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Abstract 

 

Algorithm Mapping to Reconfigurable Systems and 

Systems with Multiple Embedded Processors 
 

 

 

The Traveling Salesman Problem (TSP) is probably the most-studied combinatorial optimization 

problem of all time. TSP applications range from logistics, and job scheduling, to computing DNA 

sequences, designing and testing VLSI circuits, x-ray crystallography, and many others. Many 

researchers, both mathematicians and computer scientists, have attacked the TSP problem for 

decades resulting in a plethora of heuristics that offer a broad range of tradeoffs between running 

time and quality of solution. These heuristics are typically classified as either tour construction 

procedures that gradually build a feasible tour, or tour improvement procedures that try to 

optimize an existing tour by performing various tour modifications. Probably the best-known such 

tour modification is the 2-Opt. 

In this thesis we attack the 2-Opt algorithm from a novel perspective and manage to uncover 

previously unknown fine-grain parallelism. We propose a baseline architecture that exploits this 

type of parallelism and demonstrate the implementation of various versions of this architecture on 

an FPGA as well as on a multi-threaded GPU. Our algorithm guarantees the 2-Optimality of the 

final resulting tour. 

We evaluate our implementations and find that the FPGA implementation manages to 

outperform Concorde, the current state-of-the-art software implementation, for small-scale TSP 

problems, in both speed and quality of final results. The GPU implementation is able to handle 

bigger-scale TSP problems and achieve similar quality of final results, but lags behind Concorde 

in speed. 

 

 



    ii 
 



    iii 
 

 

Contents 

Chapter 1. Introduction   ............................................................................................................. 1

Chapter 2. Background on TSP   .................................................................................................. 3

2.1 The Held-Karp Lower Bound   ............................................................................................................4

2.2 Tour Construction Algorithms   ..........................................................................................................5
2.2.1 Nearest Neighbor   .................................................................................................................................. 5
2.2.2 Greedy   ................................................................................................................................................... 5
2.2.3 Insertion Heuristics   ................................................................................................................................ 6
2.2.4 Christofides   ............................................................................................................................................ 6

2.3 Tour Improvement Algorithms   ........................................................................................................7
2.3.1 2-Opt   ...................................................................................................................................................... 7
2.3.2 3-Opt, k-Opt, V-Opt   ............................................................................................................................... 8
2.3.3 Theoretical Bounds on Tour Improvement Algorithms   ......................................................................... 9

2.4 TSPLIB and Concorde   .......................................................................................................................9

Chapter 3. Related Work   ......................................................................................................... 10

3.1 Parallel 2-Opt and 3-Opt   ............................................................................................................... 10
3.1.1 Geometric Partitioning   ........................................................................................................................ 11
3.1.2 Tour-Based Partitioning   ....................................................................................................................... 11
3.1.3 Using Parallelism in the Search of Improving Moves   .......................................................................... 12

3.2 Implementations on Hardware   ..................................................................................................... 12

3.3 Implementations on GPU   .............................................................................................................. 12

Chapter 4. Symmetrical 2-Opt Moves   ..................................................................................... 15

Chapter 5. Hardware Implementation   .................................................................................... 18

5.1 Algorithm and Architecture   .......................................................................................................... 18

5.2 Deterministic Nature of Architecture Algorithm   .......................................................................... 22

5.3 FPGA-Based Implementation   ........................................................................................................ 24

5.4 Performance Results   ..................................................................................................................... 26

Chapter 6. Multi-Threaded Implementation   ........................................................................... 30

6.1 Algorithm   ...................................................................................................................................... 30

6.2 Background on CUDA   .................................................................................................................... 34

6.3 CUDA-Based Implementation   ....................................................................................................... 35
6.3.1 Shared Memory and Inter-Block Communication   ............................................................................... 37
6.3.2 Inter-Block Synchronization   ................................................................................................................. 40
6.3.3 Simulated Annealing   ............................................................................................................................ 41

6.4 Performance Results   ..................................................................................................................... 42



    iv 
 

6.4.1 Block Size of GPU   ................................................................................................................................. 42
6.4.2 Cooling Schedule of Simulated Annealing   ........................................................................................... 44
6.4.3 Performance Results   ............................................................................................................................ 44

Chapter 7. Conclusions and Future Directions   ........................................................................ 48

7.1 Future Directions   .......................................................................................................................... 48



    v 
 
List of Figures 

Figure 1. Applying a 2-Opt move.   ....................................................................................................................7

Figure 2. Example of three symmetrical 2-Opt moves   ................................................................................. 16

Figure 3. Architecture using 50 PEs for 200 cities   ......................................................................................... 19

Figure 4. Algorithm for the Hardware implementation   ................................................................................ 21

Figure 5. Architecture using 50 PEs for 1000 cities  ....................................................................................... 22

Figure 6. Runtime behavior of local search algorithm evaluating symmetrical or random 2-Opt moves   ... 24

Figure 7. Overall and normalized speed-ups over software emulator (based on 35 150MHz ccs per 
iteration)   ....................................................................................................................................................... 27

Figure 8. Final tour lengths achieved by our architecture as percentages of the ones achieved by Concorde
  ...................................................................................................................................................................... 28

Figure 9. Speed-up over Concorde’s 2-Opt implementation (based on 35 150MHz ccs per iteration)   ....... 28

Figure 10. Implementation using 100 threads (TH1 to TH100) for 201 cities   .............................................. 32

Figure 11. Algorithm of the Multi-threaded implementation   ...................................................................... 32

Figure 12. Parallel evaluation of the city swapping decisions in logN steps  ................................................. 33

Figure 13. Partitioning of 100 threads into 7 CUDA thread blocks   ............................................................... 36

Figure 14. Shared memory of the first two blocks   ....................................................................................... 37

Figure 15. Parallel evaluation of the city swapping decisions among the CUDA thread blocks   ................... 38

Figure 16. Example inter-block communication and left shift of the buffers of the second block   .............. 39

Figure 17. Number of thread blocks as a function of the block size  ............................................................. 43

Figure 18. Runtime behavior as a function of the block size   ........................................................................ 43

Figure 19. SA trade-off between execution time and quality of results   ....................................................... 44

Figure 20. Performance comparison between GPU and CPU   ....................................................................... 46

Figure 21. Simulation annealing significantly delays bigger TSP instances   .................................................. 47

  

 

 



    1 
 

 
 
 
 

Chapter 1. Introduction  
 

 

 

 

The Traveling Salesman Problem (TSP) is the problem of a salesman who starts from his 

hometown and wants to visit a specified set of cities, returning to his hometown at the end. Each 

city has to be visited exactly once and the requirement is to find the shortest possible tour. Stated 

more formally, the TSP seeks the shortest Hamiltonian cycle in a weighted graph whose vertices 

correspond to cities and edge weights correspond to distances between cities. In this thesis we 

will concentrate on the symmetric TSP, in which, going from city A to city B has the same 

distance/weight as going from city B to city A. More specifically, we will concentrate on very 

widely used fully-connected Euclidean instances of the TSP, where each city is represented by 

its two coordinates. 

The symmetric TSP is NP-hard and is one of the best-known and most-studied combinatorial 

optimization problems. It has many practical applications ranging from CAD tools for VLSI chip 

implementation to DNA mapping and X-ray crystallography. 

Since finding the tour with the minimum length is an NP-hard problem, most algorithms 

concentrate on finding near-optimal tours as quickly as possible. Local search algorithms start 

from an initial ordering of the cities and attempt to improve this ordering by performing simple 

tour modifications. Each such algorithm has a specified set of allowed tour modifications (or 

moves) that it can use to convert one tour into another, and will repeatedly perform these 

modifications, as long as each reduces the length of the current tour, until no further 

improvement can be made (i.e. a locally optimal tour has been reached). However, a locally 

optimal tour may not necessarily be close to the globally optimal tour. In order to escape from 

local minima, we may want to modify this basic scheme of pure optimization and also allow 
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"uphill" moves in our search for the global minimum. Simulated annealing [6] is a well-known 

algorithm that does just that. It allows "uphill" moves based on a carefully crafted probability 

function. 

The most famous tour modification used in heuristic algorithms for the TSP is the 2-Opt move, 

described in detail in the next Chapter. The main contributions of this thesis are: 

• We introduce a novel idea that uncovers fine-grain parallelism in the 2-Opt algorithm. 

Even though TSP is probably the most-studied combinatorial optimization problem of 

all time, and 2-Opt its most famous heuristic approach to solving it, to the best of our 

knowledge, this is the first time that this type of parallelism is uncovered and studied. 

• We propose a novel architecture to exploit this newly-uncovered parallelism, and 

demonstrate its implementation in reconfigurable hardware. We evaluate our proposed 

architecture and its implementation on an FPGA using a subset of the TSPLIB 

benchmark. Our implementation is one of the very few implementations in 

reconfigurable hardware (and in hardware in general) of a TSP solver. Moreover, this is 

to the best of our knowledge, the most efficient TSP solver for TSP instances up to a 

few hundred cities using the 2-Opt algorithm, since it is on average 600% faster than 

Concorde, the state-of-the-art software implementation, while it also produces better 

quality (i.e. closer to the optimal) results. 

• We modify the algorithm that we used in our hardware implementation to better adapt 

it to a multi-threaded implementation. In contrast to the hardware implementation that 

is silicon-limited since the amount of hardware used is dependent on the number of 

cities, the multi-threaded implementation is able to employ thousands of threads, 

simultaneously running in software, and thus achieve higher levels of parallelism and 

work on bigger-scale TSP problems. We evaluate this modified algorithm and its 

implementation on a contemporary GPU by NVIDIA that is able to support up to 30K 

threads, and present comparison results against Concorde. 
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Chapter 2. Background on TSP 
 

 

 

 

In the traveling salesman problem, or ‘‘TSP’’ for short, we are given a set {C1, C2, …, Cn} of 

cities and for each pair {Ci, Cj} of distinct cities a distance d(Ci, Cj). Our goal is to find an 

ordering m of the cities that minimizes the quantity 

 
i = 1 

Σ d(Cm(i), Cm(i+1)) +  d(Cm(n), Cm(1)) 
n − 1 

 
This quantity is referred to as the tour length, since it is the length of the tour a salesman would 

make when visiting the cities in the order specified by the permutation, returning at the end to 

the initial city. We shall concentrate in this thesis on the symmetric TSP, in which the distances 

satisfy d(Ci, Cj ) = d(Cj, Ci ) for any two cities Ci, Cj. 

The problem was first formulated as a mathematical problem in 1930 and is one of the most 

intensively studied problems in optimization. Many researchers, both mathematicians and 

computer scientists, have attacked the TSP problem for decades resulting in a plethora of 

heuristics that offer a broad range of tradeoffs between running time and quality of solution. 

The TSP has several applications even in its purest formulation, such as planning, logistics, 

and the manufacture of microchips. Slightly modified, it appears as a sub-problem in many areas, 

such as DNA sequencing. In these applications, the concept city represents, for example, 

customers, soldering points, or DNA fragments, and the concept distance represents traveling 

times or cost, or a similarity measure between DNA fragments. In many applications, additional 

constraints such as limited resources or time windows make the problem considerably harder. 
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The TSP is NP-hard and so any algorithm for finding optimal tours must have a worst-case 

running time that grows faster than any polynomial. For this reason research has focused in 

looking for heuristics that merely find near-optimal tours, but do so quickly. Some of the most 

well known heuristics are presented below. 

 
2.1 The Held-Karp Lower Bound 

When evaluating the empirical performance of heuristics, we are often not allowed the luxury 

of comparing to the precise optimal tour length, since for large instances we typically do not 

know the optimal tour length. As a consequence, when studying large instances it has become the 

practice to compare heuristic results to something we can compute: the lower bound on the 

optimal tour length due to Held and Karp. 

This bound is the solution to the standard linear programming relaxation of the TSP. For 

instances of moderate size it can be computed exactly using linear programming, although if one 

goes about this directly one is confronted with a non-trivial computation: the number of 

constraints in the linear program is exponential in N. A more practical approach is to solve a 

sequence of restricted linear programs (LP’s), each involving only a subset of the constraints, 

and to use a separation subroutine to identify violated constraints that need to be included in the 

next LP. This approach has been implemented using the Simplex method to solve the linear 

programs. Exact values for the bound have been computed in this way for instances as large as 

33,810 cities. For larger instances, we settle for an approximation to the Held-Karp bound (a 

lower bound on the lower bound) computed by an iterative technique proposed in the original 

Held-Karp papers and sped up by a variety of algorithmic tricks. 

The Held-Karp bound appears to provide a consistently good approximation to the optimal tour 

length. From a worst-case point of view, the Held-Karp bound can never be smaller than 2/3 of 

the optimal length (assuming the triangle inequality). In practice, it is typically far better than 

this, even when the triangle inequality does not hold. A HK lower bound averages about 0.8% 

below the optimal tour length, even though its guaranteed lower bound is only 2/3 of the optimal 

tour. 
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2.2 Tour Construction Algorithms 

Tour construction algorithms build a solution (tour) from scratch by a growth process (usually 

a greedy one) that terminates as soon as a feasible solution has been constructed. The four tour 

construction heuristics that we will briefly discuss here are Nearest Neighbor, Greedy, Nearest 

Insertion, and Christofides. Each of these has a particular significance in the context of local 

search. The first three provide plausible mechanisms for generating starting tours in a local 

search procedure, and interesting lessons can be learned by evaluating them in this context. The 

fourth represents in a sense the best that tour construction heuristics can currently do, and so it is 

a valuable benchmark. 

 
2.2.1 Nearest Neighbor 

Perhaps the most natural heuristic for the TSP is the famous Nearest Neighbor algorithm (NN). 

In this algorithm one mimics the traveler whose rule of thumb is always to go next to the nearest 

as-yet-unvisited location. The algorithm works as follows: 

1. Select a random city. 

2. Find the nearest unvisited city and go there. 

3. Are there any unvisitied cities left? If yes, repeat step 2. 

4. Return to the first city. 

The Nearest Neighbor algorithm will often result in tours within 25% of the Held-Karp lower 

bound. 

 
2.2.2 Greedy 

In this heuristic, we view an instance as a complete graph with the cities as vertices and with 

an edge of length d(Ci, Cj) between each pair {Ci, Cj} of cities. The Greedy heuristic gradually 

constructs a tour by repeatedly selecting the shortest edge and adding it to the tour as long as it 

doesn’t create a cycle with less than N edges, or increases the degree of any node to more than 2.  

The algorithm works as follows: 

1. Sort all edges. 
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2. Select the shortest edge and add it to our tour if it doesn’t violate any of the above 

constraints. 

3. Do we have N edges in our tour? If no, repeat step 2. 

The Greedy algorithm normally keeps within 15-20% of the Held-Karp lower bound. 

 
2.2.3 Insertion Heuristics 

Insertion heuristics are quite straightforward, and there are many variants to choose from. The 

basics of insertion heuristics is to start with a tour of a subset of all cities, and then insert the rest 

one at a time by some heuristic. The initial subtour is often a triangle or the convex hull of the 

cities. One can also start with a single edge as the initial subtour. The algorithm works as 

follows: 

1. Select the shortest edge (or the convex hull of the cities), and make a subtour of it. 

2. Select a city not in the subtour, having the shortest distance to any one of the cities in 

the subtour. 

3. Find an edge in the subtour such that the cost of inserting the selected city between the 

edge’s cities will be minimal. 

4. Repeat step 2 until no more cities remain. 

 
2.2.4 Christofides 

Most heuristics can only guarantee a worst-case ratio of 2 (i.e. a tour with twice the length of 

the optimal tour). Professor Nicos Christofides extended one of these algorithms and concluded 

that the worst-case ratio of that extended algorithm was 3/2. This algorithm is commonly known 

as Christofides heuristic. The algorithm works as follows: 

1. Build a minimal spanning tree from the set of all cities. 

2. Create a minimum-weight matching (MWM) on the set of nodes having an odd degree. 

Add the MST together with the MWM. 

3. Create an Euler cycle from the combined graph, and traverse it taking shortcuts to 

avoid visited nodes. 
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Christofides algorithm normally keeps within 10% of the Held-Karp lower bound for random 

Euclidean instances. 

 
2.3 Tour Improvement Algorithms 

Once a tour has been generated by some tour construction heuristic, we might wish to improve 

that solution. This is what tour improvement algorithms, or local search algorithms, attempt to 

do. There are several ways to do this, but the most common ones are the 2-opt and 3-opt local 

searches. 

Other ways of improving our solution is to do a tabu search using 2-opt and 3-opt moves. 

Simulated annealing also uses these moves to find neighboring solutions. Genetic algorithms 

generally use the 2-opt move as a means of mutating the population. 

 
2.3.1 2-Opt 

The most famous and widely used tour modifications by local search algorithms are 2-Opt, 3-

Opt, and in general k-Opt moves. A 2-Opt move deletes two edges, thus breaking the tour into 

two parts, and then reconnects those paths in the other possible way (see Figure 1). This is 

equivalent to reversing the order of the cities between the two edges, thus a 2-Opt move can be 

seen as a segment reversal, and will be treated as such in this thesis. 

 

 

Figure 1. Applying a 2-Opt move. 

 

Each segment reversal consideration need only take into account the four cities at the segment 

boundaries, no matter how long the segment is (since all internal cities keep their relative order). 

C1 

C2 

C6 

C7 C8 

C3 C4 

C5 

C3 C4 

C2 C5 

C1 C6 

C7 C8 

Initial Tour: 
C1, C2, C3, C4, C5, C6, C7, C 

Resulting Tour: 
C1, C2, C7, C6, C5, C4, C3, C8 
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For example, the difference in tour lengths that results from applying the move of Figure 1, can 

be calculated as: 

 

Equation 1. Tour length difference after applying 2-opt move 

Delta(length) = dist(C2, C7) + dist(C3, C8) - dist(C2, C3) - dist(C7, C8) 

 

where dist(A, B) is the Euclidean distance between cities A and B, i.e. dist(A,B) = sqrt[(Ax – 

Bx)2  + (Ay-By)2] 

If Equation 1 turns out to be negative, this is a length-reducing move and should be applied to 

the current tour. 

The algorithm ends when there are no more length-reducing 2-opt moves to apply to the 

current tour, i.e. when we have reached a 2-optimal tour.  

 
2.3.2 3-Opt, k-Opt, V-Opt 

The 3-Opt algorithm works in a similar fashion, but instead of removing two edges we remove 

three. However in the case of 3-opt we now have two ways of reconnecting the three paths into a 

valid tour. A 3-opt move can actually be seen as two or three 2-opt moves. 

We don’t necessarily have to stop at 3-opt, we can continue with 4-opt and so on (in general, 

k-opt for any positive number k), but each of these will take more and more time and will only 

yield a small improvement on the 2- and 3-opt heuristics. 

Whereas the k-opt methods remove a fixed number (k) of edges from the original tour, the 

variable-opt methods do not fix the size of the edge set to remove. Instead they grow the set as 

the search process continues. The best known method in this family is the Lin–Kernighan 

method (mentioned above as a misnomer for 2-opt). Shen Lin and Brian Kernighan first 

published their method in 1972, and it was the most reliable heuristic for solving travelling 

salesman problems for nearly two decades. More advanced variable-opt methods were developed 

at Bell Labs in the late 1980s by David Johnson and his research team. These methods 

(sometimes called Lin–Kernighan–Johnson) build on the Lin–Kernighan method, adding ideas 
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from tabu search and evolutionary computing. V-opt methods are widely considered the most 

powerful heuristics for the problem. 

 

2.3.3 Theoretical Bounds on Tour Improvement Algorithms 

Concerning worst-case behavior, if we assume an adversary is allowed to choose the starting 

tour, the best performance guarantee possible for 2-Opt is a ratio of at least (1/4)*N^(1/2), and 

for 3-Opt it is at least (1/4)*N^(1/6). More generally, the best performance guarantee for k-Opt 

assuming the triangle inequality is at least (1/4)*N^(1/2*k). In practice, of course, we can obtain 

significantly better worst-case behavior simply by using a good heuristic to generate our starting 

tours. 

However, average-case behavior, is usually much better even though at present we do not 

know how to prove tight bounds on the expected performance ratios for TSP heuristics such as 

2-Opt and 3-Opt. If a Greedy heuristic is used to construct our starting tour, 2-Opt usually keeps 

within 5% of the Held-Karp lower bound, and 3-Opt within 3% of HK for random Euclidean 

instances. 

 
 

2.4 TSPLIB and Concorde 
TSPLIB [1] provides TSP instances that are often used as benchmarks to evaluate the 

performance (in terms of both speed and quality of results) of the different heuristics. TSPLIB 

contains instances with as many as 85,900 cities, including many from printed circuit board and 

VLSI applications, as well as geographical instances based on real cities. A good comparative 

survey and up-to-date picture of the state of the art in TSP heuristics can be found at the 

DIMACS Implementation Challenge [2] site. 

Concorde [3] gathers many of these highly-optimized heuristics, including 2-Opt, in a single 

package. Several tricks are used to speed-up 2-Opt [4][5]. Heavy pruning of legal moves, 

preprocessing to construct k-d and other types of trees out of the cities, “don’t look” bits, caching 

etc. are some of them. As a result of all this, the algorithm runs in O(N) time (where N is the 

number of cities) and is actually very fast for small TSP instances. 
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Chapter 3. Related Work 
 

 

 

 

In this thesis we uncover previously unknown fine-grain parallelism in the 2-Opt algorithm and 

present two implementations that take advantage of this newly-found parallelism to speed-up the 

2-Opt algorithm, one on reconfigurable hardware, and one on a multi-threaded GPU. 

We will now discuss previous attempts to parallelize the 2-Opt algorithm in software, or 

implement a TSP solver in hardware or on a multi-threaded processor such as a GPU. 

 

3.1 Parallel 2-Opt and 3-Opt 
One often-mentioned method for speeding up TSP algorithms is the use of parallelism. Various 

schemes have been proposed for this, and we will discuss the three most common approaches. 

The first two approaches partition the problem into multiple CPUs in either a geometric or a 

tour-based fashion, and then combine the results back into one solution for the initial problem. 

This coarse-grained parallelism is unrelated and orthogonal to the fine-grain parallelism that is 

uncovered by our work. One could actually use our implementations to speed-up the solution of 

the subproblems produced by these approaches. 

The third approach discusses the inherent parallelism in the search of tour-improving 2-Opt 

moves. Again, our solution drastically differs from this approach since, apart from searching 2-

Opt moves in parallel, our idea also allows for the parallel application of any number of tour-

improving 2-Opt moves. 
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3.1.1 Geometric Partitioning 

For 2-dimensional geometric instances, a partitioning scheme proposed by Karp in 1977 can be 

used. It is based on a recursive subdivision of the overall region containing the cities into 

rectangles, with the set of cities corresponding to a given rectangle being comprised of all the 

cities in the rectangle’s interior together with some of the cities on its boundary. Suppose we 

wish to construct a partition in which no set contains more than K cities. The recursive step of 

the partitioning scheme works as follows. Let CR be the set of cities assigned to rectangle R, and 

suppose ïCRï > K. One subdivides R into two subrectangles as follows. Suppose without loss of 

generality that the x-coordinates of the cities in CR have a larger range than the y-coordinates. 

Find a city c in CR whose x-coordinate has the median value for cities in CR. Divide R into two 

subrectangles R1 and R2 by drawing a vertical line through c, letting R1 be the rectangle to the 

left of the line. Each city in CR to the left of the line is assigned to R1, each city to the right is 

assigned to R2, and cities on the line are divided as equally as possible between the two 

rectangles, except that city c itself is assigned to both R 1 and R2. 

Once the cities have been partitioned in this way into subrectangles, none of which has more 

than K cities assigned to it, one can send each subrectangle to a processor, and have that 

processor run 2- or 3-Opt (or any other TSP algorithm) on the corresponding set of cities. The 

union of the tours thus found will be a connected Eulerian subgraph, and so it can be converted 

to a tour for the entire instance by using shortcuts as in the Christofides algorithm. 

However, even though geometric partitioning can certainly speed-up the local search 

algorithm, one should also expect a loss in final tour quality. The greater the number of partitions 

we use, the greater the loss in final tour quality. A rule of thumb seems to be that as soon as the 

number of cites in a subproblem drops below 1000, one can expect significant deterioration. 

 

3.1.2 Tour-Based Partitioning 

In tour-based partitioning, one begins by using a simple heuristic to generate an initial tour and 

then breaks that tour up into k segments of length N / k, where N is the number of cities and k is 

greater than or equal to the number of processors available. Each segment is then handed to a 

processor, which converts the segment into a tour by adding an edge between its endpoints and 

attempts to improve the tour by local optimization (2-Opt, 3-Opt, etc.), subject to the constraint 
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that the added edge cannot be deleted. The resulting tour can thus be turned back into a segment 

with the same two endpoints, and the improved segments can then be put back together into a 

new overall tour. We can then construct a revised partition where each new segment takes half 

its cities from each of two adjacent old segments and repeat the parallel local optimization phase. 

Additional phases can be performed until a time limit is exceeded or no significant further 

improvement is obtained. 

There still appears to be a tour-quality penalty for partitioning in this way. Despite the shifting 

of the segment boundaries, it remains difficult to move a city very far away from its original 

position in the tour. 

 
3.1.3 Using Parallelism in the Search of Improving Moves 

The search for improving moves typically dominates the algorithm time and offers ample 

opportunities for parallelism. For example, when neighbor-list 3-Opt is applied to a random 

Euclidean instance, we typically evaluate 50 or more moves for every move actually made. 

There is no reason why these searches cannot be performed in parallel. Each processor may need 

access to the entire instance and all the neighbor lists, but assuming there is enough memory so 

that all this information can be replicated at each processor, significant reductions in running 

time should be possible. 

 

3.2 Implementations on Hardware 

Almost all proposed algorithms and literature focus on software implementations of TSP 

heuristics. As far as we know, there has been very little work done on how these algorithms 

could be ported to hardware. A couple of hardware implementations of genetic algorithms for the 

TSP can be seen in the references [7][8], but they are slower than our proposed solution since 

they yield significantly less parallelism. 

 

3.3 Implementations on GPU 
Recently, there has been an increased interest in implementing a parallel TSP solver on GPUs. 

Most GPU-based approaches to the TSP use the Max-Min Ant System (MMAS) algorithm [11]. 
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The algorithm simulates the behavior of individual ants, which constructs tours around a graph 

based on the strength of evaporating pheromone trails left by other ants.  

Bai et al. detail a GPU-based implementation of the parallel MMAS algorithm in which 

multiple ant colonies are simulated concurrently on the GPU, one for each thread block, with the 

tours of individual ants within each colony also parallelized [12]. This implementation achieves 

up to a 32x speedup over a serial CPU version under the same workload. Jiening et al. present a 

C++ and Cg implementation of the MMAS algorithm with up to a 1.4x speedup over the CPU 

implementation, which finds the optimal tour on a 30-city input [13]. You describes a CUDA 

implementation of a parallel ACO algorithm [14], with each thread on the GPU responsible for 

the travel of a single ant from a unique starting location, achieving up to a 20x speedup over a 

serial CPU implementation. Cecilia et al. present several GPU-based, data-parallel strategies for 

both the tour construction and pheromone update stages of the ACO algorithm, achieving a 28x 

speedup for the tour stage and a 20x speedup for the pheromone update stage over sequential 

CPU code [15]. However, these works focus on how to efficiently implement an Ant System on 

a GPU and compare the results of their GPU-based implementation only against a serial ACO 

implementation without providing the run times or the tour lengths. Essentially, they target to 

show that “ACO is a potentially fruitful area for future research in the GPU domain”. 

 Molly et al. explain how to parallelize the iterative hill climbing algorithm for TSP for GPU-

based execution [16]. The algorithm runs on a GPU chip 62 times faster than the corresponding 

serial CPU code. This paper proposes to use thousands of “climbers” working independently in 

order to find a locally optimal solution starting from a random point and performing best moves 

(i.e. moves that yield the maximum possible length reduction). Each climber uses separate 

memory. However, a GPU has limited shared memory and, as a result, the paper presents results 

for small problems including 100 cities. Moreover, this work does not take into advantage of the 

GPU’s high sequential memory access performance. Contrary to this work, in our 

implementation all the threads share the same memory so as to store thousands of cities in the 

GPU’s shared memory (Section 6.4). Moreover, all the threads are synchronized performing 

coalesced memory accesses. 

There also exists a recent genetic algorithm-based TSP solver in CUDA, presented by 

Fujimoto and Tsutsui [17]. This work parallelizes TSP using the genetic crossover operator and 

2-Opt local search. Their CUDA implementation on a GTX-285 is up to 24.2x faster than a 
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single-core CPU version, allowing an error ratio over the optimal trip cost of up to 0.5%. 

However, this work also provides results for small problems (less than 500 cities) and their 

running times are significant longer than ours. 
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Chapter 4. Symmetrical 2-Opt Moves 
 

 

 

 

One of the main contributions of this thesis is the introduction of the notion of symmetrical 2-

opt moves, a novel ideal that will help us uncover fine-grain parallelism in the 2-Opt algorithm. 

To the best of our knowledge this is the first time that this type of parallelism is uncovered and 

studied. 

A local search algorithm that uses 2-Opt moves typically evaluates a significant number of 

moves before finding a move that reduces the length of the current tour. This is especially true as 

the algorithm approaches a local minimum solution, where hundreds or even thousands of moves 

might need to be evaluated before a length-reducing move can be found. These searches can be 

performed in parallel. 

We define a set of segments (or equivalently their corresponding 2-Opt moves) as symmetrical 

segments (or symmetrical 2-Opt moves), if and only if: 

For each segment SegmA of the set (except the smallest one), segment SegmB that consists of 

the same cities except the two cities at the boundaries of SegmA, is also part of the set. For 

example, if SegmA = {C10,...,C100} is in the set, then SegmB = {C11,...,C99} will also be in 

the set. Taking this further, if we assume that SegmA is the largest segment in the set, then the 

set will consist of segments {C10,...,C100}, {C11,...,C99}, {C12,...,C98}, etc., up to segment 

{C54, C56}. 

Symmetrical 2-Opt moves are ideal candidates for parallel evaluation and application in 

hardware, for reasons that will become clear in the next paragraphs. 

Figure 2 shows an example where three symmetrical 2-Opt moves are evaluated in parallel; the 

first one considers the reversal of the tour segment {2,...,7}, the second considers segment 
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{3,...,6}, and the third one considers segment {4, 5}. The Figure shows the starting tour, as well 

as the resulting tour after applying any subset of these moves. Underlined in the resulting tour 

are the cities that have changed positions, compared to the positions they had in the initial tour. 

For example, in the case where moves 1 and 2 are applied, segment {3,...,6} will be reversed 

twice, ending up at its initial position and orientation. Thus, in this case, only cities 2 and 7 will 

end up in different positions than their initial ones. 

 

 

 

Figure 2. Example of three symmetrical 2-Opt moves 

 

 

Looking at this Figure, the following observations can be made for a set of symmetrical 2-Opt 

moves: 

1. After the application of any number of the symmetrical segment reversals under 

consideration, each city will either remain at its initial position, or swap positions with 

its “symmetrical” city (two cities are “symmetrical” if they are at the two ends of one of 

the symmetrical segments). For example, cities 2 and 7 of Figure 2 will either remain at 

their initial positions or swap positions (the same is true for cities 3 and 6, as well as 

cities 4 and 5). 

Initial Tour: 
1    2    3    4    5    6    7    8 

move 3 

Resulting Tour: 
1    2    3    4    5    6    7    8 
1    7    6    5    4    3    2    8 
1    2    6    5    4    3    7    8 
1    2    3    5    4    6    7    8 
1    7    3    4    5    6    2    8 
1    7    6    4    5    3    2    8 
1    2    6    4    5    3    7    8 
1    7    3    5    4    6    2    8 

 

Moves applied 
none 

1 
2 
3 

1,2 
1,3 
2,3 

1,2,3 

move 2 

move 1 
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2. Whether the cities at the two ends of a specific segment will stay put or will swap 

positions depends only on whether an even or odd number of segment reversals are 

applied on them. Therefore the number of the segment reversals can be counted by 

considering only the segments that these cities are part of. For example, in the case of 

Figure 2: 

• Cities 2 and 7 will swap positions iff segment {2,...,7} gets reversed. 

• Cities 3 and 6 will swap positions iff exactly one of the segments {2,...,7} and 

{3,...,6} gets reversed (not both). 

• Cities 4 and 5 will swap positions iff an odd number of the segments {2,...,7}, 

{3,…,6} and {4, 5} get reversed. 

What these observations tell us is that, we are able to apply any subset of symmetrical 2-Opt 

moves in parallel, just by figuring out which cities need to be swapped. In what follows we will 

examine a hardware and a multi-threaded implementation that takes advantage of this 

parallelism in applying symmetrical 2-Opt moves. To the best of our knowledge, this is the first 

attempt to exploit this type of fine-grain parallelism in the 2-opt algorithm. Most attempts use a 

coarser-grain of parallelism, by partitioning the cities in a geometric or tour-based fashion 

among different processors, and then combining their results. 
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Chapter 5. Hardware Implementation 
 

 

 

 

5.1 Algorithm and Architecture 
In order to take advantage of the aforementioned parallelism, the proposed architecture splits 

all legal 2-Opt moves into groups of symmetrical 2-Opt moves. The moves of each such group 

are then evaluated and those that actually turn out to be length-reducing are applied in parallel. 

Notice that in Figure 1, reversing tour segment {C3,…,C7} is equivalent to reversing the 

remaining tour segment {C8, C1, C2}. Thus, in our search for length-reducing segment 

reversals, we will only consider segments that consist of up to half the total number of cities. 

As an example, let us consider an initial tour that consists of 200 cities. Figure 3 shows the 

proposed architecture for this example. Each city is represented by a register that holds its two 

coordinates, and the cities are put one next to the other to form a 200-entry circular shift register. 

The order of the cities in this shift register represents the current tour. Arrows in the Figure show 

all possible data movements (datapaths). 
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Figure 3. Architecture using 50 PEs for 200 cities 

 

Since we have 200 cities we only need to consider segments of length at most 100. This is a 

total of 199*200/4 = 9950 such segments (half the combinations of picking 2 segment ends out 

of 200 cities). The proposed architecture will split these 9950 segments into 199 groups of 50 

symmetrical segments each, and evaluate the segment reversals of each such group in parallel. 

The actual implemented algorithm executes the following tasks: 

1. Firstly, it evaluates in parallel the set of 50 symmetrical segments {1,...,100}, {2,...,99}, 

{3,...,98}, etc., up to {50, 51}. These are all segments with even lengths of 2, 4, 6, etc., 

up to 100. 

2. Secondly, it evaluates in parallel the set of 50 symmetrical segments {1,...,101}, 

{2,...,100}, {3,...,99}, etc. up to {50, 52}. These are all segments with odd lengths of 3, 

5, 7, etc., up to 101. 

3. Finally, the above two steps are re-applied so as to evaluate all remaining 197 groups of 

50 symmetrical segments each. 

For the first step, the 50 Processing Elements (PEs) shown in Figure 3 all run in parallel, each 

one evaluating one 2-Opt move. PE[1] evaluates whether the tour segment {1,...,100} should be 

reversed, PE[2] evaluates segment {2,...,99}, PE[3] evaluates segment {3,...,98}, etc., up to 

PE[50] which evaluates segment {50, 51}. In order for each PE to evaluate whether its 2-Opt 

move is length-reducing or not, as we discussed earlier, it needs to calculate Equation 1 of page 8 

for the cities at its segment boundaries. For example, PE[2] calculates Equation 1 for cities 1, 2, 

99 and 100. This is done in O(1) time (a few clock cycles) with the use of minimal hardware (a 

few multipliers and adders) per PE. 

1 2 49 50 51 52 99 100 199 200 … … … 

PE 
50 PE 

49 

PE 
2 

… 

PE 
1 

… 

… 
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In this way, all PEs evaluate in parallel their 2-Opt moves, and when done, we will have 50 

yes/no decisions for the 50 segment reversals under consideration. Next, we need to apply these 

decisions by swapping the necessary city pairs, as was explained in the previous Chapter. For 

example, cities 50 and 51 will swap positions iff PEs 1 to 50 have resulted in an odd number of 

“yes” decisions. (Similarly, cities 49 and 52 will swap positions iff PEs 1 to 49 have resulted in 

an odd number of “yes” decisions etc.) All necessary city swaps are done simultaneously in a 

single clock cycle, using the datapaths shown in the Figure. 

Now, for the second step (segments with odd lengths 1, 3, 5, 7, etc., up to 101), in order to 

reuse the same wiring and PEs as before, we perform a left circular shift to segment {51,…,200} 

(see the corresponding datapaths in the Figure). In this way PE[1] will now be able to evaluate 

segment {1,…,101}, PE[2] will now evaluate segment {2,…,100}, PE[3] will evaluate segment 

{3,…,99}, etc., up to PE[50] which will evaluate segment {50,…,52}. After all these 50 new 

moves have been evaluated, we apply whichever turn out to be length-reducing by swapping the 

necessary cities as before (this time the swapping city pairs are different than before; city 50 with 

52, city 49 with 53 etc.). Next, we perform a right circular shift on segment {52,…,200, 51} to 

restore city 51 to its original position. Notice that this scheme works since no matter how many 

of the segments under consideration are actually reversed, city 51 is in the centre of all these 

segments and will not change position. 

For the third and final step, we perform a right circular shift to all 200 cities (see the 

corresponding datapaths in the Figure), and all the above tasks are again repeated from the 

beginning. In effect, the same wiring and PEs will now be used in a different position of the tour. 

This whole process is repeated until we can not find any length-reducing moves for 199 

consecutive repetitions, since the algorithm is exhaustive and is guaranteed to search all possible 

tour segments in 199 repetitions (in contrast to randomized search algorithms that search 2-Opt 

moves at random and can not thus guarantee 2-Optimality of the final result). 

Following is the pseudo-code for the control of the proposed architecture, which can be 

implemented with a simple Finite State Machine (FSM): 
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Repeat 

1. PEs evaluate moves (segments with even lengths) 

2. Apply length-reducing moves by swapping cities 

3. Apply left circular shift to segment {51..200} 

4. PEs evaluate moves (segments with odd lengths) 

5. Apply length-reducing moves by swapping cities 

6. Apply right circular shift to segment {52..200, 51} 

7. Apply right circular shift to all cities 

until done 

Figure 4. Algorithm for the Hardware implementation 

 

Notice that the proposed architecture exhibits minimal and fixed wiring with trivial control. 

Furthermore, notice that, since all move evaluations and applications are done in parallel, each 

iteration of the above pseudo-code loop (all 7 steps) is executed in O(1) time, independent of the 

total number of cities (200 in this case). 

It is easy to see how this architecture scales to more cities, as long as there is enough silicon to 

accommodate the additional PEs and city registers. However, assuming that the PEs are 

expensive in terms of silicon consumption we would want to be able to scale to more cities while 

keeping the number of PEs constant. Thus, we would like to use the available PEs and their fixed 

wiring to evaluate all possible 2-Opt moves of any tour independent of its size. This in fact is 

possible with a small modification to our architecture. Figure 5 shows an example with 50 PEs 

and 1000 cities. Notice the added registers and data paths in comparison to the architecture of 

Figure 3. 

In order to allow the PEs to work on larger segments we will use the same technique as before, 

i.e. perform left circular shifts to segment {51,…,1000} for a number of cycles which depends 

on the actual length of the segments under evaluation. For example, by performing 50 shifts, 

PE[1] will evaluate segment {1,…,150}, PE[2] will evaluate segment {2,…,149}, etc., up to 

PE[50] which will evaluate segment {50,…,101}. These segments have lengths of 150, 148, etc., 
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down to 52 cities respectively. After all these new 50 moves have been evaluated and applied (by 

swapping the necessary cities), we need to restore segment {51,…,100} from the end of the 

1000-city wide shift register back to its original position. This is done by performing 50 right 

circular shifts to segment {101,…,1000, 51,…,100}. This time however, there is an extra step 

since segment {51,…,100} might need to be reversed, in the case where cities 50 and 101 have 

been swapped. For this reason, we have added the extra set of registers (see Figure 5) that get 

loaded during the left circular shifts of segment {51,…,1000}, and will thus end-up holding the 

reverse of segment {51,…,100}. These registers are used as a final step to overwrite segment 

{51,…,100} with its reverse, if needed, in a single cycle. 

 

 

Figure 5. Architecture using 50 PEs for 1000 cities 

 

Using the technique described we are able to use the same PEs and wiring to perform 50 2-Opt 

move evaluations per iteration. A total of 10 iterations would be needed to be able to evaluate 

moves of all segment lengths from 2 up to 500 (we do not need to evaluate bigger segments for 

1000 cities). Then, a right circular shift should be applied to all the cities before the algorithm 

can be repeated. 

 
 
5.2 Deterministic Nature of Architecture Algorithm 

The proposed architecture evaluates 2-Opt moves in a strictly deterministic fashion, as opposed 

to a randomized local search algorithm that evaluates 2-Opt moves at random. A question that 

1 2 49 50 51 52 99 100 999 1000 … … … 

PE 
50 PE 

49 

PE 
2 

… 

PE 
1 

… 

… 

… … 

Reverse segment registers 
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arises is how this loss of randomness affects the time for the algorithm to converge to a locally 

optimal tour, as well as the quality of this resulting tour. 

We implemented in software an iteration-accurate emulator of the proposed architecture (the 

version shown in Figure 3). The emulator executes the pseudo-code of Figure 4, searching the 

same groups of symmetrical 2-Opt moves in the exact same order as the architecture. We used 

this software emulator for all our performance measurements, for the following reasons: 

• The final tour, as well as all the intermediate tours at the pseudo-code loop iteration 

boundaries (i.e. at the beginning of each iteration), matched exactly with the ones from 

the Verilog simulations (after turning the square root calculations of the emulator off). 

This validates that the emulator evaluates and applies the exact same 2-Opt moves as 

our architecture. 

• Since the software emulator executes the exact same number of pseudo-code loop 

iterations as the implemented hardware model, and each iteration takes O(1) time to 

execute in hardware, the emulator is able to accurately predict the performance of a 

hardware implementation of the architecture, as long as it knows how long O(1) 

actually is. 

• The software emulator runs orders of magnitude faster than a Verilog simulation. 

In order to evaluate the effect of the deterministic nature of the architecture we also 

implemented in software a randomized version of the local search algorithm. This version 

evaluates 2-Opt moves at random, and converges after a sufficiently large number of sequential 

move evaluations (equal to the square of the number of cities) fail. 

The two implementations were run against 70 TSPLIB instances (we used the Euclidean 

instances of “EUC_2D” type), using the exact TSPLIB instances as our starting tours, as 

opposed to first applying a greedy algorithm to them as is often done. The sizes of these 

instances ranged from 50 to around 4500 cities. 

In these runs, our algorithm evaluating symmetrical 2-Opt moves converged, most of the 

times, slower than the algorithm that evaluated 2-Opt moves at random. Figure 6 provides a 

close look at the runtime behavior of the two algorithms for two specific TSPLIB instances (the 

results shown are typical at least for the set of TSPLIB instances that we used). 
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Figure 6. Runtime behavior of local search algorithm evaluating symmetrical or random 2-Opt moves 

 

However, the running time of a hardware implementation of our deterministic algorithm, is 

expected to be orders of magnitude lower than the running time of a hardware implementation of 

the randomized algorithm (see Section 5.4 for detailed performance results). The reason is that 

the former was designed with such an implementation in mind. 

As far as the final tour quality is concerned, the results of the two algorithms are pretty much 

the same. Our deterministic algorithm produced an average of 0.75% smaller final tours than the 

randomized algorithm. 

 

 
5.3 FPGA-Based Implementation 

Several instances of the first version of the proposed architecture (the one in Figure 3), with 

varying number of cities, were implemented in Verilog and synthesized for the Xilinx xc2vp100-

6 Virtex II Pro FPGA. 

For these implementations, the PEs did not include hardware to compute the square roots 

required for the distance calculations of Equation 1 – this is part of our ongoing and future work. 

For this reason, the Verilog simulations actually find the tour with the (locally) smallest sum of 
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squares of distances between the cities. However, as we discussed in Section 5.2, we have built 

an accurate software emulator of the architecture (that calculates all the required square roots) 

which allows us to accurately evaluate the architecture performance both in terms of running 

time and in terms of quality of resulting tours. 

The main hardware units used, excluding pipeline registers, control and other miscellaneous 

logic, are the following: 

• One 30-bit wide register per city to hold its X and Y coordinates (thus each coordinate 

can be up to 15 bits long, which was enough for all the TSPLIB instances that we use). 

• One 16x16 multiplier, as well as one 16-bit and one 32-bit adder, per PE. 

Having the PEs use the aforementioned hardware in a pipelined fashion, we were able to 

execute each iteration of the pseudo-code loop of Figure 4 in just 35 clock cycles, with each 

move evaluation taking 12 clock cycles. 

Table 1 contains information about the area occupied by these implementations and their clock 

frequencies. The suffix of the TSPLIB instance name indicates the number of cities in that 

particular instance. 

 

Cities 

(TSPLIB 

instance) 

Area 

(slices) 

Multipliers 

(MULT18X18s) 

Speed 

(MHz) 

berlin52 3295 (7%) 13 (2%) 184 

eil76 4823 (10%) 19 (4%) 178 

rd100 6332 (14%) 25 (5%) 184 

ch150 9390 (21%) 37 (8%) 165 

ts225 14143 (32%) 56 (12%) 171 

pr299 18749 (42%) 74 (16%) 165 

 

Table 1 Implementation Results for Xilinx xc2vp100-6 Virtex II Pro FPGA 
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5.4 Performance Results 

As we discussed in Section 5.2, the architecture emulator is able to accurately predict the 

performance of a hardware implementation of the architecture, as long as it knows the duration 

of each iteration of the pseudo-code loop. For the performance results in this Section we have 

assumed that each iteration takes 35 clock cycles of a 150 MHz clock. Notice that after the 

hardware for the square root calculations is added to the PEs (in our future work), the number of 

cycles is expected to increase, which will have a negative impact to the performance numbers 

shown in this Section. However, the square root calculation can be performed by several 

estimation algorithms and thus the number of clock cycles needed is expected not to increase 

significantly. 

We compared the performance of the hardware implementation of the architecture against two 

software implementations: 

1. The architecture emulator. 

2. A modified version of the 2-Opt local search algorithm implementation by Concorde. 

Concorde is widely considered as the state-of-the-art in TSP solving software, 

containing highly optimized implementations for the most important TSP algorithms 

and heuristics. We modified its 2-Opt algorithm implementation in the following way: 

• Concorde will by default first apply the greedy algorithm to the initial tour in order 

to obtain the starting tour for 2-Opt optimization. Since for the performance 

measurements of our architecture (and its software emulator) we used the exact 

TSPLIB instances as our starting tours, we had to modify Concorde so as not to 

apply the greedy algorithm to the initial tour. 

Concorde runs very fast for the small TSPLIB instances that we consider. Thus, in order to 

more accurately measure its performance, we measured for each TSPLIB instance the average 

running time among 1000 runs. 

Both software implementations were run on an Intel Pentium 3 GHz machine running RedHat 

Linux. Figure 7 shows the speed-ups obtained by the hardware implementation against its 
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software emulator, as well as the same speed-ups normalized to (i.e. divided by) the number of 

cities. 
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Figure 7. Overall and normalized speed-ups over software emulator (based on 35 150MHz ccs per iteration) 

 

As expected the overall speed-up is proportional to the number of cities, since the latter reflects 

the number of PEs operating in parallel. The normalized speed-up of 60 seen in this Figure is 

attributed to the faster evaluation and application of 2-Opt moves in hardware over software. 

Figure 8 compares the quality of the final tours obtained with our approach against the ones 

obtained by Concorde. Our architecture outperforms Concorde in final tour quality by an average 

of around 10%. This is expected since Concorde, in contrast to our architecture, gives up the 

guarantee of true 2-Optimality in favor of greatly reduced running time. The difference of 10% is 

exaggerated by the fact that we do not apply the greedy algorithm to our initial tours. However, it 

still shows the high quality of the tours produced by our architecture. 
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Figure 8. Final tour lengths achieved by our architecture as percentages of the ones achieved by Concorde 

 

Figure 9 shows the speed-ups that our architecture exhibits against the state-of-the-art 

Concorde. We can see that our architecture exhibits an average speed-up of around 6 for the 

TSPLIB instances that we tried. Notice the huge difference between these speed-ups and the 

ones of Figure 7, which attests to the high quality of Concorde’s heuristics and optimizations 

over our simplistic software implementations. Additionally, Concorde’s performance certainly 

scales better with the number of cities than our implementations. 
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Figure 9. Speed-up over Concorde’s 2-Opt implementation (based on 35 150MHz ccs per iteration) 

 

 

Table 2 has a more detailed analysis of how the numbers for a small subset of the TSPLIB 

instances of Figure 9 were obtained. 

Last but not least, we should note that greater speed-ups are achievable if, like Concorde, we 

give up the guarantee of true 2-Optimality. In our runs we observed that the algorithm using 

symmetrical 2-Opt moves converged to within 5% of the final locally optimal tour at usually 
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20% to 70% of its total running time. If we add a mechanism to stop running when small 

reductions in tour length are detected, we can gain additional speed-ups of 150% to 500%. 

 

 

 Concorde Proposed Architecture 

TSPLIB 

instance 

Time 

(us) 

Loop 

iteration

s 

Clock 

cycles 

Time 

(us) 

Speed-

up 

eil51 460 234 8190 54.6 8.42 

tsp225 1800 1129 39515 263.4 6.83 

pr1002 5720 5576 195160 1301 4.40 

rl1304 17380 18607 651245 4342 4.00 

vm1748 30800 31747 1111145 7408 4.16 

u2319 12330 8585 300475 2003 6.16 

fnl4461 111350 84940 2972900 19819 5.62 

 

Table 2 Comparison between Concorde and our proposed architecture 
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Chapter 6. Multi-Threaded Implementation 
 

 

 

 

6.1 Algorithm 
In comparison to the hardware implementation where each Processing Element (PE) is 

expensive in terms of silicon consumption, a multi-threaded implementation can provide us with 

thousands of threads and thus relatively cheap PE implementations. For this reason, the multi-

threaded implementation uses a modified version of the hardware algorithm. The new version 

uses more PEs in order to achieve a higher degree of parallelism. 

The hardware version of our algorithm from the previous Chapter would use (at most) N/4 

PEs, where N is the number of cities, and would use them to first evaluate the segments of even 

length, and then the segments of odd length. In the modified version for the multi-threaded 

implementation we will be using N/2 PEs and evaluate all possible segments in one step. The 

new algorithm works as follows. 

First of all, for reasons that will become clear later, the new algorithm works only for an odd 

number of cities. However, this is not a problem since if we have an even number of cities we 

can just duplicate the last one (thus resulting in an odd number of cities) and use that as our 

starting tour. Since our algorithm only applies length-reducing 2-opt moves, the two cities at the 

end of our starting tour (i.e. the last city and its duplicate) will not be separated and we can thus 

easily remove the duplicate city from our optimized tour once the algorithm has finished 

running. 

To see this with an example, assume that we have an initial tour with 8 cities {1, 2, .., 8}. We 

append a duplicate of the last city at the end of the tour, to get {1, 2, …, 8, 8}. Now, for example, 

if we evaluate Equation 1 for segment {5, 6, 7, 8} we get: 
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Delta(length) = dist(4, 8) + dist(5, 8) – dist(4, 5) > 0 

 

which, due to the triangle inequality, is positive. Thus reversing segment {5, 6, 7, 8} is not a 

length-reducing move. We can easily conclude that the two duplicate cities will remain adjacent 

after any number of length-reducing 2-opt moves is applied. 

Since the number of cities is odd, reversing a tour segment of odd length, for example {5, 6, 

7}, is equivalent to reversing the remaining tour segment {8, 8, 1, 2, 3, 4} of even length. 

Therefore the modified algorithm considers only segments of odd length, and considers all of 

them instead of considering segments that consist of up to half the total number of cities. In this 

way the new algorithm can evaluate N/2 symmetrical 2-Opt moves in parallel (for the 201 cities 

shown in Figure 10 it evaluates 100 segments in parallel) so as to support more parallelism and 

therefore require half the number of steps compared to the hardware implementation of the 

algorithm as well as to simplify its implementation. 

In this Section we propose a parallel implementation of the symmetrical 2-Opt algorithm based 

on a generic thread-based platform that can support shared memory between the threads. This 

implementation will be the baseline for a multi-threaded GPU-based implementation. In order to 

take advantage of the aforementioned parallelism, the architecture splits all legal 2-Opt moves 

into groups of symmetrical 2-Opt moves of odd length. The moves of each such group are then 

evaluated and those that actually turn out to be length-reducing are applied in parallel. 

As an example, let us consider an initial tour that consists of 201 cities. Each city is 

represented by a variable that holds its two coordinates, and the cities are put in an array one next 

to the other to form a 201-entry circular buffer as shown in Figure 10. The order of the cities in 

the buffer represents the current tour. Arrows at the bottom of the Figure show all possible data 

movements. 

 

Initial tour 1 2 3 4 5 6 7 8

Illegal move 

 8 

1 2 3 4 8 7 6 5 8 
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Figure 10. Implementation using 100 threads (TH1 to TH100) for 201 cities 

 

Based on our previous reasoning, we only need to consider segments of odd length. This is a 

total of 200 * 200/2 = 20000 such segments (we also take into account the segments of 201 

length in order to simplify the implementation). The proposed implementation will split these 

20000 segments into 200 groups of 100 symmetrical segments each, and evaluate the segment 

reversals of each such group in parallel. The actual implemented algorithm executes the 

following steps at least 201 times: 

 

1. Evaluate in parallel the set of 100 symmetrical segments {1,…,201}, {2,…,200}, 

{3,…,199}, etc., up to {100,…,102} using Equation 1 of page 8. These are all segments 

with odd lengths of 201, 199, 197, 195, etc., down to 3. 

2. Combine the results of the first step performing XOR operations in order to decide 

whether a swapping is necessary or not for each city pair. 

3. Apply in parallel the decisions from the second step by swapping the necessary city 

pairs. 

4. Shift the circular buffer to the left in order to create a new group of 100 symmetrical 

segments {2,…,1}, {3,…,201}, etc., up to {101,…,103}. 

5. Go to step 1, so as to evaluate the new group of segments. 

Figure 11. Algorithm of the Multi-threaded implementation 

 

… 

1 2 99 100 3…98 101 102 103 200 201 104…199 

… 
TH
1 

TH
2 

TH
99 

 TH 
 100 … 

100 threads 

201 cities 
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For the first step, the 100 threads (TH1,…,TH100) shown in Figure 10 all run in parallel, each 

one evaluating one 2-Opt move. TH1 evaluates whether the tour segment {1,…,201} should be 

reversed, TH2 evaluates segment {2,…,200}, TH3 evaluates segment {3,…,199}, etc., up to 

TH100 which evaluates segment {100,…,102}. In order for each thread to evaluate whether its 

2-Opt move is length-reducing or not, as we discussed earlier, it needs to calculate Equation 1 

for the cities at its segment boundaries. For example, TH3 calculates Equation 1 for cities 2, 3, 

199 and 200. This is done in O(1) time. In this way, all threads evaluate in parallel their 2-Opt 

moves, and when done, we will have 100 yes/no decisions for the 100 segment reversals under 

consideration.  

Next, we need to apply these decisions by swapping the necessary city pairs. For example, 

cities 100 and 102 will swap positions if threads TH1 to TH100 have resulted in an odd number 

of “yes” decisions. Similarly, cities 99 and 103 will swap positions if threads TH1 to TH99 have 

resulted in an odd number of “yes” decisions, etc. In general, a thread will swap its city pair only 

if all the previous threads and itself have resulted in an odd number of “yes” decisions. If we 

have N threads (i.e. we have 2*N+1 cities), the final decisions for swapping the corresponding N 

city pairs can be derived by these threads in logN steps as shown in the example of Figure 12 for 

N=15. The threads should be synchronized at the end of each step before advancing to the next 

one. 

 

 

Figure 12. Parallel evaluation of the city swapping decisions in logN steps 

 

 1     2    3    4    5    6    7    8    9   10   11  12  13 14  15 
 

Step 1  
  
Step 2  

 

swap city pair? (yes/no) 

Step 4  
 

yes/no 
decisions  

  

threads 
  

Step 3 
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For the last step of the algorithm, we perform a left circular shift to all 201 cities, and all the 

above tasks are again repeated from the beginning. In effect, all threads will point to different 

positions of the current tour. This whole process is repeated until we cannot find any length-

reducing moves for 201 consecutive repetitions, since the algorithm is exhaustive and is 

guaranteed to search all possible tour segments of odd lengths in 201 repetitions (in contrast to 

randomized search algorithms that search 2-Opt moves at random and cannot thus guarantee 2-

Optimality of the final result). 

It is easy to see how this scheme scales to more cities, as long as there is enough memory to 

accommodate the buffer and resources for additional threads. 

 

6.2 Background on CUDA 
GPUs have evolved into highly parallel, multithreaded, manycore processors with tremendous 

computational horsepower and very high memory bandwidth, exceeding the capabilities of 

general purpose CPUs by orders of magnitude. The reason is that GPUs are specialized for 

compute-intensive, highly parallel computations – exactly what graphics rendering is about – and 

therefore designed such that more transistors are devoted to data processing rather than data 

caching and flow control. 

More specifically, GPUs are especially well-suited to address problems that can be expressed 

as data-parallel computations (i.e. the same program is executed on many data elements in 

parallel) with high arithmetic intensity – the ratio of arithmetic operations to memory operations. 

Because the same program is executed for each data element, there is a lower requirement for 

sophisticated flow control, and because it is executed on many data elements and has high 

arithmetic intensity, the memory access latency can be hidden with calculations instead of big 

data caches. 

These features make GPUs ideal candidates for our compute intensive data-parallel algorithm 

of Figure 11. Thus, for our multi-threaded platform we selected CUDA, a general purpose 

parallel computing architecture,  introduced by NVIDIA in November 2006, that leverages the 

parallel compute engine in modern NVIDIA GPUs to solve many complex computational 

problems in a more efficient way than on a CPU. 
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Depending on the specific model, a CUDA GPU can consist of up to 512 cores, grouped into 

stream processors, with each stream processor able to execute hundreds or thousands of threads 

in parallel. The GPU that we used in our implementation is the GTX280 with 240 cores, grouped 

into 30 stream processors, and is able to run a total of 30K threads in parallel. In CUDA threads 

are grouped into thread blocks, with each block running on one processor core. At CUDA’s core 

are three key abstractions – a hierarchy of thread groups, shared memories, and barrier 

synchronization – that are simply exposed to the programmer as a minimal set of language 

extensions.  

These abstractions provide fine-grained data parallelism and thread parallelism, nested within 

coarse-grained data parallelism and task parallelism. They guide the programmer to partition the 

problem into coarse sub-problems that can be solved independently in parallel by blocks of 

threads, and each sub-problem into finer pieces that can be solved cooperatively in parallel by all 

threads within the block. The threads in a block are allowed to cooperate when solving each sub-

problem using a shared memory, while the threads from different blocks can communicate 

through a slower global memory. 

This decomposition preserves language expressivity by allowing threads to cooperate when 

solving each sub-problem, and at the same time enables automatic scalability. Indeed, each block 

of threads can be scheduled on any of the available processor cores, in any order, concurrently or 

sequentially, so that a compiled CUDA program can execute on any number of processor cores, 

and only the runtime system needs to know the physical processor count. 

However, the CUDA’s SIMD (Single Instruction Multiple Data) execution model can become 

a significant limitation for applications that employ inherently divergent tasks.  

 
 
6.3 CUDA-Based Implementation 

In order to follow the aforementioned architectural characteristics of CUDA the threads 

described in Section 6.1 are equally partitioned into blocks (the block size is configurable by the 

user). For example if the size of the block is 15 we will have 7 blocks {TH1,…,TH15}, 

{TH16,…,TH30}, …, {TH91,…,TH100} where the last block consists of 10 threads as shown in 

Figure 13. 
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Figure 13. Partitioning of 100 threads into 7 CUDA thread blocks 

 

The coordinates of the cities accessed by each block of threads are initially loaded from the 

global memory to the GPU’s shared memory of the block and they are updated by the threads. 

Once the algorithm is done the final tour is sent back from the shared memory to the global 

memory. In this way the fast shared memory is used for solving the TSP instead of the slow 

global memory. On the other hand, the small shared memory limits the maximum number of 

cities to 53K, as will be seen in Section 6.4. 

The aforementioned partitioning of the threads and the shared memory into blocks and the use 

of the device memory for inter-block communication trigger several implementation issues, such 

as: 

• The cities at the boundaries of the blocks should be accessed by threads from 

different blocks that can communicate only through the global memory, in order to 

evaluate the 2-Opt moves. 

• The “yes/no” decisions from the evaluations of the symmetrical segments reside in 

the shared memory of different blocks which makes difficult their processing 

through the scheme shown in Figure 12. 
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• A long circular buffer that includes the cities from all the shared memories of the 

blocks is required. 

• A mechanism should be provided for the inter-block communication and 

synchronization. 

These issues are discussed in detail in the following Sections. 

 
6.3.1 Shared Memory and Inter-Block Communication 

Each thread accesses the coordinates of four cities in order to calculate Equation 1 of page 8. 

For example, in the first iteration of the algorithm, TH16 accesses the coordinates of cities 15, 

16, 186 and 187. In this way, the threads at the boundaries of say the second block TH16 and 

TH30 (see Figure 13) have to access eight cities including cities 15 and 31 that are also accessed 

by threads TH15 and TH31 of the first and third block respectively. This means that the cities at 

the boundaries of the blocks have to be stored in the shared memory of two blocks as shown in 

Figure 14. 

 

Figure 14. Shared memory of the first two blocks 

 

In this way, in order to perform the first step of the algorithm of Figure 11 the threads of each 

block need only access the shared memory of their block and no inter-block communication is 
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required. All threads evaluate in parallel their segments, and when they are done, we will have 

15 yes/no decisions in each block (except the last one that has 10 threads) for the 15 segment 

reversals under consideration in the block. These yes/no decisions are also stored in an array in 

the shared memory of the block. 

Next, the threads of each block need to combine the 15 yes/no decisions in order to decide 

which city pairs should be reversed. The final results of the XOR operations are sent between the 

seven blocks following the same scheme. This is shown in Figure 15 where the “XORs” boxes 

denote the XOR operations performed internally in each block and the output of each box is the 

value derived from the last thread of the block. For example, in the “XORs” box of the second 

block threads TH16 to TH30 combine their yes/no decisions to derive 15 values following the 

scheme of Figure 12. Next, the second block sends the value from TH30 to the third block and 

receives the value from TH15 of the first block in order to perform the first XOR operation 

shown in the first step of Figure 15. 

 

 

Figure 15. Parallel evaluation of the city swapping decisions among the CUDA thread blocks 

 

The third step of the algorithm is performed in parallel by all threads. Based on the results of 

the previous step each thread swaps its city pair or not. However, if the first or the last thread of 

a block, say thread TH16 of the second block, swaps its city pair, i.e. city 16 with city 186, then 

we also have to update the buffer of the first block, as shown in Figure 14, since the next city of 

city 15 becomes city 186 and not city 16 which is stored in the first block. In the same way, if 
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cities 30 and 172 are swapped by thread TH30 (last thread of the block), we also have to update 

the buffer in the third block. Therefore, the possibly new first cities of the two buffers of each 

block, cities 16 and 172 in our example, are sent to the blocks holding the previous buffers. 

 

 

Figure 16. Example inter-block communication and left shift of the buffers of the second block 

 

Finally, in order to implement the left shift of the circular buffer in the final step of the 

algorithm we have to a) copy the second city of each buffer from one buffer to the previous one 

and b) shift all the buffers stored in the shared memory of each block. At the end of the previous 

step we had to copy the first city of each buffer to the previous one while at the beginning of this 

step we have to copy the second city of each buffer to the previous one. Therefore, combining 

these actions together, the first two cities of each buffer are sent to the previous buffer after the 

city swaps, as shown in the example of Figure 16. Both cities are sent over a single inter-block 

transaction in order to save time. 
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6.3.2 Inter-Block Synchronization 

CUDA provides a synchronization mechanism for the threads within a block but no support of 

any message passing protocol between threads from different blocks is provided. Therefore, the 

only way to transfer data from a block to another is to use the slow global memory which is 

accessible by all threads of any block. Since in the CUDA programming model, the execution of 

a thread block is non-preemptive, care must be taken to avoid deadlocks in the GPU 

synchronization design. 

We have tried to minimize and parallelize the inter-block transactions between threads from 

different blocks, as explained in the previous Section, in order to increase the system 

performance. If the total number of blocks is N, we will have 4N inter-block transactions (2N for 

the second step and another 2N for the third and fourth steps) in each iteration of the algorithm 

which will be performed in parallel in logN+2 steps. 

A communication protocol based on split transactions has been employed in order to increase 

the system throughput and reduce the stall times of the communication operations. The split 

transaction protocol allows the sender block to initiate a new transaction (i.e. write the data to the 

global buffer) while transactions for other receivers are not completed (i.e. other data is still 

pending for other receivers). Each sender block keeps synchronization flags stored in the global 

memory for each receiver block. In particular, a transaction between sender block A and receiver 

block B consists of the following actions: 

• A thread in block A, responsible for the transaction, waits until the synchronization flag 

that corresponds to block B is deasserted in order to make sure that there is no pending 

transaction from A to B. 

• The thread in block A writes the data to the global memory and asserts the 

synchronization flag that corresponds to block B. 

• In parallel another thread in the receiver block B, responsible for the transaction, reads 

periodically the aforementioned synchronization flag until it is asserted which means 

that the data is ready for reading. 

• The thread in block B reads the data and deasserts the flag showing that the transaction 

is done. 
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A global synchronization between the threads of the blocks is guaranteed in the final step of 

the symmetrical 2-Opt algorithm where each block receives the coordinates of four cities from 

two other blocks. In this way, each block is stalled until two other blocks have performed all the 

steps of the current iteration of the algorithm and then it can receive the new coordinates. Having 

read the correct data the block can continue with the next iteration of the algorithm. 

 
6.3.3 Simulated Annealing 

The symmetrical 2-Opt algorithm performs length reducing 2-Opt moves until no further 

improvement can be made (i.e. a locally optimal tour has been reached). However, a locally 

optimal tour may not necessarily be close to the globally optimal tour. In order to escape from 

local minima, we may want to modify this basic scheme of pure optimization and also allow 

"uphill" moves in our search for the global minimum.  

Simulated Annealing (SA) is a well-known algorithm that does just that. It allows "uphill" 

moves based on a carefully crafted probability function. The algorithm can perform length 

increasing 2-Opt moves based on a probability that depends on the length difference of the tour 

and on a global parameter “temperature” T, that is gradually decreased during the process. After 

lowering the temperature several times, the process accepts only length reducing moves in order 

to find a local minimum.  

In order to incorporate simulated annealing to our algorithm, we modified the first step. In 

particular, every thread derives a “yes” decision for a length increasing segment (i.e. it reverses 

its segment) if the following formula is true: 

 

e-ΔL/T > R(0,1) 

 

ΔL is the change in the length of the tour if the 2-Opt move is applied, T is the temperature and 

R(0,1) is a random number in the interval [0,1]. In this way, “uphill” moves are permitted since a 

thread can derive a “yes” decision even when ΔL > 0 (i.e. approve a length increasing move). In 

order to calculate faster the outcome of this formula we used a pseudo-random function instead 

of the random number R(0,1) and pre-calculated values for the power function. 
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6.4 Performance Results 
We implemented the algorithm of Section 6.1 on two different platforms: a) in software on an 

Intel Pentium 3 GHz machine running RedHat Linux, b) in CUDA on an Nvidia GeForce 

GTX280 card. 

The GTX280 card supports 240 processing cores with a GPU clock of 602MHz, partitioned 

into 30 stream processors (each one holding 8 cores). Each stream processor has 16KB of shared 

memory and can execute up to two blocks of 512 threads. Therefore we can have up to 

30*2*512 = 30K threads running in parallel and a total of 30*16K = 480K of shared memory.  

If the coordinate of a city is an integer of 4 bytes, each city occupies 8 bytes in the shared 

memory of a stream processor. Taking also into account 1 byte overhead per city pair in order to 

hold the “yes/no” decisions, we can hold up to 16KB/9B=1.77K cities in the shared memory of 

each stream processor which corresponds to 906 threads (half the number of cities), or two 

thread blocks of 906/2=453 threads each. Therefore the maximum number of cities the GTX280 

card of 30 stream processors can hold is 30*1.77K≈53K cities. 

In order to evaluate and measure the performance of our 2-Opt algorithm, both with and 

without Simulated Annealing (SA), we used the TSPLIB instances (we used the Euclidean 

instances of “EUC_2D” type); notice that we used the exact TSPLIB instances were used as our 

starting tours, as opposed to first applying a greedy algorithm to them as is often done. The sizes 

of these instances range from 50 to around 18K cities. 

 We first analyze the parameters that affect the performance of the GPU-based implementation 

and the efficiency of the simulated annealing algorithm. Next, we follow with some performance 

results for our implementations. 

 

6.4.1 Block Size of GPU 

The following equation derives the number of blocks as a function of the block size and the 

number of cities. 

Blocksnumber =  |Citiesnumber /(2* Blocksize ) | 
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Figure 17 shows the number of blocks as a function of the block size using an example 

TSPLIB instance with 2103 cities. 

 

 

Figure 17. Number of thread blocks as a function of the block size 

 

The threads of a block run on the same stream processor of the GPU card. By having many 

blocks (i.e. reducing the block size) the programmer can increase the parallelism since the blocks 

can be distributed and executed in parallel by different stream processors. On the other hand 

increasing the number of blocks will also increase the inter-block communication overhead 

which can eventually deteriorate the performance.  

Figure 18 shows how the running time is affected by the size of the block for the TSPLIB 

instance d2103. When the block size is close to 35 we have the fastest solution. In this case we 

have the maximum possible parallelism, since we have 30 blocks (see Figure 17) running on the 

30 stream processors. By lowering the block size below 35, we essentially increase the inter-

block communication. 

 

Figure 18. Runtime behavior as a function of the block size 
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6.4.2 Cooling Schedule of Simulated Annealing 

The cooling schedule of a simulated annealing algorithm consists of three components: a) the 

starting temperature, b) the temperature decrement step, and c) the number of iterations at each 

temperature. The values of these components essentially determine the rate that the temperature 

T decreases over time. This rate affects both the execution time and the quality of the results. 

 

 

Figure 19. SA trade-off between execution time and quality of results 

 

By adjusting the cooling schedule we could trade off between execution time and higher 

quality results. This is shown in Figure 19, where we varied the cooling rate for an example 

TSPLIB instance with 493 cities running on the GTX280 card. 

 

6.4.3 Performance Results 

We compare the performance of the following implementations of the 2-Opt algorithm in 

terms of quality of results and speed: 

1. A modified version of the 2-Opt local search algorithm implementation by Concorde. 

Concorde is widely considered as the state-of-the-art in TSP solving software, 

containing highly optimized implementations for the most important TSP algorithms 

and heuristics. We modified its 2-Opt algorithm implementation in the following way: 

• Concorde will by default first apply the greedy algorithm to the initial tour in order 

to obtain the starting tour for 2-Opt optimization. Since for the performance 



    45 
 

measurements of our architecture (and its software emulator) we used the exact 

TSPLIB instances as our starting tours, we had to modify Concorde so as not to 

apply the greedy algorithm to the initial tour. 

2. The multi-threaded symmetrical 2-Opt algorithm, described in Section 6.1, running 

either on an Intel CPU, or on the GTX280 GPU card. 

3. The multi-threaded symmetrical 2-Opt algorithm with Simulated Annealing (SA) 

enabled, as described in Section 6.3.3, running on the GTX280 GPU card. 

 

 

 

TSPLIB 
instance 

Concorde (2-Opt) Symmetrical 2-Opt 
without SA 

Symmetrical 2-Opt 
with SA 

avg. error 
(%) 

CPUtime 
(msec) 

avg. 
error (%) 

CPUtime 
(msec) 

GPUtime 
(msec) 

avg. error 
(%) 

GPUtime 
(msec) 

pr124 5.3 0.78 3.1 1230 9.7 1.4 69 
bier127 19.7 1.40 10 1430 18.7 3.8 94 
ch130 21 1.38 10 1600 22.2 2.1 99 
pr152 8 1.30 2.8 1490 25.6 1.9 175 
d198 11.2 1.54 6.8 3110 26.2 3.9 400 
kroA200 32.6 2.14 12.3 4130 48.4 2.5 421 
tsp225 20 1.32 8.2 3400 27.2 3.2 720 
lin318 27.3 3.00 17.1 7890 78.8 4.2 2690 
d493 13.2 4.80 10.5 23280 155 4.3 5470 
p654 18.5 5.30 14.1 37390 377 4.3 33200 
pcb1173 35.8 9.10 11.9 204980 704 4.8 318400 
rl1323 44.7 17.6 16.5 372630 858 4.7 559300 
u1817 16.8 9.00 16.2 223610 740 4.9 728160 

Table 1. Execution times and average errors for three TSP algorithms running on software or hardware 
platforms 

 

Table 1 shows the efficiency and the performance of the aforementioned algorithms for several 

problem instances from the TSPLIB benchmark. TSPLIB provides the optimal lengths of the 

tours. The average error columns show the difference from the absolute optimal solutions for 

these instances. 

We adjusted the cooling schedule of the simulated annealing algorithm in order to succeed an 

error ratio below 5%. Concorde’s results range between 5% and 45% from the optimal solution 

while the symmetrical 2-Opt algorithm is always below 17%. This is expected since Concorde, 

in contrast to our architecture, gives up the guarantee of true 2-Optimality in favor of greatly 

reduced running time. This shows the high quality of the tours produced by our architecture. 
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In terms of speed, Concorde comes first followed by the GPU and finally the CPU. Concorde 

runs very fast for the TSPLIB instances that we considered. Thus, in order to more accurately 

measure its performance, we measured for each TSPLIB instance the average running time 

among 1000 runs. 

The data-parallel features of the symmetrical 2-Opt algorithm give significant speedup when 

the algorithm is implemented in a multi-threaded system such as CUDA as opposed to a general 

purpose CPU. Figure 20 shows the speed-ups obtained by the CUDA-based implementation of 

the symmetrical 2-Opt algorithm against the CPU-based version. 

 

 

Figure 20. Performance comparison between GPU and CPU 

 

As expected the overall speed-up is roughly proportional to the number of cities, since the 

latter reflects the number of threads operating in parallel.  

By adjusting the cooling schedule of the simulated annealing we could succeed an error ratio 

below 5%. Figure 21 shows the execution time of our symmetrical 2-Opt algorithm running on 

the GPU with Simulated Annealing enabled over the execution time when Simulated Annealing 

is not performed. 
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Figure 21. Simulation annealing significantly delays bigger TSP instances 

 

For small TSPLIB instances up to 200 cities performing SA results in 10 to 15 times increase 

in run time. However, for bigger TSPLIB instances the error ratio of the symmetrical 2-Opt 

algorithm is high (above 10%) and SA requires a significant slower cooling process in order to 

lower the error ratio below 5%. 
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Chapter 7. Conclusions and Future Directions 
 

 

 

 

In this thesis we have uncovered for the first time fine-grain parallelism in the application of 2-

Opt moves for the Traveling Salesman Problem. We also investigated how this newly-found 

parallelism can be exploited to speed-up 2-Opt. We implemented our approach on two types of 

platforms, an FPGA and a multi-threaded GPU, and evaluated both in terms of both speed and 

quality of final results. The hardware implementation outperformed Concorde, the current state-

of-the-art software implementation. 

 

 

7.1 Future Directions 
Regarding our future work, we will focus on the following tasks: 

• Add hardware to the PEs for the square root calculations and adjust our performance 

numbers accordingly. In order not to add major hardware resources nor significantly 

increase the number of clock cycles needed for the PEs we will use a square root 

estimation technique such as the one in [9]. 

• Examine how our architecture scales for TSP instances larger than the ones considered 

in this thesis, and explore the possibility of using external RAM for both 

implementations. 

• Explore the cost and performance of Simulated Annealing in our hardware 

implementation. 
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• Explore how we could handle 3-Opt moves. 

• Explore how our scheme can be combined with other parallel solutions for the TSP 

such as the ones discussed in Section 3.1. 
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