
Technical University of Crete

Master Thesis

A Bayesian Personalized
Recommendation System

Author:

Konstantinos Babas

Supervisor:

Dr. Georgios Chalkiadakis

(Assistant Professor)

A thesis submitted in fulfilment of the requirements

for the degree of Master of Science of Electronic & Computer Engineering

in the

School of Electronic & Computer Engineering

June 24, 2014

http://www.tuc.gr/3324.html
http://www.intelligence.tuc.gr/person.php?arg=237
http://www.intelligence.tuc.gr/~gehalk/
http://www.intelligence.tuc.gr/~gehalk/
http://www.ece.tuc.gr/Ctrl?lang=en

“Follow your dreams and live the way you like. . . ”

TECHNICAL UNIVERSITY OF CRETE

Abstract

Intelligent Systems Laboratory

School of Electronic & Computer Engineering

Master of Science of Electronic & Computer Engineering

A Bayesian Personalized Recommendation System

by Konstantinos Babas

In this research, we propose a novel Bayesian approach for personalized recommenda-

tions. We succeed in providing recommendations that are entirely personalized, based

on a user’s past item “consumptions”, building a representative user model which re-

flects agent’s corresponding beliefs. Having a set of items, our agent has to select the

one which better matches her beliefs about a specific user, in order to recommend it and

receive the corresponding reward. In our approach, we model both user preferences and

items under recommendation as multivariate Gaussian distributions; and make use of

Normal-Inverse Wishart priors to model the recommendation agent beliefs about user

types. We interpret user ratings in an innovative way, using them to guide a Bayesian

updating process that helps us both capture a user’s current mood, and maintain her

overall user type. We produced several variants of our approach, and applied them in the

movie recommendations domain, evaluating them on data from the MovieLens dataset.

We developed a generic & domain independent system, able to face the scalability chal-

lenge and able to capture user preferences (long-term and short-term). Moreover, we

dealt with the exploration vs exploitation dilemma in this domain, via the application of

various exploration algorithms (e.g., VPI exploration). Ours is a completely personalized

approach, which exploits Bayesian Reinforcement Learning in order to recommend an

item or a top-N group of items, without the need of ratings prediction. We do not employ

a Collaborative Filtering or Content-based or Preference Elicitation technique, but we

are still able to provide successful recommendations. Furthermore, we tackle the famous

“cold-start” problem via the use of Bayesian and VPI explorations. Our algorithms are

shown to be competitive against a state-of-the-art method, which nevertheless requires

a minimum set of ratings from various users to provide recommendations—unlike our

entirely personalized approach.

http://www.tuc.gr/3324.html
http://www.intelligence.tuc.gr
http://www.ece.tuc.gr/Ctrl?lang=en

In Greek...

Στη συγκεκριμένη έρευνα, προτείνουμε ένα καινοτόμο Μπαεσιανό Σύστημα Προτάσεων.

Το σύστημά μας παρέχει εντελώς εξατομικευμένες προτάσεις βασιζόμενο στις παλαιότερες

῾῾καταναλώσεις᾿᾿ αντικειμένων του χρήστη, δομώντας ένα αντιπροσωπευτικό μοντέλο χρήστη

το οποίο αντικατοπτρίζει τις πεποιθήσεις του πράκτορα. ΄Εχοντας ένα σύνολο αντικειμένων,

ο πράκτοράς μας πρέπει να επιλέξει εκείνο που ταιριάζει περισσότερο στις πεποιθήσεις του

σχετικά με ένα συγκεκριμένο χρήστη, προκειμένου να του το προτείνει και να λάβει την

αντίστοιχη ανταμοιβή. Στην προσέγγισή μας, μοντελοποιούμε τις προτιμήσεις του χρήστη

και τα αντικείμενα προς πρόταση ως πολυδιάστατες Gaussian κατανομές, και χρησιμοποιούμε

Normal-Inverse Wishart priors για να μοντελοποιήσουμε τις πεποιθήσεις του πράκτορα

σχετικά με τον τύπο του χρήστη. Ερμηνεύουμε τις βαθμολογίες του χρήστη με καινοτόμο

τρόπο χρησιμοποιώντας τις για να καθοδηγήσουμε το Bayesian updating, που μας βοηθά

να ανιχνεύσουμε την τρέχουσα διάθεση του χρήστη και να διατηρήσουμε το γενικό τύπο

του. Επίσης, δημιουργήσαμε διάφορες παραλλαγές της προσέγγισής μας και τις εφαρμόσαμε

στον τομέα της πρότασης ταινιών, αξιολογώντας τις σε δεδομένα που προέρχονται από το

MovieLens. Με τη συγκεκριμένη εργασία, καταφέραμε να διαχειριστούμε τις προκλήσεις

που προκύπτουν σε αυτόν τον τομέα. ΄Ετσι, καταφέραμε να αναπτύξουμε ένα γενικό,

ανεξαρτήτου τομέα, σύστημα, το οποίο αντιμετωπίζει εύκολα την πρόκληση της επεκ-

τασιμότητας και είναι ικανό να αιχμαλωτίσει τις προτιμήσεις του χρήστη (μακροπρόθεσμες

και βραχυπρόθεσμες). Ακόμη, διαχειριστήκαμε επιτυχώς το δίλημμα εξερεύνηση έναντι εκ-

μετάλλευσης, εφαρμόζοντας διάφορους αλγόριθμους εξερεύνησης (πχ., εξερεύνηση VPI).

Αναφερόμενοι στη συνεισφορά αυτής της έρευνας, η συγκεκριμένη είναι μια αποκλειστικά εξ-

ατομικευμένη προσέγγιση, η οποία αξιοποιεί Μπαεσιανή Ενισχυτική Μάθηση προκειμένου

να προτείνει ένα αντικείμενο ή ένα top-N σύνολο αντικειμένων, χωρίς την ανάγκη πρόβλεψης

βαθμολογιών. Δεν χρησιμοποιούμε μια Collaborative Filtering ή Content-based ή Pref-

erence Elicitation τεχνική, όμως είμαστε ικανοί να παρέχουμε επιτυχημένες προτάσεις.

Επιπλέον, αντιμετωπίσαμε το περίφημο πρόβλημα “cold-start” μέσω της χρήσης Μπαεσιανής

εξερεύνησης και VPI. Τέλος, ο αλγόριθμός μας φαίνεται πως είναι ανταγωνιστικός απέναντι

σε μια νέα, εξελιγμένη μέθοδο, η οποία παρ΄ όλα αυτά χρειάζεται ένα ελάχιστο σύνολο βαθ-

μολογιών από διάφορους χρήστες προκειμένου να παρέχει προτάσεις — σε αντίθεση με τη

δική μας πλήρως εξατομικευμένη προσέγγιση.

Acknowledgements

First of all, I would like to thank my supervisor, Georgios Chalkiadakis, for his patience

and his significant guidance all these years. My collaboration with Dr. Chalkiadakis

provided with the equipment for becoming a better researcher.

I thank my colleagues, Charilaos Akasiadis, Manolis Orfanoudakis, Alexis Georgogian-

nis, Angelos Hliaoutakis, Antonis Igglezakis and Giannis Skoulakis for our constructive

coexistence. Thanks to Evangelos Tripolitakis for providing me with processed data from

the MovieLens dataset and experimental results about the LSMF algorithm. Special

thanks to my teachers for doing their best and equipped me with essential knowledge.

Thanks to all people of the Intelligent Systems Laboratory.

My gratitude to my parents for their past, present and future understanding and sup-

port!!! Finally, many thanks to anyone I might have forgotten to thank.

vii

Contents

Abstract iv

Acknowledgements vii

Contents ix

List of Figures xi

List of Tables xiii

Abbreviations xiv

Symbols xv

1 INTRODUCTION 1

2 BACKGROUND 8

2.1 Recommender systems: Main concepts and goals 8

2.2 The “you are what you consume” idea . 10

2.3 Bayesian updating . 11

2.4 Exploration vs exploitation problem . 13

2.5 Bayesian exploration & VPI . 14

3 RELATED WORK 16

3.1 Collaborative Filtering & Content-based techniques 16

3.2 Preference Elicitation techniques . 19

3.3 Bayesian techniques . 20

3.4 Other approaches . 21

3.5 Our approach . 22

3.6 Challenges . 24

4 A BAYESIAN RECOMMENDATION PROCESS 28

4.1 User modeling . 28

4.1.1 Item/demo type . 29

4.1.2 Beliefs as user type . 29

4.2 The recommendation process . 30

4.3 Alternative action selection methods . 33

4.3.1 VPI-based selection . 33

ix

Contents x

4.3.2 Boltzmann selection . 34

4.4 Action selection methods: the details . 35

4.5 Tackling large databases . 36

4.6 Application to the movies domain . 36

5 EXPERIMENTS 39

5.1 Scalability and mood capture . 39

5.2 Experiments on real-world data . 41

5.3 Recommending to specific users . 46

5.4 Recommending from a dataset with mainly low-rated movies (real-world
ratings) . 49

5.5 Recommending from a dataset with mainly low-rated movies (simulated
ratings) . 53

5.6 Adapting to changing user preferences . 55

5.7 On the usefulness of trailers . 59

5.8 Overview of experimental results . 61

6 CONCLUSIONS & FUTURE WORK 64

A DESCRIPTION OF SYSTEM MODELS 68

B BAYESIAN RANDOM EXPLORATION 71

Bibliography 73

List of Figures

4.1 The overall recommendation process. 30

4.2 (a) Deriving the demo-based user type. (b) Deriving the user type. 31

5.1 Comparison of average per recommendation ratings from 50 simulated
users on 200 movies for 10 runs, and average range of corresponding trailer
ratings, with and without mood alterations simulation. 40

5.2 (a) Average per recommendation ratings, average range of correspond-
ing trailer ratings and movie ratings average mean absolute deviation for
BYLI - Boltzmann-VPI on trailers & movies across all users. (b) Typical
run ratings of a single, real user on 50 movies, and range of corresponding
trailer ratings. 42

5.3 (a) Behavior of BayesYouLikeIt and its variants. (b) Comparison between
LSMF and BYLI. (c) Methods behavior during the first 10 recommen-
dations. All subfigures depict average per recommendation ratings across
all user sets and experimental runs. 45

5.4 Average per recommendation ratings over all runs for 3 different users:
(a) basic BYLI, (b) BYLI-VPI on trailers, (c) BYLI-VPI on trailers &
movies, (d) BYLI-Boltzmann on trailers. 47

5.5 Behavior of BayesYouLikeIt and its variants: (a) user A, (b) user B, (c)
user C. All subfigures depict average per recommendation ratings across
all experimental runs. 48

5.6 Comparison of the average per recommendation ratings of 3 users across
all variants for 10 runs. 49

5.7 Average per recommendation ratings over all users and all runs for 50
recommendations: (a) users with less than 35 “preferred” movies, (b)
users with less than 20 “preferred” movies. 50

5.8 Average per recommendation ratings over all runs for 3 different users:
(a) over all BYLI variants (basic BYLI, BYLI - VPI on trailers, BYLI
- VPI on trailers & movies), (b) over basic BYLI, (c) over BYLI - VPI
on trailers, (d) over BYLI - VPI on trailers & movies, (e) over LSMF -
pretrained. 51

5.9 The histogram of the ratings for a typical user; experiments in Section 5.5. 54

5.10 A. Average per recommendation ratings over all users and all runs: (a) 200
recommendations, (b) first 25 recommendations. B. Average per recom-
mendation ratings over all users and all runs for the VPI variants (BYLI
- VPI on trailers, BYLI - VPI on trailers & movies): (c) 200 recommen-
dations, (d) first 10 recommendations. 54

xi

List of Figures xii

5.11 Average per recommendation ratings over all runs for user A: (a) BYLI,
(b) BYLI without trailers, (c) BYLI - VPI on trailers, (d) BYLI - VPI on
trailers & movies, (e) BYLI - VPI on movies without trailers, (f) Random. 57

5.12 Comparison of users’ average per recommendation ratings over all runs:
(a) BYLI, (b) BYLI without trailers, (c) BYLI - VPI on trailers, (d) BYLI
- VPI on trailers & movies, (e) BYLI - VPI on movies without trailers, (f)
Random, (g) Average per recommendation ratings over all variants and
all runs for the 4 simulated users. 58

5.13 (a) Comparison of average per recommendation ratings of 50 simulated
users on 200 movies for 10 runs in 3 different cases: (i) exploiting trailers
without mood alterations simulation, (ii) exploiting trailers with mood
alterations simulation, (iii) with mood alterations simulation without ex-
ploiting trailers. (b) Zoomed depiction of (a). 60

5.14 Comparison of average per recommendation ratings of 2 simulated users
on 50 movies for 10 runs in 3 different cases: (i) exploiting trailers with-
out mood alterations simulation, (ii) exploiting trailers with mood alter-
ations simulation, (iii) with mood alterations simulation without exploit-
ing trailers. (a) user A, (b) user B. 60

5.15 Average per recommendation ratings over all users and all runs; Movie-
Lens dataset. 60

A.1 The forms of (a) the mean and (b) the covariance matrix of a movie type. 69

List of Tables

5.1 Comparison of average ratings of all methods (across all user sets, recom-
mendations and experimental runs). 43

5.2 Comparison of average ratings of each user (across all recommendations
and experimental runs) for each variant. 46

5.3 The average database ratings (i.e., over all ratings provided by each of
these users in the database) and the number of total ratings and ratings≥4
assigned by users A, B and C for the experiments of Section 5.4. 52

5.4 The overall average rating, the average of the recommended “preferred”
movies and the corresponding ratio over the available “preferred” for each
user, over 10 runs and the executed variants. 52

5.5 The overall average ratings of the movies databases. 56

5.6 Average user ratings over all recommendations and all runs for each variant. 56

xiii

Abbreviations

ALS Alternating Least Squares

BRX Bayesian Random eXploration

BVPI Boltzmann-VPI

BYLI BayesYouLikeIt

CF Collaborative Filtering

KL Kullback-Leibler

LSMF Large, Sparse Matrix Factorization

NIW Normal-Inverse Wishart

PE Preference Elicitation

VPI Value of Perfect Information

WWW World Wide Web

xiv

Symbols

cl center of l-th cluster

gainji gain of user type j from item i; VPI exploration

I the recommended item selected by VPI exploration

ii item i; VPI exploration

j user type; VPI exploration

M maximum available demo/item rating

n number of samples; Bayesian updating

pi i-th item in specific cluster

ri user reward from item i; VPI exploration

S scatter matrix; a statistic element for Bayesian updating

T = c · αt Temperature parameter, c a constant, a <1 and t the time step;

Boltzmann exploration

Ui utility of item i; Boltzmann exploration

Vi aggregated value of item i; VPI exploration

x sample mean; Bayesian updating

xi i-th samples; Bayesian updating

κn real number; parameter of the NIW

Λn precision matrix; parameter of the NIW

µ mean; parameter of the multivariate Gaussian

µn mean vector; parameter of the NIW

νn degrees of freedom; parameter of the NIW

Σ covariance matrix; parameter of the multivariate Gaussian

σ2 variance

xv

Dedicated to my lovely parents Nikos & Anna, and to my brother
Giorgos.

xvii

Chapter 1

INTRODUCTION

Making decisions on what movie to see, what kind of music to listen to, or even what

financial investment to make can be a hard problem when someone is presented with a

multitude of choices. This is partly because nowadays users are confronted with huge

amounts of available information, which sometimes renders the decision making a com-

plex and tedious process, and might lead to poor decisions. Research in recommendation

systems attempts to understand user needs, preferences and mood, and help her make a

decision. A Recommender System is an information system which produces suggestions

for items to users on their request. Behind the recommender, an advanced and sophis-

ticated algorithm operates and combines data regarding items and user preferences in

order to make recommendations. Additionally, an advanced recommendation system

has the ability to recommend items regardless their type, i.e., the recommendation al-

gorithm is generic and able to manage different type of items, and the system’s design

is flexible with the ability to be easily adapted to changes, accordingly to items type.

When a user doesn’t have enough knowledge to make a decision, she has the need for

recommendations. Recommendation systems have to predict what item user likes, but

to do so, they should take into consideration user constraints and preferences. This can

be done either explicitly or implicitly. Explicit extraction of user preferences is feasible,

when the user is allowed to use quantified metrics to express her liking for items. By

contrast, the system can also infer user preferences via observing and interpreting user

actions. The user feedback is stored in the system for further elaboration. Exploiting

information about items, user’s past feedback, and system’s beliefs about the user, a

recommender can generate new recommendations, that are “personalized”, i.e., they are

expected to match user preferences.

In the last few years, the scientific community has shown strong interest in the research

on recommender systems [1]:

1

Chapter 1. Introduction 2

• Many media companies and web giants, like Netflix, IMDb, Amazon and YouTube,

are developing and incorporating sophisticated recommenders in their systems.

• Scientific conferences take place every year with exclusive domain of interest the

recommendation systems. Also, there exist dedicated issues in academic journals

related to that domain.

• Books, tutorials at scientific conferences and courses at institutions of higher edu-

cation have been recently presented with main subject the recommender systems.

Typically, most recommendation methods require pre-training on data gathered from

many users, who are classified according to their inferred similarity in preferences. A

key assumption in research on recommender systems is that people are influenced dur-

ing their decision making by recommendations provided by others with similar desires.

Moreover, many approaches require much user involvement in a potentially cumbersome,

lengthy interaction with the system. This can impose serious limitations to the usability

of a recommendation system, especially when a user wishes to make a fast decision that

is also dependent on her current mood. Also, a recommender system should navigate

the user without making her feel restricted, but autonomous and self-determined.

Most established recommendation systems exploit user ratings over a large number of

items via the use of collaborative filtering (CF), content-based methods, or a combination

thereof. Content-based methods usually make recommendations by analyzing the content

of textual information about an item. On the other hand, collaborative filtering is based

on the assumption that, if two users rate n items similarly, they will probably rate

other items similarly as well. So, collaborative filtering techniques use ratings from

a specific user on some items (e.g., movies), and combine them with ratings of other

users on a set of items in order to infer the ratings of that user on unrated items.

Additionally, preference elicitation (PE) techniques try to collect user preferences in

order to construct the user’s utility function. Most PE methods set queries to the user

asking her to evaluate, order, or constrain potential system outcomes.

It is in the interests of vendors and services providers to take the use of recommender

systems into account, since, by exploiting this technology, they can [1]:

• Better understand user needs; (this is actually the main goal of a recommender

system).

• Increase their sales, because users receive recommendations with items that better

match their preferences.

Chapter 1. Introduction 3

• Sell large variety of items, because sometimes the recommenders tend to recom-

mend items that user likes them, but she would never select among others.

• Increase user satisfaction, since the user receives recommendations that she likes

and the recommender improves user’s interaction with the system.

• Earn user fidelity, because a properly functioning system treats every user as an

individual, and appears to know what to offer her based on previous interactions.

In this research, we design and evaluate a Bayesian recommendation agent, based on a

simple, fast, and easy-to-use elicitation and modelling process; and apply it in the movie

recommendations domain. By means of this process, our agent is able to recommend a

user items (e.g., movies) that best fit both her long-time preferences and current mood.

To achieve its objective, the agent maintains item types (summarizing item characteris-

tics); and user types (corresponding to modeled user preferences). Crucially, these are

both represented as multivariate Gaussian distributions over ranges of values (ratings),

describing the degree to which an item is composed of certain attributes (e.g., movie

genres); and the degree to which a user likes the particular attributes, respectively. This

allows for the establishment of a correspondence between user and item types: intu-

itively, a user model is viewed by the agent as being an amalgamation of items this user

likes. We term this the “you are what you consume” idea (we discuss its origins in Chap-

ter 2). The employment of Normal-Inverse Wishart (NIW) conjugate priors to model

agent beliefs about types guarantees that these beliefs can be readily updated.

Now, to learn about a specific user’s current mood, we first only ask her to rate a small

number of demonstrative items (“demos” for short; e.g., movie trailers), also represented

by multivariate Gaussians (just like other items), and which are selected based on the

current agent beliefs about user type. Each rating is treated as a unit, that is, we do

not ask the user to rate different item attributes. We then employ these ratings in an

innovative way, interpreting them as an indication of the number of samples to take from

the corresponding demo type; i.e., to indicate a demo’s “weight”, or, to put otherwise,

the “degree of correspondence” that the specific demo has with user preferences and

current mood. This is reasonable, as a user’s rating of, e.g., trailers, intuitively reflects

her current mood—which is, nevertheless, not independent of her long-term tastes. The

agent takes this into account: each demo presented was already selected according to

perceived user type—in this manner, long-term user preferences are incorporated in the

choice of demos.

The samples thus collected are then utilized by a Bayesian updating process that infers a

temporary demo-based user type, given demo ratings. Having the demo-based user type,

we can then search for the best possible match (employing a KL-divergence metric) with

Chapter 1. Introduction 4

an item to actually recommend—and which is not necessarily one of the demos shown

earlier. The selected item is then presented to the user, who rates it, leading to an

update of her overall user type.

The overall recommendation process effectively corresponds to a Bayesian exploration

approach in this domain—since, when selecting demos or items to present to the user,

our method optimises with respect to Bayes-updated beliefs, rather than taking explicit

“exploration” actions. Moreover, intuitively our method allows for a better user expe-

rience, and implicitly helps the user “discover” more about her own real preferences,

as it does not rigidly disallow suggestion possibilities or prune vast parts of the search

space (as methods relying on explicit user statements about their preferences or ratings

probably would), but only makes suggestions given its probabilistic beliefs regarding

user preferences. For interest, we devised and tested certain additional variants of our

approach, which employ alternative (Bayesian and non-Bayesian) exploration methods

when selecting a demo or item to present to the user. One of these variants most prob-

ably constitutes the first adaptation of the well-known Value of Perfect Information

Bayesian exploration heuristic [2, 3] in the recommendations domain.

For a recommendation system, the absolute goal is its reliable operation. To confirm

the proper operation, the evaluation of the recommendation technique, and thus of the

developed recommender, is vital. Before commercial use, the system has to undergo

an evaluation procedure. Using well known benchmark datasets, scientists can perform

extended simulated evaluations in order to ensure the correctness of their algorithms.

Additionally, those datasets offer a chance for comparison between various techniques.

After launching, the evaluation can be performed using real users. Users interact with the

recommender and their interaction produces useful conclusions about system’s usability

and efficiency. If such an evaluation is costly and risky, then focused experiments can be

performed by requesting specific users to interact with the system following predesigned

scenarios.

We evaluated our approach via simulations in the movie recommendations domain. As

a note, the use of multivariate Gaussians and Normal-Inverse Wishart distributions to

model types and corresponding beliefs in this particular domain is novel, as is the use of

“trailer” ratings for inference purposes. Our experimental results are highly encouraging,

demonstrating as they do that the agent quickly learns to recommend movies that receive

high user ratings. In particular, our agent manages to exhibit performance that is

comparable to that of a popular, state-of-the-art, collaborative filtering-based method

for movie recommendations. Importantly, it does so without the need of looking at

pre-gathered/pre-processed data involving the current user or her peers. As such, the

ever-present “cold start” problem, a constant challenge to CF methods due to ratings

Chapter 1. Introduction 5

scarcity (see, e.g., [4] for a discussion), does not apply to our personalized method—since

it does not employ any ratings of other users whatsoever, and does not aggregate past

ratings to predict future ones.

We now summarize the contibutions of this work. As mentioned before, this is a com-

pletely new approach for the recommendation systems domain:

1. First of all, this method is completely personalized, that is, we produce recom-

mendations based only on previous observations of a specific user. We don’t use,

nor do we have the need of other users recommendation data in order to make

recommendations to the specific one. We simply observe the behavior of the user

through her interaction with the system and recommend her items that she likes.

2. We propose a novel Bayesian Reinforcement Learning technique, which does not

rely on any given recommendation method. That is, we do not do Collaborative

Filtering or Preference Elicitation techniques, and we do not use content informa-

tion about items (like Content-aware methods do), or social relationships between

users. We perform a model-based learning of user preferences using Bayesian up-

dating of the user’s model.

3. We focus on user preferences and mood in combination to item features, drawing

inspiration from our “you are what you consume” concept. We model item features

as multivariate Gaussian distribution and build a user model through Bayesian

updating using the models of the recommended items. This updated model reflects

user’s preferences. Additionally, by exploiting demo items in a novel way, we can

also capture temporary changes of user mood, while many state-of-the art methods

do not have this ability.

4. This is the first time, that a non-Preference Elicitation (PE) recommendation

approach does not need to predict ratings or probability distributions over ratings.

We simply receive user ratings on recommended items and incorporate them in our

algorithm in order to update our beliefs about her, i.e. to update user model. With

this model at hand, we recommend items that best match it; that is, items that

better match users preferences. 1

5. We are the first who integrate elements of Bayesian reinforcement learning theory

in a recommendation system. Exploiting VPI exploration [2, 3], we are able to

“learn” a user model more efficiently.

1PE techniques do not manage ratings, but answers to queries. Based on those answers, they recom-
mend items that maximize user’s utility function.

Chapter 1. Introduction 6

6. Our algorithm is able to capture temporal effects caused by the acquisition of

ratings sequentially over time, since it holds a record for each user. In contrast,

other methods struggle to face the problem and need to make ad-hoc decisions or

use heuristics in order to take temporal effects into account, and to “fit” a huge

number of data-describing parameters to the dataset.

7. We easily incorporate new data in our system and we can tackle the problem of

“cold-start”, which most approaches struggle to overcome.

Our approach is quite simple and fast, but still generic and effective. At this point, we

should also state that the main ideas of this work, along with certain preliminary exper-

imental results, have recently appeared in an article of ours published in RecSys’13 [5].

The remaining chapters are organized as follows: Chapter 2 contains the necessary

background knowledge related to the proposed algorithm. In Chapter 3, we provide an

overview of previous work in the recommendations domain, and give a brief description

of our method, presenting the challenges characterizing this domain, along with the way

we face them. Next, we provide a detailed presentation of our approach in Chapter 4

describing its main aspects, the applied exploration methods, and its application to the

movies domain. In Chapter 5, we present the results of the experiments we ran, and their

interpretation. In the end, we write down the conclusions derived from our research,

and our thoughts about future work (Chapter 6).

Chapter 2

BACKGROUND

In this chapter, we introduce our “you are what you consume” idea and provide the neces-

sary background regarding the proposed recommendation approach. Bayesian updating

is the “tool” that our agent uses in order to update her beliefs about user preferences.

Exploiting the prior knowledge in the form of conjugate prior, and the current obser-

vations, the recommender produces a posterior, which represents the updated deliefs.

Additionally, we give a description about the exploration vs exploitation problem, which

has to do with the dilemma of gathering more information or making the best decision

based on current information. Finally, we talk about Bayesian exploration and VPI,

which are used in our recommender.

2.1 Recommender systems: Main concepts and goals

A recommender system is an intelligent information system, i.e., it possesses adaptation

and learning abilities. Via learning, the recommender can become more effective and

improve the user experience. By this, the user is stimulated to better understand her

interests and, simultaneously, the system is enabled to collect further information and

build a more accurate user model. From the user’s perspective, the effectiveness of

a recommender system depends on multiple factors. A system should be trusty and

transparent. It has to allow users to explore new, not-tasted items, to provide them

with item details and to offer them the ability to refine the set of recommendations [6].

Regarding the necessary data in order to make recommendations, some methods are

based only on user ratings, while others exploit more complex data, like relation and

trust between users, content information and ontological structures, which may provide

more informative feeds to the recommendation process. Let us make a discrimination

8

Chapter 2. Background 9

between the data that a recommender has at its disposal during its life cycle, which are

observations and information about items and users.

First of all, items are the objects that the system has to recommend. They are stored

in the system’s database using a unique id or more sophisticated models. An item can

be characterized by a number of features. These features can be used by a recommender

in order to build a model. Additionally, each item has a specific value for each user,

which can be translated as the user’s satisfaction after the use of the item or the cost to

purchase it. The cost of an item becomes issue of high importance when the item has

high economic value, e.g., real estate, shares portfolio, investments. The system should

take into consideration all those facts.

Users, who interact with a recommender system, have their own characteristics and pref-

erences, and there are significant differences between groups of them. Recommendation

techniques have to model user preferences for incorporating and exploiting them. In the

literature, we meet many types of user modeling. Some methods use simple vectors or

lists that contain user ratings. Some others use modeled information about user likings,

personal information or behaviors, while others exploit relationships and trust between

users or groups of them.

A recommender system should create relations between users and items in order to be

able to make recommendations. Such relations can be created based on observations

of user-system interaction. Depending on the system’s design and the recommendation

technique, the user leaves her traces back explicitly or implicitly. That is, observation

data can be ratings, tags, interpreted behaviors (e.g., click on, pause, leave page, etc.),

queries or answers.

Herlocker et al. [7] define 11 tasks that a recommender offers or a user can succeed using

a recommender:

1. Find good items: The system recommends to a user a ranked list of items that

she likes them.

2. Find all good items: The recommender has the ability to recommend all the avail-

able good items.

3. Exploitation of content information: The system recommends items exploiting the

available content information.

4. Recommend a sequence of related items: The system recommends related items,

which supplement a sequence, for better and continuous user satisfaction.

Chapter 2. Background 10

5. Recommend a group of items: The system recommends a group of related items

which can be considered as a complete one.

6. Browse items: The user has the ability to browse the available items without

“consuming” anyone of them.

7. Find a reliable recommender: The recommender offers an additional functionality

that allows the user to test its behavior.

8. Improve the profile: The user can provide additional information to the system

about her preferences.

9. Express beliefs: The user wishes to contribute on enhancing the knowledge-base

of the system providing her ratings and likings.

10. Help others: The user wishes to help other users with her opinion for items that

she had already tasted.

11. Influence others: Some users just aim to influence other users’ decisions.

Here, we should remark that such a system must serve equally the needs of both the

system itself and the user.

2.2 The “you are what you consume” idea

Aristotle, the ancient Greek philosopher, quoted that “We are what we repeatedly do.

Excellence, then, is not an act, but a habit.”1. This quotation says that doing some-

thing again and again leads to acting perfectly out of habit. Interpreting this in terms

of recommendations, we can say that observing user’s sequential actions, we are able

to indirectly infer an accurate model about her habits—our ordinary actions reflect our

habits. Thousands of years later, Steve Jobs quoted the following: “It’s not the cus-

tomers’ job to know what they want.”. Intuitively, this is a key assumption for the

domain of the recommendations.

Generally, the items we consume leave their marks on us; they characterize us uniquely.

The products, that someone uses, can shape the person she will be [6, 8]. Thus, the higher

the value of a consumed item, the higher its impact on customer’s life. Additionally,

tasting new items often causes changes in someone’s character, making her different [6, 8].

All these facts form the intuition behind our “you are what you consume” idea, under

which we developed the proposed approach.

1According to William James Durant, an American writer, historian, and philosopher.

Chapter 2. Background 11

Respectively, consumer choice theory is part of economics, which tries to explain the

relationship between consumer choices and profit [9–11]. The key idea behind this theory

is that, the consumer tries to purchase products that increase her satisfaction, in relation

to the amount of money she affords to spend. Customers buy expensive items if their

budget is high, and less expensive ones if their budget is low. These choices are made

in an effort to maximize their perceived benefit from the transactions [9, 12]. Regarding

customer preferences, they are desires of an individual for the consumption of products,

which are translated into choices of items to consume. There is no decision making

without preferences [13]. The main reason we are interested in preferences, is that we

exploit them to model the way that people make choices.

Furthermore, customers need to achieve equilibrium between preferences, available money

and item’s value. The combination of these three factors differentiates the customers

and determines the decision to purchase a product—still, this combination makes the

decision making more complicated. Clearly, the preferences, in combination with the

value of the item, play significant role in the purchase decision [13]. In our case, and

interpreting the “you are what you consume” “literally”, our idea was to sequentially

build a user model, which is an amalgamation of items the user has shown to prefer to

consume. This is where recommendation systems come into the picture.

2.3 Bayesian updating

A key component of our recommendation agent is performing probabilistic inference

regarding the types of the system’s users, by means of Bayesian updating. In many

cases, there exists the need of estimating the parameters of an unknown probability

distribution—a model ; and Bayesian updating can be employed to this end. Key to a

computationally feasible application of Bayesian updating, is the use of Bayes rule, in

conjunction with proper conjugate priors describing our beliefs about the model [14].

In some detail, in the face of new data (observations) regarding the unknown model,

Bayes rule takes into account a prior distribution (reflecting our belief on the values of

the model’s parameters), a likelihood function and a marginal probability, in order to

derive a posterior. The likelihood function brings together the prior and the observations

and follows the form of the model. The posterior represents an updated belief about

the prior, taking into account the new data. One can then use these posterior beliefs to

derive new estimates of the parameters of the unknown distribution.

Both prior and posterior distributions must be of the same family—i.e., they must have

the same algebraic form. If that is the case, they are termed conjugate distributions.

Chapter 2. Background 12

Additionally, the family of the likelihood function gives rise to the choice of the prior’s

family. If the prior is appropriately selected to be conjugate for the likelihood, then

the posterior will be of the same family as the prior [15]. Conjugacy offers a closed

form for the posterior, allowing for the easy update of the prior—via straightforward

manipulations of the prior’s hyperparameters in the face of new evidence.

In our case, the data provided to the agent is in the form of a multivariate Gaussian,

corresponding to demo or item types. We also need to maintain the demo-based user

type or the overall user type, which will also be multivariate Gaussians. Since we are

not aware of the underlying type parameters—determining its mean and covariance

matrix—we can model the conjugate prior as a Normal-Inverse Wishart distribution

(NIW) [16, 17]. We can then readily update the prior hyperparameters using samples

drawn from the data2 to get the posterior ones:

µn =
κ0

κ0 + n
µ0 +

n

κ0 + n
x (2.1)

κn = κ0 + n (2.2)

νn = ν0 + n (2.3)

Λn = Λ0 + S +
κ0n

κ0 + n
(x− µ0)(x− µ0)T (2.4)

S =
n∑

i=1

(xi − x)(xi − x)T (2.5)

where x is the sample mean, n is the number of the samples and xi are the samples

from the data. Also, µ0, κ0, ν0,Λ0 are the known hyperparameters of the prior NIW

distribution. Specifically, ν0 represents its degrees of freedom, while µ0 (the mean vector)

and Λ0 (the precision matrix) are the hyperparameters that specify the multivariate

Gaussian component of the prior; and S is a scatter matrix, a statistic characterizing the

model’s covariance matrix and intuitively providing a measure of the samples’ dispersion.

Finally, the model’s parameters, mean (µ) and covariance matrix (Σ), can be calculated

given the updated beliefs, using an Inverse Wishart and a Gaussian:

Σ ∼ IW (Λn, νn) (2.6)

µ | Σ ∼ N(µn,Σ/κn) (2.7)

2In our case, we will be utilizing user ratings to determine the number of samples to draw from
different data distributions.

Chapter 2. Background 13

In our system, during the recommendation process, the very first Normal-Inverse Wishart

(NIW) prior has to be an uninformative one [16], which means that the hyperparam-

eters of the NIW take the following values: κ0 = 0, ν0 = −1, | Λ0 |= 0. Thus,

the updated hyperparameters of the NIW posterior after observing n samples become:

µn = x, κn = n, νn = n − 1, Λn = S =
∑n

i=1(xi − x)(xi − x)T . The next time the

user will use the system, these posterior hyperparametes will become the hyperparam-

eters of the informative NIW prior, and the new posterior will be updated through the

aforementioned formulas.

2.4 Exploration vs exploitation problem

A sophisticated recommender system must have the ability to explore user prefer-

ences [1]. Because of that, the agent has to face the dilemma of recommending items that

better match agent’s beliefs about the user or items that may gradually improve user

satisfaction and help to offer better future recommendations. This is the exploration

vs exploitation problem of Reinforcement Learning [18]. In a recommendations con-

text, without performing exploration, it is hard to improve user satisfaction and receive

higher ratings, but exploration might lead to temporary poor performance regarding

user ratings. In other words, exploitation helps agent to choose actions whose outcomes

come with high rewards, while exploration refers to the execution of actions, which pro-

vide better understanding of the environment and can significantly improve the agent’s

reward. Consequently, an intelligent system has to find the optimal balance between

making the best decision given current information and gathering more information.

Two commonly used types of heuristic exploration techniques are greedy and random

exploration. Random exploration selects actions randomly based on a uniform distri-

bution, while greedy exploration always selects the action with the highest expected

reward. There exists a specific kind of greedy exploration, called ε-greedy. This explo-

ration selects the action with the highest reward, but with a small probability ε, selects

a random action. Furthermore, there exist exploratory techniques that decrease their

exploration tendency; these are greedy in the limit exploration (GLIE) techniques. Ex-

ample of a GLIE technique is the Boltzmann exploration, where an action is executed

based on the Boltzmann probability. The temperature parameter T of that probability

is proportionate to the exploration tendency, i.e., as T is decreased over time, agent

becomes less exploratory.

Chapter 2. Background 14

2.5 Bayesian exploration & VPI

Many exploration techniques perform a kind of controlled exploration taking into account

the value of each possible action regarding the rewards received by the outcomes. Unlike

most “explicit” exploration techniques that use heuristics to guide exploration, Bayesian

exploration exploits prior knowledge of rewards and computes the posterior distribution

of them based on current observations. This posterior is used to guide the exploration.

Value of perfect information (VPI) gathers information through exploration [2, 3, 19,

20]. It exploits the fact that the information gain is higher in unexplored states; so,

by quantifying the value of information, this technique is able to optimally balance

exploration and exploitation.

In some detail, Bayesian exploration exploits agent’s beliefs about the environment where

she acts. Those beliefs enclose the modeled agent’s uncertainty about the state of envi-

ronment. The agent performs exploration based on her prior knowledge and the current

observations acting somewhat greedily and following an implicit exploration policy. Each

action is selected according to current state and beliefs. In model-based Bayesian ex-

ploration, models can be represented by prior distributions and be easily updated in

order to produce posterior distributions, which represent agent’s updated beliefs. The

posteriors are centered to the most possible environment states. For the updating of

the model the distributions must be sampled and the samples should be incorporated

in the model. Remarkably, an important advantage of the Bayesian approach is the use

of distributions; with them the agent’s uncertainty can be quantified and be taken into

account during the action selection procedure.

On the other hand, VPI exploration exploits the additional knowledge about uncertain

situations. Using this information, VPI can compute the gain from exploratory actions

and balance it against the cost of suboptimal actions, based on agent’s prior beliefs.

Moreover, exploring action a from state s has an expected cost. This cost is the difference

between the expected value of the current best action, and the expected value of a. Then,

the value of exploring a at s is defined as the difference between the gain and the cost.

The agent that performs VPI exploration, always selects the action that maximizes that

value. We present a detailed description of the VPI method in the subsection 4.3.1.

Chapter 3

RELATED WORK

A multitude of methods has been used for developing systems for automated recom-

mendations. Most established recommendation systems exploit user ratings over a large

number of items via the use of collaborative filtering (CF) methods, content-based meth-

ods, or a combination thereof, in order to make recommendations, while others use

techniques for learning user interests and recommend her a set of items. Additionally,

some approaches exploit preference elicitation (PE) theory or incorporate Bayesian net-

works to recommendation systems. Here, we review these approaches and highlight the

distinctive differences between these methods and our own.

3.1 Collaborative Filtering & Content-based techniques

Content-based methods [21, 22] usually make recommendations by analyzing the content

information of an item. They essentially postulate that items are recommended accord-

ing to the level of similarity between their description and the user’s profile information.

On the other hand, collaborative filtering [23, 24] is based on the assumption that, if

two users rate n items similarly, they will probably rate other items similarly as well.

So, collaborative filtering techniques use ratings from a specific user on some items (e.g.,

movies), and combine them with ratings of other users on a set of items in order to infer

about the ratings of that user on unrated items.

Additionally, the CF approaches usually use matrix factorization [25, 26] to produce

recommendations. They exploit the fact that there exist associations between users and

items and these associations are characterized by strengths, which can be quantified.

Those algorithms receive as input 〈user, item, strength〉 tuples and insert the data in

a square user-item interaction matrix. Then, they factor that matrix in order to rec-

ommend items. The Alternating Least Squares (ALS) [25] is a sophisticated matrix

16

Chapter 3. Related Work 17

factorization algorithm, which creates a new factor matrix containing only 0 and 1; 1

indicates the existence of a user-item interaction — while 0 its absence. This modi-

fication makes the factorization easier. The procedure is repeated for some times, to

improve results’ accuracy, and the final matrix is given as input to the next phase of the

recommendation algorithm. In the end, ALS recommends the items with the highest

corresponding user-item values.

Examples of hybrid systems that combine CF and content-based techniques are those

of [27–30]. In [27], Content-Boosted Collaborating Filtering uses a content-based predic-

tor to enhance existing data about a user and after that it uses collaborating filtering

to provide personalized recommendations. Debnath et al. [28] use a collaborative so-

cial network graph to assign weights on attributes of content-based recommendation

depending on how important they appear to be to the users; while Barbieri et al. [31]

intertwine Bayesian methods with CF, in order to group users into “communities” based

on their rating patterns. Another hybrid approach, which combines “social” (collabo-

rative) filtering and content-based techniques, uses ratings and additional information

about each movie, in order to classify movies as “liked” or “disliked” [30]. In [29], the

authors predict a user’s choices based on the choices of others, but also take into ac-

count her answers to system questions. Their recommendation approach uses machine

learning and cluster analysis. Using a support vector machine for prediction, the system

clusters the movies, selects movies from the dataset, and poses questions to the users.

The answers help the system refine the user-relevant movie set to recommend.

Another interesting application of CF on recommendations is introduced in [32]. Au-

thors use two popular collaborative filtering learning algorithms, probabilistic Principle

Component Analysis and Non-negative Matrix Factorization, on their interactive story

generation system, in order to compose a personalized story according to user story-

telling preferences. Plot points are included into the story by taking into account user

ratings on story parts she has already read, and ratings from other users.

Two recent works for CF are presented in [33, 34]. In [34], the authors try to face

the recommendation in situations with binary relevance data. They introduce a new

Collaborative Filtering method, called as Collaborative Less-is-More Filtering (CLiMF),

which is adapted to cases when only binary relevance data exists, e.g., the relationship

of two users in a social network. By optimizing a well-known evaluation metric, the

Mean Reciprocal Rank (MRR), this method models the available data. Authors define

the Reciprocal Rank (RR) for a given recommendation list of a user, by measuring

how early in the list is the first relevant recommended item. The connection between

MRR and RR is that the MRR is the average of RR across all recommendation lists

for each user. CLiMF optimizes a lower bound of the smoothed RR for learning the

Chapter 3. Related Work 18

model parameters, which are latent factors of users and items, and are used to generate

recommendations. Experimental results show that the CLiMF is effective and scalable,

and overtakes other state-of-the-art CF methods.

Shi et al. [33] are confronted with the problem of top-N context-aware recommendations

for implicit feedback systems, handling this as a ranking problem in CF. In the cases

of top-N recommendation systems, the quality of the recommendation lists that con-

tain items of binary relevance can be quantified using Mean Average Precision (MAP).

The authors propose a recommendation model for implicit feedback domains by directly

optimizing MAP. Specifically, they introduce a generic CF model that is based on a gen-

eralization of the matrix factorization technique to manage context-aware recommenda-

tions. Using tensors, they extend the matrix factorization to tensor factorization, which

extends the dimensionality of data. Therefore, that work proposes a new context-aware

recommendation method using tensor factorization for MAP maximization (TFMAP),

which is designed to work with implicit feedback domains and optimizes MAP for learn-

ing the model parameters. Additionally, the authors propose a fast learning algorithm for

the TFMAP exploiting properties of the Average Precision (AP) measure. Experiments

demonstrate that TFMAP behaves better than some state-of-the-art context-aware and

context-free approaches.

In [35], authors introduce a CF recommendation framework, the OrdRec, which doesn’t

treat user feedback as a simple number, but makes the assumption of the existence of

an order among the observed feedback ratings. This allows users have different internal

rating scales. The framework can be incorporated to CF algorithms that manipulate

numerical values, making them able to manage ordinal values. An important charac-

teristic of this technique is that it can predict a full probability distribution of the item

ratings, instead of a single rating for that item. Furthermore, authors exploit an ordinal

scale in order to map user actions during their interaction with the system. The specific

framework was adapted to a matrix factorization CF model called SVD++, and turns

its predictions into a probability distribution over an ordered set of values. So, given the

predicted rating distributions, the method tries to rank and recommend items to each

user. Experiments show that this approach is accurate and efficient.

Liu and Yang in [36] propose a CF method, “EigenRank”, that faces the item ranking

problem by modeling user preferences derived by user ratings. They measure the simi-

larity between users based on the correlation of their item rankings, rather item ratings,

and rank items based on the preferences of similar users. This ranking-oriented approach

directly addresses the item-ranking problem without the need of rating prediction phase.

Also, authors introduce two algorithms for item ranking: a greedy algorithm and a novel

random walk model.

Chapter 3. Related Work 19

Liu et al. with their work [37] propose the probabilistic latent preference analysis (pLPA)

model for ranking predictions by modeling user preferences with respect to a set of items

rather than the ratings of individual items. User preferences are inferred from user’s

observed ratings and items are modeled by a mixture distribution. Furthermore, the

pLPA model has the ability to capture user preferences and community structures. It is

based on a statistical model of the data and allows learning and inference on large-scale

data. Here, authors try to model user preferences in the form of paired comparisons,

which are binary responses that indicate whether a user likes an item more than another.

Experiments demonstrate that the method performs better than several CF approaches.

3.2 Preference Elicitation techniques

Utility theory-inspired preference elicitation (PE) techniques have also been tried out in

various recommendation domains (see, e.g., [38, 39]). PE tries to collect user preferences

in order to construct the user’s utility function. To do so, most Preference Elicitation

techniques set queries to the user asking her to evaluate, order, or constrain potential

system outcomes; while others try to translate a user’s interaction with the system to

preferences. After inferring user preferences, all Preference Elicitation methods make

recommendations that maximize the user’s utility function. Example of a recommenda-

tion system employing PE is the “Apt Decision Agent”, which attempts to learn user

preferences in the domain of rental real estate [39]. In that system, the user provides

the features of the apartment that she prefers and the system responds with a set of

apartments. Subsequently, that set is pruned based on the importance of each apart-

ment’s feature independently, since the user can state if and how much she is satisfied

about each feature. Although we consider utility theory to be extremely useful, we

decided against using Preference Elicitation in our work, as it would require the user

to participate in a lengthy and tiresome procedure of answering questions and setting

constraints.

Work in [38] is not related to recommender systems, but it is a representative example

about how PE techniques make decisions and how they exploit the VPI theory on the

decision making process. Those systems have to make decision with partial user’s utility

information about posible outcomes, so authors propose an approach that uses a prior

probability over user’s utility function, perhaps influenced by other similar users. After

that, they select queries for the utility elicitation based on the VPI measure of each

query, in order to maximize user’s utility.

In [40], authors propose a new technique for the computation of dominated queries;

queries with inferior user utility. The system is based on the assumption that the number

Chapter 3. Related Work 20

of possible user utility functions is finite, so the number of the query questions can be

limited. This method handles the limitations, like expensive computations and long list

of query suggestions, that a conversational system can face, by using a new technique

for the computation of dominated queries. Authors show that the number of suggested

queries is reduced and the computation of those queries is simplified. Additionally, the

system performs close to optimal, even if it doesn’t contemplate the true user profile.

It is shown that progressively expanding the number of profiles contemplated by the

system, the utility of the final recommended products can be increased.

This technique models a product using a n-dimensional Boolean vector with n attributes,

since authors consider products that can be described by their features. When a Boolean

vector’s attribute is equal to 1, it means that the product has that feature. In this paper,

only products with one discrete feature were considered. Also, queries are presented as

Boolean vectors too, and each attribute is equal to 1, when the user is interested in

products with the corresponding feature, and equal to 0, when she has not declare

interest on it. A user utility function (user profile) is a vector of weights. The attributes

model the importance that the user assigns to each product’s feature. The greater the

weight, the greater the importance. The recommender system suggests to the user how

to revise queries in order to selects products with higher utility. Those revised queries are

the AdviceSet. Queries with expected lower utility are not suggested and are considered

“dominated”.

3.3 Bayesian techniques

Most approaches, that try to incorporate Bayesian theory in their recommendation sys-

tems, are just limited to the use of Bayesian networks combined with the aforementioned

techniques, in order to predict user preferences or ratings.

For example, Ono et al. [41] have proposed a user’s movie preference modeling, using

a WWW questionnaire and a Bayesian network to model the collected data. They

use a small-scale interview to design a large-scale questionnaire in order to collect the

necessary data. After that, they select effective variables to construct the Bayesian

network and infer user preferences.

Rendle et al. [42] introduce a generic optimization criterion BPR-Opt for personalized

ranking and present a generic learning algorithm for optimizing model with respect to

BPR-Opt, the LearnBPR. They apply their method to two state-of-the-art recommender

models: matrix factorization and adaptive kNN. In this work, the ranking has to be

inferred from implicit user behavior. In this case, only positive observations are available.

Chapter 3. Related Work 21

Regarding BPR-Opt, it is derived through Bayesian analysis using a likelihood function

and a prior probability for the model parameter. Experimental results indicate that this

approach overtakes the standard techniques for matrix factorization and kNN for the

task of personalized ranking.

In [43], authors introduce a probabilistic method for personalized recommendations.

Their system, called Matchbox, exploits content information and CF information from

previous users behavior for predicting the value of an item for a user. In this paper,

users and items are represented by feature vectors. The model can learn user-item

preferences following three alternatives: (a) observation of a rating of each user on

specific item, (b) observation of binary user preferences and (c) observation of ordinal

ratings. Additionally, authors propose a message passing technique for efficient inference,

which uses a combination of Expectation Propagation and Variational Message Passing.

The work most relevant to ours is perhaps that of [44] and [45], which model users

and items using a common representation. Both approaches use vectors for modeling

purposes. [44] proposes a CF technique and uses a Bayesian network to support the

inference procedure. They model items using feature vectors, and users using vectors

which describe user’s liking for each item feature. These vectors are incorporated in the

Bayesian network in order to predict user ratings about unrated items using her previous

ratings on other items. On the other hand, [45] introduces a Bayesian hierarchical model

for content-based recommendations. They model each user as a k-dimensional vector

sampled randomly from a Gaussian distribution, and items as k-dimensional feature

vectors. Then, they incorporate data from all users in the hierarchical model in order

to predict a label-rating of an item for a specific user.

3.4 Other approaches

There exists a multitude of systems which use semantics and social choice theory for

making recommendations. Szomszor et al. [46] use movies folksonomy to enrich the cur-

rent knowledge with descriptions of movies and interests of users. The system creates

user profiles using folksonomy-generated movie tag-clouds, which reflect user interests.

Folksonomies are taxonomy-like structures that emerge when large communities of users

collectively tag resources, and tag-clouds are sets of keywords which depict user interests.

The system uses user ratings on movies in addition to tag-clouds in order to recommend

movies. Mukherjee et al. [47], on the other hand, developed a web-based movie recom-

mendation system that uses voting theory for movie rankings, and text-based learning

Chapter 3. Related Work 22

based on semantic movie features (like their plot summaries) to provide recommenda-

tions. Moreover, users can pose queries to constrain the results by specifying values on

some features.

In [48], the author presents a website which uses trust in social networks for making

movie recommendations. The website generates predictive personalized ratings based

on a trust inference algorithm, which employs ratings of other users on a movie and trust

among users, in order to calculate the rating of a user for that movie. Liu et al. [49] have

developed a movie social network that makes use of an hierarchical framework for person-

alized recommendations based on weekly rankings. This approach replaces traditional

rankings with a prior knowledge-independent hierarchical recommendation scheme, and

interactively produces personalized movie synopses for previewing. Also, the system

recognizes and exploits associations among movies, to facilitate user navigation through

them.

Elahi et al. [50] encounter cold-start and new user/item problem using Active learning

(AL), which presents items to the user and asks her to rate them. Those items are

selected in order to reveal user’s interests in the best way and to improve the quality

of the recommendations. Here, authors propose a novel AL rating request strategy that

exploits the knowledge of the user’s personality to predict the items a user will have

an opinion about. Furthermore, this technique borrows from psychology a model called

Five Factor Model (FFM) or Big Five dimensions of personality. Authors incorporate

their approach into a context-aware recommender system that recommends places of

interest to mobile users. This implementation takes the personality of a specific user as

input for a matrix factorization model in order to predict what items the user should

be requested to rate. So, using improved AL strategies, the method is able to provide

personalized rating requests even to users with few or without ratings. Experiments

show that the proposed AL method increases the recommendation accuracy and the

number of the ratings acquired from the user.

3.5 Our approach

The recommendation technique we present in this work differs to all aforementioned

approaches in many ways. First of all, we neither set questions to the user, nor use

textual information regarding an item so as to elicit user preferences. Moreover, we

do not rely on any kind of user classification or other users’ inferred preferences, but

attempt to fine-tune recommendations over time for each specific individual. That is,

we progressively build a user type for each individual, which gradually converges to the

real one. In contrast to most social networks, social choice-inspired and CF approaches,

Chapter 3. Related Work 23

we do not attempt to estimate user ratings; but just recommend the item which matches

the user preferences more closely.

Though to some extent conceptually straightforward, to the best of our knowledge an ap-

proach such as ours has not been used before in the literature. It is a simple yet generic

approach that combines elements from various techniques. The idea of modeling the

types of both the user and the object under recommendation by a probability distribution

of the same form is a novel one. Representing users and items as complete probability

distributions over a collection of features, instead of as, e.g., vectors of point-values cor-

responding to specific features’ weights, enables the implicit inference of latent features,

or hidden and otherwise unrepresentable feature mixtures, combinations, and intercon-

nections. Additionally, our translation of “demo” ratings into weights for guiding the

sampling process used during Bayesian updating is innovative, and allows us to build

a temporary user type that captures both current user mood and long-time preferences

simultaneously. In our implementation, we recommend only one item, which better

matches user preferences, in order to offer better user experience, but our algorithm can

easily recommend a top-N group of items, if so requested.

An important contribution of our work is the recommendation with emphasis on the

understanding of user preferences and the adaptation on them. We built our algorithm

based on this characteristic, while most works in the literature do not. Some works

do not take user preferences explicitly into acount [30, 32, 34, 35, 42], but they are

limited to exploit ratings and correlations between users. On the other hand, there

exist methods, which try to integrate the user preferences modeling procedure in their

algorithms. Methods like [36, 37, 43–45, 50] use simplistic feature vectors and other

simple techniques to model user preferences. Additionally, regarding PE approaches [38–

40], they are based on user preferences in a unique way. They exploit utility functions

in order to calculate users utility and infer their preferences.

Furthermore, unlike our approach, all of the aforementioned approaches need to predict

ratings, either as a simple numeric value or as a probability distribution over ratings.

They do perform simple or more advanced “learning”, since they have to understand

correlations between users and items, while some of them attempt to learn user pref-

erences. Also, all the methods that try to model user preferences, update their models

after every single user interaction.

At this point, it should be mentioned that, in the bibliography, there is no explicit,

clear distinction between completely personalized methods and not. For example, CF

methods like [27, 32] and methods that exploit data from previous users [37, 43], describe

their recommendations as “personalized”, because they use a user model in order to

Chapter 3. Related Work 24

recommend items. Instead, we produce completely personalized recommendations, since

we only exploit past observations from the current user to recommend her an item.

Finally, our method is not susceptible to external influence by massive influx of biased

users. By contrast, other methods have to introduce explicit (heuristic) terms, which

they use to account for user bias in user ratings [51]. Moreover, we are able to capture

temporal effects caused by the acquisition of ratings sequentially over time, while other

methods like BellKor [52] need to make ad-hoc decisions or use heuristics in order to

take temporal effects into account. Specifically, BellKor tries to predict future ratings

by fitting the previously observed ratings, trying not to overfit the observed data. This

technique uses tunable constants in order to control its algorithm. Also, it incorporates

effects which are not caused by user-item interaction, using suitable predictors that

however need to be modeled accurately; e.g., it attempts to capture temporal effects

introducing matrix factorization with temporal dynamics.

3.6 Challenges

The research on recommender systems is confronted with numerous challenges. Here we

try to summarize the challenges researchers in the domain face during the implementa-

tion of a recommender system. We now list several such challenges, identified in [1]; we

took these into serious consideration when designing our approach:

• Generic deployment : A generic recommendation approach has the ability to be

deployed in various recommenders recommending items from different natures.

That is, the system can recommend, depending on the application domain, items,

which vary from movies to share portfolios. Generality is guaranteed via the

appropriate modeling of users and items. In our case, we design a generic modeling

approach for users and items, which both are modeled in the same form using

multivariate Gaussian distributions.

• Scalability : This might be the most important feature of a recommender system.

The system must be able to manage large-scale data, since a database of a typical

recommender contains hundreds of thousands of items for recommendation and

millions of users. Experiments show that our technique can produce accurate

recommendations even in very large datasets.

• Diversity : The user usually needs to explore her preferences and taste items that

she never thought she likes. This is possible, if the recommendation approach

recommends her items, which differ in some way. We succeed to recommend

diverse items exploiting sophisticated exploration techniques.

Chapter 3. Related Work 25

• Long-term and short-term preferences capture: As “long-term” user preferences

are defined the preferences that have been inferred during user-system interaction

counting from the beginning. Instead, “short-term” preferences are those, which

enclose current user likings. A recommender should model both long-term and

short-term preferences in order to make valuable recommendations. In our case,

we model long-term preferences by gradually building a main user type and short-

term by a temporary user type. The temporary user type represents the mood of

the user during current session. Exploiting both user types, we are able to produce

recommendations based on both long-term and short-term user preferences.

• Exploration vs Exploitation: This is a mayor challenge for the modern recommen-

dation approaches. This problem is related to the “mentality” of the recommender

and its decisions, concerning whether to recommend items that are known to be

accepted and highly rated by the user or to perform a kind of exploration rec-

ommending not-yet-tasted items in order to gather more information and offer

better recommendations. In order to tackle this issue, we exploit advanced explo-

ration algorithms (Bayesian and VPI exploration), which effectively balance the

exploration and exploitation.

• Proactive operation: A proactive recommender is a recommender that makes rec-

ommendations, which are not directly associated with the user feedback. In this

case, the system has the ability to interpret implicit user preferences through its

interaction with the user. In our approach, we model users as multivariate Gaus-

sians and update their forms exploiting user ratings. This fact allows our algorithm

to capture user preferences that are related to latent item features and reinforces

the proactive recommendations.

• Transparency : A system has to leave the user unaware about the recommendation

process. The user just needs recommendations that she likes without further non-

useful information. Our method performs a quite simple user-system interaction

procedure, requesting user ratings and recommending single items.

• Time factor : An important feature of a recommender is the quick responses to

user requests. Because of that, we apply a fast and lightweight recommendation

process and the user receives a recommendation after some fractions of a second.

• Privacy : The privacy of user personal information is of great importance in the

domain of information systems. A recommender system collects personal infor-

mation and using this is able to build a complete and accurate user profile. This

user profile must be stayed away from unwanted processing. Regarding this, we

succeed to create safe user models that keep secure all user information. With

Chapter 3. Related Work 26

the exploitation of multivariate Gaussian distributions we can model user prefer-

ences in such a way that only our system is able to process them. That is, user

information is incorporated to a Gaussian, so it is implicitly stored and it can be

processed by our system only. Therefore, we secure user preferences and prevent

someone from eliciting explicit conclusions about them.

Chapter 4

A BAYESIAN

RECOMMENDATION

PROCESS

Here, we describe our Bayesian recommendation system in detail. As mentioned, we

were motivated in its design by the “you are what you consume” concept, which means

we use the same distributions to model both users and items. Below, we define the form

of the distributions we used for modeling items and user preferences. We describe the

way a temporary user type is built based on specific demo types, and how that user type

guides the decision making process in order to recommend the appropriate item. The

user preferences are enclosed in an overall user type, which is the principal regulator of

our system. Our agent is able to perform various additional action selection methods.

These methods are a VPI-based and a Boltzmann exploration one, and are presented in

detail in this chapter. Furthermore, we present the way we tackle large databases by

clustering items in groups given their similarity. Finally, in this chapter we describe the

application of these ideas in the movies domain.

4.1 User modeling

The choices for representing item and user types are key to the success of our recom-

mendation system, as the agent needs to be able to infer a user type based on item

types and user ratings. In this work, we present and apply a novel modeling technique

using multivariate Gaussian distributions to model both items and users. This enables

our agent to easily perform Bayesian exploration and update her beliefs about the user

28

Chapter 4. A Bayesian Recommendation Process 29

preferenses. Because of that, she can also infer about latent [37] item features and build

a more accurate user model.

4.1.1 Item/demo type

Each item type is modeled as a multivariate Gaussian, and each variable of the Gaussian

corresponds to a specific item attribute (e.g., specific movie genre). The probabilities are

distributed over ratings, which are provided in some scale of choice. In our system, we

define item types to be k-dimensional Gaussians, corresponding to the k most important

item attributes.

Now, let us describe the exact form (and attribute values) of a multivariate Gaussian

representing an item. The mean is essentially determined by the ratings of the item, so

it is an 1×k vector which contains values equal to that item’s average rating—under the

assumption that the item rating corresponds to every attribute available. Of course, one

cannot be certain about the rating of an attribute not associated with the item (e.g.,

genres not associated with movies), but this is taken care of by the way we construct

the covariance matrix.

Specifically, an item’s k×k covariance matrix is constructed as a diagonal covariance

matrix [53], assuming that the item attributes are independent of each other. Each

element on the diagonal is associated to an attribute, and the element’s value depends

on whether the item is associated with that attribute or not. We assume that the

uncertainty about the rating of the actual attributes of the item is small, and thus set the

values of the corresponding elements to 1. In contrast, one has high uncertainty about

those attributes not associated to the item, thus we assign a σ2 = 20 for those diagonal

elements (see Appendix A, for more details). Finally, note that a demo associated to a

particular item has a demo type that is exactly the same with that of the corresponding

item.

4.1.2 Beliefs as user type

The Gaussians for the user and demo-based user types have the exact same form as that

of items. The agent, however, needs to store and update beliefs about these types. As

already mentioned, these beliefs take the form of Normal-Inverse Wishart (NIW) priors,

which can then be easily manipulated to infer the corresponding types as k-dimensional

Gaussians, and match them to items as required by the system.

Demo-based user type is a temporary (current session life-cycle) type, and composed by

the demo types and the corresponding ratings through Bayesian updating. This type is

Chapter 4. A Bayesian Recommendation Process 30

Figure 4.1: The overall recommendation process.

responsible for the selection of the appropriate recommended item. On the other hand,

the overall user type is permanent and gradually built up based on the recommended

item types and the user ratings on them. This user type guides the selection of the demo

items during every recommendation session.

4.2 The recommendation process

We have already described the main intuitions and key ideas of our approach in the

previous chapters. Here, we provide a more detailed picture of our system’s architecture

and overall recommendation process, also summarized in Figures 4.1 and 4.2.

When a user enters the system, she is shown and asked to rate a number of 5 demos.1

The agent decides which demos to show based on her knowledge about the user—i.e.,

the stored user type. Thus, she presents demos that most closely match user preferences,

as these have been embodied in the user type so far. In the case of a new user, the agent

shows again 5 demos, but now those have few common features, since they are—out of

1The number of projected trailers (demos) used in our experiments was decided to be “5”, as a
tradeoff between receiving enough information for accurate inference of user preferences, and avoiding
user distraction and frustration [54, 55]. Of course, when testing the agent with actual human subjects
in real time, the number of trailers shown and their length will definitely have to be adjusted according
to the users’ reaction and perceived frustration levels. However, our main objective in this work is to
evaluate the potential of our novel Bayesian user modeling method. Thus, while adjusting for specific
real-time usage concerns in a given domain is important, current parameter choices are adequate for
confirming the soundness of this approach.

Chapter 4. A Bayesian Recommendation Process 31

Figure 4.2: (a) Deriving the demo-based user type. (b) Deriving the user type.

necessity—selected randomly. Then, the user provides a rating for each demo, and a

Bayesian updating process is used to create the demo-based user type from rated demo

items.

Bayesian updating actually takes place two times during the recommendation process,

firstly to infer a temporary, demo-based user type; and, secondly, to update the over-

all user type. The process takes into account user ratings regarding demos or items

shown to the user, and, given the ratings, samples the respective demo or item types

the appropriate number of times; and uses these samples to come up with an (updated)

system-inferred type regarding the user. This can be done given the fact that the user

type (“demo-based” or not) is of the same form as the items’ type, and via the proper use

of conjugate NIW priors. The intuition is that, in the absence of explicit data regarding

the user type (which is the model whose parameters we need to infer), we utilize user

ratings as an implicit way to indicate the extent to which a user “associates” herself with

the demo or item she is shown. Therefore, we can then sample the model this item (e.g.,

a trailer or a movie) originates from a number of times (proportional to the degree of

the user’s liking of that item), and treat these samples as new evidence for the Bayesian

updating process. It is important to note that, to ensure the efficiency of the update,

the number of samples must be high enough. To achieve this, we multiply the rating

with 100, thus guaranteeing that hundreds of samples are used during an update.

In more detail, the user observes and rates the first demo item (e.g., watches and rates

Chapter 4. A Bayesian Recommendation Process 32

the first trailer). Then, the system takes rating×100 samples from the demo type distri-

bution of that demo item, and updates the posterior’s hyperparameters based on those

samples and the hyperparameters of the demo-based user type prior (which has to be an

uninformative one [16]). Subsequently, the user watches and rates the second demo and

the system samples that demo type and updates the hyperparameters, in the same way

as for the first one—but now the posterior of the first step has become the informative

prior of the second step. After all these updating steps, the hyperparameters of the NIW

distribution can be used to estimate the parameters (µ,Σ) of the multivariate Gaussian,

which models the demo-based user type. Figure 4.2(a) summarizes this process.

Now, when the system has the final estimate of the demo-based user type, it has to

recommend a specific item to the user. To do so, it must search the database to find the

item matching that demo-based user type best. To this end, it uses the Kullback-Leibler

(KL) Divergence criterion [56]. The KL-divergence between a Gaussian t (modeling,

e.g., a demo-based user type) and a Gaussian i (corresponding, for example, to some

item type), of dimension d each, is given by:

KL(t ‖ i) =
1

2
log | Σ−1t Σi | +

1

2
tr((Σ−1t Σi)

−1)

−d
2

+
1

2
(µt − µi)TΣ−1i (µt − µi) (4.1)

where Σt, µt, Σi and µi are the distributions’ parameters, and tr(·) is the trace of the

corresponding matrix [57]. The lower the KL-divergence between two Gaussian-modeled

types, the greater their proximity. This is the item (e.g., the movie) recommended

to the user. Notice that this item might not be one of the demo items shown to the

user before recommendation. This effectively corresponds to a Bayesian rather than

a heuristic exploration approach in this domain: the system employs its probabilistic

beliefs regarding (long-term) user type and (short-term) demo-based user type in order

to come up with a recommendation; and makes recommendations based on beliefs given

sampled evidence, rather than, e.g., greedily matching a demo item.

Subsequently, the user puts a rating on the item (after, e.g., watching the movie). Then,

the system performs another Bayesian update, resulting to a new user type estimate.

The Bayesian updating of the user type is similar to the demo-based one; but now the

rating×100 samples collected are drawn from the distribution corresponding to the item

the user was finally recommended and rated only (Figure 4.2(b)). Note that user type

and corresponding beliefs are stored for future use, unlike the demo-based user type

which lasts only for the current session. Thus, in the case of a future system use by a

known user, the hyperparameters of the posterior from which the current user type was

inferred, will be the hyperparameters of the (informative) prior for deriving the next user

type. Moreover, as stated, the updated and stored user type serves as a prior to guide

Chapter 4. A Bayesian Recommendation Process 33

the system to select demos. This is also done via using the KL-divergence minimization

criterion.

4.3 Alternative action selection methods

The “basic” Bayesian method described above behaves “greedily” wrt. beliefs when

selecting a demo or item: it just picks the one with minimum KL-divergence from the

Bayes-updated user type. We also devised alternative action exploration techniques, to

assess whether these would lead to improved recommendation decisions. Value of perfect

information method assigns a value on each available item and recommends the one that

maximizes the agent’s reward, while Boltzmann selection recommends the item with the

higher probability.

4.3.1 VPI-based selection

The first of these techniques attempts to account for the expected value of perfect infor-

mation (VPI) [2, 3, 19] characterizing the various “agent actions”—i.e., in this domain,

potential recommendation choices. The rationale behind this technique is that a choice

has a value not only because of its immediate benefit to the user, but also because of the

information it relays with respect to user preferences. Intuitively, if a recommendation

and observed user reaction lead to a reassessment of what the user really prefers, then

this recommendation action carries a high information value. Thus, the VPI exploration

technique, adapted for the recommendation domain, attempts to “simulate” various

alternative user type reactions to future recommendations; calculates the value of infor-

mation gained from these reactions when compared to the thus far modeled user type’s

expected behaviour; and averages out these results to come up with an information gain

estimate that is used to “boost the desirability” of the recommendations.

In more detail, let us suppose that the reward that some user derives from a specific item

is reward= f(KLdivergence) =M − bKLdivergence/Mc, where M is the maximum

rating the user can give to a movie (e.g., M = 10). We define as i1 the item with the

highest reward r1 for the user (given the model built for her so far), and as i2 the second

best with reward r2. Consider now an item i selected for recommendation to a user

type j (possibly different to the type modeled for the user so far), and assume that this

in fact represents the “actual” type for the user—therefore, presenting this user type

j with an item will lead to “perfect information” regarding the value of this item for

the user. (Of course, this is just an assumption the method makes, but allows it to

compute a value of information estimate, via “sampling” user types and averaging out

Chapter 4. A Bayesian Recommendation Process 34

their behaviour.) Assume that this recommendation results to a user reward of ri for

item i. We distinguish the following two cases (in all other cases, the gain due to perfect

information is 0):

1. if i coincides with the item considered best for the user so far (i = i1), then the

gain from presenting the user with this item is either: (a) gainji = 0, for ri > r1

(since we derived no new information from presenting the user with this item: the

“perfect” information we got by fixing the user type to the assumed “actual” user

type j coincides with what we had already estimated—i.e., that i1 is the “best”

item for the user); or (b) gainji = r2 − ri, for ri < r2 (since we “learned” that the

item i is actually worth less to the user than the item considered so far to be only

second-best).

2. if i does not coincide with i1, then the gain from presenting j with i is: (a)

gainji = 0, for ri < r1 (since we only observed i to be sub-optimal, as expected);

or (b) gainji = ri − r1, for ri > r1 (since we now “learned” that i was actually

better than the item considered best so far).

Given this, our VPI exploration method works as follows: We estimate the modeled-so-

far user type2 by “integrating out” our NIW prior, as described in Section 2.3 (Eqs 2.6

& 2.7). Subsequently, for this integrated-out user type, we discover the i1 item with the

highest reward, and the second-best item i2. We then sample from our NIW prior a

number of s Gaussians, which represent “alternative” user types. (In our experiments,

we set s=10.) After that, we calculate for each j user type (corresponding to one of the

s sampled Gaussians), the rewards from presenting it with every i item, and compute

the corresponding gainji values, as outlined above.

The next step is the calculation of the average gain, gaini, for presenting an item i to

our user; this is computed by averaging out, over all s samples (i.e., over all user types j

sampled), the gainji gains estimated for this item. Finally, the VPI method selects (and

presents) the item I that maximizes the sum of the integrated-out user type’s reward

and the corresponding gain from selecting I:

I = arg max
i
{Vi = rewardi + gaini} (4.2)

4.3.2 Boltzmann selection

We also tried the well-known Boltzmann exploration [58] method to select the appropri-

ate demo or item. At each time step t, this method assigns a selection probability to all

2This can be a long-term or a short-term user type, depending on whether we are attempting to
select demos or actual items.

Chapter 4. A Bayesian Recommendation Process 35

available actions:

Pr(i) =
eUi/T

Σn
j=1e

Ui/T
(4.3)

where T = c · αt, with c a constant and α < 1 . An action i is chosen with prob-

ability proportional to its utility Ui; and with T decreasing over time, exploration is

progressively reduced.

We tried Boltzmann selection with two different utility functions in our experiments.

The first of these methods, simply called Boltzmann, employs a U function equal to

the KL-divergence between the user type and the item. The second one uses as U the

metric of the VPI method described above, i.e., sets Ui = Vi, where Vi is the quantity

in Eq. 4.2. We call this method Boltzmann-VPI.

4.4 Action selection methods: the details

As mentioned before, our main algorithm, Bayesian exploration, is by its nature greedy

wrt. beliefs. That is, when the agent has to select 5 demos or an item to recommend, she

always chooses those demos/items that better match the user type or the demo-based user

type, respectively. Regarding VPI exploration, when it is applied, there exist significant

changes at the selection phases based on the theory of the subsection 4.3.1. During the

demos selection phase, the agent samples from the user type 10 Gaussians necessary

for the VPI procedure, while when VPI is also applied for item selection, 10 additional

Gaussians are sampled from the demo-based user type this time. We should remark

that these 10 Gaussians are not directly relevant to those ones from the demos selection

phase. Continuing, Boltzmann exploration alters the “basic” demos/items selection

by assigning a probability to all available options. When the Boltzmann exploration

is applied for demos selection, the 5 demos with the highest Boltzmann probabilities

are selected to be shown to the user; and when it is applied both to demos and item

selection, the demos are selected as before, while the recommended item is that with the

highest Boltzmann probability among all available items for recommendation. Finally,

the Boltzmann-VPI exploration method is composed from the combination of VPI and

Boltzmann explorations on demos or item selection and leads to a new user utility

function (where the VPI metric Vi is used as the Ui utility factor) for the Boltzmann

probability:

Pr(i) =
eVi/T

Σn
j=1e

Vi/T
(4.4)

As a remark, we also tested an additional method called BRX (Bayesian Random Ex-

ploration), which didn’t display essential differences from the other variants (see Ap-

pendix B, for more details on this method).

Chapter 4. A Bayesian Recommendation Process 36

4.5 Tackling large databases

To avoid the exhaustive search of demos and items inside large databases (10’s of thou-

sands items), we apply clustering methods on the set of stored items. The clustering

technique we use is the Bregman hard k-means clustering, adapted to the Kullback-

Leibler Divergence [57]. This approach reduces significantly the number of comparisons

between user and item types. For example, if the database contains 1000 items, which

are clustered into 10 clusters of 100 items on average each one, the system has to carry

out 110 comparisons: 10 to find the appropriate cluster, and 100 to find the appropriate

item; instead of 1000 comparisons without clustering. Moreover, clustering is executed

offline, and only occasionally: once when the database is created initially, and every time

a new item is added in it. Note that after a few hundreds of recommendations leading

to items being removed from their clusters, the need for reclustering arises. This is not

a problem, since it can be executed off-line.

As mentioned above, the clustering was implemented using the Kullback-Leibler hard

k-means, a variation of the Bregman hard k-means clustering [57]. The algorithm begins

by selecting at random n items to be the clusters’ centers, and then follows the principles

of the standard k-means algorithm—but in this case the comparison between the mul-

tivariate Gaussians is performed with respect to the Kullback -Leibler (KL) Divergence,

and the stopping criterion is met when the difference between the Kullback-Leibler losses

of two succesive iterations goes below 0. The Kullback-Leibler loss function is given by

the following formula:
n∑

l=1

∑
pi∈Cl

KL(cl ‖ pi)

(where cl is a cluster center, and pi an item in that cluster).

4.6 Application to the movies domain

We chose to apply our method to movie recommendations, an important domain that

has inspired much research in recommendation systems. Here, items correspond to

movies; demos correspond to movie trailers; and we use the term trailer-based user

type to refer to a demo-based user type. Each movie type is modeled as a multivariate

Gaussian, with each of its variables corresponding to a movie genre. The probabilities

are distributed over ratings, which are provided in some scale of choice (e.g., 1 − 10 or

1 − 5). To create these multivariate Gaussians, we were inspired from the MovieLens

(http://www.grouplens.org) datasets, which are actually used in our experiments below.

These datasets comprise of ratings provided by thousands of users on thousands of

Chapter 4. A Bayesian Recommendation Process 37

movies. In the MovieLens dataset containing 1 million ratings, movies are characterized

by 18 specific genres. We therefore define movie types to be k-dimensional Gaussians

with k = 18 in our experiments, involving real MovieLens ratings.

The form and attribute values of such a Gaussian representing a movie or a trailer, are

described below. The mean depends on the overall MovieLens rating of the movie, so it

is a 1× 18 vector which, on each dimension, contains value equal to movie’s rating. We

are assured about the rating of a genre associated with the movie, but what about the

rating of a not associated genre? As mentioned above, this uncertainty is modeled via

the values of the covariance matrix elements.

A movie’s 18×18 covariance matrix is constructed as a diagonal covariance matrix [53],

assuming that each element on the diagonal is associated to a genre and the movie genres

are independent of each other. We set σ2 = 1 for the diagonal elements corresponding

to actual movie genres. Contrariwise, we model the uncertainty about those genres not

associated to the movie assigning a σ2 = 20 (an empirically chosen value that is high

enough so as to not “disturb” the distribution) to corresponding diagonal elements. As

an example, consider the movie ’Movie’ with an overall rating of 7, whose genres are

action, sci-fi, thriller ; its type is the following: the mean vector’s entries all carry a value

of 7, while its covariance matrix is a diagonal one, with diagonal entries corresponding

to action, sci-fi and thriller variables having a value of 1, and all other (diagonal) entries

being equal to 20.

In addition, the Gaussians for the overall and trailer-based user types have the same

form as that of movies (i.e., 18-dimensional Gaussians). The agent needs to store and

update beliefs about these user types; and as already stated, these beliefs take the form

of Normal-Inverse Wishart (NIW) priors, which can be easily manipulated to infer the

corresponding types as 18-dimensional Gaussians, and match them to movies as required

by the system. Appendix A provides more details on the representation of the user and

item models.

Chapter 5

EXPERIMENTS

We ran several sets of experiments to validate our algorithm, which we call BayesY-

ouLikeIt (BYLI), and its variants, with very encouraging results. We gathered ag-

gregated results from various databases (simulated and real-world), and observed the

behavior of specific users on some datasets. Firstly, we tested the algorithm’s scalability

in large simulated databases. After that, we compared BYLI and its variants with the

LSMF state-of-the-art method in databases containing real-user movie preferences data,

and studied the behavior of specific users performing BYLI. Additionally, we examined

the recommendation abilities of our agent in datasets containing movies with mainly

low ratings, to verify whether the few preferred movies can be accurately identified; and

tested the method’s adaptability on changes of user preferences. Finally, we showed that

the use of demos helps the system to accurately capture user’s mood. The experimental

results demonstrate the efficiency and stability of our algorithm and show that we are

directly comparable to state-of-the-art approaches.

5.1 Scalability and mood capture

To test the scalability of our technique, we initially ran experiments with simulated

users on databases with 10,000, 20,000, and 40,000 randomly generated movies. Simu-

lated movies representation and ratings were based on those of the popular IMDB web-

site (http://www.imdb.com). Specifically, we defined movie types to be 16-dimensional

Gaussians, corresponding to the 16 most common genres available in IMDB. Also, we

generated 50 simulated users to interact with the system. Each simulated user is char-

acterized by its real user type, a 16-dimensional Gaussian distribution with a random

mean in the range of [1 − 10] on each dimension, corresponding to IMDB ratings; and

39

Chapter 5. Experiments 40

Figure 5.1: Comparison of average per recommendation ratings from 50 simulated
users on 200 movies for 10 runs, and average range of corresponding trailer ratings,

with and without mood alterations simulation.

a covariance matrix which is spherical, assuming that the real user type is confident

regarding the degree to which user likes each genre [53].

As stated in Section 4.5, we apply clustering methods on the set of stored movies in

order to avoid the exhaustive search for trailers and movies within large databases.

This reduces the number of comparisons between a user type and stored movie types.

In our experiments, the movies were grouped in clusters with 1,000 movies each, on

average (e.g., 20,000 movies clustered into 20 clusters), based on their similarity using the

Kullback-Leibler hard k-means, a variation of the Bregman hard k-means clustering [57].1

We also had to create a rating function to be used by the simulated users to assign

ratings. The function exploits the KL divergence between the real user type and each

trailer or movie type in our system—the less the divergence, the higher the rating:

rating=f(KLdivergence)=10−bKLdivergence/10c (where 0<KLdivergence<100).

In Figure 5.1, we can see that BayesYouLikeIt recommends movies that constantly

receive high (> 8/10) ratings, when tested on the 20,000 simulated movies database. The

experimental results for the 10,000 and 40,000 movie databases are of the same quality.

We also observe that, in an average iteration, the user is shown trailers whose ratings

range is about 3 degrees wide; and whose average maximum rating is almost always

higher than the (average) rating received for the movie shown during that iteration.

This is because Bayesian exploration: (1) does not necessarily return a movie that

matches the best trailer shown in an iteration; while, at any given iteration, there are

still on average many “good” movies whose trailers can be shown; and (2) enables the

system to actually project trailers of movies already shown at any iteration, and thus

1Note that after a few hundreds of recommendations leading to movies being removed from their
clusters, the need for reclustering arises. This is not a problem, as it can be executed off-line.

Chapter 5. Experiments 41

trailers of “preferred” movies might be shown to a user again—since these are just used

to detect the current mood of the user. At no point is a movie already shown to the

user actually recommended again; however, BayesYouLikeIt might re-use trailers derived

from the “believed” user type to infer the temporary user type (though in practice this

will occur only rarely in a large database).

We also evaluated the ability of our agent to capture temporary changes of a user’s

mood. We simulate such mood changes by periodically changing the mean values of the

“real user type” multivariate Gaussian distribution (which represent the preferences of

the assumed “real” user). Specifically, after every 10 recommendations, we randomly

change the mean of each variable of the corresponding Gaussian (via sampling a normal

distribution over the range of [1− 10]). The “mood changes” last only for 5 recommen-

dations, and then the real user type returns to its original form. Figure 5.1 confirms that

our method is able to successfully capture user’s mood, since it constantly recommends

movies that are subsequently rated highly. Indeed, our method’s performance appears

to be robust, and is not negatively affected by mood changes.

5.2 Experiments on real-world data

Furthermore, we ran experiments to test our agent on data coming from real users,

that reflect actual human preferences and behavior. This kind of data also offer an

ideal testbed for comparison with other well known techniques. We used the MovieLens

dataset with 1 million ratings from 6,040 users on 3,952 movies. Thus, there is no longer

a need to generate simulated users and ratings: we can now have a user’s rating on a

movie (or trailer) by just referring to the real-world dataset.2 Nonetheless, an existent

drawback of this dataset is that the contained users are biased. Also, no clustering was

used in these experiments, since the number of the available movies was small. The

movies inside the system’s database are modeled as in Section 4.6, with a movie’s mean

being the average rating it has in the MovieLens dataset. Ratings are integers in [1−5].

We executed different sets of experiments with 200 recommendations each, using all

aforementioned variants for trailer/movie selection. For each such experiment, we em-

ployed 5 sets of 100 users each, consisting of real users with 200 or more ratings in the

MovieLens dataset. In some detail, we took the histogram of the number of ratings per

user in the dataset, and sampled 100 different users for each experimental user set in

accordance to that distribution. This ensures that there is no bias in the ratings used

2We should remark that since our methods do not predict ratings, the use of comparison metrics like
Root Mean Square Error (RMSE) or Mean Absolute Error (MAE) is not possible. Instead, we compare
the methods wrt. average per recommendation ratings.

Chapter 5. Experiments 42

(a) (b)

Figure 5.2: (a) Average per recommendation ratings, average range of correspond-
ing trailer ratings and movie ratings average mean absolute deviation for BYLI -
Boltzmann-VPI on trailers & movies across all users. (b) Typical run ratings of a

single, real user on 50 movies, and range of corresponding trailer ratings.

as input in the experiments. Also, each experiment involving a specific user set was

executed for 10 independent runs. We then sequentially produced 200 recommendations

to each individual user; and calculated the average per iteration ratings assigned by the

users, across all user sets and experimental runs.

Now, as explained in Section 4, BayesYouLikeIt progressively builds the user type, and

recommends the movie that best matches the trailer-based user type at each iteration—or

the one selected according to some variant exploration criterion. Indeed, in addition to

the “basic” BayesYouLikeIt (BYLI) algorithm, we ran experiments exploiting the VPI

and Boltzmann exploration methods described in Section 4.3. We used these criteria in

two different ways. First, we employed them only during the trailers selection phase of

the algorithm; and second, during both the trailers and movie selection phases. Boltz-

mann exploration parameters were separately set to: c = 1, α = 0.5 or c = 1, α = 0.9 or

c = 12, α = 0.9 (a more relaxed setup); and t ≤ 3, with t0 = 0 and ti+1 = ti + 1.

We compare our algorithm with an established recommender engine, built on the Apache

Mahout machine learning library, adapted to yield the Myrrix software.3 The algorithm

used by the engine is the large, sparse matrix factorization (LSMF) method [25, 26],

implemented using a modified version of the Alternating Least Squares (ALS) [25] matrix

factorization algorithm. LSMF requires a number of ratings to be entered in the system,

so that matrix factorization can be performed. Specifically, the experimental setup

uses a widely used implementation of the ALS matrix factorization algorithm, called

Myrrix, which is based on the Mahout machine learning library. Myrrix can be trained

with a comma-separated file containing 〈user id, item (movie) id, rating〉 tuples at its

initialization phase. Furthermore, it can accept ratings through the preference Myrrix

3http://mahout.apache.org; http://www.myrrix.com/design

Chapter 5. Experiments 43

Methods Average ratings

LSMF - pretrained 3.6848

LSMF - untrained 3.6540

BayesYouLikeIt (BYLI) - Bayesian exploration 3.6112

BYLI - VPI on trailers 3.5968

BYLI - VPI on trailers & movies 3.5911

BYLI - Boltzmann on trailers, c=1, a=0.5 3.5920

BYLI - Boltzmann on trailers & movies, c=1, a=0.5 3.5592

BYLI - Boltzmann on trailers, c=1, a=0.9 3.5922

BYLI - Boltzmann on trailers & movies, c=1, a=0.9 3.5522

BYLI - Boltzmann on trailers, c=12, a=0.9 3.5919

BYLI - Boltzmann on trailers & movies, c=12, a=0.9 3.5518

BYLI - BVPI trailers, c=12, a=0.9 3.5968

BYLI - BVPI on trailers & movies, c=12, a=0.9 3.5911

Random movies recommendation 3.5736

Table 5.1: Comparison of average ratings of all methods (across all user sets, recom-
mendations and experimental runs).

REST API method. Hence, depending on the state of the recommendation engine

(pretrained with existing data or untrained), we initialize Myrrix with or without an

initial training file. Next, for a set of iterations and a number of given users (randomly

chosen given specific restrictions) we call the recommend REST API method of Myrrix,

and check it against known ratings of each user, which constitute the test set. The actual

rating of a specific user taken from the test set, is used to update the recommendation

model.

In the experimental results, we include the results of a totally random recommendation

process, just to prove that our method does not behave randomly. In this setup, there

are no trailers shown to the user and a randomly selected movie is recommended to her

each time.

Figure 5.2(b) helps us gain further insights in BayesYouLikeIt behavior when recom-

mending movies to a single (real) user. We can see in the figure that, while learning,

BayesYouLikeIt might occasionally recommend a movie which the user ranks lower than

the trailers projected to her during that iteration; however, sometimes the algorithm

might also recommend a movie that the user prefers to all trailers shown to her during

that iteration. Over time, BYLI returns movies that receive consistently good ratings.

This fact is confirmed by the average per iteration ratings results of Figs. 5.2(a) and 5.3.

Fig. 5.2(a) shows that BayesYouLikeIt manages to recommend movies that are on av-

erage highly rated by the users.4 Moreover, average ratings deviation can be observed

4Fig. 5.2(a) depicts the BYLI-Boltzmann-VPI on trailers and movies variant; results are similar for
other BayesYouLikeIt variants.

Chapter 5. Experiments 44

to decrease over time, demonstrating an ability to “learn” and progressively become

more confident on assessment of users’ preferences. We note that the over time decrease

in ratings average absolute deviation is a bit sharper for the variants using VPI (or

Boltzmann-VPI) on both trailers and movies. This figure also shows the (average) max-

imum and minimum trailer ratings received by users (per iteration). Maximum trailer

ratings are consistently higher than ratings received for movies recommended, for the

same reasons as in the experiments with simulated users above.

In Fig. 5.3(a), we observe that the VPI and Boltzmann exploration methods (and their

combinations) are successfully intertwined with our “basic” Bayesian algorithm, since all

BYLI variants return recommendations that receive consistently high ratings from the

users. Here, we should highlight that the VPI alternatives follow a quite smooth behavior

similar to this of “basic” Bayesian. Average ratings across all iterations, depicted in

Table 5.1, confirm that all BYLI variants perform very similarly, with the “pure” BYLI

method achieving a slightly better average score than the rest. As we mentioned before,

we examined a combination of VPI and Boltzmann explorations resulting Boltzmann-

VPI (BVPI), which we used in our experiments. The results of this variant for all

Boltzmann parameters value settings were identical with the corresponding results of the

VPI variant, e.g., the Boltzmann-VPI on trailers with c = 1, α = 0.5 or c = 1, α = 0.9

or c = 12, α = 0.9 gives results equal to those of VPI on trailers variant. This effect is

caused by the use of the VPI method metric as the Boltzmann probability’s U function.

This utility function is quite strong and the VPI method completely influences the

demo/item (trailer/movie) selection procedure. Because of that, we do not extensively

demonstrate the results given by the Boltzmann-VPI variant.

Figure 5.3(b) then compares our method to LSMF. Note that LSMF was tested under

two assumptions in these experiments. First, on the assumption that it is completely

unaware of any user preferences at system start (this is marked as “LSMF-untrained”

in the figures); and on the assumption that the system is pre-trained on ratings data

from all other (i.e., the 6, 040− 100 = 5, 940 non-picked) users in the database (“LSMF-

pretrained”). These results clearly demonstrate that (a) the average user ratings value

of BayesYouLikeIt recommendations is about 3.5− 3.7 (out of 5); and (b) although our

method does not depend on other users’ ratings in order to recommend movies to a user,

ratings received are almost indistinguishable in average quality to those received when

using the LSMF technique.

Moreover, we can observe that LSMF, being a CF method, has to first collect a small

number of ratings from users in order to be able to return good recommendations;

and thus cannot respond to a user request in a meaningful manner during the very

first recommendation. This is clearly visible in Fig. 5.3(c). In contrast, our personalised

Chapter 5. Experiments 45

Figure 5.3: (a) Behavior of BayesYouLikeIt and its variants. (b) Comparison between
LSMF and BYLI. (c) Methods behavior during the first 10 recommendations. All sub-
figures depict average per recommendation ratings across all user sets and experimental

runs.

Chapter 5. Experiments 46

Methods user A user B user C

BayesYouLikeIt (BYLI) - Bayesian exploration 3.5580 3.7690 3.8060

BYLI - VPI on trailers 3.5700 3.7380 3.8035

BYLI - VPI on trailers & movies 3.5810 3.7390 3.6880

BYLI - Boltzmann on trailers, c=1, a=0.5 3.5645 3.7710 3.6370

BYLI - Boltzmann on trailers & movies, c=1, a=0.5 3.5495 3.7655 3.4465

BYLI - Boltzmann on trailers, c=1, a=0.9 3.5640 3.7785 3.6515

BYLI - Boltzmann on trailers & movies, c=1, a=0.9 3.5530 3.7555 3.4465

BYLI - Boltzmann on trailers, c=12, a=0.9 3.5640 3.7720 3.6545

BYLI - Boltzmann on trailers & movies, c=12, a=0.9 3.5475 3.7600 3.4490

BYLI - BVPI on trailers, c=12, a=0.9 3.5700 3.7405 3.8105

BYLI - BVPI on trailers & movies, c=12, a=0.9 3.5830 3.7370 3.6885

Random movies recommendation 3.5535 3.7655 3.5215

Table 5.2: Comparison of average ratings of each user (across all recommendations
and experimental runs) for each variant.

method can immediately suggest a good movie to the user. After the very first iterations,

LSMF is able to exploit knowledge of “similar” users ratings, and performs strongly—

but as the number of “preferred” movies drops (since our dataset contains a “closed set”

of movies), its performance drops too (Fig. 5.3(b)). BayesYouLikeIt does not start as

strong, but due to progressively converging to real user types, its performance is quite

stable throughout all recommendations. As a final remark, running on MATLAB on

a 2.20 GHz / 4 GB RAM PC, it takes a BayesYouLikeIt agent only about 0.3 sec on

average to recommend a movie to a user.

5.3 Recommending to specific users

In order to have a better insight about the specific user’s confrontation by our agent,

we randomly selected 3 users from the MovieLens dataset and executed for them all

the BYLI variants. These users belong to the 1st of 5 available 100-users sets. The

experimental setup was exactly the same as in the main experiments on MovieLens, i.e.,

200 recommendations for 10 independent runs for each user; and the results are consisted

by the calculated average per iteration ratings assigned by each user throughout the

experiment. With these experiments, we can distinguish the differences between the

BYLI variants executed on specific user, but also, the differences between the average

ratings assigned by different users taking recommendations by specific variant. The

overall average ratings of the 3 users for each variant are shown in Table 5.2.

Based on Figure 5.4, we draw the conclusion that every BYLI variant treats in different

way each user, exhibiting however a “constant” behavior. In other words, although

the users’ average rating plots differ comparing with one another, they still follow a

Chapter 5. Experiments 47

(a) (b)

(c) (d)

Figure 5.4: Average per recommendation ratings over all runs for 3 different users:
(a) basic BYLI, (b) BYLI-VPI on trailers, (c) BYLI-VPI on trailers & movies, (d)

BYLI-Boltzmann on trailers.

common “baseline” for each variant. Additionally, in those figures we see that the agent

has the ability to follow the pattern of each user through different BYLI variants, i.e.,

the average ratings of user B illustrate smoother plots than the corresponding of user

A in all variants.

Figure 5.5 also shows that all variants apparently behave differently for every user.

Furthermore, considering our agent’s “average” behaviors on those 3 users, we observe

that even though our agent demostrates similar behaviors around the average, there

are obvious differences between them. For example, users A & B rated on average the

recommended movies with ratings around 3.6, but for user B the average ratings range is

narrower than the range of user A. These conclusions are also “summarized” in Fig. 5.6,

where we can see the overall average ratings of the observed 3 users. In that figure, the

overall average ratings of user A are sometimes significantly lower than the ratings of

the other 2 users. Also, we can easily see that in the first 20 recommendations, users

B & C rated highly the recommended movies with ratings above 4, which means that

our agent has the ability to recommend, in the very first recommendations, movies that

users like.

Chapter 5. Experiments 48

Figure 5.5: Behavior of BayesYouLikeIt and its variants: (a) user A, (b) user B, (c)
user C. All subfigures depict average per recommendation ratings across all experimental

runs.

Chapter 5. Experiments 49

Figure 5.6: Comparison of the average per recommendation ratings of 3 users across
all variants for 10 runs.

5.4 Recommending from a dataset with mainly low-rated

movies (real-world ratings)

It is crucial to safely certify that our method recommends, from the early stages of the

recommendation process, movies that users like them. Because of that, we designed an

experiment that allows us to examine if our agent has this ability presenting suitable

behavior. We used once again the MovieLens dataset. We created a set of users selecting

them based on the following criteria. Each user has rated at least 100 movies and a

maximum of 35 of them have received ratings 4 or 5 by that user; these movies we call

“preferred”5. Additionally, the average of the assigned-by-that-user ratings on those

movies is less than the MovieLens overall average movies rating, e.g., a user X has rated

115 movies, so the average of these 115 ratings is less than the MovieLens average rating.

The MovieLens overall average movies rating was calculated to be 3.5816. This user set

consists of 27 available users. Then, we took a subset of those users with a maximum

of 20 “preferred” movies (8 users only) and executed the experiment again in order to

test the method in an even more extreme case.

In this experiment, each user was sequentially recommended 50 movies in 10 independent

runs using: (a) LSMF -pretrained, (b) the basic algorithm, (c) 2 VPI variants (VPI on

trailers & VPI on trailers & movies), (d) the random recommendation process; we

chose the basic BYLI and the 2 VPI variants, since these are the main versions of

our algorithm. Then, we calculated the overall average per recommendation ratings

over all experimental runs of all users. Further, the purpose of this experiment was

the testing of agent’s ability to recommend movies for better user experience, although

5Because of the constraints, the minimum possible number of “preferred” movies for a user was 10.

Chapter 5. Experiments 50

Figure 5.7: Average per recommendation ratings over all users and all runs for 50
recommendations: (a) users with less than 35 “preferred” movies, (b) users with less

than 20 “preferred” movies.

the experimental dataset of each user mostly contains movies that she does not like

them. Conclusions can also be drawn about the pace of agent’s adaptation on user’s

actual preferences. The results of the experiment are presented below and show that our

method can quickly understand user’s liking and recommend her the desired movies.

Figures 5.7(a) and 5.7(b) show the results of the LSMF, the basic BYLI algorithm and

the VPI variants. We can see that the behaviors of all variants are quite similar with

the behaviors of the corresponding variants in the experiments described in Section 5.2,

although the average per recommendation ratings are lower, which was expected because

of the nature of the dataset. The VPI variants behave better than both the LSMF and

the basic BYLI, which means that they are able to infer faster the user preference. It is

important to comment the fact that the LSMF performs worse than all BYLI variants,

especially in the case of Fig. 5.7(b). Considering that the average rating of each user

over all the movies in her movies database is much lower than the MovieLens overall

average movies rating (3.5816), our method succeeds to receive overall average ratings

close to those averages (Tables 5.3 and 5.4). Also, note that, the behavior of the random

recommmendation process is incidental, since the movies used in this experiment receive

on average very low ratings.

For better insight, we illustrate results from recommendations on individuals—we se-

lected 3 specific users from the experiment’s “low rating” user set: the best (user A) and

the worst (user C) available, and a mid (user B) one (Table 5.3). In Figure 5.8, we can

see that there exist significant differences among the three specific users’ ratings in all

cases. However, we can detect similar confrontation of those users by each variant, i.e.,

the basic algorithm (Fig. 5.8(b)) mainly receives by users A and B ratings in the range

of [1.5 − 4] over 50 recommendations, while the VPI on trailers variant (Fig. 5.8(c))

receives ratings in the range of [2 − 4.5], which means that the VPI addendum helps

our method to learn user preferences sooner.Regarding the case of user C (the worst

Chapter 5. Experiments 51

Figure 5.8: Average per recommendation ratings over all runs for 3 different users:
(a) over all BYLI variants (basic BYLI, BYLI - VPI on trailers, BYLI - VPI on trailers
& movies), (b) over basic BYLI, (c) over BYLI - VPI on trailers, (d) over BYLI - VPI

on trailers & movies, (e) over LSMF - pretrained.

Chapter 5. Experiments 52

user A user B user C

average rating 3.1000 2.5714 1.3043

total ratings 100 112 138

ratings ≥ 4 35 23 10

Table 5.3: The average database ratings (i.e., over all ratings provided by each of
these users in the database) and the number of total ratings and ratings≥4 assigned by

users A, B and C for the experiments of Section 5.4.

user A user B user C

average rating 2.9660 2.2540 0.9800

LSMF
average “preferred” per run 15.4 5.2 0

ratio of recommended “preferred” 44% 22.6% 0%

average rating 3.2020 2.3080 1.2040

BYLI
average “preferred” per run 17.5 5.4 2.3

ratio of recommended “preferred” 50% 23.5% 23%

average rating 3.3500 2.5600 1.3480

VPI on trailers
average “preferred” per run 20.1 9 3.9

ratio of recommended “preferred” 57.4% 39.1% 39%

average rating 3.3500 2.7240 1.0800
VPI on trailers

& movies
average “preferred” per run 20.6 16 1

ratio of recommended “preferred” 58.9% 69.6% 10%

average rating 3.1000 2.6060 1.2880

Random
average “preferred” per run 17.4 10.7 3.4

ratio of recommended “preferred” 49.7% 46.5% 34%

Table 5.4: The overall average rating, the average of the recommended “preferred”
movies and the corresponding ratio over the available “preferred” for each user, over

10 runs and the executed variants.

one), we can see that even if our method receives higher ratings in the last stages of the

experiment, it is still able to recommend the good movies of the dataset; in all the sub-

figures of Fig. 5.8, the raise of ratings of user C begins mainly after the first half of the

recommendation process. It is important to note that, in Figure 5.8(a), the average per

recommendation ratings of user A are close to the overall average per recommendation

ratings of the experiments on normal MovieLens datasets (Section 5.2), although her

dataset contains mainly low-rated movies. Compared with the VPI variants, LSMF falls

far, since it receives ratings above 3.5 only in the first 10 recommendations for the best

user (user A); and learns too late the mid user (user B) — receives high ratings after

the 40th recommendation. Considering the results of LSMF for the worst user (user

C), we can state that CF methods are incapable to offer recommendations, when the

user-item interaction data are few and the database contains a few good items.

Moreover, we took measurements about the number of the recommended movies that

users like, i.e., the number of the movies that users rated with high ratings (4 or 5).

The measurements were taken during the 10 runs of the 50 recommendations used in

Chapter 5. Experiments 53

the experiment, separately for each of the above 3 users. The results are presented in

Table 5.4, and enhance our conclusion that the agent has the ability to quickly “learn”

user’s likings and recommend her “preferred” movies in the early stages of the recom-

mendation process, even though the number of those movies is small. Considering that

each user’s dataset contains only a few good movies (35 for A, 23 for B, 10 for C), both

basic BYLI and VPI variants recommend many of them until the end of the experiment’s

run. Interestingly, the 2 VPI variants recommend the 39%-70% of the available “pre-

ferred” movies and receive average ratings greater than the overall average ratings of the

users’ datasets. BYLI seems to be weaker than VPI in this case; this fact demonstrates

the advantage we gain from the incorporation of the principled VPI heuristic in this

setting. A remarkable conclusion derived from those results is that our approach has an

advantage over CF methods, when the available data are sparse and full of low-rated

items, and does not need overfitting in order to produce good recommendations. Both

basic BYLI and VPI variants behave better and more stable than the LSMF, which

cannot reach the overall average ratings of users’ datasets, nor recommend high rate of

good movies.

5.5 Recommending from a dataset with mainly low-rated

movies (simulated ratings)

Following the experiment above, we designed a new one targeting the same goal, but

with some variations in the experimental setup. In this case, we exploited the movies

database and the users-movies correspondences provided by the MovieLens dataset, and

replaced all user ratings on all movies. Now, each user’s movies ratings inside the dataset

follow a Beta distribution in the range of [1−10] (the ratings’ histogram of a typical user

is shown in Figure 5.9), resulting an overall database average rating equal to 3.3775. We

used 5 user sets consisting of 50 users each one; each user had rated at least 200 movies.

We simulated 200 sequential recommendations on each user for 10 independent runs

and then, we calculated the overall average ratings as usual. For the purposes of this

experiment, we tested the performance of 4 algorithms; our basic algorithm, the VPI on

trailers and VPI on trailers & movies variants and a random recommondation process.

Here, we try again to observe how quickly our method can learn a user model, and if

can it recommend to the user the “good” movies that the database contains.

In Figure 5.10, we see the average per recommendation ratings over all runs over all

users for the compared algorithms. The ratings are ranged around 3.5. They are low,

but here we don’t aim to high ratings; we aim to ratings higher in the very first rec-

ommendations than the next, which testify that our method is quickly adapted to user

Chapter 5. Experiments 54

Figure 5.9: The histogram of the ratings for a typical user; experiments in Section 5.5.

Figure 5.10: A. Average per recommendation ratings over all users and all runs: (a)
200 recommendations, (b) first 25 recommendations. B. Average per recommendation
ratings over all users and all runs for the VPI variants (BYLI - VPI on trailers, BYLI
- VPI on trailers & movies): (c) 200 recommendations, (d) first 10 recommendations.

Chapter 5. Experiments 55

preferences, and recommends her all the preferred movies in the early stages of the rec-

ommendation process. Figure 5.10(b) shows the overall average ratings only for the first

25 recommendations of the experiment. In this figure, we observe that the basic BYLI

algorithm and the VPI on trailers variant overtake the 2 other methods in the first 5

recommendations. The fact that those 2 methods begin from higher rating levels and

end to lower, proves that they recommend the “good” movies (movies that receive the

higher possible ratings) first, and the others later.

We display the comparison of the 2 VPI variants in Figs. 5.10(c) and 5.10(d). The ratings

plot of the VPI on trailers variant looks smoother than the corresponding plot of the

VPI on trailers & movies variant. Furthermore, the first one recommends highly rated

movies until the 10th recommendation, therefore it is sooner adapted to user likings, as

illustrated in Figure 5.10(d).

5.6 Adapting to changing user preferences

Another major issue for a recommender system is whether it has the ability to detect

preferences alternations and be adapted to them. Suppose there is a user, who used to

use the system for some time and suddenly, she stopped the interaction for a long period.

During use period, the agent learned the user’s preferences and created her model based

on the possessing beliefs. Someday, that user decides to request recommendations again

by the system, but this time her preferences have radically changed and they no longer

correspond to the agent’s beliefs about her. The question is; can the system be adapted

to this new situation and accurately adjust user’s model in order to recommend her

again movies that she likes?

In this experiment, we created a simulated user and a corresponding movies database.

Required data about the user is her prior user type, which encloses agent’s beliefs col-

lected during the first period of use; and her real user type, which reflects “real” user’s

actual preferences. The movies database contains 600 movies; the 200 of them are movies

that the user was recommended during an assumed initial period of use, and the prior

user type was updated based on them. The next 200 movies were created in order to

receive high ratings by the real user type, i.e., these movie types match perfectly the

assumed “current” real user type; and the last 200 movies were randomly generated.

Departing from what was assumed in all previous experiments, in this case, the initial

prior for the user-type updating process is informative: that is, in this case we have

an informative prior user type. The user was sequentially recommended all the movies

of the database, i.e., 600 movies, and the experiment was executed for 10 independent

Chapter 5. Experiments 56

Database Average rating

user A database 5.8946

user B database 5.9559

user C database 6.0022

user D database 4.7994

Table 5.5: The overall average ratings of the movies databases.

Methods user A user B user C user D

BayesYouLikeIt (BYLI) 5.5983 5.6133 5.3917 5.6183

BYLI - without trailers 5.5983 5.6133 5.3917 5.6183

BYLI - VPI on trailers 5.5983 5.6133 5.3917 5.6183

BYLI - VPI on trailers & movies 5.5983 5.6133 5.3917 5.6183

BYLI - VPI on movies without trailers 5.5983 5.6133 5.3917 5.6183

Random 5.5983 5.6133 5.3917 5.6183

Table 5.6: Average user ratings over all recommendations and all runs for each variant.

runs. User ratings were assigned on movies using a rating function and ranged between

1 and 10, as in the experiments of Section 5.1.

In order to test the stability of our method and the validity of the results, we simulated

4 different users and used several variants of our algorithm. Specifically, we used once

again the basic BYLI algorithm, the VPI on trailers and VPI on trailers & movies

variants, and a random recommendation process. Furthermore, we applied a new type

of “without trailers” variants. Using these variants we aim to explore system’s efficiency

without the exploitation of trailers projection phase, so we modified the basic algorithm

and the VPI on trailers & movies variant, removing that phase. Tables 5.5 and 5.6 show

the average ratings of the 4 users’ movies databases and the average ratings per variant

for each one, respectively. In Table 5.6, we observe that the average ratings are equal in

all variants for each user. This is because the user is always recommended with all the

movies of the database, and rates each movie with the same rating each time.

Figure 5.11 shows the average per recommendation ratings over all runs of user A for

all variants. It is easy to see that the VPI variants behave smoother than basic BYLI.

The BYLI without trailers algorithm behaves smoother than the basic BYLI too, and

its behaviour is directly comparable with that of the VPI variants. In Fig. 5.11(a), we

observe lack of recommendation performance stability due to the presence of trailers.

That is, the trailer-based user type is changed at a slow pace, and because of that, the

agent has to be adapted to changes over and over again. Also, because our method se-

lects trailers and hence movies based on the initial informative prior, the agent receives

representative ratings a bit too late; and this fact causes a slow down in the learning

process of the real user. This is the reason why the ratings in the first 100 recommen-

dations are lower compared to all other variants. This phenomenon is not observable

Chapter 5. Experiments 57

Figure 5.11: Average per recommendation ratings over all runs for user A: (a) BYLI,
(b) BYLI without trailers, (c) BYLI - VPI on trailers, (d) BYLI - VPI on trailers &

movies, (e) BYLI - VPI on movies without trailers, (f) Random.

for variants which exploit VPI, since they have the ability to learn faster, as also shown

earlier.

The VPI on movies without trailers variant which combines VPI and absence of trailers,

appears to behave better than all the others, since it receives high ratings from the

beginning, and after the middle of the recommendation process the ratings are smoothly

decreased (Figure 5.11(e)). Considering the nature of the movies database, this is a

desirable plot, since, the database contains 200 movies that user likes, 200 randomly

generated movies, and 200 movies that user does not like them (since she used to like

them before her preferences’ change); so in this case, our agent essentially recommends

mostly preferred movies until the 300th recommendation and then, recommends the best

available ones until the end of the experiment.

Chapter 5. Experiments 58

Figure 5.12: Comparison of users’ average per recommendation ratings over all runs:
(a) BYLI, (b) BYLI without trailers, (c) BYLI - VPI on trailers, (d) BYLI - VPI on
trailers & movies, (e) BYLI - VPI on movies without trailers, (f) Random, (g) Average

per recommendation ratings over all variants and all runs for the 4 simulated users.

Chapter 5. Experiments 59

In Figure 5.12, we show how the methods perform for all 4 users on all variants. It is

observable that our agent treats all users in a similar way during the execution of each

variant, since all plots follow similar “trajectories” in each figure; but she also detects the

differences between users’ preferences resulting unique plots for each one. Additionally,

in Figure 5.12(g), we can see the average per recommendation ratings of each user over

all runs and all variants, where there exist significant alterations between the average

ratings of the first and the last recommendations — this is an evidence that the good

movies were recommended first.

5.7 On the usefulness of trailers

In the experiment above, the VPI method without trailers seemed to be quite successful.

For interest, we executed additional experiments in order to obtain more accurate con-

clusions about the value of using trailers. For these experiments, we relied on the setup

of those in Sections 5.1 and 5.2. In particular, for the simulated database and users of

Section 5.1, we ran the basic BYLI algorithm with mood alternations without the projec-

tion of trailers. We also ran the basic BYLI algorithm on the MovieLens dataset using 2

modifications; (1) without the trailers projection phase and, (2) with the projection of

trailers that the user had never seen before during the whole recommendation process.

At this point, we describe how our algorithm works without the use of trailers: there are

no major changes; simply, the trailer-based user type no longer exists, and the movies

are recommended using the overall user type. The rest of the recommendation process

remains unaffected. We mention again, that the setup of the experiments is similar to

the corresponding experimental setup in Sections 5.1 and 5.2.

Figures 5.13 and 5.14, enable us to compare the results of the basic algorithm without

trailers, with those of Section 5.1. We observe that the algorithm without trailers be-

gins very well; however, after the first mood changes, the average per recommendation

ratings fall below the ratings of the algorithms that exploit trailers. The most impor-

tant observation is that this algorithm is not able to follow mood changes; this fact is

observable in the first 80 recommendations, where the mood-change points are visible

(Fig. 5.13(b)). Further, the results from experiments on individuals (Figure 5.14) ver-

ify those conclusions and give us a better insight to agent’s behavior with and without

trailers.

On the other hand, Figure 5.15 presents the results in the MovieLens dataset. In this

case, there are no remarkable differences between the algorithms, except for the lag of the

BYLI with projected-only-once trailers (trailers that user had never seen before) in the

last 10 recommendations. The sudden drop in performance for this algorithm was caused

Chapter 5. Experiments 60

Figure 5.13: (a) Comparison of average per recommendation ratings of 50 simulated
users on 200 movies for 10 runs in 3 different cases: (i) exploiting trailers without
mood alterations simulation, (ii) exploiting trailers with mood alterations simulation,
(iii) with mood alterations simulation without exploiting trailers. (b) Zoomed depiction

of (a).

Figure 5.14: Comparison of average per recommendation ratings of 2 simulated users
on 50 movies for 10 runs in 3 different cases: (i) exploiting trailers without mood
alterations simulation, (ii) exploiting trailers with mood alterations simulation, (iii)
with mood alterations simulation without exploiting trailers. (a) user A, (b) user B.

Figure 5.15: Average per recommendation ratings over all users and all runs; Movie-
Lens dataset.

Chapter 5. Experiments 61

by the fact that the remaining trailers and movies did not match the current user type.

Nonetheless, it is worth mentioning that the agent coped well with that situation and

adapted to the new data receiving high ratings again. Generally, our algorithm receives

high ratings whether it exploits trailers or not, so it can be easily applied without using

them.

To conclude, it seems that the main usefulness of showing trailers is in capturing the

user’s mood alterations. Thus, no time consuming trailers are required after the first

recommendations, when the system possesses an accurate user model.

5.8 Overview of experimental results

We ran a large number of experiments, aiming to examine all the aspects of our work.

First, we tested the scalability of our method applying the basic BayesYouLikeIt on large-

scale simulated databases. That experimental setup allowed us to also test the ability

of our algorithm to capture the changes of user’s mood, simulating mood alternations

during the recommendation process. The results show that there exist neither ratings

reduction nor abrupt rating changes, so our agent can successfully face those challenges.

Afterwards, we executed all the variants of our algorithm using the MovieLens dataset.

Specifically, we ran the basic BYLI algorithm, and the VPI and Boltzmann variants;

and compared them with the established LSMF method. In that case, the results

demonstrate that our method is quite competitive and successfully incorporates the

VPI and Boltzmann explorations, since the average ratings of all variants differ only for

few decimals.

Furthermore, we tried to observe our method’s behavior on databases which contain

only a few “good” movies for recommendation. For those experiments, we used: (a)

user datasets from MovieLens containing users that had rated few movies with high

ratings, and (b) the MovieLens dataset modified in such a way that each user’s movies

ratings follow a Beta distribution. The purpose of the specific settings was to test if our

agent can quickly “learn” a user and recommend her all the available “preferred” movies.

The results testify that the agent can deal with these objectives very well. Moreover,

we examined the way our method treats a specific user. For this, we randomly selected

3 users from the MovieLens dataset and tested their response to all BYLI variants.

Moreover, we examined the adaptation abilities of our method regarding possible changes

in user preferences. To test these, we created 4 simulated users, their movies databases

and their modified preferences, and executed some BYLI variants on these data. All

variants respond very well to this challenge, but the basic BYLI algorithm lags behind

the others regarding its learning pace.

Chapter 5. Experiments 62

Finally, we tested the usefulness of employing trailers during the recommendation pro-

cess. Based on the experimental setups of Sections 5.1 and 5.2, we modified the basic

BYLI algorithm removing the trailers projection phase, or projecting only trailers that

the user had never seen before. Through those experiments, we concluded that the use

of trailers does not immediately lead to increased effectiveness, but they are crucial for

capturing a user’s mood changes. Summarizing, our method achieves all the experimen-

tal goals, since it gives promising results, and displays stable behavior and significant

learning abilities. The basic BYLI algorithm has the best overall average rating com-

pared to the rest of BYLI variants. However, the VPI variants were demonstrated to be

able to learn a user model quite fast; to exhibit a smooth performance; and to be more

adaptive than others to changes in the user preferences.

Chapter 6

CONCLUSIONS & FUTURE

WORK

In this work, we presented a novel approach for making entirely personalized recom-

mendations, and applied it in the movie recommendations domain. Our approach uses

Bayesian updating to infer a user model, which is a distribution of the same form with

the models of the items under recommendation. This is, we believe, key to enabling the

implicit inference of an individual’s latent or otherwise unrepresentable, complicated

preferences; and enables us to devise and employ a kind of Bayesian exploration in this

domain. We presented and tested several variants of our method, and evaluated their

performance, with very promising results. Futher, we strongly tested the exploration

and adaptation abilities of our agent deriving remarkable conclusions; and we first ever

exploited the value of perfect information theory in the recommendations domain re-

ceiving successful outcomes. In a sense, what we exploit in this work is the fact that

modern-world datasets contain much “annotated” information regarding the nature of

contained data (e.g., in the form of “genre”-specifying labels). This information al-

lows us to properly define the dimensions of multivariate Gaussians representing users

(according to our “you are what you consume” idea), without relying on the tastes of

others—and without attempting to explicitly predict user ratings. Note that the main

ideas of this work have already appeared in a RecSys ’13 paper of ours [5].

Summarizing our main contributions in this thesis, we propose a completely person-

alized approach producing recommendations based only on previous observations of a

specific user, and introduce a new Bayesian Reinforcement Learning technique with-

out the exploitation or combination of any established recommendation method. We do

not perform Collaborative Filtering, Preference Elicitation or Content-aware techniques,

and this is the first non-PE method that does not need to predict ratings or probability

64

Chapter 6. Conclusions & Future Work 65

distributions over ratings. More, BayesYouLikeIt focuses on user preferences and mood

in combination with item features, modeling both users and items with the same form,

and is able to capture latent features and temporal effects [52]. We are also the first

who integrate Bayesian reinforcement learning theory in a recommendation system and

exploit VPI to “learn” a user faster and more efficiently, and tackle the problem of

“cold-start”.

Furthermore, we differ significantly from all aforementioned approaches. All those ap-

proaches need to predict ratings either as a simple numeric value or as a probability

distribution over ratings, while we do not have this need. We provide personalized rec-

ommendations, unlike others who combine data from many users in order to recommend

to an individual. Also, the modeling of both users and items by a probability distri-

bution of the same form is novel, as is the use of trailers for user’s mood capturing.

The recommendation with emphasis on the understanding of user preferences and the

adaptation on them, is another difference between our approach and the others.

We remark that our method is generic, and not “fine-tuned” for movie recommendations.

Nonetheless, our personalized method’s performance almost matches that of a state-

of-the-art movie recommendations method, which is able to exploit preference data

originating from thousands of users. As our method proved to be competitive against

algorithms that do have this “advantage”, it is most probably especially well-suited for

environments where user preferences data is scarse. In sparse datasets, our approach is

expected to perform better than methods which require other users’ ratings. Therefore,

it could be used as a “bootstrapping” tool, generating recommendations until more data

is available; moreover, it can be readily employed as a “training” component used during

a more sophisticated system’s initial operation period.

Regarding future work, we plan to conduct a user satisfaction survey based on a num-

ber of users testing our system, after developing a functional system that implements

the main aspects of our approach. We also intend to run experiments on larger movies

datasets in order to further test the scalability and the memory capabilities of our

method, and to combine the BayesYouLikeIt algorithm with other recommendation tech-

niques, e.g., Collaborative Filtering [23, 24] and Content-based [21, 22] techniques. With

this, we can either use BYLI as a “bootstrapping” tool or enhance it using preference

acquisition techniques and item’s content descriptions that those methods use.

It is true that users usually rate only items that they like, otherwise they probably do

not bother. This fact inserts additional bias in the recommendation process, and the

question is how a recommender system can tackle this bias. Similar problem is the

interpretation of implicit ratings, i.e., inferring a user rating based on user’s behavior,

e.g., the fact that a user doesn’t watch the whole movie, can be translated as a very

Chapter 6. Conclusions & Future Work 66

low rating. In the future, we plan to take it into account modifying accordingly our

algorithm. Based on that, it is worth to be mentioned that a completely personalized

approach like ours has an advantage over others, since it can follow user behaviors of

that kind and reduce the bias. It is also worth testing our approach in other domains,

since it is generic and allows us to model and recommend items regardless of the domain

without changing anything in our system—e.g., use it for recommending scientific papers;

studying nutritional habits; or employ it in story-telling environments, being influenced

by works like the one in [32].

Finally, we aim to incorporate multiagent systems techniques in our model, allowing us

to exploit user-specific information coming from other types of online agents; incorpo-

rating knowledge from other agents, we can build a more accurate and complete user

profile or “prepare” our agent for a user that is a newcomer into the system. For in-

stance, we could extend our model to allow for recommendations based on (implicit)

“voting” among several “recommenders”. The recommenders would be allowed to sug-

gest one out of several candidate recommendations each, and a recommendation would

emerge as a result of the “vote”. Then, the outcome of this vote would be rated by the

user, essentially determining the actual success or failure of the recommendation. This

process could help determine the recommendation power of the various recommenders’,

computed given some power index (like, e.g., Banzhaf index or Rae index [59, 60]); and

this revealed power could potentially be used both for determining an updated weight for

the recommender, and for guiding the type-determining process of the user—especially

when he is a “newcomer”, with a prior that is still highly uninformative.

Indeed, we believe that recommendation systems can benefit from research conducted

within the broader AI and multiagent systems communities; and we view our work here

as a small step towards bringing these communities closer together.

Appendix A

DESCRIPTION OF SYSTEM

MODELS

All the available data is stored in the system using suitable models. As mentioned

many times throughout the text, both items and users are modeled by multivariate

Gaussians. In this appendix, we try to provide a more detailed description of these

models and describe the way the item information is transformed to a model. Hereafter,

we refer to the movies recommendation domain. The only movie features we exploit

during the recommendation procedure, are the available movie genres.

As already stated, a movie model (or movie type) is a k-dimensional multivariate Gaus-

sian distribution. Such a distribution consists of an 1×k mean vector and a k×k co-

variance matrix, and each dimension corresponds to a movie genre. The mean contains

equal values to all dimensions. The covariance matrix is diagonal and each diagonal

element takes value equal to 1 or 20, according to the underlying uncertainty, and de-

pending whether the corresponding movie genre characterizes the movie; we consider

movie genres to be independent. The value 20 of the not relevant genres was decided

empirically, since a Gaussian distribution with σ2 = 20 does not influence the updated

model. On the other hand, the relevant movie genres are associated with σ2 = 1 because

of their importance.

In our experiments, we used the MovieLens 1 million dataset. In order to create the

model of a movie, we need to know the genres which characterize it, and its overall av-

erage rating. The specific dataset provides the genres of each movie and the rating that

each user has assigned to it; by this, we compute the average rating of each movie over all

users. Thus, we have what we need for creating all movies’ models. Note that, the avail-

able movie genres in the MovieLens dataset are 18, the following: Action, Adventure,

68

Appendix A. Description of System Models 69

Figure A.1: The forms of (a) the mean and (b) the covariance matrix of a movie
type.

Animation, Children’s, Comedy, Crime, Documentary, Drama, Fantasy, Film-Noir, Hor-

ror, Musical, Mystery, Romance, Sci-Fi, Thriller, War, Western; therefore, the models

are 18-dimensional Gaussians.

In Figure A.1, we depict the forms of both the mean and the covariance matrix. Let

us consider a movie with average MovieLens rating equal to 3.45 and genres action,

adventure, sci-fi, thriller. Therefore, the x value of the mean becomes equal to 3.45

(x = 3.45) and the y1, y2, y15, y16 elements of the covariance matrix take the value 1,

while all other diagonal elements have a value of 20. Here, we should note that the

models of the simulated database (Section 5.1) exploit exactly the same form, but with

16 movie genres.

With these movie models at hand, we can build a representative user model, called user

type, after receiving a user rating on each movie. This user type is continuously updated

through Bayesian updating (Section 2.3), and its form is similar to that of movies.

That is, the user type is a 18-dimensional Gaussian whose values are determined by the

updating procedure.

Appendix B

BAYESIAN RANDOM

EXPLORATION

Bayesian Random Exploration (BRX) has the same functionality as our main implemen-

tation, i.e., it is a Bayesian exploration algorithm, but it is extended with randomness.

We simply replace uniformly at random only one demo and the selected item with an-

other unused one. That is, we select 1 of the 5 to be projected demos, following a

uniform probability distribution, and we randomly replace it with another (unused in

current session). Similarly, the agent uses a uniform probability to decide if she has to

replace or not the recommended item with another random one. Specifically, BRX has

similar behaviour with the Bayesian exploration, but it initially introduces an explicit

exploration factor, which drops with time.

When it is applied to demos selection, the agent picks 5 demos as usual, and selects one

of them with uniform probability. After that, the selected demo is replaced with a new

one based on the exploration factor (this is a probability factor with an initial value of

0.5, decreasing with a step of 0.1 after every recommendation), which denotes if this

demo should be replaced:

e0 = 0.5, with et+1 = et − 0.1 until et = 0 (B.1)

When BRX is applied to demos selection only, the way the actually recommended item

is picked stays unchanged. On the other hand, when BRX is applied both to demos and

item selection, the recommendation process is augmented with the replacement of the

selected-for-recommendation item based on the exploration factor, as above. This item

is replaced by an unused one, picked with uniform probability, which is recommended

to the user. Experiments with this algorithm show that randomness causes a slight

reduction of user ratings — i.e., a slight drop in the system’s performance.

71

Bibliography

[1] Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul B. Kantor. Recommender

Systems Handbook. Springer-Verlag New York, Inc., New York, NY, USA, 1st

edition, 2010. ISBN 0387858199, 9780387858197.

[2] R. Dearden, N. Friedman, and D. Andre. Model based Bayesian Exploration. In

Proceedings of Fifteenth Conference on Uncertainty in Artificial Intelligence, pages

150–159, 1999.

[3] Georgios Chalkiadakis and Craig Boutilier. Coordination in multiagent reinforce-

ment learning: a bayesian approach. In Proceedings of the 2nd International Joint

Conference on Autonomous Agents and Multiagent Systems, AAMAS ’03, 2003.

[4] Shlomo Berkovsky, Tsvi Kuflik, and Francesco Ricci. Distributed Collaborative

Filtering with Domain Specialization. In Proceedings of the 1st ACM Conference

on Recommender systems, RecSys ’07, 2007.

[5] Konstantinos Babas, Georgios Chalkiadakis, and Evangelos Tripolitakis. You are

what you consume: A bayesian method for personalized recommendations. In

Proceedings of the 7th ACM Conference on Recommender Systems, RecSys ’13,

pages 221–228, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2409-0. doi: 10.

1145/2507157.2507158. URL http://doi.acm.org/10.1145/2507157.2507158.

[6] Michael Schrage. Who Do You Want Your Customers to Become? Harvard Busi-

ness Press, 2013.

[7] Jonathan L. Herlocker, Joseph A. Konstan, and John Riedl. Explaining collab-

orative filtering recommendations. In Proceedings of the 2000 ACM Conference

on Computer Supported Cooperative Work, CSCW ’00, pages 241–250, New York,

NY, USA, 2000. ACM. ISBN 1-58113-222-0. doi: 10.1145/358916.358995. URL

http://doi.acm.org/10.1145/358916.358995.

[8] Alan Lewis. The Cambridge handbook of psychology and economic behaviour. Cam-

bridge University Press, 2008.

73

http://doi.acm.org/10.1145/2507157.2507158
http://doi.acm.org/10.1145/358916.358995

Bibliography 74

[9] Richard H. Thaler. Mental accounting and consumer choice. Marketing Science,

27(1):15–25, January 2008. ISSN 1526-548X. doi: 10.1287/mksc.1070.0330. URL

http://dx.doi.org/10.1287/mksc.1070.0330.

[10] Richard Thaler. Toward a positive theory of consumer choice. Journal of Economic

Behavior & Organization, 1(1):39–60, 1980.

[11] James R Bettman, Mary Frances Luce, and John W Payne. Constructive consumer

choice processes. Journal of consumer research, 25(3):187–217, 1998.

[12] Yoav Shoham and Kevin Leyton-Brown. Multiagent Systems: Algorithmic, Game-

Theoretic, and Logical Foundations. Cambridge University Press, New York, NY,

USA, 2008. ISBN 0521899435.

[13] Meltem Öztürk and Alexis Tsoukiàs. Preference modelling. In State of the Art in

Multiple Criteria Decision Analysis, pages 27–72. Springer-Verlag, 2005.

[14] M.H. DeGroot and J. Schervish. Probability and Statistics. 2002.

[15] Daniel Fink. A compendium of conjugate priors, 1997.

[16] Kevin P. Murphy. Conjugate bayesian analysis of the gaussian distribution. Tech-

nical report, 2007.

[17] T.W. Anderson. An introduction to multivariate statistical analysis. John Wiley

and Sons, 2003.

[18] Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning.

MIT Press, Cambridge, MA, USA, 1st edition, 1998. ISBN 0262193981.

[19] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pren-

tice Hall Press, Upper Saddle River, NJ, USA, 3rd edition, 2009. ISBN 0136042597,

9780136042594.

[20] Richard Dearden, Nir Friedman, and Stuart Russell. Bayesian q-learning. In Pro-

ceedings of the Fifteenth National/Tenth Conference on Artificial Intelligence/In-

novative Applications of Artificial Intelligence, AAAI ’98/IAAI ’98, pages 761–768,

Menlo Park, CA, USA, 1998. American Association for Artificial Intelligence. ISBN

0-262-51098-7. URL http://dl.acm.org/citation.cfm?id=295240.295801.

[21] Pasquale Lops, Marco Gemmis, and Giovanni Semeraro. Content-based recom-

mender systems: State of the art and trends. In Francesco Ricci, Lior Rokach,

Bracha Shapira, and Paul B. Kantor, editors, Recommender Systems Hand-

book, pages 73–105. Springer US, 2011. ISBN 978-0-387-85819-7. doi: 10.1007/

978-0-387-85820-3 3. URL http://dx.doi.org/10.1007/978-0-387-85820-3_3.

http://dx.doi.org/10.1287/mksc.1070.0330
http://dl.acm.org/citation.cfm?id=295240.295801
http://dx.doi.org/10.1007/978-0-387-85820-3_3

Bibliography 75

[22] MichaelJ. Pazzani and Daniel Billsus. Content-based recommendation systems. In

Peter Brusilovsky, Alfred Kobsa, and Wolfgang Nejdl, editors, The Adaptive Web,

volume 4321 of Lecture Notes in Computer Science, pages 325–341. Springer Berlin

Heidelberg, 2007. ISBN 978-3-540-72078-2. doi: 10.1007/978-3-540-72079-9 10.

URL http://dx.doi.org/10.1007/978-3-540-72079-9_10.

[23] Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and John T. Riedl.

Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst.,

22(1):5–53, January 2004. ISSN 1046-8188. doi: 10.1145/963770.963772. URL

http://doi.acm.org/10.1145/963770.963772.

[24] Michael D. Ekstrand, John T. Riedl, and Joseph A. Konstan. Collaborative fil-

tering recommender systems. Found. Trends Hum.-Comput. Interact., 4(2):81–

173, February 2011. ISSN 1551-3955. doi: 10.1561/1100000009. URL http:

//dx.doi.org/10.1561/1100000009.

[25] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit

feedback datasets. In Proceedings of the 2008 IEEE International Conference

on Data Mining, ICDM ’08, pages 263–272, Washington, DC, USA, 2008. IEEE

Computer Society. ISBN 978-0-7695-3502-9. doi: 10.1109/ICDM.2008.22. URL

http://dx.doi.org/10.1109/ICDM.2008.22.

[26] Yunhong Zhou, Dennis Wilkinson, Robert Schreiber, and Rong Pan. Large-scale

parallel collaborative filtering for the netflix prize. In Proc. 4th Int. Conf. on Algor.

Aspects in Information and Management, LNCS 5034, pages 337–348. Springer,

2008.

[27] Prem Melville, Raymod J. Mooney, and Ramadass Nagarajan. Content-boosted

collaborative filtering for improved recommendations. In Eighteenth National Con-

ference on Artificial Intelligence, pages 187–192, Menlo Park, CA, USA, 2002.

American Association for Artificial Intelligence. ISBN 0-262-51129-0. URL http:

//dl.acm.org/citation.cfm?id=777092.777124.

[28] Souvik Debnath, Niloy Ganguly, and Pabitra Mitra. Feature weighting in content

based recommendation system using social network analysis. In Proceedings of the

17th International Conference on World Wide Web, WWW ’08, pages 1041–1042,

New York, NY, USA, 2008. ACM. ISBN 978-1-60558-085-2. doi: 10.1145/1367497.

1367646. URL http://doi.acm.org/10.1145/1367497.1367646.

[29] Eyrun A. Eyjolfsdottir, Gaurangi Tilak, and Nan Li. MovieGEN: A Movie Recom-

mendation System. 2008.

http://dx.doi.org/10.1007/978-3-540-72079-9_10
http://doi.acm.org/10.1145/963770.963772
http://dx.doi.org/10.1561/1100000009
http://dx.doi.org/10.1561/1100000009
http://dx.doi.org/10.1109/ICDM.2008.22
http://dl.acm.org/citation.cfm?id=777092.777124
http://dl.acm.org/citation.cfm?id=777092.777124
http://doi.acm.org/10.1145/1367497.1367646

Bibliography 76

[30] Chumki Basu, Haym Hirsh, and William Cohen. Recommendation as classification:

Using social and content-based information in recommendation. In In Proceedings of

the Fifteenth National Conference on Artificial Intelligence, pages 714–720. AAAI

Press, 1998.

[31] Nicola Barbieri, Gianni Costa, Giuseppe Manco, and Riccardo Ortale. Model-

ing Item Selection and Relevance for Accurate Recommendations: a Bayesian Ap-

proach. In Proceedings of the 5th ACM Conference on Recommender systems, Rec-

Sys ’11, 2011.

[32] Hong Yu and Mark O. Riedl. A sequential recommendation approach for interactive

personalized story generation. In Proceedings of the 11th International Conference

on Autonomous Agents and Multiagent Systems - Volume 1, AAMAS ’12, pages

71–78, Richland, SC, 2012. International Foundation for Autonomous Agents and

Multiagent Systems. ISBN 0-9817381-1-7, 978-0-9817381-1-6. URL http://dl.

acm.org/citation.cfm?id=2343576.2343586.

[33] Yue Shi, Alexandros Karatzoglou, Linas Baltrunas, Martha Larson, Alan Hanjalic,

and Nuria Oliver. Tfmap: Optimizing map for top-n context-aware recommenda-

tion. In Proceedings of the 35th International ACM SIGIR Conference on Research

and Development in Information Retrieval, SIGIR ’12, pages 155–164, New York,

NY, USA, 2012. ACM. ISBN 978-1-4503-1472-5. doi: 10.1145/2348283.2348308.

URL http://doi.acm.org/10.1145/2348283.2348308.

[34] Yue Shi, Alexandros Karatzoglou, Linas Baltrunas, Martha Larson, Nuria Oliver,

and Alan Hanjalic. Climf: Learning to maximize reciprocal rank with collaborative

less-is-more filtering. In Proceedings of the Sixth ACM Conference on Recommender

Systems, RecSys ’12, pages 139–146, New York, NY, USA, 2012. ACM. ISBN 978-1-

4503-1270-7. doi: 10.1145/2365952.2365981. URL http://doi.acm.org/10.1145/

2365952.2365981.

[35] Yehuda Koren and Joe Sill. Ordrec: An ordinal model for predicting person-

alized item rating distributions. In Proceedings of the Fifth ACM Conference

on Recommender Systems, RecSys ’11, pages 117–124, New York, NY, USA,

2011. ACM. ISBN 978-1-4503-0683-6. doi: 10.1145/2043932.2043956. URL

http://doi.acm.org/10.1145/2043932.2043956.

[36] Nathan N. Liu and Qiang Yang. Eigenrank: A ranking-oriented approach to col-

laborative filtering. In Proceedings of the 31st Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval, SIGIR ’08,

pages 83–90, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-164-4. doi: 10.

1145/1390334.1390351. URL http://doi.acm.org/10.1145/1390334.1390351.

http://dl.acm.org/citation.cfm?id=2343576.2343586
http://dl.acm.org/citation.cfm?id=2343576.2343586
http://doi.acm.org/10.1145/2348283.2348308
http://doi.acm.org/10.1145/2365952.2365981
http://doi.acm.org/10.1145/2365952.2365981
http://doi.acm.org/10.1145/2043932.2043956
http://doi.acm.org/10.1145/1390334.1390351

Bibliography 77

[37] Nathan N. Liu, Min Zhao, and Qiang Yang. Probabilistic latent preference analysis

for collaborative filtering. In Proceedings of the 18th ACM Conference on Infor-

mation and Knowledge Management, CIKM ’09, pages 759–766, New York, NY,

USA, 2009. ACM. ISBN 978-1-60558-512-3. doi: 10.1145/1645953.1646050. URL

http://doi.acm.org/10.1145/1645953.1646050.

[38] Urszula Chajewska, Daphne Koller, and Ronald Parr. Making rational decisions

using adaptive utility elicitation. In Proceedings of AAAI-2000, 2000.

[39] Sybil Shearin and Henry Lieberman. Intelligent profiling by example. In Proceedings

of the 6th International Conference on Intelligent User Interfaces, IUI ’01, pages

145–151, New York, NY, USA, 2001. ACM. ISBN 1-58113-325-1. doi: 10.1145/

359784.360325. URL http://doi.acm.org/10.1145/359784.360325.

[40] Henry Blanco and Francesco Ricci. Inferring user utility for query revision rec-

ommendation. In Proceedings of the 28th Annual ACM Symposium on Applied

Computing, SAC ’13, pages 245–252, New York, NY, USA, 2013. ACM. ISBN

978-1-4503-1656-9. doi: 10.1145/2480362.2480416. URL http://doi.acm.org/

10.1145/2480362.2480416.

[41] Chihiro Ono, Mori Kurokawa, Yoichi Motomura, and Hideki Asoh. A context-

aware movie preference model using a bayesian network for recommendation and

promotion. In Proceedings of the 11th International Conference on User Modeling,

UM ’07, pages 247–257, Berlin, Heidelberg, 2007. Springer-Verlag. ISBN 978-3-540-

73077-4. doi: 10.1007/978-3-540-73078-1 28. URL http://dx.doi.org/10.1007/

978-3-540-73078-1_28.

[42] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.

Bpr: Bayesian personalized ranking from implicit feedback. In Proceedings of

the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, UAI ’09,

pages 452–461, Arlington, Virginia, United States, 2009. AUAI Press. ISBN 978-0-

9749039-5-8. URL http://dl.acm.org/citation.cfm?id=1795114.1795167.

[43] David H. Stern, Ralf Herbrich, and Thore Graepel. Matchbox: Large scale online

bayesian recommendations. In Proceedings of the 18th International Conference on

World Wide Web, WWW ’09, pages 111–120, New York, NY, USA, 2009. ACM.

ISBN 978-1-60558-487-4. doi: 10.1145/1526709.1526725. URL http://doi.acm.

org/10.1145/1526709.1526725.

[44] Helge Langseth and Thomas Dyhre Nielsen. A latent model for collaborative filter-

ing. Int. J. Approx. Reasoning, 53(4):447–466, June 2012.

http://doi.acm.org/10.1145/1645953.1646050
http://doi.acm.org/10.1145/359784.360325
http://doi.acm.org/10.1145/2480362.2480416
http://doi.acm.org/10.1145/2480362.2480416
http://dx.doi.org/10.1007/978-3-540-73078-1_28
http://dx.doi.org/10.1007/978-3-540-73078-1_28
http://dl.acm.org/citation.cfm?id=1795114.1795167
http://doi.acm.org/10.1145/1526709.1526725
http://doi.acm.org/10.1145/1526709.1526725

Bibliography 78

[45] Yi Zhang and Jonathan Koren. Efficient bayesian hierarchical user modeling for

recommendation system. In Proceedings of the 30th Annual intern. ACM SIGIR

Conf. on Research and Development in Information Retrieval, pages 47–54. ACM,

2007.

[46] Martin Szomszor, Ciro Cattuto, Harith Alani, Kieron O’Hara, Andrea Baldassarri,

Vittorio Loreto, and Vito D.P. Servedio. Folksonomies, the semantic web, and

movie recommendation. In 4th European Semantic Web Conference, Bridging the

Gap between Semantic Web and Web 2.0, 2007. URL http://eprints.ecs.soton.

ac.uk/14007/.

[47] Rajatish Mukherjee, Partha Sarathi Dutta, Sandip Sen, and Ip Sen. Movies2go -

a new approach to online movie recommendation. In In Proceedings of the IJCAI

Workshop on Intelligent Techniques for Web Personalization, 2001.

[48] Jennifer Golbeck. Generating predictive movie recommendations from trust in social

networks. In Proceedings of the 4th International Conference on Trust Management,

iTrust’06, pages 93–104, Berlin, Heidelberg, 2006. Springer-Verlag. ISBN 3-540-

34295-8, 978-3-540-34295-3. doi: 10.1007/11755593 8. URL http://dx.doi.org/

10.1007/11755593_8.

[49] Anan Liu, Yongdong Zhang, and Jintao Li. Personalized movie recommendation.

In Proceedings of the 17th ACM International Conference on Multimedia, MM ’09,

pages 845–848, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-608-3. doi: 10.

1145/1631272.1631429. URL http://doi.acm.org/10.1145/1631272.1631429.

[50] Mehdi Elahi, Matthias Braunhofer, Francesco Ricci, and Marko Tkalcic.

Personality-based active learning for collaborative filtering recommender systems.

In AI*IA, pages 360–371, 2013.

[51] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques

for recommender systems. Computer, 42(8):30–37, August 2009. ISSN 0018-9162.

doi: 10.1109/MC.2009.263. URL http://dx.doi.org/10.1109/MC.2009.263.

[52] Robert M Bell, Yehuda Koren, and Chris Volinsky. The bellkor solution to the

netflix prize. KorBell Team’s Report to Netflix, 2007.

[53] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information

Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

ISBN 0387310738.

[54] Kenneth E. Kendall and Julie E. Kendall. Systems Analysis and Design (8th Edi-

tion). Prentice-Hall, Inc., 2011. ISBN 013608916X.

http://eprints.ecs.soton.ac.uk/14007/
http://eprints.ecs.soton.ac.uk/14007/
http://dx.doi.org/10.1007/11755593_8
http://dx.doi.org/10.1007/11755593_8
http://doi.acm.org/10.1145/1631272.1631429
http://dx.doi.org/10.1109/MC.2009.263

Bibliography 79

[55] Gordon P. Kurtenbach, Abigail J. Sellen, and William A. S. Buxton. An em-

pirical evaluation of some articulatory and cognitive aspects of marking menus.

Hum.-Comput. Interact., 8(1):1–23, March 1993. ISSN 0737-0024. doi: 10.1207/

s15327051hci0801 1. URL http://dx.doi.org/10.1207/s15327051hci0801_1.

[56] S. Kullback. Information Theory and Statistics. Wiley series in probability

and mathematical statistics. Probability and mathematical statistics. John Wiley

&Sons, 1959. URL http://books.google.gr/books?id=XeRQAAAAMAAJ.

[57] Frank Nielsen and Richard Nock. Emerging trends in visual computing. pages

164–174, Berlin, Heidelberg, 2009. Springer-Verlag. ISBN 978-3-642-00825-

2. doi: 10.1007/978-3-642-00826-9 7. URL http://dx.doi.org/10.1007/

978-3-642-00826-9_7.

[58] David Carmel and Shaul Markovitch. Exploration strategies for model-based

learning in multiagent systems. Autonomous Agents and Multi-agent Systems, 2

(2):141–172, 1999. URL http://www.cs.technion.ac.il/~shaulm/papers/pdf/

Carmel-Markovitch-aamas1999.pdf.

[59] G. Chalkiadakis, E. Elkind, and M.J. Wooldridge. Computational Aspects of

Cooperative Game Theory. Synthesis digital library of engineering and com-

puter science. Morgan & Claypool Publishers, 2012. ISBN 9781608456529. URL

http://books.google.gr/books?id=bN9aC0uabBAC.

[60] Josep Freixas and Montserrat Pons. Success and decisiveness on proper symmetric

games. Central European Journal of Operations Research, pages 1–16, 2013. ISSN

1435-246X. doi: 10.1007/s10100-013-0332-5. URL http://dx.doi.org/10.1007/

s10100-013-0332-5.

http://dx.doi.org/10.1207/s15327051hci0801_1
http://books.google.gr/books?id=XeRQAAAAMAAJ
http://dx.doi.org/10.1007/978-3-642-00826-9_7
http://dx.doi.org/10.1007/978-3-642-00826-9_7
http://www.cs.technion.ac.il/~shaulm/papers/pdf/Carmel-Markovitch-aamas1999.pdf
http://www.cs.technion.ac.il/~shaulm/papers/pdf/Carmel-Markovitch-aamas1999.pdf
http://books.google.gr/books?id=bN9aC0uabBAC
http://dx.doi.org/10.1007/s10100-013-0332-5
http://dx.doi.org/10.1007/s10100-013-0332-5

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbreviations
	Symbols
	1 INTRODUCTION
	2 BACKGROUND
	2.1 Recommender systems: Main concepts and goals
	2.2 The ``you are what you consume'' idea
	2.3 Bayesian updating
	2.4 Exploration vs exploitation problem
	2.5 Bayesian exploration & VPI

	3 RELATED WORK
	3.1 Collaborative Filtering & Content-based techniques
	3.2 Preference Elicitation techniques
	3.3 Bayesian techniques
	3.4 Other approaches
	3.5 Our approach
	3.6 Challenges

	4 A BAYESIAN RECOMMENDATION PROCESS
	4.1 User modeling
	4.1.1 Item/demo type
	4.1.2 Beliefs as user type

	4.2 The recommendation process
	4.3 Alternative action selection methods
	4.3.1 VPI-based selection
	4.3.2 Boltzmann selection

	4.4 Action selection methods: the details
	4.5 Tackling large databases
	4.6 Application to the movies domain

	5 EXPERIMENTS
	5.1 Scalability and mood capture
	5.2 Experiments on real-world data
	5.3 Recommending to specific users
	5.4 Recommending from a dataset with mainly low-rated movies (real-world ratings)
	5.5 Recommending from a dataset with mainly low-rated movies (simulated ratings)
	5.6 Adapting to changing user preferences
	5.7 On the usefulness of trailers
	5.8 Overview of experimental results

	6 CONCLUSIONS & FUTURE WORK
	A DESCRIPTION OF SYSTEM MODELS
	B BAYESIAN RANDOM EXPLORATION
	Bibliography

