
School of Electronic and Computer Engineering

Technical University of Crete

Real-time Planning and Learning in the “Settlers of Catan”

Strategy Game

Thesis

Konstantinos Panagiotis Panousis

Commitee:
Georgios Chalkiadakis, Assistant Professor-Supervisor

Antonios Deligiannakis, Associate Professor

Michail G. Lagoudakis, Associate Professor

Real-time Planning and Learning in the “Settlers of

Catan” Strategy Game

Abstract

Monte Carlo Tree Search (Mcts) is a method for making op-

timal decisions in a given domain, taking random actions to transit

from one state to another and building a tree according to the results.

After the successful application of Mcts in the two-player, perfect

information game of Go, researchers are trying to understand better

when and why Mcts succeeds and when and why it fails. In this the-

sis, we apply Mcts in the Settlers of Catan Strategy game, which is

a non-deterministic, partially observable, multi-player strategic board

game. We implement an agent to play against existing AI and human

players in the JSettlers interface. We show that the algorithm can

easily adjust to multi-agent environments and we present three differ-

ent enhancements -Uct, Bayesian Uct and Value of Perfect

Information- in the tree policy of the main algorithm. This is the

first time that the Bayesian Uct enhancement on Monte Carlo

Tree Search is used in Settlers of Catan and the first time that the

Value Of Perfect Information is used on Mcts in general. We

also implemented a simple negotiation scheme to give the agent the

ability to trade with other players and created various strategies to

cope with situations of the game. Our results suggest that the agent

benefits from the enhancement of the tree policy and from the use of

refined methods that balance the exploration -exploitation dilemma

leading to good performance of the agent against one of the strongest

heuristic-based implementations.

i

Σχεδιασμός και Μάθηση σε Πραγματικό Χρόνο
για το παιχνίδι στρατηγικής ΄Αποικοι του Κατάν

Περίληψη
Ο αλγόριθμοςMonte Carlo Tree Search (Mcts) είναι μια γε-

νική μέθοδος για την λήψη βέλτιστων αποφάσεων. Η μέθοδος αξιοποιεί
τη λήψη (ουσιαστικά τυχαίων) δειγμάτων από τις πιθανές ενέργειες, και
δημιουργεί ένα δέντρο αποφάσεων, μέσω του οποίου αναζητείται η βέλ-
τιστη απόφαση.
Μετά την επιτυχημένη εφαρμογή της μεθόδου, στο παιχνίδι -δύο παι-

κτών και τέλειας πληροφορίας- Go, και τις προσδοκίες που δημιούργησε,
η επαρκής κατανόηση των πλεονεκτημάτων και των αδυναμιών του αλ-
γορίθμου είναι ένα ζητούμενο.
Στην εργασία αυτή, εφαρμόζουμε τον αλγόριθμο Mcts, στο επι-

τραπέζιο παιχνίδι στρατηγικής ΄Αποικοι του Κατάν, ένα παιχνίδι πολλών
παικτών, μη-ντετερμινιστικό και μερικώς παρατηρήσιμο.
Αναπτύσσουμε και αξιολογούμε τρεις διαφορετικές παραλλαγές στο

κομμάτι της δημιουργίας του δέντρου του αλγορίθμου: συγκεκριμένα
τη μέθοδο Uct,τη μέθοδο Bayesian Uct και τη μέθοδο Value Of
Perfect Information (Vpi).
Οι αλγόριθμοι αυτοί κατ΄ ουσίαν επιχειρούν να ισορροπήσουν το δί-

λημμα μεταξύ εξερεύνησης (exploration) και εκμετάλλευσης (exploita-
tion) στο συγκεκριμένο τομέα.
Επιπρόσθετα, δημιουργήσαμε διάφορες ευριστικές στρατηγικές για

να μπορεί ο πράκτορας μας να ανταπεξέλθει σε συγκριμένες καταστάσεις
που μπορούν να εμφανιστούν και οι οποίες απορρέουν από τους κανόνες
του παιχνιδιού· σε αντίθεση με τους περισσότερους αυτοματοποιημένους
παίκτες για τους Αποίκους του Κατάν, η υλοποίηση μας προσφέρει ένα
(έστω απλό) σχέδιο διαπραγμάτευσης για να έχει ο πράκτορας μας τη
δυνατότητα να ανταλλάσει πόρους με άλλους παίκτες.
Αξίζει να σημειωθεί ότι είναι η πρώτη φορά που η μέθοδος Bayesian

Uct χρησιμοποιείται στον αλγόριθμο MCTS στο παιχνίδι ΄Αποικοι του
Κατάν και είναι επίσης η πρώτη φορά που η μέθοδος Vpi χρησιμοποιείται
με τον αλγόριθμο MCTS γενικότερα.
Δοκιμάζουμε και αξιολογούμε τους πράκτορες μας με βάση την α-

ποτελεσματικότητα τους σε μεταξύ τους αναμετρήσεις, αλλά και σε α-
ναμετρήσεις τους ενάντια σε υπαρκτές υλοποιήσεις άλλων αυτόνομων
πρακτόρων, συμπεριλαμβανομένης και της ισχυρότερης υπάρχουσας ευ-
ρετικής υλοποίησης αυτόνομου πράκτορα.
Τα αποτελέσματα μας είναι ενθαρρυντικά, και υποδηλώνουν ότι ο αλ-

γόριθμος MCTS μπορεί να επωφεληθεί από τις παραλλαγές που υλοποι-
ήσαμε.
Ειδικά ο πράκτορας που χρησιμοποιεί τη μέθοδο VPI, εμφανίζεται να

είναι αρκετά ανταγωνιστικός, και η απόδοση του μπορεί να συγκριθεί με
την απόδοση άλλων υπαρκτών αυτόνομων πρακτορων του παιχνιδιού ΄Α-
ποικοι του Κατάν, παρόλο που οι υπολογιστικοί πόροι που αξιοποιεί ήταν
ιδιαίτερα περιορισμένοι σε σχέση με αυτούς που αξιοποιούν οι αντίπαλοι
του.

ii

Acknowledgments

I would like to thank my family for supporting me throughout my studies

and made all of this possible and my friends who supported and consulted

me. I would like to especially thank my friend and colleague Alexandros

D. Keros for creating a python script to process and present the results,

for his implementation-related advice and for his never-ending patience and

support.

I would also like to especially thank my supervisor G. Chalkiadakis,

who gave me the opportunity to work with him, and suggested this very

interesting thesis.

Without all of them the completion of this thesis in time would be impossi-

ble.

iii

Contents

List of Figures viii

1 Introduction 1

1.1 Motivation . 1

1.1.1 Games & AI . 1

1.1.2 Multi-Agent Learning (MAL) 2

1.2 Settlers of Catan Game . 4

1.2.1 Board & Basic Elements 4

1.2.2 Rules . 6

1.2.3 Decisions To Make . 11

1.3 Contributions . 14

2 Background: Monte Carlo Tree Search 16

2.1 Markov Decision Processes (MDPs) 16

2.2 Partially Observable Markov Decision Processes (POMDPs) . 17

2.2.1 Belief-State MDPs . 18

2.3 Game Theory . 18

2.4 Monte Carlo Methods . 19

2.5 Bandit Based Methods . 20

2.6 The Basic Mcts Algorithm 22

2.7 Characteristics . 25

2.8 Tree Policy Enhancements . 26

2.8.1 General . 26

2.8.2 Selected Enhancements: 28

2.8.2.1 Upper Confidence Bound for Trees (UCT): . . 28

2.8.2.2 Bayesian UCT: 31

iv

2.8.2.2.1 Multinomial Estimation Problem &

Dirichlet Priors 33

2.8.2.3 Value Of Perfect Information (VPI): 35

3 Related Work 38

3.1 Monte Carlo Tree Search Applications 38

3.1.1 Games Applications . 38

3.1.1.1 Go . 38

3.1.1.2 Connection Games 39

3.1.1.3 Other Combinatorial Games 39

3.1.1.4 Real-time Games 40

3.1.1.5 Non-deterministic games 40

3.1.2 Non-game applications 40

3.1.3 Monte Carlo Tree Search in Settlers of Catan-

“SmartSettlers” . 41

3.1.3.1 Rule Changes 41

3.1.3.2 Effect of starting position 41

3.1.3.3 Domain Knowledge in Monte-Carlo simulations 42

3.1.3.4 Domain Knowledge in MCTS 42

3.1.3.5 Results . 42

3.2 The JSettlers Framework . 44

3.2.1 Interface . 44

3.2.2 Agent Implementation 49

3.2.2.1 Determining Options & Resource Estimation

of Time . 49

3.2.2.2 Making a Plan and Deciding What To Build . 53

3.2.2.3 Negotiation and Trading 54

v

4 Agent Implementation 55

4.1 Changes in the JSettlers Framework: 56

4.1.1 Code Integration: . 56

4.2 Basis of the Implementation & Class Creation 59

4.3 Monte Carlo Tree Search Implementation: 63

4.3.1 Selection Step . 63

4.3.1.1 UCT . 64

4.3.1.2 Bayesian UCT 65

4.3.1.3 VPI . 66

4.3.2 Expansion Step . 67

4.3.3 Simulation . 71

4.3.4 Backpropagation . 75

4.3.4.1 UCT . 75

4.3.4.2 Bayesian UCT 75

4.3.4.3 VPI . 76

4.4 Heuristic Strategies . 76

4.4.1 Opening Build Strategy 77

4.4.2 Robber Strategy . 77

4.4.3 Monopoly Strategy . 78

4.4.4 Road Building Strategy 79

4.4.5 Discard Strategy . 79

4.5 Negotiation . 80

4.5.1 Trading with Ports & Bank 80

4.5.2 Trading with Other Players 81

5 Experimental Results 83

6 Epilogue 95

vi

6.1 Future Work . 95

6.2 Conclusions . 97

7 References 99

A Code Changes in the JSettlers Framework 104

B Class Diagrams 107

B.1 Code Creation . 107

B.2 Code Integration . 116

vii

List of Figures

1 Board and Resource Production for each terrain type. 4

2 Resources Cards. 5

3 Development Cards. 6

4 Victory Points for each game element. 8

5 Turn Overview . 10

6 Monte Carlo Tree Search [1]. 24

7 MCTS:1000 Simulated Games against JSettlers. 43

8 MCTS:10000 Simulated Games against JSettlers. 43

9 Game Interface. 45

10 Game Interface: Board Details. 46

11 Game Interface: Game Information and Chat Area 47

12 Game Interface: Building Area. 48

13 Game Interface: Game Statistics. 48

14 Game Interface: Players Area 50

15 Game Interface: Trade. 51

17 Class Diagrams: SOCRobotBrain 58

16 Class Diagram: Important Classes. 58

18 Class Diagram: SOCRobotDM 59

19 Class Diagram: Integration. 60

20 Class Diagram: Main Mcts Classes. 62

21 Dice Outcome Probabilities. 73

22 Results: Uct agent against JSettlers. 84

23 Results: Bayesian Uct agent against JSettlers. 86

24 Results: Vpi agent against JSettlers. 88

25 Value Of Information Gameplay. 89

26 Results: Uct vs. Bayesian Uct. 90

viii

27 Results: Uct vs. Vpi. 92

28 Results: Bayesian Uct vs. Vpi. 94

29 Class Diagram: MCTS Package 107

30 Class Diagram: Distribution Package 108

31 Class Diagram: Heuristic Strategies Package 108

32 Class Diagram: TreeNode . 109

33 Class Diagram: UCT . 110

34 Class Diagram: Bayesian UCT 110

35 Class Diagram: VPI . 111

36 Class Diagram: Expansion . 112

37 Class Diagram: Simulation . 113

38 Class Diagram: Checker . 114

39 Class Diagram: Heuristic Strategies 115

40 Class Diagram: Negotiator . 115

41 Class Diagram: Dirichlet . 116

42 Class Diagram: Integration . 117

43 Class Diagram: Integration Heuristic 118

ix

1 Introduction

In this thesis, we address a multiagent, non-deterministic, partially observ-

able environment of a Strategic Board Game and we implement a newly

founded real-time algorithm Monte Carlo Tree Search, with many

successful applications in many domains.

Strategic board games as Settlers of Catan, are of particular interest to

AI, because they represent a “link” between two-player perfect information

board games and video games. On the one hand they have hidden and ran-

dom elements, multiple players, which make the implementation of classical

techniques difficult, but on the other hand, the states are discrete and their

decision-making is turn-based.

1.1 Motivation

We begin by paving the way to the main branch of this dissertation by

discussing its two important pillars, namely games (and their use in AI) and

multi-agent learning.

1.1.1 Games & AI

The early efforts of Shannon,Turing, Herbert Simon and of others, generated

a considerable interest in researching computer performance at games.

Games not only have a cultural entertainment role but they are also used

as tools, for both children and adults, for understanding the world and for

developing their intelligence. We must not forget that one of the original

“grand challenge” applications of AI was to build a chess program of world-

championship caliber. At the early days of AI, only few realized the difficulty

of creating programs that exhibit human-level intelligence. Programming

1

agents for games like chess is "easy" due to the nature of the game and the

agent access to the entire state of the game.

However, most games are not as trivial. They are abstract environments,

something that makes them easier to analyze than real-life environments,

but the complexity is high enough requiring logic and intelligence .

So games, as the real world, require the ability to make decisions even if an

optimal decision can’t be calculated. The complexity and variety of games

gave them the role as an important test-bed for AI research and led to very

interesting ideas concerning time management [2].

1.1.2 Multi-Agent Learning (MAL)

Techniques that work for two-player perfect information games do not carry

over to games of imperfect information or with random elements. Agents

must now deal with incomplete knowledge, multiple competing agents, risk

management, opponent modeling and deception [3].

So as one would expect, when an agent is situated in an experienced, rich

and complex environment, intelligence can emerge [4]. Shoham, Powers and

Granager [5] started a discussion regarding the definition, goals and evalua-

tion criteria of multiagent learning. Even though as they suggest, it would

be useful to take a step back and identify possible research agendas, classify

existing research and face open challenges, they present a broad AI research

in limited terms. Peter Stone in Multiagent learning is not the answer, It is

the question[6] provides a great response from an AI perspective. He argues

that even though there is a great MAL research that is within game theory

field, there are limitations of the tools and language provided by it. Every

multiagent encounter can be classified as a normal form or extensive form

game. However, the formulation of the encounter as such, does little progress

2

to solve that encounter and not everything is about convergence to an equi-

librium. The author provides examples of his personal work in multiagent

systems in which the complexity is so high, that we are not even close in

calculating an equilibrium or an optimal solution with the current methods

and presents many multiagent problems -as distributed network routing, col-

laborative multi-robot localization,in-city driving and more- that didn’t and

shouldn’t be approached using game-theoretic approaches.

The concluding statement -in my opinion- defines the approach that must

be taken in multiagent learning:

“Multiagent learning is a good tie between game theory and AI, but from an

AI perspective, multiagent learning should be considered more broadly than

game theory can address.”

3

1.2 Settlers of Catan Game

This chapter is dedicated to analyzing the “Settlers of Catan” game, a mutli-

player strategic board game, first published in 1995 and one of the first

board games to become popular even outside Europe. Settlers of Catan is a

multiplayer strategy game by Klaus Teber, where the players take the role

of settlers inhabiting an island. The goal is to settle the island and expand

your territory to become the largest and most glorious in Catan. Due to

its popularity, several expansion packs were created [7] but in this thesis we

choose the original Settlers of Catan (also called the Base Game) with a

maximum of four players.

1.2.1 Board & Basic Elements

The game board is composed of 19 terrain hexes surrounded by ocean and

which are randomly laid out at the beginning of each game.

Figure 1: Board and Resource Production for each terrain type.

4

There are six different types of hexes and each one produces a resource,

except for the desert hex:

• Plains, which produce Wheat,

• Meadows, which produce Wool,

• Mountains, which produce Ore,

• Hills, which produce Clay,

• Forest, which produces Wood and

• one Desert, which produces nothing.

Each player gets pieces that represent their cities, settlements and roads, and

when they build, they place the appropriate piece on the board.

Cards are used to represent the resources of each player, which they use when

they build.

Figure 2: Resources Cards.

There is also another set of cards, which are called the Development Cards,

and which are bought in the same way as other elements (The resources

needed to buy a game piece are described below in the Rules section).

They essentially give to players other ways to expand their territory.

There are several types of Development cards:

5

• The Road Building cards, allow a player to build two roads without

spending any resources,

• the Monopoly cards, allow a player to claim Monopoly on one resource

of his choice,

• the Victory Points cards, are worth Victory Points, but most cards are

• the Soldier/Knight cards, allow a player to move The Robber, a piece

that:

– prevents the hex in which is on, to produce resources.

– the player that moves it, can steal one resource from a player who

has a settlement or a city adjacent to the new hex of the robber.

If a player is the first that has the 3 Soldier/Knight Cards face-up,

he takes the “Longest Army” Special Card, which is worth 2 Victory

Points. If some player plays more Soldier cards, he takes the “Longest

Army” Special Card, along with the 2 Victory Points.

Figure 3: Development Cards.

1.2.2 Rules

The game begins with the initial placement phase. Each player begins with

two settlements and two roads, but each player places one settlement and

6

one road at a time.

The settlements are placed between the intersection of three hexes,

they worth 1 Victory Point and they must be placed at least two intersec-

tions apart from any other settlement. You can only build a settlement

if you have a road leading to an unoccupied intersection that satisfies the

above criteria.

Roads are placed on the edge between two hexes, so each road basi-

cally connects two corners. At the initial placement phase, each road put

must connect to the settlement that it was placed with it. Roads worth 0

Victory Points, but the first player to build a continuous path with at least

5 road pieces, receives the "Longest Road" Special Card, which awards 2

Victory Points. If another player, builds a path with more pieces, he takes

the Special Card and the 2 Victory Points that come with it.

So at the beginning, after the placement of the two first settlements

of each player, they all have 2 Victory Points. To gain more Victory Points,

a player must build new roads and settlements, upgrade existing settlements

into cities or he must acquire Victory Point cards. Each city is worth 2

Victory Points. To build roads and settlements, to upgrade to Cities and to

buy Development Cards, the player must acquire resources.

7

Figure 4: Victory Points for each game element.

How does he acquire resources?

As we can see from the image of the board (Figure 1 on page 4), during the

setup phase of the board, a number is assigned to each hex.

In the beginning of each turn, the current player rolls the dices, and the

hexes with the outcome number on them produce resources. The player only

collects resources if a settlement or a city is adjacent to a terrain hex that

produces the resource.

The resources required to build or upgrade are:

• Roads require (1) Clay Resource and (1) Wood Resource,

• Settlements require (1) Wood Resource,(1) Clay,(1) Wheat Resource

and (1) Sheep Resource,

• Cities require (2) Wheat Resources and (3) Ore Resources,

• Development Cards require (1) Ore Resource,(1) Sheep Resource and

(1) Wheat Resource.

8

Because rarely one has settlements adjacent to all the hexes needed for build-

ing or upgrading pieces or for buying Development Cards, there is the option

to trade with other players! Essentially you can offer some of your resources

in exchange for other resources. There is also the option of trading with the

bank, where you can give four(4) of one type of resource to get one(1) of

one other type that you want. There are some ports on the board, that if a

player has a settlement bordering with one, he can trade with another rate

(3:1 or 2:1, according to type and characteristics of the port).

If a “7” is rolled, there is no resource production and The Robber is activated.

In this case:

• Any player that has seven(7) or more Resource Cards, must discard

half of them and return them to the supply stacks. If the player has an

odd number of Resource Cards he can round down. (e.g if player has

11 resources, he can discard 5).

• The player, who rolled the “7” must move the robber from its current

spot to another hex. The selected hex stops production, until the

robber is moved from it.

• Also, the player can steal one Resource Card from an owner of an ad-

jacent settlement or city to the destination hex. If there are more than

one players with adjacent pieces, he can chose to steal from whoever

he wants.

We can see that, there is a difference between activating The Robber by

rolling “7” and activating The Robber by playing a Soldier/Knight card. In

the latter case, the players aren’t forced to discard resources.

9

The first player to acquire 10 Victory Points (on his turn) is declared

the winner. The complete set of rules is provided in [8].

Build, Trade or Play Development Card in any order.

Roll Dice

• Each player with more than 7 resources
discards half of them.

• Move the Robber onto another hex.

• Steal One Resource from a player, who
has a settlement or city adjacent to the
new hex of the robber.

Player receive resources for each
settlement/city adjacent to a

hex numbered with the dice roll.

Trading.

Building.

Play Development Card.

End Turn.

Trade with players,with
bank or with ports.

Buy and build
as long as you
have resources.

Buy:
• Road,

• Settlement,

• City,

• Development Card.

Play Development Card
(Only one per turn).

Next player’s turn.

Rolled “7”

“7” Not Rolled

Figure 5: Turn Overview

10

1.2.3 Decisions To Make

There are many choices for the players to make throughout the game, as to

decide where to build next or what kind of strategy will they use to be the

first to acquire 10 Victory Points. Due to the nature of the game, there are

many factors that contribute to the creation of a player’s strategy.

The first factor is for the player to formulate a long-term plan. That is, to

create a rough plan of how he will emerge victorious victory and be the first

to achieve the 10 Victory Points. Then, in each turn, he must consider how a

particular piece can help him succeed with his plan. But the environment of

the game is unpredictable and even a well designed plan can’t be dependable.

The second factor is the formulation of a short-term plan. In this

plan, the player has to decide about many short-term goals, such as

updating a settlement to a city to gain more resources, build a settlement in

order to have access to a port or even a strategy to gain the Largest Army

or the Largest Road Special Cards.

Note that it is very difficult to decide between all the possible short term

goals due the adversarial environment, the lack of knowledge of the other

players goals and resources and the random results of the dice in each round

which can lead to very different states than those that a player might expect.

There are, however, ways to make more sophisticated guesses about some

elements of the game and the next moves of the opponents by keeping track

of their resources or even trading with them to see what kind of resources

they wish to obtain. Also, there is a lot of “table talk” during the game,

that can be used to reveal the true intentions of a player.

11

The third factor is to decide what to build next. As mentioned

above, there is a long term plan and many short term plans for the player to

satisfy. On a player’s turn, as we can see in Figure 5, there are many actions

to be considered. A player can choose to build according to his available

resources, an action that can contribute to an immediate -but maybe not

so important- expansion of his territory, or he can hold out and wait for

more resources to build something better. If the player chooses to hold out,

there is the risk of losing resources due to the activation of The Robber

and also the risk that he underestimated the estimated time to acquire the

necessary resources to build a piece. Knowing when to wait for resources

and when to build something is a very important skill in the Settlers of Catan.

The fourth is to evaluate the opponent’s positions. This evaluation

helps one to understand how close is another player to winning and what

will their next move be in order to win. In this way, the player can consider

an offer from a different perspective and to avoid giving resources that will

help another player to win. Many times it is more important to slow down

the leader’s plans by interfering with his colonies, than expanding our own

colony. Such moves include building a settlement to cut-off his Largest

Road, buy Development Cards to attempt to “steal” the Largest Army card

away from him and creating “barriers” to prevent him from expanding his

territory to certain areas of the board. Again many elements are hidden,

such as the Development Cards and the Resource Cards of the opponents

and also the outcome of the dice in future turns is unknown. But we can

see their pieces on the board and we can calculate an approximation of

their victory points, as well as an estimate of the resources that they will

probably receive in latter turns. Many times it is impossible for a player

12

to slow down the leader due to the distances of their colonies but he can

convince another player to cooperate in order to succeed.

The last factor is to decide what to trade and with whom to

trade it with. Many different combinations of Resources are required in

order to build something. A player doesn’t always have settlements or cities

capable of providing every resource needed for all these combinations. He

can make trades with ports or with the bank when it’s possible, but a better

deal can sometimes be made with another player. Even though a player is

competing with the others, each player has a different plan in order to win

and of course different needs for Resources, according to his pieces on the

board. Trading also requires a strategy. You can either see what resources

you have and what resources are missing in order to build a specific piece

and trade a combination of the remaining cards with another player or you

can have more than one possible options to build and if someone refuses

your first offer, try to make a deal for the second one and so on. In both

cases, the player must keep in mind not to trade resources that can be of

great benefit to the opponent.

13

1.3 Contributions

Szita et al.[4] (their implementation is briefly discussed in 3.1.3), enhanced

the selection step of the main algorithm using Search Seeding, where the

initialization of statistics in the nodes of the tree involves some heuristic

knowledge. Essentially, they seeded the tree with “virtual wins”, but this is a

method that requires hand-tuning to set the appropriate number of virtual

wins. In comparison, we enhance the selection step of the algorithm using

different approaches to the exploration-exploitation dilemma and specifically

we use the standard UCT approach, a Bayesian approach to UCT based on

Tesauro et al.[9] and the model-based concept of Value of Information by

Dearden et al.[10].

This is the first time that Bayesian UCT is used on Monte Carlo Tree

Search in Settlers of Catan strategy game and the first time that VPI is

used on the Monte Carlo Tree Search method in general. The results of

these implementation are presented at Chapter 5.

Unlike Szita et al., we didn’t remove the elements of imperfect information

and so the agent does not know at a particular state what Development

Card will come up if he intends to buy and what cards are stolen. Their

agent also does not accept or initiate trades with other players, a decision

that -as they admit- creates a handicap on their player.

Even though they argue that these modifications do not alter the gameplay

, we do not think that’s the case. So in our implementation the agent

considers and initiates trades with other players and imperfect information

elements are still present. Apart from the Monte Carlo Tree Search

and the Negotiation needed for the agent, there are various situations in

the game, in which the agent must make decisions, such as when a “7” and

the player must Discard resources and/or must move The Robber. For these

14

situations, some of the existing strategies were used and some new strategies

were created to suit the needs of our agent. These strategies are presented

in Chapter 4.4.

The rest of this thesis is structured as follows:

Chapter 2 presents the Monte Carlo Tree Search history, algorithm

and characteristics and Chapter 3 presents applications of MCTS and

a Java implementation of Settlers of Catan. In Chapter 4 and in

Chapter 5 we describe the implementation of the agent and the results

against existing implementations respectively. Chapter 6 summarizes the

results of the project and discusses future work, in Appendix A we present

some specific changes made in the code of JSettlers framework and in

Appendix B we present the class diagrams of our implementation and class

diagrams for code integration.

15

2 Background: Monte Carlo Tree Search

Monte Carlo Tree Search is a newly founded method for making optimal

decisions in a given domain, by building a tree according to the results

of taking random samples in the decision space. In the last years there

has been a great interest in the study and development of Monte Carlo

Tree Search (MCTS) methods. This interest is due to the many successful

applications of the method in many games, and especially in Go[9][1].

The algorithm is based on two principles:

“The true value of an action can be approximated using random simulations;

and that these values may be used efficiently to adjust the policy towards a

best-first strategy” [1].

The evaluation function of Monte Carlo Tree Search does not depend on the

“man-made” evaluation function of the traditional search algorithms, but on

the observed values of the simulations.

In this section, we cover the theory that led to the development of Monte

Carlo Tree Search techniques. Specifically, we will examine Markov Decision

Processes (MDPs), Game Theory, Monte Carlo and Bandit-based methods.

Then, in Chapter 2.6, we present the algorithm itself, its characteristics in

Chapter 2.7 and in Chapter 2.8 we talk about the modifications on the Tree

Policy of the algorithm.

2.1 Markov Decision Processes (MDPs)

Probability Theory and Utility Theory are combined under Decision Theory,

in order to provide a complete framework for making decisions under

uncertainty.

16

The study of Markov Decision Processes is central in Decision The-

ory.

A particular Markov Decision Process is defined by a four-tuple

(S,A, pT , pR),where:

• S is the states space,

• A is the actions space,

• pT (s
a−→ t) is the transition model that captures the model of reaching

state t after we execute a at state a and

• pR(s
a−→ r) is a reward model than captures the probability of receiving

reward r after executing a at state s.

A policy is a mapping from states to actions and the aim is to find the policy

π that yields the highest expected reward.

2.2 Partially Observable Markov Decision Processes

(POMDPs)

When the state isn’t fully observable we must choose the Partially Observable

MDPs (POMDPs) to model our problem. In this case, Bayesian methods can

be used to compute at each time step the probability of the environment’s

being in each state of the underlying MDP [11]. This is a more complex

formulation and we must add the following tuple:

• O(s, o): An observation model that specifies the probability of perceiv-

ing observation o in state s.

In all cases the optimal policy π is deterministic.

17

2.2.1 Belief-State MDPs

A belief state is a probability distribution over states and we can model a

POMDP as a Belief-State MDP. Each MDP state of a belief-state MDP, is

a probability distribution over the the states of the original POMDP. The

transitions in this case are a result of actions and observations and the reward

for each state is modeled as the expected reward of the original POMDP.

2.3 Game Theory

Game Theory expands Decision Theory in environments, where many agents

interact [5]. In these environments the actions of the players are chosen

either simultaneously or sequentially and the players may or may not know

the preferences of the opponents.

A (stochastic) game in extensive form can be described by the follow-

ing components[1]:

• S: the set of states, where s0 is the initial state.

• ST : the set of terminal states.

• n ∈ N: The number of players.

• A: the set of actions.

• f : S × A→ S: the state transition function.

• R : S → Rk: the utility function.

• ρ : S → (0, 1, ..., n): Player about to act in each state.

18

Each game has a root state s0 and continues until a terminal state is reached.

Each player i makes a move that leads to state st+1, according to the state

transition function f . The reward received by each player is defined in the

Utility Function R, and this reward’s values are often defined as 0 for non-

terminal states and +1, 0,−1 for terminal states if the result is a win, a draw

or a loss respectively. These values are called the game-theoretic values of a

terminal state.

2.4 Monte Carlo Methods

Monte Carlo methods are essentially decision methods employing experi-

ments on random numbers. Their real use as a research tool comes from

work on the atomic bomb during World War II [12]. Since then, they have

been used in a wide array of domains such as chemistry, biology, medicine

but also in game research.

In the context of a game defined as above, the value of each action a from

state s, is estimated using simulations and taking the mean of the outcomes,

which start with action a.

So, the Monte-Carlo Q-value of an action a in state s, Q(s, a) is:

Q(s, a) =
1

N(s, a)
·
N(s)∑
i=1

Ii(s, a)zi

where zi is the outcome of the ith simulation, Ii(s, a)zi is an indicator func-

tion returning 1 if action a was selected in state s during the ith simulation,

and 0 otherwise; and
∑N(s)

i=1 Ii(s, a)zi is the total number of simulations in

which a was selected from state s [13].

When actions from a given state s are uniformly sampled, we call this ap-

19

proach as flat Monte-Carlo. It is easy to create cases where flat Monte-Carlo

fails, due to the fact that it does not allow opponent modeling [14].

Improvements on the reliability of the game theoretic estimates can be made,

based on past experience. During action selection it makes sense to favor ac-

tion selection to actions that have a higher observed reward [1].

2.5 Bandit Based Methods

The Bandit Problems is a well known class of problems, where one is faced

repeatedly with a choice among n different options in order to maximise the

cumulative reward over some time period, by taking the optimal action. The

underlying reward distributions for each action is unknown (although you

can estimate the value based on past observations), making the choice of an

action a difficult task. If you maintain estimates of the values for each action,

at each time, there will always be an action that has the highest estimated

reward. This action is called the greedy action. If you select a greedy

action, it is said that you are exploiting your knowledge on the values of the

actions. If you prefer not to select a greedy action, then you are exploring

because in this way you can improve the values of non-greedy actions [11].

This leads to the Exploration-Exploitation dilemma, where one needs to

balance the exploitation of an action, currently believed to be optimal, with

the exploration of other actions that may prove to be superior in the long run.

The policy should attempt to minimize the regret or learning loss af-

ter n plays, which is defined as the difference between the maximum

expected reward when the probability measure of each arm is known and

20

the maximum reward obtained by a particular policy [15]:

RN = µ∗n− µj ·
K∑
j=1

E[Tj(n)]

Non-zero probabilities must be attached to all arms, in order to not miss

the optimal arm, by selecting a sub-optimal arm with temporarily promising

rewards. So we must introduce an Upper Confidence Bound(UCB) in order

to ensure this.

The simplest of the UCB policies, was proposed by Auer et al.[16] and it’s

called UCB1. The policy dictates that:

UCB1 = X̄j +
√

2lnn
nj

where X̄j is the average reward from arm j,nj is the number of times arm j

was played and n is the overall number of plays so far.

The first term of the equation encourages the exploitation of arm j and the

second the exploration of less visited choices. This policy has an expected

algorithmic growth of regret, that is uniform over n without assuming any

prior knowledge regarding the reward distributions [1].

21

2.6 The Basic Mcts Algorithm

The basic algorithm involves iteratively building a search tree until some

predefined computational budget is reached, at which point the search is

halted and the best performing root action is returned [1].

To find the most “urgent” node of the built tree, a tree policy is used in each

iteration. This policy tries to balance the exploration-exploitation dilemma.

When the node is found, a simulation is run and we update the search tree

(add child nodes according to the selected action and update the statistics

of the nodes) according to the results. Moves during the simulation are

usually selected based on a default policy.

It’s important to note that due to the fact that the values of intermediate

states are not needed, we can greatly reduce the domain knowledge required.

That is, Mcts does not require the use of any utility-estimating heuristics.

We only need the value of the terminal state (or of a non-terminal state, if

the computational budget available is reached).

The general Monte Carlo Tree Search approach is presented below:

Algorithm 1 General MCTS approach.

function MctsSearch(s0)
create root node υ0 with state s0
while within computational budget do

υl ← TreePolicy(υ0)
∆← DefaultPolicy(s(υl))
Backup(υl,∆)

return a(BestChild(υ0))

Until the computational budget is reached, the search iterates through (exe-

cutes repeatedly and sequentially) the following steps[17]:

22

1. Selection:

In this step, we start at the root node and we apply a tree policy

to descend the tree until we reach the most urgent expandable node.

A node is expandable, if it represents a a non-terminal state and has

children that are still unvisited. The most urgent node is determined by

the tree policy, which determines the Best Child, a node that maximises

the specific equations of the policy. This step is used with the expansion

step in order to create the game tree and it is used by itself in order to

determine the best action to perform after the computational budget

is reached. Many enhancements are proposed in [1], some of which we

discuss later in the thesis.

2. Expansion:

According to the available actions, we create new child nodes (one or

more) and we add them to the tree.

In the literature, there are no enhancements for this step. The expan-

sion policy that is used for a given problem is mainly an implemen-

tation choice (“typically between single node expansion and full node

expansion”), and depends on the particular domain and the specified

constraints[1].

3. Simulation:

A simulation is run from the new node(s) according to the default pol-

icy to produce an outcome. The default simulation policy for MCTS

is to select randomly amongst the available actions. This has the ad-

vantage that it is simple, requires no domain knowledge, and repeated

trials will most likely cover different areas of the search space; but the

games played are not likely to be realistic, compared to games played

23

by rational players.

4. Backpropagation:

Based on the simulation results, we then backup, the value of the ter-

minal node to the visited nodes, in order to update their statistics.

These steps presented above are summarized in Figure 6.

Figure 6: Monte Carlo Tree Search [1].

We can group these steps into two policies:

• Tree Policy : The selection and expansion step together. These two

steps are used to iteratively build the game tree. We select or create

new leaf nodes from the existing tree nodes.

• Default Policy : Simulate from a given non-terminal state to a terminal

state in order to produce value estimates.

As far as the backpropagation step is concerned, it does not use a policy

itself, but its role is to update the node statistics for the future tree policy

decisions.

24

2.7 Characteristics

Monte Carlo Tree Search Algorithm is a very popular choice in a variety of

domains, due to its characteristics[1]:

1. Aheuristic:

Monte Carlo Tree Search does not need domain-knowledge, which es-

sentially makes it applicable to a variety of domains (if they can be

modeled as a tree). Nonetheless, we can see significant improvement in

performance if we add domain-specific knowledge in order to bias selec-

tion. All top-level MCTS Go programs use game-specific information.

There are certain trade-offs to consider for one to use biased move se-

lection using domain specific knowledge. Although, it may reduce the

variance in the results, it also decreases the number of simulations pos-

sible. On the other hand, one great advantage of uniform random move

selection is its speed, which can allow many simulations.

2. Anytime:

The result of each simulation is immediately backpropagated to the

upper nodes and all statistics are up-to-date in every iteration of the

algorithm. So in any moment in time, an action from the root can be

returned, but if we allow more iterations the performance will improve.

3. Asymmetric:

The tree selection allows favoring more promising nodes, leading to

an asymmetric tree over time. So, the building of the tree is skewed

towards more promising areas, and the tree shape that emerges can

even be used to gain a better understanding of the game.

25

2.8 Tree Policy Enhancements

There are many modifications one can make to the basic Mcts algorithm in

order to improve its performance. Here we describe the main ones found in

[1].

2.8.1 General

These modifications can basically be divided into two categories:

• Domain Independent :

In this category, no domain specific knowledge is used, so all modifi-

cations belonging in this category can be applied to any domain with-

out prior domain-knowledge. These modifications, offer small improve-

ments or are better suited to a particular type of domain.

• Domain Dependent :

As the name suggests, these modifications are specific to particular

domains. They might be used to exploit some unique aspect or use

prior knowledge of a domain.

There are many enhancements proposed such as the UCB1-Tuned, which

tunes the bounds of UCB1 (which we described above), the Bayesian UCT,

which introduces a Bayesian framework to estimate node values with a lim-

ited number of simulations (and which we selected as one of the enhancements

used in this thesis), the Search Seeding, which “warms up” the search tree by

initializing the statistics of each node according to some heuristic knowledge,

the Progressive Bias, which describes a technique for adding domain specific

heuristic knowledge to MCTS and many more (see [1] for an extensive list of

the enhancements).

26

It is important to note that MCTS works well in some domains but not in

others. There are some conditions that may cause problems when adding

enhancements.

1. Consistency:

As the computational needs of the MCTS algorithm increase with its

modification and with the application of various enhancements, it is

possible to observe unwanted and faulty behavior, such as wrong de-

duction about the agent’s current position.

2. Parameterisation of Game Trees:

Long et al.[18] define three basic properties that directly influence the

performance of Perfect Information Monte Carlo search in Game Trees

that could be used to predict the success of MCTS to new games.

These properties are:

• the Leaf Correlation, which gives the probability that all siblings,

terminal nodes have the same payoff value.

• the Bias, which determines the probability that the game will

favor a particular player over the other, and

• the Disambiguation Factor, which determines how quickly the

number of nodes in a player’s set shrinks with regard to the depth

of the tree.

3. Comparing Enhancements:

Another issue to be addressed is the measurement of the performance

of different enhancements. As we mentioned, different enhancements

may increase computational cost and reduce the number of performed

27

simulations. Some metrics for comparing approaches must be used, like

the win rate against specific opponents, the number of iterations per

second, or even the amount of memory used by the algorithm.

2.8.2 Selected Enhancements:

As we saw, there are many proposed enhancements for the tree policy of

the Monte Carlo Tree Search algorithm. We chose 3 such Mcts variants, in

order to test their performance in Settlers of Catan game domain.

The rest of this section is dedicated to analyzing the proposed methods and

their characteristics. We begin with the most popular algorithm in the MCTS

family, the Upper Confidence Bound for Trees algorithm and we continue

with Bayesian UCT and Value of Perfect Information algorithms.

2.8.2.1 Upper Confidence Bound for Trees (UCT):

The UCT algorithm is the most popular algorithm in the MCTS family.

The success of Monte Carlo Tree Search, especially in Go, is mainly a

result of this policy. Koscis and Szepezvári [19][20], suggested the use of

UCB1 (see 2.5) as a tree policy. If we treat the choice of a child as a

multi-armed bandit problem, it can be said that the value of a child node

is the expected reward approximated by the MC simulations and so these

rewards correspond to random variables with unknown distributions.

UCB1 has some promising properties: it is very simple and efficient and

guaranteed to be within a constant factor of the best possible bound on

the growth of regret. It is thus, a promising candidate to address the

exploration-exploitation dilemma in MCTS: every time a node (action) is

to be selected within the existing tree, the choice may be modeled as an

28

independent multi-armed bandit problem 1.

A child node j is selected to maximise:

UCT = X̄j + 2Cp

√
2lnn

nj
(1)

, where X̄j is the average reward of the node j, n the number of times the

current (parent) node has been visited, nj the number of times child j has

been visited and Cp > 0 is a constant.

There is a balance in the exploration-exploitation dilemma, and this balance

lies on the first and second terms of UCB equation respectively. The more

we visit one node, the more the exploration term is decreased, reducing its

contribution to the equation. On the other hand, if we visit another child of

the parent node, the exploration term increases for the remaining unvisited

children. This exploration term, ensures that the nodes have a non-zero

probability of selection. The constant Cp in the exploration term can be

adjusted to lower or increase the amount of exploration. The rest of the

algorithm proceeds as described in Algorithm 1 and Algorithm 2 shows the

UCT algorithm in pseudocode.

Koscis and Szepezvári [19][20], show that the bound of regret of UCB1 still

holds, when we have non-stationary reward distributions. They also showed

that the failure probability at the root of the tree converges to zero at a

polynomial rate as the number of simulated games grows to infinity. This

directly implies that given enough time and memory, UCT allows MCTS to

converge to the minimax tree ,and thus to optimality[1].

1In the n-armed bandit problem, you repeatedly have to choose from n actions. After
each selection, one receives a reward from a “stationary probability distribution” that
differs according to the action selected. The goal is to maximise the expected total reward
over each play(action selection)[11].

29

Algorithm 2 The UCT Algorithm.

function UctSearch(s0)
create root node υ0 with state s0
while within computational budget do

υl ← TreePolicy(υ0)
∆← DefaultPolicy(s(υl))
Backup(υl,∆)

return a(BestChild(υ0))

function TreePolicy(υ)
while υ is non-terminal do

if υ not fully expanded then
return Expand(υ)

else
υ ← BestChild(υ, Cp)

return υ

function Expand(υ)
choose a ∈ untried actions from A(s(υ))
add new child υ′ to υ

with s(υ′) = f(s(υ, a)
and a(υ′) = a

return υ′

function BestChild(υ, c)
return arg max

υ′∈ children of υ

Q(υ′)
N(υ′)

+ c
√

2lnN(υ)
N(υ′)

function DefaultPolicy(s)
while s is non-terminal do

choose a ∈ A(s) uniformly at random
s← f(s, a)

return reward for state s

function Backup(υ,∆)
while υ is not null do

N(υ)← N(υ) + 1
Q(υ)← Q(υ) + ∆(υ, p)
υ ← parent of υ

30

2.8.2.2 Bayesian UCT:

The bandit-based method used for node selection in the tree policy is central

to the MCTS method being used. A wealth of different upper confidence

bounds have been proposed, often improving bounds or performance in par-

ticular circumstances such as dynamic environments.

Tesauro et al.[9] propose that the Bayesian framework potentially allows

much more accurate (Bayes-optimal) estimation of node values and node un-

certainties from limited numbers of simulation trials. The basic premise of

their work is that, in practical applications of MCTS to MDPs or games,

the developers will know the characteristics of the reward distribution, and

algorithms that can make use of such a reward model, could outperform

the distribution-free methods. In this approach, stochastic trial results at

leaf nodes are combined with prior information to yield posterior distribu-

tions. If the leaf nodes priors and inference models are correct, we can enable

Bayes-optimal estimation of interior node values. Even though the Bayesian

Inference requires more computational budget, it can allow more robust con-

vergence under a wide range of sampling policies.

They propose two modified versions of UCB12 (the sampling formula in UCT)

to descend the tree and choose where to sample next.

In some detail, an upper confidence bound Bi for each arm i is computed

and then the arm with the maximum bound is selected:

Maximise Bi = ri′ +

√
2lnN

ni
(2)

ni: Number of trials for each arm

ri: Average rewards obtained in these trials, rewards are scaled to [0,1]
2Note that UCB1 solves the exploration-exploitation dilemma in the multi-armed ban-

dit problem

31

N =
∑
ni: Total trials of all arms

The first proposed equation, replaces the average reward of child node

i by µi, the mean of Pi:

Bayes-UCT1: maximise Bi = µi +

√
2lnN

ni
(3)

The second equation is motivated by the central limit theorem and also

replaces the 1√
ni

factor in the exploration term by σi, the standard deviation

of Pi:

Maximise Bi = µi +

√
2lnN

ni
σi (4)

µi: Mean of an extremum (minimax) distribution Pi

σi: Square root of variance of Pi

ni: Number of visits to node i

Pi: Each node i in the tree maintains a probability

distribution over its true expected reward value.

When trials at leaf nodes are performed, the results are combined

with priors in the standard way to compute posterior distributions.

The first equation is a strict improvement of UCT if the independence

assumption and leaf nodes priors are correct. The results indicate that the

second equation outperforms the first and both outperform the standard

32

UCT approach. So in our implementation we chose to use the second

equation.

2.8.2.2.1 Multinomial Estimation Problem & Dirichlet Priors

Now, let X be a random variable that can take K possible values. Given

training set D, which contains outcomes of N independent draws x1, ..., xN of

X from an unknown multinomial distribution P ∗. Finding a good approxi-

mation for P ∗ constitutes the multinomial estimation problem. This problem

can also be stated as predicting the outcome xN+1 given x1, ..., xN .

The Bayesian estimate, given a prior distribution over the possible multino-

mial distributions is:

P (xN+1| x1, ..., xN , ξ) =

∫
P (xN+1| θ, ξ)P (θ| x1, ..., xN , ξ) dθ (5)

where

P (θ| x1, ..., xN , ξ) ∝ P (θ| ξ)
∏
i

θNi
i (6)

and θ = 〈θ1,, θK〉 are the possible values over the probabilities

P ∗(1), ..., P ∗(K) and ξ is a variable containing assumptions over the domain.

We chose the Dirichlet distribution as a prior distribution for each node.

Dirichlet distribution are a parametric family that is a conjugate prior to the

multinomial/categorical distribution[10].

A Dirichlet prior consists of two parameters:

1. K ≥ 2, the number of rival events and

2. α1, α2, ..., αK , the concentration parameters, where αi > 0

33

The Dirichlet distribution is a generalization of Beta Distribution and is a

distribution over Multinomials. It has a probability density function:

p(P = {pi}|αi) =

∏
i(Γ(αi))

Γ(
∑

i αi)

∏
i

pαi−1
i (7)

The initial prediction for each value of the random variable X, given a Dirich-

let prior, is[10]:

P (X = i| ξ) =

∫
θiP (θ| ξ) dθ =

αi∑
j αj

(8)

If the prior is a Dirichlet prior with concentration parameters α1, ..., αK and

Ni is the number of occurrences of the symbol i in the training data, then

then the posterior is also a Dirichlet with concentration parameters α1 +

N1,, αK +NK and thus the prediction for XN+1 is:

P (XN+1 = i|x1, ..., xN .ξ) =
αi +Ni∑
j(αj +Nj)

(9)

34

2.8.2.3 Value Of Perfect Information (VPI):

As mentioned earlier, a central problem in complex environments is to strike

a balance between the exploration and the exploitation of actions. We can

estimate the benefit of exploration by using the notion of Value Of Informa-

tion, which is the expected improvement that might arise from information

acquired by exploration. The estimation of this quantity requires the assess-

ment of the agent’s uncertainty about value estimates for states.

The aim is to find a policy that maximises the expected reward of an agent.

Dearden et al. in [21], examine a model free Bayesian RL and their approach

builds on the notion of Q-Value Distributions, and in [10] they present a

Bayesian approach to model-based reinforcement learning.

They present two new approaches to exploration:

• Q-Value Sampling:

This approach is based on Wyatt[22], who proposed a method for solv-

ing bandit problems. The agent’s knowledge of the available rewards

is explicitly represented as probability distributions. An action is then

stochastically selected based on the current probability of its optimal-

ity. This probability depends not only on the current expected reward,

but also on the current level of uncertainty about the actual reward.

In their work they extend this idea to multi-state RL problems. They

present a Bayesian method for “representing,updating and propagating

probability distributions over rewards”.

• Myopic-VPI:

Myopic Value of Perfect Information provides a direct way of evaluat-

ing the exploration-exploitation trade-off, by approximating the utility

35

of an information-gathering action in terms of the expected improve-

ment in the decision quality that result from the acquired information.

Their results show that the state space is explored more effectively (than

conventional model-free learning algorithms) and that their performance ad-

vantage appears in bigger problems.

In this thesis, we chose Myopic-VPI action selection, due to the fact that in

[21],[23],[24] and [25], it was uniformly the best approach on many domains.

Below we describe the approach in more detail.

The method considers the improvement in the agent’s policy through explo-

ration of actions. The idea is to balance the expected gains from exploration

-in the form of improved policies- against the expected cost of doing a poten-

tially suboptimal action and what can be gained by learning the true value

q∗(s,a) of q(s,a). The only interesting scenarios is when the new knowledge

changes the agent’s policy. This can happen in two cases:

1. when an action that was -until now- considered sub-optimal, is revealed

as the best choice and

2. when an action that was -until now- considered best, is actually inferior

to other actions.

For the first case, suppose a1 is the best action; then E[q(s,a1)] ≥ E[q(s,a′)] for

all other actions a′. If the new knowledge indicates that a is a better action,

then q∗(s,a) > E[q(s,a1)]. So, we expect gain of q∗(s,a) − E[q(s,a1)].

For the second case, suppose a1 is the action with the highest expected value

and a2 the action with the second highest. If we have an indication from

the new knowledge that q(s,a1) < E[q(s,a1)], the agent should perform a2 with

expected gain q∗(s,a) − E[q(s,a1)].

36

So, we define the gain from learning the value q∗(s,a) of q(s,a):

Gains,a(qs,a∗) =

E[qs,a2]− q∗s,a, if a = a1 and q

∗
s,a < E[qs,a2]

q∗s,a − E[qs,a1], if a 6= a1 and q
∗
s,a > E[qs,a1]

0, otherwise

(10)

where Q∗(s,a) is the expected reward if we execute action a at state s and we

continue with optimal selection of actions. We need to compute the expected

gain given our prior beliefs, because the agent does not know in advance the

values that will be revealed:

V PI(s,a) =

∫ ∞
−∞

Gains,a(x)Pr(qs,a = x)dx (11)

The value of perfect information gives an upper bound on the myopic value

of information for exploring action a. The expected cost incurred for this

exploration is given by the difference between the value of a and the value of

the current best action. This suggests we choose the action that maximises:

V PI(s,a) − (max
a′

E[qs,a′]− E[qs,a]) (12)

We assume parameter independence to represent our distribution over q-

values and for each prior, we have a Dirichlet prior. So the posterior at

each state can be easily updated, since a Dirichlet prior with hyperparame-

ters α1, ..., αn, that intuitively correspond to counts of specific reward occur-

rences.

37

3 Related Work

Monte Carlo Tree Search has many successful applications in many

-game and non-game- domains and some of these applications are are pre-

sented in this chapter along with related work concerning the “Settlers of

Catan” game, for which many computer implementations exist. We focus

our analysis in the existing Mcts application in “Settlers of Catan” and in

the JSettlers framework, which is one of the two most powerful implementa-

tions concerning “Settlers of Catan”.

3.1 Monte Carlo Tree Search Applications

Most early AI game research had mainly focused on Chess, which was used

as a tool for testing new algorithms. After the success of DeepBlue, that

focus shifted away on to the game of Go. Due to the fact that Go is a domain

in which computers don’t reach the level of top human players, it has become

a new benchmark for AI in games. So, it’s natural that many applications

of MCTS are in Go; However, these methods have many other potential uses

as well. We now summarize the main applications of MCTS methods found

in the literature.

3.1.1 Games Applications

We begin with the applications of Mcts in various games and the results of

these implementations.

3.1.1.1 Go

Go is a traditional board game for two players. The players alternately place

black and white pieces on the vacant intersections of a 19x19 board. The

38

game is terminated when both players pass, and the player who controls the

most territory wins. Strong AI methods for go are not the best choice; pro-

grams using α-β search reached a strong beginner level in 1997 and stayed to

that point until the the first implementations of MCTS methods. Nowadays,

all Go programs use Mcts, such as MoGo[26],Crazy Stone[27], Leela

and FueGo[28].

3.1.1.2 Connection Games

Connections games, are games in which players try to complete a specified

connection between pieces by connecting two or more goal regions, forming

loops etc. All the strongest known agents in this area use MCTS. Such games

are Hex[29], Havannah[30], Lines of Actions[31] and more.

3.1.1.3 Other Combinatorial Games

Zero-sum games of perfect information,deterministic,with discrete-finite set

of moves and usually two players, are called combinatorial games.Othello

is such an example and like Go is a game with delayed rewards. The board is

quite dynamic and even in the last few moves, it’s not clear who the winner is.

These characteristics, make Othello a good benchmark for MCTS methods

but it is important to note that even before MCTS programs were stronger

than the experts human players. Othello has many implementations, but

there is room for many improvements, making Othello an open challenge for

MCTS methods. Other games in this category are Shogi[32], Amazons[20],

Blokus Duo[33] and many more.

39

3.1.1.4 Real-time Games

Monte Carlo Tree Search methods were implemented in many real-time

games, from Tron to StarCraft. The challenge is to achieve the same

level of intelligence and realistic behavior that already exists by the methods

of scripting and triggering.

3.1.1.5 Non-deterministic games

These games usually have hidden information or random elements. Ran-

domness may arise through a dice roll or a shuffling of the deck and hidden

information through cards or other elements not visible to the player. Hidden

information and randomness, make the game trees harder to search, increas-

ing the branching factor and depth.

A common approach is to sample through the perfect information game in-

stances (that arise when we are assuming that the hidden and random out-

comes are known) in order to deal with the increasing branching factor[1].

In this category we have card games as Magic: The Gathering, Poker,

board games as Backgammon,Phantom Chess and the game in which

we implement MCTS methods in this thesis, the Settlers of Catan.

3.1.2 Non-game applications

Apart from games applications, MCTS methods have been applied to

other domains such as Combinatorial Optimisation, Constraint Satisfaction,

Sample-based Planning and Scheduling tasks [1]. In the Combinatorial Op-

timisation domain, there are applications in Security, Traveling Salesman

Problem, function approximation and more. In the Constraint Satisfaction

domain, in Constraint Problems and in Mathematical Expressions. In the

Scheduling Problems Monte Carlo tree based techniques are used in Bench-

40

marks, Printer Scheduling and in Sample-Based Planning in Feature Selec-

tion and Large State Spaces. For a complete guide and analysis of the appli-

cations of MCTS methods in these domains, see [1].

3.1.3 Monte Carlo Tree Search in Settlers of Catan-

“SmartSettlers”

Szita et al.[4], research the possible and effective use of MCTS methods to

implement an agent for games like Settlers of Cat an. They imple-

mented a standalone Java software module based on JSettlers, created by

Robert S. Thomas (see 3.2), designed for fast gameplay, move generation

and evaluation.

3.1.3.1 Rule Changes

For an easier implementation of the game, elements of imperfect information

were removed. They also chose to not let their game-playing agent initiate or

accept trades from other players (but the agent may trade with the bank/-

ports). This creates a handicap for their agent and in our implementation

we chose to provide the agent with the ability to trade with other players.

3.1.3.2 Effect of starting position

Szita et al.[4] investigated the effects of the starting position of the agent.

Their tests showed that an effect to the game outcome from the seating order

exists and it’s statistically significant, but may differ on different strategies.

In order to eliminate these effects the seating order was randomized.

41

3.1.3.3 Domain Knowledge in Monte-Carlo simulations

They suggest that if all legal actions are selected with equal probability,

the resulting strategy is weak and the quality of the simulation is low. On

the other hand, if the action selection is very deterministic, exploration is

limited, and again simulation suffers. They tried to balance the exploration-

exploitation dilemma in the simulation with the introduction of heuristic

knowledge, so the probability to choose an action is proportional to its defined

weight. However, with the use of modified probabilities instead of uniform

sampling, the performance of the agent dropped significantly.

3.1.3.4 Domain Knowledge in MCTS

They injected Mcts with only limited amount of domain knowledge, by using

the Search Seeding enhancement, essentially giving “virtual wins” to preferred

actions. This means that when a settlement-building action is added to the

tree, its counter for number of visits and number of wins is initialized to

specific a number (they chose 20 for settlement-building and 10 for city-

building). It is also important that these values are not backpropagated

through the tree, because that would cause a distortion in the selection step.

With those addition the agent playing strength increased considerably.

3.1.3.5 Results

The SmartSettlers agent was tested against JSettlers and against humans.

In the first experiment consisting of 100 games against JSettlers agents, they

concluded that MCTS with 1000 simulated games is roughly as strong as

the JSettlers agent, winning 27% of games; and with 10000 simulated games,

winning 47% of the time, and reaching good scores even when it loses.

Against human players, Szita “played a few dozen games against a combina-

42

Figure 7: MCTS:1000 Simulated Games against JSettlers.

Figure 8: MCTS:10000 Simulated Games against JSettlers.

tion of two JSettlers and one SmartSettlers agent” and the results indicated

that an expert human player can confidently beat the SmartSettlers agent.

43

3.2 The JSettlers Framework

The are several computer implementations of Settlers of Catan (about

ten), which mainly include hand-designed, rule-based AI. Even though, the

strength of each implementation varies, all can easily be defeated by an expert

human player. The two strongest ones [4] are:

• the Castle Hill’s Studios’ version,which features strong AI players that

use extensive trading and

• Robert S. Thomas’ JSettlers, an open-source Java version of the game,

which also has heuristic-based AI players and is a basis of many

Settlers of Catan servers online.

Even though the original JSettlers framework was implemented in 2003,

it is updated and maintained up to this day, with new functions and

many corrections to the original implementation.

Pfeiffer[34] and Szita et al.[4] use JSettlers environment to implement a learn-

ing agent. The first uses hand-coded high level heuristics with low-level model

trees constructed by RL and the latter are using Mcts, described in 3.1.3.

Our implementation also uses the JSettlers environment so it is important

to analyze some of its main elements.

We begin with a brief presentation of the interface and then we proceed in

the description of the agent implementation.

3.2.1 Interface

After a user joins the game, a separate window is displayed, the Game In-

terface as seen -after a few turns- on Figure 9. We can see that the window

is divided to many different regions.

44

Figure 9: Game Interface.

In the center of the window lies the game board. Before the game begins,

all hexes are water hexes. After the game starts, the board is created as

described in the rules, the land hexes are shuffled, they are placed inside a

hexagon surrounded by ports and then numbers are placed on them, depicting

that a hex will produce resources if the dice rolled is the number on it and

there is a player’s piece adjacent to it.

45

In Figure 10 the different pieces of the game are highlighted in different

colors:

Board Hexes,

Player’s pieces: Cities, Settlements and Roads,

Resource Specific Port,

General Port,

The Robber,

Dice Rolled in this turn.

Figure 10: Game Interface: Board Details.

46

Above the game board, there is a region containing the chat and information

area. These are presented in Figure 11 and each area is highlighted as:

Information Area, which is in the upper section and displays

messages from the server about the current game. These messages

include, the outcome of dice roll, the resources gained by each player

etc.

Chat Area in the lower section, which displays messages from

other people in the game area. The user can send a message by typing

in the text field below the display area and pressing Enter.

Figure 11: Game Interface: Game Information and Chat Area .

Below the game board, there is a region, which contains information about

building actions. It shows what resources are needed in order to build a piece

or to buy a development card. It is also the interface to perform these actions.

The colored boxes with the numbers in them, represent the set of resources

needed in order to build something. The color of the box represents the type

of resource and the number in the box represents the quantity needed. The

boxes with the dashes indicate that the player does not have the necessary

resources to build a piece. When the resources are gathered, the dashes are

replaced with a Buy indication.

47

Figure 12: Game Interface: Building Area.

There is also a small box for the number of available development cards. The

Game Statistics and Game Info buttons are used to show the statistics of

the game (see Figure 13) and the game options respectively.

Figure 13: Game Interface: Game Statistics.

There are two kinds of players’ areas.

• If one is just observing the game, the information presented is limited

to the publicly available information as the player’s army size, the total

number of his resources, the number of development cards, the number

of pieces available for placing and the public Victory Points (the total

Victory Points minus the Victory Points obtained by cards). Figure 14a

is such an area.

• If one is playing instead, the player’s area presents more information

and more options, like in figure 14b. We can see that this information

48

includes a detailed description of the available resources, using the same

coloring as in the building region, and numbers to indicate the quantity.

The development cards are shown as a list next to the resources and a

player can select one from the list and click the Play Card button to

play the card. Above this section, lies the trading area, where a player

can define the resource sets that he is willing to give in exchange for a

resource set, he wants to obtain. There are three buttons for Clearing

the sets, Trading with ports or banks and for Offering resources to

other players. When a player initiates a trade a “balloon” appears to

the offered players (see Figure 15) with the options of Accepting or

Rejecting the trade and Making a counter offer. Next to that section

are the player’s available pieces and in the lowest section there are three

buttons to Roll the dice,Quit the game and Restart the game. Lastly, in

the upper section, we find the player’s icon, Victory Points and awards

(such as Largest Army and Largest Road).

To sum up, in this section we described the basic elements of the interface

needed for understanding the flow of the game. In the next sections we briefly

present the agent implementation of Robert S. Thomas, which is considered

to be one of the strongest implementations.

3.2.2 Agent Implementation

Robert Shaun Thomas in [35], dedicates three chapters in the agent imple-

mentation analysis.

3.2.2.1 Determining Options & Resource Estimation of Time

In Settlers of Catan, players spend most of the time thinking what to build

next. Thomas outlines some of the basic strategies that a player can use to

49

(a) Other Player’s Area. (b) Player’s Area.

Figure 14: Game Interface: Players Area

decide where to build his initial pieces. These strategies are related by the

fact that they seek to maximise the player’s “building speed” (speed at which

a player can build).

Before deciding where to build, it is critical to know what your options are.

The legal places to build are simple and are determined by the rules described

in 1.2.2. The SOCPlayer object was created, in order to maintain a record

of the legal places for each player. For settlements and roads, there are two

lists in that object: one for containing the legal places (i.e it contains spots on

the board where if the building requirements are met, a player can build) and

another list for the potential places (which contains spots where the building

requirements are met).

Now that the agent knows his options, it is crucial to decide where to build.

The placement of the initial settlements is very important because not only

it determines what resources will be produced but it also determines where

he can build in the future. So a player must decide which subset of the five

50

Figure 15: Game Interface: Trade.

resources he likes. This is linked to three potential “high level” strategies:

• road-building, which necessitates wood and clay production, which are

used for roads and settlements builds,

• city-building, which requires ore and wheat to build cities or buy de-

velopment cards and

• monopolizing, in which a player tries to monopolize a resource and have

access to a matching 2:1 port.

To choose one of these strategies we must estimate how fast we can build

something. There are two approaches to calculate the “building speed”, one

taking into account trading with ports and the bank, and one not. None of

the approaches takes the results of potential negotiations with other players

into account.

51

1. The first approach can be divided into two parts:

(a) The first is the simplest way, in which we ignore trading, and

consider how often we will receive resources based only on the

types and numbers of the adjacent hexes of our pieces, but also

by estimating how often these numbers are rolled. So in this

approach, a frequency table is created to estimate how many rolls

are needed to acquire a specific set of resources. As the author

notes, there are some “intended” inaccuracies in this algorithm

because it employs estimates to make different kinds of decisions.

What we really have is an estimate, that is accurate relative to

other estimates we make. So if we have an estimation speed that

says that it takes much longer to build a city than a road, this

should be true in reality too.

(b) The second part takes into consideration the possibility of trading

with the ports, or with the bank. But this addition of the trading

phase, can lead to an estimate that is inconsistent is some situa-

tions, because the algorithm does not look ahead concerning the

resource production (e.g. when we build a city).

2. The alternate approach was based on the assumption that a more accu-

rate estimation can lead to an improvement in the gameplay. Although,

it was proved to be very slow to be used in practice, the author presents

it as a motivation for future work. It is basically a modification to the

algorithm described above, in which there was the restriction that a

player can only receive at most one type of particular resource per roll.

So we need to keep track of how many resources of a particular type

player receives with a given frequency and construct a frequency table.

52

Precision is not always the most important consideration. In the case of the

two presented approaches an algorithm that provided a rough estimation but

was fast, was shown by Thomas to be the best solution.

3.2.2.2 Making a Plan and Deciding What To Build

Thomas[35] then proceeds to describe the methods used for the selection

of the initial settlements and initial roads. For the initial settlements he

considers all pairs of legal settlement spots, and takes the estimates of how

long it would take to build each possible type (roads,settlements,cities and

development cards) starting with no resources, and chooses the ones with the

lowest building speed. If we wanted to find pairs for the other strategies of

road-building or city-building, we must take weighted sums according to what

buildings we want to build. For the placement of the initial roads we must

take into account where other players are likely to place initial placements

and where it will lead us in order to build good settlements later on. So what

Thomas does is that he guesses where players are going to build, pretends to

build settlements on these spots and out of the remaining legal spots picks

the best and find an edge leading to that spot from the first settlement.

This is where we place the initial road. He then uses a rough plan as a

guide for creating a utility-based measure for making decisions in a dynamic

environment with imperfect information (the details of the implementation

can be found in [35] in Chapter 4: Agent Implementation Part II: Making a

Plan and Deciding What To Build on page 86).

The results showed that the computer players win between 47% and 63% of

the time competing against a single human opponent.

53

3.2.2.3 Negotiation and Trading

Before going into a negotiation one should know what he’ll do if the an

agreement is not reached. This is called the Best Alternative to a Negotiated

Agreement (BATNA)[35][36]. If we do not have the resources that we want,

we must determine our BATNA, by looking what resources we need and what

resources can be used for trading. After determining our BATNA, we must

make some offers. We start by reasonable offers of giving one resource that

is easy to get for one resource that it is hard to get. By reasonable, we mean

that the offer must be better than our BATNA and that we consider it as an

offer that someone will accept.

To estimate if the offer is better than our BATNA, we must estimate the

building speed with what we have now and in case the offer is accepted. If

the latter case’s speed is less than the first, then the offer is better. To deter-

mine if another player will accept our offer, we must keep track of resources

he received recently and the offers that he rejected. We might lose track of

the resources when he needs to discard or if he is robbed. After considering

all the offers where we give an unneeded resource for one needed, we take

into consideration giving a needed resource. Finally we consider giving two

resources for one needed resource starting again with a combination of un-

needed resources and then needed. Counter offers are made in the same way

but we must make an offer that makes sense given the made offer.

Results of this attempt showed that the performance of the agents dropped

and that the computer players were agreeing to offers that are not in their

favor. So, we can see that BATNA, applied by Thomas is not yielding good

results and in our future work, we intend to use Game Theory, Machine

Learning and argumentantion methods in order to improve the negotiation

abilities of our agent in order to improve his overall performance.

54

4 Agent Implementation

In this chapter we describe the integration of our code in the JSettlers Frame-

work, our implementation of Mcts for action selection in the Settlers of

Catan, the creation of various heuristic strategies apart from the Mcts

implementation and the negotiation scheme created for trading with other

players.

As described in Chapter 3.2, Robert Shaun Thomas implements a “Settlers

of Catan” agent, based on three sequential strategies. The first is to deter-

mine the options and compute a resource estimation of time, the second one

is to make a plan and decide what to build and the third is the negotiation

and trading of the agent. For the implementation of these strategies, many

classes were created, in order to keep track of the state of the game and to

decide the agent’s next move. The main package, containing code for the

agent implementation of the JSettlers framework, is the Soc.Robot pack-

age.

In Chapter 4.1.1 we describe the main classes of this package used for agent

planning in the JSettlers and how is our code connected to the existing im-

plementation. In Chapter 4.2, we present the base Class Diagram of our

implementation and some implementation choices. Chapter 4.3 is dedicated

in the Monte Carlo Tree Search implementation, where each step of

the algorithm is presented in detail and in Chapter 4.4 we describe the cre-

ated strategies for dealing with various situations of the game apart from the

Mcts algorithm. Lastly, in Chapter 4.5, we describe a simple negotiation

scheme that was created in order to provide the agent the ability to trade

with other players.

55

4.1 Changes in the JSettlers Framework:

In order to be able to create an agent to play in the JSettlers framework, we

had to study the code structure in detail and make many changes. Specific

code changes in various classes of the existing framework are described in

Appendix A and below in Chapter 4.1.1 we describe the integration of our

code to the existing structure with our created Classes.

4.1.1 Code Integration:

To integrate our code into the JSettlers Framework, we had to study the

structure of the code. After extensive research we determined the classes

needed and we present them in this section.

The robot package contains code concerning the agent designed by Thomas.

In figure 16, some of the core classes of the robot package and their

connection are presented.

The SOCRobotBrain(Figure 17) class contains the AI for playing Settlers

of Catan. This class contains many handler functions for treating messages

and performing the selected actions. Before planning what to build, the

agent checks if he has a Development Card -apart from the Road Building

Card - and if so, he must determine if he’ll play it and what choices will

he make. So, when for example we have a Monopoly card and the agent

uses the Mcts Strategy, the appropriate function of our implemen-

tation is called, in this case the decideOnMonopoly() function from our

MonopolyStrategy class in the HeuristicStrategies package in

order to determine if the agent will play the card. The same logic applies

to the DiscardStrategy call, when a “7” is rolled. In this class exists

the planBuilding() function, which calls the SOCRobotDM’s function

planStuff(), in which we included calls to our classes to determine the agent’s

56

next action. When the action is determined, SocRobotBrain checks if

we have all the available resources for building the target pieces. In case

we don’t, the makeOffer() and tradeToTarget2() functions are called to

trade with players and with ports and bank respectively. For trading with

the ports of bank using our functions of the Checker and Negotiator

classes, we created two functions in Brain class, called makeOffer2() and

tradeWithGame().

Decision-making code of the JSettlers framework, is implemented

in the classes OpeningBuildStrategy, RobberStrategy,

MonopolyStrategy, SOCRobotNegotiator and mainly in the

SocRobotDM class. There is where the TreeNode.mcts() function is

called for initiating the Mcts implementation in order to decide what to

build. In addition, after the decision, the agent checks if he has the Road

Building card, and if so our heuristic strategy RoadBuildingStrategy is

called to determine the 2 roads to build. It is important to note that we did

not modify the MonopolyStrategy and the SOcRobotNegotiator

classes, but instead we created our own. The OpeningBuildStrategy

and the RobberStrategy were kept as they were and they are used by

our agent as described in Chapter 4.4.

The SOCPlayerTracker is used to track strategic planning information as

possible building spots for itself and for other players. It wasn’t necessary

to modify this class but we mention it for further reference. Lastly, the

SOCPlayerClient is a robot client for playing Settlers of Catan and we did

not modify this class either.

All of our created classes and the code integration are described in detail

in Appendix B, but below we present the basic class diagrams of our class

creation and integration.

57

socrobot

SOCRobotBrain

-run()
-considerPlayKnightCard()
-placeIfExpectPlacing()
-playKnightCard()
-rollOrPlayKnightOrExpecrDice()
-buildOrGetResourceByTradeOrCard
-handlePUTPIECE_updateTrackers()
-buildRequestPlannedPiece
-planBuilding()
...
-handleMAKEOFFER()
-handleREJECTOFFER()
-handlePLAYERELEMENT_num()
...
tradeStuff()
moveRobber()
...

AI for playing Settlers of
Catan.
Represents a robot player
within one game.
Some decision-making code is
in:
OpeningBuildStrategy,
RobberStrategy,
MonopolyStrategy,
SOCRobotDM etc.

AI for playing Settlers of
Catan.
Represents a robot player
within one game.
Some decision-making code is
in:
OpeningBuildStrategy,
RobberStrategy,
MonopolyStrategy,
SOCRobotDM etc.

Figure 17: Class Diagrams: SOCRobotBrain

Part of SOCRobot

SOCRobotBrain

OpeningBuildStrategy RobberStrategy

SOCRobotNegotiator SOCRobotDM

SOCRobotClient

SOCPlayerTracker

MonopolyStrategy

Figure 16: Class Diagram: Important Classes.

The highlighted classes are the ones that we modified in order to integrate
our code.

58

socrobot

SOCRobotDM

+buildingPlan: Stack<SOCPossiblePiece>
SMART_STRATEGY:int=0
MCTS_STRATEGY:int=2
...

+getFavoriteSettlement():SOCPossibleSettlement
+getFavoriteCity():SOCPossibleCity
+getFavoriteRoad():SOCPossibleRoad
+getPossibleCard(): SOCPossibleCard
+planStuff(final strategy: int)
#dumbFastGameStrategy(final buildingETAs:int)
-planRoadBuildingTwoRoads()
#smartGameStrategy(final buildingETAs:int)
#scorePossibleSettlements(...): int
+getDevCardScore(...):SOCPossibleCard
+SOCRobotDM(br:SCORobotBrain):SOCRobotDM
...

Moved the routines that pick
what to build or buy next,
out of SOCRobotBrain.

Moved the routines that pick
what to build or buy next,
out of SOCRobotBrain.

Figure 18: Class Diagram: SOCRobotDM

Initially, the routines that existed in SOCRobotBrain, that pick what to

buy or build next, were moved to SOCRobotDM(Figure 19). We chose

to modify this class as described above in order to implement the Monte

Carlo Tree Search. The structure not only of the class but also of the

entire package reinforced this decision.

4.2 Basis of the Implementation & Class Creation

We based the implementation of Monte Carlo Tree Search in the

algorithms 1 and 2, which describe General Mcts approach and the

Uct implementation in pseudocode, in the detailed background of the

algorithm provided by Browne et al.[1] and in the minimal one-page Mcts

59

All

Part of SOCRobot

MCTS

VariousStrategies

Distributions

SOCRobotBrain

SOCRobotDM

SOCRobotClient

SOCRobotNegotiator MonopolyStrategy

RobberStrategy SOCPlayerTracker

OpeningBuildStrategy

TreeNode UCT

BayesianUCT

VPIChecker

Simulation ExpansionNegotiator

Figure 19: Class Diagram: Integration.

The highlighted classes are the ones that we modified and are connected to
our classes.

60

implementation by Simon Lucas[37], which despite its simplicity, presents

the operation of the algorithm. In that spirit, we created several classes and

modified many classes of the JSettlers framework and made many changes

to the code, which were described above in Chapter 4.1.1 (For code-specific

changes see Appendix A and for UML class diagrams see Appendix B).

The main class is the TreeNode class, which represents a node in

the Monte Carlo Tree. In this class, there are variables needed for

representing a state of the game as the player’s Settlements, Cities, Roads,

Development Cards and Victory Points, but also variables needed for the

calculation of the UCT, Bayesian UCT and Value of Perfect Information

values described in Chapter 2.8.2. These include the number of visits of

the node, the total number of visits for all nodes, the average rewards that

were returned for the simulation and a Dirichlet variable for representing

the probability distribution over the expected rewards.

A TreeNode object thus corresponds to a state s of the game (at least

from the point of view of the player, given the information that he has at

hand), and potentially has children TreeNodes, each corresponding to a

state s′ resulting from executing action a at state s.

The selection and expansion step of the algorithm (see 2.6) are implemented

by the classes UCT,BayesianUCT and Vpi, where the appropriate method

is called through the TreeNode class.

In Figure 20, we present the class diagram of our implementation, which

contains the aforementioned classes and their elements and in the next

section we provide the details of the implementation and the choices we

made in every step.

61

Monte Carlo Tree Search

TreeNode

+Xj:double
children:Vector<TreeNode>
nVisits:double
Pi:double[]
visited:LinkedList<TreeNode>
uct:UCT
buct:BayesianUCT
vpi:VPI

selectAction():void
treePolicy(current:TreeNode):TreeNode
simulation(cur:TreeNode):double
backpropagate(TreeNode,double):void
increaseStats(value:double):void
addToVisited(node:TreeNode):boolean
isLeaf(): boolean
...

Checker

canBuildCity(SOCPlayerTracker,SOCPlayer)
canTradeToCity(SOCPlayerTracker,SOCPlayer)
tradeToCity(SOCPlayerTracker,SOCPlayer)
tradeToCitySimulation(SOCPlayerTracker,SOCPlayer)
canBuildSettlement(SOCPlayerTracke,SOCPlayer)
...

Simulation

run():double
rollDice():void
makeMove():void
updateResources:void

UCT

Cp:double=1/
√
2

UCT()
policy(cur:TreeNode):TreeNode
expand(cur:TreeNode):void
backpropagate(cur:TreeNode,value:double)

BayesianUCT

BayesianUCT()
policy(cur:TreeNode):TreeNode
expand(cur:TreeNode):void
backpropagate(cur:TreeNode,value:double)

VPI

VPI()
policy(cur:TreeNode):TreeNode
expand(cur:TreeNode):void
backpropagate(cur:TreeNode,value:double)

Expansion

run()
upgradeToCity()
buildSettlement()
buildRoad()

Figure 20: Class Diagram: Main Mcts Classes.

62

4.3 Monte Carlo Tree Search Implementation:

The Mcts algorithm is used for action selection, when the agent has to

decide his next move. This move is determined by the set of available actions,

which includes: buying a City, a Settlement, a Road or Development Card

and where to build. For other actions of the agent, as determining if the

agent will play the Monopoly card and which resource will he monopolize,

various heuristic strategies were created and are described in Chapter 4.4.

We had to make many choices concerning each step of the implementation

of Monte Carlo Tree Search, starting with setting a computational

budget for the main loop of the algorithm (as seen in Algorithm 1) that

consists of the following condition:

1. time cut-off : We set the cutoff time limit to 7 seconds, based on the

size of the state space and which we believe is reasonable in order not

to “break” the pace of the game and frustrate the other players.

Having set the computational budget we present the individual decisions and

implementation choices made for each step. Below, we present the four main

steps of the Mcts algorithm, the Selection, Expansion,Simulation and the

Backpropagation, which are described in Chapter 2.6 The Expansion and

Simulation steps of the algorithm are shared between the methods in con-

trast to the Selection and Backpropagation steps, which require different

computations and thus each method has its own implementation.

4.3.1 Selection Step

The selection step is used for selecting the most urgent expandable node, in

order to descend and build the tree. A node is expandable if it represents a

non-terminal state and has unvisited children. Which node is the most urgent

63

is determined from the selection formula of the method, and usually corre-

sponds to the node that maximises this formula. This step is implemented

in the classes UCT, BayesianUCT and Vpi according to the formulas de-

scribed in Chapters 2.8.2.1, 2.8.2.2 and 2.8.2.3 respectively. For clarity, in

each of the following sections we restate the uses of these formulas and briefly

describe their implementation.

4.3.1.1 UCT

The selection formula for the Uct method is:

Maximise UCT = X̄j + 2Cp

√
2lnn

nj
(13)

where X̄j is the average reward of the node j, n the number of times the

current (parent) node has been visited, nj the number of times child j has

been visited and Cp > 0 is a constant.

Kocsis and Szepesvári [20], showed that the value Cp = 1√
2
satisfies the

Hoeffding inequality with rewards in the range [0,1]. The rewards returned

from our simulation are in the range [0.2,1] and so this value was chosen for

our implementation. This parameter can be adjusted in order to lower on

increase the amount of exploration that will be performed.

Each TreeNode maintains its number of visits and the rewards received

from simulation and when the selection step is called, all the necessary values

are calculated in order to compute the above Uct value. The child of the

current node with the maximum value is returned in order to proceed to

expansion, simulation or to the final selection of our move.

64

4.3.1.2 Bayesian UCT

The selection formula for Bayesian Uct is:

Maximise Bi = µi +

√
2lnN

ni
σi (14)

µi : Mean of an extremum (minimax) distribution Pi

σi : Square root of variance of Pi

ni : Number of visits to node i

N =
∑
ni: Total trials of all arms

Pi : Each node i in the tree maintains a probability

distribution over its true expected reward value.

The Bayesian Uct selection formula is a little more sophisticated than

the standard Uct method and introduces a Bayesian framework that allows

more precise estimation of the node values and uncertainties.

In this case, each TreeNode maintains a probability distribution Pi over

its true expected reward. Before any simulation, leaf nodes are initialized

with conjugate prior distributions fitting the reward distributions. If our

payoffs were 0/1, we could choose the Beta distribution but in our case we

chose to use Dirichlet priors which are described in Chapter 2.8.2.2.1. After

simulations are performed, the results are combined with the priors in order

to produce a posterior distribution.

For our selection step, we produce the posterior distribution via updating

the hyper-parameters α of the Dirichlet distribution and calculate (14) by

taking the µi and σi for each node that result from the updated Dirichlet

distribution. The child of the current node that maximises the value Bi is

returned in order to proceed with our actions.

65

4.3.1.3 VPI

The strategy of VPI is to choose the action that maximises:

E[qs,a] + V PI(s, a) (15)

where

V PI(s, a) =

∫ ∞
∞

Gains,a(x)Pr(qs,a = x) dx (16)

where the Gain computes what can be gained from learning the true value

q∗s,a of qs,a:

Gains,a(qs,a∗) =

E[qs,a2]− q∗s,a, if a = a1 and q

∗
s,a < E[qs,a2]

q∗s,a − E[qs,a1], if a 6= a1 and q
∗
s,a > E[qs,a1]

0, otherwise

(17)

For a more detailed explanation of the Vpi formulas see Chapter 2.8.2.3.

The computation of the integral on (16) depends on how we represent our

distributions over qs,a.

Now, in order to be able to take decisions in our setting, each TreeNode

corresponding to a state s′, maintains a distribution over the quality value

qs,a of having executed the action a that led from (parent) state s to s′. In-

tuitively, this value corresponds to the “quality” of following a path in the

game tree downwards from s. When a decision needs to be taken at some

TreeNode, the value of its children (along with the corresponding value of

information entailed in visiting these children) is calculated.

The calculations needed are facilitated by the use of appropriate conju-

gate priors, enabling the easy update of the distributions mentioned above.

Namely, the distribution over qs,a is a Dirichlet, described by a set of hyper-

66

parameters α, where each parameter αi represents the frequency of seeing

reward i, and these frequencies are updated through the observation of sim-

ulation results. For these calculations we first find the two best actions a1

and a2 from the set of available actions and we estimate the Q-value distri-

butions using sampling on the existing Dirichlet distributions. So essentially,

these Dirichlet are used in order to implement the sampling process used in

Model-Based Bayesian Exploration[10]:

When we want to sample a vector θ according to the distribution P (θ| ξ) we

use a simple procedure:

We sample values y1, ...yK such that each yi ∼ Γ(αi, 1), where αi is the con-

centration parameter in the index i of the α vector and Γ(κ, θ) is the Gamma

distribution. Then we normalize to get a probability distribution [10].

Having these values, we calculate Eq.(17) and (15)), and we then select the

child that maximises Eq. (15).

To sum up, one could view the implementation of Value of Perfect Infor-

mation described above, as acting according to an underlined belief-state

MDP, which belief states correspond to probability distributions over re-

wards. These are used in determining the best possible action based on our

beliefs.

4.3.2 Expansion Step

Even though the expansion step is shared between the methods, we chose for

it to be called inside of each method due to the classification of the Selec-

tion and Expansion step as TreePolicy. To implement the expansion

step we created a class called Expansion, and we had to find the set of

available actions of our agent in the given state and a create TreeNodes

according to the combinations of the selected actions. These actions include:

67

buying a City, Settlement, Road or Development Card and choosing where

to build. The structures used by Thomas [35], provided a way to access a

great part the action set for each state with the acquisition of the potential

cities,settlements and roads. In our expansion, we also consider the acquisi-

tion of Development Cards and the only thing we need is to get the amount

of available Development Cards from the game. It is important to note, that

our agent does not know beforehand what kind of Development Card will

arise and so there isn’t an immediate reward concerning the acquisition of

a Development Card. Before buying a piece or a card, there are also some

other requirements that must be met. Basic element in defining the set of

available actions is the set of resources that our agent has in his possession.

So even if there are potential pieces, if we don’t have the required resources

(as defined in Chapter 1.2.2) we can’t consider any possible action.

But if we do not have the required resources, can we acquire them through

a bank or a port trade?

In that spirit, in order to explore its available moves, our agent takes into

consideration his potential pieces and his available resources.

We start with a specific game piece type, and we check its potential array :

1. If the array is empty we move on to the next piece type and we continue

until we find a piece type that has a non-empty array.

If all arrays are empty, then the current node is considered to be fully

expanded; otherwise we have an empty actions set and we check if we

have more than 7 resources in order to consider trading with a port,

the bank, or other players in order to avoid the situation in which a “7”

is rolled and we need to discard half of our resources.

If the node is fully expanded and we cannot add any more children, we

proceed with the algorithm, in which case the selection step is applied

68

in order to select the best child, from which a simulation will be run.

If the node has no children and we cannot add more due to the lack of

pieces or resources, we assume that we do not have the ability to do

anything in this turn, so we stop the algorithm.

2. If an array of a piece type is non-empty, we look at our available re-

sources to assess if we have the necessary subset in order to buy and

build that type.

(a) In case we have the subset, we select the first piece in the potential

array and we put it in a stack called BuldingPlan, which will

be part of the child TreeNode that we’ll create.

Then we must temporarily remove the piece from the potential

pieces and the needed resources from the agent’s current resources

in order to check for the ability to buy or build the next piece.

The last part is very important, because a player can build any

number of pieces he has the ability to in a turn-and from our

experiments building more than one pieces per turn (if we can),

yielded far better results.

(b) In case we don’t have the subset, we look into our available re-

sources and consider the possibility of trading with a port or with

the bank. If we have enough “unneeded” resources that we can

give in order to get the missing resources needed for building the

piece, we put the piece in the BuildingPlan and we proceed as

in step (a). Otherwise, we conclude that we cannot build anything

of that piece’s type and we proceed to the next type.

As mentioned, the player can buy pieces, representing Cities, Settle-

ments,Roads and Development Cards. Each piece needs different resources

69

and gives different advantages to the players.

In our implementation of the expansion step we made some decisions in order

to reduce the space state and insert some kind of heuristic knowledge in the

algorithm:

1. One set of decisions concerns the number of actions to be explored and

how to choose the next piece. We decided the number of actions to

expand to be the number of potential cities and settlements available

for building and for each iteration we have an inside loop that considers

roads to add, based on the number of potential roads. When a piece

has been selected, it is placed in the appropriate child vector, in order

to avoid looking the same pieces over and over again. In this way, not

only do we add enough actions to the tree (from which the best will

be selected through the selection formulas) but also choosing pieces

by order of appearance guarantees that the algorithm is fast and that

more time can be dedicated to the simulation, instead of searching for

the best piece per type.

2. To reduce the state space, we decided to add some conditions to restrict

the options concerning Roads and Development Cards :

(a) For Road pieces, we first look if we have the Longest Road card.

i. If we don’t, we need to build more roads in order to obtain

this card and the 2 Victory Points that accompany it.

ii. In case we do have the Longest Road card, we check if we have

a spot in which we can build a settlement. In case we don’t

have, we need to expand our roads in order to “create” spots

for possible settlements, so we consider adding roads to the

child’s building plan.

70

So, if we have the Longest Road card and we have a potential

spot for settlement, we do not consider adding roads to the child’s

building plan. In this way, we “tell” the agent to mainly consider

building Cities, Settlements of buying Development Cards, which

will give them more options.

(b) For Development Cards, we restrict the agent’s ability to buy

them. The way that this is done, is that we see what Development

Cards we have in our hands, and if we have unplayed cards, the

agent won’t buy a new one until this card is played. In this step

we must take into consideration if the agent has Victory Points

cards, which cannot be played. So, if our total number of devel-

opment cards minus the number of Victory Points cards is greater

than one, the agent won’t buy a new one. This is done to avoid

the unnecessary and continuous purchase of Development Cards

through the exploration of actions.

After the implementation of these heuristics, in order for the agent to deter-

mine his options concerning buying a road or buying a Development Card

(the Cities and Settlements consideration does not change) , he must first

look at the above “restrictions”. If none of these apply, then he will consider

all the possible options for buying game pieces (Cities, Settlements, Roads

and Development Cards.

4.3.3 Simulation

The simulation step is also shared between the methods, but this time by

being a policy by itself, we chose for it to be called from the general TreeN-

ode class. The class Simulation implements the simulation steps of the

algorithm, and these steps are described below.

71

Firstly, we need to define a cut-off condition for the simulation loop consisting

of:

1. end-of-game cut-off:, if a player acquires 10 or more Victory Points,

we have a winner and the simulation returns the result ∆ in order to

proceed to the backpropagation step.

2. turn cut-off:, if a game exceeds 60 turns, we stop the simulation loop

and again we return the current result ∆ for the backpropagation step.

This number of turns was chosen by observing the turns needed for a

game to end when agents play against each other. Usually, the game

needs approximately 17-20 rounds and each round consists of 4 turns

for the players. So each game need 68-80 turns to end. We chose to set

the cut-off, a little less in order to be able to perform more simulations

and get a better estimation of the probability distribution over the

expected rewards.

Afterwards we needed to create some functions to reconstruct basic behaviors

of the game. For that purpose, we created a function for simulating dice rolls

according to the probabilities:

72

Dice result Combinations Probability
2 1 1/36
3 2 2/36
4 3 3/36
5 4 4/36
6 5 5/36
7 6 6/36
8 5 5/36
9 4 4/36
10 3 3/36
11 2 2/36
12 1 1/36
Total 36 1.000

Figure 21: Dice Outcome Probabilities.

A random generator is used to generate a number in the [0,1] interval and

according to that value we decide the corresponding dice result.

As the rules suggest, after each dice roll, the players get resources according

to their pieces on the board. For each player we look for pieces adjacent to

hexes with a number matching the simulated dice result and we temporarily

add the resources gained by the dice roll. In the end of the simulation, all

the gained resources are subtracted.

Then the player can consider taking actions. The first move belongs to our

agent due to the expansion step and so we take the pieces from the selected

child from which we start the simulation and we put them into the game. We

proceed with the next player, for whom we generate moves according to the a

simpler logic based on the expansion logic described in the previous section.

For each turn and player action a new TreeNode is created -but it is not

added to the tree-, and that TreeNode contains the “owner” number and

the BuildingPlan that the player decided. All the pieces are temporarily

put into the game board by using the putTempPiece() function of Thomas

73

and resources are subtracted from the sets of the player in order to “simulate”

a normal game. This loop continues until one of the cut-off conditions is met

in which case we restore the game to its original state in order to prepare

for the next iteration of the Monte Carlo Tree Search algorithm, after

the backpropagation step.

Even though the actions chosen by the simulation are usually random in or-

der to be fast, games simulated in that way tend not to be realistic. This is

why we chose to apply the expansion logic during move generation but by

omitting the option for Development Card acquisition due to the complexity

of its implementation. This complexity would lead to major delays in the

simulation step due to the fact that we maintained the hidden elements of

the game and we do not know what Development Card will come up, and

if we included this option in the simulation step, a need for exploring all

the possible Cards and planning actions for each card separately would be

mandatory. Even if our agent acquired a Development Card in a previous

round, we don’t consider its play during the simulation. The main reason

for this decision is -again- related to the complexity that would arise. The

consideration of when to play a Development Card and the resulting actions

could produce unwanted delays to the simulation, i.e., when we play a Sol-

dier/Knight card, we must move the robber to another hex and we must steal

a resource at random from a player that has an adjacent City/Settlement to

that hex. In that way valuable time from the simulation will be consumed in

order to determine the new hex, the victim, and the random stolen resource.

The same logic applies to the Monopoly card and the Road Building card,

where in the former case we must monopolize a resource when the agent

judges that will be of benefit to him and in the latter, we must choose the 2

best roads for placing.

74

4.3.4 Backpropagation

Each of the selected enhancements has a different backpropagation method

due to the variables used in the different calculation formulas, and even

though we could include these methods in the general TreeNode class, we

decided to include them in each class separately for easier maintenance and

upgrading purposes.

4.3.4.1 UCT

For the backpropagation method for UCT, the process is quite simple and

straightforward.

The selection formula was showed in the previous section (see Eq. (13) above).

After the simulation reaches a terminal node, all we have to do is backprop-

agate the result of each player to the appropriate visited nodes. The result is

defined by the victory points of each player at the terminal node, divided by

10, to get reward values in the interval [0.2,1]. For each of the visited nodes

of the simulation, starting from the terminal node, we access its ancestor and

we “inform” the nodes about the result.

- If the node represents an action made by our agent during simulation

we add the Agent Victory Points
10

to the existing total reward Xj of the node.

- If the node represents an action made by another player, we subtract

that player’s Player’s Victory Points
10

from the total reward Xj of the node.

4.3.4.2 Bayesian UCT

The selection formula for the Bayesian Uct is seen in Eq. (14) above.

So for the update of the values needed for the calculation of the Bayesian UCT

value, we need to update the hyperparameters α of the Dirichlet distribution

75

for each node. So according to the result ∆ of the simulation, we update the

appropriate index value of the α vector:

αi = αi + 1 (18)

Essentially the α vector acts as a pseudo-count of how many times we have

seen each reward, so we update the number according to the result by adding

1 to the counter.

4.3.4.3 VPI

The update procedure for the Vpi method is based on the update of the

hyper-parameter vector α of Dirichlet priors. These hyper-parameters αi,

represent the frequency of seeing reward i and are used for sampling possible

expected reward distributions, in order to determine which is the best action

from the available. The update procedure is described in Eq.(18). The

calculation of the best action requires the solving of the equations for selection

for the VPI: Eq.(15),(16) and (17).

4.4 Heuristic Strategies

Apart from the Monte Carlo Tree Search implementation, which is

described in Chapter 4.3 and is used for action selection (determine what we

can buy: Cities, Settlements, Roads and Development Cards), various strate-

gies needed to be implemented in order to cope with various situations

of the game. These strategies derive from the characteristics of the game and

are presented in detail below. The JSettlers framework already contains im-

plementations for these strategies and we use many of them as they are, due

to their good implementation. So, from the following strategies, the Open-

76

ing Build and Robber Strategies are those used in the JSettlers framework

and the rest, the Monopoly, Road Building and Discard Strategies were sep-

arately created to suit the needs of our agent. These created strategies are

included in the package Heuristic Strategies and a different class was

created for each for easier maintenance and modifications. The Heuristic

Strategies package is presented in detail in the form of a class diagram in

Appendix B and specifically in Figure 39.

4.4.1 Opening Build Strategy

In the beginning of the game, each player places two settlements and one

adjacent road to each settlement. The Opening Build Strategy is about the

selection of the spots of the initial pieces. In this case, we chose to use

the existing Opening Build Strategy of the JSettlers framework, which

uses the some metrics to decide where the initial settlements will be, as the

building speed for a pair of initial settlements and if a settlement is near a

port. The choice of roads at the initial placement phase is based on the best

nearby potential settlements and so it favors spots near ports and spots with

high numbers.

4.4.2 Robber Strategy

When a “7” is rolled or when a Knight/Soldier card is player, the player that

rolled the “7” or played the card, must move a special piece called The Rob-

ber. When a robber is placed on a hex, that hex stops production, meaning

that if the number on it, is rolled, the players with a piece adjacent to it,

won’t get any resources. Not only that but the player that moved The Rob-

ber can select a robber victim from who he can steal one resource at random.

The JSettlers framework contains a built-in class called RobberStrategy,

77

which we also use for the selection of the best hex and the selection of the

robber victim. To decide the best new hex for the Robber, we first calculate

the estimated time of winning for each player and find the player with the

least time. Then we search for the best way to obstruct that player, by look-

ing the building estimates for each piece of the game for each of his hexes.

The hex with the largest total building speed for all the pieces is chosen as

the best hex, because in that way we essentially “delay” that player’s actions.

If something goes wrong and the best hex is the current hex of the Robber

we choose a hex at random.

The decision concerning the robber victim is made in a similar way, by cal-

culating estimated time of winning, but this time only for the players that

are possible victims (players with a piece adjacent to the selected hex). The

player with the least time is selected and returned to the server. Again if we

can’t decide on a victim, a random choice is returned to the server.

4.4.3 Monopoly Strategy

One of the available Development Cards that a player can buy is the

Monopoly Card. When a player plays this card, he must select one type

of resource. Then all the other players must give him all of the Resource

Cards of this type that they have.

When the agent decides to play a card and that card is a Monopoly Card, he

must select a resource. The MonopolyStrategy class was created for the

purpose of selecting the best resource. The agent takes into consideration

his nearby ports (Specific and General) to determine the trade ratio with

which he can trade and the available pieces and options for future actions

and decides which resource is best to monopolize and if it’s the best time

to play this card. The agent might decide that he will not gain as much as

78

needed if he plays the card right now, so he keeps it and will consider playing

it in the next round.

4.4.4 Road Building Strategy

Another type of Development Card is the Road Building card, which gives the

player the ability to place immediately 2 free roads on the board (according

to the Game Rules). To cope with this situation we did not create a new

class but instead when we play this card, a function is called to determine

the best spots for the two roads based on the Longest Road potential and the

ability that their combination provides in order to build more settlements.

4.4.5 Discard Strategy

When a seven is rolled and a player has more than 7 resources, he is ob-

ligated to discard half of his resources. If the number is odd, the number

of card discards for the player is rounded down to the closest integer (i.e.

if the agent has 9 resources, he must discard 4). In this case, even though

JSettlers already contains a Discard Strategy we chose to create a new class

DiscardStrategy to be able to discard resources according to our needs.

The agent determines his current state (if he has the Longest Road card, if he

has a spot to build a settlement, if he is able to upgrade to a city,...) based

on the state of the game and then constructs a set of needed resources and

a set of “leftover” resources. With these two sets and with the function re-

sourceRollStats() of the JSettlers framework, which returns descending order

how easy will it be to obtain a resource based on current state of the game

and dice roll probabilities, we determine the resources to discard first from

the leftover resources set. If the size of the discard set is smaller than the

number of cards we need to discard, we look to the needed resources set to

79

fill in. If something goes wrong and the agent cannot correctly determine the

appropriate resource set to discard, a function of SocGame is called, which

provides a random set to discard based on our current resources.

4.5 Negotiation

Trading with ports or with the bank and negotiating with other players for

resources is a very important aspect of the game. Many times a player does

not have access to all the necessary resources in order to build pieces or

buy development cards. Considering the importance of this feature, we gave

our agent the ability to trade according to his resources and even consider

trading with other players if a trade can be of benefit to him. Szita et al. in

[4], deprived the agent of the ability to trade with other players, admitting

though that this deprivation creates a “handicap”for their agent. In this

thesis, we use the existing structures of the JSettlers framework in order to

consider and initiate trades. In Chapter 4.5.1, we describe the logic used for

trading with the ports and bank and in Chapter 4.5.2, a simple scheme that

we created in order to trade with players.

4.5.1 Trading with Ports & Bank

Trading with ports and with the bank is a important part of the game for

the purpose of acquiring the necessary resources in order to buy game pieces.

As mentioned in the Game Rules section (Chapter 1.2.2), a player can trade

with the bank with a ratio 4:1, meaning that he can give 4 resources of one

type to acquire 1 resource of another. The players also have the ability to

trade with two types of ports if they have an adjacent piece:

1. General Ports, in which the trade ratio is 3:1 and

80

2. Type-Specific Ports, in which, according to the specific type of resource

a player can trade 2 resources of that type for 1 resource of another.

Our agent has the ability to carry out these transactions by checking the Port

Flags array that exists in the JSettlers framework, in which if the agent has

a piece (settlement or city) adjacent to a port, the appropriate array entry

contains the True flag. By checking this array the agent can determine the

trade ratio for his transactions, something that is later used for trading with

players. If all the values of the array are set to False, the ratio is set to the

default trade ratio of 4:1.

It is important to note that in each call of the trade functions, the trade ratio

is re-defined in order to determine if a new settlement or city was built near

a port.

This ability is not only limited to when the agent wants to make a move on

the board, but also during simulation, where we make fictitious trades by

subtracting and adding the resources according to the specified trade ratio.

4.5.2 Trading with Other Players

As mentioned in Chapter 1.3, compared to Szita et al. [4], where they do not

allow their agent to accept or initiate trade with players, we implemented a

simple negotiation scheme in the Negotiation class.

Our implementation of negotiation, which we intend to further develop,

consists of several functions, which provide the agent with the ability to

consider what to trade with other players or if it will be of benefit to him to

accept a proposed trade.

Our agent initiates trades with other players when there is the need

to trade for acquiring resources. In Chapter 4.5.1 above, we described the

81

process of determining the trade ratio available to the agent.

After the trading ratio is defined and before the final transaction with the

ports or bank, the agent considers trading with other players. The trade

offer is not addressed to all players, but instead the agent, checks for the

current state of the other players. If a player is close to victory and we

see that the trade that we are proposing can be of benefit to him, we do

not consider him for the offer. To determine if the trade is of benefit for

another player, we use the existing structures and the specific state of the

game to determine their options for future plans. For example, if a player

has 9 Victory Points and has the ability to build a settlement, we won’t

propose an offer that can give him the ability to build that settlement and

be declared a winner.

Even though this is an aheuristic technique, we experimentally found it to

be of benefit to our agent, giving him access to resources with a smaller

trading ratio.

Similar logic is also used when we want to determine if we’ll accept an offer

from another player. Obviously, the other player will make an offer that

will help him with his current plans, but maybe it’s an offer that can be of

great benefit to us. So again, we take into consideration our possible actions

and what can be done with the acquisition of the resources contained in the

trade offer.

This negotiation scheme is very simple and is open to further development

using Game Theory, Machine Learning and argumentantion techniques and

is part of our future plans, but we didn’t want to deprive the agent of the

ability of trading with other players and essentially alter the gameplay.

82

5 Experimental Results

For each different enhancement between UCT, Bayesian UCT and Value

of Perfect Information of the selection step of the main Monte Carlo

Tree Search algorithm, we tested our agent against the JSettlers agents.

Below we present the results in order and provide some insights in why each

enhancement produced these results.

UCT

In Figure 22 we see the results concerning the standard Monte Carlo

Tree Search Algorithm with the use of UCT in the selection step. We

can see that the agent does not achieve a good average of Victory Points

and only wins about 4% of the total games. The probability distribution of

the rewards of this agent is centered towards the 4 Victory Points and rarely

exceeds the 7 Victory Points. We can interpet our results based on the

simplicity of the standard UCT approach, which is not appropriate for such

a complex domain as the “Settlers Of Catan” and some kind of enhancement

to the selection step must be used (As Search Seeding used by Szita et al[4]).

Apart from the numerical values of the results one can observe the behavior

of the agent during the game, in which many “unfit” moves are performed,

i.e., ignoring the possibility of a road giving the agent the Longest Road card

and the 2 Victory Points that go along with it. A great factor to consider

and that can greatly affect the agent’s behavior is the number of simulations

per move performed by our agent. For comparison with [4], where their

agent performs 1000 to 10000 simulations, our agent only performs 120

to 130 simulations per move, creating a major handicap concerning the

evaluation of the possible moves, leading to a selection of “bad” moves. Our

future work includes the creation of a heuristic pruning in order to avoid

83

adding “bad” moves to the tree, reducing its size and making the algorithm

faster.

(a) UCT agent/7sec/120iteration

(b) JSettlers agent.

Figure 22: Results: Uct agent against JSettlers.

84

Bayesian UCT

In Figure 23 we see the results with the introduction of a Bayesian frame-

work to the standard UCT approach. Due to the added complexity to the

calculation of the selection values based on Eq. 14, we see that the agent

performs even less simulations than the UCT approach but achieves better

results.

In this case, the agent’s probability distribution of rewards is centered

around 6 Victory Points, the average achieved score of the agent has rised

from 4.75 to 5.29 and the agent’s winning percentage rose from 4% to

7%. Even with less simulations, the Bayesian framework allows a better

estimation of the values of the tree nodes making the selection more

effective. If we observe the agent’s behavior during plays, we can see that

more “sophisticated” moves are performed, i.e. building settlements even

when possible roads exist, but still there exists the possibility of performing

“bad” moves, such as setting a road where no new possibilities or Longest

Road potential exists. Even though the agent’s results are better with this

method, room for improvement still exists and we believe that the number

of simulations is again the main factor of this result. During the writing

of this thesis, we test the agent’s behavior given more time to perform the

Mcts algorithm. The results as the time increases are better, but not only

there are some “timing” issues with the JSettlers framework but as the

tree becomes larger, the selection step (mainly) consumes more time per

iteration, creating a need to make the selection step more efficient.

85

(a) Bayesian UCT agent/7sec/80iteration

(b) JSettlers agent.

Figure 23: Results: Bayesian Uct agent against JSettlers.

Value Of Perfect Information

In Figure 24, we see the results of our last method, the Value Of Perfect

Information. This method needs the most computational budget out of the

86

three methods. This complexity arises due to the need for “sampling” over the

possible reward distributions using the Dirichlet priors of each node. This

sampling is necessary for implementing the Value Of Perfect Information

method, based on Eq.15,16 and 17, where sampling is used to calculate the

last two equations and essentially the third. In our implementation we chose

for the number of samples of possible reward distributions to be 100 and from

experiments we concluded that in the current state of the implementation,

this is the best number (when we improve the efficiency of the selection step,

we may increase the number of samples).

Even though fewer simulations are performed (the number of simulations

for the action selection in one turn dropped from 120 to 130 for UCT and

80 for Bayesian UCT to 10-20), the agent’s behavior is the best out of the

three methods. The selection procedure of VPI is the most “sophisticated”

compared to Uct and Bayesian Uct and the approximation of the expected

reward for an action of the agent is very accurate despite the less simulations.

And the results confirm this. Not only the winning rate rose from 7% to

9-10%, but also the average score rose from 5.29 to 6.03, closing the gap

with the 6.43 average score of the SmartSettlers implementation. We believe

that with the increase of time and simulations this method can outperform

the JSettlers and SmartSettlers performance. The number of “bad” moves

has dropped dramatically leading to better moves and better scores for the

agent. An example of the agent’s behavior during a game is presented below

in figure 25.

87

(a) VPI agent/7sec/12iteration

(b) JSettlers agent.

Figure 24: Results: Vpi agent against JSettlers.

88

Figure 25: Value Of Information Gameplay.

Methods Comparison

In this section, we tested the three different methods playing against each

other in a setting with 2 Mcts agents and 2 JSettlers agents. So, below we

present the agents behaviors when a Uct agent plays against a Bayesian

Uct agent, when a Uct agent plays against a Vpi agent and finally when

a Bayesian Uct agent plays against a VPI agent.

UCT against Bayesian UCT

In Figure 26, we see the results of the Uct against Bayesian Uct. The

performance of the agents follow the one-method experiments above but

with an increase in the total win rates of each. Specifically, the Uct winning

rate from 4% rose to 9% and the Bayesian Uct rate rose from 7% to 11%.

89

We also see an increase to the average Victory Points of the agents, from

4.75 to 6.23 for Uct and from 5.29 to 6.31. The total winning rate for our

agents is 20% against the JSettlers agents.

(a) UCT agent/7sec/120iteration

(b) Bayesian UCT agent/7sec/80iteration.

Figure 26: Results: Uct vs. Bayesian Uct.

90

UCT against VPI

In this setting, we had two of our agents, one using the standard UCT ap-

proach and the other using the Value Of Perfect Information. The results

are presented in Figure 27 and as with the above described setting of UCT

against Bayesian UCT, we also see an increase in both agents performance

in comparison to the one-agent experiments. This time, the UCT agent’s

winning rate only rose about 2% and the average score rose from 4.75 to

5.55. But there is a major increase in the performance of the VPI agent,

rising his winning rate about 8%, from 9% to 17%, reaching to an average of

6.53 Victory Points for all games (from 6.03 in the one-method experiments).

This point average even exceeds the average obtained by Szita et al.[4], where

their agent with 1000 Simulations reached an average of 6.48 points.

We can see that the absence of one of JSettlers droids, benefits our agents

in both cases, but the Vpi agent, as we would expect to see and in the last

experiment, is confirmed to be the strongest out of our three agents. Com-

pared to the previous experiment we see that the Vpi agent does not “allow”

the Uct agent to take advantage of the absence of a JSettlers droid, keeping

the winning rate of the latter low.

With the performance of our agents in this setting, we have a total of 23%

winning rate for our agents against the JSettlers droids.

91

(a) UCT agent/7sec/120iteration

(b) VPI agent/7sec/12iteration.

Figure 27: Results: Uct vs. Vpi.

92

VPI against Bayesian UCT

In the last experiment, two of our agents compete against each other, one

using the Bayesian Uct method and the other using the Vpi method. Due

to the fact that these two agents use 2 of our strongest implementations and

based on the previous experimental results, we expect that the winning rate

of the agents will rise. And our results in Figure 28 confirm our expectations.

The Bayesian Uct agent, rose his winning rates from 7% to 11% compared

to the one-method experiments but the winning rate is the same as with the

Bayesian Uct-against-Uct experiment. On the other hand the Vpi agent

rose his winning rates from 9% of the one-method experiments to 15% but his

winning rate is less than the Vpi-against-Uct experiment, which was 17%.

This result can be explained by the fact that in this experiment the Vpi

agent is competing against a stronger agent than the Uct case, and many

times, his Victory was “stolen” by the Bayesian Uct agent, something

that happened rarely against the Uct agent. So, when 2 of our stronger

agents are competing against the JSettlers droids, they reach a total of 26%

winning rate, that will definitely improve with the further development of

the existing implementation. In Chapter 6.1, we mention our future plans

for the development and the agent that we intend to implement in the next

few months.

93

(a) Bayesian UCT agent/7sec/80iteration

(b) VPI agent/7sec/12iteration.

Figure 28: Results: Bayesian Uct vs. Vpi.

94

6 Epilogue

We reached the last chapter of this thesis, which we dedicate in providing our

main “research” ideas concerning our future work on this project (in Chap-

ter 6.1) and in presenting our conclusions concerning the implementation of

this newly founded algorithm in such a complex domain (in Chapter 6.2).

6.1 Future Work

Monte Carlo Tree Search, as the results of many implementations in

many domains show, is a very promising method for creating an agent capable

of defeating even an expert human player. There are many things that we

are planning in order to make our agent stronger. These plans include many

aspects of the existing implementation:

• Experiments:

– We are currently performing experiments of our agents playing

against random players in order to see their performance in such

a setting.

– We are planning to perform more experiments with the use of two

of our agents that use the Value of Perfect Information

method, against 2 JSettlers agents. We expect that in this set-

ting the agents will take further advantage of the absence of one

JSettlers agent and so, they’ll increase their winning rates further,

exceeding even the Bayesian Uct against Vpi setting.

• Monte Carlo Tree Search:

Monte Carlo Tree Search is a memory intensive algorithm. The

more computational power, the better the results will be. One of our

95

future goals is to test the existing implementation in a stronger system

and to log the results produced. Apart from this procedure, we are

also have in mind to re-design some elements of the existing implemen-

tation in order to make our agent faster. We intend to rerun all the

experiments after this modification, in order to study the immediate

effect of perorming more simulations, to the agent behavior.

• Heuristic Strategies:

Various heuristic strategies were created (and described in Chapter 4.4)

in order to cope with situations of the game. These strategies, even

though they are implemented based on the game and a player’s logic,

are yet to be tested in order to see how much they affect the behavior

of the agent. So, we plan to test (and modify if needed) the created

strategies to achieve even better results for our agent.

• Heuristic cut-offs:

Some heuristic strategies were implemented in order to reduce the state

space and help the agent make better(?) decisions. The results of these

strategies must be documented and if needed, “more guidance” must be

injected to our agent to properly exclude beforehand any “bad” moves.

• Negotiation:

This is the domain in which we will really focus our research from now

on. The “Settlers of Catan” gameplay is greatly based on the interaction

between players and the negotiation in order to acquire resources. The

first step is to enhance our Negotiation scheme, using tools from

Machine Learning, Game Theory and Argumentation techniques. The

second step concerns the use of tools of Natural Language Processing

(NPL), in order to identify player strategies during the negotiations

96

phase (e.g. in online versions of the game). This plan is justified by

the fact that there is a lot of “table-talk” during the game and the

negotiations and one can and must identify the true intentions of his

opponents.

6.2 Conclusions

Our intention was to implement a strong agent using the Monte Carlo

Tree Search algorithm in the non-deterministic, partially observable,

multi-player strategic board game “Settlers of Catan”. This task included the

use and the enhancement of the Tree Policy of the Mcts algorithm, with

methods such as the standard Uct approach, the Bayesian Uct, which is

used for the first time in Mcts in “Settlers of Catan” and the Value Of

Perfect Information approach, which is used for the first time in con-

junction with the Mcts algorithm. Apart from the Mcts implementation,

in order for our agent to be able to respond to any situation of the game,

we created various Heuristic Strategies and implemented a simple Ne-

gotiation scheme in order to trade with players. Our agent performs well

against the existing JSettlers framework, which is considered to be one of the

strongest computer implementations of the game. This framework is main-

tained and updated up to this day and we tested our agent against the most

recent implementation. There is still room for improvements, especially in

the Value of Perfect Information method, which displays the most

potential, but also in a more efficient implementation of the algorithm. Our

future work 6.1 includes all the modifications we are planning to implement,

which -in our opinion- will improve the agent’s performance greatly. Monte

Carlo Tree Search is a newly founded algorithm but the potential for

creating an agent capable of winning even an expert human player exists,

97

and we think that we are in the right direction.

98

7 References

[1] Cameron Browne, Edward J. Powley, Daniel Whitehouse, Simon M.

Lucas, Peter I. Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego

Perez, Spyridon Samothrakis, and Simon Colton. A Survey of Monte

Carlo Tree Search Methods. IEEE Trans. Comput. Intellig. and AI in

Games, pages 1–43.

[2] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern

Approach. Pearson Education, 2 edition, 2003.

[3] Jonathan Schaeffer and H. Jaap van den Herik. Games, computers, and

artificial intelligence. Artif. Intell., 134(1-2):1–7, 2002.

[4] István Szita, Guillaume Chaslot, and Pieter Spronck. Monte-Carlo Tree

Search in Settlers of Catan. In Proceedings of the 12th International

Conference on Advances in Computer Games, ACG’09, pages 21–32.

Springer-Verlag, 2010.

[5] Yoav Shoham, Rob Powers, and Trond Grenager. If multi-agent learning

is the answer, what is the question? Artificial Intelligence, 171(7):365 –

377, 2007. Foundations of Multi-Agent Learning.

[6] Peter Stone. Multiagent learning is not the answer. it is the question.

Artificial Intelligence, 171:402–05, May 2007.

[7] An overview of Catan Games. http://www.catan.com/board-games.

[8] Game rules & almanac 3/4 players. http://www.catan.com/files/

downloads/soc_rv_rules_091907.pdf.

[9] Gerald Tesauro, V. T. Rajan, and Richard Segal. Bayesian Inference in

Monte-Carlo Tree Search. 2012.

99

http://www.catan.com/board-games
http://www.catan.com/files/downloads/soc_rv_rules_091907.pdf
http://www.catan.com/files/downloads/soc_rv_rules_091907.pdf

[10] Richard Dearden, Nir Friedman, and David Andre. Model Based

Bayesian Exploration. In Proceedings of the Fifteenth Conference on

Uncertainty in Artificial Intelligence, UAI’99, pages 150–159. Morgan

Kaufmann Publishers Inc., 1999.

[11] Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement

Learning. MIT Press, 1st edition, 1998.

[12] J.M. Hammersley and D.C. Handscomb. Monte Carlo Methods.

Methuen’s monographs on applied probability and statistics. Methuen,

1964.

[13] Sylvain Gelly and David Silver. Monte-carlo tree search and rapid action

value estimation in computer go. Artif. Intell., 175(11):1856–1875.

[14] Cameron Browne. The Dangers of Random Playouts. ICGA Journal,

34(1):25–26, March 2011.

[15] Rajeev Agrawal. Sample mean based index policies with O(log n) re-

gret for the multi-armed bandit problem., volume 27, pages 1054–1078.

Applied Probability Trust, 1995.

[16] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. Finite-time analysis

of the multiarmed bandit problem. Mach. Learn., 47(2-3):235–256.

[17] Guillaume Chaslot, Sander Bakkes, Istvan Szita, and Pieter Spronck.

Monte-carlo tree search: A new framework for game ai. In AIIDE. The

AAAI Press.

[18] Jeffrey Long, Nathan R. Sturtevant, Michael Buro, and Timothy Furtak.

Understanding the success of perfect information monte carlo sampling

in game tree search, 2010.

100

[19] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo plan-

ning. In Proceedings of the 17th European Conference on Machine Learn-

ing, ECML’06, pages 282–293. Springer-Verlag, 2006.

[20] Levente Kocsis, Csaba Szepesvári, and Jan Willemson. Improved Monte-

Carlo Search. Technical Report 1, Univ. Tartu, 2006.

[21] Richard Dearden, Nir Friedman, and Stuart Russell. Bayesian Q-

Learning. In Proceedings of the Fifteenth National/Tenth Conference on

Artificial Intelligence/Innovative Applications of Artificial Intelligence,

AAAI ’98/IAAI ’98, pages 761–768. American Association for Artificial

Intelligence, 1998.

[22] J. Wyatt. Exploration and Inference in Learning from Reinforcement.

PhD thesis, University of Edinburgh, 1997.

[23] Georgios Chalkiadakis and Craig Boutilier. Sequentially optimal re-

peated coalition formation under uncertainty. Autonomous Agents and

Multi-Agent Systems, 24(3):441–484, 2012.

[24] Konstantinos Babas, Georgios Chalkiadakis, and Evangelos Tripolitakis.

You are what you consume: A bayesian method for personalized rec-

ommendations. In Proceedings of the 7th ACM Conference on Recom-

mender Systems, RecSys ’13, pages 221–228. ACM, 2013.

[25] W. T. L. Teacy, G. Chalkiadakis, A. Rogers, and N. R. Jennings. Se-

quential decision making with untrustworthy service providers. In Pro-

ceedings of the 7th International Conference on Autonomous Agents and

Multiagent Systems, pages 755–762, May 2008.

101

[26] Sylvain Gelly, Yizao Wang, Rémi Munos, and Olivier Teytaud. Modifi-

cation of UCT with Patterns in Monte-Carlo Go. Rapport de recherche,

INRIA, 2006.

[27] Rémi Coulom. Efficient selectivity and backup operators in monte-carlo

tree search. In In: Proceedings Computers and Games 2006. Springer-

Verlag, 2006.

[28] Markus Enzenberger and Martin MÃĳller. Fuego âĂŞ an open-source

framework for board games and go engine based on monte-carlo tree

search, 2009.

[29] Tapani Raiko and Jaakko Peltonen. Application of uct search to the con-

nection games of hex, y, *star, and renkula! In Proc. of the Finnish Ar-

tificial Intelligence Conference (STeP 2008), pages 89–93, August 2008.

[30] F. Teytaud and O. Teytaud. Creating an upper-confidence-tree program

for havannah, 2009.

[31] M.H.M. Winands, Y. Bjornsson, and J.-T. Saito. Monte carlo tree search

in lines of action. Computational Intelligence and AI in Games, IEEE

Transactions on, 2(4):239–250, Dec 2010.

[32] Y. Sato, D. Takahashi, and Reijer Grimbergen. A shogi program based

on monte-carlo tree search. ICGA Journal, 33:80–92, 2010.

[33] Kazutomo Shibahara and Yoshiyuki Kotani. Combining final score with

winning percentage by sigmoid function in monte-carlo simulations. In

Philip Hingston and Luigi Barone, editors, CIG, pages 183–190. IEEE,

2008.

102

[34] M. Pfeiffer. Reinforcement learning of strategies for settlers of catan.

2004.

[35] Robert Shaun Thomas. Real-time Decision Making for Adversarial En-

vironments Using a Plan-based Heuristic. PhD thesis, Northwestern

University, 2003.

[36] R. Fisher and W. Ury. Getting to Yes. Penguin Books.

[37] Simon Lucas. Minimal one-page implementation of MCTS. http://

mcts.ai/code/java.html.

103

http://mcts.ai/code/java.html
http://mcts.ai/code/java.html

A Code Changes in the JSettlers Framework

This appendix describes the changes needed in the original JSettlers

framework in order to integrate our agent. For each change, we briefly de-

scribe its logic and for a better classification we describe the changes per class.

SOCDevCardSet.java:

We created new function getAmountOld() to return the amount of cards

available to our agent for immediate play. A card is labeled Old after a

round has passed since the acquisition.

SOCServer.java:

• We had to create a new type of text message, which we set as *START*

in order to start the game only with bots.

/*

* code for starting a game with just robots

*/

else if (cmdTxtUC.startsWith("*START*")){

this.handleSTARTGAME(c, new SOCStartGame(ga.getName()));

}

• The string rname = MCTS_Robot_ + (i + 1); was added

for our player name, which is used in SOCPlayerLocalRobotRun-

ner.createAndStartRobotClientThread(rname, strSocketName, port);

• We reduced the “rcount” of the robots counter by 4 in order to create

4 robots with Monte Carlo Tree Search.

104

• We added Monte Carlo Tree Search Robot Parameters, which are the

same with other agents but we pass the number 2 in the strategy type

in order to define the use of Mcts.

SOCFaceButton.java:

• We changed the number of robot faces (variable

NUM_ROBOT_FACES) from two to three, in order to add a

face for our own agent.

SOCRobotDM.java:

• We created a new constant (MCTS_STRATEGY=2) in order to dif-

ferate our agent from the others.

• We added a new case “MCTS” in order to call our code for implementing

Monte Carlo Tree Search.

• After the decision for our Building Plan for this round, we check to

see if we have a Road Building card and if so we call the RoadBuild-

ingStrategy in order to choose two roads.

SOCRobotBrain.java:

• We added a new case SOCRobotDM.MCTS_STRATEGY to assign

the appropriate faceid our agent.

• When the agent needs to discard, our DiscardStrategy is called in

order to decide on the discard set.

• If we have a Monopoly card and the agent is ours, we decide if we’ll

play the card based on the heuristic strategy MonopolyStrategy.

105

• When the game state is “Waiting For Monopoly” (when a discovery card

is played and we are waiting for the monopoly choice of the agent), an if

statement was added in order to choose the resource from our heuristic

strategy MonopolyStrategy.

• Wherever, the Negotiator class of the original framework is used,

there is an if statement allowing access only to the original agents and

not ours.

• The tradeWithGame(SOCPossiblePiece targetPiece) was created,

which is used to call our functions for trading with ports and with

the bank.

• When a trade is proposed to our agent by another player, we added an

if statement in order to call the considerTrade function.

106

B Class Diagrams

In this appendix, we present the Class Diagrams of our implementation and

Class Diagrams concerning the integration of our implementation in the ex-

isting JSettlers framework. We begin with the analysis of our classes and

then we continue with the integration diagrams.

B.1 Code Creation

The created packages are the Mcts,Distribution and heuristicStrate-

gies.

mcts

TreeNode

Checker

Simulation

UCT

BayesianUCT

VPI

Expansion

Figure 29: Class Diagram: MCTS Package

107

Distributions

Ranecu

RandomSeedable RandomElement

Gamma Distribution

Dirichlet

Figure 30: Class Diagram: Distribution Package

HeuristicStrategies

DiscardStrategyMonopolyStrategy RoadBuildingStrategy

RobberStrategyOpeningBuildStrategy

Figure 31: Class Diagram: Heuristic Strategies Package

108

mcts

TreeNode

Xj:double
+vp:int
children:Vector<TreeNode>
parent:TreeNode
root:TreeNode
nVisits:double
totNumVisits:double
Pi:Vector<Double>
rewards:Vector<Double>
d:Dirichlet
seed:long
r:RandomElement
visited:Vector<TreeNode>
start:long
cur_time:long
time_limit:long
brain:SOCRobotBrain
playerTrackers:HashMap<Integer,SOCPlayerTracker
ourTracker:SOCPlayerTracker
ourPlayerData:SOCPlayer
ourPlayerNum:int
game:SOCGame
buildingPlan:Vector<SOCPossiblePiece>
method:int
sim:Simulation
uct:UCT
buct:BayesianUCT
vpi:VPI

TreeNode()
mcts():void
treePolicy(current:TreeNode,root:TreeNode,method:int):TreeNode
simulation(cur:TreeNode):double
backpropagate(method:int):void
buildDecision():void
checktime():boolean
assignMethod():void
initializeMethodVariables(data:SOCPlayer):void
initializeBayesianUCT(data:SOCPlayer):void
initializeVPI(data:SOCPlayer):void
updateOccurences(vp:int):void
calculatePi():Vector<Double>
getMean():double
getMeanDirichlet():double
getStandardDeviation():double
addReward(value:int):void
equals(obj:Object):boolean
hashcode():int
increaseStats(value:double):void
addToVisited(node:TreeNode):boolean
isLeaf():boolean
getters & setters

Figure 32: Class Diagram: TreeNode

109

Mcts

UCT

Cp:double
playerTrackers:HashMap<Integer,SOCPlayerTracker>
ourPlayerNumber:int
game:SOCGame
exp:Expansion
r:Random

UCT(br:SOCRobotBrain,pt:HashMap<Integer,SOCPlayerTracker>,plNum:int,game:SOCGame)
policy(cur:TreeNode,root:TreeNode):TreeNode
select(cur:TreeNode):TreeNode
backpropagate(cur:TreeNode,root:TreeNode,value:Vector<Double>):void

Figure 33: Class Diagram: UCT

Mcts

BayesianUCT

playerTrackers:HashMap<Integer,SOCPlayerTracker>
ourPlayerNumber:int
game:SOCGame
exp:Expansion

BayesianUCT(br:SOCRobotBrain,pt:HashMap<Integer,SOCPlayerTracker>,plNum:int,game:SOCGame)
policy(cur:TreeNode,root:TreeNode):TreeNode
select(cur:TreeNode):TreeNode
backpropagate(cur:TreeNode,root:TreeNode,value:Vector<Double>):void

Figure 34: Class Diagram: Bayesian UCT

110

Mcts

VPI

playerTrackers:HashMap<Integer,SOCPlayerTracker>
ourPlayerNumber:int
game:SOCGame
exp:Expansion
firstBestAction:TreeNode
secondBestAction:TreeNode
valueOfFirstBestAction:double
valueOfSecondBestAction:double
numOfSampledOutcomeStates:int

VPI(br:SOCRobotBrain,pt:HashMap<Integer,SOCPlayerTracker>,plNum:int,game:SOCGame)
policy(cur:TreeNode,root:TreeNode):TreeNode
select(cur:TreeNode):TreeNode
getCombinedValueOfAction(c:TreeNode):double
getVPIvalue(action:TreeNode):double
computeGain(action:TreeNode,i:int):double
backpropagate(cur:TreeNode,root:TreeNode,value:Vector<Double>):void
rankActions(actions:Vector<TreeNode>):void
expUtility(action:TreeNode):double
Setters & Getters

Figure 35: Class Diagram: VPI

111

Mcts

Expansion

childCities:Vector<Integer>
childSettlement:Vector<Integer>
childRoads:Vector<Integer>
tempPieces:Vector<SOCPlayingPiece>
childPieces:Vector<SOCPossiblePiece>
tempCards:Vector<SOCDevCard>
checker:Checker
cards_bought:int
trade_give:Vector<SOCResourceSet>
trade_get:Vector<SOCResourceSet>
trade_give_card:Vector<SOCResourceSet>
trade_get_card:Vector<SOCResourceSet>

run(playerTrackers:HashMap<Integer,SOCPlayerTracker>,playerNum:int,
cur:TreeNode,game:SOCGame,root:TreeNode):void
upgradeToCity(canBuildCity:boolean,trackersCopy:HashMap<Integer,SOCPlayerTracker>):void
buildSettlement(canBuildSettlement:boolean,trackersCopy:HashMap<Integer,SOCPlayerTracker>,
ourTrackerCopy:SOCPlayerTracker,player:SOCPlayer):void
buyDevCard(canBuyDevCard:boolean,trackersCopy:HashMap<Integer,SOCPlayerTracker>,
ourTrackerCopy:SOCPlayerTracker,playerNum:int,game:SOCGame,player:SOCPlayer):void
buildRoad(canBuildRoad:boolean,trackersCopy:HashMap<Integer,SOCPlayerTracker>,
ourTrackerCopy:SOCPlayerTracker,playerNum:int,game:SOCGame,player:SOCPlayer):void
clearTempPieces():void
clearAll():void

Figure 36: Class Diagram: Expansion

112

Mcts

Simulation

iteration:int
diceProbs:float[]
checker:Checker
CLAY
ORE
SHEEP
WOOD
WHEAT
root:TreeNode
childPieces:Vector<SOCPossiblePiece>
tempPieces:HashMap<Integer, Vector<SOCPlayingPiece»
tempPieces1:Vector<SOCPlayingPiece>

Simulation()
run(startNode:TreeNode,root:TreeNode):Vector<Double>
tryPutPieceChildren(buildingPlan:Vector<SOCPossiblePiece>,do_undo:boolean,
playerTrackers:HashMap<Integer,SOCPlayerTracker>,tracker:SOCPlayerTracker,
player:SOCPlayer,game:SOCGame):void
rollDice(pts:HashMap<Integer,SOCPlayerTracker>,game:SOCGame):void
restoreResources(playerTrackers:HashMap<Integer,SOCPlayerTracker>,
initialResources:HashMap<Integer,SOCResourceSet):void
updateResources(pts:HashMap<Integer,SOCPlayerTracker>,dice:int,game:SOCGame):void
getResourcesGainedFromRollPieces(roll:int,resources:SOCResourceSet,missedResources:SOCResourceSet,
robberHex:int,sEnum:Collection<? Extends SOCPlayingPiece>,int incr,board:SOCBoard):void
makeMove(game:SOCGame,trackersCopy:HashMap<Integer,SOCPlayerTracker>,
ourTrackerCopy:SOCPlayerTracker,playerIndex:int,
tempPieces:HashMap<Integer, Vector<SOCPlayingPiece»,
player:SOCPlayer,cur:TreeNode,brain:SOCRobotBrain):TreeNode
upgradeToCity(canBuildCity:boolean,trackersCopy:HashMap<Integer,SOCPlayerTracker>):void
buildSettlement(canBuildSettlement:boolean,trackersCopy:HashMap<Integer,SOCPlayerTracker>,
ourTrackerCopy:SOCPlayerTracker,player:SOCPlayer):void
buyDevCard(canBuyDevCard:boolean,trackersCopy:HashMap<Integer,SOCPlayerTracker>,
ourTrackerCopy:SOCPlayerTracker,playerNum:int,game:SOCGame,player:SOCPlayer):void
buildRoad(canBuildRoad:boolean,trackersCopy:HashMap<Integer,SOCPlayerTracker>,
ourTrackerCopy:SOCPlayerTracker,playerNum:int,game:SOCGame,player:SOCPlayer):void
getIteration():int

Figure 37: Class Diagram: Simulation

113

Mcts

Checker

CLAY
ORE
SHEEP
WOOD
WHEAT

Checker()
canBuildCity(data:SOCPlayer,tracker:SOCPlayerTracker):boolean
canBuildSettlement(pt:SOCPlayerTracker,data:SOCPlayer):boolean
canBuildSettlement(playerTracker:SOCPlayerTracker):boolean
canBuildRoad(pt:SOCPlayerTracker,data:SOCPlayer):boolean
canBuyDevCard(data:SOCPlayer):boolean
canTradeToDevCard(pt:SOCPlayerTracker,data:SOCPlayer):boolean
canTradeToCity(pt:SOCPlayerTracker,data:SOCPlayer):boolean
canTradeToSettlement(pt:SOCPlayerTracker,data:SOCPlayer):boolean
canTradeToRoad(pt:SOCPlayerTracker,data:SOCPlayer):boolean
tradeToCity(pt:SOCPlayerTracker,data:SOCPlayer):boolean
tradeToSettlement(pt:SOCPlayerTracker,data:SOCPlayer):boolean
tradeToDevCard(pt:SOCPlayerTracker,data:SOCPlayer):boolean
tradeToRoad(pt:SOCPlayerTracker,data:SOCPlayer):boolean
tradeToCityExpansion(pt:SOCPlayerTracker,data:SOCPlayer,
trade_get:SOCResourceSet,trade_give:SOCResourceSet):boolean
tradeToSettlementExpansion(pt:SOCPlayerTracker,data:SOCPlayer,
trade_get:SOCResourceSet,trade_give:SOCResourceSet):boolean
tradeToRoadExpansion(pt:SOCPlayerTracker,data:SOCPlayer,
trade_get:SOCResourceSet,trade_give:SOCResourceSet):boolean
tradeToDevCardExpansion(pt:SOCPlayerTracker,data:SOCPlayer,
trade_get:SOCResourceSet,trade_give:SOCResourceSet):boolean
tradeToCitySimulation(pt:SOCPlayerTracker,data:SOCPlayer):boolean
tradeToSettlementSimulation(pt:SOCPlayerTracker,data:SOCPlayer):boolean
tradeToRoadSimulation(pt:SOCPlayerTracker,data:SOCPlayer):boolean
tradeToDevCardSimulation(pt:SOCPlayerTracker,data:SOCPlayer):boolean
tradeDueToExcessiveResources(pt:SOCPlayerTracker,data:SOCPlayer):boolean

Figure 38: Class Diagram: Checker

114

heuristicStrategies

DiscardStrategy

discard(game:SOCGame,numberOfDiscards:int,pts:HashMap<Integer,SOCPlayerTracker>,
data:SOCPlayer,ourPlayerNum:int):SOCResourceSet

RoadBuildingStrategy

roadBuilding(pts:HashMap<Integer,SOCPlayerTracker>,player:SOCPlayer,ga:SOCGame,
buildingPlan:Stack<SOCPossiblePiece>):void

MonopolyStrategy

monopolyChoice:int

decideOnPlayingMonopoly(player:SOCPlayer):boolean
getMonopolyResource():int

Figure 39: Class Diagram: Heuristic Strategies

Mcts

Negotiator

REJECT_OFFER:int
ACCEPT_OFFER:int
COUNTER_OFFER:int

negotiate(give:SOCResourceSet,get:SOCResourceSet,pts:HashMap<Integer,
SOCPlayerTracker>,ourPlayerNum:int,game:SOCGame):SOCTradeOffer
considerTrade(pts:HashMap<Integer,SOCPlayerTracker>,ourPlayer:SOCPlayer,offer:SOCTradeOffer):int
counterOffer(offer:SOCTradeOffer):SOCTradeOffer
makeOffer(targetPiece:SOCPossiblePiece):boolean

Figure 40: Class Diagram: Negotiator

115

distributions

Dirichlet

K:int
concetration_parameters_a:Vector<Double>
pi_vector:Vector<Double>

Dirichlet(d:Dirichlet)
Dirichlet(k:int,r:RandomElement)
sampleDirichlet:void
getMean():Vector<Double>
update_Dirichlet(obs_ti_alpha):void
clone():Object
getAlphaVector():Vector<Double>
getPiVector():Vector<Double>
getK():int
logpdf(x:List<Double>):double
random():List<Double>

Figure 41: Class Diagram: Dirichlet

B.2 Code Integration

In order for our agent to work properly, we had to “connect” our

implementation to the existing JSettlers framework. The two classes

that are responsible for agent actions and planning are the SocRobot-

Brain and SocRobotDM classes. SocRobotBrain is used to call the

SocRobotDM, to determine the future plans, but is also responsible for the

communication with the Game class in order to perform heuristic strategies

as MonopolyStrategy and others. Below, we present the two main dia-

grams for our code integration. One for the planning of the Mcts (Figure 42)

and one for the integration of our heuristic strategies (Figure 43).

116

All

Part of SOCRobot

MCTS

VariousStrategies

Distributions

SOCRobotBrain SOCRobotDM

TreeNode UCT

BayesianUCT

VPIChecker

Simulation ExpansionNegotiator

Figure 42: Class Diagram: Integration

117

All

Part of SOCRobot

heuristicStrategies

SOCRobotBrain SOCRobotDM

DiscardStrategy RoadBuildingStrategyMonopolyStrategy

Figure 43: Class Diagram: Integration Heuristic

118

	List of Figures
	Introduction
	Motivation
	Games & AI
	Multi-Agent Learning (MAL)

	Settlers of Catan Game
	Board & Basic Elements
	Rules
	Decisions To Make

	Contributions

	Background: Monte Carlo Tree Search
	Markov Decision Processes (MDPs)
	Partially Observable Markov Decision Processes (POMDPs)
	Belief-State MDPs

	Game Theory
	Monte Carlo Methods
	Bandit Based Methods
	The Basic Mcts Algorithm
	Characteristics
	Tree Policy Enhancements
	General
	Selected Enhancements:
	Upper Confidence Bound for Trees (UCT):
	Bayesian UCT:
	Multinomial Estimation Problem & Dirichlet Priors

	Value Of Perfect Information (VPI):

	Related Work
	Monte Carlo Tree Search Applications
	Games Applications
	Go
	Connection Games
	Other Combinatorial Games
	Real-time Games
	Non-deterministic games

	Non-game applications
	Monte Carlo Tree Search in Settlers of Catan-``SmartSettlers''
	Rule Changes
	Effect of starting position
	Domain Knowledge in Monte-Carlo simulations
	Domain Knowledge in MCTS
	Results

	The JSettlers Framework
	Interface
	Agent Implementation
	Determining Options & Resource Estimation of Time
	Making a Plan and Deciding What To Build
	Negotiation and Trading

	Agent Implementation
	Changes in the JSettlers Framework:
	Code Integration:

	Basis of the Implementation & Class Creation
	Monte Carlo Tree Search Implementation:
	Selection Step
	UCT
	Bayesian UCT
	VPI

	Expansion Step
	Simulation
	Backpropagation
	UCT
	Bayesian UCT
	VPI

	Heuristic Strategies
	Opening Build Strategy
	Robber Strategy
	Monopoly Strategy
	Road Building Strategy
	Discard Strategy

	Negotiation
	Trading with Ports & Bank
	Trading with Other Players

	Experimental Results
	Epilogue
	Future Work
	Conclusions

	References
	Code Changes in the JSettlers Framework
	Class Diagrams
	Code Creation
	Code Integration

