
Technical University of Crete

Hardware and Software Development for the Efficient

Mapping of Mathematical

Problems on Field Programmable Gate Array Systems

A Dissertation Submitted

in Partial Fullfillment of the Requirements

for the degree

Doctor of Philosophy
In the Field of Electronics & Computer Engineering

By

Dimitrios Meintanis

Chania 2012

©Copyright by Dimitrios Meintanis

All Rights Reserved

ΑΝΑΠΤΥΞΗ ΥΛΙΚΟΥ ΚΑΙ ΛΟΓΙΣΜΙΚΟΥ ΓΙΑ ΑΠΟΔΟΤΙΚΗ

ΑΠΕΙΚΟΝΙΣΗ ΜΑΘΗΜΑΤΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ ΣΕ

ΑΝΑΔΙΑΤΑΣΣΟΜΕΝΑ ΣΥΣΤΗΜΑΤΑ

Π

Στην αγορά της βιομηχανίας, οι σχεδιαστές έχουν σοβαρά κίνητρα για να βγά-

λουν τα προϊόντα τους γρήγορα στην αγορά. Αυτά είναι η αύξηση των κερδών

και η διάρκεια του χρόνου διάθεσης του προϊόντος μέσα στην αγορά. Κάθε βδο-

μάδα που ένα προϊόν δεν πωλείται, αυτό αντιπροσωπεύει χαμένα κέρδη και

αυξάνει το ρίσκο αποτυχίας του προϊόντος στην αγορά. Τα επαναποργραμμα-

τιζόμενα ολοκληρωμένα κυκλώματα (FPGAs) προσφέρουν μία λύση χαμηλού

ρίσκου με γρήγορη είσοδο στην αγορά, όπου οι σχεδιαστές μπορούν εύκολα

να μεταβάλλουν το προϊόν όταν χρειάζεται να κάνουν αλλαγές, να διορθώνουν

λάθη ή ακόμη και να δημιουργήσουν παράγωγα προϊόντων κάποια στιγμή στο

μέλλον.

Παρόλ’αυτά, η αυξημένη κατανάλωση ενέργειας είναι ένα απο τα κύρια

μειονεκτήματα των ολοκληρωμένων FPGAs. Η ευελιξία που προσφέρουν οφεί-

λεται σε έναν μεγάλο αριθμό διαδρόμων δρομολόγησης και λογικών πυλών που

καταναλώνουν πολύ μεγάλο ποσό ενέργειας. Αυτό το πρόβλημα γίνεται ακόμη

πιο κρίσιμο όταν οι FPGAs χρησιμοποιούνται σε εφαρμογές κρυπτογραφίας,

μιας και η μεγάλη κατανάλωση ενέργειας κάνει τις εφαρμογές αυτές πιο ευά-

λωτες σε επιθέσεις ανάλυσης της ενέργειας (Power Analysis Attacks).

Για να αντιμετωπίσουν αυτή την πρόκληση οι σχεδιαστές έιναι αναγκα-

σμένοι, μερικές φορές, να κάνουν ριζοσπαστικές αλλαγές στον σχεδιασμό του

3

προϊοντος. Αυτές οι αλλαγές μπορούν να περιλαμβάνουν τον διαχωρισμό του

αλγορίθμου σε υποκομμάτια υλικού και λογισμικού (Hardware / Software Par-

titioning), ανακατανομή της λογικής ή ακόμη και επανασχεδίαση όλου του συ-

στήματος. Μιας και αυτές οι αλλαγές έχουν μεγάλο κόστος τόσο σε χρήματα

όσο και σε χρόνο, η εκτίμηση της κατανάλωσης της ενέργειας στις FPGAs στα

αρχικά στάδια του σχεδιασμού γίνεται όλο και πιο σημαντική.

Σε αυτή την διατριβή ερευνούμε το πρόβλημα της κατανάλωσης ενέργειας

στις FPGAs και αξιολογούμε το λογισμικό της εκτίμησης της ενέργειας που

παρέχεται απο τους μεγαλύτερους κατασκευαστές αυτών των ολοκληρωμένων.

Αξιολογούμε την διαφορά ανάμεσα σε υλικό και λογισμικό για πολλούς κρυ-

πτογραφικούς αλγορίθμους σε σχέση με την κατανάλωση ενέργειας και την

ταχύτητα εκτέλεσης τους. Ένα άλλο κομμάτι αυτής της διατριβής διερευνά τη

μείωση της κατανάλωσης ενέργειας που μπορούμε να επιτύχουμε είτε με την

χρήση της τεχνικής του Clock-Gating είτε της τεχνικής του επαναπρογραμμα-

τισμού σε πραγματικό χρόνο.

Συνεχίζουμε με την βαθύτερη διερεύνηση της κρυπτογραφίας και των αλ-

γορίθμων ασφαλείας με την πρόταση και την υλοποίηση γρηγορότερων αλγο-

ρίθμων για την παραγοντοποίηση μεγάλων αριθμών. Διαχωρίζουμε τους αλγο-

ρίθμους σε λογισμικό και υλικό με τέτοιο τρόπο ώστε να έχουμε το βέλτιστο

δυνατό αποτέλεσμα. Τέλος, χρησιμοποιούμε την δυνατότητα επαναπρογραμ-

ματισμού σε πραγματικό χρόνο των ολοκληρωμένων κυκλωμάτων FPGA ώστε

να επιτύχουμε ακόμη πιο μεγάλες επιταχύνσεις.

4

ABSTRACT

In the industrial market, designers have a significant incentive to get their

products to market quickly: to maximize revenue and time-in-market. Every

week that a product is not being sold represents lost revenue, increases the

product’s market risk and lowers the chance of success. Field Programmable

Gate Arrays (FPGAs) offer a low-risk, quick time-to-market solution that

industrial designers can easily modify when they need to make changes, fix

bugs or create product derivatives at some point in the future.

However, power consumption is one of the main disadvantages of FPGAs.

The post-fabrication flexibility provided by these devices is implemented using

a large number of pre-fabricated routing tracks and programmable switches

that consume a significant amount of power. This problem becomes even

more critical when FPGAs are used for applications related to cryptography,

since this high power consumption makes potential security applications more

vulnerable to power analysis attacks.

Facing this challenge the designers are sometimes forced to make radical

changes to the design. These changes could include the partitioning of the

algorithm into different hardware and software blocks, re-allocation of the

FPGA logic or even re-designing the whole system from scratch. Since these

options have a huge impact on time and money, early phase power estimations

on FPGA devices are becoming more and more important.

In this dissertation we investigate the power consumption problem and we

evaluate the power estimation software that is being provided by the major

FPGA vendors. We evaluate the difference between software and hardware

cryptography blocks related to their power consumption and processing speed.

Another part of this thesis also investigates the power consumption reduction

5

that we can achieve by either using clock gating or Real-Time reconfiguration.

We continue by exploring deeper the cryptography and the security al-

gorithms by proposing and implementing faster large number factorization

algorithms. We partition the algorithms in both software and hardware in

such a way that we can achieve the best possible performance. Finally, we

use the Real-Time reconfiguration capability of the state of the art FPGA

devices in order to achieve even higher speed-ups.

6

Acknowledgements

This work is part of the 03ED851 research project, implemented within

the framework of the ”Reinforcement Programme of Human Research Man-

power” (P.E.N.E.D) and co-financed by National and Community Funds (25%

from the Greek Ministry of Development-General Secretariat of Research and

Technology and 75% from E.U.-European Social Fund)

7

8

Στους γονείς μου,
για όλες τις θυσίες

που κάνανε ολα
αυτά τα χρόνια

για να με στηρίξουν
στις σπουδές μου.

To my parents
for all the sucrifices

they did in order
to support me
all these years

with my studies.

9

10

CONTENTS

1 Introduction 19

1.1 Motivation . 19

1.2 Contribution . 21

1.3 Structure . 22

2 Security Algorithms and Power Consuption 25

2.1 Power Consumption . 25

2.2 The need for Power Estimation . 26

2.3 Cryptography . 29

2.3.1 Type of Cryptographic Algorithms 30

2.4 Power Consumption and Cryptography 35

2.4.1 Power Analysis Attacks . 36

2.4.2 Preventing Power Analysis Attacks 37

3 Related Work 39

3.1 Power Measurements on FPGAs . 39

3.2 Utilizing Field Programmable Gate Arrays 40

3.3 Algorithms for a Specific Factor Type . 41

3.4 General Purpose Algorithms . 42

4 Power Estimation and Measurements 43

11

4.1 Security Algorithms . 43

4.2 Experimental Framework . 45

4.3 Hardware and Software Power Measurements 47

4.3.1 Hardware . 47

4.3.2 Software . 49

4.4 Power Estimation . 51

4.5 Power vs Utilization . 53

4.6 Clock Gating vs Reconfiguration . 56

4.7 Results and Evaluation . 58

5 Cryptography and Large Number factorization 67

5.1 Background . 67

5.2 Algorithms for a Specific Factor Type . 69

5.2.1 Pollard (rho - 1) Algorithm . 69

5.2.2 Architecture . 70

5.2.3 Hardware . 70

5.2.4 Software . 75

5.2.5 Experimental Framework . 75

5.2.6 Measuring H/W Time . 75

5.2.7 Measuring Software Time . 77

5.2.8 Results and Evaluation . 77

5.3 General Purpose Algorithms . 79

5.3.1 Number Field Shieve . 79

5.3.2 Background . 79

5.3.3 Main Algorithm . 80

5.3.4 Sub-Matrix Computation . 81

5.3.5 Design . 82

5.3.6 Implementation and Methodology 88

12

5.3.7 Results and Evaluation . 91

6 Evaluation and Conclusions 95

6.1 Evaluation . 95

6.2 Future Work . 97

6.3 Conclusions . 98

6.3.1 Acknowledgements . 99

7 Appendix 107

7.1 List of Publications . 107

7.1.1 Within the context of the Ph.D research 107

7.1.2 Other Publications . 107

13

14

LIST OF FIGURES

4.1 Digilent Spartan-3E and XUP Board . 45

4.2 Altera DE2 Board . 46

4.3 Measurement Configuration . 46

4.4 Operational Amplifier Circuit . 47

4.5 Integral Formula . 50

4.6 Oscilloscope Waveform for AES . 51

4.7 Edited Waveform for AES . 52

4.8 Power Estimation Flow . 52

4.9 Watts per Utilization . 55

4.10 Consumption per 1K in Spartan-3 Devices 56

4.11 Consumption per 1K . 57

4.12 Watts per internal cores . 58

4.13 Percentance of power reduction . 59

4.14 SW execution time . 60

4.15 SW Power Consume per 32bit Data Enc 61

4.16 HW Energy Consume per 32bit Data Enc 62

4.17 SW/HW Energy Consume per 32bit Data Enc 63

4.18 SW/HW Time consume per 32bit Data Enc 63

4.19 Estimation & Measurement Results . 64

4.20 Difference in mW . 64

15

4.21 Error Percentage . 65

5.1 Great Common Divisor . 71

5.2 Left 2 Right Binary Exponantiation . 73

5.3 Pollard Algorithm . 73

5.4 Scheduler Block Diagram . 74

5.5 Running Time . 78

5.6 Circuit of matrix A6×6 . 81

5.7 Virtex-5 Development Board . 83

5.8 Design Architecture . 84

5.9 Detailed Design Example . 86

5.10 Bus Macro Example . 90

5.11 Bus Macro Direction . 91

5.12 Planahead Floorplaning on a V4 . 92

5.13 Days per Number of Chips used . 94

16

LIST OF TABLES

4.1 Measured Values in mW . 48

4.2 True Measured Values . 50

4.3 Estimated Values in mW . 53

4.4 Virtex-II Pro Measured Values . 54

4.5 Virtex-4 Measured Values . 54

4.6 Spartan-3 Measured Values . 54

4.7 Time for a 32bit encode . 58

5.1 Number of parallel cores used . 76

5.2 Real and Cropped Frequency Numbers (MHz) 76

5.3 Time in Miliseconds for S/W and H/W 78

5.4 Design Variables . 92

5.5 Speedup Compared to Mesh Design . 93

17

18

CHAPTER

ONE

INTRODUCTION

1.1 Motivation

In the industrial market, designers have a significant incentive to get their products to

market quickly: to maximize revenue and time-in-market. Every week that a product is

not being sold represents lost revenue, increases the product’s market risk and lowers the

chance of success.

Using Field Programmable Gate Arrays (FPGAs), designers can develop a custom

solution without the nonrecurring engineering (NRE) charges or the fabrication and as-

sembly time delays typically associated with Application Specific Integrated Circuits

(ASICs). Designers do not have to deal with the unwanted functionality provided by ap-

plication specific standard products or the inevitable silicon spins associated with ASICs.

FPGAs offer a low-risk, quick time-to-market solution that industrial designers can

easily modify when they need to make changes, fix bugs or create product derivatives at

some point in the future. However, power consumption is one of the main disadvantages

of FPGAs. The post-fabrication flexibility provided by these devices is implemented using

a large number of pre-fabricated routing tracks and programmable switches. These tracks

can be long, and can consume a significant amount of power every time they switch. In

19

addition, the programmable switches add capacitance to each track; this further increases

the power dissipation of the FPGAs.

Recent advances in semiconductor process technology have led to rapid scaling of

transistor dimensions, allowing a large number of them to be packed on the same chip.

Field Programmable Devices (FPDs), which consist of a higher number of transistors

compared to their alternative ASICs, have also enjoyed a rapid growth due to these

technology advancements. High density of transistors on the same chip has made power

consumption one of the major challenges of deep sub micron IC design [1].

On the other hand, low power devices, need a quick, yet powerful, encryption/decryption

mechanism. But those encryption/authentication algorithms need high processing power

and/or have large execution times and thus they consume significant amounts of energy.

For battery-powered embedded systems, perhaps one of the foremost challenges is the

mismatch between the (energy and performance) requirements of security processing and

the available battery and processor capabilities. A common solution for time critical or

time consuming software applications, such as in security applications, is a hardware co-

processor; through the last ten years, more and more industries have developed custom

ICs to maximize speed for various end-user products.

By doing so, a new problem arise for the designer: By adding this extra hardware to

a device, the total power consumption of the product is increased. Many techniques have

been introduced through the years, with the most common solution being to power down

the co-processor IC when not in use.

Power consumption off FPGAs is not as straight-forward as on the co-processor tech-

nique, since both dedicated hardware modules and processing cores co-exist on the same

die. The theory that software is, in general, slower but it consumes less power does not

apply in the case of the FPGAs. Another very importand factor is that high power con-

sumption makes security applications more vulnerable to power analysis attacks. Power

analysis is an important and efficient mean for side channel attacks on security applica-

tions. By monitoring devices’ power consumption during various operations it is possible

20

to collect security information (e.g. the encryption key).

If the information leakage can be directly observed it is called an SPA attack (Simple

Power Analysis). On the other hand, if it is necessary to use statistical methods to analyze

the information leakage, it is called a DPA attack (Differential Power analysis) [2],[3]. In

fact, the DPA needs to compute one mean on a large number of power consumption

samples to establish correlation between the data being manipulated (and depending on

few key bits) and the information leakage. This family of attacks supposes that there is

an observable difference in the power consumption when a bit is set or clear.

Since FPGAs consume more power than custom ICs, they are even more vulnurable

to these power analysis techniques. So, it is crucial for the designer not only to be able to

partition correctly the application to software and hardware parts for minimizing power

but also to be able to estimate with high accuracy the power consumption of the FPGA

chip.

1.2 Contribution

The main contributions of this thesis can be summarized as follows.

• This is the only work, to the best of my knowledge, that compares the actual

power consumption between the software and hardware implementations of security

algorithms that are all executed on the same state-of-the-art FPGA fabric, which

already uses advanced process technology with reduced power supply.

• I analyze the accuracy of the two most-widely used power estimation tools, in the

FPGA domain, when applied to security modules. In particular, I demonstrate

that even those tools cannot estimate the power consumption of the state-of-the-

art reconfigurable devices accurately; they are always pessimistic and our results

demonstrate that they overestimate the power consumption by even more than

200%.

21

• I explore deeper into cryptography and it’s aspects by designing and presenting

a new scalable FPGA implementation of Pollard’s (ρ − 1) special factorization

algorithm. The design is faster than software implementations and results in a

speedup ranging from 20 up to 231.

• I present another important advantage of run-time reconfiguration : reduction in

overall power consumption. For example ,a high-throughput, fast and power con-

suming FPGA die could be reprogrammed with a low logic-cell count design, if the

demands on high throughput are low on a certain time period. This would leave

most of the FPGA fabric unprogrammed, thus reducing static and dynamic power

consumption. Another and easier way of achieving low power consumption on this

scenario could be via clock-gating. So, a rational question could be: What is bet-

ter? Clock gating or run-time reconfiguration? Do we consume less power by using

clock gating on a design or by reconfiguring the device with a slower and smaller

design?

• Finally, I propose and implement a new architecture for a time efficient matrix-by-

vector multiplication used on the Algebra step of the Number Field Shieve factoriza-

tion algorithm. This architecture is based on two main characteristics of the linear

algebra matrix. I have also explained and analyzed why my system can achieve a

19, 4× to 57, 4× speedup, compared to other proposed architectures, depending on

the parameters of the block Wiedemann algorithm and on the FPGA device used.

1.3 Structure

The dissertation is structured as follows:

Chapter 2 is devoted into the introduction of the challenges of power consumption.

Why is there a need of power estimation on the early design process of an electronic

product? We also include an introduction to the security and the cryptographic

22

algorithms that will be used further in this dissertation. Finally, we introduce some

of the attacks to the cryptographic modules related to the power consumption.

Chapter 3 summarizes the related work that has been done on all the sectors of

this dissertation. We describe the different kind of research that has been done on

real time reconfiguration and large number factorization. Finally we present with a

time line the work that has been done on power estimation and Field Programmable

Gate Arrays.

Chapter 4 is devoted on our research on the comparison of the power estimation

and the actual power consumption on FPGA devices. We explore the properties

of cryptographic software that is executed on embedded processors on the FPGA

devices and we compare our findings. We also look deeper on the power consumtion

on an FPGA device in comparison to clock gating and real time reconfigurations.

Finally we present our results and we evaluate them.

Chapter 5 In this chapter we enter the world of cryptography and large number

factorization. We explore two different problems. One problem is the efficient im-

plementation of an Specific Factor Type algorithm on reconfigurable logic and its

comparison with software blocks. The second problem is the implementation of an

efficient matrix multiplication for the Number Field Sieve (General Purpose Algo-

rithm) with the use of real time reconfiguration. We present our implementation

and we evaluate our work and the measured data.

Chapter 6 In this chapter we summarize our evaluation findings giving the reader

a more structured visualization of our work. Finaly we present our conclusions and

we propose future work that can be done within the borders of this disseration.

23

24

CHAPTER

TWO

SECURITY ALGORITHMS AND POWER CONSUPTION

2.1 Power Consumption

More than a quarter century ago, Gordon Moore forecast the rapid pace of technology

innovation. His prediction, popularly known as «Moore’s Law», states that transistor

density on integrated circuits doubles every two years. Today, semiconductor companies

continue to apply the principles of «Moore’s Law», achieving higher levels of integra-

tion and producing a steady stream of smaller, faster, cheaper chips, bringing exponen-

tial growth in computing and communications technology to consumers and businesses

worldwide.

As computing and communications converge and pervade nearly every aspect of life,

the demand increases for devices with more functionality, faster operation, and lower

costs. Keeping pace with Moore’s Law is essential to help computing and communications

industries deliver chips that meet these needs.

However, as more transistors are integrated on a chip to enable more functions, and

higher frequency is used to obtain increased performance, the total power consumption

increases and this results in more heat. As more transistors are packed into a smaller

area, the power density also increases. Consumers desire for mobility and multifunctional

25

small form factor devices places additional challenges like efficient battery operation.

Efficient power and thermal management are vital as systems become smaller or more

capable with every generation of «Moore’s Law». Power must be delivered and used

efficiently by the chips, wiring, and display, while effectively dissipating the heat from

the system – economically, of course.

Addressing the power challenge allows a continuation of the trend toward smaller,

faster, cost effective chips and devices. As a result, futuristic applications that require

more powerful processors may be realized. Increasing capability and density of com-

puting and communications chips may be sustained. Comprehensive power and thermal

management techniques are a fundamental part of continuing to receive the benefits of

Moore’s Law.

In fewer words, today’s semiconductors are smaller, run faster, process more infor-

mation and, as a result, generate more heat. Removing this heat, generated by current

flowing in transistors and the connections between them, is a key challenge in today’s

electronics products and systems. Achieving low thermal resistance from the silicon chip

to the external environment ensures a minimum increase in the temperature of the chips,

thereby maximizing product reliability and lifetime. As a result, the ongoing performance

improvements in semiconductor devices require the continuing development of improved

thermal management solutions.

2.2 The need for Power Estimation

IC designers today are facing continuous challenges in balancing design performance and

power consumption. This task is becoming more critical as designs grow larger and

more complex and process geometries shrink to 90-nm and below. Designers must meet

these challenges by finding the right formula for optimizing power without sacrificing

performance. FPGAs provide the performance and features designers need, but suffer

due to higher power consumption.

26

Designing for low power in programmable logic is important to the overall design

equation for different end markets. The communications industry is a more mature

FPGA market in this respect, with programmable logic used heavily in routers, switches,

base stations and storage servers. These newer generation products demand larger and

higher-performing FPGAs. Engineers are continuing to push the performance envelope

by migrating more functionality into FPGAs, replacing ASICs and ASSPs (Application

Specific Standard Products), while demanding higher system performance. Although

the newest 28-nm-generation FPGAs consume less power than previous 90-nm products,

FPGAs still consume a large portion of total system power. Engineers today design into

tighter and more enclosed spaces, making it difficult to improve airflow and install proper

size heat sinks and indeed, despite lowering total power consumption, power density

increases. Thus thermal management, and consequently power management, continues

to be an important topic in high-end FPGA design.

Designing for the low-power marketplace is not a trivial task. Engineers use numer-

ous techniques to reduce power in FPGA designs. Various types of FPGAs, different

design methodologies, numerous intellectual property (IP) cores, assorted system design

methods, diverse software algorithms and power tools all contribute to power used in a

design.

The two primary sources of power consumption in FPGAs are:

• Static power dissipation due to leakage currents during device standby. Using finer

semiconductor process geometries (specifically the 28-nm geometry) has caused an

increase in static power consumption in FPGAs. As transistor size shrinks and

lower voltages are utilized, a greater sub-threshold leakage current occurs in the

transistor channel when the transistor is in the off state. Consequently, static

power consumption rises when using the 28-nm process.

• Dynamic power dissipation during charging and discharging of internal capacitances

in the logic array and interconnect networks of an active device. Dynamic power is

27

affected in two ways by process scaling. First, the use of smaller feature sizes and

lower voltages significantly reduces dynamic power consumption. However, higher

device operating frequencies are possible in 28-nm technology, and, since dynamic

power increases with operating frequency, designs that make full use of the speed

of 28-nm technology will see less reduction in dynamic power.

As a result of the expected blanket increase in power consumption for smaller pro-

cess geometries, semiconductor manufacturers use various techniques to optimize power

consumption, both in the dynamic and static domains.

Having accurate power estimation tools that are quick and easy to use allows designers

to realistically hit power budget numbers and incrementally improve designs efficiently.

Without realistic data, both in early power estimation tools and data sheets, the design

phase will be seriously hindered. Obtaining early estimation tools in spreadsheet form

allows designers to gather early estimates of power requirements before starting the design

phase.

As the design progresses, designers can load placed-and-routed designs into power

estimator programs and receive more accurate power consumption estimates. The best

tools allow simulation files to be integrated seamlessly into the power tools, acquiring an

accurate representation of switching power. If a simulation has not been done, the power

analysis tools will intelligently estimate toggling within the design. Altera’s Quartus II

PowerPlay Power Analyzer tool as well as Xilinx’s XPower estimator utilize design signal

activity information and other important design factors affecting power consumption to

accurately estimate design power.

These power estimator tools require the design to be fully compiled in order to extract

the target device as well as place and route information of the device. When combined

with signal activity information and operating conditions of the device comprehensive

power consumption reports are produced. These reports facilitate both thermal and

power supply planning requirements. Additionally, these reports also pinpoint which

device structures and even design hierarchy blocks are dissipating the most thermal power,

28

thus enabling design decisions that reduce power consumption. This provides very high

quality power estimates and benchmarking data to be obtained using these tools with an

estimated accuracy within 20 percent of device measurements.

2.3 Cryptography

Cryptography is the science of writing in secret code and is an ancient art; the first

documented use of cryptography in writing dates back to circa 1900 B.C. when an Egyp-

tian scribe used non-standard hieroglyphs in an inscription. Some experts argue that

cryptography appeared spontaneously sometime after writing was invented, with appli-

cations ranging from diplomatic missives to war-time battle plans. It is no surprise,

then, that new forms of cryptography came soon after the widespread development of

computer communications. In data and telecommunications, cryptography is necessary

when communicating over any untrusted medium, which includes just about any network,

particularly the Internet.

Within the context of any application-to-application communication, there are some

specific security requirements, including:

• Authentication: The process of proving one’s identity. (The primary forms of host-

to-host authentication on the Internet today are name-based or address-based, both

of which are notoriously weak.)

• Privacy/confidentiality: Ensuring that no one can read the message except the

intended receiver.

• Integrity: Assuring the receiver that the received message has not been altered in

any way from the original.

• Non-repudiation: A mechanism to prove that the sender really sent this message.

Cryptography, then, not only protects data from theft or alteration, but can also be

used for user authentication. There are, in general, three types of cryptographic schemes

29

typically used to accomplish these goals: secret key (or symmetric) cryptography, public-

key (or asymmetric) cryptography, and hash functions, each of which is described below.

In all cases, the initial unencrypted data is referred to as plaintext. It is encrypted into

ciphertext, which will in turn (usually) be decrypted into usable plaintext.

In many of the descriptions below, two communicating parties will be referred to as

Alice and Bob; this is the common nomenclature in the crypto field and literature to

make it easier to identify the communicating parties.

2.3.1 Type of Cryptographic Algorithms

There are several ways of classifying cryptographic algorithms. For purposes of this thesis,

they will be categorized based on the number of keys that are employed for encryption

and decryption, and further defined by their application and use. The three types of

algorithms that will be discussed are:

• Secret Key Cryptography (SKC): Uses a single key for both encryption and decryp-

tion

• Public Key Cryptography (PKC): Uses one key for encryption and another for

decryption

• Hash Functions: Uses a mathematical transformation to irreversibly ”encrypt” in-

formation

Secret Key Cryptography

With secret key cryptography, a single key is used for both encryption and decryption.

The sender uses the key (or some set of rules) to encrypt the plaintext and sends the

ciphertext to the receiver. The receiver applies the same key (or ruleset) to decrypt the

message and recover the plaintext. Because a single key is used for both functions, secret

key cryptography is also called symmetric encryption.

30

With this form of cryptography, it is obvious that the key must be known to both

the sender and the receiver; that, in fact, is the secret. The biggest difficulty with this

approach, of course, is the distribution of the key.

Secret key cryptography schemes are generally categorized as being either stream

ciphers or block ciphers. Stream ciphers operate on a single bit (byte or computer word)

at a time and implement some form of feedback mechanism so that the key is constantly

changing. A block cipher is so-called because the scheme encrypts one block of data at a

time using the same key on each block. In general, the same plaintext block will always

encrypt to the same ciphertext when using the same key in a block cipher whereas the

same plaintext will encrypt to different ciphertext in a stream cipher.

Stream ciphers come in several flavors but two are worth mentioning here. Self-

synchronizing stream ciphers calculate each bit in the keystream as a function of the

previous n bits in the keystream. It is termed ”self-synchronizing” because the decryp-

tion process can stay synchronized with the encryption process merely by knowing how

far into the n-bit keystream it is. One problem is error propagation; a garbled bit in trans-

mission will result in n garbled bits at the receiving side. Synchronous stream ciphers

generate the keystream in a fashion independent of the message stream but by using the

same keystream generation function at sender and receiver. While stream ciphers do not

propagate transmission errors, they are, by their nature, periodic so that the keystream

will eventually repeat.

Some known Secret Key algorithms are:

• AES: The Advanced Encryption Standard (AES) [4]

• The Data Encryption Standard (DES) [5], [6]

• Triple-DES (3DES) [7]

31

Public Key Cryptography

Public-key cryptography has been said to be the most significant new development in

cryptography in the last 300-400 years. Modern PKC was first described publicly by

Stanford University professor Martin Hellman and graduate student Whitfield Diffie in

1976. Their paper described a two-key crypto system in which two parties could engage

in a secure communication over a non-secure communications channel without having to

share a secret key.

PKC depends upon the existence of so-called one-way functions, or mathematical

functions that are easy to computer whereas their inverse function is relatively difficult

to compute. We can see two simple examples, below:

1. Multiplication vs. factorization: Suppose I tell you that I have two numbers, 9

and 16, and that I want to calculate the product; it should take almost no time to

calculate the product, 144. Suppose instead that I tell you that I have a number,

144, and I need you tell me which pair of integers I multiplied together to obtain

that number. You will eventually come up with the solution but whereas calculating

the product took milliseconds, factoring will take longer because you first need to

find the 8 pairs of integer factors and then determine which one is the correct pair.

2. Exponentiation vs. logarithms: Suppose I tell you that I want to take the number

3 to the 6th power; again, it is easy to calculate 36 = 729. But if I tell you that I

have the number 729 and want you to tell me the two integers that I used, x and

y so that logx(729) = y, it will take you longer to find all possible solutions and

select the pair that I used.

While the examples above are trivial, they do represent two of the functional pairs

that are used with PKC; namely, the ease of multiplication and exponentiation versus the

relative difficulty of factoring and calculating logarithms, respectively. The mathematical

”trick” in PKC is to find a trap door in the one-way function so that the inverse calculation

becomes easy given knowledge of some item of information. (The problem is further

32

exacerbated because the algorithms don’t use just any old integers, but very large prime

numbers.)

Generic PKC employs two keys that are mathematically related although knowledge

of one key does not allow someone to easily determine the other key. One key is used to

encrypt the plaintext and the other key is used to decrypt the ciphertext. The important

point here is that it does not matter which key is applied first, but that both keys are

required for the process to work. Because a pair of keys are required, this approach is

also called asymmetric cryptography.

In PKC, one of the keys is designated the public key and may be advertised as widely

as the owner wants. The other key is designated the private key and is never revealed

to another party. It is straight forward to send messages under this scheme. Suppose

Alice wants to send Bob a message. Alice encrypts some information using Bob’s public

key; Bob decrypts the ciphertext using his private key. This method could be also used

to prove who sent a message; Alice, for example, could encrypt some plaintext with her

private key; when Bob decrypts using Alice’s public key, he knows that Alice sent the

message and Alice cannot deny having sent the message (non-repudiation).

The most popular Public-key cryptography algorithm used today is the R.S.A [8], [9],

[10]. This PKC implementation, named for the three MIT mathematicians who developed

it — Ronald Rivest, Adi Shamir, and Leonard Adleman. RSA today is used in hundreds

of software products and can be used for key exchange, digital signatures, or encryption

of small blocks of data. RSA uses a variable size encryption block and a variable size key.

The key-pair is derived from a very large number, n, that is the product of two

prime numbers chosen according to special rules; these primes may be 100 or more digits

in length each, yielding an n with roughly twice as many digits as the prime factors.

The public key information includes n and a derivative of one of the factors of n; an

attacker cannot determine the prime factors of n (and, therefore, the private key) from

this information alone and that is what makes the RSA algorithm so secure. (Some

descriptions of PKC erroneously state that RSA’s safety is due to the difficulty in factoring

33

large prime numbers. In fact, large prime numbers, like small prime numbers, only have

two factors!) The ability for computers to factor large numbers, and therefore attack

schemes such as RSA, is rapidly improving and systems today can find the prime factors

of numbers with more than 200 digits. Nevertheless, if a large number is created from two

prime factors that are roughly the same size, there is no known factorization algorithm

that will solve the problem in a reasonable amount of time; a 2005 test to factor a 200-

digit number took 1.5 years and over 50 years of compute time (see the Wikipedia article

on integer factorization.) Regardless, one presumed protection of RSA is that users can

easily increase the key size to always stay ahead of the computer processing curve. As

an aside, the patent for RSA expired in September 2000 which does not appear to have

affected RSA’s popularity one way or the other.

Hash Functions

Hash functions, also called message digests and one-way encryption, are algorithms that,

in some sense, use no key. Instead, a fixed-length hash value is computed based upon

the plaintext that makes it impossible for either the contents or length of the plaintext

to be recovered. Hash algorithms are typically used to provide a digital fingerprint of

a file’s contents, often used to ensure that the file has not been altered by an intruder

or virus. Hash functions are also commonly employed by many operating systems to

encrypt passwords. Hash functions, then, provide a measure of the integrity of a file.

Hash algorithms that are in common use today include:

• Message Digest (MD) algorithms: A series of byte-oriented algorithms that produce

a 128-bit hash value from an arbitrary-length message [11], [12].

• MD2 (RFC 1319): Designed for systems with limited memory, such as smart cards.

(MD2 has been relegated to historical status, per RFC 6149.) [13]

• MD4 (RFC 1320): Developed by Rivest, similar to MD2 but designed specifically

for fast processing in software. (MD4 has been relegated to historical status, per

34

RFC 6150.) [14], [15]

• MD5 (RFC 1321): Also developed by Rivest after potential weaknesses were re-

ported in MD4; this scheme is similar to MD4 but is slower because more manipu-

lation is made to the original data. MD5 has been implemented in a large number of

products although several weaknesses in the algorithm were demonstrated by Ger-

man cryptographer Hans Dobbertin in 1996 (”Cryptanalysis of MD5 Compress”)

[16], [17].

2.4 Power Consumption and Cryptography

Attacks that involve multiple parts of a security system are diffcult to predict and model.

If cipher designers, software developers, and hardware engineers do not understand or

review each other’s work, security assumptions made at each level of a system’s design

may be incomplete or unrealistic. As a result, security faults often involve unanticipated

interactions between components designed by different people.

Many techniques have been designed for testing cryptographic algorithms in isola-

tion. For example, differential cryptanalysis [18] and linear cryptanalysis [19] can exploit

extremely small statistical characteristics in a cipher’s inputs and outputs. These meth-

ods have been well studied because they can be applied by analyzing only one part of a

system’s architecture - an algorithm’s mathematical structure.

A correct implementation of a strong protocol is not necessarily secure. For example,

failures can be caused by defective computations [20], [21] and information leaked during

secret key operations. Attacks using timing information [22], [23] as well as data col-

lected using invasive measuring techniques [24], [25] have been demonstrated. The U.S.

government has invested considerable resources in the classified TEMPEST program to

prevent sensitive information from leaking through electromagnetic emanations.

35

2.4.1 Power Analysis Attacks

Most modern cryptographic devices are implemented using semiconductor logic gates,

which are constructed out of transistors. Electrons flow across the silicon substrate when

charge is applied to (or removed from) a transistor’s gate, consuming power and producing

electromagnetic radiation. To measure a circuit’s power consumption, a small (e.g., 50

ohm) resistor is inserted in series with the power or ground input. The voltage difference

across the resistor divided by the resistance yields the current. Well-equipped electronics

labs have equipment that can digitally sample voltage differences at extraordinarily high

rates (over 20 GHz) with excellent accuracy (less than 1% error). Devices capable of

sampling at 20MHz or faster and transferring the data to a PC can be bought for less

than $400. [26]

Simple Power Analysis (SPA) is a technique that involves directly interpreting power

consumption measurements collected during cryptographic operations. SPA can yield in-

formation about a device’s operation as well as key material. Because SPA can reveal the

sequence of instructions executed, it can be used to break cryptographic implementations

in which the execution path depends on the data being processed. For example:

• DES key schedule: The DES key schedule computation involves rotating 28-bit key

registers. A conditional branch is commonly used to check the bit shifted off the

end so that ”1” bits can be wrapped around. The resulting power consumption

traces for a ”1” bit and a ”0” bit will contain different SPA features if the execution

paths take different branches for each.

• DES permutations: DES implementations perform a variety of bit permutations.

Conditional branching in software or microcode can cause signiffcant power con-

sumption differences for ”0” and ”1” bits.

• Comparisons: String or memory comparison operations typically perform a condi-

tional branch when a mismatch is found. This conditional branching causes large

SPA (and sometimes timing) characteristics.

36

• Multipliers: Modular multiplication circuits tend to leak a great deal of information

about the data they process. The leakage functions depend on the multiplier design,

but are often strongly correlated to operand values and Hamming weights.

• Exponentiators: A simple modular exponentiation function scans across the expo-

nent, performing a squaring operation in every iteration with an additional mul-

tiplication operation for each exponent bit that is equal to ”1”. The exponent

can be compromised if squaring and multiplication operations have different power

consumption characteristics, take different amounts of time, or are separated by

different code. Modular exponentiation functions that operate on two or more

exponent bits at a time may have more complex leakage functions.

2.4.2 Preventing Power Analysis Attacks

Power distribution as well as power consumption of an integrated circuit are really im-

portant factors, if we need to keep our data safe. One solution on preventing these power

analysis attacks is the early knowledge of the power consumtion distribution of the circuit.

Moreover, if low power is achieved on a cryptographic device, Power Analysis attacks will

be difficult (if not impossible) to implement. Measuring power variation on a really low

power device will be a challenging task, since measure data will be easily confused with

noise comming out of the system.

FPGAs on the other hand, are by far a high power consuming device. This makes

the low power senario not quite usefull for preventing these kind of attacks. So, an early

estimation of the die’s power consumption would be really important, since it would

provide the engineers an insight of the distribution of the power consumption on the

chip. Thus a posibility of re-routing and power re-optimization of the design would be

one way of preventing this kind of cryptographic attacks.

37

38

CHAPTER

THREE

RELATED WORK

3.1 Power Measurements on FPGAs

Hardware power measurements of large FPGAs has received little attention compared

to that of standard cell ASIC, which has been extensively studied in the literature. In

particular, only the power consumption when certain matrix multiplication algorithms

are implemented in hardware have been presented in [27] and of various digital signal

processing modules in [28]. Moreover, Lysecky and Vahid [29] have studied the differences

between the performance achieved when certain tasks are executed in the embedded

processing cores of a state-of-the-art-FPGA and when their are executed by dedicated

hardware modules.

In general, the difference between the energy estimated and the energy actually con-

sumed in FPGAs, has not been studied yet. The only paper which is, in a small sense,

related to the work presented here is one by Becker, Huebner and Ullmann [30] which

discusses the exact power consumption trade-offs between the measured runtime con-

sumption of a mapped application and the measured reconfiguration time consumption

of different dynamically reconfigured applications. However, even this work has no com-

parisons between the measured and estimated power consumption. On the other hand,

39

there is considerable amount of work done in both industry and academia related to

cryptographic algorithms and their performance evaluation. In the literature, there are

several implementations of the three most widely used cryptographic algorithms (DES,

AES and MD5) in either software, or hardware; the hardware approaches are tailored to

both ASICs and FPGAs [31],[32], [33], [34], [35].

Extensive work has also been done on the investigation of various timing analysis

algorithms [36], [37], [38], [39]. Research showed that countermeasures sould be consid-

ered for preventing these kind of attacks. Paul Kocher [2] proposed three techniques

for preventing DPA and related attacks. The first approach was to reduce signal sizes

and physically shield the device. The second approach involved introducing noise into

power consumption measurements and the third and final approach involved designing

cryptosystems with realistic assumptions about the underlying hardware. In most of

the above cases the countermeasures for the DPA attacks need accurate and trustwor-

thy power estimation tools. Power drop-off counter effects could be reduced or even

eliminated, if accurate power estimations could be made on the early design cycles.

3.2 Utilizing Field Programmable Gate Arrays

There exist a number of implementations of factorization algorithms and the most efficient

versions use parallel computing. To the best of the authors acknowledge, until 1999 there

was not any hardware implementation of number factoring.

The first approach named TWINKLE was presented by A. Shamir [40]. Another

hardware approach was presented by H.J.Kim and W.H.M.Smith. They implemented

the MPQS algorithm on an FPGA [41]. X. Wang and S. Ziavras implemented a parallel

LU factorization of Sparse Matrises on FPGA-based configurable computing engines [42].

J. Franke and T. Kleinjung proposed a hardware architecture for factorization with the

Elliptic Curve Method [43].

The latest works were presented by T. Izu and J. Kogure who implemented a sieving

40

step with the lattice sieving [44], and G. Southern and C. Mason who implemented a high

throughput circuit for trial division by small primes [45]. Both systems were implemented

on FPGAs.

3.3 Algorithms for a Specific Factor Type

Power consumption measurements of FPGA devices were reported by Becker et al in

[30]. In an earlier work, we have also presented measurements on power consumption of

cryptographic designs on Virtex-II Pro devices.

A lot of work has also been done on the analysis and measurements of the dynamic

power consumption of FPGA devices. Shang et al [46] presented an analysis of dynamic

power dissipation in Virtex-II devices. They report that most of the dynamic power

dissipation in an FPGA fabric is due to the programmable interconnects and clocking

resources.

In [47] Wilton et al. demonstrate reductions in power consumption by increasing the

number of pipeline stages in an FPGA design. However, none of these approaches use

run-time reconfiguration in order to reduce the power consumption.

Noguera, in [48], proposes the use of adaptive partial reconfiguration for reducing the

power consumption. However, the results demonstrated do not prove this claim, whe-

reas (a) they do not compare their results with simple clock gating (b) they focus on a

specific FPGA device and (c) they just use a certain networking module provided by the

FPGA vendor. Another interesting work was presented by Boemo et al. [49] who used

reconfiguration in order to monitor the temperature of the FPGA die.

In general, none of these research efforts analyzed the effect of the migration to new

and advanced processing technologies by the semiconductor companies. Also, none has

ever measured the difference of the power reduction than can be achieved by using clock

gating on the design, versus the power reduction achieved when utilizing run-time recon-

figuration.

41

3.4 General Purpose Algorithms

Much work has been done on the matrix step of the Number field sieve. In 2001, Daniel

J. Bernstein observed that the NFS linear algebra step has a huge input that is accessed

repeatedly. When implemented on traditional computers, very few processors are ac-

cessing that huge input, which is inherently inefficient. He proposed an implementation

using mesh sorting, which reduces the asymptotic cost and the design was given on an

abstract layer [50]. In 2002, Arjen K. Lenstra and Adi Shamir, proposed an alternative

concrete high-level parallel design, wafer-scale electronic device consisting of an array of

cells, executing mesh routing [51].

In 2003, Willi Geiselmann improved Lenstra’s design by adding splitting into smaller

and semi-independent chips. This variant was prototyped on FPGA. In 2004, Sashisu

Bajracharya implemented the improved Lenstras design on an FPGA [52]. Final, in

2005 Willi Geiselmann proposed a highly-parallel electronic device, based on a pipelined

architecture. More efficient than the above mesh-based devices, and more technologically

feasible due to smaller chips and better scalability [53].

42

CHAPTER

FOUR

POWER ESTIMATION AND MEASUREMENTS

4.1 Security Algorithms

Our four chosen security algorithms, AES [54], DES, 3DES [55] and MD5 hash [56],

comply with todays mobile needs. All algorithms are compact, powerful and widely used

in todays mobile market.

• The Data Encryption Standard (DES) is a cipher selected as an official Federal In-

formation Processing Standard (FIPS) for the United States in 1976, and which has

subsequently enjoyed widespread use internationally. The algorithm was initially

controversial, with classified design elements, a relatively short key length, and

suspicions about a National Security Agency (NSA) back-door. DES consequently

came under intense academic scrutiny, and motivated the modern understanding

of block ciphers and their cryptanalysis.

The most common SKC scheme used today, DES was designed by IBM in the 1970s

and adopted by the National Bureau of Standards (NBS) [now the National Insti-

tute for Standards and Technology (NIST)] in 1977 for commercial and unclassified

government applications. DES is a block-cipher employing a 56-bit key that op-

erates on 64-bit blocks. DES has a complex set of rules and transformations that

43

were designed specifically to yield fast hardware implementations and slow software

implementations, although this latter point is becoming less significant today since

the speed of computer processors is several orders of magnitude faster today than

twenty years ago. IBM also proposed a 112-bit key for DES, which was rejected at

the time by the government; the use of 112-bit keys was considered in the 1990s,

however, conversion was never seriously considered.

• In 1997, NIST initiated a very public, 4-1/2 year process to develop a new secure

cryptosystem for U.S. government applications. The result, the Advanced Encryp-

tion Standard, became the official successor to DES in December 2001. AES uses

an SKC scheme called Rijndael, a block cipher designed by Belgian cryptographers

Joan Daemen and Vincent Rijmen. The algorithm can use a variable block length

and key length; the latest specification allowed any combination of keys lengths

of 128, 192, or 256 bits and blocks of length 128, 192, or 256 bits. NIST initially

selected Rijndael in October 2000 and formal adoption as the AES standard came

in December 2001. FIPS PUB 197 describes a 128-bit block cipher employing a

128-, 192-, or 256-bit key. As of 2006, AES is one of the most popular algorithms

used in symmetric key cryptography.

• Triple DES is also known as TDES or, more standard, TDEA (Triple Data En-

cryption Alg), is a block cipher formed from the Data Encryption Standard (DES)

cipher by using it three times. A variant of DES that employs up to three 56-bit

keys and makes three encryption/decryption passes over the block; 3DES is also

described in FIPS 46-3 and is the recommended replacement to DES.

• Finally, MD5 (Message-Digest algorithm 5) is a widely-used cryptographic hash

function with a 128-bit hash value. As an Internet standard (RFC 1321), MD5 has

been employed in a wide variety of security applications, and is also commonly used

to check the integrity of files.

44

Figure 4.1: Digilent Spartan-3E and XUP Board

4.2 Experimental Framework

The equipment used for our experiments are: a Digilent XUP Development board [57]

(figure 4.1) with a Xilinx Virtex-II Pro FPGA, a Digilent Spartan-3 Development board

(figure 4.1) with a Spartan3 FPGA and an Altera DE2 Board [58] (figure 4.2) with a

Cyclone-II FPGA.

Measuring the FPGA’s internal core power consumption, can be a challenging proce-

dure, especially if the board in which the experiments are carried out on, is not specifically

designed for such experiments. In order to measure accurately the power consumption

we had to isolate the board’s internal logic voltage, (in most cases 1.2 Volts), and drive

it by an external regulated DC power supply. An all boards, except the Digilent XUP,

we had to make hardware changes so that we could be able to do this.

Since internal core logic current consumption was quite low, we could not use a plain

amperometer. Moreover, current consumption was not always stable throughout the

experiment. So, we had to insert a 0.5Ohm (1%, 5Watt) resistor on the returning path of

the internal core logic power network. By calculating the voltage difference between the

two poles of the resistor we could measure the exact current consumption of the FPGA

chip. The exact experiment setup, can be seen in figure 4.3.

It sould be noted, that on all three boards, the internal logic core voltage network,

45

Figure 4.2: Altera DE2 Board

Figure 4.3: Measurement Configuration

46

Figure 4.4: Operational Amplifier Circuit

was only connected with the FPGA chip and not with any other external sources. This

quaranties that the measured current is exactly the current consumed by the FPGA’s

internal logic core.

Since the voltage difference on the resistor’s pins was quite small, we had to amplify

the measured voltage difference by implementing an amplification circuit as demonstrated

in figure 4.4. This circuit amplifies by a factor of 23 the measured ∆V value. All

resistors, had a small tolerance of 1%. Finaly, a highly advanced mixed signal oscilloscope

MSO6052A, of Agilent Technologies [59], was used for sampling the operational amplifier

output.

4.3 Hardware and Software Power Measurements

4.3.1 Hardware

The security cores used, were not unified. Each module had a different bus architecture

and a different input and output logic. To be able to get accurate results, a top HDL

file was inserted on all four algorithms. The inputs to the HDL file, were only the clock

and the reset signal, and an internal FSM controlled all the security core signals. An

endless loop of reading and writing data to the core was implemented, providing a high

predictability rate for all the core signals and constant power consumption. It should be

noted that although we could put a large number of hardware modules working in parallel,

47

DES AES 3DES MD5
V irtex− IIPro 254.89 915.21 300.32 571.12
Spartan− 3 38.19 135.23 43.04 52.69
Cyclone− II 131.68 193.04 135.65 144.83

Table 4.1: Measured Values in mW

we would prefer not to imply such parallelism so as to be more fair when comparing the

performance and the power consumption between the hardware implementations and the

software ones (i.e. there is no parallelism in the software case).

Also, the execution time of the each crypto module may be different. The crypto

module will return a signal to main controller, when the en/decrypt operations are fin-

ished. The top module FSM, will send data to the crypto module and will wait until the

operation is finished. Then, data is read, new values are inserted on the input register,

and the proper sequence for starting the en/decrypt operation is made. The bus archi-

tecture for each core is different, so different top modules are used in each algorithm. For

example, AES and MD5 cores use a 128bit bus for data switching and DES/3DES use a

64bit bus.

Due to the fact that the cores were consuming the same amount of power throughout

the experiment, the measurement was really straight forward and extremely accurate.

All measurements were repeated three times for maximum accuracy. Mean values of the

measurements are displayed on table 4.1, while the variance in the power consumption

numbers, in the different experiments was insignificant (up to 2%).

By starting the measurement, all security cores, are imported on Xilinx ISE tool for

placement and routing, until we get the programming bit-stream for the Virtex-II Pro

FPGA. Then, the programming software configures the FPGA with the selected security

core, over the USB cable. A manual reset is initiated on the development board and the

core enters an endless loop.

The current information shown by the oscilloscope, remains stable, making it possible

for error free current measurement, simply by reading the voltage value of the oscilloscope

trace and by diving it by 23.

48

Then, the Modelsim SE by Mentor Graphics [60] was used to measure the number of

hardware cycles needed for each 32bit data encryption. So, by using the formula

E = V × I × t

we could calculate the true Energy that was used for an 32bit encryption for each algo-

rithm.

Finally, all measurements, which include the power consumption of the total hard-

ware resources used (e.g. including the top-level control FSM) were saved for latter

comparison.

4.3.2 Software

Firstly, it should be stated that the embedded CPU in our experimental set-up is a Pow-

erPC which is well know for its high-performance and relatively low power consumption.

In particular is has been claimed that «The PowerPC sets the new standard in terms of

performance, low power, security and multi-platform support, making it ideal for next

generation 801.11n and WiMAX applications» [61]

Measuring the Software Energy Consumption, was a more complicated procedure

since we didn’t have the ability to measure the clock cycles needed for each 32bit data

encrypted as we can do with the hardware modules.

One initial problem was that no matter what software code was executed in the

embedded CPU, the power consumption stayed the same. Although we inserted an

infinite loop with a NOOP command in our source code, the measured power consumption

that was associated with the 1.5V supply (i.e. that is the supply connected only to the

embedded CPU) was still the same. Thus we could not calculate the actual real processing

time of the various software schemes. In order to overcome the above, we have used the

power down command of the PowerPC processor; at the end of our program, we altered

a special control register, so that the processor would come to its power down state, thus

49

DES AES 3DES MD5
S/WTime(Seconds) 0, 0000347 0, 0000123 0, 0000872 0, 000008
H/WTime(Seconds) 0, 00000036 0, 00000048 0, 00000038 0, 00000032
S/WEnergy(Joules) 0, 000958883 0, 000208086 0, 000435148 0, 000160518
H/WEnergy(Joules) 0, 918× 10−07 4, 392× 10−07 0, 114× 10−07 1, 824× 10−07

Table 4.2: True Measured Values

minimizing its power.

E =
∫ tpowerdown

treset
P (t) · dt

Figure 4.5: Integral Formula

Every time we press the reset button, the processor exits the power-down state and

starts executing the software loaded in its memory until it enters the power-down state

again, at the end of the execution. By measuring this power consumption variation, we

were able to calculate the exact power consumed by our device when only the embedded

hard-core CPU (i.e. implemented just if it was a stand-alone CPU) was executing the

corresponding software as described in the next paragraph.

In particular, we extracted the values from the voltage graph that was captured by our

accurate oscilloscope, and inserted them into MatLAB [62]. We divided each measured

voltage by 23, which is the amplification factor implied by our amplifier, and then we

calculated the integral of the voltage for the time interval between reset and power down,

as seen in figure 4.5.

Finally, we divided the total Energy consumed with the total number of 32bit data

items that were encrypted. In this manner, we calculated the exact energy that each

program consumed for the encryption of a 32bit data stream. It should be noted that in

the numbers shown we also include the power consumed in the wake-up process of the

CPU. However, we have run each encryption algorithm for 1000 times, without powering

off the process, and divided the overall power consumption by 1000 and we realised that

the overall wake-up power consumption is less than 8% of the power consumption of each

50

application.

Figure 4.6: Oscilloscope Waveform for AES

This procedure was repeated three times, for all four algorithms, to ensure that the

current displayed was the same for all repetitions. One representative waveform that was

acquired by the Oscilloscope is shown in figure 4.6.

Data were extracted from the oscilloscope and after importing them to Matlab, we

croped everything before the start and after the stop points, so as to get the exact time

period that each security application was running. A representative processed waveform

is shown in figure 4.7. The integral of this waveform, represents the actual power that

our AES program consumed for encoding 12800 bytes of data.

4.4 Power Estimation

The power estimation numbers for each core and for each FPGA, were also reported

by each vendors power estimation tool. We used Xilinx’s Xpower tool [63] for Virtex

and Spartan FPGAs, and Altera’s PowerPlay [64] for the Cyclone-II device. These tools

51

Figure 4.7: Edited Waveform for AES

calculate the consumed energy based on the fact that the dynamic power consumption

inside an FPGA circuit is mainly caused by its switching activity. For every element e.g.

LUT, RAM, I/O, wiring there exists a corresponding capacitance model. These tools can

calculate the total energy by summing up the consumed energy on all references elements

in the design; the energy consumption is calculated based on the specific capacitance

models of the elements and on the modules’ switching activity.

Figure 4.8: Power Estimation Flow

52

DES AES 3DES MD5
V irtex− IIPro 349, 5 1185 370, 5 481, 5
Spartan− 3 118 340 127 127
Cyclone− II 139, 57 130, 96 143, 31 126, 98

Table 4.3: Estimated Values in mW

The information about every element’s activity rate was taken from the VCD-file

which was generated, during timing simulation, using Modelsim SE by Mentor Graphics

[60]. The flow chart of estimating the power consumption of an FPGA-based system, is

shown in figure 4.8.

When performing the timing simulation for the creation of the VCD file, a continuous

1ms simulation run was executed. There is no need for larger simulation times, since

all signal rates remain the same throughout time. So this 1ms window is practically

more than enough for XPower and PowerPlay to calculate the exact activity rate for each

signal. An extended simulation of 1 second was also performed for each algorithm, which

showed that the overall results differed no more than 1 to 2 mW. The estimation values

computed by both power tools, when executing the exact same test bench as the one

applied in our experiments accordingly, are demonstrated on table 4.3. All values are in

mW.

All experiments were conducted in room temperature of about 21 to 23 degrees of

Celsious. Power consumption estimated values were computed by using the default 25

degrees option on both estimator tools. Moreover, Xilinx Xpower tool didn’t support the

alternation of the input thermal data.

4.5 Power vs Utilization

First we measured how the consumption of the FPGAs internal core changed in relation

to the silicon utilization. So, we implemented many instances of the AES core so as to

cover 25%, 50%, 75% and 100% of the FPGA logic resources.

The selected Virtex-II Pro has 30K gates, Virtex-4 has 25K gates while Spartan-3 has

53

Table 4.4: Virtex-II Pro Measured Values
Utilization Current Power Core Voltage
26% 0,706A 1,059W 1.5V
53% 1,27A 1,905W 1.5V
86% 1,75A 2,625W 1.5V
97% 2A 3W 1.5V

1000K gates. For example, for utilizing 99% of the Virtex-4 device, we needed 7 cores,

while utilizing the large Spartan-3 FPGA, we needed 19 cores.

The actual measured data for all of the FPGA devices are demonstrated in the fol-

lowing tables: 4.4,4.5 , 4.6. Those present device utilization, FPGA internal core current

consumption, internal core voltage and power consumption.

Table 4.5: Virtex-4 Measured Values
Utilization Current Power Core Voltage
22% 0,237A 0,285W 1.2V
51% 0,396A 0,475W 1.2V
85% 0,604A 0,725W 1.2V
99% 0,510A 0,613W 1.2V

Table 4.6: Spartan-3 Measured Values
Utilization Current Power Core Voltage
25% 0,049A 0,059W 1.5V
50% 0,060A 0,072W 1.5V
75% 0,076A 0,091W 1.5V
95% 0,082A 0,099W 1.5V

In figure 4.9, we can see the plot of the total power consumption of each FPGA’s

internal core, in relation to device utilization. As we can see in the plot, Virtex-4 full

utilization power consumption (99%) is less than the power consumption when only 85%

of the device is utilized. The explanation to this odd power measurement comes from

the different placing and routing of the two designs. Apparently the placing and routing

of the large design was much more efficient than the smaller one. This states that power

the consumption is extremely dependant on the placement and routing of the design.

In figure 4.9 we can also see the derivative of the total power dissipation of an FPGA

device with respect to the percentance utilization of the core. This is represented by the

54

Figure 4.9: Watts per Utilization

slope of each graph. If we concentrate on the Virtex-II Pro and Virtex-4 devices (since

both of these devices have embedded hard core peripheral logic) we realize that Virtex-4’s

graph slope is less that Virtex-II Pro’s slope. This indicates that since the static current

leakage is getting bigger and bigger as we pass to new processing technologies, and more

hard-cores are built in the FPGA fabric, the reconfigurable devices tend to consume the

same amount of energy regardless of their utilization. However, we are not there yet (and

we will not probably be there for the next decade or so) since the power consumption is

still heavily affected by the resources’ utilization as demonstrated in the next paragraphs.

Another important remark is that Spartan-3 and Virtex-II Pro devices have a signifi-

cant power consumption difference, although both devices use the same 90nm technology.

Spartan-3 has about 3 times more gates than the Virtex-II Pro device and 4 times more

than the Virtex-4 device.

In figure 4.10, we demonstrate in detail the total power consumption per 1000 gates

in each device. This makes it clear that although Virtex-4 device has an advanced triple-

oxide technology, Spartan-3 is by far a less power consuming FPGA. One possible expla-

55

Figure 4.10: Consumption per 1K in Spartan-3 Devices

nation of this, is that the Virtex 4 device has embedded hard cores, such as numerous

DSPs and much more, that consume power even when not programmed.

4.6 Clock Gating vs Reconfiguration

Another task of this thesis was to compare the actual power saved when clock gating as

well as run-time reconfiguration are utilized. In graph 4.12 we can see the two numbers for

a Virtex-II Pro FPGA. The higher graph, represents the power consumption of the clock

gated design. First we apply the internal clock to only one core, then to two cores and so

on. The lower graph represents the power consumption when real-time reconfiguration is

utilized (i.e. we load only one module, then two and so on).

In all 7 measurements, a new design was compiled, placed and routed. Each of these

designs was more power efficient than the related clock gated one. Furthermore, one

additional advantage of the run-time reconfigurable approach against the clock gated

one, is that we can have a large design mapped to a small FPGA device.

Finally, in figure 4.13, we demonstrate the overall percentance of power reduction

56

Figure 4.11: Consumption per 1K

when using run-time reconfiguration when compared with clock gating. Based on those

measurements by using real-time reconfiguration we can from 7% to 27% of the power

depending on the utilization of the device (i.e. the higher the utilization after reconfig-

uration the smaller the savings). Although this percent is not very large it can be very

important for power critical applications.

Obviously, in order to be able to fully estimate the power reduction achieved when

real-time reconfiguration is utilized, we also have to measure the time as well as the the

power consumption of the reconfiguration process. Since reconfiguration is a time and

energy consuming task, designs that have low reconfiguration frequencies would benefit

from the presented approach (i.e. the energy saved over large periods of time would

be more than that consumed by the reconfiguration process), whereas when frequent

reconfiguration is needed the presented approach would not probably be beneficial.

57

Figure 4.12: Watts per internal cores

DES AES 3DES MD5
ClockCycles 36 48 38 32

Table 4.7: Time for a 32bit encode

4.7 Results and Evaluation

First we had to calculate the total execution time for each hardware algorithm. Although

in software it is quite straight forward (we just measure the time from the waveform),

in hardware it needed more complicated calculations. Since hardware run in an endless

loop, we had to calculate the clock cycles needed for each algorithm to complete a 32bit

encode.

By using ModelSim, we were able to count exactly the number of cycles needed by

each algorithm. In these cycles, we added 24 cycles. These are the number of cycles

needed for the Virtex-II PowerPC to write and read to the OPB bus (via the PLB-to-

OPB bridge). This number is not generic, but it was used as a ”worst case” cycle time

for each transaction. The total cycles needed by each security core is seen in table 4.7.

58

Figure 4.13: Percentance of power reduction

The Hardware modules and embedded CPU both run at 100Mhz, so we were able to

calculate the total time needed for each algorithm to finish the encoding for a 32bit data

chunk. In figure 4.14, we can see the total time needed for the SW to finish encoding. Also

in figure 4.15, we can see the total Software Power consumption for each 32bit encoding.

In figure 4.16, we can see the total Hardware Energy consumption for a 32bit encoding.

These values do not include the power consumption by the OPB bus and the OPB-to-PLB

bridge.

As those results clearly demonstrate, although software, in general, is believed in

certain cases in embedded systems, to be more power efficient, this is not true in real

FPGA-based systems consisting of both reconfigurable resources and hard-core embedded

CPUs. As we may observe in figure 4.17, software consumes almost 1000 times more

energy than hardware. It should be noted that these values are the real measured data

in the Virtex-II Pro device.

Hardware seems to win over software in time as well. In figure 4.18 the comparison

59

Figure 4.14: SW execution time

between software and hardware time needed for a 32bit data encode can be seen. Software

needs over one thousand times more time than hardware for encoding the same amount

of data. Real measured data are displayed in table 4.2.

Our next goal, was to compare the real power consumption data with the estimated

ones. In figure 4.19, we demonstrate the overall measured and estimated results. All the

left columns are the estimated values and all the right ones are the real measured data.

Although the FPGA families that are used are not identical, and thus not comparable

with regards to their power consumption, we can clearly distinguish the Spartan-3 family

as the most power efficient and the Virtex-II Pro family as the most power consuming

one.

As it is clearly demonstrated there is a significant difference between the measured

and the estimated values for the Spartan-3 device. In figure 4.20, we present the exact

difference in milli-watts. If we divide this difference with the actual measured value, we

will get the percentage of the error between the measured and the estimated value of

each algorithm on each FPGA. Those numbers are presented in detail in figure 4.21. The

variations for the Cyclone-II device are between 5,65% to 32,16%, for the Virtex-II Pro

between 15,69% to 37,12% and for the Spartan-3 between 151,42% to 208,98%.

60

Figure 4.15: SW Power Consume per 32bit Data Enc

Although there are big differences between the measured and the estimated numbers,

especially on the Spartan-3 device, we should mark that for all those measurements,

that the XPower made a pessimistic estimation. This makes this tools quite reliable on

estimating design’s worst case power consumption which is an important factor when

designing a real world application. On the other hand the variation in measured and

estimated values cannot satisfy the needs of the designers of the various countermeasures

for the power analysis attacks.

In the Altera case, although Powerplay is more accurate on its power estimations,

the variations were between 5,65% to 32,16%, which still cannot address the needs of the

designers.

As we may deduce from our measurements, in all those real-world security application,

the hardware cores are almost 1000 times faster, while the hardware cores consume only

the one thousandth of the energy that software implementation consumes. Therefore, this

work clearly demonstrates that the optimal choice for the implementation of the security

applications is the state-of-the-art reconfigurable hardware which consumes extremely less

power and is 3 orders of magnitude faster than the software executed on a state-of-the-art

61

Figure 4.16: HW Energy Consume per 32bit Data Enc

low power RISC CPU, while it also offers much higher flexibility than an ASIC.

Based on those results we believe that the reconfigurable hardware can be used in

both high-end devices supporting high levels of security such as multi-gigabit network

cards and gateways, video processing devices as well as in low-end embedded systems

such as battery operated sensor network nodes, wearable devices etc.

62

Figure 4.17: SW/HW Energy Consume per 32bit Data Enc

Figure 4.18: SW/HW Time consume per 32bit Data Enc

63

Figure 4.19: Estimation & Measurement Results

Figure 4.20: Difference in mW

64

Figure 4.21: Error Percentage

65

66

CHAPTER

FIVE

CRYPTOGRAPHY AND LARGE NUMBER

FACTORIZATION

5.1 Background

Factoring a positive integer n means finding positive integers u and v such that the

product of u and v equals n, and such that both u and v are greater than 1. Such u

and v are called factors (or divisors) of n, and n = u × v is called a factorization of n.

Positive integers that can be factored are called composites. Positive integers greater

than 1 that cannot be factored are called primes. For example, n = 15 can be factored as

the product of the primes u = 3 and v = 5, and n = 105 can be factored as the product

of the prime u = 7 and the composite v = 15. A factorization of a composite number is

not necessarily unique: n = 105 can also be factored as the product of the prime u = 5

and the composite v = 21. But the prime factorization of a number - writing it as a

product of prime numbers - is unique, up to the order of the factors: n = 3× 5× 7 is the

prime factorization of n = 105, and n = 5 is the prime factorization of n = 5.

In this thesis we concentrate on finding just a factorization. The prime factorization

can be obtained by further factoring the factors that happen to be composite: both

factorizations n = 7× 15 and n = 5× 21 of n = 105 can be further refined to the prime

67

factorization n = 3 × 5 × 7 of n = 105, the first by further factoring 15, the second

by factoring 21. There are efficient methods to distinguish primes from composites that

do not require factoring the composites (cf. [29], [50] - Integer factoring p.31). These

methods can be used to establish beyond doubt that a certain number is composite

without, however, giving any information about its factors.

Factoring a composite integer is believed to be a hard problem. This is, of course,

not the case for all composites -composites with small factors are easy to factor- but, in

general, the problem seems to be difficult. As yet there is no firm mathematical ground

on which this assumption can be based. The only evidence that factoring is hard consists

of our failure so far to find a fast and practical factoring algorithm. Interestingly, and to

an outsider maybe surprisingly, an entire industry is based on this belief that factoring

is hard: the security, i.e., the unbreakability, of one of the most popular public key

cryptosystems relies on the supposed difficulty of factoring.

This relation between factoring and cryptography is one of the main reasons why

people are interested in evaluating the practical difficulty of the integer factorization

problem. Currently the limits of our factoring capabilities lie around 130 decimal digits.

Factoring hard integers in that range requires enormous amounts of computing power.

A cheap and convenient way to get the computing power needed is to distribute the

computation over the Internet. This approach was first used in 1988 to factor a 100-digit

integer [32], since then to factor many integers in the 100 to 120 digit range, and in

1994 to factor the famous 129-digit RSA-challenge number (cf. [4]).1 In 1996 a 130-digit

number was factored, partially using a World Wide Web interface [13].

In 2009 a six-institution research team led by T. Kleinjung has successfully factored

the RSA-768 challenge number. While the RSA Factoring Challenge is no longer active,

the factoring of RSA-768 represents a major milestone for the community. The effort

took almost 2000 2.2GHz-Opteron-CPU years according to the submitters, just short of

3 years of calendar time.

We distinguish two main types of factoring methods: those that work quickly if one

68

is lucky, and those that are almost guaranteed towork no matter how unlucky one is.

The latter are referred to as general-purpose algorithms and have an expected run time

that depends solely on the size of the number n being factored. The former are called

special-purpose algorithms; they have an expected run time that also depends on the

properties of the - unknown - factors of n. When evaluating the security of factoring-

based cryptosystems, people employ general-purpose factoring algorithms.

5.2 Algorithms for a Specific Factor Type

5.2.1 Pollard (rho - 1) Algorithm

Pollard’s ρ− 1 algorithm is a number theoretic integer factorization algorithm, invented

by John Pollard in 1974 [65]. This method is based on a combination of two ideas that

are also useful for various other factoring methods. The first idea is the well known

birthday paradox: a group of at least 23 (randomly selected) people contains two persons

with the same birthday in more than 50% of the cases. More generally: if numbers are

picked at random from a set containing p numbers, the probability of picking the same

number twice exceeds 50% after 1.177
√
p numbers have been picked. The first duplicate

can be expected after c · √p numbers have been selected, for some small constant c. The

second idea is the following: if p is some unknown divisor of n and x and y are two

integers that are suspected to be identical modulo p, i.e., x = (y)mod(p), then this can

be checked by computing gcd(x− y, n) (Greatest Common Divider). More importantly,

this computation may reveal a factorization of n, unless x and y are also identical modulo

n.

This is a special-purpose algorithm, meaning that it is only suitable for integers with

specific types of factors.

This algorithm relies on the hypothesis that N has a prime divisor p such that p− 1

is a product of small primes. In this case, taking k to be a product of lots of small primes,

we will eventually get p− 1|k, whence by the Lagrange Theorem, we have p|αk − 1. Thus

69

taking gcd(αk − 1, N), we detect p.

In more detail, Pollard’s algorithm works in the abelian group (Z/NZ)∗. Using the

Theorem of Lagrange, we know that for every α ∈ Z with gcd(α, p) = 1.

α(p−1) = 0 mod p

And even for exponents e = k · (p− 1) for some k ∈ N , we have

αe − 1 = 0 mod p

On the other hand, if gcd(α,N) = 1, and if the order of a modulo N is not a divisor of

e, then

αe − 1 ̸= 0 mod N

which means that d = gcd(αe−1, N) is a proper divisor of N . Of course, we do not know

either p or p− 1. But if p− 1 factors into a power product of prime numbers smaller or

equal to some bound B1 (i.e. p− 1 is B1-smooth), a multiple of p− 1 can be computed

as the product of all prime numbers bounded by B1 ”with small exponents”.

Let’s for example choose N = 437. We randomly choose the base α = 2 and we use

the exponent e = 24 · 34. Then

αe = α1296 = 305 mod N and gcd(305− 1, N) = 19

So 19 is a factor of N (N = 19 · 23).

5.2.2 Architecture

5.2.3 Hardware
The simplified version of the Pollard (ρ−1) algorithm, is displayed in the following lines:

1: For (j=1 to k) do
2: Compute b = (b^e(j)) mod (N)
3: od

70

Figure 5.1: Great Common Divisor

4: if (gcd(b - 1, N) > 1) then
5: return(gcd(b - 1, N))
6: fi
7: return ("no factor found")

Where k is the number of multiplicities used, and ej is the j-th multiplicity. Step 2 of

the algorithm, uses the Left-to-Right Binary Exponantiation algorithm, described later

on this section. Initial value of variable b is a random number less than N and greater

than 1. All random and multiplicities numbers are stored inside the FPGA to Read only

memories.

Hardware is designed using hierchical structure. The bottom core modules are the

modulo and the multiplier unit. These two blocks are sequential. This means that the

number of clock cycles needed for a computation is equal to, and some times less than,

the number of bits of the integer number.

Second from the bottom in hierarchy is the Greatest Common Divisor module, which

uses one modulo unit, two registers and two multiplexers, as seen in figure 5.1. This

design uses the Euclides algorith of finding the greatest common divisor of two numbers.

Let’s assume that we need to find the greatest common divider of 27 and 15 - gcd(27,15).

71

So we have the following relations.

gcd(27, 15) ≡ gcd(15, 27modulo15) ≡ gcd(15, 12) ⇒

gcd(27, 15) ≡ gcd(12, 15modulo12) ≡ gcd(12, 3) ⇒

gcd(27, 15) ≡ gcd(3, 12modulo3) ≡ gcd(3, 0) ⇒

gcd(27, 15) ≡ 3

The number of the iterations is not known and is different for each pair of numbers.
The algorithm used for Right to Left Binary Exponentiation, is displayed on the

following lines:

1: Initialize b = 1, c = a modulo N.
2: while(d >= 1) do
3: if (d is odd) then
4: b = b * c modulo N, and d = d - 1.
5: fi
6: d = d / 2, and c = c * c modulo N.
7: od
8: return (b)

As we can see from the code, in each step, we have to calculate one multiplication and

one modulo. These two functions are indepentend of each other. So, in hardware, we use

two multipliers and two modulo units. First we calculate the multiplication, and then

we calculate the modulo of each multiplication. So we need two multiplication units and

two modulo units, all working in parallel. The main block diagram of the Left to Right

algorithm can be seen on figure 5.2.

Higher in hierarchy we have the Pollard algorithm block. This block uses a Left2Binary

block, a GCD block and a small memory block for reading the multiplicities. As input,

we have the number N we want to factor and a random number less than N. A more

detailed diagram can be seen in figure 5.3.

In the top level of the hierarchy we have a round-robin scheduler. The scheduler

reads the random numbers stored in the read only memory, and distributes them to the

72

Figure 5.2: Left 2 Right Binary Exponantiation

Figure 5.3: Pollard Algorithm

73

Figure 5.4: Scheduler Block Diagram

74

various pollard algorithm blocks. A simple request-acknowlegment protocol is used for

the communication between the scheduler and the pollard blocks. Special parameters on

the VHDL code, are used to define the length of the number N we want to factor and

the number of the parallel Pollard algorithm cores used in the design. An abstract of the

scheduler block is seen on figure 5.4.

5.2.4 Software

Software design was made using the Multiprecision Integer and Rational Arithmetic C

Library (miracl) [66], which is optimized for large number arithmetic. Core fuctions

are assembly optimized for each general purpose processor. The internal loops and the

architecture of the program, is based exacly on the same algorithm that hardware uses.

Both multiplicities and random data are stored in static tables and are directly ac-

cessed by the implemented routines. No random number generation takes process on run

time and all the stored values are identical to the hardware unit.

In a brief, first we get the random data from the table. Second, we calculate the

binary exponentiation, and after subtracting one from the result, we calculate the greater

common divisor. When this flow is finished, we get the next random number and we

repeat the process. Both hardware and software cores find the factorization using the

last (16-th) random number, stored in memory.

5.2.5 Experimental Framework

In this section we will try to demonstrate each procedure used to measure the exact

execution time for software and for hardware.

5.2.6 Measuring H/W Time

For the Hardware part, we used the Xilinx ISE 9.1i HDL compiler [67] and the Mentor

Graphics Modelsim SE simulator [60] programs. We run our tests for a VirtexII-Pro

75

Table 5.1: Number of parallel cores used
Bits VirtexII-Pro Virtex-4
34 7 35
91 4 13
112 3 10
250 2 8

Table 5.2: Real and Cropped Frequency Numbers (MHz)
Bits VirtexII-Pro Virtex-4
34 105 100 193,798 190
91 94,879 90 118,517 115
112 86,809 85 102,613 100
250 81,397 80 91,62 90

device, with 30.000 logical gates and for a Virtex4 device, with 100.000 logical gates.

First, we had to determine the number of the parallel pollard algorithm blocks, that

could fit to each device, depending on the width of the number to be factored. We used

four different number widths. A 34bit, a 91bit, a 112bit and a 250bit number. So, we run

the HDL compiler, to discover the total of the parallel blocks that can be used in each

case. In table 5.1, we can see the exact number of cores used in each case. It is obvious,

that when our architecture increases its width, we can fit fewer cores into the device.

After determining the number of the cores in each case, we used the HDL tool, to

synthesis and generate Post-Place and Route static timing information. So in each case,

we determined the maximum frequency at which our design is able to run. We cropped

each frequency to the lower multiple of 5, and we continued our measurements. In table

5.2 we can see the exact frequencies for our designed, plus the cropped ones, used for our

final numbers. All numbers are in MHz.

Next step was to determine the exact running cycles for each design. So, by using

modelsim SE, we were able to determine the exact cycles needed by each algorithm to

factor the input integer. A 64-bit counter was used to count the total cycles needed. The

start signal would mark the begining of the factorization and the done signal would mark

the end of the process.

76

The total cycles measured, divided by the core running frequency, give us the total

running time of the factorization process.

5.2.7 Measuring Software Time

In the software part, the time measurement was quite straight forward. We used for our

measurements a Pentium-IV, HT processor, running at 3.0GHz frequency. All programs

were compiled using Microsoft Visual Studio 6. The time was measured using Intels

Vtune Analyser 9.0 for Windows XP [68].

To achieve maximum accuracy, we run each factorization program 1000 times in a

row, and then we divided the measured time by 1000. We used this procedure, because

the accuracy of the Vtune analyzer is not so accurate in small programs.

Random and multipliciates of data are all stored static on tables inside the program.

The flow of the program uses exactly the same flow as the hardware does, except for the

parallelization. Each measurement was repeated for 5 times, and we used the mean time

from all the repeatitions. All measured data is represented on table 5.3.

5.2.8 Results and Evaluation

In figure 5.5, we display the total running time in milliseconds for both hardware and

software implementations. The light gray bar, representing the software execution time,

is by far higher in all four situations. Also, the dark gray, representing the Virtex-4 device

family, is always faster, in all four cases.

In table 5.3, we display the exact times measured, according to the bits of the factoring

number. Software execution time is increasing linear, but hardware is not. Although we

would expect to have a linear speedup, this is not true for our FPGA approach. This is

due to the following reasons.

First, when the factoring number is increasing in width, our critical path is getting

bigger and thus the hardware frequency is decreasing. Second, multipliers and dividers

77

Figure 5.5: Running Time

Table 5.3: Time in Miliseconds for S/W and H/W
Bits VirtexII-Pro Virtex-4 Software
34 0,297 0,054 12,558
91 1,441 0,572 23,502
112 2,823 0,810 32,832
250 11,660 2,690 52,608

need, in general, the same number of cycles as the width of the factoring number. So

a multiplication of a 34 bit number needs 34 cycles and a multiplication of a 250 bit

needs 250 cycles. Finally, as the Pollard core block is increasing in gates, fewer parallel

computing cores fit in the FPGA, as seen in table 5.1.

In general, hardware speedup is from 42 to 4,5 times faster than software on a VirtexII-

Pro device implemantation, and from 231 to 19,56 times faster when the implementation

is made on the Virtex-4 device family.

78

5.3 General Purpose Algorithms

5.3.1 Number Field Shieve

5.3.2 Background

The best known algorithm for factoring large numbers is currently the Number Field

Sieve (NFS) [69], proposed by J.M Pollard in 1988. This algorithm tries to factor a

‘hard’ composite number by exploiting factorizations of smooth numbers in a well-chosen

algebraic number field. It has four main steps: Polynomial Selection, Sieving, Linear

Algebra and Square Root. The most time consuming are the Sieving and the Linear

Algebra steps. The Linear algebra step, which is the one we deal with, tries to find a

linear dependency among vectors over the GF(2) over a large and sparse system of linear

equations. There are four main algorithms used for finding these dependencies. The

Structured Gaussian Elimination, the Lanczos Algorithm [70], the Conjugate gradient

and the Block Wiedemann Algorithm [71] [72]. Structured Gaussian ellimination was

designed to reduce the problem to a much smaller one that could be solved by other

methods. The Wiedemann algorithm, is currently the most attractive one, since it can

work with high propability of success, while the others algorithms are only heuristic.

This Block Wiedemman algorithm needs to compute sequences of the form

A · ui, A
2 · ui, ..., A

k · ui

where A is the (m × m) sparse linear equation matrix, ui is a -not necessarily sparse-

binary vector, with u ∈ GF (2)m and k ≈ 2 ∗m/K (K is the blocking factor with typical

values K = 1 or K ≥ 12). Typical values of m for factoring a 512-bit integer is 6, 7 · 106

and for i from 50 to 300.

The linear algebra step is a time and space consuming task. Although we store

only the non-zero entries of matrix A, we still need about 2.3Gbytes of memory for a

(6, 7 · 106)× (6, 7 · 106) matrix with a mean of 63 non zero entries per column. Also, for

79

computing Ak · u we need k ≈ 2 · 6, 7 · 106/K matrix-by-vector multiplications. Whole

procedure sould be repeated for i =50 to 300 times. This makes necessery the use of

special-purpose hardware.

5.3.3 Main Algorithm

Let’s assume that we have a sparce matrix A6×6 with mean of one non zero entry per

column.

A =

0 0 0 0 1 0

0 0 0 0 0 0

0 0 1 0 0 0

1 0 0 0 1 0

0 0 0 1 0 0

0 1 0 0 0 0

If we multiplicate this matrix A by a binary vector U we will get the following result.

0 0 0 0 1 0

0 0 0 0 0 0

0 0 1 0 0 0

1 0 0 0 1 0

0 0 0 1 0 0

0 1 0 0 0 0

·

u1

u2

u3

u4

u5

u6

=

u5

0

u3

u1 + u5

u4

u2

The equivelant circuit for this multiplication is shown in figure 5.6. As we can see, a

2-input xor gate is used only for the line that has two non zero entries. All other lines

have either a ground signal (0) or an input signal directly connected to the output. With

this circuit we have the advantage to make one multiplication by vector every clock cycle.

Further more, the clock cycle width depends entirely on the delay of the 2-input xor gate.

This help us build high frequency multiplication circuits.

80

Figure 5.6: Circuit of matrix A6×6

The main matrix A of the 1024-bit Linear Algebra step has about 100 non zero entries

for each 4 · 107 wide column. If we take a random 256× 256 sub matrix B of A, then we

have maximum only one non zero binary entry. Matrix A does’t necesery have uniform

distributed non zero entries. But with an initial pre-processing of matrix A, we can have

the desired distribution of the entries.

5.3.4 Sub-Matrix Computation

Since the size of matrix A is huge, it is a good idea to distribute the matrix-by-vector

multiplications to a amount of parallel working machines. This is easy to be done, since

we can use the attributes of the matrix by vector multiplication. We split matrix A, into

t× s sub-matrices Ai,j. We also split vector U into t sub-vectors.

A · U =

A1,1 A1,2 . . . A1,t

A2,1 A2,2 . . . A2,t

...

As,1 As,2 . . . As,t

·

U1

U2

...

Ul

⇒

81

The desired A · U result is equal to:

A · U =

∑k=t
k=1A1,k · Uk∑k=t
k=1A2,k · Uk

...∑k=t
k=1 As,k · Uk

As we can see, each sum of matrix-by-vector multiplication is independent to each other,

making it possible to distribute this multiplication to s parallel machines. The only

disanvantage is that each machine needs to know the entire vector U . But this surplus

of data is only a small fraction of the complete data and it can be easily duplicated to

each machine without much overhead.

5.3.5 Design

Input/Output Control

One of the limitations of the linear algebra step, is the need for high input/output band-

width. Not only must the custom design calculate as fast as possible the matrix-by-vector

multiplication, but it must also do it in high rate. Althouth this is a crucial factor for

the overall speed of the circuit, I/O has not been taken into serious account.

Sashisu Bajracharya [52] for example, doesn’t give detailed information on the archi-

tecture of the I/O. After some calculations on Sashisu FPGA design, we found out that

the I/O meets the following formula:

Circuit_Speed(Mhz)× IO_Pads_Number = 151347

This reveals a major flaw of the design. If we replace the frequency with 80Mhz (where

the circuit run), we will find out that we need about 1892 I/O Pads on the FPGA. But

even if the frequency was as high as 200Mhz, we would still need 757 I/O Pads. In both

cases, the pad number is unrealistic.

82

To overcome this problem, we use the high speed, serial trasceivers (MGTs) of the

Xilinx Virtex devices. Each one of the trasceivers, can transmit and receive data at a rate

of 6.5Gbps. For the serialization/deserialization of the data, as well as for the control of

the I/O data, we use the Aurora Protocol by Xilinx [73]. Aurora protocol uses a 8b/10b

serial encoder/decoder that downgrades the overall capacity of the transceiver to 5.2Gbps.

This is translated to 32bit parallel input or output data every clock cycle, at a frequency

of 162.5Mhz for each of the MGTs. The development system that we used in order to

implement our design, was at the time a state-of-the-art Virtex-5 FPGA Development

board. This development board, as seen in figure 5.7, has an XC5VLX330T FPGA device

with 24x RocketIO digital tranceivers. This provides us a high I/O interface that we can

utilize in order to sufficiently recieve and transmit all the matrix data.

Figure 5.7: Virtex-5 Development Board

The same development board was used by Ioannis Kartsonakis in order to build a

Linux Device driver and a PCI-E hardware block. The intention of this work was to

provide an easy access port for the Real-Time reconfiguration of the FPGA device.

Architecture

Although our fist intention was to implement our design also on a Virtex-II Pro FPGA,

this was not feasible due to the physical limitations of the specific device. Virtex-II Pro

transceivers are located at the top and the bottom of the device. Meanwhile, run time

83

reconfiguration uses only full vertical block of slices on the specific device. This makes

it impossible for us to maintain a static block around the MGTs of the Virtex-II Pro

FPGA. On the other hand, Virtex4 and Virtex5 devices have the MGTs located on the

right and left side of the chip, making them ideal for our design.

Figure 5.8: Design Architecture

The main concept of our design is to use a run time reconfigurable block for describing

the sub-matrix A, half of MGT transceivers for receiving the sub-vector U and the other

half transceivers for transmiting the matrix-by-vector A · U multiplication.

If we have T = 2 · d tranceivers on the device then d of them are used in parallel

for receiving the data and d of them for transmiting the data. This means that we can

manipulate B = 32 · d bits every clock cycle.

Let’s now pick Ai, a random ((32 ·d) ·N)× ((32 ·d) ·N) sub matrix of A. This matrix,

can be splitted into N2, (32 · d) × (32 · d) sub matrixes Sj. Each of these Sj matrixes,

84

will have only one non zero entry (matrix A is very sparse), when d is relatively small.

Ai =

S1 S2 . . . SN

SN+1 SN+2 . . . S2·N

...

SN ·(N−1)+1 SN ·(N−1)+2 . . . SN2

If Ui is the multiplication vector of Ai, we will need N clock cycles for loading it into

memory before multiplication. This would require N , (32 · d)-bit registers. But since

column k

Column(Ai, k) =

Sk

SN+k

...

SN ·(N−1)+k

of matrix Ai has max N non zero elements, we only need N N-bit registers.

In figure 5.8, we can see the generic block diagram of our design. Left hand tranceivers

are used for data input and right hand for data output. Our design uses three dynamic

reconfigurable blocks (01,03 and 05) and six static blocks (tx, rx, 02, 04, control and shift

register).

Our design is fully syncronized at 162.5Mhz. In this rate, we can load and transmit

32 ·d bit of data every clock cycle. Since we use a ((32 ·d) ·N)× ((32 ·d) ·N) wide matrix,

we need N clock cycles for loading each new 32 · d ·N wide vector.

The needed registers for storing this vector are located on static block 02. On dynamic

block 03, we have an interconnect that multiplies the input vector with the matrix Ai,

with the same concept as seen in figure 5.6. On the N -th cycle, the vector will be

multiplied and saved on the registers of static block 04. At the next N clock cycles the

result will be transmited via the Aurora-TX block and at the same time a new vector

will be loaded on static block 02.

Our design is capable of multiplying a ((32 · d) ·N)× ((32 · d) ·N) wide matrix with

85

Figure 5.9: Detailed Design Example

a 32 · d ·N wide vector, every N clock cycles, at a speed of 162.5Mhz.

In figure 5.9, we illustrate the datapath for the A6×6 matrix that was seen in section

3. We assume that instead of 32 · d bits per clock cycle, we only have 2-bits per clock

cycle. Also, we assume that N = 3, where each 2 × 2 submatrix of A6×6 has only one

non-zero element.

At the first clock cycle, input data are stored at the top 3-bit register of static module

02. At the second clock cycle, the middle 3-bit register is used and at the third cycle, the

bottom one is used. At the fourth clock cycle, data are loaded in parallel to all three,

3-bit registers of static block 04. At the same time, the first 2 bits of the result are

transmitted on the output ports. Finaly, in cycles 5 and 6, all data have been transmited

on the output ports and the new vector has been loaded in the stage 02 registers.

All signals that control the stage 02 and 04 registers as well as the stage 05 multi-

plexers, are generated by the control static block of our system.

Routing algorithm

Although the routing algorithm seems rather complicated, it is quite simple. On a matrix-

by-vector multiplication, each element of the vector ui will only be multiplied by each

86

element of the i-th column of matrix A6×6. So the first 2-bit input of stage 01 (vector

bits u1, u2), will only be multiplied by columns 1 and 2 of matrix A6×6. The first 3-bit

output of this stage, corresponds to the three submatrices S1, S4, S7 of matrix A6×6.

A6×6 =

S1 S2 S3

S4 S5 S6

S7 S8 S9

If submatrix S1 has a non zero element, this means that one of the vector elements

u1, u2 sould be stored. In our example, submatrix S1 has only zero elements, so, output 0

is grounded. Submatrix S4 has a non zero element on column 1, which means that vector

element u1 sould be stored. The same comes with submatrix S7 where vector element u2

sould be stored.

After the first 3 clock cycles, all needed vector elements u1, u2, u3, u4, u5 are stored

on the registers of static stage 02. On the next clock cycle, the system is ready for the

matrix-by-vector multiplication through dynamic stage 03.

On static stage 04, we have, once again, three 3-bit registers. In case all of the non-

zero elements of the submatrixes S1, S2, S3 are on the same row of matrix A6×6, we would

need only one 1-bit register for storing the partial multiplication. But since in most of

the cases, the non zero elements of matrixes Sj·N+1, Sj·N+2, . . . , Sj·N+N , are on different

rows, we need in general one N-bit register for each row of the S arrays.

Dynamic stage 03, has as input a 9-bit vector, that corresponds to the vector Sin,

87

where

Sin = Input[0 : 8] =

s1

s4

s7

s2

s5

s8

s3

s6

s9

=

0

u1

u2

0

u3

u4

u5

u5

0

The routing algorithm checks each line of submatrices Sj·N+1, Sj·N+2, . . . , Sj·N+N , and

routes the output to the j-th N-bit register of stage 04. In our specific example, submatrix

S1 and S2 are both zero. Therefore, on the first bit of the first 3-bit register of stage

04, we store the Input[6] of dynamic stage 03, which equals to the non zero element of

submatrix S3. Another example is the second bit, of the second 3-bit register of static

stage 04, which is connected to the output of an xor gate. This gate is connected to

Input[1] and Input[7] of dynamic stage 03 and outputs the xor function of the elements

s4 and s6.

Finaly, dynamic stage 05 uses the necessary number of N-to-1 multiplexers, to route

the multiplication result to the aurora tx module. In our specific result, on clock cycle

number 4, output[0] is the first bit of the first 3-bit multiplexer of static stage 04, and

output[1] is zero. On the fourth clock cycle, we will have as an output the 2-bit vector

u5, 0, which is the first 2 bits of the matrix-by-vector multiplication result.

5.3.6 Implementation and Methodology

Our design implementation is partitioned into two parts. The software and the hardware

part.

88

Software

It is necessary for us to be able to create as fast as possible the three dynamic modules.

To do this, we had to implement a C code program. As input to the program, we have

the addresses of the non zero elements of the Ai sub matrix of A, as well as the size of

the Ai matrix and the size of the sub matrix S. As output of the program, we have the

VHDL sources of the three dynamic reconfigurable modules.

Also, we had to implement a C code program that would generate random Ai matrices,

as well as worst case matrices, needed for testing purposes.

Hardware

Creating a partial Run-time reconfigurable hardware is a challenging procedure. Although

it is quite straight forward, there are many critical factors that need to be taken into

account, in order to have a full working system.

The first step towards implementing a partial run-time reconfigurable hardware is to

separate the static and the dynamic parts. All static logic must be concentrated on one

VHDL module. This includes static block 02, static block 04, system control and au-

rora tx and rx modules. All these modules are port mapped on one static module called

”static.vhd”. On the other hand, we have three dynamic modules, ”dynamic01.vhd”, ”dy-

namic03.vhd” and ”dynamic05.vhd”. Each set of these three dynamic modules, represent

a new Ai matrix.

All these modules, dynamic and static, need to be mapped to a top level module,

called ”top.vhd”. All signals of the dynamic modules that need to be port mapped to the

top level entity must not be directly connected to the other blocks.

To facilitate communication across reconfigurable module boundaries, yet still con-

form to the Partial Reconfiguration requirement that routing resources across such bound-

aries be completely fixed and static, the use of a special bus macro is required. Partial

Reconfiguration requires the signals used as communication paths between or through

reconfigurable modules must use fixed routing resources. That is, the routing resources

89

Figure 5.10: Bus Macro Example

used for such intermodule signals must not change when a module is reconfigured [74].

As shown in figure 5.10, the bus macro is a fixed routing bridge between the two sides,

facilitating reliable communication. It is a pre-routed hard macro used to specify the

exact routing channels and will not change from compilation to compilation.

The bus macro used in our design, have one 8-bit input and one 8-bit output port,

with specific direction. As seen in figure 5.11, we have four different bus macros. The

correct choise of the bus macro, depents on the direction of the data (input or output),

as well as, on the specific side of the module (left or right) that will be placed.

After connecting the dynamic and static modules to the top level, we synthesized each

module separately, using the Xilinx ISE 9.1i synthesizer [67]. Netlist files (ngc) were then

extrated from each ISE project. These files, along with the ucf constrain file were used

with Xilinx PlanAhead 10.1 [75] to create the floorplan constrains for our design. In all

the ISE projects, we inserted manualy, where needed, all the necessery I/O, signal and

clock buffers.

Dynamic reconfiguration areas as well as bus macros assignment, was done by hand,

depending on the utilization needs of each seperate module. Planahead 10.1 is a quite

90

Figure 5.11: Bus Macro Direction

mature program, giving us a rough estimation of the slices that each module would need.

In figure 5.12, we have highlighted the three dynamic blocks (01,03 and 05) on a

Virtex-4 floorplan. From left to right, we have the dynamic 01 block, 03 block and 05

block. Static block does not need to be specified, since it will consume all the unassigned

floorplan area. We should also specify that the input MGT transceivers are on the left

side of the FPGA and the output transceivers on the right side. This way, we can achieve

a floorplan design as close as possible to the block diagram of our design that was seen

in figure 5.8.

5.3.7 Results and Evaluation

Current bus macros utilize two horizontal slices on the device. Only one of the two slices

should be inside the dynamic reconfiguration area. The location is also limited to the

direction of the bus macro. For example, a left-to-right bus macro, on an output port of

a dynamic module, can only be placed on the right border of the module.

The limiting factor of our design is the width of the interconnection between the

dynamic and static modules. Since the input or output bus macro can only be placed

91

Figure 5.12: Planahead Floorplaning on a V4

on the one side of the module, we are limited to the number of vertical slices of each

FPGA device. As we can see in table 5.4, on a Virtex-4 device we can achieve a 1024-bit

interconnect (N =
√
1024 = 32) and on a Virtex-5 a 1764-bit interconnect (N =

√
1764 =

42). Also, on the Virtex-4 device, we use 16 MGTs, evenly distributed for receiving and

transmiting data (d = 8) and on the Virtex-5 device we have 24 MGTs, resulting to a

factor d = 12.

Table 5.4: Design Variables
Xilinx Device MGTs N d Frequency

Virtex-4 16 32 8 162.5 Mhz
Virtex-5 24 42 12 162.5 Mhz

Both of the designs are fully syncronized at Aurora’s 162.5Mhz clock frequency. This

simplifies our design, since we do not need to have two different clock domains in our

system. This clock frequency can be easily achieved, since our design’s critical path is

limited to a max of an N -bit xor gate, depending on the matrix used.

92

In more detail, if matrix Ai has all non zero elements on the same row, this will result

to a N-bit xor on dynamic module 03. Although this has a realy small possibility to

occure, we sould take it in serious account. In Virtex-4, maximum combinational path

delay for a 32-bit wide xor gate is 2.009ns and in Virtex-5, maximum combinational

path delay for a 42-bit wide xor gate is 2.622ns. In both cases, our design is capable of

achieving a 162.5Mhz clock frequency with not much effort.

Another posible limitation of our design, could be the number of N-to-1 multiplexers

needed on dynamic stage 05. The worst case scenario for our design, although with

extremely small possibility, would be if all submatrices Si had a non zero element with

non of them on the same row of the matrix Ai. This would result to a D number of

N-to-1 multiplexers in dynamic module 05. But since our design doesn’t utilize all of the

FPGA fabric, we have a big number of CLBs to use for the dynamic module 05. Thus,

it is relatively easy to overcome this limitation by simply scaling the FPGA area of the

dynamic module 05. This can also be observed in figure 5.12, since the right dynamic

module is larger than the other two.

Table 5.5: Speedup Compared to Mesh Design
Device D Tclock Days Speedup

Virtex-4 4 · 107 6,15 ns 6520,62 19,4
Virtex-5 4 · 107 6,15 ns 2208,09 57,4

The matrix A from the sieving step, for a 1024-bit factored number, has the size of

D×D, where D = 4 ·107. Our system is capable of one (32 ·d ·N)× (32 ·d ·N) matrix to

vector multiplication every N cycles. Thus, the total number of sub-matrix computations

required to perform a sigle matrix-by-vector multiplication equals to

n =
D2 ·N · Tclock

(32 · d ·N)2
=

D2 · Tclock

(32 · d)2 ·N

The matrix step needs about 3 ·D/K multiplications (in our case K = 1) for the block

93

Wiedemann algorithm [51]. Thus the total time for the matrix step equals to

n =
3 ·D3 · Tclock

(32 · d)2 ·N

In table 5.5 we can see the results of our computations. These include the total days

needed for factoring the 1024-bit integer with one FPGA device, as well ass the total

speedup achieved in comparison to the latest FPGA mesh design [52].

Figure 5.13: Days per Number of Chips used

Furthermore, in figure 5.13 we can see the total number of days needed for the Wiede-

mann algorithm, depending on the number of FPGAs used. Our system is linearly scal-

able with no additional add-up costs.

In our design, we do not take into account the time needed for the generation of the

dynamic module bitstreams. This task can easily be merged to the sieving step of the

algorithm, utilizing the long CPU idles between the sieve of each linear relation. Lastly,

we do not take into account the time needed for the run time reconfiguration of the

modules. In our future work, a pipeline technique will be used for transparent loading of

each new submatrix Ai to the system.

94

CHAPTER

SIX

EVALUATION AND CONCLUSIONS

6.1 Evaluation

This Chapter summarizes the dissertation work and gives an overview of our results

which were presented in detail in the previous chapters. This includes our work on power

consumption, power estimation, cryptography as well as sparse matrix multiplication.

All these areas that we investigated on this thesis are strongly related with each other

giving an complete overview of the problems that arise from power consumption on the

FPGA devices. Especialy for cryptographic applications.

• Our measurements on a state-of-the-art reconfigurable device show that, for the

majority of the most widely used security algorithms in mobile applications, the

FPGA-based hardware implementations are almost 1000 times faster than the cor-

responding software application. More importantly, with regards to the power

consumption, the real-world measured values demonstrated that the reconfigurable

hardware approach consumes three orders of magnitude less energy than the corre-

sponding software implementations.

• We have also performed a comparison between the exact power consumption and the

estimated power consumption extracted by the most widely used power estimating

95

tools in the FPGA world. The comparisons include both leading FPGA vendors and

most of the widely used security applications. The differences, between measured

and estimated power consumption, varied from 15.52% to 208% for the Xilinx

devices and from 5.64% to 32.15% for the Altera device. These differences show

that current power estimating tools are inadequate to produce the accurate results

needed by the designers of the security hardware-based modules.

• We have evaluated the relation between the power dissipation and the processing

technology for various FPGA devices. Our real-world experiments demonstrate that

since static current leakage is growing, reconfigurable device tend to consume the

same amount of energy regardless of the overall utilization of the device. However,

we are not there yet (and we will not be there in the next few years) since the power

consumption is still heavily affected by the resources utilization. We have also

demonstrated that the power consumption of an FPGA device is heavily related to

the overall placement and routing of the design. Designers need to be very careful

with the routing and placement options since this can heavily affect the overall

power consumed.

• More importantly, we have also presented the benefits of utilizing the real-time

reconfiguration feature of current FPGAs for reducing the overall power consump-

tion. As our results clearly demonstrate, the use of real-time reconfiguration, when

not very frequent reconfigurations are required, can reduce the overall energy con-

sumption of a design by up to 23% when compared with using clock-gating.

• In this dissertation, we have also demonstrated an FPGA-based design executing

Pollard’s (ρ − 1) factorization algorithm. The proposed device is 20 to 231 times

faster than the corresponding software application running on a 3GHz state-of-the-

art CPU.

• Finaly we have introduced and implemented a new matrix-by-vector multiplication

scheme using a module based run time reconfiguration design. Our design utilizes

96

the embedded, state-of-the-art, serial 6.5 Gbps transceivers of the Xilinx FPGAs,

thus providing a feasible I/O mechanism. We have also explained and analyzed why

our system can achieve a 19, 4× to 57, 4× speedup, compared to other proposed

architectures, depending on the parameters of the block Wiedemann algorithm and

on the FPGA device used.

It should also be stated that for the completion of this thesis a huge amount of energy

and effort was consumed on obtaining the needed background theory and knowledge.

This included the understanding and the deep investigation of Large Number Factoring

algorithms and their relative mathematical background on Number Theory and Linear

Algebra.

Another important part of this thesis was consummed in order to implement and

construct linux device drivers, high level Object-Oriented Software and PCI-e hardware

blocks that should later be used on our sparse matrix multiplication system. It should

also be stated that for this task a Diploma Thesis was done by Ioannis Kartsonakis, whose

work is greatly appreciated.

6.2 Future Work

Power consumption, FPGA devices and cryptographic algorithms are three major areas

of interest that are closely related to each other. As the technology and our knowledge

advances, new, faster and more practical solutions will be presented by the academic and

industrial community.

A huge improvement potential on this thesis exists on the usage of Real-Time re-

configuration on cryptographic algorithms and especialy on sparse matrix multiplication.

As the FPGA devices become larger and faster with even wider input/output interfaces,

many problems that we faced on this dissertation can be overcommed.

Moreover, as power estimation software is becomming more and more sophisticated,

a deeper analysis and evaluation can be performed. There is still a big gap between the

97

actual needs of the designer and the solution that FPGA ventors provide by their power

estimation software. This provides us a huge area that can be still deeply explored.

The Linear Algerbra step of the Number Field Shieve is an area of interest that has

huge potentials on deeper investigation and research. A task that emerges from this

thesis is the implementation of a complete setup of a Number Field Shieve system. This

would include our hardware implementation of the Linear Algebra step and Software

implementation of the rest of the algorithm.

6.3 Conclusions

Guaranteeing security on mobile devices is challenging because of the specific problems

this environment poses; the designer has to decide whether to implement the embedded

security algorithms on software or to add special purpose hardware units to the system,

executing those CPU intensive tasks. Moreover, as the security algorithms are becoming

more and more vulnerable to the various differential power analysis attacks, it is crucial for

the designers to be able to evaluate the power consumption, during the early development

process, with high accuracy. But this task is quite difficult as the power estimation tools

are not yet mature enough for the demanding mobile era.

We strongly believe that the results presented would lead numerous designers of mobile

devices to consider to adopt FPGA-based hardware solutions for their implementations of

security schemes, instead of the easily implemented but slow and power-hungry software

implementations. We also believe that this work will guide many scientists to exploit

the FPGA’s real time reconfiguration capability within cryptography and Large Number

Factorizaion. This is something that was first introduced on this thesis and has many

new potential uses.

98

6.3.1 Acknowledgements

This work is part of the 03ED851 research project, implemented within the frame-

work of the ”Reinforcement Programme of Human Research Manpower” (P.E.N.E.D)

and co-financed by National and Community Funds (25% from the Greek Ministry

of Development-General Secretariat of Research and Technology and 75% from E.U.-

European Social Fund)

99

100

BIBLIOGRAPHY

[1] D. Sylvester, H. Kaul, “Future performance challenges in nanometer design,” Design
Automation Conference, pp. 3–8, June 2001.

[2] Paul Kocher. Joshua Jae and Benjamin Jun, “Differential power analysis,” in Ad-
vances in Cryptology: Proceedings of CRYPTO�99, August 1999.

[3] T.S. Messerges, “Power analysis attacks and countermeasures for cryptographic al-
gorithms,” Doctoral Thesis, January 2000.

[4] Christof Paar, Jan Pelzl, “The advanced encryption standard,” Springer, 2009.

[5] Biham, Eli and Shamir, Adi, “Differential cryptanalysis of des-like cryptosystems,”
Journal of Cryptology 4, 1991.

[6] Coppersmith, Don, “The data encryption standard (des) and its strength against
attacks,” IBM Journal of Research and Development, 1994.

[7] Ralph Merkle, Martin Hellman, “On the security of multiple encryption,” Commu-
nications of the ACM, 1981.

[8] Rivest, R.; A. Shamir; L. Adleman, “A method for obtaining digital signatures and
public-key cryptosystems,” Communications of the ACM, 1978.

[9] Don Coppersmith, “Small solutions to polynomial equations, and low exponent rsa
vulnerabilities,” Journal of Cryptology, 1997.

[10] Wiener, Michael J, “Cryptanalysis of short rsa secret exponents,” Information The-
ory, IEEE Transactions, 1990.

[11] Antoine Joux, “Multicollisions in iterated hash functions,” Application to Cascaded
Constructions, 2004.

[12] Jonathan J. Hoch and Adi Shamir, “On the strength of the concatenated hash com-
biner when all the hash functions are weak,” 2008.

[13] N. Rogier, Pascal Chauvaud, “The compression function of md2 is not collision free,”
Selected Areas in Cryptography, 1995.

101

[14] Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, Xiuyuan Yu, “Cryptanalysis
of the hash functions md4 and ripemd,” Eurocrypt, 2005.

[15] Yu Sasaki, Lei Wang, Kazuo Ohta, Noboru Kunihiro, “New message difference for
md4,” Fast Software Encryptio, 2007.

[16] Berson, Thomas A, “Differential cryptanalysis mod 232 with applications to md5,”
1992, Eurocrypt.

[17] Bert den Boer; Antoon Bosselaers, “Collisions for the compression function of md5,”
Springer, 1993.

[18] E. Biham and A. Shamir, “Differential cryptanalysis of the data encryption stan-
dard,” Springer-Verlag, 1993.

[19] M. Matsui, “The first experimental cryptanalysis of the data encryption standard,”
Advances in Cryptology: Proceedings of CRYPTO ’94, Springer-Verlag.

[20] D. Boneh, R. DeMillo, and R. Lipton, “On the importance of checking cryptographic
protocols for faults,” Advances in Cryptology: Proceedings of EUROCRYPT ’97,
Springer-Verlag, pp. pp.37–51, 1997.

[21] E. Biham and A. Shamir, “Differential fault analysis of secret key cryptosys-
tems,” Advances in Cryptology: Proceedings of CRYPTO ’97, Springer-Verlag, pp.
pp.513–525, 1997.

[22] P. Kocher, “Timing attacks on implementations of diffie-hellman, rsa, dss, and other
systems,” Advances in Cryptology: Proceedings of CRYPTO ’96, Springer-Verlag,
pp. pp.104–113, 1996.

[23] J. Dhem, F. Koeune, P. Leroux, J. Quisquater, and J. Willems, “A practical im-
plementation of the timing attack,” UCL Crypto Group Technical Report, Series:
CG-1998/1, 1998.

[24] R. Anderson, M. Kuhn, “Low cost attacks on tamper resis-
tant devices,” Security Protocol Workshop, 1997. [Online]. Available:
http://www.cl.cam.ac.uk/ftp/users/rja14/tamper2.ps.gz

[25] R. Anderson and M. Kuhn, “Tamper resistance - a cautionary note,” The Second
USENIX Workshop on Electronic Commerce Proceedings, pp. pp. 1–11, 1996.

[26] Jameco Electronics, “Pc-multiscope (part 142834),” Catalog, p.103, 1999.

[27] Scrofanoss, R. Seonil Choi Prasanna, V.K., “Energy efficiency of fpgas and pro-
grammable processors for matrix multiplication,” In Proceeding of IEEE FPT, 2002,
2002.

[28] Peter Waldeck and Neil Bergmann, “Evaluating software and hardware implemen-
tations of signal-processing tasks in an fpga,” In Proceeding of IEEE ICFPT 2004,
2004.

102

[29] Roman Lysecky, Frank Vahid, “A study of the speedups and competitiveness of fpga
soft processor cores using dynamic hardware/software partitioning,” In Proceeding
of IEEE DATE 2005: 18-23., 2005.

[30] Juergen Becker, Michael Huebner, Michael Ullmann, “Power estimation and power
measurement of xilinx virtex fpgas:trade-offs and limitations,” in Proceedings of the
16th Symposium on Integrated Circuits and Systems Design, 2003.

[31] C. Patterson, “High performance des encryption in virtex fpgas using jbits,” In Pro-
ceedings of IEEE Symposium on Field-Programmable Custom Computing Machines
(FCCM’00), 2000.

[32] T. Schaffer, A. Glaser, S. Rao and P. Franzon, “A flip-chip implementation of the
data encryption standard (des),” In Proceedings of IEEE Multi-Chip Module Con-
ference (MCMC 97), p. 13, 1997.

[33] G. Rouvroy, F.-X. Standaert, J.-J. Quisquater, and J.-D. Legat, “Efficient uses of
fpgas for implementations of des and its experimental linear cryptanalysis,” IEEE
Transactions on Computers, p. 52(4):473.482, Apr 2003.

[34] A. Pfitzmann and R. Amann, “More efficient software implementations of (general-
ized) des,” Computers and Security, p. 12(5):477.500, Aug 1993.

[35] Janaka Deepakumara, Howard M. Heys and R. Venkatesan, “Fpga impementation
of md5 hash algorithm,” Electrical and Computer Engineering, 2001, pp. 919–924,
2001.

[36] Siddika Berna and Frank Gurkaynak and Elisabeth Oswald and Bart Preneel,
“Power-analysis attack on an asic aes implementation,” International Conference
on Information Technology: Coding and Computing (ITCC’04) Volume 2, p. p.546,
2004.

[37] P. Kocher, “Timing attacks on implementations of diffie-hellman, rsa, dss and other
systems,” in Advances in Cryptology: Proceedings of CRYPTO�96, August 1996.

[38] J. D. Golic and C. Tymen, “Multiplicative masking and power anaylsis of aes,” in
Proceedings of 4th International Workshop on Cryptographic Hardware and Embedded
Systems (CHES), August 2002.

[39] M.-L. Akkar and C. Giraud, “An implementation of des and aes, secure against some
attacks,” in Proceedings of 3rd International Workshop on Cryptographic Hardware
and Embedded Systems (CHES), May 2001.

[40] C. Pomerance, “The quadratic sieve factoring algorithm,” Advances in Cryptology,
EuroCrypt ’84, pp. 169–182, 1984.

[41] H. J. Kim, W. H. M. Smith, “Factoring large numbers with a programmable hard-
ware implementation of sieving,” ACM, 2000.

103

[42] X. Wang and S. Ziavras, “Parallel lu factorization of sparse matrices
on fpga-based configurable computing engines,” 2004. [Online]. Available:
citeseer.ist.psu.edu/wang03parallel.html

[43] Martin Simka, “Fpga implementation of elliptic curve method for factorization,” pp.
113–114, 2000.

[44] J. K. Tetsuya Izu and T. Shimoyama, “An fpga implementation of the sieving step
with the lattice sieving,” SHARCS’07, 2007.

[45] Gabriel Southern, Chris Mason, Lalitha Chikkam and Patrick Baier, “Fpga imple-
mentation of high throughput circuit for trial division by small primes,” SHARCS
07, 2007.

[46] Shang, L., Kaviani, A. S., Bathala, K., “Dynamic power consumption in Virtex�-II
FPGA family,” in In Proceedings of International Symposium on FPGAs, February
2002.

[47] Wilton, S. et al., “The Impact of Pipelining on Energy per Operation in FPGAs,”
in In Proceedings of FPL�04, 2004.

[48] Juanjo Noguera, Irwin O. Kennedy, “Power Reduction in Network Equipment
through Adaptive Partial Reconfiguration,” FPL 2007, 2007.

[49] Lopez-Buedo S., Garrido J., Boemo E., “Dynamically inserting, operating, and elimi-
nating thermal sensors of FPGA-based systems,” IEEE Transactions on Components
and Packaging Technologies, Vol. 25, Issue 4, Dec, 2002.

[50] D. Bernstein, “Circuits for integer factorization: a proposal,” 2001. [Online].
Available: citeseer.ist.psu.edu/bernstein01circuits.html

[51] A. Lenstra and A. Shamir and J. Tomlinson and E. Tromer, “Analysis of Bernstein
’s factorization circuit,” Asiacrypt 2002, pp. 1–26, 2002. [Online]. Available:
citeseer.ist.psu.edu/lenstra02analysis.html

[52] S. Bajracharya, D. Misra, K. Gaj, T. El-Ghazawi, “Reconfigurable hardware imple-
mentation of mesh routing in number field sieve factorization,” FPT 2004, 2004.

[53] Willi Geiselmann and Adi Shamir and Rainer Steinw and Eran Tromer, “Scalable
hardware for sparse systems of linear equations, with applications to integer fac-
torization,” in Cryptographic Hardware and Embedded Systems; CHES 2005 Pro-
ceedings, volume 3659 of Lecture Notes in Computer Science. Springer, 2005, pp.
131–146.

[54] H. Satyanarayana, “Aes128 cryptographic core,” December 2004. [Online]. Available:
http://www.opencores.org/

[55] ASICS Inc, “Des/triple des ip cores,” September 2001. [Online]. Available:
http://www.opencores.org/projects.cgi/web/des/overview

104

[56] Universidad Rey Juan Carlos, “Systemc/verilog md5,” August 2004. [Online].
Available: http://www.escet.urjc.es/ jmartine

[57] Digilent Inc, “Xup and spartan3 development boards, www.digilentinc.com,” 2006.
[Online]. Available: http://www.digilentinc.com/Products/

[58] Altera Inc, “Altera development and evaluation board, de2.” [Online]. Available:
http://www.altera.com/education/univ/materials/boards/unv-de2-board.html

[59] Agilent Technologies, “6000 series oscilloscopes with megazoom iii technology.”
[Online]. Available: http://www.agilent.com/

[60] Mentor Graphics, “Modelsim se simulator,” 2006. [Online]. Available:
http://www.mentor.com/

[61] AMCC, “Amccs powerpc 405EX embedded processor named product of the year by
electronic products magazine,” January 2008.

[62] M. The MathWorks, “http://www.mathworks.com.”

[63] Xilinx Inc, “Xilinx xpower estimator,” 2006. [Online]. Available:
http://www.xilinx.com/

[64] Altera Inc, “Altera powerplay power estimation tool,” 2006. [Online]. Available:
http://www.altera.com/

[65] J. Pollard, “A monte carlo method for factorization,” BIT 15, pp. 331–334, 1975.

[66] Shamus Software Ltd, “Miracl - multiprecision integer and rational arithmetic c
library.” [Online]. Available: http://www.shamus.ie/

[67] Xilinx Inc., “ISE Design Suite 10.1,” 2008. [Online]. Available:
http://www.xilinx.com/

[68] Intel Inc, “Vtune performance analyzer 9.0.” [On-
line]. Available: http://www3.intel.com/cd/software/products/asmo-
na/eng/vtune/vpa/219898.htm

[69] A.K. Lenstra, H.W. Lenstra Jr., M.S. Manasse, J.M. Pollard, “The number field
sieve,” ACM Symp. on Theory of Computing, pp. 564–572, 1990.

[70] P.L. Montgomery, “A block lanczos algorithm for ending dependencies over gf(2),”
Advances in Cryptology, Eurocrypt 95, pp. 106–120, 1995.

[71] D H Wiedemann, “Solving sparse linear equations over finite fields,”
IEEE Trans. Inf. Theory, pp. 54–62, 1986. [Online]. Available:
http://dx.doi.org/10.1109/TIT.1986.1057137

[72] Don Coppersmith, “Solving homogeneous linear equations over gf(2) via block wiede-
mann algorithm,” Mathematics of Computation, vol. 62, no. 205, pp. 333–350, 1994.

105

[73] Xilinx Inc., “Aurora Link-layer Protocol,” 2008. [Online]. Available:
http://www.xilinx.com/

[74] Xilinx Inc, “Module-Based Partial Reconfiguration,” 2008. [Online]. Available:
http://www.xilinx.com/

[75] Xilinx Inc., “Planahead design analysis tool,” 2008. [Online]. Available:
http://www.xilinx.com/

106

CHAPTER

SEVEN

APPENDIX

7.1 List of Publications

7.1.1 Within the context of the Ph.D research
[Meidanis, FPT07] D. Meintanis and I.Papaefstathiou. An efficient FPGA-based
implementation of Pollard’s (rho - 1) factorization algorithm. IEEE International
Conference on Field Programmable Technology, Japan, 2007.

[Meidanis, Reconfig08]] D. Meintanis and I.Papaefstathiou. Estimation vs Mea-
surement for Power Consumption on Xilinx VirtexII Pro FPGAs. International
Conference on ReConFigurable Computing and FPGAs, Mexico, 2008.

[Meidanis, CCNC09] D. Meintanis and I.Papaefstathiou. On the Power Con-
sumption of security algorithms employed in wireless networks. IEEE Consumer
Communications & Networking Conference, Las Vegas, 2009.

[Meidanis, FPT09] D. Meintanis and I.Papaefstathiou. A Modular Partial Re-
configurable System for Factorizing Large Numbers Over GF(2). IEEE Interna-
tional Conference on Field Programmable Technology, Australia, 2009.

[Meidanis, To be submited] D. Meintanis and I.Papaefstathiou. On the Power
Consumption of Security Algorithms on Field-programmable Gate Arrays, ACM
Transactions on Computational Logic.

[Meidanis, To be submited] D. Meintanis and I.Papaefstathiou. Utilizing run-
time reconfiguration for power reduction.

7.1.2 Other Publications
[Kornaros, ICCEDigest08] G.Kornaros, D.Meintanis, I.Papaefstatiou, S.Chan-
tzandroulis and S.Blionas. Architecture of a Consumer Lab-on-Chip for Pharma-
cogenomics. IEEE Consumer Electronics (ICCE), Las Vegas, 2008.

107

[Platsis, RSP09] M.Platsis, I.Papaefstation and D.Meintanis. Design and Imple-
mentation of an UWB Digital Transmitter. In IEEE International Symposium on
Rapid System Prototyping, Paris, France, 2009.

108

