAST

9.5.4 TUC BLAST Generic Architecture V.2

Speed up of the improved architecture is measured only against the general

purpose CPU due to the fact that technology of all other chips is quiet old and such a

comparison would be unfair against the high end device we use. Table 29 shows the

speed ups for the latest version of TUC architecture against latest version of NCBI

BLAST software running on a high end PC.

Query

Length

(Characters)

BLASTn

BLASTp

BLASTx

TBLASTn

TBLASTx

1,000 21.58 331.65 12.39 122.90 218.15

2,000 25.82 494.02 21.03 237.97 380.28

5,000 72.19 1,120.21 36.23 424.43 788.76

10,000 95.91 1,137.15 31.78 356.71 675.00

30,000 98.95 1,645.31 36.07 307.89 672.41

50,000 55.14 1,392.86 30.84 322.02 605.17

100,000 51.05 1,877.27 34.44 345.10 628.57

150,000 65.06 1,958.14 35.56 334.29 615.79

200,000 69.38 1,934.38 35.34 338.46 628.57

Table 29: Speed up of TUC BLAST Generic Architecture V.2 vs. Intel Core 2 Duo @ 3GHz (single

core)

All the measurements have been made running in one core, NCBI can run

multithreaded with almost linear speed up in a multi-core processor. Numbers in Table

29 are illustrated at Figure 38.

Figure 38: Speed up of TUC BLAST Generic Architecture V.2 vs. Intel Core 2 Duo @ 3GHz (single

core)

As mentioned at paragraph 9.4 several actual run were made at the experimental

platform. According to Table 22 and Table 29, the Table 30 is formatted. At Table 30 is

calculated the speedup of the experimental platform against the Intel Pentium Dual Core

2 @ 3.00 GHz. It is also calculated the expected speedup considering Table 29 and the

fact that only the equivalent of 6.7% of the reconfigurable resources of the Virtex 5

XC5VLX330T are used. Virtex 5 XC5VLX330T is the device that was used to calculate

Table29.

1

10

100

1000

10000

1000 2000 5000 10000 30000 50000 100000150000200000

Sp
e

e
d

U
p

Query Size

Speedup of TUC General Architecture vs.
Pentium 4 @ 3GHz

BLASTn

BLASTp

BLASTx

TBLASTn

TBLASTx

Dataset Query

Size

DataBase Size Speedup XUP

V5 vs. Intel

Expected Speedup

XUP V5 vs. Intel

Dataset1 250 854,332 1.40 1.51

Dataset2 250 1,985,136 1.36 1.51

Dataset3 1,000 854,332 1.21 1.51

Dataset4 1,000 1,985,136 1.31 1.51

Dataset5 5,000 1,985,136 4.51 5.05

Table 30: Run times measured at experimental platform and corresponding run time on Intel

Pentium Dual Core 2 @ 3.00 GHz
Actual speedup considered to be close to expected. Differences are due two

reasons. For the small Queries of length 250 and 1000 bottleneck is the Data Input rate

as the Gigabit link works at 2/3 of the theoretical speed. For the Dataset5 with the 5,000

characters Query, bottleneck proved to be the lack of MicroBlaze computing power, for

the 3rd step of the algorithm.

9.6 Results Synopsis

This thesis presents four different architectures to map the BLAST algorithm on

reconfigurable logic and the respective performance achieved. There exist several

research groups throughout the world which have presented their architectures and their

results. As mentioned above, the BLAST algorithm has five different variations and its

performance depends on query size. All these results have been presented in the previous

sections of this chapter. Tables 31 and 32 summarize the most important results presented

in this chapter. Table 31 presents the TUC architectures‘ performances vs. BLAST

variation.

Architecture

BLASTn

Throughput

(char 10
6
/sec)

BLASTp

Throughput

(char 10
6
/sec)

BLASTx/TBLASTn

TBLASTx

Throughput

(char 10
6
/sec)

TUC 1st Generation

(Query Size up to

1000)

6,925 N/A N/A

TUC 2nd Generation 320-8,192 N/A N/A

TUC BLAST Generic

Architecture
320-8,192 128-8,192 11-1,365

TUC BLAST Generic

Architecture V.2
1,620-21,060 619-21,060 88-3,510

Table 31: TUC BLAST Architectures Performance Synopsis

Table 32 presents the speedup of the execution time achieved for the different

TUC BLAST Architectures vs. the execution time of the NCBI BLAST version running

on a personal computer. In order to have a fair comparison, NCBI software version and

personal computer are of the same time that the TUC Architectures was developed.

Architecture

BLASTn

BLASTp

BLASTx/TBLASTn

TBLASTx

TUC 1st Generation

(Query Size up to

1000)

23.05 N/A N/A

TUC 2nd Generation 13.91-49.64 N/A N/A

TUC BLAST Generic

Architecture
13.91-49.64 413.74-1,422.22 65.09-190.91

TUC BLAST Generic

Architecture V.2
21.58-98.95 331.65-1,958.14 12.39-788.76

Table 32: TUC BLAST Architectures SpeedUp Synopsis

9.7 Performance Evaluation – Technology Impact

We examine the performance of reconfigurable based hardware for BLAST

algorithm since late 2005 when the first architecture was designed. and we evolve this

architecture and its mapping to reconfigurable devices. At the same time a large common

effort at NCBI offers significant upgrade of BLAST software from version 2.2.12 then to

version 2.2.19+ today.

Query

Length

(Characters)

BLASTn

BLASTp

BLASTx

TBLASTn

TBLASTx

1,000 1.66 3.21 13.51 1.36 0.77

2,000 1.99 3.35 12.72 1.12 0.70

5,000 1.34 3.69 19.49 1.66 0.90

10,000 1.70 3.07 20.08 1.79 0.95

30,000 2.58 2.49 15.75 1.84 0.84

50,000 2.64 2.85 20.69 1.98 1.05

100,000 3.15 2.54 24.33 2.43 1.33

150,000 2.51 2.87 29.91 3.18 1.73

200,000 2.31 3.56 35.57 3.71 2.00

Average 2.21 3.07 21.34 2.12 1.14

Table 33: Speed up of NCBI Software at 2008 technology vs. 2005 technology

At technology level processors are two generations ahead from Pentium 4 to Core

2 architecture, FPGAs that were used in first place were medium/large Virtex 4 and for

the latest designs are the larger Virtex 5 devises. Taking into account the above

technology evolvement and development of the BLAST implementations we can

compare the software evolvement the hardware evolvement.

Table 33 shows that there is a speed up from 2 to 3 to the most of the cases except

the BLASTx and TBLASTx where the 3 software variations separate from the software

that was running to a Pentium 4 to the up to date Pentium.

The same calculations have been made for the hardware implementations from 2
nd

generation to TUC BLAST Generic Architecture V.2. At Table 34 it is shown that

hardware improvement was 2.5 to 8 times. Improvement was bigger for large queries and

this is can be explained to the larger amount of memory that is available to serve larger

queries.

Query

Length

(Characters)

BLASTn

BLASTp

BLASTx

TBLASTn

TBLASTx

1,000 2.57 2.57 2.57 2.57 2.57

2,000 2.57 2.57 2.57 2.57 2.57

5,000 2.57 5.14 5.14 5.14 5.14

10,000 5.14 3.92 5.15 5.15 5.15

30,000 5.14 4.70 4.57 4.57 4.57

50,000 3.92 4.57 4.68 4.68 4.68

100,000 4.70 4.84 5.50 5.50 5.50

150,000 4.70 6.58 5.57 5.57 5.57

200,000 5.06 4.84 8.00 8.00 8.00

Average 4.04 4.41 4.86 4.86 4.86

Table 34: Speed up of TUC Hardware Generic Architecture V.2 vs. Generation 1

The same calculations, taking into account the first hardware generation for

BLASTn variation with queries up to 1000 characters, are presented at Table 35.

Generation

HW

Throughtput

SW

Throughtput Speed Up
1 6,924 319.25 21.69

2 8,192 588.75 13.91

3 21,960 976.00 22.50

Table 35: Speed up of NCBI SW and TUC HW

9.8 Algorithm Sensitivity vs. Performance

Running BLAST software is quite complicated and a lot of parameters are

involved. There are a lot of options that have to do with the nature of genetic data and the

biological analysis that the user of the software wants to do. One of the major options that

a biologist has to determine in order to do genomic analysis with BLAST is its

sensitivity. As W-mers decrease in size the algorithm sensitivity increases. Sensitivity is

directly linked to the size of the W-mer. W-mer size can vary from 4 to an arbitrary large

number, where 28 is the size of W-mer in order to run MegaBLAST. If W-mer length or

word_size (argument of BLAST) is set to 4 then the runs of the algorithm would be in the

greatest sensitivity and will give more detailed results. If W-mer length sets to 28 then the

runs of the algorithm would be in the smaller sensitivity and will give less detailed

results.

The smaller size of the W-mer the more computation time is needed to run the

same datasets on a general purpose processor. All the measurements that have been taken

are for W-mer with length of 11 which is typical. The TUC architecture performance

does not get degraded and in some cases it can be improved when the W-mer length gets

smaller. The design of the memory scheme needed for step 2 is proportional to the W-

mer length and can become smaller or stay the same. Step 3 is executed on the

Microblaze which has only 8 engines for step 2 attached and thus there is no bottleneck.

This approach has not been studied in depth with statistical analysis of BLAST algorithm

for every length of W-mer and has to be proved experimentally, although some

quantitative data are given on order to find out the potential of TUC design.

Several measurements have been taken with an Intel Core 2 Duo E8400 at 3 GHz

with 2 GB RAM and Microsoft Windows XP Professional Version 2002 SP3. It was used

the latest available version of Intel(R) VTune(TM) Performance Analyzer 9.0. Table 36

Shows for BLASTn and query length 1000 and several W-mers sizes the execution time

of the Intel PC, the Virtex 5 and the respective speedup and figure 39 illustrates it.

W-mer Size

NCBI SW

Throughtput

(Char 10
6
/sec)

TUC HW

Throughtput

(Char 10
6
/sec)

Speed Up

HW vs. SW

4 1.13

21,060

18,582.24

5 3.94 5,351.76

6 13.66 1,541.28

7 46.37 454.17

8 96.00 219.37

9 211.07 99.78

10 347.58 60.59

11 976.00 21.58

Table 36: NCBI throughput according to W-mer Length

http://www.in.gr/dictionary/lookup.asp?Word=quantitative

Figure 39: SpeedUp of TUC HW vs NCBI SW according to W-mer length

9.9 Energy consumption

This section presents the energy consumption issues for the TUC architectures

resented above; although it was not in our initial intention to develop a low power

system. We measured the energy consumption that was needed by the different

implemented architectures to scan 10
6
 database characters.

A high end board, like the HiTechGlobal HTG-LX330T, which is available at the

MHL, is powered by a normal PC power supply of 400 watts. This board can achieve

throughputs as mentioned in Table 19 (BLAST Generic Architecture V.2 System

Performance). A PC was also used as the base platform for the high end board. The

power consumption of the additional PC is also 400 watts. Thus, the whole system

consumes in total approximately 800 watts. Table 37 shows the estimated energy

consumption for such system per 10
6
 database characters. Although these calculations are

approximate, they provide a reasonable and realistic estimate of what can be expected in

1

10

100

1000

10000

100000

4 5 6 7 8 9 10 11

Sp
e

e
d

U
p

Query Size

Speed Up
HW vs. SW

http://www.hitechglobal.com/Boards/PCIExpressLX330T.htm

general, assuming a worst-case scenario both for the PC and for the reconfigurable

hardware (i.e. fully used power supply).

Query

Length

(Characters)

BLASTn

Joule/char 10
6

BLASTp

Joule/char 10
6

BLASTx/TBLASTn

TBLASTx

Joule/char 10
6

1,000 0.0380 0.0380 0.2279

2,000 0.0380 0.0380 0.2279

5,000 0.0380 0.0380 0.2279

10,000 0.0380 0.0760 0.4558

30,000 0.0760 0.1899 1.3675

50,000 0.1519 0.3419 2.2792

100,000 0.2659 0.6457 4.5455

150,000 0.3799 0.9501 6.8376

200,000 0.4938 1.2924 9.0909

Table 37: MicroBlaze Based System Energy Consumption

A usual PC consumes 400 watts achieving performance for NCBI BLAST as it

was measured at Table 11. Table 38 is calculated using the same metrics for energy

consumption.

Query

Length

(Characters)

BLASTn

Joule/char

10
6

BLASTp

Joule/char

10
6

BLASTx

Joule/char

10
6

TBLASTn

Joule/char

10
6

TBLASTx

Joule/char

10
6

1,000 0.4098 6.2992 1.4118 14.0056 24.8602

2,000 0.4905 9.3831 2.3961 27.1186 43.3369

5,000 1.3711 21.2766 4.1284 48.3676 89.8876

10,000 1.8217 43.1965 7.2424 81.3008 153.8462

30,000 3.7587 156.2500 24.6609 210.5263 459.7701

50,000 4.1894 238.0952 35.1494 366.9725 689.6552

100,000 6.7866 606.0606 78.2779 784.3137 1,428.5714

150,000 12.3571 930.2326 121.5805 1,142.8571 2,105.2632

200,000 17.1306 1,250.0000 160.6426 1,538.4615 2,857.1429

Table 38: PC System Energy Consumption

According to Tables 37 and 38, Table 39 shows the energy efficiency (how many

times less energy is consumed) of FPGA based system vs. normal PC.

Table 39 and Table 29 show that power consumption is proportional to the speed

up divided by a factor of 2. Table 39 shows also that FPGA based system can be up to 2

orders of magnitude more efficient than a general purpose computer. Energy

consumption is an issue of great importance for the large Bioinformatics projects. For

example, a current study for phylogenomic alignments consists of almost 1,500 genes and

requires 2.25 million CPU hours on an IBM BlueGene/L supercomputer. This shows that

the energy consumption is one of the most important aspects of the project.

Query

Length

(Characters)

BLASTn

PC/TUC

architecture

BLASTp

PC/TUC

architecture

BLASTx

PC/TUC

architecture

TBLASTn

PC/TUC

architecture

TBLASTx

PC/TUC

architecture

1,000 10.79 165.83 6.19 61.45 109.07

2,000 12.91 247.01 10.51 118.98 190.14

5,000 36.10 560.11 18.11 212.21 394.38

10,000 47.96 568.57 15.89 178.35 337.50

30,000 49.47 822.66 18.03 153.95 336.21

50,000 27.57 696.43 15.42 161.01 302.59

100,000 25.53 938.64 17.22 172.55 314.29

150,000 32.53 979.07 17.78 167.14 307.89

200,000 34.69 967.19 17.67 169.23 314.29

Table 39: Energy Efficiency of TUC Architecture vs. PC

As Table 39 is calculated on a real base model which considers the performance

measurements and not energy or power measurements, it should be stretched as

substantial evidence that FPGAs can be energy effective. This result can be applied only

to applications that have a certain amount of data to compute, like bioinformatics and not

to applications that work occasionally when data are produced, such as network

applications. Further research has to be done and more power measurements have to be

taken in order to define the problem characteristics which make FPGAs energy efficient

platforms.

9.10 Cost effectiveness

The system‘s cost effectiveness is another important issue to examine. The cost

has to be considered into two different aspects: the cost to buy the systems and the

operational cost.

The cost to build a high-end FPGA-based system is approximately 8,500 Euros,

e.g. 7,500 Euros for the FPGA board and 1,000 Euros for a personal computer. As the

performance of the FPGA-based system is 20 to several hundred‘s times faster than the

performance achieved by a personal computer and taking into account that the computer

power consumption for the specific program costs from 20,000 Euros up to several

hundred‘s thousands Euros, it can be concluded that the FPGA based system is from 2.5

times cheaper. up to 100 times cheaper vs. the corresponding PC implementing the

BLAST algorithm. These calculations are considered without the cost to develop

hardware or software.

The operational cost is mostly in the energy consumption, where FPGAs proved

to be more efficient and the administration cost which is much higher for a PC farm than

a single, FPGA-based system.

Chapter 10

Conclusions and Future Work

10.1 Conclusions

Concluding this thesis several points can be made according to technology impact,

BLAST algorithm and Bioinformatics and hardware implementations.

Technology

FPGAs can offer significant speed up on algorithms in which the datapath can‘t

be trivially mapped to parallel processing. As the devices get bigger and offer more

components in addition to the reconfigurable fabric these algorithms can be better

mapped to FPGAs by taking advantage of the resources. As in the general purpose

processors, in the reconfigurable processors the amount of memory and the way that is

organized is critical for system design. Another critical issue for such designs is the I/O,

Xilinx devices offer significant resources for this problem but this is the one only aspect

of the solution, in addition to the platform which is used and consequently the way in

which the device is connected to the ―rest of the world‖.

BLAST Algorithm

This algorithm proved to be a challenging problem with great potential for design

of hardware modules. There are 5 variations with many different configurations (W-mer

length, scoring scheme etc.) that can be made and a generic hardware solution is

impossible to be made without the use of a general purpose processor such as the

PowerPC or the MicroBlaze, both of which were used in different implementations in this

dissertation. The wide usage of the BLAST algorithm by biologists and the rate of the

data that need to be processed, show that a platform with special-purpose hardware

running BLAST efficiently can be very valuable to the scientific community.

Bioinformatics

BLAST is the most significant and widely used algorithm of bioinformatics. It‘s a

streaming data algorithm where throughput rather than latency is significant.

Bioinformatics algorithms are about one hundred in count, and most of them are

computationally intensive. The TUC BLAST implementation shows that such problems

with large memory needs, a lot of variations and different configuration or with I/O

problems can be mapped efficiently on an FPGA and offer significant performance

boosting.

10.2 Towards a Reconfigurable Bioinformatics Processor

As it has been mentioned before, bioinformatics is a research area and industry

sector with explosive development. Genetic data generation is enormous and therefore

their handling becomes an increasingly difficult problem. A generation of a

bioinformatics processor is a challenge that can solve a real-world problem.

For such BioProcessor with today technology two different approaches can been

proposed. First, and the most obvious approach is a hardcore BioProcessor which fully

implements a special instruction set which is designed to perform faster for the every

common instruction that Bioinformatics algorithms perform. The main advantage of such

a solution is that the performance for the common case would be very high due to clock

speed, as it happens with the DSPs. On the other hand due to the fact that algorithms

evolve continuously it is very difficult to develop a generic enough processor.

A coarse-grain reconfigurable processor with specially designed available

modules for bioinformatics could be a different approach. In such a device performance

can be much better than a generic FPGA but not as fast as a fully custom processor. A

reconfigurable part can be included together with a general-purpose hardcore processor.

For both solutions the first step to implement is a very detailed statistical analysis

of the characteristics of bioinformatics algorithms (or, at least the major ones), in order to

find what are the common operations. Another very significant step is the specification of

a standard interface between such a processor and the outside world which will be of very

high speed and will help all applications to run on such a processor easily.

REFERENCES

[1] K. Compton, S. Hauck, ―Reconfigurable Computing: A Survey of Systems and Software‖,

ACM Computing Surveys, Volume 34, Issue 2, Pages: 171 – 210, 2002.

[2] S. Hauck, "The Roles of FPGAs in Reprogrammable Systems" , Proceedings of the IEEE,

Vol, 86, No, 4, pp, 615-638, April, 1998.

[3] R. Hudson, D. Lehn, P. Athanas, "A run-time reconfigurable engine for image interpolation,"

In Proceedings of IEEE Symposium on FPGAs for Custom Computing Machines, 1998,

pp,88-95, 15-17 Apr 1998.

[4] M. Shand, L. Moll, "Hardware/software integration in solar polarimetry", In Proceedings of

IEEE Symposium on FPGAs for Custom Computing Machines, 1998, pp,96-104, 15-17 Apr

1998.

[5] W. Luk, T. Lee, J. Rice, N. Shirazi, P. Cheung, "Reconfigurable Computing for Augmented

Reality", In Proceedings of IEEE Symposium on FPGAs for Custom Computing Machines,

1999, pp, 136-145, Apr 1999.

[6] M. Rencher, B. Hutchings, ―Automated Target Recognition on Splash 2‖ In Proceedings of

IEEE Symposium on FPGAs for Custom Computing Machines, 1997, for Custom Computing

Machines, 1997, pp, 192-200, Apr 1997.

[7] A. Elbirt, and C. Paar, ―An FPGA implementation and performance evaluation of the Serpent

block cipher‖, In Proceedings of the Eighth ACM/SIGDA International Symposium on

FPGAs 2000, pp 33–40, 2000.

[8] C. Patterson, ―High Performance DES Encryption in Virtex(tm) FPGAs Using Jbits(tm)‖, In

Proceedings of IEEE Symposium on Field-Programmable Custom Computing Machines,

2000, pp 113-121, 2000.

[9] M. Leong, O. Cheung, K. Tsoi, and P. Leong, ―A Bit-Serial Implementation of the

International Data Encryption Algorithm IDEA‖, In Proceedings of IEEE Symposium on

Field-Programmable Custom Computing Machines, 2000, pp 122-131, 2000,

[10] A. Dandalis, V. Prasanna, and J. Rolim, ―An Adaptive Cryptographic Engine for IPSec

Architectures‖, In Proceedings of IEEE Symposium on Field-Programmable Custom

Computing Machines, 2000, pp 132-141, 2000.

[11] H. Kim and W. Mangione-Smith, ―Factoring large numbers with programmable

hardware‖, In Proceedings of the Eighth ACM/SIGDA International Symposium on FPGAs

ACM/SIGDA International Symposium on FPGAs, FPGA '00, pp 41–48, 2000.

[12] J. Hauser, J. Wawrzynek, "Garp: a MIPS processor with a reconfigurable coprocessor,"

In Proceedings of IEEE Symposium on Field-Programmable Custom Computing Machines

1997, pp 12-21, 1997.

[13] K. Leung, K. Ma, W. Wong, and P. Leong, ―FPGA Implementation of a Microcoded

Elliptic Curve Cryptographic Processor‖, In Proceedings of the 2000 IEEE Symposium on

Field-Programmable Custom Computing Machines 2000, pp 68-76, 2000.

[14] C. Kachris, N. Bourbakis, A. Dollas: ―A Reconfigurable Logic-Based Processor for the

SCAN Image and Video Encryption Algorithm‖, International Journal of Parallel

Programming 31(6): 489-506, 2003.

[15] M. Piacentino, G. VanderWal, M. Hansen, "Reconfigurable Elements for a Video

Pipeline Processor," In Proceedings of IEEE Symposium on FPGAs for Custom Computing

Machines, 1999, pp, 82-91, Apr 1999.

http://ee.washington.edu/faculty/hauck/publications/mFPGAhard.pdf

[16] M. Weinhardt and W. Luk, "Pipeline Vectorization for Reconfigurable Systems", In

Proceedings of IEEE Symposium on FPGAs for Custom Computing Machines, 1999, pp,52-

62 , Apr 1999.

[17] E. Sotiriades, A. Dollas, and P. Athanas “Hardware-Software Codesign and Parallel

Implementation of a Golomb Ruler Derivation Engine” Proceedings 8th International IEEE

Symposium on Field-Programmable Custom Computing Machines, pp, 227-235, Napa

Valley, April 17-19, 2000.

[18] A. Dollas, E. Sotiriades, A. Emmanouilides “Architecture and Design of GE1, a FCCM

for Golomb Ruler Derivation”, Proceedings, 6th International IEEE Symposium on FPGA's

for Custom Computing Machines, pp, 48-56, Napa Valley, April 15-17, 1998.

[19] N. Shirazi, P. Athanas, and A. Abbott, "Implementation of a 2-D Fast Fourier Transform

on an FPGA-Based Custom Computing Machine", in Proc, FPL, 1995, pp,282-292.

[20] K. Underwood, R. Sass, and W. Ligon, ―Acceleration of a 2D-FFT on an Adaptable

Computing Cluster‖, In Proceedings of the 9th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines 2001, pp, 180-189, 2001.

[21] L. Huelsbergen,‖ A representation for dynamic graphs in reconfigurable hardware and its

application to fundamental graph algorithms‖, In Proceedings of the 2000 ACM/SIGDA

Eighth international Symposium on Field Programmable Gate Arrays 2000, pp105-115,

2000.

[22] P. Zhong, M. Martonosi, P. Ashar, and S. Malik, ―Accelerating Boolean Satisfiability

with Configurable Hardware‖, In Proceedings of the IEEE Symposium on Fpgas For Custom

Computing Machines 1998, pp 186–195, 1998.

[23] W. Huang, N. Saxena, and E, McCluskey, ―A Reliable LZ Data Compressor on

Reconfigurable Coprocessors‖, In Proceedings of the IEEE Symposium on Field-

Programmable Custom Computing Machines 2000, pp 249–258, 2000.

[24] P. Stogiannos, A. Dollas, V. Digalakis ―A Configurable Logic Based Architecture for

Real-Time Continuous Speech Recognition Using Hidden Markov Models‖, VLSI Signal

Processing 24(2-3): 223-240 (2000).

[25] P. Graham and B. Nelson ―Genetic algorithms in software and in hardware—A

performance analysis of workstations and custom computing machine implementations‖, In

Proceedings of the IEEE Symposium on Field-Programmable Custom Computing Machines

1996, pp 216–225, 1996.

[26] C. Paar and M. Rosner, "Comparison of arithmetic architectures for Reed-Solomon

decoders in reconfigurable hardware", in Proc, FCCM, 1997, pp,219-225,

[27] Y. Li and W. Chu, "Implementation of single precision floating point square root on

FPGAs", in Proc, FCCM, 1997, pp,226-233,

[28] www,opencores,org

[29] A. Dollas, D. Pnevmatikatos, N. Aslanides, S. Kavvadias, E. Sotiriades, S. Zogopoulos,

K. Papademetriou, N. Chrysos, K. Harteros, E. Antonidakis, N. Petrakis, “Architecture and

Applications of PLATO, a Reconfigurable Active Network Platform,” Preliminary Proc,

FCCM, 2001,

[30] G. Brebner, "Single-Chip Gigabit Mixed-Version IP Router on Virtex-II Pro", in Proc,

FCCM, 2002, pp,35-44.

[31] S. Young, P. Alfke, C. Fewer, S. McMillan, B. Blodget, and D. Levi, "A High I/O

Reconfigurable Crossbar Switch", in Proc, FCCM, 2003, pp,3-10.

[32] P. Bellows, J. Flidr, T. Lehman, B. Schott, and K. Underwood, "GRIP: A Reconfigurable

Architecture for Host-Based Gigabit-Rate Packet Processing", in Proc, FCCM, 2002, pp,121-

130.

[33] R. Krishnamurthy, S. Yalamanchili, K. Schwan, and R. West, "ShareStreams: A Scalable

Architecture and Hardware Support for High-Speed QoS Packet Schedulers", in Proc,

FCCM, 2004, pp,115-124.

[34] Z. Baker and V. Prasanna, "A Methodology for Synthesis of Efficient Intrusion Detection

Systems on FPGAs", in Proc, FCCM, 2004, pp,135-144.

[35] I. Sourdis and D. Pnevmatikatos, "Pre-Decoded CAMs for Efficient and High-Speed

NIDS Pattern Matching", in Proc, FCCM, 2004, pp,258-267.

[36] Y. Cho and W. Mangione-Smith, "Fast Reconfiguring Deep Packet Filter for 1+ Gigabit

Network", in Proc, FCCM, 2005, pp,215-224.

[37] I. Sourdis and D. Pnevmatikatos, "Fast, Large Scale String Matching for a 10 Gbps

FPGA-based NIDS‖, Book chapter in ―New Algorithms, Architectures, and Applications for

Reconfigurable Computing‖, Patrick Lysaght and Wolfgang Rosenstiel(Eds,), Chapter 16, pp,

195-207, ISBN 1-4020-3127, Springer, 2005.

[38] P. Higgs, T. Attwood, ―Bioinformatics And Molecular Evolution‖, Blackwell Publishing,

2005.

[39] www.ncbi.nih.gov/Genbank/genbankstats.html

[40] www.ncbi.nih.gov

[41] www.embl-heidelberg.de

[42] pir.georgetown.edu

[43] scop.wehi.edu.au/gsdb/gsdb.html

[44] www.ddbj.nig.ac.jp

[45] www.ebi.ac.uk

[46] http://www.isb-sib.ch/

[47] R. Casey, "BLAST Sequences Aid in Genomics and Proteomics", Business Intelligence

Network October 11, 2005, (http://www,b-eye-network,com/view/1730).

[48] B. Needleman, and C. Wunsch, ―A General Method Applicable to the Search for

Similarities in the Amino Acid Sequence of Two Proteins,‖, J. Mol. Biol., vol. 48, pp 443-

453, 1970.

[49] T. Smith, and M. Waterman, ―Identification Of Common Molecular Subsequences,‖

Elsevier J. Mol. Biol., vol. 147, pp 195-197, 1981.

[50] W. Pearson, and D. Lipman, ―Improved tools for biological sequence analysis‖

Proceedings of the National Academic Science of the USA, vol 85, pages 2444–2448, 1988.

[51] S. Altschul, W. Gish, W. Miller, and E. Myers, ―Basic Local Alignment Search Tool‖

Elsevier J. Mol. Biol., vol. 215, pp 403-410, 1990.

[52] J. Meidanis and J. Setubal, ―Introduction to Computational Molecular Biology‖, PWS

Publishing Company, 1997.

[53] D. Hoang et. al. ―FPGA Implementation of Systolic Sequence Alignment‖, Proceedings of

the 2nd International Workshop on Field-Programmable Logic and Applications, Lecture

Notes in Computer Science 705, pp 183-191, 1992.

[54] D. Hoang ―Searching Genetic Databases on Splash 2‖, Proceedings IEEE Workshop on

FPGAs for Custom Computing Machines (FCCM), pp 185-191, 1993.

[55] S. Guccione and E. Keller ―Gene Matching Using JBits‖, Proceedings of the 12th

International Conference on Field-Programmable Logic and Applications, Lecture Notes In

Computer Science; Vol. 2438, pp 1168-1171, 2002.

[56] K. Puttegowda et. Al. ―A Run-Time Reconfigurable System for Gene-Sequence

Searching‖, Proceedings, 16th International Conference on VLSI Design pp 561 – 566, New

Delhi 2003.

[57] T. Oliver, B. Schmidt, D. Maskel ―"Reconfigurable Architectures for Bio-sequence

Database Scanning on FPGAs", IEEE Transactions on Circuits and Systems II, Vol, 52, No,

12, pp, 851-855, 2005.

[58] K. Muriki, K. Underwood, and R. Sass, ―RC-BLAST: Towards an open source hardware

implementation,‖ In Proceedings of the International Workshop on High Performance

Computational Biology (2005).

http://www.b-eye-network.com/view/1730

[59] M. Herbordt, J. Model, Y. Gu, B. Sukhwani, T. VanCourt, "Single Pass, BLAST-Like,

Approximate String Matching on FPGAs"14th Annual IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM'06), pp, 217-226, 2006.

[60] M. Herbordt, J. Model, B. Sukhwani, Y. Gu, and T. VanCourt, ―Single pass streaming

BLAST on FPGAs‖, Parallel Computing, vol. 33, issue 10-11 (Nov, 2007), pp 741-756,

2007.

[61] P. Krishnamurthy, J. Buhler, R. Chamberlain, M. Franklin, K. Gyang, and J. Lancaster,

"Biosequence Similarity Search on the Mercury System," In Proc. of the IEEE 15th Int'l

Conf, on Application-Specific Systems, Architectures and Processors, September 2004, pp,

365-375

[62] J. Lancaster, J. Buhler, R. Chamberlain, ―Acceleration of Ungapped Extension in Mercury

BLAST‖, 7th workshop on media and streaming processors, Barcelona, Spain, November 12,

2005

[63] A. Buhler et al. "Mercury blastn: faster dna sequence comparison using a streaming

hardware architecture", RSSI, 2007.

[64] Washington University, "Method and apparatus for performing biosequence similarity

searching" International Patent WO/2006/096324, 2006

[65] D. Lavenier, L. Xinchun, G. Georges, ―Seed-based Genomic Sequence Comparison using a

FPGA/FLASH Accelerator‖, in Proceedings of IEEE International Conference on Field

Programmable Technology, 2006,(FPT ‗06), pp, 41 - 48, 2006.

[66] F. Xia, Y. Dou and J. Xu, ―Families of FPGA-Based Accelerators for BLAST Algorithm

with Multi-seeds Detection and Parallel Extension‖, Bioinformatics Research and

Development, Second International Conference, BIRD 2008, pp, 43-57, Vienna, Austria, July

7-9, 2008.

[67] F. Xia, Y. Dou, J. Xu, "FPGA-Based Accelerators for BLAST Families with Multi-Seeds

Detection and Parallel Extension," The 2nd International Conference on Bioinformatics and

Biomedical Engineering, 2008, ICBBE 2008,, pp,58-62, 16-18 May 2008.

[68] http://www.timelogic.com/benchmark_blast.html

[69] C. Chang ―BLAST Implementation on BEE2―Electrical Engineering and Computer

Science University of California at Berkeley (2005), http://bee2.eecs.berkeley.edu

[70] http://www.bio-itworld.com/issues/2006/dec-jan/inside-the-box/

[71] C. Sosa et. Al. ―Some Practical Suggestions for Performing NCBI BLAST Benchmarks on

a pSeries ™ 690 System‖, http://www,redbooks,ibm,com/abstracts/redp0437,html?Open.

[72] R. Radahakrishnan, R. Ali, G. Kochhar, K. Chadalavada, R. Rajagopalan, ―Performance

Characterization of BLAST on 32-bit and 64-bit Dell PowerEdge Servers‖, Dell Power

Solutions, February 2005.

[73] http://images.apple.com/acg/pdf/AGBLAST229-PerfData22Jun04.pdf

[74] G. Mplemenos, I. Papaeftathiou, ―MPLEM An 80-processor FPGA Based Multiprocessor

System‖, Field-Programmable Custom Computing Machines, 2008, FCCM 2008.

[75] B. Bloom, "Space/time trade-offs in hash coding with allowable errors", Communications

of the ACM, vol, 13, issue 7, pp 422–426, 1970.

[76] M. Dayhoff, R. Schwartz, and B. Orcutt, ―A model of evolutionary change in proteins,‖ In:

Dayhoff,M,O, (ed), Atlas of Protein Sequence and Structure National Biomedical Research

Foundation, Washington, DC, pp, 345–352, 1978.

[77] S. Henikoff, J. Henikoff, "Amino Acid Substitution Matrices from Protein Blocks", PNAS

89: 10915–10919, 1992.

[78] J. Park, Y. Qiu and M. Herbordt ―CAAD BLASTP: NCBI BLASTP Accelerated with

FPGA-Based Pre-Filtering‖ fccm, 17th Annual IEEE Symposium on Field-Programmable

Custom Computing Machines (FCCM'09), 2009.

http://bee2.eecs.berkeley.edu/
http://images.apple.com/acg/pdf/AGBLAST229-PerfData22Jun04.pdf
http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=EBI&pubmedid=1438297

[79] P. Afratis, E. Sotiriades, G. Chrysos, S. Fytraki, and D. Pnevmatikatos, ―A rate-based

prefiltering approach to BLAST acceleration,‖ in Proc,IEEE Conference on Field

Programmable Logic and Applications, 2008.

[80] E. Sotiriades, C. Kozanitis, G. Chrysos, A. Dollas ―Rapid Phototyping of a System-on-a-

Chip for the BLAST Algorithm Implementation‖, Proceedings, 17th International IEEE

Workshop on Rapid System Prototyping RSP-2006, pp, 223-229, Chania, Greece, 14-16

June, 2006, Computer Society Press.

[81] E. Sotiriades, C. Kozanitis, A. Dollas, ―FPGA based Architecture of DNA Sequence

Comparison and Database Search‖, Proceedings 20th International Parallel and Distributed

Processing Symposium, IPDPS 2006, p 193, ,at the 13th Reconfigurable Architectures

Workshop Rhodes, Greece, 25-29 April, 2006

[82] E. Sotiriades, C. Kozanitis, A. Dollas, ―Some Initial Results on Hardware BLAST

Acceleration with a Reconfigurable Architecture‖, Proceedings 20th International Parallel

and Distributed Processing Symposium, IPDPS 2006, p 251 , at the 5th IEEE International

Workshop on High Performance Computational Biology (HiCOMB2006), Rhodes, Greece,

25-29 April, 2006.

[83] E. Sotiriades, A. Dollas ―A General Reconfigurable Architecture for the BLAST

algorithm‖, The Journal of VLSI Signal Processing Systems for Signal, Image, and Video

Technology, Special Issue on Computing Architectures and Acceleration for Bioinformatics

Algorithms, Kluwer Academic Publishers Volume 48, Issue 3 Pages: 189 – 208,

September, 2007.

[84] P. Afratis, K. Galanakis, E. Sotiriades, G. Mplemenos, G. Chrysos, Y. Papaefstathiou, D.

Pnevmatikatos ―Design and Implementation of a Database Filter for BLAST Acceleration‖

Accepted to be presented at Design Automation & Test in Europe (DATE 2009), Nice

France, April 24-29 2009.

[85] P. Afratis, E. Sotiriades, G. Chrysos, S. Fytraki, D. Pnevmatikatos, ―Preprocessor for

BLAST Algorithm Data‖, (in Greek), 2nd Greek ECE Student Conference, p,12, Athens,

April 2008.

[86] I. Kartsonakis, ―Development of PCIe driver for open source system (Linux) and VHDL

code for fast serial interface between PC and Virtex-5 Xilinx”, Diploma Thesis,

Microprocessor Hardware Laboratory, Technical University of Crete, 2009.

[87] R. Bittner, ―Bus mastering PCI express in an FPGA,‖ In Proceeding of the ACM/SIGDA

international Symposium on Field Programmable Gate Arrays, FPGA '09, pp 273-276,

Monterey, California, USA, February 22 - 24, 2009.

[88] D. Vasilopoulos, ―Study and Platform Development for High Speed serial Interface with

FPGA‖ Diploma Thesis, Microprocessor Hardware Laboratory, Technical University of

Crete, 2009.

http://www.google.com/url?sa=t&source=web&ct=res&cd=2&url=http%3A%2F%2Fwww.biztradeshows.com%2Ftrade-events%2Fdate.html&ei=KDYhSYmaE5Kk0gWI1onQDQ&usg=AFQjCNE-I0De4daiLqwIGtMC8GC5n74XSQ&sig2=9jbY_vYm78plsFtHIZZShA

Appendix A - Impact of this work

Publications from this work

Journal papers

1. Euripides Sotiriades, Apostolos Dollas ―A General Reconfigurable Architecture

for the BLAST algorithm‖, The Journal of VLSI Signal Processing Systems for

Signal, Image, and Video Technology, Special Issue on Computing Architectures

and Acceleration for Bioinformatics Algorithms, Kluwer Academic Publishers

Volume 48, Issue 3 Pages: 189 – 208, September, 2007.

Conference papers

2. Panagiotis Afratis, Konstantinos Galanakis, Euripides Sotiriades, Georgios-

Grigorios Mplemenos, Grigorios Chrysos, Yiannis Papaefstathiou, Dionisios

Pnevmatikatos ―Design and Implementation of a Database Filter for BLAST

Acceleration‖ Design Automation & Test in Europe (DATE 2009), Nice France,

pp166-171, April 24-29 2009.

3. Euripides Sotiriades, Christos Kozanitis, Grigorios Chrysos, Apostolos Dollas

“Rapid Phototyping of a System-on-a-Chip for the BLAST Algorithm

Implementation”, Proceedings, 17
th

 International IEEE Workshop on Rapid

System Prototyping RSP-2006, pp, 223-229, Chania, Greece, 14-16 June, 2006,

Computer Society Press.

4. Euripides Sotiriades, Christos Kozanitis, Apostolos Dollas, ―FPGA based

Architecture of DNA Sequence Comparison and Database Search”, Proceedings

20th International Parallel and Distributed Processing Symposium, IPDPS 2006, p

193, ,at the 13
th

 Reconfigurable Architectures Workshop Rhodes, Greece, 25-29

April, 2006.

5. Euripides Sotiriades, Christos Kozanitis, Apostolos Dollas, Some Initial Results

on Hardware BLAST Acceleration with a Reconfigurable Architecture,

Proceedings 20th International Parallel and Distributed Processing Symposium,

IPDPS 2006, p 251 , at the 5
th

 IEEE International Workshop on High Performance

Computational Biology (HiCOMB2006), Rhodes, Greece, 25-29 April, 2006.

Short or Poster Conference papers

6. Panagiotis Afratis, Euripides Sotiriades, Grigorios Chrysos, Sotiria Fytraki,

Dionisios Pnevmatikatos, ―A Rate-based Prefiltering Approach to BLAST

Acceleration‖, Accepted at International Conference on Field Programmable

Logic and Applications (FPL 2008), Heidelberg, Germany, 08-10 September

2008.

7. Panagiotis Afratis, Euripides Sotiriades, Grigorios Chrysos, Sotiria Fytraki,

Dionisios Pnevmatikatos, ―Preprocessor for BLAST Algorithm Data‖, (in Greek),

2nd Greek ECE Student Conference, p,12, Athens, April 2008.

http://www.google.com/url?sa=t&source=web&ct=res&cd=2&url=http%3A%2F%2Fwww.biztradeshows.com%2Ftrade-events%2Fdate.html&ei=KDYhSYmaE5Kk0gWI1onQDQ&usg=AFQjCNE-I0De4daiLqwIGtMC8GC5n74XSQ&sig2=9jbY_vYm78plsFtHIZZShA

8. Euripides Sotiriades, Apostolos Dollas, "Design Space Exploration for the

BLAST Algorithm Implementation" Proceedings, 15th Annual IEEE Symposium

on Field-Programmable Custom Computing Machines (FCCM 2007), pp, 323-

326, Napa Valley, April, 2007 ,

Invited Conference Papers (Unrefereed)

9. Euripides Sotiriades, Apostolos Dollas ―A General Reconfigurable Architecture

for the BLAST algorithm‖, 1st Hellenic Bioinformatics & Medical Informatics

Meeting (HBMIM), Foundation Biological Research Academy of Athens

(FBRAA), Athens, October 2007.

10. Euripides Sotiriades, ―Reconfigurable Hardware for Bioinformatics

Algorithms‖, 1st Cretan Bioinformatics Forum, FORTH, Herakleion, June 19th,

2006.

Papers Citation (no self reference) untul February, 2011: 33 including citations from

all “competitive” groups.

Invited Lectures

 ―A General Reconfigurable Architecture for the BLAST algorithm‖, a Computer

Engineering Seminar, Yale University, USA, 21st September 2007.

 ―Reconfigurable Architectures for the BLAST algorithm‖, Virginia Tech, USA,

18th September 2007.

Program Committees Participation

 9th IEEE International Workshop on High Performance Computational Biology

(HiCOMB) Atlanta, USA 19 April, 2010.

 Parallel Bio-Computing Workshop (PBC) Wroclaw (Breslau), Poland, September

13–16, 2009.

Industrial Collaborations

Collaboration agreement at February 7th 2008 with Synective Labs AB,

Gotherburg, Sweden, for ―……jointly developing of a demonstration unit for the BLAST

DNA matching algorithm……‖.

Theses

Diploma theses related to this work with C. Kozanitis, P. Afratis, C. Galanakis, D.

Vasilopoulos, S. Makropoulos and G. Vastarouhas.

Appendix B – Relative Work

Other publications

Conference papers

11. Nafsika Chrysanthou, Grigorios Chrysos, Euripides Sotiriades, Ioannis

Papaefstathiou, ―Parallel Accelerators For GlimmerHMM Bioinformatics

Algorithm‖, Accepted as regular paper at International Conference Design,

Automation and Test in Europe(Date 2011), Grenoble, France, 2011.

12. Nikolaos Alachiotis, Euripides Sotiriades, Apostolos Dollas, and Alexandros

Stamatakis ―Exploring FPGAs for Accelerating the Phylogenetic Likelihood

Function‖ at the 8th IEEE International Workshop on High Performance

Computational Biology (HiCOMB2009), Rome Italy, May 25th 2009.

13. Panagiotis Christou, Konstantinos Kyriakoulakos, Euripides Sotiriadis,

Konstantinos Papadopoulos, Georgios-Grigorios Mplemenos and Ioannis

Papaefstathiou, "Low-Power Security Modules optimized for WSNs", 16th

International Workshop on Systems, Signals and Image Processing (IWSSIP),

Chalkida Greece, 2009.

14. Ioannis Sotiropoulos, Evripidis Sotiriadis, Nikolaos Zervos, Ioannis

Papaefstathiou ―A high-end Binary Search unit for SVM DNA Micro-Arrays‖, to

be presented at Innovations in Information Technology (Innovations‘08), Al-Ain

United Arab Emirates, December 16-18 2008.

15. Apostolos Dollas, Kyprianos Papademetriou, Euripides Sotiriades, Dimitrios

Theodoropoulos, Iosif Koidis, George Vernardos, «A Case Study on Rapid

Prototyping of Hardware Systems: The Effect of CAD Tool Capabilities, Design

Flows, and Design Styles», Proceedings, 15th International IEEE Workshop on

Rapid System Prototyping RSP-2004, pp, 180-186, Geneva, Switzerland, June 28-

30, 2004, Computer Society Press.

16. Apostolos Dollas, Dionisios Pnevmatikatos, Nikolaos Aslanides, Euripides

Sotiriades, Stamatis Kavvadias, Sotirios Zogopoulos, ―Experimental Testing of

PLATO, a Reconfigurable Active ATM Network Node‖, In Proceedings of the

8th Panhelleic Informatics Conference, pp, 11-17, Nicosia, Cyprus, November,

2001.

17. Apostolos Dollas, Dionisios Pnevmatikatos, Nikolaos Aslanides, Stamatis

Kavvadias, Euripides Sotiriades, Kyprianos Papademetriou, «Rapid Prototyping

of Reusable 4x4 Active ATM Switch Core with the PCI Pamette,» Proceedings,

12th International IEEE Workshop on Rapid System Prototyping RSP-2001, pp,

17-23, June 25-27, 2001, Monterey, CA, Computer Society Press.

18. Apostolos Dollas, Dionisios Pnevmatikatos Nikolaos Aslanides, Stamatis

Kavvadias, Euripides Sotiriades, Sotirios Zogopoulos, Kyprianos

Papademetriou, Nikolaos Chrysos, Konstantinos Harteros, Emmanouil

Antonidakis, Nikolaos Petrakis, «Architecture and Applications of PLATO, a

Reconfigurable Active Network Platform,» Preliminary Proceedings, 9th

International IEEE Symposium on Field-Programmable Custom Computing

Machines, Rohnert Park, CA, April 30 – May 2, 2001, Computer Society Press.

19. Euripides Sotiriades, Apostolos Dollas, and Peter Athanas ―Hardware-Software

Codesign and Parallel Implementation of a Golomb Ruler Derivation Engine‖

Proceedings 8th International IEEE Symposium on Field-Programmable Custom

Computing Machines, pp, 227-235, Napa Valley, April 17-19, 2000.

20. Apostolos Dollas, Euripides Sotiriades, Apostolos Emmanouilides ―Architecture

and Design of GE1, a FCCM for Golomb Ruler Derivation», Proceedings, 6th

International IEEE Symposium on FPGA's for Custom Computing Machines, pp,

48-56, Napa Valley, April 15-17, 1998.

Short or Poster Conference Papers

21. Matina Lakka, Athina Desarti, Grigorios Chrysos, Euripides Sotiriades, Ioannis

Papaefstathiou, Apostolos Dollas, ―Reconfigurable Computing IP Cores for

Multiple Sequence Alignment‖, Accepted as short paper for International

Conference on Bioinformatics Models, Methods and Algorithms (Bioinformatics

2011),2011.

22. Pavlos Malakonakis, Euripides Sotiriades, Apostolos Dollas ―GE3: a single chip

client-server architecture for Golomb ruler derivation‖, Presented as short paper at

The 2010 International Conference on Field-Programmable Technology (FPT'10),

23. Miltiadis Smerdis, Panagiotis Dagritzikos, Grigorios Chrysos, Euripides

Sotiriades, Apostolos Dollas, ―Reconfigurable Systems for the Zuker and

Predator Algorithms for Secondary Structure Prediction of Genetic Data‖, Short

paper at International Conference on Field Programmable Logic and Application

(FPL 2010), pp 448-451, August 31 – September 2 2010.

24. Grigorios Chrysos, Euripides Sotiriades, Ioannis Papaefstathiou and Apostolos

Dollas, "An FPGA based Coprocessor for Gene finding using Interpolated

Markov Model (IMM)", Short paper at International Conference on Field

Programmable Logic and Application (FPL 2009), Prague, Czech Republic,

August 31 – September 2 2009.

25. Pavlos Malakonakis, Miltiadis Smerdis, Euripides Sotiriades, Apostolos Dollas

―An FPGA-Based Sudoku Solver based on Simulated Annealing Methods‖ The

2009 International Conference on Field-Programmable Technology (FPT'09) ,

Sidney Australia, December 9-11 2009, (3rd place in the contest).

26. Grigorios Chrysos, Euripides Sotiriades, Ioannis Papaefstathiou and Apostolos

Dollas, "A FPGA based Coprocessor for Gene finding using Interpolated Markov

Model (IMM)", Short paper at International Conference on Field Programmable

Logic and Application (FPL 2009), Prague, Czech Republic, 2009.

27. Nikolaos Alachiotis, Alexandros Stamatakis, Euripides Sotiriades, Apostolos

Dollas, ―A Reconfigurable Architecture for the Phylogenetic Likelihood

Function‖ Short paper at International Conference on Field Programmable Logic

and Application (FPL 2009), Prague, Czech Republic, 2009.

28. Georgios-Grigorios Mplemenos, Konstantinos Papadopoulos, Andreas

Brokalakis, Grigorios Chrysos, Euripides Sotiriadis, Ioannis Papaefstathiou,

"RESENSE: Reconfigurable WSN Nodes", Wireless Sensing Showcase, July

2009, London, (3rd place in the contest).

29. Euripides Sotiriades, Grigorios Chrysos, Georgios-Grigorios Mplemenos,

Panagiotis Afratis, Nikolaos Alachiotis, Panagiotis Dagritzikos, Constantinos

Galanakis, Christos Kagiavas, Miltiadis Smerdis, Ioannis Papaefstathiou,

Dionisios Pnevmatikatos, Apostolos Dollas ―Special purpose processors for

performance boosting of Bioinformatics Algorithms‖, 3rd Conference of the

Hellenic Society for Computational Biology and Bioinformatics (CHSCBB

2008), p 42, October 30-31, 2008, CERTH Thessaloniki.

30. Apostolos Dollas, Kyprianos Papademetriou, Stamatis Sotiropoulos, Euripides

Sotiriades, ―A Device for the Communication with the Environment for Persons

with Kinetic Disabilities‖, Proceedings (in Greek), 7th Panhellenic Conference on

Medicine and Rehabilitation, pp, 82-83, Chania, Greece, October 25-27, 2003.

31. Apostolos Dollas, Euripides Sotiriades, Apostolos Emmanouelides, Lee House,

―General Purpose vs, Custom FCCM's: a Comparison of Splash 2, Quickturn

RPM, and GE1 for Golomb Ruler Derivation‖, Proceedings, 6th International

IEEE Symposium on FPGA's for Custom Computing Machines, pp, 269-270,

Napa Valley, April, 1998.

Invited Lectures

―Reconfigurable Architecture for Golomb Ruler Derivation‖, Virginia Tech, USA, 6th

September 2007.

Theses

Diploma theses relevant to this work were completed by N. Alachiotis, N. Chrysanthou,

P. Dagritzikos, A. Desarti, M. Lakka, P. Malakonakis, and M. Smerdis.

