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 ABSTRACT 

ancer is generally considered as the public nuisance of our century since it is one of 

the most complex diseases that the medical community must face. Its undetermined 

pathological origins, its unpredicted biological behavior and its lethal, most of the 

times, outcome are some of its main characteristics that experts have to deal with.  

Among the most lethal types of cancer is the Brain cancer which is characterized by the 

formation of one or more solid tumors within the brain parenchyma. The Brain tumors have 

the ability to rapidly progress form low malignancy to high malignancy, restricting thus the 

oncologist’s ability to accurately evaluate their behavior and design an effective treatment in 

order to improve the patient’s clinical image.  

The recent release of the human genome enabled experts to understand that abnormal 

genetic mutations are the basis for cancer genesis. Furthermore, the introduction of other 

“omics” fields such as transcriptomics, proteomics and metabolomics, descendants of 

genomics, revolutionized the way experts analyze Brain tumors today. State of the art “omics” 

technologies and pattern recognition methods managed to revealed useful information 

regarding Brain tumors’ pathology that has been unknown for many decades.  

Although a lot has already been done in the field of Brain cancer diagnosis, prognosis and 

treatment, a lot more must be achieved. Most of the patients with high grade brain malignancy 

die within 24 months from initial diagnosis. The need to design new and more effective 

treatments that will prolong patients’ life expectancy is overwhelming. 

Motivated by this need under the major hypothesis that the selection and the effectiveness 

of the therapy to be followed is primarily based on the estimation of the histopathological 

profile of the tumor at diagnosis stage, we attempt to identify novel and reliable biological 

features (markers) sets that can be adopted to accurately discriminate the type and grade of a 

brain tumor for a new patient. The selection of significant features, which describe the tumors’ 

type and grade, is the foundation for the design of novel non-invasive patient specific 

therapies. This is actually an open challenge in this continuous fight against Brain as well as 

other types of cancer. 

To accomplish this goal, the data of Brain cancer patients provided from two “omics” 

technologies, named Magnetic Resonance Spectroscopy (MRS) and DNA Microarrays, were 

utilized. MRS technology reveals the metabolic profile of a Brain tumor while DNA 

Microarrays provides its genetic identity. Analyzing the information provided from MRS 

spectra, we identified novel metabolic marker sets that can be used to classify the type and 

grade of a new patient with high accuracy.  On the other hand our genetic analysis was based 

on the Otto Warburg’s hypothesis in 1956 who observed that tumorous cells exhibit increased 

rates of glycolysis (sugar splitting process for cellular energy production). Examining the 

glycolytic profile of Brain tumor patients we managed to discover that, apart from the well 

known from bibliography genetic markers (genes), glycolycis related genetic markers play a 

very significant role in Brain tumor’s behavior. Based on this two-fold analysis a novel medical 

Decision Support System (DSS), which bridges the knowledge extracted from two different 

“omics” modalities, i.e. genomics and metabolomics, is proposed. As a primary result, we 

C 
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 ABSTRACT 

verify the importance of metabolites in cancer-type and grade discrimination and validated 

their metabolic and genetic association in cancer progression, through the glycolysis process. 

In order to implement the analysis of the data at genomic and metabolomic levels, modern 

pattern recognition methods were applied. Two well known classifiers named Support Vector 

Machines (SVM) and the Least Squares-SVM (LS-SVM), widely used in biomedical problems, 

were used exploiting their unique property to cope quite well with complex data as occurs in 

brain cancer. Based on these classifiers we managed to develop a reliable feature selection 

and classification system that embeds the intrinsic characteristic of patients’ data into the 

classification process resulting to high classification accuracy rates and identification of 

significant metabolic and genetic marker sets. This was a secondary accomplishment of this 

thesis. 
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 GENERAL INTRODUCTION 

rain tumors and especially the brain gliomas are among the most aggressive and 

lethal types of cancer. Their ability to rapidly infiltrate into the brain tissue causing 

irreversible damages requires quick and accurate clinical response both at diagnostic 

and therapeutic stages.  

Nowadays, the diagnostic protocol followed begins with the application of diagnostic 

imaging techniques such as Computer Tomography (CT), Magnetic Resonance Imaging 

(MRI) and Positron Emission Tomography (PET) in order to obtain information concerning the 

size, the location, the extent, the type and grade of the tumorous lesion. Most of the times 

though, this is not enough and a biopsy is necessary for the evaluation of some cancer 

biomarkers, already known from literature, in order to determine the type and grade of tumor’s 

malignancy. Biopsy however, forces an oncologist to proceed to a brain surgery for the 

resection of a small tumorous part for further examination. Although necessary, many times 

this operation hides significant risks for the patient. The undetermined borders of the 

tumorous area involve the danger of removing, apart from tumorous, healthy brain tissue and 

destroying in this way vital functions of the patient’s brain. In addition, it is also often decided, 

as a last choice for therapy and usually after the application of chemotherapy and/or 

radiotherapy, to proceed to a surgical operation through craniotomy in order to remove the 

observable tumorous area. Remember however that brain is the organ that maintains and 

controls the functions of our body, so even when a small part of the tissue is removed, there 

will be definitely a cost for the patient. The bet therefore is to limit this cost by inventing 

alternative methods, less invasive than biopsy and surgery, to accurately diagnose and 

eventually treat these tumors. 

During the last decades, efforts to develop new non-invasive imaging diagnostic methods 

or even improve the existing ones have been generated. The need to acquire more sensitive 

diagnostic tools which will provide a clearer view and understanding of the intrinsic 

characteristics of such complex tumors resulting to the design of new more efficient treatment 

protocols, is urgent.  

Among the most promising imaging diagnostic techniques applied today, is the Magnetic 

Resonance Spectroscopy (MRS). This technique, which is a descendant of Magnetic 

Resonance Imaging (MRI), is capable to monitor the biochemical/metabolic activity of brain 

gliomas by analyzing the MRS spectra acquired from patient’s brain. Studying the metabolism 

of a tumor has been recently introduced into the oncology science. Many researchers have 

recently shown that cancer’s metabolic activity can be a field where significant information 

regarding cancer’s behavior can be extracted [Seyfried T.N. et al 2005 - Griffin J.L. et al 2006 

- Spratlin J.L. et al 2009 - Seyfried T.N. et al 2011]. 

Although the metabolic information of tumors enable experts to study their behavior, 

classify them based on their grade and decide the treatment that is most suitable for each 

patient, today’s diagnostic practices mostly examine a predefined set of known metabolic 

markers in order to classify a glioma patient into one of the known, according to World health 

Organization (WHO), types and grades [Callot V. et al 2008 - Galanaud D. et al 2006 - 
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Heerschap A. 2007 - Howe F.A. et al 2003(a, b) -  Majos C. et al 2004 - Sjobakk T.E. et al 

2006]. Therefore, the need to discover new metabolic markers and test whether they can help 

experts to increase the diagnostic outcome and improve the therapeutic process is 

immediate. 

Furthermore, the release of the human genome working draft marked the biomedical 

discipline opening a new era in the fields of biology and medicine with the use of 

bioinformatics. In combination with the advent of microarray technology, scientists can now 

derive a vast amount of valuable information but the need still remains to understand and 

exploit it. DNA microarray technology allows researchers to study the behavior of thousands 

of genes in a single experiment, exploring and monitoring their expression in various diseases 

with the aim of understanding or discovering the biological mechanisms involved [Shalon D. 

et al 1996 - Golub T.R. et al 1999 - Ramaswamy S. et al 2002]. Today, specific gene 

alterations are identified using DNA microarrays in order to determine the aggressiveness of 

the tumor. But again are these genetic markers enough to obtain the best possible diagnosis? 

Both of these two “omics” technologies (MRS and DNA Microarrays) offer clinicians a non-

invasive way to search for unique cancer characteristics which will enable them to achieve 

better diagnosis and treatment results. However another issue must be addressed. Today’s 

clinical methods applied for the therapy of brain tumors, most of the times, follow a similar 

pattern. Patients that have been diagnosed with the same grade of brain glioma undergo a 

similar treatment plan (chemotherapy, radiotherapy and/or surgery through a craniotomy). But 

is this always the correct or the only way to face this disease? And if this is true, why then the 

same therapy has not the same impact on different patients suffering from the same type of 

brain tumor?  

This type of syllogism has generated the idea that new-generation medicine, which moves 

from disease-based to patient-based treatment, is necessary. Patient-based or personalized 

treatment considers each patient as a unique pathological case. Based on this consideration 

new drugs can be designed to focus on specific metabolic and genetic characteristics of the 

patient which will hopefully restrict or even eliminate the brain tumor [Van't Veer L.J. et al 

2008 - Lesniak M.S. et al 2004]. 

 

What research has offered so far? 

At genomic level most of the studies accomplished in the area of brain cancer involve the 

evaluation of specific tumor suppressors (PTEN, Rb, TP53) and oncogenes (CDK4, EGFR, 

PDGF) and their impact on tumorigenesis. The examination of their genetic mutations is now 

considered the gold standard for diagnostic, prognostic and treatment purposes. Their 

interrelations are described by genetic networks (also known as pathways) which are 

available in large databases on the Internet (KEGG, HGP) for further study and use [Shiraishi 

T. et al 2003 - Furnari F.B. et al 2007 - Ohgaki H. et al 2009 - Jones R.G. et al 2009]. 

However less work has been done on the evaluation of the impact of other biological 

pathways on brain tumor pathology and behavior that could possibly reveal new potential 
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biomarkers which will open new ways towards a more reliable non-invasive management of 

this disease.  

At metabolic level now the use of spectroscopic data obtained from patients’ MRS brain 

tumor spectra, enabled the determination of specific metabolites that have been found to play 

a significant role mainly in the diagnosis of the type and grade of brain tumors. The estimation 

of the spectroscopic intensities of NAA (N-acetyl-aspartate), Cre (Creatine), Cho (Choline) 

and others metabolites offer to clinicians a clear image of the metabolic activity within the 

brain which is a useful diagnostic tool [Howe F.A. et al 2003(a, b) - Simonetti A.W. et al 2005 

– Lehnhardt F.G. et al 2005 - Devos A. et al 2005 - Galanaud D. et al 2006 -Luts J et al 2007 

- Heerschap A. 2007 - Callot V. et al 2008 - Postma G.J et al 2011]. The problem however is 

that most of the studies done in this area propose a predefined set of metabolites that is used 

as a common base for the discrimination of any brain tumor type and grade. In other words 

they do not examine each brain tumor separately so they can determine specific sets of 

metabolic markers that influence their type and grade. This has a negative impact on the 

prognosis and therapeutic estimates for two different tumors since their metabolic profile is 

not extensively investigated. 
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 DEFINITION OF THE PROBLEM 
 GOALS OF THE THESIS 

Definition of the problem 

 
rain is perhaps the most complex organ of human body. It actually controls our body’s 

functions and therefore any problem arising in its tissue must be carefully managed by 

experts. Brain tumors and especially gliomas are among the most aggressive 

neoplasms which must be immediately faced since their prognosis estimate is very poor (less 

than 24 months).  

During this short period of time several critical decisions must be taken regarding the 

treatment protocols to be followed (chemotherapy, radiotherapy and/or surgical operation). 

However, even with the most effective therapies the patients will, most of the times, not make 

it at the end. The selection of the proper therapy is always based on the proper diagnosis of 

the disease. Today when two patients are diagnosed to suffer from the same brain tumor, 

both will follow the same or similar treatment pathways. What quite often happens though is 

that the two patients respond quite different from the expected.  

Based on these observations we directed our research efforts on two clinical areas, i.e. the 

diagnosis and the therapy of brain tumors. The problems that this thesis tried to face are: 

• The weaknesses of today’s conventional imaging diagnostic methods such as CT 

(Computer Tomography) and MRI (Magnetic Resonance Tomography) to accurately 

discriminate brain tumor types and grades. These methods provide only morphological 

information for the brain tumor, i.e. they do not investigate its biological profile. This 

inevitably leads to biopsy (surgical operation) which alters new dangers for patient’s life. 

• The inability of today’s conventional diseased-based treatments to effectively manage 

brain tumors. The toxicity of the drugs applied today many time affect even the healthy 

tissue of the brain causing irreversible problems in patient’s functionality. 

• The lack of reliable brain cancer biomarkers that can reveal the tumor’s biological 

behavior which will provide more reliable diagnosis and set the foundations for new non-

invasive treatments (reduce surgical operations and therefore also reduce the cost of 

treatments for the hospitals). 

• Finally, the inexistence of a new medical Decision Support System in the clinical practice 

that could establish a new non-invasive diagnostic protocol based on these biomarkers 

and focuses primarily on the patient not the disease only (personalized treatment). 
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 GOALS OF THE THESIS 

Goals of the Thesis 

 
he aim of this thesis is three-fold. The first major goal is to exploit the information 

extracted from the metabolic (MRS spectra) and genetic (DNA Microarrays) analysis of 

brain tumors (mainly brain gliomas) in order to identify unique sets of metabolic and 

genetic markers that will accurately discriminate their type and grade but also open new ways 

for their non-invasive treatment. 

These sets of biomarkers will offer to oncologists the ability to find answers into two crucial 

matters regarding the diagnosis and treatment of a new patient. These are: 

 

• to accurately classify a new patient into a specific type and grade, based on the metabolic 

and genetic characteristics (markers) of his brain tumor, not only on the clinical 

(histopathological) characteristics of his tumor.  

• to manage each new patient as a unique case and decide for his treatment in an 

individualized manner designing and administrating targeted therapies based on these 

markers’ expression profiles. 

 

Second, to provide a robust pattern recognition method able to identify significant 

characteristics of brain tumors, both at metabolic and genomic level, for diagnostic purposes. 

 

Finally, the last goal is to demonstrate the significance of developing new state-of-the-art 

medical Decision Support Systems (DSS), based on reliable pattern recognition methods and 

bioinformatics, which will provide clinicians new analytic tools to implement alternative non-

invasive methods for the diagnosis, prognosis and treatment of brain tumors.  

T 
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 CONTRIBUTION OF THE THESIS 

lthough a more detailed presentation of the achievements of this work is provided in 

Chapter 6, we would like to briefly address the most important here. Based on the 

analysis of the main problems involved in the management (diagnosis and treatment) 

of this disease, as explained in the General Introduction, and the main goals set in the section 

above, the contribution of our work is inevitably related to diagnosis, treatment and the design 

of medical DSS.  

 

At clinical level 

More specifically at diagnostic level our research has identified reliable sets of metabolic 

and genetic biomarkers which determine the metabolic and genetic profile of brain gliomas 

and can be integrated into the clinical practices to further improve the diagnostic accuracy 

through a robust non-invasive way. In contrast to other researches where a predefined set of 

markers is used for the discrimination of the brain tumors, our research defined optimal sub-

sets of metabolic and genomic markers (shown in Tables 6.1 and 6.2 respectively but also in 

Chapters 4 and 5) that can be used to investigate each type and grade separately. 

Furthermore these markers offer the opportunity to discover new types and/or sub-types of 

brain tumors since they provide an in depth examination of the metabolic and genomic 

differentiations of the cancerous areas even within the same tumor. 

At treatment level our work has managed to prove that the genomic and metabolic 

analysis of the glycolysis pathway, a part of the cellular respiration pathway, must be 

considered in the design of new targeted therapies. The glycolysis-related genes discovered, 

shown in Table 6.2 of Chapter 6, suggest that brain tumors have altered glycolytic activity 

which is a characteristic that scientists can study in order to generate new less toxic but highly 

effective drugs. It must be noticed here that this is the first time that a specific set of glycolytic 

markers is proposed for brain tumors treatment and especially gliomas. 

Finally our research proposes a new medical DSS (shown in Chapter 6, Figure 6.1) which 

presents an alternative non-invasive protocol for diagnosis, prognosis and therapeutic 

purposes. This DSS suggests that the metabolic and genetic markers found from our studies 

can be integrated into the diagnosis, prognosis and treatment phase in a new patient case. 

This can be done in combination with the conventional protocol followed today. 

  
At theoretical level 

At theoretical level our work exhibits the remarkable potential of maximal margin classifiers 

such as Support Vector Machines (SVM) and Least Squares - SVM in cancer discrimination 

problems. A feature selection and classification method which embeds filter methods such as, 

Fisher’s criterion and Relief-F ranking, was designed in order to reveal significant 

characteristics of brain tumor both at metabolic and genetic level, for diagnosis and treatment 

purposes. Furthermore we managed to show that the selection and preprocessing of the 

initial brain tumor features, inputted into the classifier, significantly influence the identification 

of the final cancer markers’ set and so the classification of a new patient.  
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 OUTLINE OF THE THESIS 

his section presents both analytically and schematically (Figure 1) the development 

and progression of this PhD thesis, aiming to help the potential readers understand the 

research that has been done.  

The thesis consists of six main chapters, which demonstrate both the background 

theory and the applications (studies) in the field of Brain cancer diagnosis and treatment, 

using Magnetic Resonance Spectroscopy (metabolomics) and DNA Microarrays (genomics) 

information. More specifically: 

 

Chapter 1 gives an overview of Brain cancer pathology presenting its incidence, types, 

grades and also the diagnosis, prognosis and treatment clinical practices followed nowadays. 

In addition this chapter exhibits the role of the so called “omics” (genomics – transcriptomics – 

proteomics - metabolomics) their interrelations and their contribution to Brain cancer analysis. 

Finally it reveals the need to design and apply non-invasive methods for the accurate 

evaluation and treatment of this disease. 

 

Chapter 2 reviews the state of the art pattern recognition methods used in biomedicine. It 

describes two supervised kernel-based classification models, called Support Vector Machines 

(SVM) and Least Squares - Support Vector Machines (LS-SVM), commonly applied for 

classification and marker selection tasks. An explanation of the feature selection methods and 

the classifier performance evaluation techniques is also provided. Finally an example study 

which practically demonstrates the application of SVM and LS-SVM for the classification of 

Acute Myeloid Leukemia patients, using clinical, cytogenetic and molecular biology features, 

is presented. 

 

Chapter 3 reveals the significant role of the Magnetic Resonance Spectroscopy (MRS) 

imaging technique and the metabolomics in Brain tumors diagnosis. It also describes the 

background theory and the main physical principles behind the MRS and its predecessor, the 

Magnetic Resonance Imaging (MRI). Furthermore it presents an application study on the 

strengths and weaknesses of MRS data obtained from two different MRS scanners (1.5 Tesla 

and 3 Tesla respectively) in the classification of Brain tumors (gliomas). 

 

Chapter 4 presents a study integrating the areas of metabolomics and MRS in respect to 

Brain tumors diagnosis. Specifically, this study focus on the identification of novel sets of 

metabolic markers that can describe different types of brain gliomas and meningiomas 

providing in this way a classification tool for accurate clinical diagnosis. Furthermore, a 

statistical methodology which exploits the intrinsic properties of data by integrating the 

Fisher’s marker ranking criterion into the classification process is proposed for diagnostic 

purposes. 
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Chapter 5 presents a study in the area of metabolomics, genomics and cell glycolysis in 

respect to Brain tumors treatment. The proposed analysis considers aspects of both statistical 

and biological validation of glycolysis effects on brain gliomas, at both genomic and metabolic 

level. Furthermore, it discusses main issues of the cellular respiration and the role of 

glycolysis process in cancerous cells (Otto Warburg’s hypothesis) and how these can be 

utilized for the design of new therapeutic protocols for Brain gliomas. 

 

Chapter 6 concludes the Thesis, presenting the main achievements at both medical 

(diagnosis, treatment) and engineering (proposal of a medical Decision Support System) 

areas concerning Brain cancer. Finally it addresses some issues for future research in the 

field of Brain cancer management. 
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     OUTLINE OF THE THESIS 

 

Figure 1 – Flow diagram of the Thesis – (The figure was designed with Adobe Photoshop ver. CS5) 
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   THE “OMICS” IN BRAIN CANCER ANALYSIS                                            

1.1 Introduction: What is Cancer? 

Cancer is a malignant neoplasm that develops when cells in a tissue of the body begin to 

grow in an anarchic manner. Although there are many types of cancer, they all start because 

of out-of-control growth of abnormal cells. Normal body cells grow, divide (mitosis), and die 

(apoptosis) in an orderly fashion. During the early years of a person's life, normal cells divide 

more rapidly until the person becomes an adult. After that, cells in most parts of the body 

divide only to replace worn-out or dying cells and to repair injuries. Because cancer cells 

continue to grow and divide, they are different from normal cells. Instead of dying, they outlive 

normal cells and continue to form new abnormal cells [Internet Sources: American Cancer 

Society - National Cancer Institute of US]. 

Cancer cells develop because of damage to DNA (Deoxyribonucleic Acid) also known as 

the genome, which contains all the genetic instructions used in the development and 

functioning of all known living organisms, packed in genes as shown in Figure 1.1 [Gray J.W. 

et al 2000]. 

 

Figure 1.1 - The DNA expressed in chromosomes and genes – [Internet Source: U.S. 

National Institute of Health] 

 

A gene is a DNA segment that codes for a type of protein that has a function in the 

organism. Within a cell’s nucleus, DNA is organised into long structures called chromosomes 

whose analysis is also known as the “karyotype”. DNA consists of two long polymers of 

simple units called nucleotides, with backbones made of sugars and phosphate groups joined 

by ester bonds. These two strands run in opposite directions to each other and are therefore 

anti-parallel. Attached to each sugar is one of four types of molecules called bases (known as 

adenine - cytosine - thymine – guanine or generally ACTG). It is the sequence of these four 

bases along the backbone that encodes information. This information is read using the 
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genetic code, which specifies the sequence of the amino acids within proteins. The code is 

read by copying stretches of DNA into the related nucleic acid RNA (single DNA strand), in a 

process called transcription. 

Most of the times when DNA becomes damaged the body is able to repair it. In cancer 

cells, the damaged DNA is not repaired. People can inherit damaged DNA, which accounts 

for inherited cancers. Many times though, a person’s DNA becomes damaged by several 

other factors like, such as environmental factors (smoking, radiation exposure) and immune 

system disorders.  

Cancer usually forms as a tumor, as shown in Figure 1.2. Some cancers, like leukaemia, 

do not form tumors. Instead, these cancer cells involve the blood and blood-forming organs 

and circulate through other tissues where they grow. Often, cancer cells travel to other parts 

of the body, where they begin to grow and replace normal tissue. This process is called 

metastasis. Regardless of where a cancer may spread, it is always named from the place it 

began. For instance, lung cancer that spreads to the brain is still called lung cancer, not brain 

cancer. Not all tumors are cancerous (malignant). Benign (non-cancerous) tumors do not 

spread (metastasize) to other parts of the body and, with very rare exceptions, are not life 

threatening. Different types of cancer can behave very differently.  

For example, brain cancer and breast cancer are very different diseases [Internet Source: 

Cancer Research in UK]. They grow at different rates and respond to different treatments. 

That is why people with cancer need treatment that is aimed at their particular kind of cancer.  

Today, millions of people are living, or have lived, with cancer. The risk of developing most 

types of cancer can be reduced by changes in a person's lifestyle. The sooner a cancer is 

found and treatment begun, the better the chances of survival. 

 

 
 

Figure 1.2 - A brain tumor mass – [Internet Source: National Brain Tumor Society] 
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1.2 The “Omics” in Cancer 

“Omics” is an emerging and exciting area in the field of science and medicine. Numerous 

promising developments have been elucidated using “omics” (genomics, transcriptomics, 

proteomics and metabolomics), in cancer research, as shown in Figure 1.3. The development 

of high-throughput technologies that permit the solution of deciphering cancer from higher 

dimensionality will provide a knowledge base which changes the face of cancer 

understanding and therapy [Cho W.C.S 2010]. 

 After the first draft sequence of the human genome was announced in 2001 by the 

International Human Genome Sequencing Consortium [Internet Source: National Human 

Genome Research Institute] and the beginning of the design of The Cancer Genome Atlas 

[Internet Source: The Cancer Genome Atlas], the scientific era of “omics” has emerged to 

revolutionize our way of studying and understanding cancer. The term “omics”, derived from 

the Greek suffix “ome” meaning “collection or body”, represents the rigorous study of various 

collections of molecules, biological processes, physiologic functions and structures as 

systems [Cho W.C.S 2010 - Keusch G.T. 2006].  

 

 

Figure 1.3 -The “omics” stages in cancer research. From Genomics to Metabolomics – 

[Internet Sources: Curie Institute – Stanford Functional Genomic Facility – University of York, 

UK – British Medical Journal – Wikipedia] - (The figure was designed with Adobe Photoshop 

ver.CS5) 
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Although it is now known that carcinogenesis is the result of abnormal genetic mutations 

that result in uncontrolled cellular proliferation, cell cycle deregulation and a decrease in cell 

death, experts throughout the world have also focused on transcriptomics, proteomics and 

metabolomics, hoping for a better monitoring of cancers’ biological behaviour. Application of 

“omics” in cancer research provides multi-dimensional analytical methods that reveal cancer’s 

biological profile. The study of “omics” in cancer provides experts the ability to discover new 

biomarkers which can explain carcinogenesis, metastasis and grade progression and even 

identify new types of cancer. In other words they facilitate an insight into genes, proteins and 

metabolites of cancer cells, at various stages of the disease, enabling a better diagnosis, 

prognosis and treatment management.  

Genomics is a discipline in genetics concerning the analysis and study of the genomes of 

organisms. Their application in cancer research can lead to the discovery of novel oncogenes 

and tumor suppressors which will have a great impact in our understanding of cancers’ 

pathological mechanisms that cause carcinogenesis. The analysis of the genomic profile of a 

patient with respect to the outcome of a chemotherapy and/or radiotherapy followed, 

determines the efficacy of the treatments applied and provides significant knowledge about 

the grade and state of the tumor.  Furthermore, genomics can be used to identify molecular 

pathways which describe the functions and the interrelations of genes, enabling the design of 

new classes of drugs and treatments [Furge K.A. et al 2007].   

The human genome contains the complete set of genes required to build a functional 

human being. However, the genome is only a source of information. In order to function, it 

must be expressed. The transcription of genes to produce RNA is the first stage of gene 

expression. The transcriptome is the complete set of RNA transcripts produced by the 

genome at any moment.  

Unlike the genome, the transcriptome is extremely dynamic. Most of our cells contain the 

same genome regardless of the type of cell, stage of development or environmental 

conditions. Conversely, the transcriptome varies considerably in these differing circumstances 

due to different patterns of gene expression. Transcriptomics, the study of the transcriptome, 

is therefore a global way of looking at gene expression patterns. Its main applications involve 

cancer diagnostics and prognostics based on the gene expression profile of RNA, as well as 

in drug development [He Y.D. et al 2006]. 

Proteomics enable the quantitative investigation of both cellular protein expression levels 

and protein-protein interactions involved in tumors. Monitoring the protein expression 

patterns, the proteome, in tumor cells offers the opportunity to discover potential cancer 

biomarkers and also detect carcinogenesis in early stages. Targeting the protein-network of 

the tumor enables the assessment of the therapeutic efficacy and toxicity of the drugs 

selected for a specific patient [Cho W.C.S et al 2007(a)]. 

Metabolomics is a dynamic portrait of the metabolic status of a living system, also called 

the metabolome. This new “omic” approach reveals the metabolic profile of a cell, tissue, 

body fluids or the whole body at any moment in time. By analyzing the relative concentrations 
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of specific small molecules, called metabolites, we can determine the metabolic activity of a 

tumor which is significant for tumor grade progression evaluation. The diagnostic, prognostic 

and therapeutic value of metabolomics has been further enhanced since 1956, when Otto 

Warburg stated that cancers present altered glycolysis which is a fundamental metabolic 

process in all living organisms [Warburg O. 1956].  For human studies, the Human 

Metabolome Project (HMP) attempts to identify and record all the metabolites found in our 

body, aiming to complete a metabolic map which will provide useful information about the 

linkage of the human metabolites and proteins, genes and pathways with which they are 

involved [Wishart D.S. 2007]. 

The introduction of the “omics” technologies into the cancer research exhibited the need to 

find a reliable and understandable way to visualize the interrelations between the different 

modalities. For this purpose the concept of the pathway was generated. A pathway is a 

biological network which illustrates the gene-gene (in genomics), protein-protein (in 

proteomics) and metabolite-metabolite (in metabolomics) interactions. Based on these 

pathways the experts now can also understand more complicated interactions such as gene-

protein or gene-enzymes interactions. In Chapter 5 two pathways are used (Figures 5.6 and 

5.7) one at genetic level (showing the gene interactions of tumor suppressors and 

oncogenes) and a second one at metabolic level (showing the metabolic interactions 

occurring in the cellular glycolysis pathway). Today, popular published on-line databases, 

such as the Kyoto Encyclopedia of Genes and Genome (KEGG) and the Human Metabolome 

Database (HMDB) offer access to these pathways so experts can extract useful information 

for brain cancer pathology. 

The grand vision of all experts is to integrate the knowledge derived from these “omics” 

modalities under a biomedical manner in order to design patient specific diagnostic, 

prognostic and therapeutic protocols that will eventually be adopted by daily clinical practices. 

However, the major challenge is how to bring the best outcome from the “omics” research into 

clinical practice as accurate and reliable standardised procedures. Each “omic” approach has 

its strengths and weaknesses and these must be carefully addressed if we really want to 

achieve the best results in cancer management. 

 

1.2.1 The “omics” laboratory tools for cancer management 

It is widely believed that thousands of genes and their products (i.e., RNA and proteins) 

residing in a given living organism function in a complicated and orchestrated way that 

creates the mystery of life. However, traditional methods in molecular biology generally work 

on a "one gene in one experiment" basis, which means that the output is very limited and the 

"whole picture" of gene function is hard to obtain.  

In the past several years, a new technology called DNA microarray, Figure 1.4, has 

attracted tremendous interest among biologists [Yang Y.H. et al 2002 - Golub T.R. et al 1999 

- Ramaswamy S. et al 2002]. This technology promises to monitor the whole genome on a 

single chip so that researchers can have a better picture of the interactions among thousands 
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of genes simultaneously. These techniques include various microarray-based approaches 

that allow for global, systematic, high-throughput comparisons of the gene expression 

differences between normal and cancerous tissues. In the field of cancer research, the most 

commonly used microarray techniques for the molecular profiling of human tumors have been 

cDNA and oligonucleotide microarrays [Pomeroy S.L. 2002 – Kounelakis M.G. et al 2006 - 

Kounelakis M.G. et al 2005].   

 

 

Figure 1.4 -The DNA Microarray hybridization process – [Internet Source: DNA Sequencing] –

(The figure was designed with Adobe Photoshop ver.CS5) 

 
Significant progress in clinical proteomics has been observed due to the contribution of 

state-of-the art technologies for proteome analysis, Figure 1.3. Several sophisticated tools 

such as 2D Difference Gel Electrophoresis (2-DE), Mass Spectrometry (MS) and Electrospray 

Ionization (ESI) have been used for differential evaluation of biological samples. The adoption 

of such high-throughput methods of molecular analysis, applied in vivo or in vitro, can 

comprehensively survey the proteomic profile of tumors and identify patterns that are 

associated with a particular malignancy and clinical behavior [Cho W.C.S. et al 2007(b)]. 

It is essential to point out that there are substantial differences in the nature of the 

information between genomics, proteomics and metabolomics. Although genomics and 

proteomics yield information regarding the presence or absence of a genetic expression in the 

form of RNA or protein, the information obtained from the metabolomics differs in that it 

provides quantitative and dynamic screening of the behavior of the metabolic network of an 

organism. Metabolomics research focuses on functional metabolites that can be measured 

quantitatively so that net effects of genetic and environmental influences on disease-related 

cellular processes can be elucidated [Kim Y.S. et al 2008]. 

Metabolite detection and quantification is usually carried out by Magnetic Resonance 

Spectroscopy (MRS) which make use of the magnetic properties of certain atomic nuclei with 

an odd number of protons and/or neutrons (e.g. 1H, 31P and 13C). These nuclei possess a 

magnetic moment and when placed in a strong magnetic field will resonate at a particular 

radiofrequency that subtly depends upon the chemical environment. In MR spectroscopy, the 
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frequencies and intensities of these resonances are measured and represented graphically in 

an MR spectrum, Figure 1.3.  

 
 

Figure 1.5 - An MRI scanner (Sigma HDe 1.5 Tesla) – [Internet Source: GE Healthcare] 

 
The MRS technology originates from the well known Magnetic Resonance Imaging (MRI) 

widely applied today for diagnostic purposes. Magnetic Resonance Image generally refers to 

the spatial distribution of the 
1
H (hydrogen protons). Magnetic Resonance Imaging is a non-

invasive technique which does not involve any radiation risk for the patient. Using an MRI 

scanner, shown in Figure 1.5, images of cross-sections of the diseased/tumorous area can be 

acquired with several contrasts, depending on the acquisition parameters. Images can also 

be acquired after intravenous administration of a contrast agent. Together, they provide the 

clinician with high resolution images on which most tissue types and their morphology are 

clearly displayed. 

However, even with the precise morphologic information, it is not always able to 

distinguish between different tumor types or to indicate the spatial extent of the tumor. In such 

cases the application of MRS fills the gap. While MRI uses the signal from hydrogen (
1
H) 

protons to form anatomic images, proton MRS (
1
H-MRS) uses this information to determine 

the concentration of metabolites in the tissue examined.  
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1.3 Oncology and Brain Tumors  

Oncology is certainly one of the most demanding fields of medical science. Accurate 

diagnosis, prognosis and application of effective therapeutic methods is a genuine challenge 

for oncologists, biologists, radiologists and bioinformaticians worldwide, who daily unite their 

efforts daily to face such a complex disease as cancer. Although it is now clear that the 

understanding of the genetic abnormalities evolving in human cells could be the “Achilles 

heel” of carcinogenesis, the fact that clinical practices and treatment protocols daily followed 

often fail to save a patient’s life, verify that the discovery of the real causes for carcinogenesis 

is a true labyrinth. This is even harder both psychologically and scientifically when the survival 

time due to a poor prognosis is short which is common in brain tumor patients. 

Brain tumors are among the most complex and hard-to-tackle cancers. The fact that they 

develop within the brain tissue demands immediate and accurate management in diagnostic, 

prognostic and treatment stage.  

The brain is made from two types of cells: neurons or nerve cells and supporting or glial 

cells, as shown in Figure 1.4. Neurons are cells that send and receive electro-chemical 

signals to and from the brain and nervous system. There are about 100 billion neurons in the 

brain. There are many more glial cells; they provide support functions for the neurons, and 

are far more numerous than neurons. The neuron consists of a cell body (or soma) with 

branching dendrites (signal receivers) and a projection called an axon, which conducts the 

nerve signal. At the other end of the axon, the axon terminals transmit the electro-chemical 

signal across a synapse (the gap between the axon terminal and the receiving cell). The word 

"neuron" was coined by the German scientist Heinrich Wilhelm Gottfried von Waldeyer-Hartz 

in 1891 (he also coined the term "chromosome"). Myelin coats and insulates the axon (except 

for periodic breaks called nodes of Ranvier), increasing transmission speed along the axon. 

Myelin is manufactured by Schwann's cells, and consists of 70-80% lipids (fat) and 20-30% 

protein. The cell body (soma) contains the neuron's nucleus (with DNA and typical nuclear 

organelles). A typical neuron has about 1,000 to 10,000 synapses (that is, it communicates 

with 1,000-10,000 other neurons, muscle cells, glands, etc.).  
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Figure 1.6 - Brain neurons and glial cells – [Internet Sources: National Institute of Child Health 

& Human Development – Science Clarified – Brain Supplements] - (The figure was designed 

with Adobe Photoshop ver.CS5) 

 
A brain tumor is a mass of unnecessary and abnormal cells growing in the brain. The cell 

of origin determines the type of the brain tumor. A tumor that starts in the brain is a primary 

brain tumor. If cells have spread to the brain from a cancerous tumor in another part of the 

body, they are known as secondary brain tumors or metastatic brain tumors [DeAngelis L.M. 

2001].  

Tumors can be benign and are usually but not necessarily localized in a small area, or 

they can be malignant and invasive (spreading to neighbouring areas). Brain cells can be 

damaged by tumor cells: 

(i) directly when they are pushed or displaced due to growth of the tumor, 

(ii)  indirectly when affected through ongoing inflammation in and around the tumor 

mass,  

(iii) via brain edema (swelling) or  

(iv) increased pressure in the skull (due to brain edema or to the blockage of 

cerebrospinal fluid (CSF) circulation). 

Brain tumors are usually located in the posterior third of the brain in childhood and in the 

anterior two-thirds of the brain in adulthood. Some benign tumors grow for many years and 

reach a large size before being detected. Malignant tumors tend to grow more rapidly and will 

have been present for a shorter period when they are discovered. The onset of symptoms 

cannot be used to detect how long the tumor has been present or indicate whether it is 

cancerous or non-cancerous. 

 The most common types of brain tumor are those which originate from malignant primary 

tumors arising somewhere else in the body and spreading out to the brain. Those secondary 

or metastatic brain tumors are always malignant. Approximately one quarter of metastatic 
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cancers spread to the brain. The lungs and breasts are the most common locations from 

which secondary brain tumors originate. Tumor cells travel to the brain via blood vessels. 

Since the brain has no lymphatic drainage system like other organs (the cerebrospinal fluid 

system acts as a lymphatic system in the brain), the spreading of tumor cells by the lymphatic 

route (which is very typical for cancers of other organs) is impossible. In contrast to primary 

brain tumors, metastatic tumor masses may occur in various remote locations in the brain. 

Symptoms, diagnosis and treatment are quite similar to those of primary tumors. However in 

the case of secondary tumors the initial location of the tumor cells must be identified and 

treated as well. Primary or secondary brain tumors may cause herniation of the brain 

(displacement of one part of the brain tissue due to mass effect of a lesion, usually causing 

the compression of the neurons controlling the respiratory system in the brainstem and 

eventually death) and permanent neurologic changes including intellectual decline. 
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1.4 Classification and Grading of Brain Tumors (WHO) 

Histological grading, also called differentiation, refers to how much the tumor cells 

resemble normal cells of the same tissue type. More specifically, tumor grade is a system 

used to classify cancer cells in terms of how abnormal they look under a microscope and how 

quickly the tumor is likely to grow and spread. Many factors are considered when determining 

tumor grade, including the structure and growth pattern of the cells. The specific factors used 

to determine tumor grade vary with each type of cancer. In clinical practice, the tumor grade is 

a key factor influencing the choice of therapies, particularly determining the use of adjuvant 

radiation and specific chemotherapy protocols. 

The World Health Organization (WHO) classification of the Central Nervous System (CNS) 

has included a grading scheme that is a “malignancy scale” ranging across a variety of 

neoplasms rather than a strict histological grading. The WHO grading is widely used, having 

incorporated or largely replaced other previously published grading systems [Louis D.N et al 

2007]. Tumors are graded based on their microscopic appearances. The grade indicates the 

level of malignancy. Tumors are graded on their mitotic index (growth rate), vascularity (blood 

supply), presence of a necrotic (dead cells) center, invasive potential (border distinctness) 

and similarity to normal cells (atypia). Malignant tumors may contain several grades of cells. 

The most malignant grade of cell found determines the grade for the entire tumor, even if 

most of the tumor is a lower grade. Based on the microscopic appearance of cancer cells, 

experts commonly describe tumor grade by four degrees of severity: grades I, II, III, and IV. 

Grades I and II are generally characterised as low grade whereas III and IV as intermediate 

and high grade respectively.  

Grade I lesions generally include tumors with low proliferative potential. These tumors 

grow slowly and microscopically appear almost normal. Surgery alone may be effective for 

grade I tumors. However, even a grade I tumor may be life-threatening if it is inaccessible for 

surgery. Grade I tumors are often associated with long-term survival. Lesions designated 

grade II are generally infiltrative in nature and, despite low level proliferative activity, often 

recur. Furthermore, they may invade surrounding healthy tissue. Grade III lesions are 

malignant. Most of the times these lesions present nuclear atypia and brisk mitotic activity 

while an invasion to surrounding healthy tissue is very common. Finally grade IV 

characterized lesions are the most malignant and invade wide areas of surrounding healthy 

tissue. These tumors reproduce rapidly, appear very unusual under the microscope and are 

necrotic in the center. Grade IV tumors cause new blood vessels to form, to help maintain 

their rapid growth. Most of the times, despite therapy, they have a fatal outcome. 

 

1.4.1 Types of brain tumors 

Brain tumors, as mentioned, are generally distinguished in primary (originate within the 

brain) and the secondary (metastasize to brain tissue from other parts of the body). A tumor 

that spreads to the brain is the same disease and has the same name as the original 
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(primary) tumor. Brain metastases outnumber primary neoplasm by at least 10 to 1, and they 

occur in 20% to 40% of cancer patients. The most common primary tumors metastasizing to 

the brain are lung cancer (50%), breast cancer (15%-20%), unknown primary cancer (10%-

15%), melanoma (10%), and colon cancer (5%). Eighty percent of brain metastases occur in 

the cerebral hemispheres, 15% occur in the cerebellum, and 5% occur in the brain stem 

[Levin V.A. et al 2001].  

Metastases to the brain are multiple in more than 70% of cases, but solitary metastases 

also occur. Brain involvement can occur with tumors of the nasopharyngeal region by direct 

extension along the cranial nerves or through the foramina at the base of the skull. Dural 

metastases may constitute up to 9% of total CNS metastases [Kounelakis M.G. et al 2006]. 

Due to the fact that secondary brain tumors do not have their origin in the brain tissue, their 

further analysis is out of the scope of this thesis.  

Primary brain tumors are classified by light microscopy according to their predominant cell 

type and graded based upon the presence or absence of standard pathologic features. 

Histological evaluations have shown that there are more than 120 primary brain tumors types. 

According to WHO, these are categorised into two broad categories, named neuroepithelial 

and non-neuroepithelial tumors. The most known and frequently diagnosed tumors belonging 

to these two classes are shown in Table 1.1 [Louis D.N. et al 2007]. 

 
Table 1.1 – Classification of primary brain tumors by histology  

Neuroepithelial Tumors Non-Neuroepithelial Tumors 

Astrocytic tumors Meningial tumors 

Oligodendroglial tumors Pituitary tumors 

Ependymal tumors Nerve sheath tumors  

Embryonal tumors Germ cell tumors 

Other Neuroepithelial tumors CNS Lymphomas 

 

1.4.1.1 Neuroepithelial brain tumors 

The most known neuroepithelial brain tumors are the Astrocytic, Oligodendroglial, 

Ependymal and Embryonal tumors. 

 
Astrocytic tumors, commonly called Astrocytomas, arise from small, star-shaped cells 

called astrocytes, shown in Figure 1.6. Astrocytes regulate and support the foundation of the 

functions of the brain. These tumors may grow anywhere in the brain or spinal cord. In adults, 

astrocytomas most often arise in the cerebrum. In children, they occur in the brain stem, the 

cerebrum, and the cerebellum, shown in Figure 1.7. The most malignant astrocytoma is the 

Glioblastoma multiforme (GBM) which is of grade IV. 
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Oligodendroglial tumors, with Oligodendrogliomas most often diagnosed, arise in the cells 

that produce myelin, the fatty covering that protects nerves, shown in Figure 1.6. These 

tumors usually arise in the cerebrum. They grow slowly and usually do not spread into 

surrounding brain tissue. Oligodendrogliomas are rare. They occur most often in middle-aged 

adults but have been found in people of all ages.  

Ependymal tumors, with most common the Ependymomas, usually develop in the lining of 

the ventricles. They may also occur in the spinal cord. Although these tumors can develop at 

any age, they are most common in childhood and adolescence.  

Embryonal tumors, with most common the Medulloblastomas, were once thought to 

develop from glial cells. However, recent research suggests that these tumors develop from 

primitive (developing) nerve cells that normally do not remain in the body after birth. For this 

reason, medulloblastomas are sometimes called primitive neuroectodermal tumors (PNET). 

Most medulloblastomas arise in the cerebellum; however, they may occur in other areas as 

well. These tumors occur most often in children and are more common in boys than in girls.  

1.4.1.2 Non-Neuroepithelial brain tumors 

The non-neuroepithelial brain tumors class includes the Meningial, Pituitary, Nerve sheath, 

Germ cell and CNS Lymphoma tumors. 

 
Meningial tumors, with most common the Meningiomas, grow from the meninges, shown 

in Figure 1.7. They are usually benign. Because these tumors grow very slowly, the brain may 

be able to adjust to their presence. Meningiomas often grow quite large before they cause 

symptoms. They occur most often in women between 30 and 50 years of age.  

Pituitary tumors, with Craniopharyngiomas mostly diagnosed, develop in the region of the 

pituitary gland near the hypothalamus, shown in Figure 1.7. They are usually benign; 

however, they are sometimes considered malignant because they can press on or damage 

the hypothalamus and affect vital functions. These tumors occur most often in children and 

adolescents.  

Nerve sheath tumors, with Schwannomas are one of the most common. These are benign 

tumors that begin in Schwann cells, which produce the myelin that protects the acoustic 

nerve-the hearing nerve. Acoustic neuromas are a type of schwannoma. They occur mainly in 

adults. These tumors affect women twice as often as men.  

Germ cell tumors arise from primitive (developing) sex cells, or germ cells. The most 

frequent type of germ cell tumor in the brain is the germinoma.  

CNS Lymphomas start in lymphocytes (the main cell type of the immune system). They 

typically remain confined in the brain (leptomeninges, spinal cord, or eyes) and rarely spread 

outside the central nervous system.  
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Figure 1.7 – Human brain parts - [Internet Source: Creative Crash] - (The figure was designed 

with Adobe Photoshop ver.CS5) 

 

1.4.2 The case of gliomas 

Among the five classes of neuroepithelial tumors shown in Table 1.1, the first three 

(Astrocytic, Oligodendroglial and Ependymal) comprise a well known class called gliomas. 

Gliomas are the most common type of primary brain tumors arising from the glial cells. There 

are four types of glial cells each one with different function.   

• Astrocytes – which transport nutrients and energy to neurons, hold them in place and 

maintain the blood-brain barrier. 

• Oligodendrocytes – which provide insulation (myelin) to neurons 

• Microglia – digest dead neurons and pathogens 

• Ependymal cells – line the ventricles and secrete cerebral spinal fluid (CSF) 

 
According to the 2011 Report of the Central Brain Tumor Registry of the United States 

(CBTRUS), gliomas account for approximately 30% of all tumors, as shown in Figure 1.8.  
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Figure 1.8 – Distribution of all primary brain tumors by histology – Gliomas distribution is with 

red color – [Internet Source: Report of Central Brain Tumor Registry of the United States 

2011 (CBTRUS)] 

 
Accounting for approximately 76% of all gliomas (where 53.7% accounts for Glioblastoma 

multiforme i.e. grade IV astrocytoma), astrocytomas are the most common glioma brain 

tumors, as shown in Figure 1.9. Astrocytomas are slow growing tumors that originate from 

astrocytes, most commonly found in the cerebrum. Based on the grade of their malignancy 

these tumors are generally distinguished into four sub-types as presented in Table 1.2. 

Oligodendroglial tumors or oligodendrogliomas originate in oligodendrocytes; cells that 

help insulate the nerve fibers that transmit nerve impulses. Oligodendrogliomas are frequently 

located within the frontal, temporal or parietal lobes of the brain, causing seizures in the 

majority of patients. These tumors account for 6.5% of all gliomas, as shown in Figure 1.9. 

Most of the oligodendrogliomas are of grade II. When grade III is diagnosed these are called 

anaplastic oligodendrogliomas. 

Ependymal tumors or ependymomas are rare types of glioma brain tumors that occur 

more often in children. They arise from ependymal cells, cells lining cavities of the brain 

where production and storage of Cerebral Spinal Fluid (CSF) occurs and account for 6.0% of 

all gliomas, as shown in Figure 1.9. The most frequently diagnosed ependymomas are of 

grade II. Grade III ependymomas are called anaplastic ependymomas.  
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Table 1.2 – Histological grading of gliomas sub-types  

Glioma Sub-types Grade I Grade II Grade III Grade IV 

Pilocytic Astrocytoma ■    

Diffuse Astrocytoma  ■   

Anaplastic Astrocytoma   ■  

Glioblastoma multiforme    ■ 

Oligodendrogliomas  ■   

Anaplastic Oligodendrogliomas   ■  

Ependymomas  ■   

Anaplastic Ependymomas   ■  

[Internet Source: World Health Organisation (WHO)] 

 
Apart from the three general classes aforementioned, others less frequently diagnosed 

have been also recorded according to WHO. These are the Oligoastrocytomas, Mixed 

gliomas, Optic gliomas and Gliomatosis Cerebri (GC). These cases are grouped in the “All 

other gliomas” class presented in Figure 1.9. 

 

 

Figure 1.9 – Distribution of all brain gliomas sub-types by histology – [Internet Source: Report 

of Central Brain Tumor Registry of the United States 2011 (CBTRUS)] 

 

The research efforts currently applied on gliomas brain tumors worldwide are exhaustive. 

Medical doctors monitor glioma patients daily to measure the efficacy of the therapies applied; 

biologists, genetists and chemical engineers try to identify the factors for gliomagenesis to 

generate new drugs and finally bioinformaticians develop new statistical models used for even 

more accurate diagnosis and prognosis.  The main motivation for all these efforts is the fact 
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that, despite optimal treatment, the median survival for glioma patients is short, as shown in 

Table 1.3. Other reasons that justify this urgency lie in the nature of these tumors. Gliomas 

have no clear boundaries, which is why they tend to regrow after removal. In fact, it is unusual 

to be able to cure these tumors only through surgery because of the tendency of the tumor 

cells to extend well beyond where they can be seen on x-rays or at surgery.  

Therefore there is a great need to discover new biomedical methods to support early and 

accurate diagnosis, prognosis and efficient therapies that will extend the patient’s survival. 

Towards this direction the “omics” analysis of gliomas has been adopted. The application of 

genomics, transcriptomics, proteomics and metabolomics on gliomas, opens new ways to 

fight this cancer since they can be used to identify new biological markers to help us 

understand their behaviour. 
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1.5 Current Brain Tumor Diagnostic Approaches 

Diagnosis holds a key role in understanding the type and the characteristics of a brain 

tumor. False diagnosis can often lead to a false prognosis and treatment path. Current 

diagnostic approaches offer the ability to observe the morphology, size and stage of the tumor 

and decide on the therapy that has to be followed. The most recent diagnostic approaches 

are presented in the following with a brief analysis and discussion [Fuller G.N. 2006].  

Brain tumors are usually found because of signs or symptoms a person feels. The brain 

tumor symptoms can be fairly general, or they may be more specific depending on the 

tumor’s location within the brain. Symptoms may occur gradually and become worse over 

time or they can happen suddenly, such as with a seizure or a coma. The pressure within the 

brain skull caused by a tumor can lead to general symptoms such as headache, nausea, 

vomiting, blurred vision, balance and movement problems, drowsiness and personality 

changes. Almost 50% of all patients have complained of severe and persistent headaches. Of 

course, having a headache does not necessarily mean that a brain tumor is present. Most 

headaches are caused by other factors. It is therefore a combination of these symptoms that 

can lead to the conclusion that a brain tumor has developed. Furthermore, due to the fact that 

the brain controls functions of other organs in the human body, such as the production of 

specific hormones, other symptoms, not listed here, may be present. 

 

1.5.1 Neurological examination 

If symptoms suggest a brain tumor may be present, the clinician will take a complete 

medical history and do a neurological examination to evaluate brain functions. A neurological 

examination is usually the first test given when a patient complains of symptoms that imply a 

brain tumor. The examination includes checking eye movements, hearing, sensation, muscle 

movement, sense of smell, and balance and coordination. The clinician will also test mental 

state and memory. If the results of the neurological examination are abnormal then the 

clinician will order further tests to better evaluate the status of the patient. The first tests to be 

applied are the imaging tests [Abdullah N.D. et al 1999 - Barkovich A.J. 1992]. 

 

1.5.2 Non-invasive imaging modalities 

Imaging tests are non-invasive examinations that use x-rays, strong magnets or 

radioactive substances to produce images of the tumorous brain area. The outcomes of these 

studies are examined and interpreted by radiologists who are specialized on imaging 

diagnostic techniques. The most current and state-of-the-art imaging diagnostic approaches 

applied today are analysed below [Wen P. et al 2001 – Kounelakis M.G. et al 2006].  

Skull x-rays were once standard diagnostic tools but are now performed only when more 

advanced procedures, for example MRI, are not available. Occasionally they may be useful in 

demonstrating calcification usually present in relatively slow growing brain tumors. 
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Astrocytomas are the most common calcifying tumor. Although calcifications occur only in 

approximately 20% of astrocytomas, their overall frequency more compensates for this 

percentage. Calcification also occurs in 50–60% of oligodendrogliomas, 70–80% of 

craniopharyngiomas, 50% of ependymomas, 35% of gangliogliomas, and about 10% of 

meningiomas [Segall H.D. et al 1990]. 

Computed Tomography (CT) scan is an x-ray test that produces detailed cross- sectional 

images of the brain tissue. Instead of taking one image, like a regular x-ray, a CT scanner 

takes many images of the brain tissue, as it rotates around the patient’s head. A computer 

then combines these images producing a number of slices of the brain tissue. Unlike a regular 

x-ray, a CT scan has the ability to create detailed images of the soft tissues in the body, like 

the brain tissue. CT scans tend to be better tolerated than MRI because of their shorter 

scanning time and are more sensitive for detecting acute haemorrhage, calcifications, and 

bony involvement. CT angiography or CTA is another procedure that is also used in 

combination with the CT. During this test a contrast material is intravenously injected into the 

patient. The CT scanner creates detailed images of the blood vessels in the brain, which can 

help clinicians to plan a surgery.  

Magnetic Resonance Imaging (MRI) scans are particularly helpful in examining the brain 

and spinal cord and are considered the best way to look for tumors in these areas. The 

acquired images are usually more detailed than those provided from the CT scanner. A major 

drawback though is the fact that the MRI scanner, shown in Figure 1.5, does not display the 

bones of the skull as well as CT scans making difficult for the radiologist to see the effects of 

tumors on the skull. MRI scans use radio waves and strong magnets instead of x-rays. The 

energy from the radio waves is absorbed and then released in a pattern formed by the type of 

body tissue and by certain diseases. Dedicated computer software translates the pattern into 

a very detailed image of parts of the body. In most patient cases a contrast material called 

gadolinium (Gd) may be injected into a vein before the scanning to obtain clearer images.  

Magnetic Resonance Spectroscopy (MRS) also known as MR spectroscopy, is like an 

MRI, except that it provides the ability to measure the interactions of the radio waves with 

different atoms, such as hydrogen (
1
H), as mentioned above. MRS images highlight some 

substances of brain tumors, called metabolites, which are not clearly seen by MRI. The study 

of these metabolic substances within the brain tumorous are provides the metabolic profile, 

called metabolism, of the tumor which greatly supports experts treatment decisions. MRS can 

also be used after treatment to help determine if an abnormal area is a remaining tumor or if it 

is more likely to be scar tissue. CT angiography can provide better details of the blood 

vessels in and around a tumor than MR angiography (analysed next) in selected cases 

[Doherty G.M. 2010]. 

Magnetic Resonance Angiography (MRA) is a special form of MRI, which is also applied to 

observe the structure of the blood vessels in the brain, as CT angiography. Like CT 

angiography, MRA is very useful before a surgery. 
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Magnetic Resonance Perfusion or Perfusion Weighted Imaging (PWI) is another significant 

imaging test where a contrast material is injected quickly into the patient’s vein. Then a 

special type of MR image is obtained to look at the amount of blood going through different 

parts of the brain. This test is based on the observation that brain tumors need a greater 

blood supply than normal areas of the brain. This means that the faster a tumor is growing, 

the more blood it needs. Therefore, Perfusion MRI can give clinicians an idea of how quickly a 

tumor is growing or help show them the best place to take a biopsy.  

Positron Emission Tomography (PET) is a special test based on the brain tumor’s property 

to absorb larger amounts of glucose (a form of sugar) than the healthy tissue, as they grow. 

For this reason glucose that contains a radioactive atom is injected into the patient’s blood. A 

special camera can then create an image of areas of radioactivity in the body. This image is 

not finely detailed like a CT or MRI scan, but it can provide helpful information about whether 

abnormal areas seen on other tests (such as MRIs) are likely to be cancerous or not. This test 

is also useful after treatment, as it can help tell whether the tumor cells have been killed since 

dead cells do not use glucose. Abnormal areas may still show up on an MRI scan. PET scans 

can help determine if the abnormal area is a remaining tumor or if it is more likely to just be 

scar tissue [Hustinx R. et al 1999]. 

Chest x-ray is a plain x-ray of the patient’s chest, which is sometimes applied by clinicians. 

The purpose of this test is to identify possible tumors in other organs of the body which have 

metastasized to the brain. Such an organ could be the lung which most of the times give 

metastases to brain. 

 

1.5.3 Histological evaluation through biopsy 

Although diagnosis using imaging techniques can give clinicians information about the 

tumor’s location, size, morphology and tumorous borders, a histological evaluation through 

biopsy is, oftentimes, inevitable. A definite evaluation and classification of a tumor can only be 

accomplished by the histological analysis under a microscope of a small tissue of the tumor. 

The removal of this tissue from the brain is called a biopsy. The main biopsy procedure 

followed nowadays is the guided or needle biopsy, as shown in Figure 1.10. 

Guided biopsy is done using a needle. The needle is guided by a CT or MRI scan. The 

scan helps to ensure that the neurosurgeon can move the tip of the needle into exactly the 

right place to take a sample from the tumor. There are two ways of doing this - stereotactic 

biopsy or neuronavigation. Surgeons most often use guided biopsy for tumors that are very 

deep inside the brain or for tumors that are widely spread throughout an area of the brain. 

For stereotactic biopsy, a head frame is fitted on the patient. Once the scan is obtained, 

the neurosurgeon uses the scan and the reference points from the head frame to work out 

exactly where to guide the needle. In this type of biopsy a general anesthetic is used. The 

neurosurgeon makes a very small hole in the skull with a drill. Then the frame is set to guide a 

fine needle into exactly the right position to take the tissue sample.  
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For neuronavigation, the neurosurgeon takes the biopsy with a fine needle in much the 

same way. In this procedure though the head frame is not needed. The neurosurgeon looks 

at the scan while guiding the needle into position. Sometimes neurosurgeons use the natural 

landmarks of patient’s nose, eyes and ears to help them guide the needle into position. 

 

Figure 1.10 – The head frame used for brain stereotactic (guided) biopsy – [Internet Source: 

Med Art] 

 
Biopsy is, as mentioned, both inevitable and necessary in most of the brain tumor 

diagnosis cases. Nowadays though, experts’ efforts focus on the development of new 

diagnostic techniques that will allow an accurate evaluation of the tumor circumventing the 

surgical operation of a biopsy. It is a common belief that such tools and methods can only be 

generated from the “omics” area. The evolution and improvement of “omics”-related 

technologies such as DNA Microarrays, MRS metabolic profiles will provide a deeper insight 

into a tumor’s intrinsic characteristics. 
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1.6 The Prognosis Stage 

The prognosis of a brain tumor usually refers to the likely outcome of the disease. The 

prognosis phase considers the survival rates, death rates, prospects for patient’s recovery 

after treatment, recovery period for patient and chances of brain tumor to recurring. Naturally, 

such forecast issues are by their nature unpredictable. The survival rates in people with brain 

tumors depend on many different factors [Kounelakis M.G. et al 2006]. The most important 

are shown below. 

 
• Whether the tumor is malignant or benign. 

• The size of the cancerous tumor in the brain impacts the prognosis significantly. There is 

limited growth space in the brain, so as a tumor grows in the brain it severely affects the 

surrounding brain tissue and its function. This can result in speech, sight, and other 

abilities being adversely affected when the tumor pushes into other brain areas because 

of its size. Additionally, the size of a tumor will dictate treatment options pursued (and 

how quickly). 

• The tumor’s cell type and location. The location of a tumor is important, since some 

tumors that would normally be considered benign are instead labeled malignant due to 

their complicated location in the brain, preventing the ability to be safely removed during 

surgery without risking life or quality of life, or quality of. 

• Tumor grade. According to WHO there are four grades of malignancy (I to IV), 

aforementioned. The grade also shows the possible tendency to have a tumor spread. 

• Patient's age. The outlook is poorer in the very youngest (<20 years old) and very oldest 

patients (>65 years old), although younger patients who survive two years after diagnosis 

have a much better outlook than older patients. 

• Patient's ability to function and duration of symptoms.  

 

Survival statistics show what is likely to happen in large groups of people. They can 

sometimes be useful as a general guide, but each person's situation is unique. Despite the 

factors mentioned, others, like the amount of tumor that can be surgically removed, can also 

affect the patient’s outlook. The usually estimated 5-year survival rate refers to the 

percentage of patients who live at least 5 years after being diagnosed. Some of these 

patients, though, live longer than 5 years and others die during this time period. Another term 

also used is relative survival rates, as in Table 1.3. The relative survival rates differ in that 

they do not include patients who die from other causes during the 5-year period.  

In Table 1.3 it can be observed that among gliomas sub-types, Anaplastic astrocytoma 

and Glioblastoma multiforme (in red color) have the worst survival rates. In addition, it can be 

seen that, in all cases, younger people have better outlooks than older ones.  
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Table 1.3 – 5 Year relative survival rates  

Glioma Sub-types Ages 20-44 Ages 45-54 Ages 55-64 

Pilocytic and Diffuse Astrocytomas 91% 82% 81% 

Anaplastic Astrocytoma 48% 28% 8% 

Glioblastoma multiforme 16% 5% 3% 

Oligodendrogliomas 84% 76% 65% 

Anaplastic Oligodendrogliomas 65% 52% 32% 

Ependymomas and Anaplastic 
Ependymomas 

90% 84% 84% 

[Internet Sources: Report of Central Brain Tumor Registry of United States 2011 (CBTRUS) – 

Surveillance Epidemiology and End Results (SEER) of National Cancer Institute of US] 
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1.7 Current Brain Tumor Treatment Strategies 

1.7.1 Today’s treatment methods 

When a patient is diagnosed with a malignant brain tumor, the treatment protocol applied, 

in all oncologic clinics, involves the following therapeutic approaches [Doherty G.M. 2010 - 

Castro M.G. et al 2003].  

 
• Surgery 

• Radiation treatment (also called radiotherapy)  

• Chemotherapy 

 
The intensity, the combination and time of application of these treatments depends on the 

tumor’s type, size and location and patient’s age, health status and medical history. 

Unfortunately, even when treated with aggressive combined therapies, most of the times, the 

high grade glioma patients do not have the desired clinical outcome. Glioblastoma multiforme 

(GMB) often recurs between 6 and 12 months while anaplastic astrocytoma within 18–36 

months.  

Recent advances though in surgical, radiation and chemotherapeutic treatments hope to 

have significantly extended average survival times compared to those of standard therapy. 

Investigative treatments, such as monoclonal antibodies and gene therapies also show 

promise of a great future. 

1.7.1.1 Removing the tumor through surgery 

Surgery plays a crucial role in the management of brain tumors and especially gliomas. 

Low grade tumors should be resected to the limitation of clinical deficits. On the other hand, 

high grade tumors and particularly GBM can be difficult to resect due to the undefined tumor’s 

edges; the tumor may extend into healthy-looking brain tissue, and/or can be localized near 

critical areas for the brain’s function. Before surgery, the size and number of tumors must be 

considered, along with the general health status of the patient.  

Tumors can be either completely or partially resected, or biopsied. Tumor resection is 

beneficial to alleviate mass effect, such as pressure. It is thought that even partial resections 

are beneficial to the patients, as it improves body functions, relieves pressure in the brain, 

and disrupts the blood-brain barrier [Balmaceda C. 2000]. This allows for enhanced exposure 

to chemotherapeutic drugs. It also provides space for the tumor to grow, and pushing the 

tumor mass into a growing cell cycle appears to achieve better responses to radiation and 

chemotherapy. At diagnosis, tumors are usually localized and are less than 5 cm in diameter 

[Eck S.L. et al 1996]. It is thought that surgery for the treatment of GBM can prolong the life of 

the patient for up to 6 months [Shand N. et al 1999].  
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The standard surgical procedure followed is craniotomy or open surgery. If the brain tumor 

appears to be treatable with surgery, the neurosurgeon will cut out an area from the patient’s 

skull to search for the tumorous tissue. In cases where the tumor is reachable all of its mass 

can be removed. Unfortunately this is not always the case and some small, unapparent tumor 

tissue will remain within the brain resulting in tumor re-growth.  

The surgeon has various surgical options for breaking down and removing the tumor. 

These include:  

 
• Standard surgical procedures.  

• Laser microsurgery (which produces great heat and vaporizes tumor cells).  

• Ultrasonic aspiration (which uses ultrasound to break the glioma tumor into small 

pieces, which are then suctioned out).  

 
Most malignant tumors require additional treatments, including repeated surgery. 

Additional procedures to enhance brain surgery have been developed in order to allow 

maximum removal of the cancerous tissue. Some of them are: Stereotaxy, Cortical 

Localization, Image-Guided Surgery, and Magnetic-Tipped Catheters.  

1.7.1.2 Applying radiotherapy 

Radiotherapy plays a central role in the treatment of most brain tumors, whether benign 

or malignant. There are different phases where radiotherapy could be applied. 

 
• Radiotherapy after Surgery. Even when it appears that the entire tumor has been 

surgically removed, microscopic cancer cells often remain in the surrounding brain tissue.  

• Radiotherapy when Surgery is not appropriate. Radiotherapy may be used instead of 

surgery for inaccessible tumors or for tumors that have properties that are particularly 

responsive to radiotherapy.  

• Radiotherapy and Chemotherapy. Combining chemotherapy with radiotherapy is 

beneficial in some patients with high grade tumors.  

• Stereotactic Radiosurgery.  It has been developed to allow highly targeted radiation to be 

delivered directly to the small tumors while avoiding healthy brain tissue. The term 

radiosurgery is used because the destruction is so precise that it acts almost like a 

surgical knife. Some studies are finding that stereotactic radiosurgery improves survival, 

even in patients with the highly aggressive glioblastoma multiforme brain cancer. The 

procedure is being tested to boost standard radiotherapy.  

1.7.1.3 Applying chemotherapy 

Chemotherapy can be used as a primary therapy or an additional therapy following 

surgery and/or radiation therapy. Chemotherapy involves the use of toxic drugs to kill cancer 
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cells. They may be given orally, intravenously, or administered directly into the central 

nervous system. Chemotherapy is not an effective initial treatment for low grade brain tumors, 

mostly because standard drugs cannot pass through the blood brain barrier. 

Chemotherapy prolongs survival, especially in patients with anaplastic gliomas, 

oligodendrogliomas, medulloblastoma, primitive neuroectodermal tumors (PNET), germ cell 

tumors and primary CNS lymphoma. Glioblastoma multiforme though tends to become 

chemoresistant. As is also the case with many systemic cancers, chemotherapy of brain 

tumors is not curative, and the goals of the treatment are mainly to control the growth of the 

tumor and to maintain good performance and quality of life for the patient for as long as 

possible [Burton E.C et al 2000 – Beauchesne P. 2002 - Kleinberg L. et al 2002 -Tentori L. et 

al 2002 -Trent S. et al 2002 -Watling C.J. et al 2002]. 

The most common drugs (agents) are the nitrosoureas (BCNU, CCNU), platinum-based 

drugs (Cisplatin, Cisplatinum, Carboplatin), Temozolomide, Procarbazine, and natural-

occurring compounds (Taxol). Each one of these drugs is also used separately or in other 

combinations. 

1.7.2 Novel treatment approaches  

The main drawback of chemotherapy is that not all tumors are responsive to 

chemotherapeutic drugs, and treatment may cause damage to the bone marrow of the 

patient. Actively dividing cells, as in high grade tumors are most susceptible to this form of 

treatment. Recently, however, researchers have identified certain genetic arrangements in 

specific brain tumors that make them sensitive to the effects of chemotherapy.  Several other 

promising treatment paths have been introduced. Some of them are: Immunotherapy, Gene 

Therapy, Angiogenesis Inhibitors, Transplantation Procedures and High-Dose Chemotherapy, 

and Photodynamic Therapy. Among them, gene therapy seems to be the most promising.  

Gene therapy [Lam P.Y.P. et al 2001 - Castro M.G. et al 2003] refers to the introduction of 

genes into a person's DNA in order to treat brain tumors. Gene therapy is an emerging 

medical technique that involves the addition of DNA to the human genome in order to replace 

a defective gene or to provide a gene that the body can use to fight disease. Several 

strategies as well as other novel approaches have been attempted in the treatment of 

malignant gliomas [Williams D.A. et al 2003]. 

 

• delivery of prodrug-activating genes that confer sensitivity to toxic metabolites. 

• replacement of tumor suppressor genes known to be deficient in gliomas usually   

      resulting in tumor apoptosis. 

• delivery of genes resulting in suppression of angiogenesis. 

• delivery of genes resulting in activation of host antitumor immune responses. 

• antisense cDNA delivery to negatively regulate tumor-related protein. 

• conditionally replicating viruses that selectively infect and destroy tumor cells. 
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Although these approaches significantly vary in strategy, they all share a common goal: to 

deliver the therapeutic gene or virus efficiently and specifically to the targeted tissue.  

Gene therapy can be distinguished into two categories: ex vivo, in which cells are modified 

outside the body and then transplanted back, and in vivo, in which genes are changed in cells 

that are still in the body. The ex vivo approach was the first to be applied. In this approach, 

cells are removed from a patient's tumorous area and incubated with vectors (carriers) to 

introduce genes. For in vivo techniques the challenge of inserting genes is greater. Here, 

vectors have a more difficult task to complete. They must deliver genes to enough cells so as 

to have an effect. They have to remain undetected by the body's immune system and they 

must deliver genes into a precise spot on the genome for the body to properly produce 

desired proteins [Lam P.Y.P. et al 2001]. 

Vectors [Basillion J.P et al 2000 – Martinez A.R. et al 2002] are mechanisms that allow 

genes to be carried into the genome. Modified cells are then transplanted back into their host, 

where it is hoped that they will replace defective genes to correct protein problems. There are 

two main types of vectors, namely viral and non-viral vectors as shown in Figure 1.11. 

The most important viral vectors are the retroviruses and the adenoviruses. Retroviruses 

are small RNA-based viruses. They reproduce by integrating their RNA into a host's DNA. For 

gene therapy, scientists modify these viruses' genetic code so that none of their natural 

proteins are produced, meaning that they cannot replicate and damage a host. Because 

retroviruses target fast-growing cells, they are especially promising for possible cancer 

treatments. Adenoviruses are larger DNA-based viruses. They can hold more genes and are 

not limited to just targeting fast-dividing cells. However, their larger size makes them more 

difficult to manipulate. The viral vectors contain specifically designed viruses to carry DNA for 

gene therapy. Common viral vectors are the adenovirus, adeno-associated virus, Epstein–

Barr virus, HSV, papova virus, vaccinia virus, retrovirus, lenti virus and hybrid virous. 

A significant problem affecting all virus-based vectors relates to the recognition by the 

immune system. When familiar viruses are detected in the bloodstream, the body sends 

antibodies to bind to and consume them. A second problem relates to the unpredictability of 

where viruses will insert genes into a person's DNA. If genes are inserted in the wrong place, 

then they may not be expressed. Additionally, gene insertion could cause diseases, such as 

cancer, by adversely affecting the function of nearby genes. Thus, the insertion of genes 

using viral vectors can cause cells to behave irregularly and dangerously [Basilion J.P. et al 

2000]. 
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Figure 1.11 Viral (up) and non-viral (down) vectors for the treatment of a brain tumor – 

[Internet Source: Nature] - (The figure was designed with Adobe Photoshop ver.CS5) 

 
Researchers are also examining non-viral vectors such as nanoparticles that can deliver 

therapeutic genes. Scientists are also considering introducing an extra chromosome into 

cells. Alongside existing DNA, this additional chromosome could contain therapeutic genes. 

Introduced into the body as a large vector, it should not be targeted by the immune system. 

Commonly used non-viral vectors are the DNA–polylysine complexes, liposomes, lipofectin, 

ligand-targeted liposomes and hybrid nonviral vectors. 

As mentioned above, there are several strategies used in gene therapy of brain tumors. 

These belong to the general principles that scientists follow and shown below: 

• Immunomodulation by gene therapy 

• Apoptosis-inducing genes 

• Blocking angiogenesis 

• Oncolytic viruses  

 
Therapeutic genes for brain tumor treatment based on the approaches above are 

summarized in Table 1.4 [Kounelakis M. et al 2005]. 

 
Table 1.4 – Gene therapy strategies and gene targets   

Strategy Therapeutic genes 

Immunomodulation Cytokine genes such as IL-2, Il-4, IL-12, GM-CSF 

Induction of Apoptosis TP53, CDK4,Rb, PTEN 
BAX 

hREC2 
Caspase-8 

Blocking Angiogenesis Angiostatin, Endostatin 

Oncolytic Viruses HSV γ34.5 minus 
RR-minus 

Ad E1B-minus 
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Gene therapy cannot be considered as the “magic wand” approach in brain tumor 

treatment. There is a lot that has yet to be done. One of the most promising issues is the 

generation of even more accurate gene carriers, but also the invention of specific therapeutic 

genes for individualized treatment. These two issues become crucial due to the complexity of 

the brain compared to other tissues of the human body [Martinez A.R. et al 2002]. 
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1.8 Conclusions 

The fight against brain cancer is a continuous process. Despite the fact that the brain is 

one of the most important organs in the human body for the sustainability of life, its structure 

and functionality is far more complex compared to other organs.  

When a malignant brain tumor is present these considerations are always in the clinicians’ 

minds. Accurate and sophisticated manipulations are required to face this disease. The rapid 

growth of this tumor and its ability to spread is a serious obstacle to manage since it shortens 

the patient’s survival. Although state-of-the-art treatments are today applied to prolong 

patients’ survival, at the end of the day many of them will not make it. 

Nowadays, most of the experts in brain oncology believe that, despite the recent advances 

in brain tumor treatment methods, the key issue is to see and study each patient as a unique 

case. This statement opens the way to a personalised treatment management where 

hopefully each patient will be treated according to his/her tumor’s characteristics and not 

following a general therapeutic protocol, as is done today. Most experts also agree that this 

can be achieved only when more accurate and robust diagnostic methods and protocols are 

developed and eventually integrated into the clinical practices. In order to proceed with an 

individualised therapy, reliable sets of biomarkers extracted from accurate diagnostic 

procedures must be defined to better describe the tumor’s type, grade and metastatic trend. 

Based on the expression of these biomarkers, clinicians will be able to determine a patient-

specific healthcare. 

The “omics” technologies and methods can be a promising way towards this direction. It is 

now known that brain cancer’s genesis is due to abnormal genetic mutations happening in its 

cells. These mutations and their impacts are mirrored in several other “omics” areas, such as 

transcriptomics, proteomics and metabolomics. Among them, the genomics and the 

metabolomics, the two ends of the “omics” era, provide the ability to obtain a clear picture of a 

tumor’s biological behaviour. This is because the diagnostic tools relevant to these two 

“omics” modalities, such as DNA microarrays and MR Spectroscopy respectively, have great 

potential. 

The integration of the knowledge derived from these two modalities can define a more 

effective manner to fight this disease. The scope of this thesis is to exhibit their significant 

diagnostic role both for brain tumor discrimination and treatment design purposes. 
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2.1 Introduction: The Role of Pattern Recognition in  
      Cancer Research 

Nowadays, the exhaustive research efforts being applied on cancer have produced a vast 

amount of patients’ data. The “omics” technologies, mainly developed during the last two 

decades, enabled the design of large databases containing complex data of the genomic, 

transcriptomic, proteomic and metabolomic profiles of cancer patients. This information 

though is most of the times valueless if it is not further processed by statisticians and 

bioinformaticians who aim to extract useful and valuable knowledge which will be integrated 

into the diagnostic, prognostic and treatment cancer practices.  

The principle of extraction or discovery of new knowledge from raw data is called data 

mining.  Towards this direction, experts today join their efforts to develop new methods/tools 

that will enable oncologists and neurosurgeons to observe and study the cancer’s genesis, 

pathology and behaviour and decide the type of treatment to follow. This is exactly the point 

where pattern recognition is introduced. 
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2.2 Fundamentals of Pattern Recognition 
 

2.2.1 Patterns and features 

Patterns are the means by which we interpret the world. Pattern recognition involves the 

identification of patterns from raw data that can reliably describe a situation. More specifically 

a pattern is a set of measurements or observations that characterize a situation and is usually 

represented in a vector or matrix form, as shown in Table 2.1. For example, a pattern in 

cancer field could be a patient with specific attributes such as abnormally altered gene, 

protein or metabolite expressions, which determine a situation like a cancer type or grade.  In 

the same manner even a group of patients with similar attributes or clinical profile constitute a 

pattern of a pathological state. These measurements or attributes are often called as features. 

 

Table 2.1 – A dataset of ten cancer patients distinguished into two separate classes. Each 

patient is described by twenty features 

The shaded area represents a patient vector which is a pattern of class 1. The symbol (x) 

corresponds to the values of the features 

 
Pattern recognition is actually information mapping as shown, in an abstract view, in 

Figure 2.1 [Schalkoff R. 1992]. Each one of the classes in the classes’s membership space 

C  is mapped )( mappingP  to a subset of patterns in the pattern space P . These 

subspaces however may overlap, allowing patterns from different classes to share 

characteristics. Furthermore, the pattern space P  is mapped )( mappingF  to the features 

space F  or in other words, each pattern vector contains features from the F space. As it 

can be seen though, the same feature can belong to different pattern subspaces which can 

also correspond to different classes. 

This is even more obvious in real life problems of pattern recognition. A trivial example is 

the case were two patients suffering from two different cancer types, i.e. belong to two 

different classes, have common characteristics (features) such as the same tumor location, or 

morphology, age, sex etc. It is clear that the identification of those optimal features or feature 
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sets that could uniquely describe a specific cancer type or grade could be the best solution to 

such problems.  

 

 

Figure 2.1 – The process of pattern recognition – (The figure was designed with Adobe 

Photoshop ver.CS5) 

 

In the field of pattern recognition the aim is to learn a computer by examples to recognize 

patterns in datasets. The recognition process performed by a computer is also called 

classification. In fact this is the process where the computer categorises a new instance, for 

example a new patient, into a specific class (group) of patients with similar features which 

correspond to a specific pattern that the computer has already learned to recognise.  

 

2.2.2 Feature selection: why is it so important in cancer research? 

Feature selection, also called attribute or variable selection, is the technique of selecting a 

subset of relevant features for building robust learning models (classifiers). Selecting 

significant features is a very important issue in every data mining problem. The most obvious 

reason for that is the fact that often a dataset contains more information than is needed to 

build a robust model. Using all features involves the danger of building models that cannot 

recognise meaningful patterns from data and therefore are unable to accurately classify new 

instances. By removing the most irrelevant and redundant features from the data, the 

performance of the learning model is improved because of the alleviation of the effect of the 

curse of dimensionality which results to a much quicker learning process and enhanced 

generalization capability and interpretability [Internet Source: Wikipedia]. 

Especially in cancer research the need to define optimal sets of cancer features (today 

called as cancer markers) is crucial both for patients and clinicians. Having reliable cancer 

markers as a tool, clinicians can diagnose a cancer at early stages which has a great impact 

on patient’s follow up. Furthermore they can generate new drugs and define specific 
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treatment protocols which actually constitute the foundations of most medical Decision 

Support Systems (DSS) applied today.  

2.2.2.1 Feature selection methods 

Most of the methods used for feature selection were developed for classification purposes 

[Geng X. et al 2007]. Basically, feature selection methods in classification fall into three 

categories [Dietterich T.G. 1998 - Guyon I. et al 2003] referred to as filter, wrapper and 

embedded methods.  

Filter feature selection is defined as a pre-processing step and can be independent from 

learning. Filter approaches focus on the intrinsic properties of data in each feature direction. A 

filter method computes a score for each feature and then selects features according to the 

scores [Mladenic D. et al 1999]. More specifically a feature ranking is applied which ranks the 

features based on a stochastic metric and eliminates all features that do not achieve an 

adequate score. The metrics typically used [Dash M. et al 1997] to score the features in filter 

selection are the, 

 
• distance measure,  

• the information measure,  

• the dependence or correlation measure,  

• and the consistency measure  

 
In distance measure we are computing the physical distance between instances. 

Features that can support instances/records of the class to stay together are selected. The 

key concept is the assumption that instances of the same class must be closer than those in 

different class. For a two-class problem, a feature 1feat  is preferred to another feature 2feat  

if 1feat  induces a greater difference between the two-class conditional probabilities 

than 2feat . An example is the Euclidean distance measure. 

The information measure determines the information gain from a feature. The information 

gain from a feature 1feat  is defined as the difference between the prior uncertainty and 

expected posterior uncertainty using 1feat . Feature 1feat  is preferred to feature 2feat  if the 

information gain from feature 1feat  is greater than that from feature 2feat . 

Dependence measures or correlation measures qualify the ability to predict the value of 

one variable from the value of another. The coefficient is a classical dependence measure 

and can be used to find the correlation between a feature and a class. If the correlation of 

feature 1feat  with class C  is higher than the correlation of feature 2feat  with C , then 

feature 1feat  is preferred to 2feat .  
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Finally the consistency measures are rather new and have been in much focus recently. 

These measures find out the minimally sized subset that satisfies the acceptable 

inconsistency rate that is usually set by the user. 

Characteristic tests based on the stochastic metrics mentioned, implemented by modern 

statistical tools, are the Fisher’s discriminant criterion, Relief-f, T-statistic (Student’s t-test), 

Chi-square statistic (X
2
 statistic), Information gain, Cross-entropy measure, Person 

Correlation coefficient, Kruskall-Wallis test, Analysis of variance (ANOVA), Mann-Whitney U 

test, Liu’s consistency test and others.  

In contrast to filter methods which ignore the impact of the learning algorithm the second 

category, referred to as wrapper, utilizes the learning system as a black box to score subsets 

of features [Kohavi R. et al 1997]. The disadvantages of wrapper methods relate to the high 

computational cost of the search and their inability to take advantage of intrinsic data 

structures. 

The third category, called the embedded method [Breiman L. et al 1984 – Blum A. et al 

1997], performs feature selection within the process of training. Embedded methods aim to 

immediately integrate the feature selection or weighting procedure into the learning algorithm 

of the classifier succeeding thus to retain the intrinsic characteristics of the data in the 

classification process. Comparing with the wrapper type, the embedded feature selection 

methods are usually more efficient, since they look into the structure of the involved learning 

model and use its properties to guide feature evaluation and search. In recent years, the 

embedded methods are gaining increasing interests in feature selection research due to their 

superior performance [Liu H. et al 2010]. The embedded type of feature selection is adopted 

in two published studies of our team presented in Chapters 4 and 5 with remarkable results in 

feature selection and classification of brain tumors. 

In general feature selection is performed before the model is trained (learning or training 

phase), to automatically choose the features in a dataset that are most likely to be used in the 

model. A schematic representation of the feature selection and classification process is 

provided in Figure 2.2. 
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Figure 2.2 – The Feature Selection and Classification process that leads to the identification 

of the Optimal Features Subset – (The figure was designed with Adobe Photoshop ver.CS5) 

 

2.2.3 Classification: linear and nonlinear classifiers 

The statistical analyses applied on cancer type and/or grade discrimination studies mostly 

involve binary classifiers. Binary classification is dealing with the categorization of a new 

instance, for example a new patient, into one of two known labelled classes. The correct 

classification is based on classifier’s prior knowledge obtained through the training phase, as 

shown in Figure 2.2.  

Typical binary classification cases in today’s oncology are the: 

• healthy vs pathological,  

• one type of cancer vs another type of cancer (for example Acute Myeloid Leukemia vs 

Acute Lymphocytic Leukemia or Brain glioma vs brain meningioma) 

• low grade cancer vs high grade cancer (for example Brain glioma grade I vs brain glioma 

vs II or III or IV) 

The last case of binary classification is appeared to be the most challenging one since the 

discrimination of subtypes of the same type of cancer is complex. Small differentiations in a 

patient’s cancerous characteristics (features) can confuse clinicians whether the patient 

belongs to one subtype or to another and therefore lead to a wrong decision regarding the 

treatment that must be followed. For these reasons many cancer researchers during the last 

decade have been trying to identify significant features that are able to accurately distinguish 

cancer subtypes. Towards this direction two studies, published by our team, are presented in 

Chapters 4 and 5. 
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Concerning the classification of data another issue must also be addressed. That is the 

ability of the binary classifier to recognise whether the data provided is linearly or nonlinearly 

separable, as shown in Figure 2.3. The goal of statistical classification is to use an instance’s 

characteristics to identify which class it belongs to. A linear classifier achieves this by making 

a classification decision based on the value of a linear combination of the characteristics. An 

instance’s characteristics are typically presented to the classifier in a vector form called a 

feature vector. 

 

 
 

Figure 2.3 – A: A linear separable data of two glioma classes in 2D space and B: A nonlinear 

separable case of the same classes in 2D space – (The figure was designed with Adobe 

Photoshop ver.CS5) 

 

 
However, in reality it is very difficult and uncommon to find data that is linearly separable. 

Especially in the case of cancer, the enormous amount of data produced and stored in large 

databases, contain many patient features whose interrelation can only be defined through a 

nonlinear way. Typical cases of high complexity can be found in glioma grade II vs grade III 

and also grade III vs grade IV discriminations where patients can present minor changes in 

their features. Therefore powerful nonlinear classifiers must be designed to cope with such 

complex cases. 

2.2.3.1 Support Vector Machines (SVM) 

The selection of the proper classifier is always an important issue in biomedical cancer 

data mining, for two main reasons: 

 
• the great complexity and the high dimensionality (high number of features) observed in 

such datasets and 
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• the urgency to discover reliable cancer markers which will eventually be used in cancer 

diagnostic, prognostic and treatment procedures at clinical level. 

 
Among the classifiers developed and applied during the last decade on cancer 

discrimination problems, Support Vector Machines (SVM) have been widely recognized as 

one of the most promising. SVM that first introduced Vapnik N. V. et al in 1963, belong to the 

maximal margin classifiers that have been found to cope quite well with complex nonlinear 

datasets by [Vapnik N. V et al 1963 - Vapnik N. V. 1999]. SVM have been an attractive choice 

to bioinformaticians due to their three main properties: 

• the discrimination (decision) function is determined by that hyperplane which optimally 

separates the two classes. The optimal hyperplane is found when the boundaries of the 

two classes are as far as possible (maximal margin) from each other, and is placed in the 

middle of these boundaries, as shown in Figure 2.4.  

• the decision function is defined only by the instances (vectors) and not the whole data.  

These vectors, which are placed on the boundaries of the two classes and therefore 

define these boundaries (margins), are called Support Vectors (SV), as shown in Figure 

2.4. 

• the nonlinearity of data can be faced through the application of the ‘Kernel trick’ which 

maps the input features into a higher dimensional feature space where data is linearly 

separable, as shown in Figure 2.6. 

 

 

Figure 2.4 – The SVM classifier showing the optimal hyperplane (in blue), maximal margin of 

the two classes and the support vectors of each class, in 3D space – (The figure was 

designed with Adobe Photoshop ver.CS5) 
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Binary classification can be viewed as the task of separating two classes, usually defined 

as positive )1(+  and negative )1(−  as shown in Figure 2.5(A). At diagnosis phase, when a 

new patient )( newx  has to be categorised into one of the two classes (e.g. tumor type I or 

tumor type II), the decision is determined from the sign  of the function given in Eq. (1). 

)(()( bxwsignxf newnew +⋅=      (1) 

where )( ⋅ denotes the dot product, w  is the direction vector of the hyperplane and 
w

b
 is the 

offset of the hyperplane from the axes’ origin along the vectror w . 

However, as it can be seen from Figure 2.5(B), there are many hyperplanes ),( bw  that 

can separate the two classes and therefore the question that is generated is: which is the 

optimal one?  

 

Figure 2.5 – A: Two classes (binary) classification and the separating hyperplane showing the 

decision function (w x + b = 0), B: Three possible hyperplanes that separate the two classes. 

The optimal one is in light red color, C: The distance (r) of the support vectors of the both 

classes from the optimal hyperplane (p=2r), D: The case of two misclassifications and the 

slack variable (ξi) – (The figure was designed with Adobe Photoshop ver.CS5) 

 
The solution to that question comes from the SVM’s theory which supports that the optimal 

hyperplane can be found by maximizing the distance between the two classes’ boundaries 
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(margins). Then the optimal (or maximum margin) hyperplane is that one which passes 

through the middle of the maximum marginal distance )2( rp = , as shown in Figure 2.5(C). 

This fact also implies that the optimal hyperplane (so optimal bw,  as explained below) is 

defined by the support vectors. In other words, only the support vectors count in the decision 

function and the rest of the training data can be ignored.  

To better understand this, let a training set { }),( ii yx where 

{ }1,1,,...1 +−∈∈= i

d

i yRxni , be separated by the hyperplane with marginal distance p . 

Then for each training example ix : 

2

p
bxw i ≥+⋅ , if 1+=iy      (2) 

and 
2

p
bxw i −≤+⋅ if 1−=iy     (3) 

which leads to the Eq. (5) 

                                      
2

)(
p

bxwy ii ≥+⋅  for all { } ,...1,),( niyx ii =     (4) 

As we also have to prevent data points from falling into the margin, we reformulate the Eq. 

(2), (3) and (4) as follows:  

1+≥+⋅ bxw i  if 1+=iy      (5) 

1−≤+⋅ bxw i  if 1−=iy      (6) 

or more compactly  

  1)( ≥+⋅ bxwy ii  for all { } ,...1,),( niyx ii =                   (7) 

 

In fact we require that at least one example on both sides has a distance of exactly 1.  

Now let 
sv

ix  be a support vector of a class (i.e. lays on the margin of the class, so 

1)( =+⋅ bxwy
sv

i

sv

i ). Using geometry we can find that the distance from a support vector svx  

to the hyperplane, shown in Figure 2.5(C), is given in Eq. (8). 

 

   
ww

bxw
r sv 1

=
+⋅

=          (8) 

 

and therefore the marginal distance of the two classes from the hyperplane 

is
w

rp
2

2 == . The goal of SVM is to maximize p , so minimize w  or equivalently 
2

2

1
w  

in the equation above.  In other words,  
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2

2

1
min w      (9) 

subject to 1)( ≥+⋅ bxwy ii  for all { } ,...1,),( niyx ii =  

which is actually a convex Quadratic Programming (QP) optimization problem. Fortunately the 

original or primal optimization problem can be solved in the dual form by introducing the non-

negative Lagrange multipliers nii ...1, =λ . Using the Lagrange multiplier the problem can be 

transformed as in Eq. (10). 

    )(
2

1
max

1,1

jijij

n

ji

i

n

i

i xxyy ⋅− ∑∑
==

λλλ
λ

   (10) 

subject to: 0
1

=∑
=

i

n

i

i yλ  for all 0≥iλ  

From the solution of these equations it can be shown that the optimal (maximum margin) 

hyperplane is described by Eq. (11) and Eq. (12), only if the training examples are support 

vectors. This is derived from the fact that if 0=iλ  then the training example ix  has no 

influence on the hyperplane (or the decision function). So, each 0>iλ indicates that the 

training example ix  is a support vector. 

sv

ii

sv

i

i xyw ∑
=

=
#

1

λ     (11) 

 

and because for any support vector 1)( =+⋅ bxwy
sv

i

sv

i  

sv

i

sv

i xwyb ⋅−=     (12) 

 

Reformulating the Eq. (1), the decision function for a new instance (patient) in terms of 

Lagrange multipliers iλ , becomes, 

)()(
#

1

bxxysignxf new

sv

ii

sv

i

inew +⋅= ∑
=

λ    (13) 

Notice that the final decision (or classification) function is defined in terms of the dot 

product )( ⋅  which is a very useful property of SVM as we will explain below where the ‘Kernel 

trick’ is introduced. 

 
The margin error 

 
The constraints in Eq. (9) above ensure that the maximum margin classifier classifies each 

training example correctly, which is possible when the data is linearly separable (hard margin 

case). In practice, data is often not linearly separable, as shown in Figure 2.5(D); and even if 

it is, a greater margin can be achieved by allowing the classifier to misclassify some points.  
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To allow some errors, which is know as the soft margin case first introduced in 1995 

[Cortes C. et al 1995], we reformulate the Eq. (9) as follows, 

   ∑
=

+
n

i

iCw
1

2

2

1
min ξ      (14) 

subject to iii bxwy ξ−≥+⋅ 1)(  for all ni ...1=  and 0>iξ  

where iξ  are slack variables (margin error) that allow an example to be in the margin 

)10( ≤≤ iξ  or to be misclassified )1( >iξ .  

Again, the goal is to minimize 
2

2

1
w  but now also penalize the possible misclassifications 

and margin errors. The constant 0>C  is a tuneable hyperplane parameter. Large values of 

this parameter decrease the margin of error, while small values increase it. 

 

 
The Kernel trick: from a nonlinear to a linear solution 

 
As previously mentioned, in practice the cancerous patients’ datasets provided from 

cancer research, are most of the times not linearly separable. As explained, the main reason 

for that are both the complexity and the high dimensionality of the data provided from 

biomedical and clinical experiments. A representative case where this becomes clear is in the 

discrimination of complex types of cancer, such as brain tumors, with negative impact on 

diagnosis and treatment decision. In such cases the experts look for classifiers where they 

can face the problem of non linearity.  

The original optimal hyperplane SVM solution described in previous section, proposed by 

Vapnik N. V. et al in 1963, was a linear classifier. Later though, in 1992, Boser B., Guyon I. 

and Vapnik N. V. suggested a way to design nonlinear classifiers by applying the ‘Kernel trick’ 

to maximum-margin hyperplanes [Boser B.E. et al 1992]. The basic idea was generated from 

the fact that the dot product )( ⋅  in Eq. (13) can be replaced by a nonlinear kernel function. 

Using the kernel function the original input feature space where data is not linearly separable 

is transformed into another high dimensional feature space where a linear solution can be 

obtained, as shown in Figure 2.6.  
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Figure 2.6 – The transformation from the input nonlinearly separable space to a higher 

dimensional linearly separable feature space – [Internet Source: Institute of Microbial 

Technology] - (The figure was designed with Adobe Photoshop ver.CS5) 

 

A kernel function is a function that is equivalent to the dot product )( ⋅  in the some feature 

space. Therefore if every instance ix  is mapped into a high dimensional space via some 

transformation )(: ii xx φ→Φ , the dot product becomes, 

 )()(),( jiji xxxxK φφ ⋅=     (15) 

 

Based on Eq. (15) the Eq. (13) becomes, 

 )),(()(
#

1

bxxkysignxf new

sv

ii

sv

i

inew += ∑
=

λ    (16) 

which is the decision function in the high dimensional feature space.  

 

Some common Kernels are, 

• Polynomial of power p : 
p

jiji xxxxK )(),( ⋅=  

• Gaussian Radial Basis Function (RBF): 0)exp(),(
2

>−−= γγ forxxxxK jiji  

• Sigmoid: 00)tanh(),( <>+⋅= candkforcxkxxxK jiji  

 
In cancer discrimination tasks, the RBF kernel is commonly used due to its ability to 

construct classifiers that can quite satisfactory discriminate complex and heterogeneous data. 

Furthermore, with careful tuning of its parameter γ  and the soft margin SVM’s parameter C  

(in case of inseparable data) allows to avoid overfitting of the classifier [Scholkopf B. et al 

2002 - Wang W. 2003]. 
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2.2.3.2 Least Squares Support Vector Machines (LS-SVM) 

Two of the main advantages of nonlinear SVM classifiers are the ability to solve 

classification problems by means of convex Quadratic Programming (QP) optimization as well 

as the sparseness of the data as a result of this QP problem. Suykens J.A.K. et al in 1999 

proposed the idea of modifying the Vapnik’s SVM formulation by adding a least squares term 

in the cost function, as shown in Eq. (17), which transformed the problem from solving a QP 

problem to solving a set of linear equations [Suykens J.A.K et al 1999].  

   ∑
=

+
n

i

ieCw
1

22

2

1
min      (17) 

subject to iii ebxwy −=+⋅ 1)(  where ni ...1=  

 

As one can observe the Vapnik’s initial Eq. (14) is modified in Eq. (17) in two points. First 

the inequality constraints are substituted by equality constraints, where the value 1 (distance 

fro the optimal hyperplane) at the right hand side is considered as a target value instead of a 

threshold value. The error variable ie  allows some tolerance of misclassification in the case 

of overlapping distributions. This error variables function is similar to the slack variable iξ  in 

SVM formulation. Second, a squared loss function is taken for this error variable [Selvaraj H. 

et al 2007]. This approach significantly reduces the cost in complexity and computation time 

for solving the problem. 

Applying again the Lagrange multipliers method, the solution derived is described by Eq. 

(18). 

)(
1

ii

n

i

i xyw φλ∑
=

=     (18) 

subject to  

0
1

=∑
=

i

n

i

i yλ  

ii Ce=λ  where 0>C  

01))(( =+−+⋅ iii ebxwy φ  

 

As explained above, an interesting property of SVM is that many of the resulting iλ  values 

are equal to zero. Hence the obtained solution is sparse. This means that in the resulting 

classifier in Eq. (13) the sum should be taken only over non-zero iλ  values, i.e. the support 

vectors, instead of all training data points.  

In the LS-SVM’s however the decision function is based on all training examples. That is 

because each training example is considered a support vector since iλ  is always non-zero, 
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based on the constraint ii Ce=λ  in Eq. (18). This is a major drawback of LS-SVM especially 

when the datasets provided are large since the solution obtained is not sparse as in SVM. 

 

2.2.4 Classifier performance measures 

A crucial point in every classification task is to validate the classifier’s overall performance. 

For this purpose several classifier performance measures have been developed and utilized 

over the last decades. A performance measure estimates the classification accuracy which 

must objectively reflect the predictive quality of the classifier in assigning a new unseen 

instance to the correct class. 

It is also clear that the performance of a classifier on the unseen data is directly related to 

the training data. That is because the classifier searches the training data to discover patterns 

of data which will be used as the basis for the correct classification of the new unseen 

instance. Therefore the selection of a suitable training set is very important for the 

classification process of a new unseen instance. 

2.2.4.1 Selection of the training and test sets 

The ultimate goal in a classification process is to get as high accuracy as possible but at 

the same time ensure that overfitting has been avoided. Overfitting occurs when the classifier 

fits too much to the training data, but cannot generalize well to new unseen data. This leads 

to unrealistic accuracy values i.e. low performance of the classifier.  

A common way to fairly measure classification performance is by dividing the initial data 

into a) a training set, b) a validation set and c) a test set.  

The classifier is then trained with the training set, while the validation set is used to decide 

when the training process must stop (i.e. when a minimal error on this validation set is 

reached). Finally the test data are only used after the training process has been terminated 

and the classification accuracy is measured.  

Unfortunately in real life problems, it is quite often very difficult to have a large dataset. 

Especially in real life cases, such as in clinical medicine there is virtually no perfect test. With 

the limited available number of data, a trade-off should be taken to divide the dataset into a 

training set and a test set, e.g. 2/3 of the dataset are used as training data while the rest is 

used later as test data. 

There are several statistical methods that can be utilized to help us select the proper 

training and test sets for the classifier. Most of them follow a Cross Validation (CV) motif. The 

most known are the K -fold CV and the Leave-one-Out CV (LOOCV) [Kohavi R. 1995]. 

In K -fold CV the initial dataset is randomly partitioned into K  folds (also called K  

subsets). Of the K subsets, one is retained for testing purposes while the rest 1−K  subsets 

are inputted into the classifier for training. This process is repeated K times, so all K  subsets 

are used for testing at least once. 10-fold CV is most commonly used in classification tasks. 
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In LOOCV method, as the name suggests, each instance of the dataset is left out for 

testing and the remaining instances are used to train the classifier. This process is repeated 

until all instances are tested at least once. LOOCV is usually very expensive from a 

computational point of view because of the large number of times the training process is 

repeated [Internet Source: Wikipedia]. 

2.2.4.2 Correct classification rate 

The correct classification rate, sometimes called accuracy, shows the proportion of correct 

classifications to the total number of classification tests. In medicine, this is described by four 

terms, the true and false positive and true and false negative. More specifically, 

• True Positive (TP): the test result is positive in the presence of a disease (i.e. the test is 

positive for the disease because the person has the disease). 

• True Negative (TN): the test result is negative in the absence of a disease (i.e. the test is 

negative for the disease because the person is healthy) 

• False Positive (FP): the test is positive in the absence of a disease (i.e. the test is positive 

for the disease but the person is healthy) 

• False Negative (FN): the test is negative in the presence of a disease (i.e. the test is 

negative for the disease but the person has the disease) 

 
Apart from the first two terms (TP, TN) that determine the accuracy of the classifier as 

shown in Table 2.3, the FP and FN terms have also great impact on medical decision making. 

Telling to a person which is healthy that is sick (i.e. FP) has a cost, but on the other hand 

telling to a person that is healthy while it has a disease (i.e. FN), is life threatening. These 

kinds of classification errors must be eliminated.  

In a tabular format, these four terms are shown in Table 2.2. Furthermore, based on these 

four terms some formulae have been defined to express the classification accuracy and the 

efficacy of the classifier. These are shown in Table 2.3. 

 

Table 2.2 – The contingency table commonly used in medical classification tasks 

 Predicted group 

Actual group Normal Disease 

Normal TN FP 

Disease FN 
TP 
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Table 2.3 – The contingency table commonly used in medical classification tasks 

Term Formulae 

Sensitivity (or True positive rate) FNTP

TP

+
=  

Specificity (or True negative rate) FPTN

TN

+
=  

Likelihood ratio ySpecificit

ySensitivit

−
=

1
 

Accuracy 
Total

TNTP +
=  

 

2.2.4.3 Receiver operating characteristic (ROC) curve 

The Receiver Operating Characteristic (ROC) analysis [Swets J.A. 1979] is considered an 

objective and highly effective technique for assessing the performance of a classifier in a 

binary classification task. The ROC curve is a graphical representation or better a plot of the 

sensitivity, also called as True positive rate (TPR) versus the 1-specificity, also called as 

False positive rate (FPR = 1-True negative rate). More specifically the TPR determines the 

proportion of the positively classified instances among all positive instances available during 

the test. Accordingly, the FPR defines the number of incorrectly classified instances as 

positive among all negative instances available during the test. 

In order to draw an ROC curve all we need is these two rates. The ROC space is defined 

by FPR and TPR as x  and y  axes respectively, which actually depicts relative trade-offs 

between true positive and false positive. Therefore each prediction result is represented by a 

point on this ROC space. 

The best possible prediction result (i.e. the one that gives 100% classification accuracy) is 

represented by a point in the upper left corner (coordinates 0,1) of the ROC space, as shown 

in Figure 2.7(A). This is also called a perfect classification.  

On the other hand, a completely random guess would give a point along a diagonal line 

which divides the ROC space in two subspaces above and below this line. This is called the 

no-discrimination line. Points above this line are considered good classification results while 

points below poor results. 

Based on the observations aforementioned a classifier performance index, called the area 

under the ROC curve (AUROC) has been introduced. In medical discrimination problems 

AUROC serves as a well established index of diagnostic accuracy. For example as shown on 

Figure 2.7(B) a test with an AUROC of 1.0 is perfectly accurate as the sensitivity is 1.0 when 

the specificity is 1.0 (perfect test). In contrast, a test with an AUROC of 0.0 is perfectly 
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inaccurate. The line segment from (0,0) to (1,1) has an area of 0.5 and is called the chance 

diagonal. Classification tests with an AUROC value larger than 0.5 have at least some 

discrimination ability. In other words the closer the AUROC reaches 1.0, the better the 

diagnostic test. Hence, the AUROC is independent of the cut-off points used or the 

prevalence of disease and is therefore a good summary measure of test accuracy.  

 

 
 
Figure 2.7 – A: The ROC space showing how classification accuracy varies B: Three different 

AUROC values for three different classification tests (black dots) – [Internet Source: 

Wikipedia] - (The figure was designed with Adobe Photoshop ver.CS5) 
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2.3 An Application of Pattern Recognition Methods on  
      Acute Myeloid Leukemia: Example Study 
 

2.3.1 Abstract 

An example study which attempts to evaluate the potential of SVM and LS-SVM classifiers 

to discriminate Acute Myeloid Leukemia (AML) patients who a follow a treatment scheme 

according to GIMEMA LAM-99 protocol, has been accomplished [Manikis G.C, Kounelakis 

M.G, Zervakis 2009(a) - Manikis G.C, Kounelakis M.G, Zervakis 2009(b) - Ardoino I., Manikis 

G.C, Kounelakis M.G, Zervakis et al 2010]. Importance is given to feature selection and 

classification potential using SVMs.  

The feature selection and classification process was applied using patients’ features 

measured at the evaluation stages of two significant clinical endpoints, known as the first 

(Short Term) and the second (Long Term) induction treatments, (i.e. at the end of the first and 

second induction treatments) as shown in Figure 2.8. The results have shown that 

classification accuracies, in terms of AUROC, provided by both SVM and LS-SVM were quite 

satisfactory with LS-SVM performing slightly better than SVM. Finally the optimal feature set 

selected, i.e. that providing the best AUROCs, contains 9 markers (clinical, cytogenetics and 

molecular) and it was selected among 3 feature sets all tested for classification purposes.   

This example study demonstrates the aspects of pattern recognition in terms of the final 

goal and the alternative decision paths that may exist in clinical diagnosis. 
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2.3.2 Introduction 

GIMEMA (Gruppo Italiano Malattie Ematologiche dell’Adulto) is an Italian group which is 

expertly involved to Adult Hematological Diseases with coordination among more than 100 

centers for uniform treatment protocols and data collection. One of these protocols is the 

LAM-99 presented in Figure 2.8 which describes the steps followed to treat the AML. 

 

 
 

Figure 2.8 – The LAM-99 clinical protocol for AML treatment proposed by GIMEMA group. 

The two (first and second) induction treatments are presented in red color. The corresponding 

evaluations in blue color – [Source: Ardoino I. et al 2010] - (The figure was designed with 

Adobe Photoshop ver.CS5) 

 
Myeloid Leukemias (ML) belong to a heterogeneous group of diseases (also known as 

blood cancers) characterized by uncontrolled proliferation of immature (neoplastic) white 

blood cells (known as blasts) which result to a serious malfunction of the hematopoietic 

system which is controlled by the bone marrow. The incidence of ML has been increasing 

over the last decades. On the basis of their clinical and pathological course, they are typically 

split into Acute or Chronic.  

The Acute Myeloid Leukemia is considered the most aggressive form and if untreated, 

patients die of infection or bleeding usually in a matter of weeks. Some older adults may have 

a slower progressive clinical course. The symptoms of AML are caused by replacement of 

normal bone marrow with leukemic cells, which causes a drop in red blood cells, platelets, 
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and normal white blood cells. Several risk factors and chromosomal abnormalities have been 

identified, but the specific cause is not clear. 

Historically, AML were classified based on blasts morphology and cytochemistry, that is to 

say the type of cell from which leukaemia developed and its degree of maturity. Classification 

according to WHO (World Health Organisation) and FAB (French–American–British), 

identifies eight major subtypes denoted M0 through to M7. However, recent findings indicated 

that genetic abnormalities, detected by classic cytogenetics (flow cytometry), are 

fundamentally implicated in the leukogenesis processes. These features, associated with 

clinical and pathological ones, may provide useful diagnostic and prognostic information for 

this disease. Moreover, new integrated techniques of molecular biology allow for the 

evaluation of an increasing number of patients with apparently normal karyotype or where 

usual cytogenetics examination failed, and for the detection of further aberrations [Ardoino I. 

et al 2010]. During the last four decades, research efforts have investigated a wide variety of 

cytotoxic antileukemic agents. Most recently, insights into the molecular pathogenesis of AML 

have led to the development of the more specific targeted therapies.  

GIMEMA group has managed to create a database of 509 AML patients, implementing the 

protocol LAM-99, whose cytogenetic and molecular data at diagnosis and, moreover, clinical 

and outcome data has been stored. Based on those clinical, molecular and genetic features, 

the aim of this study is to identify the optimal set of features that best classifies those patients 

after the first (Short Term) and the second (Long Term) induction treatment. The reason that 

our analysis focused on the Short and Long Term evaluations relies on the fact that these two 

stages of treatment are very crucial if we want to follow bone marrow transplantation in the 

case where an HLA donor is available. According to LAM-99 protocol, only if a complete 

remission (CR) of the disease, either at the end of first or second induction treatments is 

achieved, the patient will be scheduled for bone marrow transplantation. In any other case, 

i.e. if the outcome is partial remission (PR), resistance (Res) or induction death (ID) of the 

patient, this is not an option. Another reason was to assess the efficacy of the therapies 

applied (first and second induction treatments). 

 

2.3.3 Materials and methods 

2.3.3.1 LAM-99 protocol description 

Patients were all admitted to the LAM99P trial and treated in several centres in Italy. All 

patients are supposed to receive for a short period a pre-treatment intended to decrease the 

number of abnormal white blood cells. The main purpose of the administration of the pre-

treatment in the protocol was to keep the disease under control to allow a delay in the 

beginning of the treatment course (chemotherapy) permitting cytogenetic and molecular 

biology proceeding. The next stage of therapy was an intensive chemotherapy induction 

treatment with the primary purpose of achieving Complete Remission (CR). Patients having 

only a Partial Remission (PR) response were given a second induction treatment: patients 
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who failed both induction treatments were no longer eligible for continuing on the protocol and 

underwent savage therapy.  

The evaluation of the response to the first induction treatment for Acute Myeloid Leukemia 

(AML) is scheduled between 31 and 38 days from the beginning of the induction treatment. At 

this stage patients are classified as CR, PR, Resistant, and dead in induction. Then, patients 

in PR enter a second induction treatment. The definitive evaluation of the response to the 

induction treatment should happen at about 80 days. This term should (could) be 

procrastinated at 90 days for accounting of a further shift induced by a possible cardiac or 

haematological toxicity. 

All patients in CR, either at the end of the first or second induction treatment, start, as soon 

as possible, a Consolidation Treatment, necessary to eliminate non-detectable disease and 

prevent relapse – that is, to achieve a cure. Allogeneic or Autologous Bone Morrow 

Transplantation according to the availability of an Human Leukocyte Antigens (HLA) identical 

sibling donor were recommended for all patients following the consolidation treatment. 

Patients were, then, followed and events of special interest – i.e., relapse or death in 

remission for any cause – were monitored [Ardoino I. et al 2010]. 

2.3.3.2 Dataset description and binary classification design 

The core dataset consisted of 509 AML patients enrolled in different Italian centers 

partaking in the GIMEMA group. These patients were admitted to the LAM-99 protocol trial on 

the basis of eligibility and exclusion criteria detailed in the “Guidelines for the treatment of 

AML in adults drawn on the basis of more recent European clinical studies EORTC-

GIMEMA”.  

A survival analysis was set up on a discrete time basis by our coordinators in Milan, 

following a partition of the time axis, using as a rationale for the discretisation the time points 

indicated by the protocol for the clinical evaluation of the response ([0, 30), [30, 60), [60, 90), 

[90, ..)) and then studying the hazard and/or the survival function within each interval (Figure 

2.9). The curves represent the probability of the response as the first occurring event in 

presence of the possibility of the occurrence of the other events. The largest numbers of non-

ID events are recorded between 30 and 60 days from diagnosis (at the end of the first 

induction treatment) and successively between 60 and 90 days (at the end of the second 

induction treatment). The survival analysis was performed with SPSS ver. 19.0 software 

package [Internet Source: http://www.spss.com]. 
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Figure 2.9 – Assessment of the response to the induction treatment – Source: [Ardoino I. et al 

2010] 

 
The survival analysis provided us with significant information about the possible 

classification outcome and the classes that should be chosen. Our research was based on 

the evaluation of the response of every patient after the first induction and second induction 

treatments. According to Figure 2.9, in discrete time interval [0, 30) three possible responses 

were recorded. These were the “Complete Remission”, “Induction Death” and “Resistance”. 

The class “Resistance” is actually the union of “Partial Remission” and “Resistant” AML 

patients.  

The binary classification schemes decided for the Short Term Analysis was the “Induction 

Death” vs “all others”, where “all others” is the union of responses “Complete Remission” and 

“Resistant”. On the other hand, Long Term Analysis is the analysis when the two-cycle, when 

needed, induction treatment was completed (after 60 days of treatment). It is obvious from the 

survival curve that the two classes under examination in this term are classes “Complete 

Remission” and “all others”, where now “all others” contains classes “Induction Death” and 

“Resistant”. 

The schemes designed for the binary classification are shown in Table 2.4 for Short Term 

and Long Term Analyses. 

Table 2.4 – Binary classification schemes for Short Term Analyses 

Analysis Binary schemes No of Patients 

 
Short Term 

Induction Death vs All others 
(CR+Res) 

 
67 vs 442 

 
 

Long Term 
 

Complete Remission vs All 
others (ID+Res) 

347 vs 162 
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2.3.3.3 Initial features selection 

During initial examinations (stage of diagnosis prior to pre-treatment) a set of clinical 

features were measured as presented in Table 2.5.  

 

Table 2.5 – Clinical, cytogenetic and molecular biology features at initial examinations stage 

No  Features 
Types of 

data 

1 WBC (White Blood Cells) Numerical 

2 PS (Performance Status) Categorical 

3 Bl_bm (no of Blasts in Bone Marrow) Numerical 

4 Hb (Hemoglobin) 
Numerical 

5 Plts (Blood Platelets) 
Numerical 

6 

Clinical 

Exm (Extramedullary infiltration) 
Categorical 

7 
Cytogenetics 

(Cyto) 

Distinguished into three risk groups: 
Low risk: t(8;21), inv(16) 
Intermediate risk: 12p, -7/del(7q), del(9q), t(3 ;5), 
t(8 ;16), t(15;17), –5/del(5q), del(13q), mark, -5; -7 
High risk: 3q, t(6;9), t(9;22), 11q23 

Categorical 

8 Flt3/ITD 
Binary 

9 Flt3/D835 
Binary 

10 NPM 
Binary 

11 AML_ETO  Binary 

12 INV16 Binary 

13 FinalMLL Binary 

14 BCR_ABL Binary 

15 

Molecular 

DEK_CAN Binary 

 

Cytogenetics exams were synthesised by currently defining three risk classes (lower – LR, 

intermediate – IR and High risk – HR) relying on Karyotype profile and prevalent 

abnormalities, by physicians of the GIMEMA group on the basis of literature. Molecular 

biology studies were also carried out, with the aim of identifying the presence of molecular 

abnormalities, thus increasing the sensitivity of the biological assessments.  

Normalization of the features was also applied prior to classification. As it can be observed 

in Table 2.6 the features selected have different data types. These were normalised in the 

range from −1 to 1 ( 1var,0 == iancemean ) to improve classifier performance. 
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In order to investigate the discriminative power of these features under a combined 

scheme, three different input feature sets were designed and validated by GIMEMA’s 

biologists and literature. These are shown in Table 2.6. 

 
Table 2.6 – Feature sets selected for classification at Short and Long Term Analysis 

1 WBC PS Bl_bm Hb Plts Exm   

2 WBC PS Bl_bm Hb Plts Exm Cyto  

3 WBC PS Bl_bm Hb Plts Exm Cyto Molecular 

 

As it can be observed these feature sets were designed on an additive mode. In other 

words, the first set contains only the clinical features while in the second one the cytogenetic 

features are also added. Finally the third set contains all three types, i.e. clinical, cytogenetic 

and molecular.  

2.3.3.4 Statistical analysis 

Our study focuses on classification and optimal feature selection based on both SVM and 

LS-SVM. For this purpose two classification models were designed in Matlab ver. R2010 

software package [Internet Source: http://www.mathworks.com]. 

For each binary classification scheme, the entire dataset was separated into two subsets, 

where 80% of the data was randomly selected for training and the remaining 20% for testing 

the overall classification process, as shown in Figure 2.10. This procedure was repeated for 

20 iterations in a 10-fold cross validation scheme and the final result of the classification was 

the average accuracy of all the iterations. 

 

Figure 2.10 – The classification process using 10-fold cross validation - (The figure was 

designed with Adobe Photoshop ver.CS5) 
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During the evaluation process the training set (80% of the data) functioned as an 

evaluation criterion for adjusting the parameters of the algorithms and accessing their 

effectiveness to the classification. Specifically, through the 10-fold cross validation, the 9 folds 

trained the classifier, and the remaining fold evaluated its performance keeping out of the 

procedure the independent test set (20% of the data) which was used afterwards for the 

testing process. Furthermore, the randomly partitioned folds were also stratified so that they 

contain approximately the same proportions of labels as the original dataset. The Radial 

Basis Function (RBF) Kernel was adopted as the most suitable for our classification process. 

A graphical representation of the design of the training, evaluation and test sets is given in 

Figure 2.10. 

 

2.3.4 Experimental results 

The results from the classification approach are categorized into Short Term and Long 

Term Analysis results. Tables 2.7 and 2.8 show the classification accuracies obtained at 

Short and Long Term Analyses, from the application of both SVM and LS-SVM classifiers, in 

terms of sensitivity (TP), specificity (TN), false positives (FP), false negatives (FN) and 

AUROC values. Furthermore, Table 2.9 presents the most significant features set (or markers 

set), i.e. those features provided the highest average AUROC values at Short and Long Term. 

These features were derived from the third set of features, shown in Table 2.6, where clinical, 

cytogenetic and molecular values are included. Their significance was estimated in terms of 

their frequency of appearance at the highest AUROC values measured at both short and long 

term classification process. 

 

Table 2.7 – Feature sets selected for classification at Short Term Analysis 

Classifier Binary scheme TP FP TN FN AUROC 

SVM 
 

70% 
 

 
45% 

 

 
55% 

 

 
30% 

 

 

66% )2.0(±  

LS-SVM 

 
Induction Death vs  

All others (CR+Res) 
 

 
74% 

 

 
39% 

 

 
61% 

 

 
26% 

 

 

68% )1.0(±  

 The numbers in the brackets represent the Confidence Intervals measured for each AUROC 
value 

 

Table 2.8 – Feature sets selected for classification at Long Term Analysis 

Classifier Binary scheme TP FP TN FN AUROC 

SVM 
 

69% 
 

 
32% 

 

 
68% 

 

 
31% 

 

 

70% )3.0(±  

LS-SVM 

 
Complete Remission vs  

All others (ID+Res) 

 
 

73% 
 

 
31% 

 

 
69% 

 

 
27% 

 

 

71% )2.0(±  

 The numbers in the brackets represent the Confidence Intervals measured for each AUROC 
value 
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Table 2.9 – The optimal features set (markers) at Short Term Analysis 

Clinical Cyto Molecular 

WBC PS Bl_bm Hb Plts Exm 
 (High risk group 

genes) 
Flt3/ITD Flt3/D835 

 

2.3.5 Discussion 

Observing the classification results (Tables 2.7 and 2.8) we can clearly see that LS-SVM 

performs slightly better than the SVM classifier in both Short and Long Term Analyses.  

As far as it concerns the optimal features identified (Table 2.9), the 5 clinical factors WBC, 

PS, Plts, Bl_bm and Exm were found to have a significant impact on both Short and Long 

Term classification outcome. In particular, the discriminative potential of WBC is greater in 

Short Term than in Long Term and that is because WBC is strongly associated with 

Resistance and Induction Death.  On the other hand the Hb feature appears as less 

important.  

Finally the contribution of Cytogenetics (especially those genes involved in the High risk 

group) has been crucial. Among the two molecular biology features, Flt3/ITD, Flt3/D385 the 

Flt3/ITD feature improves the classification outcome in the Short Term Analysis. 

 

 

2.3.6 Conclusions 

This study exhibits the necessity to involve modern pattern recognition methods for the 

evaluation of the therapeutic protocols applied today on aggressive blood cancers, such as 

Acute Myeloid Leukemia.  

Based on the well known GIMEMA LAM-99 protocol, modern classifiers such as SVM and 

LS-SVM, widely adopted for binary classification problems, have been proved to be an 

effective tool for diagnostic and treatment purposes. Their potential to identify optimal sets of 

clinical, cytogenetic and molecular features that can be used to decide whether an AML 

patient has been benefitted from specific treatments is a key issue.  

Furthermore, such supervised classification methods can be enriched in order to be used 

in the investigation of the behaviour of other types of solid tumors such as brain gliomas and 

meningiomas, as we will see at Chapters 3, 4 and 5. 
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3.1 Introduction: The Promise of Metabolomics 

Metabolism, (which comes from the Greek word ‘metabolismos’), is the set of biochemical 

reactions that occur in living organisms to maintain life. These processes allow organisms to 

grow and reproduce, maintain their structures, and respond to their environments. Metabolism 

is distinguished to anabolism and catabolism (the build-up and breakdown of substances, 

respectively). The biochemical reactions in the human body form a metabolic network or map 

consisting of metabolic pathways which involve enzymes that either breaking down or building 

up a new chemical substance. The human’s body metabolic map is shown in Figure 3.1 

[Internet Source: Wikipedia]. 

Enzymes, are a type of proteins that catalyze i.e. increase the rates of chemical reactions. 

For example, enzymes in our digestive system break the food elements down into sugars and 

acids which consists our body's fuel or energy. Our body can use this energy right away, or it 

can store it in our body tissues, such as our liver, muscles and body fat [Kell D.B. 2004]. 

Enzymes are crucial to metabolism because they allow organisms to drive desirable 

reactions that require energy. Enzymes also allow the regulation of metabolic pathways in 

response to changes in the cell's environment or signals from other cells. An example of a 

metabolic pathway, crucial for life maintenance, is the cellular respiration or cell’s breathing 

pathway, shown in the center of Figure 3.1. This concept is analytically described in fourth 

chapter. 

The main advantage of studying the metabolome of a living organism can be revealed 

through a better clarification of the difference between the genome, proteome and 

metabolome. As mentioned in first chapter too, the genome is the complete genetic sequence 

of an organism and also the blueprint for its cellular proteome, since proteome is the full set of 

proteins produced by a particular genome.  

The genome of an organism is essentially static. The instructions for making all of an 

organism’s cellular proteins are always there. It only changes when a genetic mutation 

occurs. Genes will be expressed to make proteins only when the organism or better its cells, 

require them. In contrast to genome the proteome continually changes in response to external 

and internal events.  
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Figure 3.1 – The metabolic map of the human. The metabolic pathway of the cellular 

respiration is presented in the middle. The aerobic respiration (green pathway) and the 

anaerobic respiration (blue pathway) are the two main processes of cell’s breathing – [Internet 

Source: Encognitive] 

 

On the other hand, metabolome is the complete set of the metabolites produced by a 

single organism. Metabolites are endogenous small-molecule substances produced by the 

biochemical reactions of metabolism necessary for the cells of a living organism. In other 

words metabolites are the products of metabolism [Internet Source: Wikipedia]. 

Like the proteome, the metabolome is closely tied to an organism’s genome, but is also 

influenced by the genes which are expressed as well as materials that the cell can obtain 

from its environment, for example glucose through food. The study of metabolome enables 

experts to look at the relationship between an organism’s genotype (genetic makeup) and 

phenotype (physical observable characteristics) and also the relationship between its 

genotype and environment [Dunn W.B. et al 2005]. 

Metabolomics, one of the “omics” in systems biology, is the study of metabolism. More 

specifically it is the global assessment and validation of metabolites within a biologic system. 

With the advent of bioinformatics that are capable of detecting and interpreting globally the 

metabolites present in a biological system, biochemistry has re-emerged as a primary tool for 

research and discovery.  

Another advantage of the study metabolome comes from the fact that the number of 

metabolites in human body is significant smaller than the number of genes, as shown in 
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Figure 3.2. [Internet Sources: Kyoto Encyclopedia of Genes and Genome – Human 

Metabolome Database – Expasy – The Comprehensive Enzyme Information System]. 

Therefore the statistical methods applied on metabolome for diagnostic, prognostic and 

treatment purposes can be implemented easier and quicker due to lower dimensionality.  

 

Figure 3.2 – The pyramid of life, from genomics to metabolomics – [Internet Sources: 

Medscape – Wikimedia - US National Institute of Health] - (The figure was designed with 

Adobe Photoshop ver. CS5) 

 

Due to the dominating influence of genomic, transcriptomic and proteomic technologies on 

modern biological research, it is natural for research groups to approach this new field of 

metabolomics from a topdown point of view (i.e. gene–transcript–protein–metabolite), as 

explained in first chapter.  

Although the term of “metabolic profile” was first introduced by Horning et al in 1971, the 

concept that all individuals have a metabolic profile or pattern was informally introduced by 

Roger Williams in the late 1940s that used paper chromatography to suggest characteristic 

metabolic patterns in urine and saliva were associated with diseases such as schizophrenia. 

However, it was only through technological advancements in the 1970s that it became 

feasible to quantitatively measure metabolic profiles [Gates S.C. et al 1978].  

Among the latest technologies, such as Mass Spectroscopy (MS) and Nuclear Magnetic 

Resonance (NMR) Spectroscopy, developed to monitor the metabolic profile of a human 

tissue or organ, NMR promises to revolutionize the way clinicians examine diseases, such as 

brain cancer. Today, Magnetic Resonance Imaging (MRI), based on the principles of the 

NMR technology, has become a sophisticated and powerful analytical technology that has 

found a variety of applications in many disciplines of scientific research, medicine and various 

industries.  
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Recent clinical applications [Internet Source: World of Teaching, Banu H.B] involve NMR 

in diagnosis and drug development for diseases arising in:  

• Brain (for detection and discrimination of tumors, hemorrhages, infarctions) 

• Muscular skeletal system (for demonstration of Osteomyelitis, tumor metastasis in bones 

and imaging of muscles, tendons and ligaments) 

• Heart (for tomographic imaging of heart muscle, chambers and vascular structures) 

• Breast (for detecting breast abnormalities)  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



 

 67 

  THE ROLE OF METABOLOMICS & 
1
H (PROTON) MAGNETIC RESONANCE SPECTROSCOPY IN  

  BRAIN CANCER MANAGEMENT: the diagnostic potential of different MRS systems                                           
 

3.2 Fundamentals of the MRI 
 
3.2.1 The operation of an MRI scanner 

An MRI scan is a radiology technique that uses magnetism, radio waves (oscillating 

electromagnetic fields), and a computer to produce images of body parts/organs, such as the 

brain, as illustrated in Figure 3.3. The technique is now called magnetic resonance imaging 

(MRI) rather than nuclear magnetic resonance imaging (NMRI) because of the negative 

connotations associated with the word ‘nuclear’ [Rochester Institute of Technology, Hornak 

J.B]. 

The basic stages of an MRI scanning are simple. First the patient is placed in a strong 

constant magnetic field and is surrounded by several coils. Radiofrequency (RF) radiation is 

then applied to the system, causing certain atoms within the patient’s body to resonate. When 

the RF radiation is turned off, the atoms continue to resonate. Eventually, the resonating 

atoms return (relax) to their natural state and emit a radiofrequency radiation that is the NMR 

signal.  This radiation is picked up by the radiofrequency coils transforming it into electrical 

current which is then processed through a computer and converted into a visual image of 

patient.  

The image and resolution produced by MRI is quite detailed and can detect tiny changes 

of structures within the body. For some procedures though, contrast agents, such as 

gadolinium (Gd), are used to increase the accuracy of the images.  

Generally, an MR system consists of the following components:  

• a large magnet to generate the magnetic field,  

• a radiofrequency (RF) coil to transmit a radio signal into the body part being imaged and a 

receiver coil to detect the returning radio signals,  

• gradient coils to provide spatial localization of the signals, and  

• a computer to reconstruct the radio signals into the final image. 

[University of California - Center for Functional MRI, Hesselink J.R] 

 

 

Figure 3.3 – The components in a typical MRI system and the brain MR images obtained - 

[Internet Sources: NASA– Mark’s Psychiatry] - (The figure was designed with Adobe 

Photoshop ver.CS5) 
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3.2.2 The magnetic property of atoms 

The operation of the MRI technique is based on the magnetic property of the atomic 

nuclei, especially the hydrogen (H) nuclei, existing within our body tissues.  

It is widely known in Physics that all matter is composed of molecules, which in turn are 

composed of atoms. These atoms are constituted of a positively charged nucleus, made up of 

protons and neutrons, surrounded by negatively charged electrons, as depicted in Figure 3.4.  

 

 

Figure 3.4 – The atomic structure - [Internet Source: PF Science] - (The figure was designed 

with Adobe Photoshop ver.CS5) 

 
All elements containing an odd number of protons or neutrons, such as hydrogen, have an 

inherent net spin, so they possess an angular momentum. Due to the fact they are charged 

particles, spinning nuclei generate a small magnetic field. In other words they behave like tiny 

magnets. In Physics this small magnetic field is called the nuclear magnetic moment. These 

nuclei are usually arranged in a completely random orientation. When placed in a magnetic 

field such that in an MRI scanner, the nuclei (and so their protons) are forced to align with the 

applied magnetic field like a compass needle aligns with the Earth's magnetic field, as shown 

in Figure 3.5 [Internet Source: Queensland Diagnostic Imaging]. The magnetization of the 

hydrogen’s nuclei which causes the alignment of the protons is fundamental property in 

today’s MRI technology as explained next.  

 



 

 69 

  THE ROLE OF METABOLOMICS & 
1
H (PROTON) MAGNETIC RESONANCE SPECTROSCOPY IN  

  BRAIN CANCER MANAGEMENT: the diagnostic potential of different MRS systems                                           
 

 

Figure 3.5 – A proton spinning about its own axis creates a magnetic charge similar to a bar 

magnet – [Internet Source: Wikidoc, Chao C.] - (The figure was designed with Adobe 

Photoshop ver.CS5) 

 

3.2.3 The (proton) or 1H-MRI 

Hydrogen is a common element in nature and in human tissues due to its presence in 

water. Hydrogen is approximately 70% abundant in our body. For this reason but also 

because hydrogen nucleus contains only one proton, we use only the hydrogen proton in 

today’s routine clinical imaging. Due to this fact the current MRI systems are called proton or 

1
H-MRI.  

When the body is placed in an MRI scanner of magnetic field 0B , the spinning protons of 

the hydrogen atoms, although arranged in random orientation (Figure 3.6(A)), will largely align 

along or against the field (Figure 3.6(B)). In addition to aligning with 0B , the protons will 

precess at some frequency called the "Larmor frequency" 0ω , Eq. (1), as shown in Figure 

3.6(C). This results in a net magnetization M  of the tissue, the magnitude of which is 

proportional to the magnitude of the external magnetic field 0B . 

 

Figure 3.6 – A) The protons with random orientation – B,C) The protons are aligned to the 

external magnetic field B0 and also precess about the axis of the magnetic field B0 in a path of 

a cone – [Internet Source: Wikidoc, Chao C.] - (The figure was designed with Adobe 

Photoshop ver.CS5) 
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This phenomenon, called nuclear magnetic resonance (NMR), only occurs at the Larmor 

frequency, corresponding to the specific strength of the magnetic field. The Larmor equation 

tells us that the precessional frequency (or the rate of rotation about 0B ) is equal to the 

strength of the external static magnetic field 0B  multiplied by the gyromagnetic ratio γ  (ratio 

of proton’s magnetic moment to its angular momentum). Increasing 0B  will increase the 

precessional frequency and conversely, decreasing 0B  will decrease the precessional 

frequency.  

γω ⋅= 00 B                                                          (1) 

 

Then a radiofrequency pulse (which is actually a new magnetic field 1B ) is transmitted 

onto a patient, being inside an MRI magnet, perpendicular to the direction of 0B . At that 

moment the hydrogen nuclei protons begin to spin 'in phase' with one another. In other words 

all the tiny bar magnets begin spinning together, pointing in the same direction. When the 

radiowave’s frequency becomes equal to the Larmor frequency the hydrogen nuclei protons 

will absorb the maximum energy and excite.  

The radiofrequency pulse is then switched off. The hydrogen nuclei protons spinning 

together in phase start losing their absorbed energy producing a radiowave signal of their own 

which is picked up by receiver coils placed around the patient. The generation of this signal is 

based on the well known Faraday’s law of electromagnetism. The received signal, initially in 

time domain is then transformed (Fourier Transformation) to a signal in the frequency domain. 

This signal is composed of multiple frequencies, reflecting different positions along the 

magnetic field gradient. When the signal is broken into its component frequencies, the 

magnitude of the signal at each frequency is proportional to the hydrogen density at that 

location, thus allowing an image to be constructed [Internet Source: E-Radiography, Bradley 

W.G.]. Thus, spatial information in MRI is contained in the frequency of the signal. By using 

multiple pulse sequences and by varying the applied magnetic field strength by using 

'gradient coils' an image can be created in two or three dimensions. A more detailed 

explanation of how the MR images are created is given next. 

 

3.2.4 Creation of the MR images 

As mentioned, the NMR signal is produced from the emitted energy absorbed by the 

hydrogen nuclei when the transmitted RF pulses (also called 1B  magnetic field), onto the 

tissue under examination, are turned off. The gradual release (decay) of their energy forces 

them to relax back to their initial state at specific relaxation rates. The initial signal produced is 

referred to as the Free Induction Decay (FID). 

The size of the signal depends largely on four parameters. The first of these is proton 

density or in other words, the number of hydrogen nuclei per unit volume. It is self evident that 
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a magnetic resonance image will reflect the density of hydrogen in the section being 

displayed. The three other parameters are the spin-lattice (T1) and spin-spin (T2) relaxation 

times and the motion of protons [Armstrong P. et al 1991].  

T1 and T2 relaxation times depend on the physicochemical environment of the hydrogen 

protons. They actually reflect the rate at which the excited protons lose energy (their rate of 

relaxation). Protons lose energy by a variety of mechanisms, resulting in changes in the 

intensity of the signal that they produce. Every magnetic resonance image contains both T1 

and T2 information, but by appropriate choice of the timing and length (scanning parameters) 

of the radiofrequency pulses ( 1B ) the image can be weighted to depend mainly on one or 

other of these relaxation times or to represent mainly proton density.  

A T1 relaxation (or longitudinal T1) curve represents the time at which the excited protons 

realign with the initial magnetic field 0B  ( Z axis) when the 1B  RF field (perpendicular to 0B ) 

is turned off (Figure 3.7(A-D)). This curve is exponential in form, and the number T1 

represents the time in milliseconds it takes for 63% of the magnetisation due to the excited 

protons to realign with the field, as shown in Figure 3.7(E). In images of complex structures 

such as the brain there are, of course, many different tissues, each with its own individual T1 

curve. Differences in gray-scale in the final image reflect the difference between the heights of 

the T1 curves. These differences in signal intensity are referred to as T1 contrast [Armstrong 

P. et al 1991]. 

T2 relaxation (or transverse T2) time reflects the rate of signal decay along the XY plane 

due to dephasing of the spinning protons, as shown in Figure 3.8(A-D). Once the pulse is 

switched off the protons start to dephase, and the rate at which they dephase is characterised 

by a time known as T2, representing the time it takes for 37% (100%-63%) of the 

magnetisation due to the spinning protons to decay due to dephasing, as shown in Figure 

3.8(E). The contrast due to T2 decay in the final image depends on the difference in 

magnitude of the T2 curve at the point in time when the signal is collected [Armstrong P. et al 

1991]. 

 

 



 

 72 

  THE ROLE OF METABOLOMICS & 
1
H (PROTON) MAGNETIC RESONANCE SPECTROSCOPY IN  

  BRAIN CANCER MANAGEMENT: the diagnostic potential of different MRS systems                                           
 

 

Figure 3.7 – A to D) The excited protons gradually relax to their initial magnetization B0 along 

the Z axis after the RF B1 field is switched off - E) The T1 time curve which reflects this 

gradual relaxation in two different tissues – [Internet Sources: Wikibooks – Imaios] - (The 

figure was designed with Adobe Photoshop ver.CS5) 

 

 

Figure 3.8 – A to D) The excited protons gradually dephase along the XY plane when the RF 

B1 field is switched off - E) The T2 curve which reflects this gradual dephasing time in two 

different tissues - [Internet Sources: Wikibooks – Imaios] - (The figure was designed with 

Adobe Photoshop ver.CS5) 

 
Different types of tissues will exhibit different T1 and T2 values, as shown in Figures 3.7(E) 

and 3.8(E). For example, the gray matter in the brain has a different T1 and T2 value than 

blood. Using the T1, T2 and proton density values, a highly resolved image can be 

constructed. 

The proton density (PD) image is an image produced by controlling the selection of 

scanning parameters to minimize the effects of T1 and T2. This results in an image 

dependent primarily on the density of protons in the imaging volume. Proton density contrast 
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is a quantitative summary of the number of protons per unit tissue. The higher the number of 

protons in a given unit of tissue the brighter the signal on the proton density contrast image. 

Conversely, the lower the number of protons in a given unit of tissue the darker the signal on 

the proton density image [Internet Source: Magnetic Resonance – Technology Information 

Portal]. 

Finally as mentioned, in some cases contrast agents are used to improve the magnetic 

resonance images obtained. Such an agent is the Gadolinium (Gd) also called 

diethylenetriaminepenta-acetic acid (DTPA) which is commonly used to alter the signal 

intensity of the organ examined. This contrast medium is either injected into the patient’s vein 

or drunk by the patient. Although the use of gadolinium contrast agent provides better imaging 

result its application is not always possible. For example it is not appropriate to patients that 

face cardiovascular problems. Figure 3.9 illustrates the four images usually acquired during 

an MRI scanning procedure. In Figure 3.9(C) the borders of the main tumor area and also a 

new smaller tumor are clearly detected due to the use of gadolinium contrast agent. 

 

 

Figure 3.9 - Axial MR of a patient with glioblastoma multiforme. A) Proton density (PD) image, 

B) T2-weighted image, C) T1 with Gd contrast enhancement and D) T1-weighted image – 

[Internet Source: Michigan State University (Radiology)] 

 
The fact that the potential information derived from the MRI signal is based on four 

parameters whereas that obtained from the computed tomography (CT) depends only on two 

(the number of atoms in a given volume and the atomic number of these atoms) renders the 

MRI technique more reliable in diagnosis, prognosis and treatment stages. Figure 3.10 below 

shows the contrast difference between two images of a glioma tumor obtained with CT (A) 

and MRI (B) scanning techniques respectively. As it can be observed the tumor area is much 

clearer in MRI image than in CT image.  
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Figure 3.10 – A) A brain glioma tumor image obtained with a CT scanner B) An MRI T1-

weighted image obtained from the same region – [Internet Source: Haodf] 

 

3.2.5 Basic MRI scanning parameters 

The biggest and most important component of an MRI system is the magnet. Although it is 

believed that strengthening the magnet will provide better quality MR images due to increased 

Signal-to-Noise Ratio (SNR), this is not always the case as we can see at section 3.4.The 

strength of a magnet in an MRI system is rated using a unit of measure known as a Tesla. 

Another unit of measure commonly used with magnets is the Gauss (1 Tesla = 10,000 

Gauss). The magnets in use today in MRI systems create a magnetic field of 0.5-tesla to 7.0-

tesla, or 5,000 to 70,000 gauss. To realize how powerful these magnets are we can just say 

that the Earth's magnetic field measures are 0.5 Gauss, we can understand how powerful 

these magnets are [Internet Source: How MRI Works]. 

Inside the main magnet there are three gradient coils located, which produce the desired 

gradient (magnetic) fields. These fields are used to alter the influence of the static magnetic 

field 0B  on the imaged object by increasing or decreasing the field strength and changing the 

direction.  

Apart form the magnet selection, other scanning parameters (sequence, timing and 

imaging parameters) must be adjusted in order to acquire the best possible MR images of the 

tissue under examination.  

The most significant one is the RF pulse sequence (magnetic field 1B ) which will be 

transmitted on the tissue to excite its hydrogen nuclei. A pulse sequence is a preselected set 

of defined RF and gradient pulses usually repeated many times during a scan, wherein the 

time interval between pulses and the amplitude and shape of the gradient waveforms will 

control NMR signal reception and affect the characteristics of the MR images. Three different 

types of pulse sequences can be applied in an MRI system. These are the Gradient-Echo 

(GE), the Spin-Echo (SE) and the Inversion Recovery (IR) sequences. The most common is 

the Gradient-Echo sequence which is the simplest too. 

Along with the RF pulse sequence applied two timing parameters are also adjusted. The 

first timing parameter is called Repetition Time (TR) and the second one is called Echo Time 
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(TE). TR is the amount of time that exists between successive pulse sequences applied to the 

same region of the tissue (slice). It is delineated by initiating the first RF pulse of the 

sequence then repeating the same RF pulse at a time t. Variations in the value of TR have an 

important effect on the control of image contrast characteristics. Short values of TR (< 1000 

ms) are common in images exhibiting T1 contrast, and long values of TR (> 1500 ms) are 

common in images exhibiting T2 contrast. TE is time represents the time in milliseconds 

between the application of the 90° pulse and the peak of the echo signal. In MRI, an echo is 

the emission of energy in form of an electromagnetic resonance signal of a nucleus after its 

excitation. At this point spins are back in phase again and the signal is measured. The 

desired number of echoes is selectable. As in TR both short (usual 20ms to 35ms) and long 

echo (usual 135ms to 290ms) times are used in MR image acquisition process. Selection of 

either short or long has a significant impact on the MR images obtained. More specifically 

long TE signals contain fewer components and are easier to process. However, they also 

provide limited information and are therefore restrictive in diagnosing some patient diseases. 

Hence, there is a growing interest for the processing of short echo time signals. Furthermore, 

in the case of the MRS signals, where the metabolic profile of the tissue is examined, 

analyzed in next sections, more metabolite information is contained in short echo time MRS 

signals. However they are also much more difficult to process. 

Finally some additional imaging parameters must be determined such as the number of 

acquisitions or excitations (NEX), the field of view (FOV), the slice thickness and the MR 

image resolution (number of pixels). NEX is the number of times a sequence is repeated. The 

data is averaged together to create a single image with better SNR. Too many acquisitions 

can lead to long acquisition times and worse motion artifacts (noise) with a smaller than 

expected gain in SNR. The FOV specifies the area from which the MR signals are accurately 

sampled [Internet Source: Magnetic Resonance - Technology Information Portal]. An attempt 

to summarize the MRI parameters is given in Table 3.1 below.  

 

Table 3.1 – Basic MRI scanning parameters 

Parameters Types or measurement units 

Magnet’s strength Tesla (from 0.5 to even 7.0) 

RF pulse sequences Gradient-echo, Spin-echo, Inversion recovery 

TR (Repetition time) ms (short<1000ms and long>1500ms) 

TE (Echo time) ms (short: 20 to 35ms and long: 135 to 290ms) 

NEX (no of excitations) Integer number 

FOV (Field of view) mm 

Slice thickness mm 

MR image resolution  pixels 
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When the Inversion recovery pulse sequence is used in the MRI, a new image can be 

obtained named Fluid Attenuated Inversion Recovery (FLAIR) image along with the 

conventional T1-weighted, T2-weighted, PD and Gd MR images. FLAIR is a special type of 

T1-wieghted image where any fluids, existing in the tissue under examination, can be 

eliminated. For example it can be used in brain imaging to suppress the cerebrospinal fluid 

(CSF) so as to bring out a better contrast of the interested regions of the tissue, such as 

tumor’s borders, as shown in Figure 3.11. 

 

 
 
Figure 3.11 – A) A T1-weighted brain glioma MR image B) A FLAIR MR image of the same 

region – [Source: Heina P.A. et al 2004] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 77 

  THE ROLE OF METABOLOMICS & 
1
H (PROTON) MAGNETIC RESONANCE SPECTROSCOPY IN  

  BRAIN CANCER MANAGEMENT: the diagnostic potential of different MRS systems                                           
 

3.3 From MRI to MRS 
 

3.3.1 What is the MR spectroscopy? 

Nowadays MRI is often used for clinical diagnosis of brain tumours due to its high spatial 

resolution and signal-to-noise ratio of the images. This technique provides the clinician with 

high resolution images on which most tissue types and their morphology are clearly 

displayed. However, even with the precise morphologic information, it is not always able to 

distinguish between different tumour types or to indicate the spatial extent of the tumour 

[Devos A. et al 2004]. 

A step beyond the MRI technique is the Magnetic Resonance Spectroscopy (MRS) 

technique which can be performed on the same MR scanner. MRS provides chemical 

information of specific molecules (metabolites) present in living tissue (in vivo) and has the 

potential to facilitate the characterization of tissue and in particular of human brain tumours 

[Nelson S.J. 2003 – Smith I.C.P. et al 2002]. 

Although both MRI and MRS are based on the same principles in Physics, i.e. the 

magnetic resonance of the hydrogen nuclei protons (
1
H-MRI and 

1
H-MRS), the MRS can go a 

step further by revealing the chemical behaviour of significant metabolites whereas MRI focus 

only on the hydrogen molecules existing in the water within the tissue which is under 

examination. More specifically, MRS obtains resonance signals from molecules in the tissue 

and cells, whereas MRI obtains resonance signals limited to intracellular and extracellular 

water [Cousins J.P. 1995]. 

As it is already known from previous sections, the signal from an MR procedure can be 

displayed either as a function of frequency (a spectrum) or converted from signal intensities to 

gray-scale values. In contrast to MRI where the evaluation of the resulted gray-scale images 

is mostly followed for diagnostic purposes, the MRS technique stands on the spectra obtained 

during the MR scanning process. In other words it is the spectra obtained from the tissue 

where the MRS focuses on. 

 

3.3.2 MRS data acquisition 

In MR spectroscopy, the strength of the MR signal obtained is proportional to the number 

of protons of the nuclei of the different molecules existing within the tissue under examination. 

For example in a brain tumor tissue there are many different molecules that contain different 

number of protons which resonate at different frequencies. Therefore the intensity of the 

signal at a specific frequency is proportional to the number of protons at that frequency. In 

other words, rather than displaying MRI proton signals on a gray scale as an image 

depending on its relative signal strength, MRS displays the quantities as a spectrum. 

Once an MR image is obtained as a localizer image, a volume of interest (VOI) is selected. 

In order to acquire the spectra needed to evaluate a disease, such as a brain tumor, the 

radiologist is provided with two spectroscopic methods. These are the Single Voxel 
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Spectroscopy (SVS) and the Magnetic Resonance Spectroscopic Imaging (MRSI) also called 

as Chemical Shift Imaging (CSI) which is a multivoxel spectroscopic imaging. Figure 3.12 

shows these two different approaches [De Seze J. et al 2010]. 

SVS acquires one signal from a certain volume element (voxel), while MRSI acquires 

simultaneously signals from a two dimensional grid of voxels. In contrast to SVS, MRSI can 

facilitate the identification of heterogeneity of a tumourous region, since spatial variations of 

the tissue characteristics can be assessed at metabolite level. For each of the voxels, the 

intensity of the biochemically relevant metabolites can be determined [Devos A. et al 2004]. 

As mentioned, the spectrum or spectra collected with the SVS or MRSI are based on the 

amount of protons in the voxel(s). The proton signals are detected and represented as a Free 

Induction Decay (FID). A Fourier transform is applied to the FID, converting the temporal 

information into frequency information. The resonant frequency is then plotted versus signal 

intensity on a spectrum, instead of the typical gray-scale image as is done in MRI [Wirt M.D. 

2003].  

Therefore a spectrum is the Fourier-transformed information obtained from an MR 

spectroscopy study. It is presented as a series of peaks along an axis labelled in Hertz (Hz) or 

parts per million (ppm). The ppm scale describes the chemical shift in Hertz from a reference 

peak divided by the frequency of excitation [Cousins J.P. 1995]. 

 

Figure 3.12 – A) The multivoxel (MRSI) technique and the grid of voxels. The inner grid 

shows the volume of interest (VOI) B) The single voxel (SVS) technique C) The spectrum 

acquired showing the main metabolites measured in the brain and the area under the peak of 

Lactate - [Source: De Seze J. et al 2010] - (The figure was designed with Adobe Photoshop 

ver.CS5) 
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3.3.2.1 1H-MRS pulse sequences 

The pulse sequences used in the 
1
H-MRS process are basically two. These are the 

Stimulated Echo Acquisition Mode (STEAM) and the Point Resolved Spectroscopy (PRESS) 

[Bottomley P.A. 1987 – Frahm J. 1987]. Nowadays these sequences can be found on most 

MR systems in both SVS and MRSI techniques. Both STEAM and PRESS have their 

advantages and limitations. Most MR studies use the STEAM sequence due to the fact that it 

is easier to use, it provides excellent voxel selection and can use shorter echo time (TE) 

values than PRESS which allows the observation of more metabolites in the spectra, as 

shown in Figure 3.13. Another useful characteristic of STEAM is the use of 90
o
 RF pulses for 

slice selection whereas PRESS uses 180
o
 RF pulses which are more difficult to implement. A 

disadvantage of STEAM though is the fact that it provides half the theoretical signal-to-noise 

ratio than PRESS [Cousins J.P. 1995]. 

 

 

Figure 3.13 - Proton magnetic resonance spectroscopy in a normal patient.  A) STEAM 

technique with short echo (35 ms) demonstrates normal Choline (Cho), Creatine (Cr), N-

acetyl aspartate (NAA), and Myo-Inositol (mI) peaks.  B) PRESS technique with a long echo 

(288 ms) in the same location demonstrates only Choline, Creatine, and NAA peaks.  Due to 

the long echo time, the Myo-Inositol peak is not seen with PRESS – [Internet Source: Barrow 

Neurological Institute, Bohnert B.J.] 

 

3.3.3 Significant brain metabolites 

The most significant brain metabolites containing protons that can be measured during the 

MRS procedure are shown in Table 3.2 and in Figure 3.12(C).  

N-acetyl aspartate (NAA) is a neuronal metabolite i.e. it is considered to be present only in 

neurons and dendrites and is reduced in brain tumors such as gliomas. Creatine (Cre) is an 

energy reservoir and is decreased in brain tumors. Choline (Cho), increased in tumors, is 

associated with glial cell membrane integrity. Glutamate (Glu1), Glutamine (Glu2) and/or Glx 

(Glu1/Glu2) are important in neurotransmission and are usually found increased in low grade 
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brain tumors. Myo-Inositol (mI) is important in cell growth and is possibly a glial cell marker 

which is increased in low grade brain tumors. Alanine (Ala) is elevated mostly in meningial 

tumors. Finally Lactate (Lac) is an indicative of anaerobic metabolism (explained in Chapter 

5) and Lips (lipids) are fatty acids existing in the brain all increased in brain tumors [Drost D.J. 

et al 2002 – Howe F.A. et al 2003(a) – Heerschap A. 2007]. 

 
Table 3.2 – The main brain metabolites measured in MRS along with their proton numbers 

Metabolite’s name and 

abbreviation 

Number of 

hydrogen protons 

Resonance frequencies in 

descending order 

Glutamate (Glu1) 1 3.75 ppm (and in 2.20 to 2.40 ppm) 

myo-Inositol (mI) 4 3.56 ppm 

Glutamate/Glutamine (Glx) 1/2 3.44 ppm (and in 2.2 to 2.4 ppm) 

Choline (Cho) 9 3.20 ppm 

Creatine (Cre) 3 3.02 ppm 

Glutamine (Glu2) 2 2.20 ppm (and in 3.75 ppm) 

N-acetyl-aspartate (NAA) 3 2.02 ppm 

Alanine (Ala) 3 1.48 ppm 

Lactate (Lac) 3 1.33 ppm 

Lips (mobile lipids)  5 (in total) 1.30 and 0.90 ppm 

[Source: Govindaraju V. et al 2000] - ppm stands for parts per millions of frequency 

 

3.3.4 Clinical and preclinical interpretation of MRS data 

Today most of the 
1
H-MRS systems’ manufactures provide the MRS equipment embedded 

within the MR scanner facilitating the clinicians to investigate the biochemical/metabolic 

behaviour of brain tumors such as gliomas, meningiomas etc.  

More specifically, clinicians and especially neurosurgeons are now able to combine the 

spectroscopic (MRS) and the MR imaging (MRI) information in order to decide the therapeutic 

protocol they have to follow. 

At clinical diagnosis stage the combination of the MRI and MRS enables neurosurgeons to 

clearly identify the morphology, borders, type, grade and trend to infiltrate of the brain tumor. 

Based on this information they can decide whether they will proceed with a biopsy or directly 

plan a radiotherapy and/or surgery. Especially at this phase the MRS can be a significant tool 

since the true extent of the tumor tissue, not shown in conventional MRI, can be identified and 

possibly removed. 

At preclinical stage biologists, bioinformaticians and radiologists join their efforts to provide 

clinicians with further information which will enrich their ‘medical pharetra’ with new tools to 
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fight this lethal disease. Towards this direction pattern recognition methods (supervised and 

unsupervised classification, feature selection etc) are applied on MRS data. The MRS data 

interpretation requires the application of state of the art pattern recognition methods in order 

to statistically validate the spectral information acquired and identify new sets of metabolic 

features (markers) which will enable experts to reveal new types, sub-types and metabolic 

profiles of brain tumors.  

The steps followed to evaluate the diagnostic value of the MRS data obtained are 

described in Figure 3.14. A study which introduces pattern recognition methods to reveal the 

strengths and weaknesses of the spectroscopic data obtained from two different MRS 

systems (1.5Tesla and 3Tesla) used for brain tumor diagnostic purposes follows. 

In Chapters 4 and 5, two more studies are presented showing the potential of modern 

feature selection and classification methods on metabolic and genomic brain tumor data. 

 

 

Figure 3.14 – Application of pattern recognition methods on MRS data.  A) MRS application 

and voxel selection B) Spectra acquisition C) Quantification of spectral data D) Significant 

feature selection and E) Classification accuracy estimation (Note: the double arrow here 

denotes that feature selection can also be embedded within the classification process) -  

[Internet Sources: Griff Wason – Computer Science Source – Cybaea] - (The figure was 

designed with Adobe Photoshop ver.CS5) 
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3.4 Strengths and Weaknesses of 1.5T and 3T MRS  
      Data in Brain Glioma Classification 
 

3.4.1 Abstract 

Although Magnetic Resonance Spectroscopy (MRS) methods of 1.5Tesla (T) and 3T have 

been widely applied during the last decade for non-invasive diagnostic purposes, only a few 

studies have been reported on the value of the information extracted in brain cancer 

discrimination. The purpose of this study is threefold. First, to show that the diagnostic value 

of the information extracted from two different MRS scanners of 1.5T and 3T, is significantly 

influenced in terms of brain gliomas discrimination. Second, to statistically evaluate the 

discriminative potential of publicly known metabolic ratio markers, obtained from these two 

types of scanners in classifying low, intermediate and high grade gliomas. Finally to, examine 

the diagnostic value of new metabolic ratios in the discrimination of complex glioma cases 

where the diagnosis is both challenging and critical.  

Our analysis has shown that although the information extracted from 3T MRS scanner is 

expected to provide better brain gliomas discrimination, some factors like the features 

selected, the pulse-sequence parameters and the spectroscopic data acquisition methods, 

can influence the discrimination efficiency. Finally, it is shown that apart from the 

bibliographical known, new metabolic ratio features such as NAA/S, Cho/S, Cr/S and mI/S, 

play significant role in gliomas grade discrimination. 
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3.4.2 Introduction 

Proton Magnetic Resonance Spectroscopy (
1
H MRS) is a non-invasive technique that 

plays an important role in determining most brain tumor types and grade, as well as in 

monitoring disease progression and response to therapy [Howe F.A. et al 2003(a) - Moller-

Hartmann W. et al 2002 - Majos C. et al 2004 - Devos A. et al 2004 - Callot V. et al 2008]. For 

these purposes it provides metabolic information such as cell proliferation and degradation, 

energy metabolism, neuronal integrity and necrotic transformation. It complements the 

anatomic information obtained with magnetic resonance imaging (MRI), computer 

tomography (CT) and angiography. One of the key issues in brain tumor discrimination 

though, is the diagnostic value of the information extracted from the MRS scanner which is 

influenced by several factors presented below. 

With the advent and proliferation of strengthen MRS scanners, like a 3T one, into clinical 

practice, researchers have been motivated to examine whether a benefit to MRS can be 

achieved over those of 1.5T [Gonen O. et al 2001 - Kim J.H. et al 2006(a) - Tanenbaum L.A. 

et al 2005 - Kim J.H. et al 2006(b)]. The ability to scan with strength of 3T has multiple 

potential benefits. In theory, the signal-to-noise ratio (SNR) and chemical dispersion are 

almost doubled at 3T. The former improves spatial resolution, while the latter increases 

spectral resolution. The gain in SNR can be used to either improve image quality or decrease 

the scan time in contrast to 1.5T imaging. Scanning with 3T MRI also provides an increase in 

spatial and temporal resolution. This results in the ability to perform smaller field of views 

(FOVs) and thinner slices as a result of almost double the SNR compared to 1.5T MRI. 

Therefore, higher magnetic fields enable physicians to improve the accuracy of diagnosis and 

treatment for a broad category of diseases related to brain tumors. Findings like these are 

reflected in Figure 3.15(A, B) where finest metabolite structures are achieved at 3T, for 

example in Lactate-Lipids (LL) and myo-Inositol (mI) regions depicted by arrows. 

Furthermore, broad resonance dephasing in 3T results in flatter baseline aiding the more 

reliable estimation of major metabolite peaks.  
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Figure 3.15 - A, B) Two spectra extracted from normal brain parenchyma at 3T and 1.5T 

respectively, using single-voxel technique. Note the improved spectral resolution of peaks 

such as mI and LL (Lactate and Lipids) (black arrows), better SNR and flatter baseline at 3T 

versus 1.5T. C, D) T2 FLAIR images (acquired at 3T) showing the position of voxel (gray 

square) placed in tumoral and peritumoral region respectively from a patient with glioblastoma 

multiforme. Spectra were acquired using intermediate TE =144ms, TR=1000ms and a voxel 

size of 225mm3. E) 1H-MRS in the tumoral region showing elevated Cho, Lac and lipid peaks 

and decreased NAA peak. F) 1H-MRS in the peritumoral region showing increased Cho, 

greater Lac and lipid peaks indicating tumor infiltration and greater decrease in the NAA peak 

than in tumoral region. The gray color transition inside and outside the tumoral area indicates 

Choline’s color map. The transition from light gray (outer region of tumor) to dark gray color 

(central region of tumor) corresponds to the transition from low to high Choline’s 

concentration 

 
However, radiologists familiar with 3T MRI have cited several limitations to the increased 

field strength, such as a greater amount of noise, imaging contrast issues, and safety 

concerns. Gradient noise increases with magnetic field strength ( 0B ), and gradient noise at 

3T can be twice that of 1.5T. This fact can lead to a fault determination of the grade and 

invasiveness of the tumor [Tanenbaum L.A. et al 2005 - Kim J.H. et al 2006(b)]. Lower-

strength magnets closer to 1.5T are preferred in order to overcome this problem. 

Furthermore, the pulse-sequence parameters like the echo time and repetition time (TE, TR 

respectively) and the spectroscopic data acquisition methods also affect the power of 

discrimination. 

Besides the MRS magnet strength to be used, another important aspect for efficient 

evaluation of tumour metabolic profiles and effective discrimination among tumour grades is 
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the selection of proper cerebral metabolites that can lead to both high classification rates and 

diagnostic confidence. By exploring the metabolic differences between grade I, grade II, 

grade III and grade IV of gliomas, it is inferred in [Fountas K.N. et al 2004] that grade I 

gliomas are characterized by a mild decrease of N-acetyl aspartate (NAA) and Creatine (Cr) 

and a mild increase of Choline (Cho).  However, grade II gliomas present significant 

metabolic overlapping with grade I subtype [Fountas K.N. et al 2004]. Similarly, it has been 

suggested that the values of all metabolite ratios including Cho/Cr and Lipids/Cr overlap 

among each grade, particularly between grade II and III and between grade III and IV [Kim 

J.H. et al 2006(a)]. For this reason, low grades (I and II), as well as intermediate and high 

grades (III and IV), are often grouped to one grade for each case due to discrimination 

inability [Kim J.H. et al 2006(a) - Meyerand M.E. et al 1999]. The differences among glioma 

subtypes can therefore be extremely subtle, hampering the potential to effectively distinguish 

contiguous glioma grades as presented in Figure 3.16, especially for cases of grade I and II. 

Meanwhile, the metabolic profile of the peritumoral region can give valuable information about 

tumour type and grade [Di Costanzo A. et al 2006 - Caprinelli G. et al 1996]. Both high Cho 

and low NAA peaks in peritumoral regions are more valuable indicators, compared with those 

in tumoral regions, for high-grade gliomas with poor prognosis.  

 

 

Figure 3.16 - 
1
H-MR spectra of different glioma grades at 3T: A) Low grade astrocytoma 

(grade I), B) Low grade astrocytoma (grade II), C) Anaplastic astrocytoma (grade III) and D) 

Glioblastoma multiforme (grade IV). The shaded area in (A) represents the window width 

selected for the integration of the peak areas and it is used only for presentation purposes in 

this figure 
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3.4.3 Main goals and achievements of the study 

Based on these observations, this study focuses on three main goals. The first is to reveal 

the diagnostic value of the data obtained from two different MRS scanners of 1.5T and 3T, in 

brain glioma discrimination [Kounelakis M.G. et al 2011 – Dimou I.N. et al 2011]. The second 

is to identify the statistical and biological significance of well known [Kounelakis M.G. et al 

2008 - Kounelakis M.G. et al 2009 - Howe F.A. et al 2003(b) - Ott D. et al 1993 - Kumar A. et 

al 2003 - Lehnhardt F.G. et al 2005 - Galanaud D. et al 2006 - Dimou I.N. et al 2009(a) - 

Dimou I.N. et al 2009(b) - Bulakbasi N. et al 2003 - Castillo M. et al 2000 - Likavcanová K. et 

al 2005] ratio-type metabolic features extracted from two different datasets of 1.5T and 3T, 

respectively. Finally, to evaluate the diagnostic value of new metabolic ratio markers 

stemming from recent published studies [Kounelakis M.G. et al 2008 - Kounelakis M.G. et al 

2009].  

The results of this study clearly emphasized the fact that despite the strength of the MR 

magnet applied, the spectral information obtained and therefore its discriminatory efficacy, is 

greatly influenced by several factors such as the volume of interest (VOI), the metabolic 

features selected from the spectra and also the pulse sequence parameters (TE, TR and 

acquisition methods) and noise. Furthermore this study identified four new metabolic markers 

significant in the classification of low (grade I and II), intermediate (grade III) and high grade 

(IV) gliomas. 

 

3.4.4 Materials and methods 

In order to compare the 1.5T and 3T MR scanners in terms of their discriminative ability, 

we analyze the information extracted from two different brain-glioma datasets. 

3.4.4.1 Multi-center patients’ demographics 

The first MRS dataset from University Medical Center Nijmegen (UMCN - the Netherlands) 

was acquired using a 1.5T MR scanner and involved 21 glioma patients. The second dataset 

from Larissa University Hospital (LUH - Greece) was obtained with a 3T MR scanner and 

included 43 glioma patients. Details on the brain-glioma patients from both datasets are 

shown in Table 3.3. The 1.5T core dataset consisted of 303 pre-processed spectra sets from 

303 voxels (volume elements). It included 10 patients of low grade (class II), 4 intermediate 

grade (class III) and 7 of high grade gliomas (class IV). The low grade gliomas consisted of 

diffuse astrocytomas and oligodendrogliomas, the intermediate ones of anaplastic 

oligodendrogliomas and the high-grade gliomas were glioblastomas multiforme. Each patient 

case had passed strict quality control and validation procedures, including consensus 

histopathologic determination. Per tissue type, the voxels are taken from homogeneous 

intratumoral regions. 
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The dataset collected from the 3T consisted of 43 glioma patients as shown in Table 3.3 

where one voxel per patient from the intratumoral region was picked for further analysis. 

Particularly, 15 tumours were classified as low grade gliomas (classes I and II), 8 lesions as 

intermediate grade (class III) and 20 lesions were classified as high grade gliomas (class IV). 

Low grade gliomas (class I) consisted of 9 astrocytomas and those of class II consisted of 5 

astrocytomas and 1 oligodendroglioma. The intermediate grade consisted of 8 anaplastic 

astrocytomas and the high grade included 20 glioblastomas. Glioma grades were verified in 

histopathological terms by means of either stereotactic biopsy or surgical resection on 30 out 

of 43 patients. When biopsy was performed, the location was chosen similar to the voxel 

placement in 
1
H-MRS. The rest of gliomas were diagnosed by an experienced 

neuroradiologist (follow up). All patients gave a written informed consent to participate in the 

study.  

The subjects enrolled in this study were examined before any surgical operation. During 

voxel localization, inclusion of obvious necrosis, cyst, haemorrhage, edema, calcification and 

normal appearing brain tissue in the voxel was omitted, to avoid lesion’s underestimation. 

Thus volumes of interest (VOIs) with potential contamination with cerebrospinal fluid, 

subcutaneous fat, or eye motion were excluded from analysis. In order to facilitate the 

statistical analysis but also in accordance to the bibliography, the two grades I and II at 3T 

were integrated to one broader class, called grade II. This was decided with the experts’ 

agreement. Another reason for this data integration was the fact that the 1.5T dataset did not 

contained patients of grade I class, which renders the comparison with the 3T impossible. 

 

Table 3.3 – Patients demographics, MRS pulse-sequence parameters and techniques 

provided by each center 

Parameters 1.5T (UMCN) 3T (LUH) 

No. of  Patients in Low grade glioma (class I)  0 9 (9 voxels) 

No. of  Patients in Low grade glioma (class II) 10 (176 voxels) 6 (6 voxels) 

No. of Patients in Intermediate grade glioma (class III) 4 (57 voxels) 8 (8 voxels) 

No. of Patients in High grade glioma (class IV) 7 (70 voxels) 20 (20 voxels) 

Echo Time (TE) 20ms (short) 144ms (long) 

Repetition Time (TR) 2000ms 1000ms 

Voxel Size 20mm
3
 225mm

3
 

MRS Acquisition Techniques 2D STEAM 2D PRESS 

The numbers in the brackets represent the number of voxels measured from all patients of 

the class 
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3.4.4.2 MRSI data acquisition of 1.5T center 

All measurements for the 1.5T system were performed on a (Siemens Vision) whole body 

system, using a circularly polarized (CP) transmitter/receiver head coil. The protocol 

consisted of the acquisition of conventional T1-weighted, T2-weighted and proton density 

weighted images (PD image). This was followed by a T1-weighted image after intravenous 

administration of Gadolinium-DTPA (Gd image) and concluded with water suppressed and 

unsuppressed proton MR Spectroscopic Imaging (
1
H-MRSI). Eventually, only the four images 

(with different contrasts) acquired from the same location as the MRSI were retained. Images 

from areas just below or above were discarded, since they were not totally within the MRSI 

slice. The MRSI were acquired applying fat and water suppresses 2D Stimulated Echo 

Acquisition Mode (STEAM) 
1
H-MRSI sequence with short echo time (TE). The STEAM box 

was positioned in a transversal plane through the brain showing the largest Gadolinium-DTPA 

enhanced tumor area in the Gd image. It was placed entirely in the brain parenchyma 

avoiding leakage of disturbing signals from fatty tissue surrounding the skull. One 2D MRSI 

slice was acquired per patient. The MRSI parameters were: 16 x 16 x 1024 samples, TR/TE 

(Repetition/Echo times) = 2000/20ms, slice thickness = 12.5 or 15 mm, Field of View (FOV) = 

200 mm and number of excitations (NEX) = 2. Each voxel within the STEAM box was 

corrected for eddy current effects in the spectra using a method that prevents the occasional 

occurrence of eddy current correction induced artifacts. This was followed by Hankel-Lanczos 

Singular Value Decomposition (HLSVD) filtering to remove the residual water signal between 

4.3 and 5.5 ppm. Next, a simple but efficient baseline correction with a filter width of 5 ms was 

applied to remove broad resonances. Finally, each time-domain signal was Fourier 

transformed to obtain a spectrum from which only the region between 0.5 to 4.0 ppm was 

retained. 

3.4.4.3 MRSI data acquisition of 3T center 

The dataset was collected from the 3T whole body MR unit (GE Healthcare Signa® HDx). 

The imaging protocol for voxel positioning was consisted of Fluid attenuated inversion 

recovery (FLAIR TR=9502ms, TE=128ms) or a home-designed T2-weighted fast spin echo 

(FSE, TR=4520ms, TE=102ms) sequence in axial, coronal and sagittal planes, which were 

performed using FOV = 260mm, slice thickness = 5mm and NS=1. Spectra from 
1
H-MRSI 

were acquired by applying fat and water suppressed 2D-Point Resolved Pulse Sequence (2D-

PRESS) before contrast administration using a 4-channel bird cage coil with frequency and 

phase resolution of 12 and 24 steps, respectively.  
1
H-MRSI scan parameters were 

TE=144ms and TR=1000ms. Table 3.3 summarizes patient demographics and time 

parameters of MR spectroscopic pulse-sequences.  

Spectroscopic data from patients were acquired from the following regions of interest: 1) 

inside the lesion, as in Figure 3.15(C, E), 2) contralateral side, 3) outer diameter of the lesion 

(if possible), as in Figure 3.15(D, F) and 4) normal appearing white matter. For the 
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classification purposes herein only region 1 was taken into account. Regions 2, 3 and 4 were 

used for reasons of comparison and to investigate the degree of tumor infiltration, which aided 

experts to evaluate tumor grade in lack of other histological diagnosis. A multi-voxel PRESS 

box was initially localized to the region of interest, which according to the number of phase 

and frequency directions was divided into subvoxels. Only the voxel from the intratumoral 

region was picked for further analysis and comparison purposes. 

The MRS data collected from the MRS scanner were first preprocessed off line using the 

software provided by the manufacturer, to ensure that metabolite ratios were accurately 

calculated. Phase correction was implemented to remove baseline roll and restore pure 

shapes of metabolite peaks. The existence of baseline signal in the spectrum makes spectral 

analysis unreliable, since the estimation of peak areas in the presence of an unknown 

background suffers from baseline dependent bias. Baseline correction consisted of the 

subtraction of the function describing the course of the background signal.  

Water normalization of the metabolites MRSI was performed by the division of each 

metabolite’s free induction decay (FID) by its calculated mean water signal. In other words the 

mean water signal of all voxels of each subject was calculated and was used as an intra-

patient normalization factor. Similarly, the calculated water signal of each voxel in a patient’s 

data set was divided by the mean water signal, to obtain inter-patient normalized water 

signals for each voxel. The normalization process was applied before the metabolic ratio 

calculation, in both the 1.5T and 3T datasets. 

 

3.4.5 Metabolic features selection 

The metabolic features often acquired from the MRS spectra are either a) peak heights of 

known metabolites at specific resonances, or b) their integrated peak areas, or c) ratios of 

their integrated peak areas. Measuring peak-area ratios of metabolites has the advantage of 

cancelling out the effects of uncontrolled system and measurement variations on signal 

intensity. Ratio-type features have been successfully used in several studies over the last 

decade, mostly based on 1.5T MRS scanners, addressing the discrimination of brain-tumor 

type, grade and heterogeneity. Investigating the current bibliography shown in Table 3.4, 

involving ratio-type features, we observe that there exists a dominant set of ratio markers 

(NAA/Cho, NAA/Cr, Cho/Cr, mI/Cr and LL/Cr) that facilitates the non-invasive discrimination 

of different grades of gliomas, providing quite satisfactory classification rates.  

Motivated from these observations, we designed a set of significant ratio markers, based 

on the peak areas of well known metabolites shown in Figure 3.15(E, F) and Figure 3.16(A to 

D). In addition, we considered five new metabolites (NAA/S, Cho/S, Cr/S, mI/S and Ala/S) 

found to be highly significant in recent studies of our team [Kounelakis M.G. et al 2008 - 

Kounelakis M.G. et al 2009]. In addition, the LL/S ratio feature was also included in this 

feature set to test its discriminative potential. The S variable denotes the sum of the peak 

areas of these metabolites. The whole set of metabolic ratio markers, is presented in Table 

3.4. 
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In order to calculate the ratios shown in Table 3.4, integration of the peak areas of each 

metabolite was applied [Simonetti A.W. et al 2003]. The areas were estimated by integrating 

each metabolite’s spectral intensity around its peak within a window of 0.13 ppm, as shown in 

Figure 3.16(A). The 0.13 ppm window was selected as a spectral width able to completely 

cover most peaks of interest, without being extended to the regions of neighboring peaks. 
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3.4.6 Statistical analysis at 1.5T and 3T datasets 

The diagnostic models used to classify tumor grades were developed using support vector 

machine (SVM) classifiers [Cortes C. et al 1995]. SVMs have been widely applied for binary 

(two-classes: positive (+1) and negative (-1)) classification problems. The learning scheme 

seeks for the optimal separating hyperplane where the margin of class separation is maximal. 

The SVM solution is based only on those data points that are at the margin of the decision 

boundary, called support vectors, as already explained in Chapter 2. The classifier model in 

primal space is given by Eq. (2), 

 

                                                              ))(()( bxwsignxy +⋅=     (2) 

 

where )(xy  is the binary class indication encoded as -1 versus +1 of the x  sample vector, 

w  is a weighting vector, )( xw ⋅ denotes the dot product of the two vectors and b  is a bias 

term (the offset of the hyperplane form the origin).  

As described in Chapter 2, one of the main advantages of SVMs is the kernel trick. In 

other words the mapping of x  in the input space, where the separation of the two classes is 

non-linear, to the feature space )(xφ  i.e. a space of higher dimensionality where the 

separation can be linear. Based on this idea the dot product in Eq. (2) can be rewritten as: 

 

                             )))((()( bxwsignxy +⋅= φ       (3) 

 

We implicitly work in the feature space by applying a positive definite kernel as in Eq. (4) 

and Eq. (5).  

)()(),( j

T

iji xxxxK ϕϕ=        (4)  

 

In particular, we use the radial basis function (RBF) SVM kernels:  
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The SVM classification was applied under different binary tests. The schemes examined 

are glioma grade II vs. III, grade II vs. IV and grade III vs. IV, which are the most important 

according to clinicians and the bibliography. The Matlab ver. R2010 [Internet Source: 

http://www.mathworks.com] software package was used to build and test the classifiers. 
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3.4.7 Classifier performance evaluation 

The evaluation of classifier performance was assessed through a 10-fold Cross Validation 

(CV) method and the classification accuracy was measured in terms of Area under the ROC 

curve (AUROC) values. Repeated stratified runs (10 folds Χ 10 times = 100 runs) were 

applied for each dataset (1.5T, 3T) which according to bibliography is, among others (Leave 

one out, Bootstrapping), the most suitable evaluation method for cases where data samples 

are few as in 3T dataset [Kohavi R. 1995]. For each binary classification scheme the train 

sets contained 90% of the voxels of each of the two classes and the remaining 10% of these 

two classes were contained in the test sets. Due to the fact that in 3T dataset the number of 

voxels was small compared to that of 1.5T, the training sets were carefully selected to avoid 

overlap. Confidence Intervals were also estimated for each classification scheme using the 

SPSS ver. 19.0 statistical software package [Internet Source: http://www.spss.com].  

 

3.4.8 Experimental results  

The first step of our analysis was the application of the SVM classifier on both 1.5T and 3T 

datasets. The feature set used in the classification process was derived from the union of 

ratio features from recent bibliography expanded with those found significant by our team’s 

recent studies [Kounelakis M.G. et al 2008 - Kounelakis M.G. et al 2009], all presented in 

Table 3.4. Overall, we ended up with 11 ratio features used in the classifier. In Table III the 

classification outcome in terms of AUROC, for each binary scheme, is presented. Moreover 

the confidence intervals estimated for each scheme are shown. 

Another aspect of this study was to estimate the contribution of each ratio feature on the 

classification success. To quantify this contribution, the frequency (%) of participation of each 

ratio feature at the highest AUROC values was recorded (using SPSS package).  Figures 

3.17 and 3.18 below represent in different colored bars the 11 metabolic ratios participating in 

the classification process for 1.5T and 3T datasets, respectively. In these two charts, a higher 

bar underlines a greater contribution of the metabolite in the classification procedure. 
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Figure 3.17 - Frequencies of features’ participation in each binary classification scheme of the 

1.5T dataset. The ratio markers, from left to right, correspond to the bars in the same order 

 

 
Figure 3.18 - Frequencies of features’ participation in each binary classification scheme of the 

3T dataset. The ratio markers, from left to right, correspond to the bars in the same order 

 

 
Table 3.5 - Classification results for each system (1.5T and 3T) 

 AUROC values  

Centers Glioma grade II vs. III Glioma grade II vs. IV Glioma grade III vs. IV 

1.5T (UMCN) 0.83 (± 0.02) 0.96 (± 0.04) 0.95 (± 0.03) 

3T (LUH) 0.77 (± 0.03) 0.85 (± 0.03) 0.75 (± 0.02) 

Bold numbers indicate the highest AUROC values obtained. The numbers in the brackets 

represent the Confidence Intervals measured for each AUROC value 
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3.4.9 Discussion  

The first important aspect of comparison relates to the classification results presented in 

Table 3.5. The classification values derived from the 1.5T dataset are higher than those 

obtained from the 3T. Even though the 3T system acquires metabolic spectra of better quality, 

it is clear that this is not enough to produce a substantial improvement in the classification of 

population-based data. The lack of a satisfactory amount of data renders the SVM classifier 

quite inefficient in the case of 3T, despite the quality improvement in spectral resolution. It is 

expected though that if the 3T dataset involves more voxels per patient then the classification 

accuracy would be drastically improved over that of 1.5T. This is an aspect that will be studied 

in the future since the 3T dataset is being constantly improved and enhanced with new cases. 

The dependence of signal-to-noise ratio (SNR) on field strength is a complicated issue, 

both from a theoretical aspect and in terms of experimental comparisons. In cases of brain 

tumours examined at 3T, Kim J.H. et al observed that better spectral resolution was achieved 

at short TE (35ms); however, little improvement in spectral resolution was detected at 

intermediate TE (144ms). More specifically, at short TE, Cho/Cr and Cho/NAA ratios were 

significantly lower, and LL/Cr and mI/Cr were significantly higher, compared with those at 

intermediate TE, regardless of tumor grade [Kim J.H. et al 2006(a)]. In another study of Kim 

J.H. et al, at 1.5T and 3T, it was found that the SNR of major brain metabolites at 3T 

demonstrated 49-73% increase at short TE (35ms) and only 2-12% increase at an 

intermediate TE (144ms) compared with those of 1.5T [Kim J.H. et al 2006(b)].  Considering 

the observations of both studies of Kim J.H. et al, at intermediate TE (144ms) at 3T, we can 

say that the TE parameter plays a significant role in the discrimination of tumor grades, as 

shown in our study too.  

With respect to the ratio features studied, the most significant and often encountered 

features are depicted in Figures 3.17 and 3.18, for the 1.5T and 3T systems, respectively. In 

general, we can conclude that both sets are capable of discriminating complex cases of 

gliomas. This is more obvious at the glioma grade II vs. III scheme, where in both datasets 

(1.5T, 3T) the grade II classes contained mixed low grade gliomas, such as astrocytomas and 

oligodendrogliomas. An important observation in this specific classification scheme is that the 

mI/S ratio feature has a strong influence, stronger than the mI/Cr, in the discrimination of the 

3T dataset compared to the 1.5T dataset. As also mentioned in the introduction, mI is better 

resolved in 3T systems. mI is considered a vital feature in this case, since low grade gliomas 

posses much higher mI values than the more aggressive tumors [Castillo M. et al 2000]. 

Other significant features that have strong influence in the 3T dataset in this binary scheme 

are the NAA/Cho, NAA/Cr, NAA/S and Cho/S. This is again in accordance with recent 

bibliography [Kounelakis M.G. et al 2008 - Kounelakis M.G. et al 2009]. In the 1.5T dataset, 

however, the most significant features are the LL/Cr, Cr/S and the mI/Cr. It worth’s noticing 

here that the LL feature, although expected to be significant at 3T due to its better spectral 

resolution, it does not have a positive impact in classification. This can be explained through 
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the design of the 3T dataset, where the grade II class also contains patients of grade I with no 

Lactate influence. 

A general observation in the glioma grade II vs. IV binary scheme is the contribution of 

almost all ratio features in the 1.5T classification case. As shown in Figure 3.17, 8 out of 9 

features participate in achieving an AUROC value of 0.96. In contrast, only LL/Cr and NAA/S 

appear to be most significant in the 3T dataset (as shown in Figure 3.18). These features are 

expected to be significant, since in glioblastomas the lipids and lactate get high values, as 

shown in Figure 3.16(D). Other ratio features that highly contribute in the 3T classification 

process are the Cho/Cr and mI/Cr. As mentioned above, mI is high in low grade and NAA (as 

a neuronal marker) is very low in grade IV; notice that most brain tumours are of non-neuronal 

origin [Heerschap A. 2007]. 

In the most aggressive case of glioma grade III vs. IV, where the differentiation at 

metabolic level is both difficult and critical, almost all features of the 1.5T system contribute to 

the discrimination of the two classes as shown in Figure 3.17. In addition, the most important 

(frequent) features are the NAA/Cr, along with those normalized to the same baseline (S). 

These include the NAA/S, Cho/S, Cr/S and mI/S ratios. As in the previous case, the 

performance of features is not the same in 3T dataset, where LL/Cr and NAA/S have the 

strongest influence. This is expected since lipids and lactate peaks (LL) are easier to be 

detected and measured in the 3T case due to better spectral resolution. Before the 
1
H-MRS 

procedure at 3T, high resolved FLAIR T2-weighted or T2-FSE images are used allowing the 

discrimination of regions with necrosis, haemorrhage, cyst or calcification within the tumour. 

However, as also stated in the material and methods section, all spectroscopic 

measurements are applied before contrast administration to avoid signal diminish. Therefore, 

it is possible that intratumoral necrotic regions might be masked on T2-weighted images, 

which are observed in anatomical images only after contrast injection.  Moreover, it is clear 

that an elevation of lipids is a known progression indicator for gliomas. Thus, inside a voxel it 

is rather difficult to avoid lipid contamination leading to glioma-grade overestimation. NAA on 

the other hand as a neuronal marker is found only in neurons and, since most brain tumours 

are of non-neuronal origin, it is reduced or absent. In MRS of tumours, the presence of NAA 

within a spectrum generally indicates the presence of viable neurons within an infiltrative 

tumour.  

Another observation that needs to be addressed at this point is the small contribution of 

the Cho and Cr ratios (Cho/Cr, Cho/S and Cr/S) in this classification process. A reason for 

that could be the presence of necrosis within some voxels of grade IV patients, although 

careful voxel positioning has been applied to avoid the inclusion of obvious necrotic and/or 

cystic regions. The presence of necrosis is one important distinction between anaplastic 

astrocytomas (grade III) and glioblastoma multiforme (grade IV). Presence of high lipid peaks 

may suggest macroscopic necrosis due to membrane breakdown. Therefore, lipids do 

correlate with necrosis in high-grade glioma and so may also be useful in differentiating 

glioma grades [Fan G. 2006]. Nevertheless, the dominant peaks of LL in some voxels could 
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mask the contribution of Cho and Cr metabolites, affecting the classification’s outcome. 

The results of this study imply that NAA/S, Cho/S, Cr/S and mI/S ratios may enhance the 

discriminating power in complex cases like high grade gliomas. It was also observed that the 

two ratios LL/S and Ala/S (Alanine), also tested, did not significantly improve the AUROC 

measures in either 1.5T or 3T. A main reason for that is the fact that the LL/Cr ratio possibly 

masks the contribution of the LL/S in the classification method. Furthermore, the Ala/S ratio 

(observed mostly in meningiomas) cannot be considered a reliable marker because of the 

broader peaks of LL which overlaps with the neighbour peak of Alanine (Ala at 1.48 ppm) 

especially in the intermediate and high grade gliomas.  

Finally, this study indicates that in comparison between 1.5T and 3T MRS scanners, the 

ratio markers NAA/S, Cho/S, Cr/S and mI/S are more sensitive in revealing metabolic 

differences in these types of gliomas compared to NAA/Cho, Cho/Cr, mI/Cr, LL/Cr. This is 

also supported by Kim J.H. et al 2006(b), who observed that the difference between the mean 

values of NAA/Cho, Cho/Cr, mI/Cr and LL/Cr in both 1.5T and 3T systems were not 

statistically significant. At this point we should also mention that the use of metabolite ratios 

tested in this study has several advantages. Since the reference signal is acquired 

simultaneously with the metabolite of interest, many potential sources of systematic errors are 

suppressed. Such errors relate to the signal dependency on tissue internal factors, the 

number of observed spins inside the volume of interest, the magnetic field applied and timing 

parameters of the sequence [Gillard J. et al 2005].  

The pattern recognition method used based on SVMs is one of the most commonly 

applied methods for brain tumors classification, during the last decade. SVM and its simpler 

form called Least Square SVM (LS-SVM) are usually preferred for the classification of high 

dimensional data. Furthermore, it has been found in [Devos A. et al 2004 – Di  Costanzo A. et 

al 2006 - Caprinelli G. et al 1996 - Howe F.A. et al 2003(b) - Kounelakis M.G. et al 2008 - 

Kounelakis M.G. et al 2009 - Ott D. et al 1993 - Kumar A. et al 2003] that they perform quite 

satisfactory in complex tasks such as the gliomas classifications, especially with RBF kernel; 

their performance is better compared to other methods such as Linear Discriminant Analysis 

(LDA) and Neural Networks (NN). This was also the reason for adopting SVM in this study. 

Concerning the evaluation method used to assess classifier performance, the 10-fold CV 

method was adopted. In contrast to bootstrapping methods, k-fold CV methods are usually 

adopted, since they perform better in brain tumors discrimination problems, even though they 

lack of stability when small datasets are studied, like in our 3T case [Kohavi R. 1995]. To 

overcome this problem, we used repeated stratified CV runs but also careful selection of the 

train and test sets. 

The present study reflects several limitations that do not allow for immediate generalization 

of our results. The MRS procedure was performed with different types of radio frequency (RF) 

coils (Circularly Phased Array-head coil at 1.5T and 4-channel birdcage head coil at 3T) and 

shimming procedures. Both were high quality volume coils of about same size, but they differ 

in transmission of the RF signals. This different design might influence sensitivity and thereby 
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the SNR for the metabolites differently [Marion D. et al 1989]. The shimming protocols were 

manufacturer supplied, automatic procedures, which might not give the optimal shim for each 

acquisition. The voxels of the patients considered with 3T are very few compared to those of 

1.5T, which forms an important limitation for this study.  In other words, if the 3T dataset 

contained more voxels per patient then its classification results could be much higher. 

Moreover, the patients have heterogeneous lesions from different locations, which may also 

affect the study. The pulse sequences used and the timing parameters for the two MR 

scanners were not identical, so that differences in their efficiency need to be investigated. For 

instance, variable amounts of signal loss may occur as a function of the accuracy of the flip 

angle, the spacing and the duration. Careful calibration of the flip angle and adjustment of 

crusher gradient amplitudes on the unsuppressed water signal was performed on both 

scanners in this study. Nevertheless, although the SNR of major brain metabolites at 3T is 

increased and better spectral resolution is obtained at short TE, little spectral resolution 

improvement is detected at intermediate TE (=144msec) compared with 1.5T [Kim J.H et al 

2006(b)]. The two MR pulse sequences share different repetition time values (TR), namely 

2000msec for 1.5T MRS scanner and 1000msec for 3T MR scanner respectively. Differences 

in T1-values for the metabolites at 1.5T and 3T can also influence the SNR at a particular 

repetition time (TR), thus further influencing our results [Sjobakk T.E. et al 2006]. 
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3.4.10 Conclusions 

Non-invasive proton-MRS may be used efficiently to determine the presence or type of a 

cerebral tumour and can be a useful tool to confirm and grade brain neoplasms together with 

biopsy. Several MRS scanner modalities are available in today’s practice related to brain 

cancer diagnostics and discrimination. The obvious goal of all these systems is to improve the 

quality of the spectrum acquired in order to obtain better metabolic profile of brain tumors. 

Nevertheless, strengthening the magnets’ field is not the only parameter that has to be taken 

under consideration. Other factors related to data acquisition, like the number of voxels per 

patient, the TE value and the noise reduction have to be carefully considered in order to reach 

accurate diagnosis and successful treatment of these complex tumors. In addition, experts 

must carefully decide the type and the number of metabolic features towards a more 

individualized diagnosis. 

This study attempts to investigate some of these issues by comparing the outcomes of a 

classification method applied to two datasets extracted from two different MRS scanners, 

using various spectral features. The study derives specific ratio features for each modality 

that are capable of discriminating these complex pathologies. A future objective of this study 

is to incorporate peritumoral and contralateral regions in order to enrich the 3T dataset and 

extend the pattern recognition methods towards a more accurate discrimination of gliomas. 

Another plan is to incorporate quantitative data from other MR-based methodologies like 

Diffusion Weighted Imaging (DWI) and Perfusion Weighted Imaging (PWI) for developing a 

diagnosis decision support system assisting experts to discriminate more complicated 

metabolic spectral profiles. 
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4.1 Abstract 
 

The purpose of this study is to identify reliable sets of metabolic markers that provide 

accurate classification of complex brain tumors and facilitate the process of clinical diagnosis. 

Several peak area ratios of metabolites (MRSI data) are tested alone, or in combination with 

imaging markers (MRI data). A wrapper feature selection and classification methodology is 

studied, employing the Fisher’s criterion for ranking the markers. The set of extracted markers 

that express statistical significance is further studied in terms of biological behaviour with 

respect to the brain tumors type and grade.  

The outcome of this study indicates that the proposed method, exploiting the intrinsic 

properties of data, can actually reveal reliable and biologically relevant sets of metabolic 

markers, which form an important adjunct towards a more accurate type and grade 

discrimination of complex brain tumors [Kounelakis M.G. et al 2011]. 
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4.2 Introduction 
 

Feature selection is a critical issue in biomedical data analysis. Its primary goal is to 

extract biologically significant features that support a clinical decision in crucial medical tasks, 

such as tumor type and aggressiveness (grade) discrimination. Brain tumors form one of 

these crucial clinical tasks, where the type and grade discrimination becomes a challenge due 

to the data complexity. In this area, the evaluation of biologically significant features in 

conjunction with other clinical data (morphology, location, size etc) of a patient can assist 

clinicians to decide upon critical matters regarding the therapeutic pathways to be followed.  

When accessible, most brain tumors are surgically removed, but there is a balance 

between removing as much tumor tissue as possible whilst maintaining vital brain functions. 

Therefore, a non-invasive and accurate assessment of tumor type can reduce unnecessary 

surgical intervention.  

Towards this direction, 
1
H or proton Magnetic Resonance Spectroscopy (

1
H-MRS) can be 

used to provide information on the metabolic profile of tissue, facilitate a better non-invasive 

differential diagnosis, define the tumor grade and aggressiveness, monitor the tumor 

response to nonsurgical treatments and finally determine an earlier presence of tumor 

recurrence. Proton Magnetic Resonance (MR) spectra can be obtained from a single volume 

element (voxel) or from multiple voxels with the so-called MR Spectroscopic Imaging (MRSI). 

This modality enables the identification of the heterogeneity of a tumorous region, since 

spatial variations of tissue characteristics can be assessed at metabolite level. For each 

voxel, the intensity of the relevant metabolites can be determined in the spectral domain as 

shown in Figure 4.1. Earlier studies have shown that MRS has significant clinical value, 

particularly for the evaluation of diseases that affect brain tissue [Callot V. et al 2008 - Ross 

B. et al 1994 – Howe F.A. et al 2003(a) – Roser W. et al 1997]. 

 

Figure 4.1 - The spectrum obtained from a voxel. Y axis: peak heights (proportional to 

metabolites concentration). X axis: frequency (position) in parts per million (ppm). NAA (N-
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acetyl-aspartate), Cho (Choline), Cre (Creatine), Ala (Alanine), Lac (Lactate), mI (myo-

Inositol), Glu1 (Glutamate), Glu2 (Glutamine), Glx (Glu1/Glu2), L1 and L2 (mobile lipids) are 

the metabolites considered – [Internet Sources: Hope Clinics - The UMKC Radiology 

Resident Resource] - (The figure was designed with Adobe Photoshop ver.CS5) 

 

4.2.1 The peak area ratios case 

The acquisition of the patient’s metabolic spectra enables the determination of several 

types of features that can be used for brain tumor classification purposes. These may be the 

signal amplitudes, the area under the metabolite peaks (red area drawn in Figure 4.1) or the 

ratios of the peak areas of the metabolites. The amount of potentially useful features can be 

considerable. Feature selection methods can be applied to select the most informative subset 

of features providing accurate classification rates. 

Ratio type features have been successfully used in several studies over the last decade 

for the discrimination of brain tumors [Kumar A. et al 2003 – Howe F.A. et al 2003(b) – 

Lehnhardt F.G. et al 2005 – Galanaud D. et al 2006], but also other diseases using MRS data 

[Galanaud D. et al 2010].  

Measuring ratios of metabolites has the advantage of cancelling out the effects of 

uncontrolled system and measurement variations on signal intensity. Quantification of in vivo 

cerebral metabolite concentration using MRS is quite complicated and time-consuming, to be 

routinely applied for clinical service. On the other hand, metabolite ratios can be derived 

directly from the outputs of a clinical MRS system, without the necessity of correcting for coil-

loading and tissue characteristics. Therefore, many clinical MRS studies evaluate cerebral 

gliomas and related changes in terms of semi-quantitative (normalized) metabolite ratios 

rather than absolute concentrations [Kumar A. et al 2003 – Howe F.A. et al 2003(b) – 

Lehnhardt F.G. et al 2005 – Galanaud D. et al 2006].  

 

4.2.2 Main goals and achievements of the study 

The main goal of this work is threefold. First, to reveal the potential of an embedded 

feature-selection method [Blazadonakis M.E. et al 2006 – Blazadonakis M.E. et al 2008] to 

identify the smallest and most compact sets of biologically significant features (markers) from 

brain spectra, which are capable to accurately classify different types of brain tumors such as 

gliomas and meningiomas. This method introduces a Recursive Feature Elimination (RFE) 

process that involves Fisher’s filter criterion [Fisher R.A. 1936] in a wrapper selection scheme, 

within the operation of Support Vector Machines (SVMs) [Dietterich T.G. 1998 – Vapnik N.V. 

1999]. Second, to exhibit the advantages of using peak area ratios extracted form short echo 

(Echo Time, TE = 20ms) Magnetic Resonance Spectroscopic Imaging (MRSI) data. To 

achieve this, we consider a dataset comprising of 18 ratio features, which stem from the 

biological significance of metabolites. This feature set (Table 4.2) includes metabolically 

significant ratio features that were not, in such extent, examined before. A third aim of this 
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work is to rigorously study the biological behavior of these markers with respect to the brain 

tumors type and grade.  

Finally and in combination with the MRSI data, this study also examined the contribution of 

4 MRI imaging features (at T1 = T1 weighted, T2 = weighted, PD = proton density and Gd = 

Gadolinium contrast enhancement agent) in the discrimination of these brain tumors.  

The outcome of this study reveals that for each binary brain tumor discrimination scheme a 

dominant set of ratio markers exists, whose biological value is statistically verified (p-value). 

In six out of seven binary schemes (Healthy vs tumors, Healthy vs Gliomas, Healthy vs 

Meningiomas, Gliomas grade II vs Gliomas grade IV, Gliomas grade III vs Gliomas grade IV 

and Gliomas vs Meningiomas) the classification accuracy was greater than or equal to 0.97, 

in terms of Area under the Receiver Operating Characteristic Curve (AUROC).  Only in the 

case of Gliomas grade II vs Gliomas grade III, the AUROC dropped to 0.84. 
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4.3 Materials and Methods 
 

4.3.1 Dataset description 

The dataset consists of MRI data and short echo MRSI data from 24 patients. From these 

patients, 21 have been diagnosed with World Health Organization (WHO) glial brain tumors of 

specific grade and 3 with meningiomas. More specifically the dataset contains 10 glioma 

subjects with low grade II (5 patients with diffuse Astrocytomas, 2 with Oligodendrogliomas 

and 3 patients with mixtures), 4 with intermediate grade III (1 patient with Anaplastic 

Astrocytoma, 2 patients with Oligodendrogliomas and 1 patient undefined), 7 with high grade 

IV (Glioblastoma multiforme) and 3 with meningiomas. Furthermore, in the same non-invasive 

way MRI and MRSI data were acquired from 4 healthy (control) volunteers and 4 patients. 

The initial core dataset, shown in Table 4.2, consisted of 569 pre-processed spectral sets 

containing data (MRI as well as MRSI) from 569 voxels of 24 brain tumor patients and 4 

healthy persons. 

The elaboration of the dataset was approved by the ethical committee of the University 

Medical Center of Nijmegen (UMCN), the Netherlands and written informed consent was 

obtained from all patients. Each patient-case passed strict quality control and validation 

procedures, including consensus histopathologic determination. Per tissue type, voxels were 

obtained from homogeneous regions.  

The measurements were performed on a 1.5T Siemens Vision whole-body system using a 

circularly polarized (CP) head coil, shown in Figure 4.2. The system calibration, the 

acquisition techniques applied to obtain the four MRI images and the MRSI data, along with 

the MRSI data pre-processing methods, are discussed in earlier studies [Simonetti A.W. et al 

2003 – Simonetti A.W. et al 2002 – Pijnappel W.W.F et al 1992].  

 

 

Figure 4.2 – Magnetom Aera 1.5 Tesla Magnetic Resonance Scanner – [Internet Source: 

Siemens] 
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Water normalization of the metabolites was performed by dividing each metabolite FID 

(free induction decay) with its calculated mean water signal. More specifically the mean water 

signal of all voxels of each subject was calculated first. Similarly, the calculated water signal 

of each voxel in a patient’s dataset was estimated and divided by the mean water signal, to 

obtain inter-patient normalized water signal. This water normalization process, which is 

routinely used when pre-processing MRS data, was applied prior the metabolic ratio 

calculation. 

The areas under the metabolites’ peaks were obtained by peak integration, as shown in 

Figure 4.3(B). More specifically, these areas were estimated by integrating each metabolite’s 

spectral intensities around its peak within a window of 0.13 ppm. The metabolites of interest 

are presented in Table 4.1. 

 
Table 4.1 – Main 

1
H-MRS metabolites examined, their function and chemical shift value 

A/A Name of Metabolite (symbol) Metabolic function Chemical shift 

1 Glutamate (Glu1) 
Neurotransmitter (neuron-glial 

interaction) 
3.75 ppm 

2 myo-Inositol (mI) Glial cell marker 3.56 ppm 

3 Glutamate/Glutamine (Glx) 
Neurotransmitter (neuron-glial 

interaction) 
3.44 ppm 

4 Choline (Cho) Cell membrane marker 3.20 ppm 

5 Creatine (Cre) Energy metabolism 3.02 ppm 

6 Glutamine (Glu2) 
Neurotransmitter (neuron-glial 

interaction) 
2.20 ppm 

7 N-acetyl-aspartate (NAA) 
Marker of neuronal integrity and 

viability 
2.02 ppm 

8 Alanine (Ala) 
In conjunction with Lactate 

increases in hypoxic regions 
1.48 ppm 

9 Lactate (Lac) Product of anaerobic glycolysis 1.33 ppm 

10 

Lips (sum of the integrated 

peak areas of L1 and L2 mobile 

lipids)  

Products of brain destruction 
L1 at 1.30 ppm 

L2 at 0.90 ppm 

The chemical shift value in ppm (parts per million) refers to the frequency value of 

metabolite’s peak in the MRS spectrum 

 
The 0.13 ppm window was selected as being a width covering most of the peaks of 

interest completely, without being contaminated with neighbouring peaks. In essence, this 

approach attempts to extract the most characteristic features and discard the redundancy 

produced by noise and artifacts.  
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In order to combine information from the spectroscopic data with information from the MR 

images they need to have the same resolution and must be spatially aligned. The MR images 

were aligned with respect to each other, by successively shifting the T1- weighted and Gd 

image with respect to the PD image until a maximum of spatial correlation was reached. The 

MRSI spectroscopic grid was aligned with the PD image, as they were acquired 

consecutively. After alignment of the MR images, the image pixels that did not fit within the 

boundary of the STEAM (STimulated Echo Acquisition Mode) box were discarded. Then, the 

resolution of the remaining part of the MR images was lowered to the resolution of the MRSI 

grid. This was performed by averaging the image pixels which were covered by each 

spectroscopic voxel. The values from each image were range-scaled in agreement to the 

range of the spectral data. After pre-processing, each voxel within the grid was then 

represented by a spectrum of 230 features (in the region between 0.5 to 4.0 ppm) and 4 

image features (1 variable from each MR image). Among these 230 features, a set of ratios of 

quantified peak areas of metabolites (Glu1, mI, Glx, Cho, Cre, Glu2, NAA, Ala, Lac, and Lips) 

along with 1 variable from each MR image, were selected. This is schematically represented 

in Figure 4.3. 

 

4.3.2 Design of binary classification schemes 

The decision, regarding which classes of patients should be compared in order to examine 

specific characteristics of brain tumors, is always a crucial matter. Motivated from recent 

studies [Callot V. et al 2008 - Ross B. et al 1994 – Howe F.A. et al 2003(a) – Roser W. et al 

1997 - Kumar A. et al 2003 – Howe F.A. et al 2003(b) – Lehnhardt F.G. et al 2005 – 

Galanaud D. et al 2006 – Simonetti A.W. et al 2005 –Luts J. et al 2007 – Devos A. et al 2005 

– Postma G.J. et al 2011 – Kounelakis M.G. et al 2008(a) – Kounelakis M.G. et al 2008(b) - 

Kounelakis M.G. et al 2009] where 
1
H-MRSI has been applied for brain-tumor discrimination 

purposes but also from today’s clinical practices, seven binary classification schemes, shown 

in Table 4.2, were investigated. This study focuses on the most significant comparisons 

between healthy, gliomas and meningiomas tissues in an effort to reveal the discriminative 

potential of the ratio features selected in Table 4.3, for these types of brain tumors. 
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Figure 4.3 - Illustration of pre-processing and data reduction steps. A) The images with four 

contrasts are aligned (the lower right image has been shifted up) and the spectral grid is 

superimposed on the images; B) The spectrum after pre-processing obtained from the 

indicated voxel and the peak integration window (indicated with gray bands of 0.13 ppm 

width); C) The resolution of the images is reset to the MRSI resolution. Each voxel is 

represented by four image features; D) Data reduction is performed with quantification of 

important regions in the spectrum(in b); E) The image features (in green) from each voxel are 

combined with the MRSI features (in red) – [Internet Sources: The Radboud University] 

 
Table 4.2 – Binary classification schemes 

A/A Binary schemes Patients/class Voxels/class 

1 Healthy vs tumor 8 vs 24 218 vs 351 

2 Healthy vs Glio 8 vs 21 218 vs 303 

3 Healthy vs Mng 8 vs 3 218 vs 48 

4 GRII vs GRIII 10 vs 4 176 vs 57 

5 GRII vs GRIV 10 vs 7 176 vs 70 

6 GRIII vs GRIV 4 vs 7 57 vs 70 

7 Glio vs Mng 21 vs 3 303 vs 48 

The binary classification schemes used in this study in terms of patient and voxel numbers. 

Glio (gliomas - integration of GRII, GRIII and GRIV), GRII (gliomas grade II), GRIII (gliomas 

grade III), GRIV (gliomas grade IV) and Mng (meningiomas) 
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4.3.3 Construction of feature sets 

After a thorough investigation of recent literature, we noticed that different sets of ratio-

type features have been examined in discriminating brain tumors. Most of these studies 

though employ ratios of only a few biologically-known metabolites (Creatine, Choline); while 

very few attempts combine spectroscopic data (MRS) with Magnetic Resonance Imaging 

(MRI) data, in the classification process.  

The purpose of this study is to design a combined superset of metabolic-spectral ratio-type 

features (Table 4.3), not integrated in earlier studies in this way, and evaluate whether its 

predictive power could improve discrimination of brain tumors. For this purpose, two input 

feature ensembles were used, (a) the set of the 18 peak area ratios (Table 4.3) and (b) the 

set of 4 MR imaging intensities. As observed, the imaging intensities were also combined with 

the 18 peak area ratios set. Ratios of metabolites’ peak areas were measured within each 

voxel independently, not in relation to healthy tissue.  The S variable used in 5 out of the 18 

ratios (NAA/S, Cho/S, Cre/S, mi/S and Ala/S) in the denominator is obtained as the sum of all 

metabolites within the same spectrum (voxel). This type of normalization (semi-quantitative 

evaluation) enables the evaluation of variations of a metabolite in the numerator [Confort-

Gouny S. et al 1993 - Galanaud D. et al 2006].  

Many clinical MRS studies have evaluated cerebral gliomas and related changes in terms 

of semi-quantitative (normalized) metabolite ratios rather than absolute concentrations 

[Galanaud D. et al 2010]. Furthermore, it has been shown that the use of ratios has several 

advantages, with the most important being the elimination or smoothing of noise and abrupt 

variations observed in the initial data. Due to these reasons the normalization to S was also 

included in this study.  

Notice here that in contrast to [Galanaud D. et al 2006] the S variable we use includes the 

mobile lipids L1 and L2 at 1.30 and 0.90 ppm respectively, because of their great importance 

in the evaluation of high grade gliomas spectra. These are often increased due to higher rates 

of lipogenesis and the existence of hypoxic-necrotic regions observed in these tumors that 

increase energy needs [Auer D.P. et al 2001]. Therefore lipids can play a significant role in 

gliomas discrimination. 

 
Table 4.3 – The metabolic peak area ratios dataset 

The 18 ratio features tested on the dataset 

NAA/Cre NAA/Cho NAA/S Cho/Cre Cho/S mI/Cre 

mI/Cho mI/S Lips/Cre Lips/Cho Lac/Cre Lac/Cho 

Ala/Cre Ala/S Cre/S Glu1/Cre Glu2/Cre Glx/Cre 

Lips denote the sum of L1 and L2 metabolite-peak areas and S denotes the sum of the 11 

metabolite-peak areas 
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It was also noticed that some ratios (not including the S variable) computed on specific 

voxels of a patient could get extreme values This was the case in glioblastomas (GRIV), 

where specific ratios in 5 out of 70 voxels gave extremely high values due to near zero values 

of Cre’s peak area in the denominator. These 5 voxels of two GRIV patients (2 from one 

patient and 3 from the other) were excluded from our analysis in order to avoid instabilities. 

Therefore, 65 out of 70 voxels were considered in GRIV. In order to evaluate the significance 

of metabolites from many aspects, we have used several other ratios based on their biological 

value, as verified in literature. It was also observed that in ratios with normalization to the S 

variable, the possibility of dividing by zero is further reduced.  

 

4.3.4 Overview of applied methodology 

Feature selection methods can be divided into three major categories, namely filter, 

wrapper and embedded methods [Dietterich T.G. 1998 - Guyon I. et al 2003], as mentioned in 

Chapter 2 too. Filter approaches focus on the intrinsic properties of data in each feature 

direction, using various stochastic metrics such as Fisher’s discriminant criterion, T-statistic 

(Student’s t-test), Chi-square statistic (X
2
 statistic), Information gain, Cross-entropy measure, 

Kruskall-Wallis test, Analysis of variance (ANOVA), Mann-Whitney U test and many others. 

Due to its operation, however, this type of feature selection methods ignores the impact of the 

learning algorithm.  

Wrapper methods [Kohavi R. et al 1997] on the other hand work in a recursive way, where 

a classifier is used to assign a relevance weight to each feature and then the features with the 

lowest weights are eliminated, up to a point determined by the stopping criterion. The so 

called Recursive Feature Elimination (RFE) scheme is based on this approach. This scheme 

often operates on the basis of a support vector machines (SVM) classifier [Vapnik N.V. 1999] 

to evaluate features and remove those that have least value of classification, yielding the so-

called RFE-SVM approach. The disadvantages of wrapper methods relate to the high 

computational cost of the search and their inability to take advantage of intrinsic data 

structures. An integration of the advantages of the above two feature selection schemes is 

adapted in the embedded methods [Blum A. et al 1997]. Such methods aim to immediately 

integrate the feature selection or weighting procedure into the learning algorithm of the 

classifier succeeding thus to retain the intrinsic characteristics of the data in the classification 

process.  

In this study we employ an integrated feature selection method that embeds a Fisher’s 

filter criterion within the RFE-SVM scheme. Based on the support vectors (which vary 

dynamically along the various steps of the feature elimination process), the Fisher’s metric is 

calculated defining a new Fisher hyperplane at each iteration. This implies that the Fisher’s 

criterion dynamically influences the decision based on the significance of features on the 

support vectors. A detailed explanation of the proposed method is presented in the following. 
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4.3.4.1 Feature selection and classification method 

SVM was first applied in a linear, two-class (binary) classification form, where the learning 

scheme optimizes the separating hyperplane by maximizing the margin of class separation, 

as described in Chapter 2. The SVM solution is based primarily on those data samples that 

are at the margin of the decision boundary, called support vectors. In essence, SVM attempts 

to find the best separating hyperplane to distinguish between the two classes of interest, 

positive (+1) and negative (−1). This is done by maximizing the distance w/2  between the 

two parallel lines 1)( =+⋅ bxw  and 1)( −=+⋅ bxw , which form the margin of separation of 

the two classes as shown in Figure 4.4. The vector w  represents the direction of the 

hyperplane, x  denotes the sample (or case) and b  determines the offset of the hyperplane 

from the origin. The separating hyperplane passes through the middle of this margin with 

equation 0)( =+⋅ bxw .   

At diagnosis stage, when a new sample newx must be categorized to one of two classes 

(e.g. low grade tumor or high grade tumor), then the sign of the value returned by Eq. (1) 

indicates the predicted class associated with this new sample, while ( )newf x  indicates the 

confidence level of the resulting decision.  

 

          ))(()( bxwsignxf newnew +⋅=                                                 (1) 

 

 

Figure 4.4 - Illustration of the binary classification topology, showing the margin of separation 

between the two classes; circled points represent the support vectors 
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According to the SVM theory, the direction of the separating hyperplane w  is given as an 

expansion of the samples whose si 'λ  (Lagrange multipliers) are nonzero, i.e. the support 

vectors. If iy  denotes the label of the 
th

i  sample ix , then the direction vector w  is specified 

as: 

                                                   
SV

ii

SV

i

i xyw ∑
=

=
#

1

λ                                                  (2) 

where SV indicate the support vectors on the margin of the separating hyperplane (Figure 

4.4).  Combining now Eq. (1) and Eq. (2) we get: 
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where )(⋅ denotes the dot product of the two vectors 

A significant property of SVM is that the learning process does not change as long as all 

the support vectors remain the same. Furthermore, a useful property of the support vectors is 

that they lie around the center (margin of separation) of the two classes which is the critical 

region to distinguish between the two classes of interest. Focusing on the support vectors, 

which actually determine the class borders, the SVM scheme elaborates on factors that could 

possibly misallocate the patient. Thus, the learning rule of SVMs is based on specific samples 

(SVs) that are supposed to be representative of the feature topology at the borders of 

classes. In order to further favour samples that reflect good discrimination power, we 

introduce a weight measure on the features, which attempts to incorporate the class-structure 

of the original data in the solution space. More specifically, we consider a slightly modified 

version of the Fisher metric [Fisher R.A. 1936] given as: 
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+                                                            (4) 

where , ,s s s sandµ µ σ σ+ − + − are the means and standard deviations of the distribution 

of the feature im  in positive and negative classes, respectively. This metric reflects the 

discriminative power of the metabolic ratio im  within the dataset of interest. In order to reflect 

this intrinsic characteristic right in the process of feature selection, we reformulate Eq. (2) 

based on this metric as follows: 

 

         
)()(

)()(
'

#

1 isis

isisSV

ii

SV

i
mm

mm
xyw

−+

−+

= +

−
⋅= ∑ σσ

µµ
λ

ι

                                          (5) 

 



 

 115 

  IDENTIFICATION OF SIGNIFICANT METABOLIC MARKERS FOR BRAIN TUMORS 
  CLASSIFICATION: an application on peak area ratios                                              

 

Note that 'w is computed based only on the support vectors, since iλ  is zero for non-

support vectors, as explained in Chapter 2. Hence, the direction vector 'w defined in Eq. (5) 

expresses a Fisher’s hyperplane that passes through the origin and retains the same direction 

(sign) with that defined by the conventional SVMs approach. This new hyperplane can be 

used for defining the ranking criterion of surviving metabolic features (ratios). Rewriting Eq. 

(3) with respect to Eq. (5), we get in Eq. (6) a new decision function that incorporates the 

Fisher criterion as a weighting factor for support vectors. 
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In the case where the two classes are not linearly separable, as in most discrimination 

problems related to brain tumours, then we can use different kinds of kernels, such as 

Polynomial, Gaussian Radial Basis Function (RBF) and Sigmoid. As stated in Chapter 2, a 

kernel actually creates a feature mapping from a lower dimension data space to a higher one, 

where separation of samples is easier (and becomes linearly separable). By using different 

kinds of kernels we are supplied with different sets of support vectors and, thus, different 

Fisher lines in our formulation. The kernel we have implemented is the widely used RBF, 

which is described by:  
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where γ (gamma) is the RBF kernel’s width. Finally, combining Eq. (6) with Eq. (7) we get 

the proposed decision function in Eq. (8): 
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Summarizing, we can say that the main goal of the proposed technique, which is also of 

biological interest, is the identification of the metabolic-feature topology that forces a specific 

patient to cross the border of separation from one class to the other. Focusing on and 

appropriately weighting the support vectors, this formulation reveals possible features 

responsible for misallocating a patient. Such features can then be eliminated from further 

consideration. Furthermore, by selecting different kinds of kernels (in addition to RBF used in 

this study) we can obtain a variety of support vectors, which can also be viewed as different 

sets of domain representatives.  
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4.3.4.2 Flowchart of the method 

The functional operation of the feature selection and classification method is presented in 

Figure 4.5. The RFE process illustrates how the ratio features are selected as significant or 

not, based on their Fisher’s value. More specifically, the criterion ranks the input features on 

the support vectors according to Eq. (4). It should be noticed here that the identification of 

support vectors is realized prior to the application of the Fisher’s criterion. Thus, all data 

samples are considered in order to locate the support vectors and subsequently the Fisher’s 

criterion is applied only on them. 

The RFE process adopted removes one ratio feature per iteration. The feature with the 

smallest Fisher’s value (least significant) is removed and the rest (most significant ones) are 

kept and tested for their discriminative potential, yielding a specific Area under the Receiver 

Operating Characteristic Curve (AUROC) value. The process stops when the highest AUROC 

accuracy is obtained. At this point, the smallest ratio set deriving the highest accuracy for this 

experiment is also obtained. This process is repeated 100 times (10folds X 10 times = 100 

runs) within a 10-fold cross validation strategy. Each run derives a “highest” AUROC value 

and the average AUROC score is derived. Furthermore, the CV process derives 100 

(smallest) sets of ratio features. From those 100 sets we calculate the frequency of 

appearance of each feature. Then, the derived final set of markers (Table 4.5) contains those 

ratio features with the highest frequency of appearance. 

For the classification process that follows feature selection, both the SVM classifier and its 

least squares variant (LS-SVM) were tested. LS-SVM [Suykens J.A.K et al 1999] forms 

another type of SVM classifiers where instead of the inequality constraints (leading to 

quadratic programming), equality constraints are used leading to a system of linear equations. 

According to the theory of LS-SVM, every data point in the LS-SVM classifier is a support 

vector because, in general, none of the Lagrange multiplier ( iλ ) equals zero. This implies that 

all cases are considered here, in contrast to the SVM case where only some cases at the 

borders are involved as SVs. 
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Figure 4.5 - The flowchart of the feature selection and classification method applied in this 

study 

 
In both SVM and LS-SVM, a kernel is utilized to map the input data to a higher 

dimensional feature space, so that the problem becomes linearly separable. As mentioned 

before, the Gaussian RBF kernel in Eq. (7) was tested in this study, since it is considered a 

good choice when heterogeneous data are under scrutiny. In order to optimize the classifier’s 

performance the two hyperplane parameters γ  (gamma) and C (soft-margin) were adjusted. 

More specifically, the γ  parameter controls the flexibility of the kernel applied. Large values 

of the γ  parameter increase the curvature of the decision boundary, which inevitably leads to 

overfitting. In contrast, very small values make the kernel nearly liner. On the other hand, the 

C hyperplane parameter determines the margin-error penalty of the classifier, as mentioned in 

Chapter 2. Large values of this parameter decrease the margin of error, while small values 

increase it. The optimization of these parameters was achieved through a grid-search 

process. The two parameters were tuned in each one of the 100 runs of cross-validation, both 

at training and testing stage, in order to increase the classifier performance and avoid 

overfitting of data. It was noticed that the best pair of values was usually γ =10
-4

 and C=1000. 
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The software package used for the feature selection and classification process was 

implemented in Matlab ver. R2010 [Internet Source: http://www.mathworks.com]. 

4.3.4.3 Classifier performance evaluation 

The 10-fold Cross Validation (CV) and Leave-One-Patient-Out CV strategies were tested. 

Repeated stratified runs (10 folds Χ 10 times = 100 runs) were applied, which according to 

bibliography is suitable for cases where data samples are few, as in the glioma grade III and 

meningioma classes [Kohavi R. 1995]. Train sets contained 90% of the voxels of each of the 

two classes and the remaining 10% of these two classes were contained in the test sets. 

Instead, the Leave-One-Patient-Out CV scheme extracts all the voxels from each patient 

separately and keeps them out for testing. The remaining patients are used for the training 

set. Notice that the number of voxels of each patient in each class varies, as shown in Table 

4.2. The test sets were constructed based on the principle that every patient from each class 

would be involved at least once in the test set, so that the entire dataset could be tested at 

least once.  

 

4.3.5 Comparison with others studies 

In comparison to recent studies [Simonetti A.W. et al 2005 – Luts J et al 2007 – Devos A. 

et al 2005 – Postma G.J et al 2011] using the same MRSI and MRI data for feature selection 

and classification of brain tumors, this study expands on several points.  

Simonetti A.W. et al in 2005 applied four different feature reduction procedures: simple 

quantization, PCA, ICA and LCModel using as input the peak areas of 8 metabolites and 4 

MRI features. In other words and in contrast to this study, Simonetti A.W. et al did not apply 

any wrapper evaluation scheme (with RFE) to rank these features according to their 

discriminative potential.  

On the other hand Luts J. et al in 2007, applied 4 different feature selection methods 

(Fisher discriminant criterion, Kruskal-Wallis test, Relief-F, Automatic Relevance 

Determination), each one embedded in a LS-SVM classifier, using as input the peak areas of 

10 metabolites and 4 MRI features. The major difference from our study is on the way these 

filter criteria are embedded in the classifier. In our study, the ranking of the ratio features 

based on Fisher’s criterion involves only the support vectors whereas in Luts J. et al study, 

filtering is applied on whole data samples. Thus, the main goal of the proposed methodology, 

which is also of biological interest, is the identification of the feature topology that forces a 

specific patient to cross the border of separation from one class to the other. Focusing on the 

support vectors that determine the class borders, our approach attempts to identify the factors 

that could possibly misallocate a patient. Furthermore, the detailed characterization of the 

class-boundaries through the support vectors enhances the confidence of the classification 

results. In addition, in Luts J. et al study, 10 binary schemes were formulated for classification 

purposes, with the two classes of gliomas grade II and III being broken down to 6 subclasses. 
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Nevertheless, the exhaustive separation of patients into sub groups involves two important 

drawbacks. First, it does not provide good generalization potential on the classification results 

(statistical analysis) since the number of patients in each class is significantly reduced and 

second, significant information that could better explain the metabolic profile of these tumors 

might be masked within similar subclasses.  

Devos A. et al in 2005 applied only binary classification procedures using two well known 

classifiers (LDA, LS-SVM) without focusing either on feature selection or on the discriminative 

value of the features involved.  

Finally, Postma G.J. et al in 2011 compared 3 filter methods (Relief-F, Kruskal-Wallis test 

and Fisher discriminant criterion), 1 wrapper (forward selection with LDA) and 1 embedded 

(ARD with LS-SVM) based on metabolic features known from literature, in order to evaluate 

their relevance in differentiation of two brain tumors datasets. The direction of our study is 

quite different, focusing on the hypothesis that ratio-type features enhance the predictive 

power of the classifier. This was supported by the fact that the MRSI ratios alone provided 

high classification rates, whereas in Postma G.J. et al study the same was achieved using the 

MRI information. 
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4.4 Experimental Results 
 

The evaluation of the classification performance was performed by means of the global 

metric representing the Area under the Receiver Operating Characteristic Curve (AUROC). 

Confidence intervals (CI) around the best AUROCs were also estimated for statistical 

purposes. For each binary classification, shown in Table 4.2, the input dataset contained all 

the 18 peak area ratios. Using this dataset as input to the feature selection and classification 

algorithm described above, we estimate both the best AUROC in each binary classification 

scheme and the minimum number of ratio features needed (i.e. the ratio markers) to achieve 

that AUROC. The best AUROC values measured (average over CV runs) for the binary tests 

are reported in Table 4.4. The corresponding numbers of ratio features are also presented in 

Table 4.4. Bold figures indicate the highest AUROC scores achieved. 

Comparing the CV approaches tested, it is observed that the 10-fold CV gives better 

AUROC results compared to the Leave-One-Patient-Out method and the SVM prediction 

model appears to be appropriate for such binary classifications. In other words, the SVM 

classifier in a 10-fold CV scheme provides the best classification rates in all binary 

classification schemes. This is expected when compared to the Leave-One-Patient-Out CV 

approach, which excludes all voxels from at least one patient from the training phase, thus 

reducing the learning capacity and rendering the testing process less efficient. This effect is 

more obvious for the GRII vs GRIII scheme were the number of GRIII patients is already 

small and does not allow loss of information from an entire patient. In this case, a larger pool 

of samples is needed to enable more accurate consideration of this validation scheme. 

Furthermore, the LS-SVM classifier, even though simpler in form, cannot adapt to the 

complex structure of the binary problems and generally yields lower accuracies compared to 

the SVM scheme. This probably relates to the fact that in LS-SVM every patient is considered 

as support vector, which makes the classifier less sensitive to class boundaries, leading to 

slightly smaller AUROC values and larger marker sets compared to the SVM classifier. 
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Table 4.4 – Best AUROC values measured (average over CV runs) for the binary tests and 

the numbers of most significant features. 

Classifier 
evaluation 

method 
10-Fold CV 

Leave-One-Patient-
Out CV 

 
Feature 
selection 
method 

 

 
SVM

R 

 

 
SVM

R+I 

 

 
LS-SVM

R 

 

 
 

LS-SVM
R+I 

 

 
SVM

R 

 

 
LS-SVM

R 

 

Healthy vs 
tumor 

0.99 / 6 
(0.004) 

0.99 / 8 
(0.008) 

0.98 / 9 
(0.005) 

0.98 / 10 
(0.006) 

0.97 / 5 
(0.006) 

0.98 / 8 
(0.009) 

Healthy vs 
Glio 

0.99 / 6 
(0.005) 

0.99 / 7 
(0.005) 

0.99 / 9 
(0.004) 

0.98 / 10 
(0.005) 

0.98 / 8 
(0.006) 

0.98 / 6 
(0.007) 

Healthy vs 
Mng 

0.98 / 2 
(0.009) 

0.99 / 6 
(0.007) 

0.98 / 4 
(0.005) 

0.98 / 7 
(0.005) 

0.90 / 9 
(0.008) 

0.97 / 13 
(0.008) 

GRII vs GRIII 
0.84 / 8 
(0.028) 

0.85 / 12 
(0.030) 

0.84 / 9 
(0.040) 

0.81 / 11 
(0.040) 

0.78 / 7 
(0.045) 

0.63 / 12 
(0.042) 

GRII vs GRIV 
0.99 / 4 
(0.004) 

0.99 / 6 
(0.006) 

0.99 / 5 
(0.006) 

0.98 / 7 
(0.007) 

0.99 / 4 
(0.008) 

0.97 / 4 
(0.009) 

GRIII vs GRIV 
0.98 / 2 
(0.013) 

0.98 / 2 
(0.014) 

0.98 / 2 
(0.015) 

0.97 / 3 
(0.015) 

0.97 / 3 
(0.016) 

0.97 / 1 
(0.016) 

Glio vs Mng 
0.97 / 6 
(0.010) 

0.97 / 10 
(0.018) 

0.92 / 8 
(0.013) 

0.92 / 10 
(0.015) 

0.89 / 10 
(0.018) 

0.84 / 10 
(0.020) 

Bold figures correspond to the highest AUROC scores achieved. The figures at the right side 

of the slash indicate the number of features achieved at best AUROC. The R superscript 

corresponds to the case of MRSI features only, while R+I correspond to the combination of 

MRSI and MRI features. The numbers in the parenthesis represent the confidence interval 

(CI) at best AUROCs 

 
In healthy vs tumors, healthy vs gliomas and healthy vs meningiomas, the AUROC 

measures achieved by the SVM classifier in 10-fold CV are 0.99, 0.99 and 0.98 respectively. 

It is remarkable that only 2 ratio features can discriminate healthy from meningiomas with an 

AUROC value of 0.98. It is also observed that in healthy vs tumor test, the number of features 

needed to achieve 0.99 AUROC are 6; similar to the case of healthy vs gliomas, but with 

different ratio markers, as shown in Table 4.5. This is reasonable, since the tumor class is 

more abstract, containing both gliomas and meningiomas.  

In the cases of gliomas, the AUROC measure at GRII vs GRIV and GRIII vs GRIV reach 

again high values of 0.99 and 0.98 respectively, with a small number of features. This is not 

the case though for GRII vs GRIII, where the AUROC score is 0.84. This is explained by the 

fact that these two classes present great heterogeneity (mixed cases of diffuse astrocytomas 
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and oligodendrogliomas in GRII and anaplastic astrocytomas and oligodendrogliomas in 

GRIII) as mentioned in subsection 4.3.1. Finally, in gliomas vs meningiomas case, the 

AUROC score is quite high (0.97). 

Table 4.5 presents the smallest group of ratio features captured at the highest accuracy 

per binary scheme. We observe that the ratios of NAA, Cho, and Lips contribute most in the 

discrimination of healthy from the tumors (gliomas, meningiomas). The ratios of NAA, mI and 

Cho, in addition to those of Lac and Ala, assist the discrimination of healthy from gliomas. 

mI/S and NAA/S ratios are able to discriminate healthy from meningiomas. Ratios that involve 

Cre, Lips, Lac, along with Ala, NAA and mI can be used to discriminate low grade gliomas 

(GRII) from intermediate (GRIII) while Cre, Cho, mI and Ala can are capable to distinguish low 

grade form high grade (GRIII vs GRIV). The metabolic ratios of Cho and mI can be used in 

the GRIII vs GRIV discrimination Furthermore, ratios containing Ala, NAA and mI are 

important in gliomas vs meningiomas separation. It can also be observed that the ratios that 

involve the S variable as denominator are quite frequent in all binary schemes. The role of the 

brain metabolites mentioned above in brain cancer classification is also verified in recent 

literature, as presented in the Discussion section below.  

Adding the MR image features into the feature selection and classification process, slightly 

improves the AUROC measures in 2 out of 7 classification schemes (Table 4.4). As shown, in 

Healthy vs Mng and GRII vs GRIII cases, there was an increase of the AUROC values. More 

specifically, the SVM classifier under a 10-fold CV scheme was applied in each binary 

scheme, but with input feature set now fixed to the ratio markers already derived (shown in 

Table 4.5) together with the 4 image features obtained form T1, T2, PD and Gd MR images. 

At this point we combine the derived set of MRSI ratio markers with the 4 MRI markers, since 

we want to explore if the inclusion of the MRI features influences (positively or negatively) the 

best AUROC values obtained from MRSI markers alone and therefore consider the 

incremental power of MRI features in class discrimination. The SVM classifier was once more 

selected since, compared to LS-SVM, provided the best AUROC values when only 

spectroscopic features were used. The 10-fold CV method was applied for similar reasons. 

It was observed that all the spectroscopic markers (ratios) were selected as important for 

classification purposes when combined with the MRI features. In other words none of the ratio 

features was discarded by the process or substituted by an MRI feature, which verifies that 

the discriminative potential of the selected markers is significant. On the other hand, the 

number of features needed to obtain the same or slightly better classification rates was 

increased when MRI features included.  

Among the four MRI features, T2 and Gd were selected in healthy vs tumor classification 

while only T2 in healthy vs gliomas. All MRI features (T1, T2, PD and Gd) were selected as 

important in healthy vs Mng, gliomas vs Mng and GRII vs GRIII. Also, features T2 and Gd 

found to be significant in GRII vs GRIV. 

 Using all MRI features in GRIII vs GRIV scheme the AUROC achieved was not 

differentiated. Overall it can be claimed that in most binary schemes, T2 and Gd have a 
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greater influence than T1 and PD. Finally it is worth noticing here that although the integration 

of MRI with MRSI features caused a slight improvement in the classification accuracies, which 

is also mentioned in recent studies [Simonetti A.W. et al 2005 – Luts J et al 2007 – Devos A. 

et al 2005 – Postma G.J et al 2011], their discriminative value in our study was overshadowed 

by the strength of the MRSI features. The fact that MRSI features alone can give high 

classification rates without the support of MRI features has been also mentioned before 

[Galanaud D. et al 2006 – Herminghaus S. et al 2003]. 

 
Table 4.5 – The metabolic behaviour of ratio markers in each binary classification scheme. 

Binary  

schemes 
Ratio markers metabolic behavior and statistical significance 

NAA/ Cho NAA / S Cho/ S NAA/ Cre Lips / Cho Cho/ Cre   
Healthy vs 

tumor 
** ** ** * * *   

NAA / Cho mI / S Cho / S Cho / Cre Lac / Cre Ala / Cre   

Healthy vs 
Glio 

** ** ** * * *   

mI / S NAA / S       

Healthy vs 
Mng 

** *       

Cre / S Lips / Cre Lac /Cre Ala / S Ala / Cre NAA/ Cre Lips / Cho mI / S 
GRII vs  
GRIII 

** ** ** ** ** * * * 

Cre / S Cho / S mI / S Ala / S     

GRII vs  
GRIV 

** ** ** **     

Cho / S mI / S       

GRIII vs  
GRIV 

** **       

Ala / Cre Ala / S NAA / S mI / S Lips / Cre Lac / Cre   

Glio vs  
Mng 

** ** ** ** * * 
  

Double asterisks (**) correspond to highly-significant changes in the mean of the ratio marker, 

while single asterisks (*) indicate significant change. Upward direction of the arrow 

corresponds to an increase and downward direction to a decrease of the mean of the ratio 

marker in the second class 
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4.4.1 Statistical significance of the metabolic markers identified 

Another important issue concerns the statistical significance of the features selected as 

most important by the RFE-SVM method, shown in Table 4.5. Towards this direction, the 

statistical significance of the difference-of-means, in terms of p-values, was computed using 

the Independent-Samples t-test (two-tailed). The independent-samples-t-test is actually used 

to re-validate the statistical significance (in terms of the difference of their means) of the 

features selected by the feature selection process. Although similar to Fisher’s criterion, the t-

test is applied independently on each feature as a filter criterion, whereas the Fisher metric is 

applied within the classifier as a wrapper criterion. The latter case considers the predictive 

power of group of features, whereas the former one expresses the class-discriminating power 

of each feature. The markers selected according to their Fisher’s values are inputted into the 

SVM classifier that “decides” which of the markers contribute in discriminating glioma 

patients. These discriminating features might not necessarily be statistically significant.  Thus, 

the application of the t-test on the RFE results further validates the efficiency of the derived 

markers. Table 4.5 illustrates the p-values computed. We considered two thresholds of 

significance. When 0,05p <  the difference of means is considered statistically significant 

and when 0,001p <  it is considered highly significant.  Statistical analysis was applied using 

SPSS ver. 19.0 software tool [http://www.spss.com]. 

The examination of changes in the means of ratio markers between classes and the 

associated statistical significance, allows for a clear interpretation of the metabolic behavior of 

these markers, as indicated in Table 4.5. In this interpretation, the upward direction of the 

arrow indicates an increase in the mean of the ratio in the second class while the downward 

direction a decrease. An arrow with a subsequent double asterisk reflects a highly significant 

change in the mean of the ratio feature overhead, while a single asterisk a significant change. 
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4.5 Discussion 
 

In contrast to recent studies that mainly focus on estimating the efficiency of a predefined 

feature set in the discrimination of brain tumors, we applied a wrapper feature selection and 

classification method aiming to extract the smallest possible sets of markers that enable 

accurate classification of a new brain tumor patient into one of the classes considered. In 

other words, starting from a large input feature set with 18 potentially useful ratio features, we 

concluded to 7 compact feature sets (one for each binary classification scheme), as shown in 

Table  4.5. These sets are derived from the methodology applied and contain the fewest and 

most significant ratio features, which yield the highest AUROC scores in the corresponding 

binary tests. In addition, the methodology applied is voxel-based; it formulates one feature 

vector for each voxel from the MRSI (and MRI) data, so that the most significant features are 

extracted from the dominant voxels emerging as support vectors that best separate the 

classes. The cross-validated results obtained indicate that this methodology can provide high 

classification rates, even when some classes contain only a few patients (as in meningioma). 

In related attempts, Kumar A. et al in 2003 investigated the importance of Cho/Cre, 

NAA/Cre and NAA/Cho ratio features for the discrimination of gliomas and meningiomas. 

Howe F.A. et al in 2003(b) used mI/Cho Cho/Cre, to examine their potential in gliomas, 

meningiomas and metastasis discrimination. Lehnhardt F.G. et al in 2005 examined the 

power of Cho/Cre, Ala/Cre, Glycine (Gly)/Cre, Glu1/Glu2 ratio type features to discriminate 

primary from recurrent gliomas and meningiomas. Galanaud D. et al in 2006 investigated only 

three ratio type features, NAA/Cre, NAA/Cho and Cho/Cre, originating from multi voxel 

spectra (TE 135 ms) and a limited set of ratio features originating from single voxel 

spectroscopy. Furthermore, Galanaud D. et al introduced a new variable called S (sum of all 

metabolites’ peak areas of the same spectrum, except lipids) used as denominator in the ratio 

features, to distinguish different human brain tumors. 

Although the above cited studies also focus on revealing the classification significance of 

specific ratio-type features, they differ from our study in both the methodology and the limited 

number of investigated ratio features. In contrast to Galanaud D. et al who perform one-

versus-all classification, our study examines seven binary classification schemes enabling the 

identification of both similarities and differences between stages of the pathology. 

Furthermore, in our study the ratio features are measured in an intratumoral way, not in 

respect to a normal (healthy) reference as in Galanaud D. et al study. This fact reveals the 

intrinsic characteristics of these tumors enabling the SVM-based classifiers to reach high 

classification rates. Compared to Galanaud D. et al, our study achieves higher classifications 

rates (0.84 vs 0.67); especially in the case of gliomas grade II vs grade III, using only MRSI 

features. Finally, in Galanaud D. et al study the 4 MRI-based features are assigned to each 

patient by manually scoring the images, similar to Asari S. et al in 1994. In contrast, the 4 MRI 

features used in our study are generated by averaging the image intensities within each voxel 

of the T1, T2, Pd and Gd images of each patient. 
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Most of the recent studies mainly use Creatine and Choline as denominators in their input 

ratio-feature sets. Apart from these two metabolites, we make use of the S and Lips features. 

It should be noticed here that the S variable in our work, in contrast to Galanaud D. et al work, 

contains the mobile lipids at 0.9 and 1.3 ppm. As mentioned before, the lipids are often 

increased in high grade tumors as a result of higher rates of lipogenesis due to their 

increased energy needs. Therefore, they can play a significant role in high grade gliomas 

discrimination [Auer D.P. et al 2001]. This fact facilitates the easier discrimination of GRII vs 

GRIII gliomas classes, where the lipids play an important role as observed in Table 4.5. 

Most of the features selected by our proposed methodology for the healthy vs gliomas 

classification correspond to those mentioned in literature [Howe F.A et al 2003(a) – Kumar A. 

et al 2003 -Majós C. et al 2002 – Castillo M. et al 2000 – Heerschap A. 2007], where the 

behavior of known metabolites in brain tumors is analyzed. Low grade gliomas (GRII) are 

discriminated from intermediate and high grade gliomas (GRIII and GRIV) using the ratios of 

Cre, Lips, Lac, Cho, mI and Ala metabolites’ peak areas. Furthermore, the contribution of the 

ratios using the S in their denominator it was remarkable in the gliomas binary schemes as 

shown in Table 4.4 and also stated in relevant studies [Galanaud D. et al 2006 – Tan W. et al 

2008 - Likavcanová K. et al 2005]. This is more obvious in the cases of GRII vs GRIV (Cre/S, 

Cho/S, mI/S and Ala/S) and GRIII vs GRIV (Cho/S, mI/S). Finally, gliomas can be 

discriminated from meningiomas using ratios of Ala, NAA, mI as well as Lips and Lac 

metabolites’ peak areas. Overall, comparing the behavior of means of these markers in Table 

4.5, it becomes obvious that NAA and Cre decrease in tumors, while Cho increases. In 

addition, Lipids and Lac show a significant increase in gliomas, whereas Ala and mI increase 

in meningiomas. These results are in agreement with the findings of the aforementioned 

references. 

Although this study mainly focuses in revealing the smallest size and the most discriminant 

group of ratio features per binary scheme, it reveals additional metabolic ratio features, whose 

importance has to be addressed, as well. Thus, in healthy vs meningiomas test the Ala/Cre 

ratio is increased and this change was found to be statistically significant. In addition, the 

ratios Cho/Cre, Cho/NAA, Lips/Cre, Lips/Cho, Lac/Cre, Lac/Cho, all increased significantly in 

intermediate and high grade gliomas (GRIII and GRIV). The reason that these metabolic ratio 

features were not included in the markers’ sets (Table 4.5) is mainly because they have not 

further improved the classification accuracy within the RFE-SVM process and they were less 

frequently selected by the classifier compared to these already presented in Table 4.5. In 

other words the features presented in this table are considered enough to achieve the highest 

accuracies.  

Comparing the classification results of this study with those achieved by similar studies 

[Simonetti A.W. et al 2005 – Luts J et al 2007 – Devos A. et al 2005 – Postma G.J et al 2011] 

using the same dataset, high classification rates (above 0.97 AUROC) were also obtained in 

our study, in 6 out of 7 binary schemes. In GRII vs GRIII case, commonly described as the 

most heterogeneous binary scheme, the AUROC value obtained was 0.84, which is 
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considered quite satisfactory regarding the complexity of these classes. This fact reveals the 

reliability and efficacy of the methodology applied. 

Comparing now the ratio markers derived in this study with those examined in these 

studies, we can conclude the following.  

Similar to Kumar A. et al in 2003, this study also supports that Cho/Cre, NAA/Cre and 

NAA/CHO are significant in discriminating tumors from normal (healthy) tissues. 

Nevertheless, in this study exhibits the significance of other ratio type features like NAA/S, 

Cho/S and Lips/Cho which must also be considered in order to achieve high classification 

results. In Howe F.A et al 2003(b) study, mI/Cho found to play important role in tumor 

discrimination. Indeed, in our study too, mI was found to be very low in meningiomas and high 

in low grade gliomas, whereas Cho increased in gliomas as grade increased. Furthermore, 

Cho/Cre (or Cre/Cho), but also Lips and Lac all increased in tumors and were considered 

important in contrast to Howe F.A et al study. In relation to Galanaud D. et al study, the 

results of our study agree on the fact that the S variable plays a significant role in the 

classification process. In our study though the inclusion of mobile lipids in the S variable, not 

considered in Galanaud D. et al study, reveals also the important role of lipogenesis in brain 

gliomas, especially in those with high grade of aggressiveness. 

Combining the spectroscopic features with the MRI features derived from T1, T2, PD and 

Gd imaging modalities slightly improved the classification results in 2 out of 7 classification 

cases. Among the 4 imaging features, T2 and Gd were found most significant in this study. 

Their role has been identified in recent studies [De Edelenyi F.S. et al 2000 – Agnoli A.L. et al 

1987] too. Nevertheless, the integration of MRI features, although important, increased the 

number of features needed to achieve the same AUROC values. This fact emphasizes that 

the discriminative potential of the derived MRSI ratio markers is very significant. In essence, 

the ratio features have the strength to reveal intrinsic characteristics of these brain tumors 

and the combination with MRI features improves only slightly the classification accuracy.  
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4.6 Conclusions 
 

The identification of biologically and clinically significant sets of markers is necessary as to 

assist today’s medical practice in achieving better discrimination of complex brain tumours 

[Kounelakis M.G. et al 2008(a,b) – Kounelakis M.G. et al 2009]. This is mainly due to the fact 

that, even though the clinical profile between two patients might be similar, their metabolic 

profile may differ. Therefore, these metabolic differences must be taken under consideration 

by the clinicians in order to provide a more efficient patient-based treatment.  

The outcome of this study indicates that embedded feature selection and classification 

methods, where the intrinsic properties of patient data are taken under consideration, can 

actually assist the derivation of reliable sets of metabolic markers towards a more accurate 

type and grade discrimination of complex brain tumours. Apart form the already known 

metabolic ratios, others such as NAA/S, mI/S, Cho/S, Cre/S and Ala/S introduced in this 

study, are highly significant for the classification of new brain gliomas or meningiomas 

patients. The importance of these markers has been revealed through both statistical and 

biological means. In addition to the evaluation of marker efficiency, this study derives the 

minimal sets of significant markers for specific binary classification tests. 
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5.1 Introduction: The Energy Metabolism in a 
      Eukaryotic Cell 
 

Despite striking advances in proton Magnetic Resonance Spectroscopy (
1
H-MRS) imaging 

of brain tumors during the last decades, recent research efforts focus on the evaluation of the 

role of the energy metabolism in cancer cells in order to identify possible additional potential 

markers at metabolic and genomic level that will provide a further in-depth analysis of tumors’ 

behavior.  

The energy requirements of the brain are amazingly high; indeed, while representing only 

2% of the body mass, its oxygen and glucose utilization account for approximately 20% of 

those of the whole organism [Magistretti P.J. 1999 – Magistretti P.J. 2006 – Pellerin L. et al 

1994 - Waagepetersen H.S. et al 2009].  

The energy metabolism of a cell, shown in Figure 5.1, also known as cellular respiration, is 

the most vital metabolic function in human body for life maintenance. Cellular respiration is a 

series of metabolic processes which all living cells use to produce energy in the form of 

adenosine triphosphate (ATP) molecules.  In cellular respiration, the cell breaks down glucose 

(blood sugar) to produce large amounts of energy in the form of ATP.  Cellular respiration can 

take two paths: aerobic or anaerobic respiration.   

Aerobic respiration occurs when oxygen (O2) is available, whereas anaerobic respiration 

occurs when oxygen is not available.  The two paths of cellular respiration share the 

glycolysis (“lysis” of glucose or sugar splitting process) step, as shown in Figure 5.1.  In 

presence of oxygen (aerobic process) the pyruvate produced enters the mitochondrion where 

36 molecules of energy in the form of ATP are produced through the Krebs cycle (also known 

as TCA cycle or citric acid cycle) and the oxidative phosphorylation (OXPHOS). These 36 

ATP molecules are added to the 2 ATP molecules produced prior to the synthesis of pyruvate 

resulting to 38 ATP molecules of energy within the cell. On the other hand, in the lack of 

oxygen (anaerobic process), pyruvate is converted to lactic acid or lactate through 

fermentation.  Lactate then exits the cell to regenerate glucose through a process known as 

gluconeogenesis. This process forces glycolysis to run again.  
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Figure 5.1 – The energy metabolism (cellular respiration process) in an eukaryotic cell. The 

two paths of glycolysis: OXPHOS (an aerobic process) and Lactate fermentation (an 

anaerobic process) – [Sources: Kounelakis M.G. et al 2010(a) – Elsom Research] – (The 

figure was designed with Adobe Photoshop ver. CS5) 

 
Brain tumor cells, in order to meet the increased requirements of proliferation, often 

display fundamental changes in pathways of energy metabolism [Garber K. 2006]. This is due 

to the fact that many of the genetic mutations in tumor suppressors and oncogenes, explained 

next, which actually lead to the carcinogenesis, also drive the altered energy metabolism of 

tumor cells [Vogelstein B. et al 2004].  

However, increased energy demands in tumor’s cells, set a great challenge in tumors. The 

energy resources can run out. This can easily generate a metabolic stress within the tumor. 

Thus, tumors face two distinct metabolic challenges: (1) how to modify their cellular 

metabolism to support enhanced cell growth and proliferation, and (2) how to engage 

strategies of metabolic adaptation to survive periods of metabolic stress and maintain viability 

as the cells accumulate [Russel G. et al 2009]. 
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5.2 The Glycolytic Profile of Brain Tumors 
 

5.2.1 The brain tumors and the Warburg effect 

In contrast to normal brain cells the malignant rapidly-growing glioma cells present very 

high glycolytic rates [Warburg O. 1956 - Galaragga J. et al 1986]. There are two common 

reasons for this fact. The classical explanation is that there is poor blood supply to tumors 

causing local depletion of oxygen. The other explanation stems from the well known 

hypothesis of Otto Warburg, who claimed that most cancer cells predominantly produce 

energy by glycolysis followed by lactate fermentation in the cytosol, rather than by oxidation of 

pyruvate in mitochondria like most normal cells [Kim J.W et al 2006(a)]. This occurs even if 

oxygen is plentiful. Warburg postulated that this change in metabolism is the fundamental 

cause of cancer, a claim now known as the ‘Warburg effect’, as shown in Figure 5.2. This 

effect may simply be a consequence of damage to the mitochondria in cancer cells, or an 

adaptation to low-oxygen environments within tumors, or a result of cancer genes shutting 

down the mitochondria because they are involved in the cell's apoptosis program, which 

would otherwise kill cancerous cells.  

The Warburg effect may also be associated with cell proliferation. Since glycolysis 

provides most of the building blocks required for cell proliferation, it has been proposed that 

cancer cells may need to activate glycolysis, despite the presence of oxygen, in order to 

proliferate [Lopez-Lazaro M. 2008]. When oxygen is depleted, as for instance in hypoxic-

necrotic tumorous tissues of gliomas, the dominant glycolytic product in many tissues is 

lactate and the process is known as anaerobic glycolysis. 

Thus, lactate metabolite is a sensitive indicator of anaerobic glycolysis and reduced 

cellular oxygenation in living tissues. Furthermore, lipids and fatty acid syntheses are 

increased in gliomas [Ledwozyw A. et al 1992]. Therefore, apart from the already known 

metabolic markers (NAA, Cho, Cre, mI, Lac, Ala, Glx, Glut1, Glut2 and Lipids) studied in the 

first chapter for brain tumors evaluation, reliable estimates of the levels of glucose, pyruvate, 

lactate and lipid substrates are of special interest for the clinical management of brain gliomas 

patients.  
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Figure 5.2 – The Warburg effect in a tumorous cell. The blue arrows show the anaerobic 

glycolysis pathway which results to lactate fermentation – [Sources: Kounelakis M.G. et al 

2010(b) – The University of New South Wales] – (The figure was designed with Adobe 

Photoshop ver. CS5) 

 

5.2.2 The neuron-astrocyte synergy in energy metabolism 

Within the brain, the energy resources can be re-directed towards the regions of this organ 

that are undergoing increased signalling activity [Kennedy C. et al., 1976]. Depending on its 

energy needs the brain stimulates the energy metabolism for the production of the required 

energy in the form of ATP. Since the energy production process is basically regulated by the 

glycolysis pathway, as shown in Figures 5.1 and 5.2, special attention should be given to 

glycolysis when studying the metabolism of the brain. Furthermore and due to the fact that the 

glucose metabolite triggers the glycolytic activity, the evaluation of the glucose flux throughout 

the brain, is very important especially in pathological situations such as brain tumors where 

abnormal variations in the glycolytic process occur, as Otto Warburg also observed.   

Another issue that is directly related to the glucose flux within the brain organ is the cellular 

structure of the brain. As described in the first chapter, the brain is made form two main types 

of cells, namely the neurons and the glial or supportive cells. Among the glial cells, astrocytes 

(star shaped glial cells) are the most important. The main role of the astrocytes, which form a 

supportive network between neurons, is to deliver energy to neurons whenever they need it. 

This is done through a bioenergetic synergy between neurons and astrocytes for glucose 

exchange purposes, as shown in Figure 5.3.  
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Figure 5.3 – The brain neuron-astrocyte metabolic coupling. The glucose’s flux paths: In A 

(red path) the glucose fluxes to neuron via the astrocyte. In B (blue path) the glucose fluxes to 

neuron directly from capillary – [Internet Source: The University of Utah] - (The figure was 

designed with Adobe Photoshop ver.CS5) 

 
As shown in Figure 5.3, the blood glucose molecules which ‘travel’ in the brain blood 

vessels (capillaries) follow two different paths in order to reach neurons where the energy 

production, will take place. The red colored path (A) starts from the brain capillary, passes 

through the astrocyte and finally reaches the neuron where the ATP energy molecules are 

generated. In a similar manner neurons also receive glucose directly from the brain capillaries 

nearby as described by the blue path (B). The overall procedure eventually generates 38 ATP 

energy molecules. Then through the synaptic activity, glucose is transferred from the sending 

neuron to the neighboring receiving neuron. 

The most important glucose path is that through the astrocyte cells, i.e. the A path. This is 

due to the morphological associations between the vasculature, astrocytes and neurons. 

Perivascular astrocytes possess membrane extensions that contact the vasculature, other 

astrocytes, oligodendrocytes and cell bodies of neurons. This strategic positioning allows 

astrocytes to control the blood flow [Gordon G.R.J. et al 2009]. Furthermore, since a single 

astrocyte can make contacts with over 100,000 synapses, the demand on a single astrocyte 

for glucose delivery might be overwhelming [Bushong E. A. et al 2002]. 

Another more realistic illustration of the glucose and oxygen exchange between the blood 

capillaries, the glial cells and the neurons is shown in Figure 5.4. 
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Figure 5.4 – A network of blood vessels, astrocytes and neurons in the brain which signal 

each other. The mists of colors (red, green, yellow) show the flow of important molecules like 

glucose and oxygen. This image is a snapshot from a 52-second simulation created by 

animation artist Kim Hager at the University of California, Los Angeles – [Internet Source: US 

National Institute of Health] 

 
Under pathological conditions, such as in brain gliomas where the brain glia is gradually 

degenerated due to genetic and metabolic abnormalities and therefore the astrocytic 

bioenergetic network starts to collapse, the glucose flux is greatly differentiated.  

All these observations and facts enhanced our will to further investigate the role of the 

glycolysis, both at genomic and metabolic level. Next, a study which focuses on the 

identification of novel genetic markers for low and high grade brain gliomas diagnostic and 

treatment purposes is presented.  

Before that, an analysis of the currently studied genetic markers in brain gliomas 

evaluation is presented. 
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5.3 Genetic Markers Currently Studied in Gliomas 
 

As stated in the first chapter of this thesis, cancer and so brain gliomas, are the result of 

genetic abnormalities (or abnormal mutations) of specific genetic indicators called tumor 

suppressors and oncogenes. Tumor suppressors are genes whose main role is to slow down 

the cell division (mitosis) process or cause cells to die at a programmed time (apoptosis). In 

contrast, oncogenes speed up the cell division process. Abnormal variations in these two 

types of genes can result in uncontrolled and excessive cellular growth which is the hallmark 

of malignant tumors. 

 

5.3.1 The tumor suppressors and oncogenes in gliomas evaluation 

Genes determine the form, function, and growth patterns of cells. Those that accelerate or 

suppress growth are often involved in cancer. For example, many cancers have an 

abnormality in a gene that is responsible for stimulating cellular growth and/or the gene that 

normally prevents cancer is not working properly. 

Tumor genesis involves an interplay between at least two classes of genes: oncogenes 

and tumor suppressor genes. The most common scenario for inactivation of a tumor 

suppressor gene is mutation of one allelic copy, followed by loss of all or part of the 

chromosome bearing the second allele. Oncogene mutations, in contrast, generally involve a 

single allele because they are gain-of-function mutations. Gain-of-function mutations change 

the gene product such that it gains a new and abnormal function. 

An allele (which comes form the Greek word “allelomorph”) is one of two or more versions 

of a gene. An individual inherits two alleles for each gene, one from each parent, as shown in 

Figure 5.5. If both alleles are the same then we say that the individual is homozygote. If the 

alleles are different then it is heterozygote [Internet Source: National Human Genome 

Research Institute].  

Unlike oncogenes, tumor suppressor genes generally follow the 'two-hit hypothesis', which 

implies that both alleles that code for a particular gene must be affected before a mutation is 

manifested. This is because if only one allele for the gene is damaged, the second can still 

produce the correct protein.  
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Figure 5.5 – Two homologous chromosomes from the two parents and their possible allelic 

copies - [Internet Source: Futurity] - (The figure was designed with Adobe Photoshop 

ver.CS5) 

 
The most significant tumor suppressors and oncogenes examined nowadays for the 

evaluation of brain tumors are those presented in a well known genetic pathway, called the 

glioma pathway, provided by the Kyoto Encyclopedia of Genes and Genomes (KEGG), 

shown in Table 5.1 and Figure 5.6.  

 

Table 5.1 – The tumor suppressors and oncogenes used for brain gliomas evaluation   

Tumor suppressors Oncogenes 

 

• TP53 or p53 (Tumor Protein 53) 

• Rb (Retinoblastoma) 

• PTEN (Phosphatase and tensin homolog) 
 

• EGFR (Epidermal growth factor receptor) 

• PDGF (Platelet-derived growth factor) 

• CDK4 (Cyclin-dependent kinase 4) 

[Source: Kyoto Encyclopedia of Genes and Genome (KEGG)] 
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5.4 Identification of Significant Glycolysis-Related 
Genes for Brain Gliomas Management 
 

5.4.1 Abstract 

The proposed analysis considers aspects of both statistical and biological validation of 

glycolysis effect on brain gliomas, at both genomic and metabolic level. In particular, two 

independent datasets are analyzed in parallel, one engaging genomic (Microarray 

Expression) data and the other metabolomic (Magnetic Resonance Spectroscopy Imaging) 

data. The aim of this study is twofold. First to show that, apart from the already studied genes 

(markers), other genes such as those involved in the human cell glycolysis significantly 

contribute in gliomas’ discrimination. Second, to demonstrate that the glycolysis process must 

be considered in the design of novel gliomas’ treatment protocols.  

The results of this analysis demonstrate that the combination of genes participating in the 

glycolytic process (ALDOA, ALDOC, ENO2, GAPDH, HK2, LDHA, LDHB, MDH1, PDHB, 

PFKM, PGI, PGK1, PGM1 and PKLR) with known from the bibliography tumor suppressors 

(PTEN, Rb, TP53), oncogenes (CDK4, EGFR, PDGF) and HIF-1, enhances the discrimination 

of low versus high-grade gliomas providing a prediction ability of 98%. Furthermore, the 

glycolytic metabolites, such as Glucose, Pyruvate, Lactate and Lipids, considered in 

combination with the genomic markers, achieve comparable classification accuracy. 

Therefore, it is justified that the glycolytic profile of gliomas should be taken under 

consideration when diagnostic practices are applied. Finally, considering the glycolytic profile 

of glioma patients new therapeutic strategies must be generated to allow patient-specific 

treatment [Kounelakis M.G. et al 2011(a) – Kounelakis M.G. et al 2011(b)]. 

 

5.4.2 The need to focus on glycolysis 

Over the last decade a lot of research has focused on the identification of genetic 

alterations that play a vital role in brain glioma pathology. Most recent studies [Shiraishi T. et 

al 2003 - Furnari F.B. et al 2007 - Ohgaki H. et al 2009] conclude to a specific set of gene 

markers that has become a diagnostic standard to describe the type and grade of this 

complex and lethal cancer. Towards a better understanding of the interactions of these genes 

and the stage of their involvement in glioma grade progression, a genetic pathway in the form 

of a super network called glioma pathway, shown in Figure 5.5, has become available in 

KEGG. Within this network, specific pathways exemplify the role of oncogenes and tumor 

suppressor genes in crucial biological processes of the cell.  

The mutations of oncogenes lead to uncontrolled cell division (mitosis) instead of the 

programmed cell death (apoptosis). On the other hand the tumor suppressor genes are 

considered the “guardians” of the cell. When these genes do not function correctly, the cells 

with DNA damage continue to divide contributing to the formation of cancerous cells [Jones 

R.G. et al 2009].  
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The most important tumor suppressors and oncogenes involved in the glioma pathway (i.e. 

the gradual progress from low grade gliomas to intermediate and finally to high grade 

gliomas), include Phosphatase and tensin homolog (PTEN), Retinoblastoma (Rb), Tumor 

protein 53 (TP53) and Cyclin-dependent kinase 4 (CDK4), Epidermal growth factor receptor 

(EGFR) and Platelet-derived growth factor (PDGF) respectively [Furnari F.B. et al 2007 - 

Ohgaki H. et al 2009 - Jones R.G. et al 2009]. These genes are essential to be detected in 

glioma-discrimination procedures following either statistical or clinical diagnostic practices.  

Nevertheless, additional molecular mechanisms should also be included in the prediction 

approach, especially when discriminating complex, overlapping classes and attempting to 

identify differences at gene level.  

One such mechanism relates to the glycolysis process associated with the well known 

hypothesis of Otto Warburg. As mentioned, according to this hypothesis but others too [Kim 

J.W. et al 2006(a)], most cancer cells predominantly produce energy by glycolysis followed by 

lactic acid (lactate) fermentation in the cytosol, rather than by oxidation of pyruvate in 

mitochondria like most normal cells. This occurs even if oxygen is plentiful.  

Glycolysis pathway as also shown in Figure 5.7(A) schematically and (B) 

diagrammatically, involves a series of biochemical reactions (shown at the right hand side of 

Figure 5.7(B)) in which glucose is broken down to pyruvate in order to produce energy 

molecules. Pyruvate is then transformed to either lactate or enters the mitochondrion to 

activate the Citric Acid Cycle (TCA) depending on the cell’s state [Internet Source: Glycolysis-

Gluconeogenesis Pathways (KEGG)]. 

 

 

Figure 5.7 – A: Abstract presentation of glycolysis.  - B. Analytical illustration of glycolysis 

pathway showing the protein/enzyme coding genes (in elliptic scheme) participating in the 

glucose break down to pyruvate - [Internet Sources: Elsom Research – Kyoto Encyclopedia of 

Genes and Genome – Human Metabolome Database] - (The figure was designed with Adobe 

Photoshop ver.CS5) 
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Under normal conditions, only about 13% of glycolytic pyruvate is converted to lactate, but 

larger proportions are expected in gliomas. Furthermore, lipids and fatty acid syntheses 

(FASN) produced through the lipogenesis process are increased in gliomas [Lopez-Lazaro M. 

2008].  

 

5.4.3 Main goals and achievements of the study 

The main goal of this study is to systematically study the involvement of glycolysis process 

in gliomas and reveal its role in brain gliomas discrimination, at both genomic and metabolic 

level. In other words, to identify the discrimination potential of the genetic and metabolic 

features (genes and metabolites) participating in the glycolysis. It is actually an attempt to 

form a biological “bridge” from genomics to metabolomics as to validate the fact that 

glycolysis must be taken under consideration in diagnosis and therefore treatment 

procedures.  

Following a similar to Chapter 4 methodology, where the Fisher’s filter criterion was 

embedded into a RFE wrapper selection process, the Relief-f filter method is now applied in a 

wrapper manner in order to select the most discriminant features. Furthermore, a comparison 

of these two methodologies is achieved in both classification and feature selection level. 

The prediction ability of the selected features is estimated using an SVM classifier, 

evaluated through a 10-fold cross validation (CV) scheme. In addition to the individual testing 

of datasets, we formulate the combined feature vector composed of all significant genomic 

and metabolic markers and examine its predictive power through stochastic data perturbation 

techniques, again under a 10-fold CV scheme. 

The outcome of this study exhibits the significance of the glycolysis-related genes in the 

diagnosis and new treatments design, suggesting that these genomic markers must be 

integrated in nowadays laboratory and clinical practices applied to face gliomas and improve 

patient’s survival. 

 

5.4.4 Materials and Methods 

5.4.4.1 Datasets description 

In order to achieve the goals of this study, two different datasets are investigated. The first 

dataset comes from the genomics while the second one from the metabolomics area. The 

reason for employing two different datasets is to obtain a twofold validation of the role of 

glycolysis both at genomic and metabolomic level. 

The genomic dataset is available from a public functional genomics data repository of the 

National Center of Biotechnology Information [Internet Source: Gene Expression Omnibus]. 

This dataset was supplied by the Children's National Medical Center of Washington US and is 

an Affymetrix RNA array, first published in 2005 (last update in 2009) by Tobey MacDonald 

(contributor). This array consists of 12625 gene transcripts (rows) and 14 glioma patients 
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(columns) 8 of them characterized as low grade (GRII) and 6 as high grade (GRIV) or 

glioblastoma multiforme (GBM) and it was first used to identify significant gene expression 

profile differences between these two types of gliomas. GRII and GRIV abbreviations are 

according to World Health Organization (WHO), as explained in first chapter. 

The second dataset consists of short echo 
1
H-Magnetic Resonance Spectroscopy Imaging 

(MRSI) data from 17 glioma patients (10 of low grade and 7 of high grade). The two-

dimensional MRSI data was collected by the Radboud University Medical Center and 

contains 246 pre-processed proton-MRSI (
1
H-MRSI) volume elements (voxels) corresponding 

to 246 spectra. Each patient case passed strict quality control and validation procedures, 

including consensus histopathologic determination. Table 5.2 summarizes the data acquired 

from both genomics and metabolomics areas. Within each one of the 246 voxels obtained, 

specific metabolic features relating to glycolysis were measured. More specifically the areas 

under the peaks of Glucose (Gluc at 3.44 ppm), Pyruvate (Pyr at 2.37 ppm), Lactate (Lac at 

1.33 ppm) and Lipids (Lips: the sum of mobile lipids levels at 0.90 and 1.30 ppm) were 

estimated by peak integration [Simonetti A.W. et al 2003]. The areas were estimated by 

integrating each metabolite’s spectral intensities around its peak within a window of 0.13 ppm, 

as shown in Figure 5.8. Such a width covers most of the peaks of interest completely, without 

being contaminated with neighbouring peaks.  

 

 

Figure 5-8: Spectrum of a GBM patient. Y axis: signal intensity (proportional to metabolites 

concentration). X axis: frequency (position) in parts per million. Gluc (Glucose at 3.44ppm), 

Pyr (Pyruvate at 2.37 ppm), Lac (Lactate at 1.33 ppm) and Lips (sum of Lipids at 1.3 and 0.90 

ppm) are the metabolites observed. The shaded area is just for presentation purposes, not 

the real measured areas under the peaks – [Internet Sources: Radiology Spirit – Medscape] – 

(The figure was designed with Adobe Photoshop ver.CS5) 
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Table 5.2 – The datasets description 

Tissue type 
Patients in Genomics 

Dataset 

Patients in Metabolomics 

Dataset 

Low grade glioma (GRII) 8 10 

High grade glioma (GRIV) 6 7 

 Number of Genes Number of Voxels 

Number of features 12.625 246 

Low grade gliomas correspond to grade II based on WHO - High grade gliomas correspond to 

grade IV based on WHO 

5.4.4.2 Statistical analysis at genomic level 

In order to identify the discriminative strength of the glycolytic genes, a subset of the 

original genomic dataset was manually derived based on the functional properties of genes. 

More specifically, this subset includes only those genes associated with two KEGG pathways 

(glycolysis and glioma pathways). In other words it contains the glycolysis genes shown in 

Figure 5.7(B) and their isoforms and the genes (tumor suppressors and oncogenes) shown in 

Figure 5.6. and their isoforms. A gene isoform (or allele) denotes any of the several different 

forms of this gene. 

For gene annotation in both the dataset and the KEGG database, we used the gene 

ontology (GO) terminology [Internet Source: The Gene Ontology]. Overall, 62 unique gene 

identifiers out of 12625 initial gene transcripts were selected, as shown in Table 5.4. in 

section 5.7. The set of these 62 genes for each one of the 14 patients of the genomics 

dataset was used as input to the classifier. A Recursive Feature Elimination (RFE) process, 

based on the Relief-F filter method [Kononenko I. 1994], was embedded into the well known 

support vector machines classifier (SVM). Following this combined feature selection and 

classification approach we can extract the most significant genes i.e. those providing the 

highest classification accuracy and examine whether the glycolytic genes are among them.  

Following a similar strategy, the Fisher’s filter criterion used in fourth chapter, was also 

applied in this study for comparison purposes.  

5.4.4.3 The feature elimination process 

The key goal of Relief-F is to rank the quality of features according to how well they 

distinguish between close-by instances. Relief-F attempts to find an estimate of the probability 

of the feature to differ significantly only across classes and assigns this probability as weight 

to each feature f . More specifically, the weight function has the form: 
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classdifferentinfofvaluedifferentPfW −=
      (1) 

 

In other words, given a randomly selected instance I , Relief-F searches for k  nearest 

neighbors of I  from the same class, called nearest Hits and also k  nearest neighbors from 

the different class, called nearest Misses. The quality metric [ ]fW  for each feature f  is 

updated depending on I , nearest Hits and nearest Misses. In the update formula, the 

contributions of all the Hits and Misses are averaged.  An analytical explanation of the Relief-

F algorithm is given in the following pseudocode: 

 

Relief-F (C , n , m , k ) 
 

C : Training set,  
n : Number of features;  

m : Number of iterations,  

k : Number of nearest neighbours 
 

Initialize all weights [ ]fW , to zero 

 

For mtoi 1=   do begin 

 

Randomly select instance I   in C  

 

Find its k  nearest Hits and k  nearest Misses from each class different from 

which I  belongs to 
 

For ntof 1=  

 

[ ] [ ] )),,(()),,(( snearestMisIfdiffAvgnearestHitIfdiffAvgfWfW +−=  

 
 End 
 

End 
 

Returns all weights [ ]fW  

 
According to the Relief-F strategy, the feature (gene) with the least significant weight, 

according to the Relief-F strategy in Eq. (1), is eliminated and the rest (most significant ones) 

are kept for classification. In other words, at the end of each iteration i.e. after the elimination 

of the least significant gene, the prediction power of the remaining features is measured in 

terms of the Area under the Receiver Operating Characteristic curve (AUROC).  Since 1 gene 

is eliminated per iteration and 62 genes were examined, at the end of the whole process 62 

AUROC values are recorded. Furthermore, under a cross-validation scheme, this procedure 

was repeated 100 times and the highest classification accuracies were calculated. The total 

AUROC was obtained from the average value of the 100 runs. The genes most frequently 
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participating at the highest AUROC results were considered as the most informative markers 

for classification. This process is schematically presented in Figure 5.9. The software 

packages used to apply the Relief-F method was Matlab ver. R2010 and Weka ver. 3-6-4 

[Internet Sources: http://www.mathworks.com-http://www.cs.waikato.ac.nz]. 

 

Figure 5-9: The flow chart of the proposed methodology for optimal feature selection and 

classification – (The figure was designed with Adobe Photoshop ver. CS5) 

5.4.4.4 Classification process 

The discriminative potential of the features in each dataset was evaluated using SVM 

classifier with a Radial Basis Function (RBF) kernel. The SVM solution is based only on those 

data samples (glioma patients here) that are at the margin of the decision boundary, called 

support vectors [Abe S. 2005]. The methodology applied focuses only on the support vectors, 

as in Chapter 4, adopting the basic property of the SVM classifier, as presented in Figure 5.9. 

In essence, SVM attempts to find the best separating hyperplane to distinguish between 

the two classes of interest, positive (+1) and negative (−1). The separating hyperplane passes 
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through the middle of this margin with equation 0)( =+× bxw and the decision function is of 

the form: 

                                                         ))sgn(()( bxwxf +⋅=     (2) 

where w  represents the direction vector of the hyperplane. The sign of the value returned by 

Eq. (2) indicates the predicted class associated with example x , while )(xf  indicates the 

confidence level of the resulting decision. By solving the corresponding dual structure, the 

problem can also be formulated in the kernel space [Abe S. 2005], by defining a positive 

definite scalar kernel function (.,.)k  that measures the distance between two 

points ),( ji xx as in Eq. (3), 

                                  







+= ∑

=
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j

ijijji bxxkyasignxf
1

),()(          (3) 

where ja  are the weight parameters (support values) of the training cases (j =1… Ntrn) and 

jy  denote the corresponding hard labels. Kernel-based methods can perform well in 

processing high-dimensional and heterogeneous data. The parameters of RBF kernel (C, γ) 

used in our study were tuned in each binary classification, in such a way that the smallest 

possible number of support vectors would be retained for training purposes as to avoid 

overtraining.  

5.4.4.5 Statistical analysis at metabolic level 

At metabolic level, the input dataset was designed from the peak-area values of the four 

glycolytic metabolites (Glucose, Pyruvate, Lactate and Lipids) for each one of the 17 glioma 

patients of the metabolomics dataset. The recursive feature elimination was not applied on 

this dataset, since only four metabolic features are involved. Instead the SVM process 

focused only on the classification. 

The statistical significance of the selected metabolites was also measured through 

Independent-Samples t-test, using the SPSS ver. 19.0 software [Internet Source: 

http://www.spss.com]. The difference of their mean values was estimated along the two 

classes and the p-values were computed, as shown in Table 5.3.  

Table 5.3 – Independent samples t-test results 

Metabolites GRII vs GRIV 

Glucose HS (0,00093) 

Pyruvate S (0,041) 

Lactate HS (0,00085) 

Lipids HS (0,00084) 
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Estimation of the statistical significance of the four metabolic elements. The p-values are 

placed within the parentheses – The difference is statistically Highly Significant (HS) when p 

value < 0,001 and Significant (S) when p value < 0,05 

5.4.4.6 Classifier performance evaluation 

In order to evaluate the classifier’s performance a 10-fold CV was applied to evaluate the 

classifier’s performance. The classification accuracy was measured in terms of AUROC 

values. Data were stratified prior to being split into 10 folds. Stratification rearranged the data 

as to ensure that each fold is a good representative of the whole. In other words repeated 

stratified runs (10 folds Χ 10 times = 100 runs) were applied for each dataset (genomics and 

metabolomics). For each binary classification scheme the train sets involved almost 90% of 

the patients of each of the two classes and the remaining 10% were used in the test sets. 

This was done to ensure that a whole patient from each class is left for testing purposes. 

Confidence intervals (CI) were also estimated for each dataset classification measure, 

using the SPSS ver. 19.0 software. 

 

5.4.5 Experimental results 

The application of the RFE process based on the Relief-F filter at the genomics dataset 

aims to derive the glioma-related genes with significant influence on classification. In 

particular, genes most frequently participating in signatures associated with maximum 

AUROC measures, along the iterations of the CV process, are identified. More specifically, 

using these 62 genetic signatures and after repeating the CV process 100 times (runs), the 

highest classification accuracies are recorded and the gene signatures are tabulated. The 

average of these 100 maxima AUROC measures, reaches a value of 0.94 (CI: ± 0.03), as 

shown in Table 5.4.  

Overall, we derived 26 out of 62 genes, which are therefore considered as most 

informative markers for discrimination of grade II from grade IV gliomas. These genes are 

shown in Table 5.5 in bold, along with their frequency of appearance in 100 runs. The asterisk 

(*) symbol denotes tumor suppressors and oncogenes already known from the KEGG 

pathway for glioma while the (G) letter, genes participating in the glycolysis process within a 

cell. It can be observed that among the 26 significant genes, a large number (14) is directly 

related to the glycolysis process.  

Repeating the classification process (100 times under CV), using this time only these 

specific 26 gene markers, we observed that the average AUROC value is slightly improved 

reaching the value of 0.98 (CI: ± 0.02), as presented in Table 5.4. This fact verifies the 

biological significance of these genes in the glioma grading process.  

In a similar way, but without the feature elimination process since all four metabolites were 

found significant in terms of class-mean discrimination, the classification rates at metabolic 
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dataset were also recorded. The average AUROC value derived after 100 runs is 0.90 (CI: 

± 0.02), observed in Table 5.4.  

Finally, following the dual testing of the hypothesis regarding the glycolysis involvement in 

gliomas and the selection of markers from individual datasets, we proceeded with a stochastic 

evaluation of the predictive power of the joint feature vector. Thus, we formulated in vector 

form an overall signature composed of the total markers (26 genomics and 4 metabolics) 

selected. Then, we formulated a test population of 60 subjects (30 in class 1 and 30 in class2) 

by randomly permuting the value of each marker within its corresponding range in the original 

datasets. We used this random permutation scheme to generate a larger population of 

patients with all necessary attributes that follows the stochastic distribution as the original 

data. The prediction ability of the joint signature was evaluated on this population using a 10-

fold CV scheme. The average classification accuracy, measured in terms of AUROC, on the 

permuted dataset was estimated at 0.98 (CI: ± 0.018), as presented in Table 5.4. Notice that 

the combination of both genomic and metabolic markers in a common dataset provided a 

similar AUROC value as the one obtained from the genomic markers.  

The whole process was repeated using this time the SVM-Recursive Feature Elimination 

(SVM-RFE) feature selection and classification process used in Chapter 4, where the Fisher’s 

criterion was embedded to score the most significant features.  In Table 5.4 the classification 

accuracies achieved from both Relief-F and Fisher’s process are shown, for comparison 

purposes. In Table 5.6 the common genomics features selected from both SVM-RFE 

methods are shown.  

As it can be observed the SVM-RFE Relief-F method achieves better classification 

accuracies than SVM-RFE Fisher’s method, in all cases. Furthermore in Table 5.6 it can be 

observed that the SVM-RFE Fisher’s method reveals 30 genes, i.e. 4 more than the SVM-

RFE Relief-F, as significant for glioma discrimination. Another important observation in this 

table relates to the number of the glycolysis-related genes selected based on the Fisher’s 

criterion. As it can be seen this method selects 12 glycolysis-related genes and 18 tumor 

suppressors and oncogenes whereas the Relief-F criterion 14 glycolysis-related genes and 

12 tumor suppressors and oncogenes. 
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Table 5.4 – Classification results obtained from both methodologies and confidence intervals 

Initial 62 genes  
Significant genes 

detected 

Only 4 

metabolites  

Combined 

scheme  
Feature 

sets 
(1) (2) (3) (2+3) 

(Relief-F) 0.94(CI: ± 0.03) 0.98
RF

(CI: ± 0.02) 0.90(CI: ± 0.02) 0.98(CI: ± 0.018) 

(Fisher’s) 0.91(CI: ± 0.02) 0.93
FS

(CI: ± 0.02) 0.89(CI: ± 0.03) 0.95(CI: ± 0.012) 

Classification accuracies are based on the AUROC values. The RF superscript corresponds 

to the result obtained from 26 genes identified as significant in the SVM-RFE Relief-f method. 

The FS superscript corresponds to the result obtained from 30 genes identified as significant 

in the SVM-RFE Fisher’s method. Case (2+3) combines the 4 metabolites (Glucose, 

Pyruvate, lactate and Lipids) with the significant genes found from each methodology. CI 

stands for Confidence Intervals 

 
Table 5.5 – Genetic markers selected from SVM-RFE Relief-f method in alphabetical order 

Genes 1 - 16 Genes 17 - 32 Genes 33 - 48 Genes 49 - 62 

ALDOA
G
 (90%) GAPDHS

G
 PDGFRL* RB1* (98%) 

ALDOB
G
 GCK

G
 PDHA1

G
 RBBP4* 

ALDOC
G
 (99%) GRB2* PDHA2

G
 RBBP5* 

BPGM
G
 HIF1A* (98%) PDHB

G
 (97%) RBBP6* 

CDK4* (100%) HK2
G
 (98%) PFKFB1

G
 RBBP7* 

CDKN2A* LDHA
G
 (95%) PFKL

G
  RBBP8* 

CDKN2B* LDHB
G
 (94%) PFKM

G
 (87%) RBL1* 

CDKN2C* LDHC
G
 PFKP

G
 RBL2* (98%) 

CDKN2D* MDH1
G
 (100%) PGI

G
 (98%) TP53* (98%) 

DLAT
G
 MDH2

G
 PGK1

G
 (94%) TP53AP1* 

ECD
G
 OGDH

G
 PGM1

G
 (97%) TP53BP1* (92%) 

EGFR* (95%) PDAP1* PGM2
G
 TP53BP2* 

ENO1
G
  PDGFA* (95%) PKLR

G
 (97%) TP53I11* 

ENO2
G
(97%) PDGFB* (93%) PKM2

G
  TP53I3* 

ENO3
G
  PDGFRA* (97%) PTEN* (99%)  

GAPDH
G
 (82%) PDGFRB* (95%) PTENP1*  

Gene’s names are based on The Entrez Gene Database. The asterisk (*) symbolizes the 

genes known from bibliography while the (G) letter the glycolysis-related genes. The genes in 

bold are the most significant genes based on the SVM-RFE Relief-F. The numbers in the 

parentheses correspond to the frequency of appearance of each gene at the highest 

AUROCs measured in a 100 runs process 
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Table 5.6 – Common and uncommon genomic markers found from each feature selection 

methodology 

A/A SVM-RFE (Relief-F)  SVM-RFE (Fisher’s) 
Common (■) 

Uncommon (□) 

1 ALDOA
G 

 ALDOA
G 

 ■ 

2 CDK4*  CDK4* ■ 

3 EGFR* EGFR* ■ 

4 HIF1A* HIF1A* ■ 

5 HK2
G
 HK2

G
 ■ 

6 LDHA
G
  LDHA

G
  ■ 

7 LDHB
G 

 LDHB
G
  ■ 

8 MDH1
G
  MDH1

G
 ■ 

9 PDGFA*  PDGFA*  ■ 

10 PDGFB*  PDGFB*  ■ 

11 PDGFRA*  PDGFRA* ■ 

12 PFKM
G
  PFKM

G
 ■ 

13 PGI
G 

 PGI
G
  ■ 

14 PGK1
G
  PGK1

G 
 ■ 

15 PTEN*  PTEN* ■ 

16 RB1*  RB1* ■ 

17 RBL2*  RBL2*  ■ 

18 TP53*  TP53*  ■ 

19 TP53BP1*  TP53BP1* ■ 

20 ALDOC
G
 ALDOB

G
 □ 

21 ENO2
G
 ENO3

G
  □ 

22 GAPDH
G
  CDKN2A* □ 

23 PDGFRB*  CDKN2B* □ 

24 PDHB
G 

 ECD
G
 □ 

25 PGM1
G
  GRB2* □ 

26 PKLR
G
  MDH2

G
 □ 

27  PDGFRL* □ 

28  PTENP1* □ 

29  RBL1* □ 

30  TP53AP1* □ 

Total 26 genes 30 genes  

The number of common genomic markers is 19 while the number of uncommon is 16 (6 come 

from SVM-RFE Relief-F and 10 from the SVM-RFE Fisher respectively) 
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5.4.6 Discussion 

5.4.6.1 Statistical results analysis 

The tumor suppressors and oncogenes involved in glioma grade progression, described in 

KEGG’s glioma pathway, were established as a gold standard in today’s diagnostic practices. 

Most of the related studies either evaluate the potential of already known markers from the 

published genetic networks or examine glycolytic genes for the classification of gliomas. 

Thus, they primarily focus on the analysis of gliomas at genetic level. In contrast, our study 

attempts to reveal the significance of the glycolytic genes in a different way. First, we focused 

on glycolysis at both genomic and metabolic level in order to examine whether its contribution 

is dominant in the discrimination of low from high grade brain gliomas. Second and based on 

its discrimination ability to exhibit the need to consider glycolysis effects in the design of novel 

treatments. 

Both of these two goals were accomplished. As far as it concerns the classification 

potential of the glycolysis related genetic markers found, the results of the feature selection 

and classification process on the genomic dataset of 14 glioma patients clearly prove their 

significant contribution in gliomas discrimination. This fact was also verified through the 

estimation of their frequency of participation shown in Table 5.4. Furthermore the 

discrimination value of the four metabolites was also verified through the classification of 17 

glioma patients. The significance of glucose, pyruvate, lactate and lipids in glioma 

discrimination and analysis is noticeable, reaching AUROC values of 0.90 (CI: ± 0.02) in the 

case of Relief-F method and 0.89 (CI: ± 0.03) in the case of Fisher’s method respectively. 

The statistically significant difference of their means in Table 5.3 also implies that their 

metabolic activity differs in different stages or grade of gliomas [Galarraga J. et al 1986 – 

Kounelakis M.G. et al 2010(a)]. Nevertheless, the observation that these markers do not 

contribute additional efficiency in the classification process, when combined with the 

appropriately selected genomic markers, may be related to an assumption that metabolites 

convey more abstract information complementary to that of genetic markers.  

As observed in this study the SVM-RFE methodology based on the Relief-F filter provided 

better results compared to those obtained from the Fisher’s criterion application. More 

specifically the Relief-F method revealed 26 significant genes for glioma discrimination where 

14 of them are glycolysis-related. In contrast the Fisher’s criterion managed to select 30 

significant genes where 12 of them are glycolysis-related, as shown in Table 5.6. 

Furthermore the Relief-F method managed to reach higher classification rates compared to 

the Fisher’s classification results in all feature sets as shown in Table 5.4.   

The differences in the results obtained (number of features selected and classification 

rates) from the two methodologies are justified by their different mechanisms in the selection 

of significant features. Fisher’s criterion is a simple measure that scores each feature by 

calculating for that feature the (squared) distance between the class means and correcting 
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that distance with the within class variance. In contrast to most feature ranking methods, 

Relief-F does not assume conditional independence of the features. The significance of the 

features is obtained based on how good they discriminate between samples that are close. It 

is an iterative procedure in which random samples are picked from the dataset, and each time 

the k  nearest neighbours of the same and the opposite class are calculated. Based on these 

neighbouring cases the weights of the features are updated. At the end the features are 

ranked based on the calculated weights. 

Relief-F has been adopted in several studies on cancer discrimination, involving 

microarray data [Robnik-Sikonja M. et al 2003]. This approach has shown comparable 

performance in comparison with others already known methods such as Information Gain, 

Gain Ratio and χ
2
 – statistic in various domains such as discrimination of leukemia (AML and 

MLL) and colon cancer [Wang Y. et al 2004] and brain tumors [Postma G.J. et al 2011 - Luts 

J. et al 2007]. 

As far as it concerns the second goal, i.e. the role of glycolysis in the design of new 

treatments, the following sections clearly describes this issue. 

5.4.6.2 The effect of the glycolytic gene-markers on glioma cells  

Based on their biological function in the glycolysis process provided by the Gene Ontology 

database [Internet Source: The Gene Ontology], the 14 genes (or protein/enzyme coding 

genes) detected (ALDOA, ALDOC, ENO2, GAPDH, HK2, LDHA, LDHB, MDH1, PDHB, 

PFKM, PGI, PGK1, PGM1 and PKLR) shown in Table 5.5, are categorized into six broad 

classes. These are the Kinases, Isomerases, Aldolases, Mutases, Enolases and 

Dehydrogenases. 

Kinases: Between these 14 glycolytic genes revealed from this study, 4 of them belong to 

the class of kinases. These are the HK2, PFKM, PGK1 and PKLR which are isoforms of the 

genes, Hexokinase (HK), phosphofructokinase (PFK), phosphoglycerate kinase (PGK) and 

pyruvate kinase (PK) respectively. Kinases are the key regulators of cell function and 

constitute one of the largest and most functionally diverse gene families. They are particularly 

prominent in signal transduction and co-ordination of complex functions such as the cell cycle.  

Regarding the 4 kinases found in our study, increased levels of HK have been identified in 

high grade gliomas (GRIV) in contrast to low levels found in low grade gliomas (GRII) 

[Dominguez J.E et al 1987]. In addition, several studies demonstrate that hexokinase, 

particularly the HK2 isoform, plays a critical role in initiating and maintaining the high glucose 

catabolic rates of rapidly growing tumors [Mathupala S.P. et al 2006 - Pedersen P.L. et al 

2007]. Another major regulatory protein coding gene in glycolysis is the phosphofructokinase-

muscle (PFKM or PFK1). This gene allows metabolic intermediates to be diverted into 

pathways other than glycolysis for example, the pentose phosphate pathway, as well as 

increases or decreases the rate of glycolysis depending on the energy status of the cell. 

Importantly, despite being a substrate for PFKM, ATP is a potent inhibitor of its activity which 

is probably the most important mechanism by which OXPHOS regulates glycolysis (Pasteur 
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Effect) [Tennant D.A. et al 2009]. Also, increased levels of PFKM have been noticed in high 

grade gliomas as glioblastoma multiforme (GRIV) [Dominguez J.E et al 1987]. PGK1 gene 

has been observed to be related with Hypoxia-inducible factor 1 (HIF-1) which is a gene 

mostly found in hypoxic tumorous areas. Over expression of HIF-1 caused elevation of PGK1 

in recent study [Zhao S. et al 2009]. The final protein coding gene in glycolysis is pyruvate 

kinase (PK). This gene (and its isoform PKLR- pyruvate kinase-liver and RBC) allows the cell 

to sense the levels of anabolic precursors as well as the energy status of the cell. This 

regulatory mechanism is thought to allow tumor cells to survive in environments with varying 

oxygen and nutrients [Tennant D.A. et al 2009 - Semenza G.L. et al 1996 - Pelicano H. et al 

2006].  

Isomerases: The phosphoglucose isomerase (PGI) is the only gene of this category that 

has been found significant for glioma discrimination. Its function is to convert glucose 

(Glucose-6-phosphate) to fructose (Fructose-6-phosphate). Its role in both the glycolytic and 

gluconeogenesis pathways is important [Yanagawa T. et al 2004]. 

Aldolases, Enolases and Mutases: Within the group of 14 gene markers involved in the 

glycolysis pathway, 4 of them belong to these three categories. These are the ALDOA, 

ALDOC, ENO2 and PGM1 genes, as shown in Figure 5.7(B). ALDO (with isoforms ALDOA, 

ALDOC) and ENO (with isoform ENO2) are directly related to the HIF-1 which is a key 

element of the mitochondria activity [Semenza G.L. et al 1996]. Phosphoglycerate mutase-1 

(PGM1) is a glycolytic gene that catalyzes the conversion of 3-phosphoglycerate to 2-

phosphoglycerate. The TP53 gene suppresses the expression of PGM and therefore, loss of 

TP53 in cancer cells will lead to increased PGM activity and enhanced glycolysis [Levine A.J 

et al 2010]. 

Dehydrogenases: Among the 14 glycolytic genes markers found to be significant, 5 of them 

(GAPDH, LDHA, LDHB, PDHB and MDH1) belong to the category of dehydrogenases. Interestingly, 

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is implicated in apoptosis when it is 

translocated into the nucleus, although the molecular mechanism responsible for its nuclear 

translocation and its role in cancer remain to be defined [Pelicano H. et al 2006]. The role of 

HIF-1 is not restricted to upregulation of the genes stimulating glucose utilization. Recent 

findings demonstrate that in addition, HIF-1 suppresses mitochondrial function in tumor cells, 

suggesting that it modulates the reciprocal relationship between glycolysis and OXPHOS. The 

switch between glycolysis and OXPHOS is controlled by the relative activities of two genes, 

pyruvate dehydrogenase (with isoform PDHB) and lactate dehydrogenase (with isoforms 

LDHA and LDHB) [Simon M.C. et al 2006 - Kim J.W. et al 2006(b)]. Furthermore, malate 

dehydrogenase (with the isoform MDH1) is an enzyme in the citric acid cycle, as shown in 

Figure 1(B), which catalyzes the conversion of malate into oxaloacetate. Malate 

dehydrogenase is also involved in gluconeogenesis, that results in the generation of glucose 

from non-carbohydrate carbon substrates such as lactate, glycerol, and glucogenic amino 

acids and it is used to keep blood glucose levels from dropping too low (hypoglycemia) [Lee 

S.M. et al 2009]. 
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Overall, our study has identified 14 glycolytic gene-markers and their corresponding 

metabolic elements (Glucose, Pyruvate Lactate and Lipids) controlling the energy production 

process in the tumors cells. It becomes evident so that the glycolytic profile of gliomas must 

be taken under consideration at the diagnosis and treatment stages. 

5.4.6.3 The effect of tumor suppressors and oncogenes on glioma cells 

Apart from the glycolytic genes, we considered 3 tumor suppressors and 3 oncogenes 

already known from bibliography [Furnari F.B. et al 2007 - Ohgaki H. et al 2009 - Jones R.G. 

et al 2009]. Their role was statistically verified in our study. More specifically and in 

agreement with current literature, our study verified the significance of the tumor suppressors 

(PTEN, Rb, TP53) and the oncogenes (CDK4, EGFR, PDGF), which play a crucial role in the 

control and regulation of vital functions of the cell such as cellular proliferation, cellular 

apoptosis, invasion and angiogenesis. 

In addition to its well-known functions, such as maintenance of genomic integrity, cell cycle 

arrest, and apoptosis, recent evidence suggests that TP53 regulates mitochondrial respiration 

and glycolysis [Matoba S. et al 2006 - Yin Y. et al 1992]. TP53 influences the metabolic 

balance in cells between glycolysis and OXPHOS. Mutation of TP53 in tumors causes 

downregulation of mitochondrial respiration and a shift of cellular energy metabolism towards 

glycolysis. In terms of metabolism, loss of TP53 may provide a significant growth advantage 

to cancer cells since TP53-deficient tumors engaged in aerobic glycolysis are able to more 

readily access energetic and biosynthetic pathways that support anabolic synthesis. TP53 

mutations are significantly more frequent in secondary glioblastomas than in primary 

glioblastomas (65% vs 28%) [Ohgaki H. et al 2004].  

The phosphatase and tensin homology (PTEN) tumor suppressor gene is encountered in 

high grade gliomas, in a percentage of 30%–44% [Wang S.I. et al 1997]. The high mutation 

rate of this gene in human cancers, points to the importance of cooperating genetic lesions in 

unleashing the full potential of PTEN loss of function in oncogenesis, progression, or tumor 

maintenance. In this regard, PTEN mutations are found in anaplastic astrocytomas (GRIII) 

and glioblastoma multiforme (GRIV), both primary and secondary [Ohgaki H. et al 2004]. 

Recent studies have shown that loss of function of PTEN function alters the relationship 

between glucose concentration and cell proliferation and increases glycolysis [Ohgaki H. et al 

2009 - Blouin M.J. et al 2010- Knobbe C.B. et al 2002]. 

Platelet-derived growth factor (PDGF) and epidermal growth factor receptor (EGFR) have 

important roles in gliogenesis. Amplification of EGFR gene occurs in about 40% of 

glioblastoma multiforme. Over expression of this gene has been found to be associated with 

poor prognosis. On the other hand, PDGF has a prominent over expression in low grade 

gliomas and is considered a critical regulator of gliogenesis [Maher E.A. et al 2001]. The 

retinoblastoma (Rb) is a tumor suppressor gene and its main function is the cell cycle 

progression. Due to this fact its mutations are encountered in high grade tumors such as 

glioblastoma rather than in low grade ones [Maher E.A. et al 2001], Rb mutations are also 
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more often in secondary glioblastoma multiforme rather than in primary glioblastoma [Ohgaki 

H. et al 2007]. Furthermore, the function of the cyclin-dependent kinase 4 (CDK4) gene is vital 

since it is also a cell cycle regulation gene which promotes cell division [Maher E.A. et al 2001 

- Ohgaki H. et al 2007 - Rollbrocker B. et al 1996]. 

An important finding of this study is the fact that specific isoforms of these genes were also 

found significant. These were the PDGFA, PDGFB, PDGFRA, PDGFRB, Rb-1, RBL2, and 

TP53 binding protein-1 (TP53BP1). Furthermore the HIF-1 isoform Alpha was also detected. 

A common characteristic of rapidly growing tumors is that they become easily hypoxic owing 

to the inability of the local vasculature to supply adequate amount of oxygen. However, tumor 

cells can successfully escape hypoxia-mediated death by induction of the HIF-1 gene. Owing 

to the inability of mitochondria to provide enough ATP for cell survival under hypoxic 

conditions, tumor cells must upregulate the glycolytic pathway [Simon M.C. et al 2006]. Thus, 

hypoxia inducible factor-1alpha (HIF-1A) is a main responder to intracellular hypoxia and is 

over expressed in many human cancers, including gliomas [Méndez O. et al 2010]. 

The isoforms Alpha and Beta of the PDGF and PDGFR genes that were found significant 

in our study have been reported to contribute to the gliomas growth. These genes are also 

expressed in the developing vasculature in both normal and pathological conditions, including 

tumor angiogenesis [Hermanson M. et al 1992].  Furthermore TP53BP1 mutations have an 

impact on gliomagenesis and are present in malignant gliomas, as illustrated in the Human 

Protein Atlas [Internet Source: The Human Protein Atlas]. Finally, it has been found that Rb-1 

and RBL-2 retinoblastoma isoforms correlate with the degree of malignancy in gliomas 

[Lapenna S. et al 2009]. Therefore, the findings of our study support the conclusions of 

previous studies regarding these genes, but also enhance the list of glioma-related markers 

with glycolytic genes. The robust performance of the integrated marker list including both 

genomic and metabolic markers further enhances the importance of the glycolysis signature 

in glioma discrimination in support of Warburg hypothesis.   

5.4.6.4 Targeting mitochondria for glioma treatment  

According to Otto Warburg’s effect the increased rate of glycolysis observed in gliomas is 

a result of mitochondrial defect which occurs due to low oxygenation in tumorous area. 

Limited oxygen in tumor causes inactivation of citric acid cycle (TCA or Krebs cycle) and 

oxidative phosphorylation (OXPHOS) in mitochondria and also inhibits the apoptotic function. 

The fact that apoptosis is disturbed leads to an anarchic tumor cell proliferation. In turn, the 

massive cell proliferation increases the need for oxygen within tumor areas.  

It is well understood so that the impaired mitochondrial respiration is a key issue which 

should be given additional attention when new therapies and drugs are designed. The fact 

that the inactivation of mitochondrial activity which promotes unbalanced cell proliferation is a 

hallmark in glioma tumorigenesis makes this organelle attractive for further investigation 

aiming to design new therapeutic agents with maximum efficacy.  
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Recent experimental attempts in pharmacology focus on the identification of novel 

glycolysis inhibition agents that will stimulate the mitochondrial activity by downregulation of 

the glycolysis and lactate fermentation pathways. The main goal of these attempts is to 

reactivate the mitochondrial respiration (i.e. the citric acid cycle and OXPHOS) in glioma cells 

hoping that this will force tumor cells to choose the mitochondrial energy pathway instead of 

their usual energy supply via the glycolysis-lactate fermentation pathway. Waking up 

mitochondria in tumour cells will reactivate the apoptosis which will stop cell proliferation and 

so tumor growth. 

Among the glycolysis inhibitors (agents) that are under investigation for their ability to 

stimulate the mitochondrial oxidation of glucose and suppress the glycolytic pathway in 

glioma cells, the most significant are shown in Table 5.7. In red color is a known drug 

(Gleevec) which is currently used in clinical practices. 

 
Table 5.7 – Glycolysis inhibitors for anticancer treatment 

Inhibitors Drug development stage 

2-Deoxyglucose (2-DG) Clinical trials 

Lonidamine (LND) Clinical trials 

3-Bromopyruvate (3-BrPA) Pre-clinical 

Imatinib (Gleevec) Approved for clinical use 

Oxythiamine (OT) Pre-clinical 

[Source: Pelicano H. et al 2006] 

 

5.4.6.5 Controlling hypoxia for glioma treatment 

The fact though that there is not enough oxygen to serve the rapid tumor cell growth, 

promotes hypoxia. Hypoxic tumors will eventually form necrotic areas due to insufficient 

oxygen supply. Although tumor tries to face the problem of low oxygenation by creating a 

microvascular environment to “feed” its cells, this will inevitably collapse due to structure and 

functionality defects, leading to even more severe hypoxia/necrosis. This is a common 

characteristic in approximately 80% of high grade gliomas such as glioblastoma multiforme 

(GBM) [Kleihues P. et al 1997]. 

Under hypoxic conditions, oxidative phosphorylation in the mitochondria will not proceed 

normally because of insufficient oxygen supply, even if the mitochondria in cancer cells do not 

have structural defects. Increased glycolysis will result in elevated production of lactate 

through fermentation process, which leads to acidification of tumor tissue and provides a 

microenvironment that promotes and selects cells with malignant behaviors. Therefore, 

increased glycolysis may be viewed as cellular adaptation to hypoxia [Gatenby R.A. et al 

2004].  
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The cellular response to hypoxia is controlled by HIF-1 and especially the HIF-1a isoform 

which activates the expression of target genes involved in angiogenesis, glucose uptake, 

glycolysis, growth factor signalling, apoptosis, invasion, and metastasis [Brahimi-Horn M.C. et 

al 2005]. Importantly, hypoxia has been associated with chemotherapy resistance and 

reduced sensitivity to radiation therapy due to upregulation of HIF-1. Therapeutic resistance 

associated with hypoxia is a significant problem in clinical treatment of cancer, and inhibition 

of glycolysis may provide a novel approach to overcoming such resistance. Therefore efforts 

to prevent the formation of hypoxic environments within tumors’ cells will enable 

chemotherapies to act more effectively. Finally this will significantly reduce the time period 

that the chemotherapy is applied and the toxicity that these drugs may cause.  

 

5.4.7 Conclusions 

Nowadays great efforts are made to identify reliable sets of markers for more effective 

diagnosis and treatment of aggressive brain tumors such as gliomas. Following this trend this 

study exhibits the role of the energy metabolism and especially glycolysis pathway, whose 

importance has been already reported since 1956 by Otto Warburg. Our results demonstrated 

that 14 glycolysis-related genes derived from the metabolic interplay of four known glycolytic 

metabolites such as glucose, pyruvate, lactate and lipids, have dominant role in the 

discrimination of low from high great gliomas. This fact points out the need to further evaluate 

their potential for diagnostic purposes especially at early stages of the disease.  

Furthermore and in combination with the already known cancer inhibitors their contribution 

in the design of new therapeutic agents must be addressed. As shown in Table 5.7 such 

efforts have already started verifying the interest of the scientific community towards this 

direction. Many scientists now believe that the cancer’s therapy has its roots in cell’s 

metabolism. Recent findings demonstrate that stimulation of mitochondrial activity and 

restoration of the mechanisms of ATP generation, characteristics of non-malignant cells, 

might be an efficient tool in anticancer strategy. In particular, shifting cellular metabolism 

towards mitochondrial ATP production might overcome the effects of HIF-1-mediated 

upregulation of the glycolytic pathway. Several attempts have been made to prevent the 

formation of lactate and to redirect pyruvate metabolism towards oxidation in the 

mitochondria. Hence, combined strategies involving manipulation of both the glycolytic and 

the mitochondrial pathways might be useful tools in the elimination of cancer cells that would 

otherwise survive thanks to mitochondrial ATP production. This study confirms this necessity 

too. 
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6.1 Main Achievements of the Thesis 
 

Fighting cancer and especially brain tumors like gliomas, is a tedious and continuous 

process. Experts world-widely strive hard to discover unique characteristics of tumors’ 

pathological behavior in order to develop more effective methods for diagnosis, prognosis and 

treatment purposes. Although remarkable achievements in medicine and biomedicine have 

been recorded, particularly during the last decade, the fact that the majority of patients will not 

eventually survive more than 2 years from diagnosis, even if the most effective clinical 

practices are applied, remains an open challenge. The grand vision even today is to identify 

new ways to reliably integrate the knowledge extracted from all these efforts into the clinical 

practice in order to achieve a better management of this lethal disease and therefore prolong 

patients’ life expectancy. 

Sharing the same anxiety, our research aimed to add a small piece of knowledge and 

technical know-how into this puzzle.  Motivated also by Socrates’ (Ancient Greek Philosopher) 

say that “the knowledge is in the whole, not in the part” we decided to study the brain tumor 

as a pathological system. This decision came from the fact that the formation of a malignant 

tumor within the brain is the result of a series of abnormal biological processes rather than 

just an abnormal snapshot. By analyzing these biological processes we can derive valuable 

knowledge that can be used to better understand this type of cancer and identify methods to 

manage its unpredicted behavior.  

These initial considerations directed our thoughts to the use of the “omics” science and 

technologies. More specifically we decided to study brain tumors at genomic and metabolic 

level (the two ends of the “omics” chain) and then exploit the extracted knowledge in order to 

derive important observations regarding brain tumors’ behavior. Based on this strategy two 

main goals were determined. First to identify reliable genetic and metabolic features of brain 

tumor that will enable a more accurate discrimination of their type and grade but also open 

new ways towards the design of new treatment practices. Second, to propose a novel medical 

Decision Support System (DSS) which will integrate the knowledge extracted from this 

multimodal analysis (genomics and metabolomics) in order to develop an effective protocol 

for a non-invasive, patient specific, diagnostic and treatment decision making. 

We believe that these two main goals were accomplished and justified by the results and 

their analyses obtained at both biological and statistical level, presented in this thesis. Our 

achievements are presented below. 
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6.1.1 Achievements at clinical level 

• Reveal the benefits of using non-invasive imaging techniques such as Magnetic 

Resonance Spectroscopy (MRS) for the diagnosis of brain tumor and emphasize the 

need to develop even better ones in order to minimize the life risk behind the application 

of surgical operations (biopsy and tumor removal). 

• Prove that the metabolic profile of brain tumors must be taken under consideration in the 

design of novel non-invasive treatments for brain tumors. 

• Identify optimal sets of the most significant metabolic markers which can be used at 

clinical level to provide accurate discrimination of brain gliomas and meningiomas (Table 

6.1). 

• Understand the significant role of glycolysis and oxidative phosphorylation (OXPHOS) in 

tumor genesis and proliferation and provide a set of glycolysis-related genetic markers 

that can improve the diagnostic accuracy at clinical level (Table 6.2). These markers can 

also be combined with the already known tumor suppressors and oncogenes to further 

improve this accuracy. 

• Exhibit the need to design new gene therapies based on glycolysis inhibitors and 

mitochondrial reactivation agents which will force cancer cells to death (i.e. reactivate 

apoptosis) and therefore inhibit proliferation of cancer cells. 

• Propose a novel medical Decision Support System (DSS) which provides a protocol for 

non-invasive diagnosis and treatment based on the genetic and metabolic characteristics 

of brain tumors (Figure 6.1). According to this medical DSS the genetic and metabolic 

markers found can both support the conventional diagnostic and treatment practices and 

establish the foundations for the development of new non-invasive methodologies (green 

arrows in Figure 6.1). 

 

6.1.2 Achievements at theoretical level 

• Exhibit the remarkable potential of maximal margin classifiers such as Support Vector 

Machines (SVM) and Least Squares - SVM in cancer discrimination problems, where data 

is complex and heterogeneous, due to their ability to non-linearly map the input data 

(kernel trick) to a higher feature space where data is linearly separable. 

• Prove that embedding filter methods such as, Fisher’s criterion and Relief-F ranking, 

which reveal the intrinsic characteristics of the data, into the SVM classifier improves 

feature selection and classification process.  

• Show that the selection and preprocessing of the initial brain tumor features, inputted into 

the classifier, significantly influence the identification of the final cancer markers’ set and 

so the classification of a new patient.  
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• Create a biological bridge from genomics to metabolomics, based on glycolysis effect on 

brain tumors, which confirms Otto Warburg’s hypothesis that altered glycolytic rates are 

present in brain tumors. 

• Show the strengths and weaknesses of increasing the MRS system magnet’s power and 

its impact on data mining for brain tumor diagnostic purposes.  

 
Table 6.1 – Optimal sets of metabolic markers (peak area’s ratios) for the discrimination of 

brain gliomas and meningiomas – Optimal set is the set that includes the smallest possible 

number of markers providing the maximum discrimination accuracy. 

Binary  

schemes 
Metabolic ratio markers identified 

Healthy vs 

tumor 
NAA / Cho NAA / S Cho/ S NAA/ Cre Lips/ Cho Cho/ Cre   

Healthy vs 

Glio 
NAA / Cho mI / S Cho / S Cho/ Cre Lac / Cre Ala / Cre   

Healthy vs 

Mng 
mI / S NAA / S       

GRII vs  

GRIII 
Cre / S Lips/ Cre Lac / Cre Ala / S Ala/Cre NAA/ Cre Lips/ Cho mI / S 

GRII vs  

GRIV 
Cre / S Cho / S mI / S Ala / S     

GRIII vs  

GRIV 
Cho / S mI / S       

Glio vs  

Mng 
Ala / Cre Ala / S NAA / S mI / S Lips / Cre Lac / Cre   

 
Table 6.2 – The optimal sets of genetic markers identified that can be used for the 

discrimination of low grade from high grade gliomas – Left column presents the 14 glycolysis-

related markers while right column the 12 tumor suppressors and oncogenes 

Glycolysis genetic markers Tumor suppressors and oncogenes 

ALDOA MDH1 RB1 CDK4 

ALDOC PDHB RBL2 EGFR 

ENO2 PFKM TP53 PDGFA 

GAPDH PGI TP53BP1 PDGFB 

HK2 PGK1 PTEN PDGFRA 

LDHA PGM1 HIF-1A PDGFRB 

LDHB PKLR   

Genes’ names are from the Entrez Gene Database 
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Figure 6.1 – The proposed medical Decision Support System – The “omics” technologies 

(green arrows) can both support the conventional diagnosis and treatment pathways but also 

provide an alternative non-invasive way to diagnose and treat brain tumors - (The figure was 

designed with Adobe Photoshop ver. CS5) 
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6.2 Future Perspectives 
 

6.2.1 Improving the non-invasive diagnosis of brain tumors 

Diagnosis of a disease is the first and most basic stage of a clinical procedure. 

Determining the type and stage of a disease has a direct impact on the selection of the 

therapeutic pathway. Especially in brain tumors this becomes a more urgent process since 

this type of cancer is highly aggressive and most of the times the prognosis is poor. 

Our research has shown that the adoption of non-invasive diagnostic imaging techniques 

such as MRS and DNA Microarrays into clinical practices provides significant metabolic and 

genomic characteristics (markers) of brain tumors that have great diagnostic potential even in 

complex tumors such as gliomas. Based on the proposed medical DSS shown in Figure 6.1, 

these markers can be combined with those derived from the conventional clinical tests to 

increase the diagnostic outcome.  But is this actually the end of the story? The answer is no.  

If additional “omics” data from brain tumor patients are available then more significant 

characteristics can be possibly discovered, facilitating the design of more reliable diagnostic 

protocols. Such type of data can be obtained from several other non-invasive metabolic 

imaging techniques such as Diffusion Weighted Imaging (DWI), Perfusion Weighted Imaging 

(PWI) but also proteome analysis techniques such as Mass Spectrometry (MS) [Riyadh N. et 

al 2006 - Lam W.W. et al 2002 - Provenzale J. et al 2006 - Calli C. et al 2006]. Furthermore, 

other very promising optical measurement systems such as polarimetric systems for cancer 

diagnosis can be integrated too [Giakos G.C., Kounelakis M.G. et al 2010 - Giakos G.C., 

Kounelakis M.G. et al 2011(a) - Giakos G.C., Kounelakis M.G. et al 2011(b)].  

All these methods allow a multimodal data analysis where fusion techniques can be 

applied to create visual diagnostic and treatment aids and the evaluation of an interactive 

graphical user interface to communicate and adapt the decision support system’s statistical 

estimates to the clinician’s feedback in real time. 

While additional performance gains may be achievable by optimizing the medical DSS, the 

practical use of such decision support tools in a clinical environment relies heavily on the 

ability to provide coherent performance across multiple datasets and pathological classes. 

Unfortunately, finding new patients data and especially “omics” data for research use is not 

always a simple task. Several ethical, economic and political factors either prohibit or restrict 

the publication of such datasets for further research. 

Further diagnostic improvement can also be achieved through the development of new 

pattern recognition methods for the selection of optimal cancer markers and classification of 

complex tumors. The most recent research tendency relates to the development of 

mathematical models that monitor cancer’s behaviour at metabolic, genomic and proteomic 

level in order to facilitate a more accurate prediction of its metastatic and proliferating activity. 

The generation of mathematical growth models is an important tool for both clinical and 

research communities in oncology. They give us the opportunity to interpret and integrate 

experimental results made in diverse fields of cancer research by providing a common 
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mathematical ground to combine them in [Hogea C. et al 2007 - Basanta D. et al 2008 - 

Hatzikirou H. et al 2005 - Clatz O. et al 2005 - Gu S. et al 2011].  

Towards this direction a future plan to optimise the decision making is by applying 

classifier’s fusion techniques which will enable the identification of new biomarkers that can 

be used to define cancer growth models. 

 

6.2.2 The need for a patient specific treatment protocol  

Among the challenges that oncologists have to face today is the selection of the most 

suitable and effective therapy in order to obtain the best possible outcome for the patient. 

Based on the type and grade of the brain tumor a combination of conventional therapies 

(chemotherapy, radiotherapy and/or surgery) is applied. Then, based on the clinical image of 

the patient and the prognosis estimation of the disease, either a second therapeutic scheme 

or a maintenance scheme is followed. 

The problem however is that most of the times the therapeutic protocols followed are more 

or less the same for two tumors presenting similar molecular profiles. For example, we might 

find that the histopathological characteristics in a subtype of gliomas are the same as those in 

a subtype of oligodendrogliomas. In that case, the treatment that works in the glioma may be 

appropriate for the oligodendroglioma. But is this the right way to face these two different 

tumors? And if this is correct why then their response to the same therapy is often different? 

Again the answer is no.  

It is now known that each tumor must be managed as a unique case. No two tumours are 

the same, even within the same type of cancer. They may look the same under the 

microscope, but their molecular aberrations vary greatly. For these reasons modern medicine 

has moved from diseased-based to patient-based treatment protocols [Van’t Veer et al 2008]. 

The patient-specific therapies being developed are generally called targeted therapies. 

Nearly all of today's advances in cancer treatment are based on the development of 

targeted therapies. Yet, although targeted therapies represent major advances in how cancer 

is treated, their main deficiency is that they are not leading to cures. They offer better 

outcomes, longer survival, better quality of life, but not the eradication of cancer (so far). The 

reason is that each drug only targets a few of the genes that drive a cancer. And there are 

dozens that must be targeted.  

Our research has followed this tendency providing optimal sets of cancer biomarkers at 

both genomic and metabolomic level, that are capable to reveal the unique characteristics of 

brain tumors, facilitating the design of targeted therapies. Furthermore, based on the 

glycolysis pathway that has been proved to be very significant for the determination of the 

tumor behaviour [Warburg O. 1956], new anti-cancer therapeutic agents can be developed, 

as our medical DSS suggests in Figure 6.1. For example generating glycolysis inhibitors 

which will force cancer cells to switch from glycolysis to OXPHOS for their energy demands, 

can be an effective way to reactivate the apoptosis and therefore stop their proliferation 

[Pelicano H. et al 2006 – Kounelakis M.G. et al 2011]. Towards this direction today’s research 
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on pharmacogenetics has generated specific glycolysis agents that for the time being are 

under a trial period. These are shown in Table 6.3.   

Closing this thesis we would like to express the wish and hope that the day where 

humanity will defeat cancer is not far away. 

 
Table 6.3 – Prospective targeted therapies and their effects 

Target gene Drugs Effect 

2-DG Glycolysis inhibitor leading to apoptosis 

 

3-BrPA 
Decrease in intracellular ATP; Apoptosis HK2 

 

Lonidamine 
Glycolysis inhibitor 

GAPDH 
 

KA 
Apoptosis 

 

FK228 
HIF-1a downregulation 

HIF-1a 
 

NO 
HIF-1a downregulation 

Glut1 mAb Reduced tumor proliferation 
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ACRONYMS AND ABBREVIATIONS 

 
ALDOA: 

ALDOC: 

AML: 

ATP: 

AUROC: 

Bl_bm: 

CDK4: 

Cho: 

CBTRUS 

CI: 

CNS: 

Cre: 

CP: 

CR: 

CSF: 

CSI: 

CT: 

CTA: 

CSI: 

CV: 

DSS: 

DTPA: 

DWI: 

EGFR: 

ENO2: 

Exm: 

FAB: 

FDA: 

FFT: 

FID: 

FLAIR: 

FOV: 

FN: 

FNR: 

FP: 

FPR: 

GAPDH: 

GC: 

Aldolase-A (gene) 

Aldolase-C (gene) 

Acute Myeloid Leukemia 

Adenosine Triphosphate 

Area under ROC curve 

Number of blasts in bone marrow (refers to Acute Myeloid Leukemia) 

Cyclin-dependent kinase 4 (gene) 

Choline (metabolite)  

Central Brain Tumor Registry of the US 

Confidence Interval 

Central Nervous System 

Creatine (metabolite) 

Circularly Polarised 

Complete Remission (refers to Acute Myeloid Leukemia) 

Cerebrospinal Fluid 

Chemical Shift Imaging 

Computed (or Computerised) Tomography 

CT Angiography 

Chemical Shift Imaging 

Cross Validation 

Decision Support System 

Diethylenetriaminepenta-acetic acid 

Diffusion Weighted Imaging (or Diffusion MRI) 

Epidermal Growth Factor Receptor (gene) 

Enolase-2 (gene) 

Extramedullary Infiltration (refers to Acute Myeloid Leukemia) 

French-American-British 

Fisher discriminant analysis 

Fast Fourier Transform 

Free Induction Decay 

Fluid Attenuated Inversion recovery 

Field of view 

False Negative 

False Negative Rate 

False Positive 

False Positive Rate 

Glyceraldehyde-3-phosphate dehydrogenase (gene) 

Gliomatosis Cerebri 
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GBM: 

Gd: 

GE: 

GIMEMA: 

Gluc: 

Glu1: 

Glu2: 

Glx: 

GRI: 

GRII: 

GRIII: 

GRIV: 

Hb: 

HIF-1: 

HIF-1A 

HK2: 

HLA: 

HLSVD: 

HMP: 

1
H-MRS: 

ID: 

IR: 

KEGG: 

Lac: 

LDA: 

LDHA: 

LDHB: 

LOOCV: 

LS-SVM: 

Lips: 

LL: 

LUH: 

MDH1: 

mI: 

ML: 

MR: 

MRA: 

MRI: 

MRS: 

MRSI: 

Glioblastoma multiforme (or GRIV) 

Gadolinium enhanced  

Gradient Echo 

Gruppo Italiano Malattie Ematologiche dell’Adulto 

Glucose (metabolite) 

Glutamate (metabolite) 

Glutamine (metabolite) 

Glutamine and glutamate 

Glioma grade I 

Glioma grade II 

Glioma grade III 

Glioma grade IV (or GBM) 

Hemoglobin (refers to Acute Myeloid Leukemia) 

Hypoxia Inducible Factor (gene) 

Hypoxia Inducible Factor-1A (gene) 

Hexokinase-2 (gene) 

Human Leukocyte Antigens 

Hankel Lanczos Singular Value Decomposition 

Human Metabolome Project 

Proton Magnetic Resonance Spectroscopy 

Induction Death (refers to Acute Myeloid Leukemia) 

Inversion Recovery 

Kyoto Encyclopedia of Genes and Genome 

Lactate (metabolite)  

Linear Discriminant Analysis 

Lactate Dehydrogenase-A (gene) 

Lactate Dehydrogenase-B (gene) 

Leave one out Cross Validation 

Least Squares Support Vector Machine 

Lipids 

Lactate-Lipids 

Larissa University Hospital 

Malate Dehydrogenase-1 (gene) 

Myo-inositol (metabolite) 

Myeloid Leukemia 

Magnetic Resonance  

Magnetic Resonance Angiography 

Magnetic Resonance Imaging  

Magnetic Resonance Spectroscopy 

Magnetic Resonance Spectroscopy Imaging 
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MS: 

NAA: 

NEX: 

NMR: 

NMRI: 

NN: 

OXPHOS: 

PD: 

PDGF: 

PDHB: 

PET: 

PFKM: 

PGI: 

PGK1: 

PGM1 

PKLR: 

Plts: 

PNET 

ppm: 

PR: 

PRESS: 

PS: 

PTEN: 

Pyr: 

PWI: 

QP: 

Rb: 

RBF:  

Res: 

RF: 

RFE: 

RNA: 

ROC: 

SE: 

SNR: 

STEAM: 

SVD: 

SVM: 

SVS: 

T: 

Mass Spectroscopy 

N-acetyl-aspartate (metabolite) 

Number of Excitations or Acquisitions 

Nuclear Magnetic Resonance 

Nuclear Magnetic Resonance Imaging 

Neural Network 

Oxidative Phosphorylation 

Proton Density 

Platelet-derived growth factor (gene) 

Pyruvate Dehydrogenase-B (gene) 

Positron Emission Tomography 

Phosphofructokinase-M (gene) 

Phosphoglucose Isomerise (gene) 

Phosphoglycerate Kinase-1 (gene) 

Phosphoglycerate mutase-1 (gene) 

Pyruvate Kinase-LR (gene) 

Platelets in blood (refers to Acute Myeloid Leukemia) 

Primitive Neuroectodermal Tumors 

Parts per million 

Partial Remission (refers to Acute Myeloid Leukemia) 

Point Resolved Spectroscopy 

Performance Status (refers to Acute Myeloid Leukemia) 

Phosphatase and tensin homology (gene) 

Pyruvate (metabolite) 

Perfusion Weighted Imaging (or Perfusion MRI) 

Quadratic Programming 

Retinoblastoma (gene) 

Radial Basis Function 

Resistance (refers to Acute Myeloid Leukemia) 

Radio Frequency 

Recursive Feature Elimination 

Ribonucleic Acid 

Receiver Operating Characteristic 

Spin Echo 

Signal–to–Noise Ratio 

Stimulated-Echo Acquisition Mode 

Singular Value Decomposition 

Support Vector Machine 

Single Voxel Spectroscopy 

Tesla 
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TCA: 

TE: 

TN: 

TNR: 

TP: 

TP53: 

TP53BP1: 

TPR: 

TR:  

T1: 

T2:  

UMCN: 

VOI:  

WBC: 

WHO: 

The Kreb’s or Citric Acid cycle in the mitochondrion 

Echo time 

True Negative 

True Negative Rate 

True Positive 

Tumor Protein-53 (gene) 

Tumor Protein-53-BP1 (gene) 

True Positive Rate 

Repetition time 

Longitudinal relaxation time 

Transverse relaxation time 

University Medical Center of Nijmegen 

Volume of interest 

White Blood Cells 

World Health Organisation 
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MEDICAL, BIOMEDICAL AND MAGNETIC RESONANCE TERMINOLOGIES 

 
Acquisition time: the period of time required to collect the image data.  
 
Aerobic respiration: the cellular respiration that requires oxygen to produce energy (ATP). 
 
Allele: is one of two or more forms of a gene. 
 
Allogenic Bone Marrow Transplantation:  is a procedure in which a person receives stem 
cells from a genetically similar, but not identical, donor. 
 
Anabolism: is the set of metabolic pathways that construct molecules from smaller units. 
 
Anaerobic respiration: the cellular respiration without oxygen’s presence. 
 
Anaplastic: cancerous cells that divide rapidly and bear little or no resemblance to normal 
cells. 
 
Angiography: x-ray examination of blood vessels. 
 
Angular Momentum: a property of a mass or system of masses turning about some fixed 
point; it is conserved in the absence of the action of external forces. 
 
Autologous Bone Marrow Transplantation: is a procedure in which a person receives stem 
cells from himself. 
 
Apoptosis: is the programmed cell death in multicellular organisms. 
 
Astrocytes: is a type of glial cells that support and nourish neurons. When the brain is 
injured, astrocytes form scar tissue that helps repair the damage. 
 
Astrocytoma: a type of brain tumor that begins in the brain or spinal chord in small, star-
shaped cells called astrocytes. 
 
Bases: or nucleotide bases are a group of nitrogen-based molecules that are required to 
form nucleotides (adenine A - cytosine C - thymine T - guanine G). 
 
Benign: a tumor that is not cancerous. 
 
Biopsy: removal of a small piece of living tissue from a part of the body for microscopic 
examination. 
 
Blood-brain barrier: a barrier between the blood and the tissues of the CNS (brain and 
spinal cord) that prevents the entry of many drugs, including chemotherapy drugs.  
 
Bone marrow: is the flexible tissue found in the interior of bones. In humans, bone marrow in 
large bones produces new blood cells. 
 
Brain Stem: is located at the bottom of the brain and controls many vitally important functions 
including motor and sensory pathways, cardiac and respiratory functions, and reflexes. 
 
Cancer: a term for diseases in which abnormal cells divide without control. 
 
Calcification: is the process in which calcium salts built up in soft tissue, causing it to harden. 
 
Catabolism: is the set of metabolic pathways that break down molecules into smaller units 
and release energy. 
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Cellular respiration: is the set of the metabolic reactions and processes that take place in 
the cells of organisms to convert biochemical energy from nutrients into adenosine 
triphosphate (ATP), and then release waste products. 
 
Cerebrum: is the largest part of the brain and is associated with conscious thought, 
movement and sensation. It consists of two halves, each controlling the opposite side of the 
body. Four lobes make up the cerebrum: the frontal, temporal, parietal, and occipital lobes. 
 
Cerebellum: is located at the lower back of the head and is connected to the brain stem. It is 
the second largest structure of the brain and is made up of two hemispheres. The cerebellum 
controls complex motor functions such as walking, balance, posture, and general motor 
coordination. 
 
Cerebrospinal Fluid (CSF): is a clear substance that circulates through the brain and spinal 
cord. It provides nutrients and serves to cushion the brain and therefore protect it from injury.  
 
Chemical Shift: is the change in the nuclear magnetic resonance frequency of a nucleus 
depending on its electronic environment; used in Nuclear Magnetic Resonance spectroscopy 
to determine the structure of molecules. 
 
Chemotherapy: the prevention or treatment of a tumor by the use of chemical substances. 
 
Chromosome: is an organized structure of DNA and protein found in cells. 
 
CNS Lymphomas: a type of non-neuroepithelial brain tumor 
 
Complete Remission (CR): refers to the situation where the disease (here Acute Myeloid 
Leukemia) disappears completely with the treatment.  
 
Computed Tomography (CT) scan: a computer aided x-ray used to provide a picture of the 
inside of the body. 
 
Coronal plane: a tomographic imaging plane that is perpendicular to the ground. 
 
Craniopharyngiomas: a type of brain tumor. 
 
Craniotomy: surgical opening of a portion of the skull performed to expose a lesion of the 
brain. 
 
Cytosol: is the liquid inside the cells. 
 
DNA: is a nucleic acid that contains the genetic instructions used in the development and 
functioning of all known living organisms. 
 
Echo time (TE): represents the time in milliseconds between the application of the 90° pulse 
and the peak of the echo signal in Spin Echo and Inversion Recovery pulse sequences 
 
Edema: an accumulation of an excessive amount of watery fluid in cells, tissues or serous 
cavities. 

Eddy current: an induced spurious electrical current produced by time-varying magnetic 
fields. Eddy currents can cause artifacts in images and may seriously degrade overall magnet 
performance.  

Ependymal cells: These cells line the ventricles within the central part of the brain and spinal 
cord that provide the pathway through which cerebrospinal fluid travels. 
 
Ependymomas: a type of neuroepithelial brain tumor arising in the ependymal cells. 
 
Ex vivo: in biology refers to the experiment that takes place outside an organism. 
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Excitation: delivering (inducing, transferring) energy into the "spinning" nuclei via radio-

frequency pulse(s), which puts the nuclei into a higher energy state. By producing a net 
transverse magnetization an MRI system can observe a response from the excited system.  

Flow Cytometry: is a technique for counting and examining microscopic particles, such 
as cells and chromosomes, by suspending them in a stream of fluid and passing them by an 
electronic detection apparatus. 
 
Frontal Lobe: is one of the four lobes of the cerebral hemisphere.  
 
Free Induction Decay (FID): is the signal generated when the excited nuclei relax. Its 
amplitude becomes smaller (decays) over time as net magnetisation returns to equilibrium. 
 
Gene: is a molecular unit of heredity of a living organism. 
 
Genome: in modern molecular biology and genetics, the genome is the entirety of an 
organism's hereditary information (stored in genes). 
 
Genotype: is the genetic makeup of a cell, an organism, or an individual. 
 
Germ cell tumor: a type of a non-neuroepithelial brain tumor. 
 
Glial cells: There are 3 types of glial cells: astrocytes, oligodendrocytes, and ependymal 
cells. Most brain and spinal cord tumors develop from glial cells. 
 
Glial tissue: the special connective tissue of the central nervous system. 
 
Glioblastoma: a general term that refers to malignant astrocytoma, a type of brain tumor. 
 
Glioblastoma multiforme (GBM): a type of astrocytic brain tumor that forms from glial 
(supportive) tissue of the brain. It grows very quickly and has cells that look very different from 
normal cells. Also called grade IV astrocytoma. 
 
Glioma: a cancer of the brain that begins in glial cells (cells that surround and support nerve 
cells). 
 
Gluconeogenesis: is a metabolic pathway that results in the generation of glucose from non-
carbohydrate carbon substrates such as lactate, glycerol, and glucogenic amino acids. 
 
Glycolysis: is the ‘lysis’ of glucose (or break down of blood sugar) for the production of 
energy necessary for the cell. 
 
High grade tumor: a tumor that grows quickly over a period of a few months. 
 
Histology: the study of tissues and cells under a microscope. 
 
Histopathology: the study of the microscopic structure, composition and function of diseased 
tissue. 
 
In vivo: in biology refers to the experiment done on a living organism. 
 
In vitro: in biology refers to an experiment done in an artificial environment outside the living 
organism. 
 
Induction Death (ID): the patient’s death after the induction treatment (refers to Acute 
Myeloid Leukemia). 
 
Karyotype: is the number and appearance of chromosomes in the nucleus of a cell. 
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Lactate fermentation: the biological process by which glucose is converted into cellular 
energy and the metabolic byproduct lactate. 

Larmor Frequency: the frequency at which magnetic resonance in a nucleus can be excited 
and detected. The frequency varies directly with magnetic field strength, and is normally in the 
radio frequency (RF) range.  

Lesion: area of tissue with impaired function as a result of damage by disease or wounding. 
 
Low grade tumor: a tumor that develops slowly over a number of years. 
 
Lymphocyte: a small white blood cell (leukocyte) that plays a large role in defending the 
body against disease. 
 
Magnetic Resonance: the absorption or emission of energy by atomic nuclei in an external 
magnetic field after the application of RF excitation pulses using frequencies which satisfy the 
conditions of the Larmor equation. 
 
Magnetic Resonance Imaging (MRI): a procedure which shows a picture, in any plane, of 
the inside of the body. This procedure is non-invasive as it uses magnetic waves. 
 
Magnetic Resonance Spectroscopy (MRS): a procedure which reveals the metabolic 
spectrum of the inside of the body. This procedure is non-invasive as it uses magnetic waves. 
 
Malignant: cancerous 
 
Malignant tumor: a tumor that invades and destroys the tissue where it originates and which 
can spread to other sites in the body. 
 
Medulloblastomas: a type of neuroepithelial brain tumor. 
 
Membrane: a thin layer of tissue surrounding an organ, lining a cavity or separating adjacent 
structures or cavities. 
 
Meninges: the three connective tissue membranes that line the skull and vertebral canal and 
enclose the brain and spinal cord. 
  
Meningiomas: a type of a non-neuroepithelial brain tumor arising in meninges 
 
Metabolism: is the set of chemical reactions that happen in living organisms to sustain life. 
These processes allow organisms to grow and reproduce, maintain their structures, and 
respond to their environments. Metabolism is usually divided into two categories, catabolism 
and anabolism. 
 
Metabolites: are the intermediates and products of metabolism. The term metabolite is 
usually restricted to small molecules. A primary metabolite is directly involved in normal 
growth, development, and reproduction. 
 
Metabolic pathway: is series of chemical reactions occurring within a cell. The collection of 
pathways is called the metabolic network. 
 
Metabolome: refers to the complete set of metabolites to be found within a biological sample, 
such as a single organism. 
 
Metabolomics: is the field in biology which studies the metabolome of an organism. It is the 
last part in the “omics” chain (genomics-transcriptomics-proteomics-metabolomics). 
 
Metastasis: the spread of cancer from one part of the body to another.  
 
Mitochondrion: is a membrane-enclosed organelle found in cells. 



 

 180 

 Appendix A:                                                                                     GLOSSARY 

Mitosis: the process where a single cell divides resulting in generally two identical cells, each 
containing the same number of chromosomes and genetic content as that of the original cell. 
 
Mutations: are changes in the DNA sequence of a cell.   
 
Necrosis: pathologic death of cells, tissue, or an organ from irreversible damage. 
 
Neoplasm: is an abnormal mass of tissue such as a tumor. 
 
Neurons: These are the most important cells within the brain. They carry signals through 
long, wire-like extensions called axons.  
 
Nuclear Magnetic Moment: a measure of the net magnetic properties of a particle. 
 
Nuclear Magnetic Resonance (NMR): is the physical phenomenon of the magnetic property 
of the nuclei. 

Nuclear spin: also known as inherent spin, this defines the intrinsic property of certain nuclei 

(those with odd numbers of protons and/or neutrons in their nucleus) to exhibit angular 
momentum and a magnetic moment. Nuclei that do not exhibit this characteristic will not 
produce an NMR signal.  

Nucleotides: are molecules that, when joined together, make up the structural units of DNA. 
 
Occipital lobe: is one of the four lobes of the cerebral hemisphere. It is located in the back of 
the head and controls vision. 
 
Oligodendrocytes: these cells make myelin. Myelin forms a layer that surrounds and 
insulates axons of the brain and spinal cord. In this way, oligodendrocytes help neurons 
transmit electric signals through axons. 
 
Oligodendroglioma: a type of neuroepithelial brain tumor arising in oligodendrocytes. 
 
Oncogenes: is a gene that has the potential to cause cancer. In tumor cells, they are 
often mutated or expressed at high levels. 
 
Oxidative Phosporylation: is a metabolic pathway that uses energy released by 
the oxidation of nutrients to produce adenosine triphosphate (ATP). 
 
Parietal lobe: is one of the four lobes of the cerebral hemisphere. It controls tactile sensation, 
response to internal stimuli, sensory comprehension, some language, reading, and some 
visual functions. 
 
Partial Remission (PR): refers to the situation where the disease (Acute Myeloid Leukemia 
here) shrinks but not completely disappears completely with the treatment.  
 
Phenotype: are an organism's observable characteristics such as its morphology, 
biochemical or physiological properties and behaviour. 
 
Pituitary Gland: is a small, bean-sized organ that is located at the base of the brain.  
 
Primary tumor: tumor that only occurs in the organ in which it started. 
 
Prognosis: the assessment of the future course and outcome of a patient’s condition. 
 
Proteins: are biochemical compounds, essential parts of organisms and participate in 
virtually every process within cells. Many proteins are enzymes that catalyze biochemical 
reactions and are vital to metabolism. 
 
Proteome: the complete set of the proteins of a living organism. 
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Proteomics: the field of biology which studies the proteome. 
 
Proton: a subatomic particle found in the atom’s nucleus. 
 
Pulse sequence: a preselected set of defined RF and gradient pulses, usually repeated many 

times during a scan. 
 
Radiotherapy: a therapeutic procedure in which conditions are treated with energy in the 
form of waves or particles. 

Relaxation time: after excitation the spins will tend to return to their equilibrium distribution in 

which there is no transverse magnetization and the longitudinal magnetization is at its 
maximum value and oriented in the direction of the static magnetic field. After excitation the 
transverse magnetization decays toward zero with a characteristic time constant T2, and the 
longitudinal magnetization returns toward equilibrium with a characteristic time constant T1.  

Repetition time (TR): the amount of time that exists between successive pulse sequences 
applied to the same slice.  
 
Resistance (Res): the situation where the disease (here Acute Myeloid Leukemia) remains 
even after treatment. 
 
Sagittal plane: a plane that cuts the skull from front to back and continues down in the body 
in the same direction, dividing it into two parts. 
 
Schwann cells: These cells make myelin outside the brain that surrounds and insulates 
axons in cranial nerves and in the peripheral nerves that connect the CNS to the rest of the 
body. 
 
Schwannomas: a type of non-neuroepithelial brain tumor. 
 
Secondary tumor: the spread of cancer from one part of the body to another. 

Spin: the property exhibited by atomic nuclei that contain either an odd number of protons or 
neutrons, or both.  

Stem cells: cells from which all blood cells develop. 
 
Stereotactic biopsy: a surgical procedure guided by scans and a frame. 
 
Synapse:  is a structure that permits a neuron to pass an electrical or chemical signal to 
another neuron. 
 
Temporal lobe: is one of the four lobes of the cerebral hemisphere of the cerebral 
hemisphere. It controls auditory and visual memories, language, some hearing and speech, 
language, plus some behaviour. 
 
Transcription: is the process of creating a complementary RNA copy of a sequence of DNA. 
 
Transcriptome: is the set of all RNA molecules, including mRNA, rRNA, tRNA, and 
other non-coding RNA produced in one or a population of cells. 
 
Transcriptomics: is the field of biology which studies the genetic transcriptions (RNA). 
 
Tumor: any abnormal swelling in or on any part of the body. This term is usually used when 
the swelling is as a result of an overgrowth of cells. 
 
Tumor suppressor genes: are the genes that protect a cell from one step on the path to 
cancer. 
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Voxel: a volume element (usually of the brain). 
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