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Abstract

The main purpose of this study is the evaluation of temporal feature extraction methods

from normal and abnormal cervical epithelium images acquired by Dynamic Contrast

Enhanced Optical Imaging (DCE-OI). Dynamic optical data were recorded in vivo dur-

ing agent-tissue interaction inducing a transient tissue whitening phenomenon, known as

acetowhitening. The degree and duration of the optical phenomenon is associated with

the lesion grade. The available data, observed on 64 patients and confirmed by in total

371 biopsy samples, include all possible cases of neoplasia grades. In order to reduce the

data dimensionality and extract valuable information, an extensive number of feature

extraction methods, including Wavelet Transform (WT), Principal Component Analysis

(PCA), Kernel Principal Component Analysis (KPCA), Piecewise Aggregate Approx-

imation (PAA), Adaptive Piecewise Aggregate Approximation (APAA) and Symbolic

Aggregate Approximation (SAX), have been implemented and (cross) validated with a

1-NN classifier. The results indicate that using a subset of the entire feature set, WT,

PCA and KPCA methods present similar or better performance compared to using the

entire feature set. Also, selection of the best features extracted from PCA and WT

demonstrates better performance for some classification cases. Regarding the execution

times, PCA presents lower execution time than the other methods. Thus, high discrimi-

nation performance between the various stages of cervical neoplasia can be achieved.
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Chapter 1

Introduction

1.1 Cervical Cancer

Cervical cancer is the fourth most common cancer affecting women worldwide. In 2012,

528.000 new cases were diagnosed. The problem is most common in the developing coun-

tries where about 83% of all new cases appear and cervical cancer is the leading cause of

cancer-related death among women. In almost all cases, the main cause is the changes in

the structure of DNA caused by the Human Papillomavirus (HPV) [1]. HPV is actually

a group of more than 100 related viruses. The infections with some types of sexually

transmitted HPV do not cause noticeable symptoms and resolve spontaneously. How-

ever, other types of HPVs, called high-risk HPVs, may progress slowly to abnormal and

possibly precancerous lesions, also known as Cervical Intraepithelial Neoplasia (CIN).

CIN may be categorized into grades I, II and III depending upon the severity of abnor-

mality. High-grade dysplasia (CIN II, CIN III) carry higher probability of progressing

to invasive cancer rather than Low-grade dysplasia (CIN I), which progress slowly to

high-grade lesions. Thus, the early detection of dysplasia is very important for effective

treatment.

Currently, Pap test is the most common method for cervical cancer screening. Cells

collected from a woman’s cervix are spread on a microscope slide for examination. The

cells are evaluated for abnormalities, specifically for pre-cancerous and cancerous changes.

Pap test has led to a significant reduction in the mortality from cervical cancer, mainly

in the developed countries. However, the accuracy of this screening method remains

significantly low (50%) because of sampling and reading errors[2].
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1. INTRODUCTION

Women with abnormal Pap tests are referred to colposcopy which determines the

location of the most severe dysplastic region for biopsy sampling. Colposcopic exam-

ination allows the colposcopist to visually identify abnormal tissue and take directed

biopsies for further pathological examination. Before colposcopy, 3% − 5% acetic acid

solution is applied to cervix to stain the abnormal areas. However, conventional col-

poscopy is subjective as it mainly depends on the visual prowess and the experience of

the physician[3, 4].

On the other hand, optical diagnostic techniques have attracted much interest recently

as they offer the possibility of objective diagnostics both in vitro and in vivo[5]. The key

idea between all these different technologies is the exploitation of the light-tissue interac-

tion phenomena in order to provide information for the biochemical and micro-structural

changes occurring in neoplastic growth. In other words, as the grade of a neoplastic

tissue advances, complex biological processes take place, which induce local variations in

the refraction index and fluctuations in the traveling population of photons as they are

scattered or absorbed in the tissue. Although certain limitations exist depending on the

implementation, this techniques can provide substantial diagnostic information. Grant-

ing that a validated and positive quantitative correlation or pattern between the physics

phenomena and the biological changes is established, new methodologies can improve,

automate and decrease the cost of screening and detection.

1.2 Thesis Contribution

The main purpose of this study is the discrimination between the different stages of

cervical neoplasia using data acquired by Dynamic Contrast Enhanced Optical Imaging

(DCE-OI). Dynamic optical data were recorded in vivo during agent-tissue interaction

inducing a transient tissue whitening phenomenon, known as acetowhitening.

We applied several feature extraction methods on this data in order to obtain valu-

able information for the classification problem. More specifically, a wide range of fea-

ture extraction techniques, including Wavelet Transform (WT), Principal Component

Analysis(PCA), Kernel Principal Component Analysis(KPCA), Piecewise Aggregate Ap-

proximation(PAA), Adaptive Piecewise Aggregate Approximation(APAA), and Symbolic

Aggregate Approximation(SAX), were implemented and validated using a k-nn classifier.
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1.3 Thesis Summary

We applied the above mention techniques and evaluated their performance using both

the entire sets of features and a subset of them. The results indicate that using a selected

subset of the entire feature set we can achieve similar or better performance. Except of the

classification performance, a comparison in terms of computational time was attempted.

Taking into account the classification performance of 1-NN classifier using each of the

proposed feature extraction methods as well as the execution time of each method we

selected three of them to generate pseudo-color maps representing the stages of disease.

The mapping can provide valuable, real-time information which could assist medical

personnel in the diagnosis of cervical cancer.

1.3 Thesis Summary

In Chapter 2 we discuss the methods applied in this study. More specifically, we analyze

six methods for feature extraction and dimensionality reduction used to extract valuable

features from the original data. In addition a simple supervised classification algorithm

used in this work is presented.

In Chapter 3 we discuss the problem of discrimination between the various cervi-

cal tissue types and present information about the data used for the evaluation of the

methods.

In Chapter 4 we describe the various cases which was examined and the procedure

which was followed to implement and evaluate the classification performance using the

proposed feature extraction methods.

In Chapter 5 we present results about the impact of feature extraction methods to

the classification performance. We examine the classification performance using both the

entire set of the extracted features and a subset of it. In addition, results related to the

classification performance using features obtained from the combination of three features

extraction methods are presented.

In Chapter 6 we present maps generated after the classification process of image stacks

obtained from patients with High and Low grade disease and no evidence of disease as

well. The generated pseudo-color map, with different colors representing different tissue

types, is overlaid onto the color image of the cervix providing valuable information about

the stage of cervical neoplasia.

3



1. INTRODUCTION

Finally, in Chapter 7 we summarize the conclusions we were guided towards and the

possible future research directions on the problem.
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Chapter 2

Theoretical Background

In pattern recognition, classification is the procedure of detecting the class in which an

individual observation belongs, based on a set of inherent characteristics known as fea-

tures [6]. A set of N observations {x1,x2, . . . ,xN}, called training set, are used to tune

the parameters of a classifier. The class of each observation can be expressed by a label

l. Applications for which the training set consists of labeled observations are known as

supervised learning problems. In other types of problems known as unsupervised learning

problems, the training set consists of a set of observations without any corresponding

label values. In this study, the labels of training observations are known and the classi-

fication problem constitutes a supervised classification problem. For most applications,

the classification problem is complicated enough because of the high dimensionality of in-

put observations. Thus, pre-processing to reduce the dimensionality of them is required.

Feature extraction and feature selection constitute two common techniques in data pre-

processing [7, 8]. Feature extraction is the transformation of the original input data by

projecting them onto a new feature space where the classification problem can be solved

easier. Feature selection is the process of selecting a subset of the original features in

order to build a better classifier. Often the above mentioned pre-processing techniques

are combined in order to reduce the dimensionality of the original dataset. The rest of

this chapter covers the theoretical background concerning the dimensionality reduction

and classification methods used in this study.

5



2. THEORETICAL BACKGROUND

2.1 Feature Extraction

2.1.1 Principal Component Analysis

Principal Component Analysis (PCA) constitutes a widely known technique for feature

extraction and dimensionality reduction. It is a statistical procedure which reduces the

dimension of the data by projecting them onto a lower dimensional linear space, known

as the principal subspace, such that the variance of the projected data is maximized [9].

Let X = [x1,x2, . . . ,xK ]T be a K × D observation matrix, where K is the number

of observations and D the dimensionality of each observation xk, for k = 1 . . . K. As

mentioned above, the goal of PCA is to project the data onto a principal subspace of

dimensionality N ≤ D, maximizing the variance of the projected data.

Consider the projection of xk, where k = 1 . . . K, onto a one-dimensional space de-

scribed by a direction vector u1 ∈ RD. The projection of xk is given by

xk⊥u1 =
uT
1 xk

‖u1‖
(2.1)

while the mean value of the projected data is given by

x̄⊥u1 =
uT
1 x̄

‖u1‖
, where x =

1

k

K∑
k=1

xk (2.2)

The variance of the projected data is given by

σ2
⊥u1

=
1

K

K∑
k=1

(xk⊥u1 − x̄⊥u1)
2

=
1

K

K∑
k=1

(
uT
1 xk

‖u1‖
− uT

1 x̄

‖u1‖

)2

=
1

K

1

‖u1‖

K∑
k=1

(uT
1 (xk − x̄))2

=
1

K

1

‖u1‖

K∑
k=1

uT
1 (xk − x̄)uT

1 (xk − x̄)

=
1

K

1

‖u1‖

K∑
k=1

uT
1 (xk − x̄)(xk − x̄)Tu1

=
1

‖u1‖
uT
1 Su1, where S =

1

K

K∑
k=1

(xk − x̄)(xk − x̄)T

(2.3)
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2.1 Feature Extraction

The maximization of the projected variance with respect to u1 is achieved by solving the

following optimization problem

max uT
1 Su1

subject to uT
1 u1 = 1

(2.4)

Introducing a Lagrangian multiplier to enforce the above constrain, we obtain the follow-

ing objective function

uT
1 Su1 − λ1(1− uT

1 u1) (2.5)

Setting to zero the gradient of the Equation 2.5 with respect to u1, we have that

Su1 = λ1u1 (2.6)

Since S is a positive semi-definite matrix, it can be diagonalized by its orthonormal

eigenvectors as follows

S = UΛUT (2.7)

where Λ = diag[λ1, . . . , λD] a diagonal matrix of the non-negative, ordered eigenvalues

λ1 > λ2 > . . . > λD of S and U = [u1, . . .uD]T an orthogonal matrix containing the

corresponding eigenvectors. Thus, the Equation 2.6 can be defined as an eigenvalue

problem for the D × D matrix S with eigenvalues λd and eigenvectors ud. The desired

vector u1 is an eigenvector of the covariance matrix S and λ1 the corresponding eigenvalue.

The Equation 2.6 can be written as follows

uT
1 Su1 = λ1, where uT

1 Su1 the variance of projected data (2.8)

According to Equation 2.8 the variance of the projected data is maximized when u1 is

the eigenvector corresponding to the largest eigenvalue λ1.

As regards the general N -dimensional projection space, it is proven by induction that

the optimal liner subspace, maximizing the variance of the projected data is defined by

the n eigenvectors {u1,u2, . . . ,uN} of the data covariance matrix S corresponding to the

N largest eigenvalues {λ1, λ2, . . . , λN}.
The projection of the original data onto the N dimensional space is given by

Y = XUT
N , (2.9)

7



2. THEORETICAL BACKGROUND

where UN a D × N matrix containing the eignevectors of S, corresponding to the N

largest eigenvalues and Y the projection of data onto the N -dimensional subspace.

Finally, selecting the number of eigenvectors spanning the N -dimensional subspace is

a trade-off between dimensionality reduction and retained variance. The percentage of

variance retained by keeping N eigenvectors is given by the following equation

rv =

∑N
n=1 λn∑D
d=1 λd

× 100 (2.10)

The retained variance is a useful indicator since the larger the retained variance, the less

the loss of information.

2.1.2 Kernel Principal Component Analysis

Kernel Principal Component Analysis (KPCA) is a non-linear dimensionality reduction

technique which constitutes an extension of the conventional PCA. Like in PCA, KPCA

seeks to perform a projection of the original data into a lower dimensional space, maxi-

mizing the variance of projected data. However, KPCA performs dimensionality reduc-

tion, after mapping the data onto a high dimensional feature space through a non-linear

transformation, using the kernel trick [10].

Let X = [x1,x2, . . . ,xK ]T be a K ×D observation matrix, where K is the number of

observations and D the dimensionality of each observation xk, for k = 1 . . . K. Suppose

that the data are centered and have zero mean, so that 1
K

∑K
k=1 xk = 0. As mentioned

in Section 2.1.1, the principal components are the eigenvectors satisfying

Sud = λdud, (2.11)

where S = 1
K

∑K
k=1 xkx

T
k the D ×D covariance matrix of the centered data.

Consider a non-linear transformation φ(x), mapping the data onto a high dimensional

feature space F of dimensionality M so that

φ : RD → F,

xk 7→ φ(xk)
(2.12)

The principal components in feature space F are the eigenvectors satisfying

Cvm = λmvm, m=1. . . M (2.13)

8



2.1 Feature Extraction

where C = 1
K

∑K
k=1 φ(xk)φ(xk)T the M × M covariance matrix of the center data in

feature space F and vm, λm the eigenvectors and eigenvalues of C. Since the eigenvectors

V = {v1 . . .vM} lie in the span of φ(x1) . . . φ(xK), there are two important properties.

Firstly, there exist coefficients amk such that

vm =
K∑
k=1

amkφ(xk) (2.14)

and secondly we can obtain the equivalent equation

φ(xi)
TCvm = φ(xi)

Tλmvm, i=1. . . K (2.15)

Combining the Equations 2.14 and 2.15, we obtain

1

K

K∑
k=1

φ(xk)φ(xi)
T

K∑
i=1

amiφ(xi)φ(xk)T = λi

K∑
k=1

amkφ(xk)φ(xi)
T (2.16)

Expressing the Equation 2.16 in terms of kernel function, we obtain

1

K

K∑
k=1

k(xk,xi)
K∑
i=1

amik(xi,xk) = λm

K∑
k=1

amkk(xk,xi) (2.17)

Defining a M ×M matrix K we obtain

K2am = λmNKam (2.18)

where am K-dimensional columns vectors. Since K is positive semi-definite, we can define

the following eigenvalue problem

Kam = λmNam (2.19)

which gives all solutions am for the equation 2.18.

As regards the condition of normalization for the coefficients am, it is obtained by

requiring that the corresponding eigenvectors vm in the feature space F be normalized,

so that

vT
mvm = 1 (2.20)

Combining Equation 2.14, 2.20 the condition that the coefficients am have to satisfy is

the following.

(aT
mam)λm = 1 (2.21)

9



2. THEORETICAL BACKGROUND

So far we have assumed that the data in the feature space F have zero mean. However,

it is not the general case. Thus, it is required the formulation of Gram matrix for the

general case. Consider φ̃(xn) = φ(xn) − 1
N

∑N
j=1 φ(xj) the centered data in the feature

space F . The elements K̃nm of Gram matrix is given by

K̃nm = φ̃(xn)φ̃(xn)T (2.22)

From Equation 2.22 it is obtained that the Gram matrix K̃ given by

K̃ = K− 1NK−K1N + 1NK1N , (2.23)

where 1N a N ×N matrix with all entries eqaul to 1/N .

Thus, in the general case the eigenvalue problem has the following form

K̃ãm = λ̃mN ãm (2.24)

where ãm, λ̃m the eigenvlaues and eigenvectors of K̃.

As in Equation 2.21, the normalization condition for ãm is obtained by requiring

(ãT
mãm)λ̃m = 1 (2.25)

where ãm the expansion coefficients of eigenvectors ṽm.

Having solved the eigenvalue problem, the projection of an observation x onto an

eigenvector vi in F is given by

yi = φ(x)Tvi, where i = 1 . . . N

=
∑N

n=1
ainφ(x)Tφ(xn)

=
∑N

n=1
aink(x,xn)

(2.26)

2.1.3 Piecewise Aggregate Approximation

Piecewise Aggregate Approximation (PAA) is a simple method for time series feature

extraction and dimensionality reduction [11]. The basic idea of this method is the repre-

sentation of time series by the mean values of equal sized segments.

Let x1,x2, . . . ,xK a set of K time series of dimensionality D. As mentioned above,

the goal of PAA is to represent the data by N ≤ D segments. A time series xk of

10



2.1 Feature Extraction

dimensionality D is represented in N dimensional space by a vector x̄k = [x̄k1 . . . x̄kN ].

The element x̄ki of x̄k is obtained by

x̄ki =
N

D

D
N
i∑

j=D
N
(i−1)+1

xkj (2.27)

To sum up, dimensionality reduction is performed dividing the data ontoN equal sized

segments. Then, the mean value of the data-points falling in each segment is calculated.

The N mean values are the data representation onto the N dimensional space.

2.1.4 Adaptive Piecewise Aggregate Approximation

Adaptive Piecewise Aggregate Approximation (APAA) is a method for time series feature

extraction and dimensionality reduction similar to PAA [12]. The basic idea of this

method is the representation of time series by the mean value of segments of varying

length such that the individual reconstruction errors are minimized.

Let x1,x2, . . . ,xK a set of K time series of dimensionality D. As mentioned above,

the goal of APAA is the representation of the data by N ≤ D segments. This method

requires the recording of two numbers per segment. The first number record the mean

value of data-points falling in each segment while the second number records the right

endpoint of the corresponding segment. Thus, the time series representation onto the N

dimensional space is given by

x̄k = [(x̄k1, rk1) . . . (x̄kN
2
, rkN

2
)], (2.28)

where x̄ki = mean(xrk(i−1)+1 . . . xrki) the mean value of data-points falling in the ith

segment, rki the right point of the ith segment and k = 1 . . . K.

The algorithm finds a representation for the time series xk converting the problem into

a wavelet compression problem for which there are optimal solutions. More specifically,

the algorithm computes the wavelet coefficients wk of the original time series xk and

retains the M ≤ N
2

largest coefficients. Then, the approximation of the time series xk

is reconstructed using the retained coefficients. The reconstructed time series using the

retained coefficients is one optimal representation for the original time series. The values

of each segment in the reconstructed time series and the right endpoint of each segment

constitute the APAA representation of the original time series.
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2.1.5 Symbolic Aggregate Approximation

Symbolic Aggregate Approximation(SAX) is a method for time series feature extraction

and dimensionality reduction which allows a time series of arbitrary length to be reduced

to a sequence of symbols [13].

Let x1,x2, . . . ,xK be a set of K time series of dimensionality D. In order to represent

the time series with a symbol sequence of size N , it uses the PAA which was mentioned

in Section 2.1.3 to produce N equal sized segments represented by their mean value.

Having transformed the time series using PAA, a further transformation is applied to

obtain a discrete representation. Assuming that the normalized time series have highly

Gaussian distribution, the algorithm defines regions in the y-axis mapping each segment

mean value to a specific symbol. More specifically, given that the normalized time series

have highly Gaussian distribution, the algorithm simply determines the “breakpoints” B

which produce a equal-sized areas under Gaussian curve. The values of the breakpoints

for specific equal-sized areas are obtained by the following Table.

a = 3 a = 4 a = 5 a = 6 a = 7 a = 8 a = 9 a = 10

β1 -0.43 -0.67 -0.84 -0.97 -1.07 -1.15 -1.22 -1.28

β2 0.43 0 -0.25 -0.43 -0.57 -0.67 -0.76 -0.84

β3 0.67 0.25 0 -0.18 -0.32 -0.43 -0.52

β4 0.84 0.43 0.18 0 -0.14 -0.25

β5 0.97 0.57 0.32 0.14 0

β6 1.07 0.67 0.43 0.25

β7 1.15 0.76 0.52

β8 1.22 0.84

β9 1.28

Table 2.1: A lookup table that contains the breakpoints that divide a Gaussian distribu-

tion in an arbitrary number (from 3 to 10) of equiprobable regions.

2.1.6 Wavelet Transform

Wavelet Transform (WT) is a useful tool for signal processing which overcome the limi-

tations of Fourier Transform (FT) [14]. FT decomposes a signal in complex exponential

12
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functions at different frequencies extracting valuable information in the frequency do-

main. However, FT has a important drawback related to the loss of time information

after the transformation as projecting the signal on complex exponential leading to good

frequency analysis, but no time localization. Unlike to FT, who decomposes the signal

into a basis of complex exponential functions, WT decomposes the signal over a set of

shifted and scaled wavelets. This difference allows to the WT to perform multiresolution

analysis, which means that different frequencies are processed with different way.

Consider a signal x(t) and a basis function ψ(t), called mother wavelet, the Continious

Wavelet Transform(CWT) of the signal x(t) given by

Wx(u, s) =
1√
2

∫ +∞

−∞
x(t)ψ∗

(
t− u
s

)
dt (2.29)

2.1.6.1 Discrete Wavelet Transform

The Discrete Wavelet Transform (DWT) make use of the continuous wavelets with dis-

crete shifted and scaled factors. The wavelet transform is then evaluated at discrete

scales and translations. The discrete scale is expressed as s = s0
i , where i is integer and

s0 = 2 is a fixed dilation step while the discrete shifted factor is expressed as τ = s0
ik ,

where k is an integer.

The DWT transform can be consider a multiresolution representation based on the

differences of information available at two successive resolutions 2j and 2j+1. Consider

x(t) a signal of length N = 2J . The output signal will also have length N . The output

has N
2

values at the highest resolution and N
4

values at the next resolution, and so

on, that is, the frequency resolution is low at the high frequencies and high at the low

frequencies, whereas the time resolution is high at the higher frequencies and low at the

lower frequencies. Let N = 2J , and let the number of frequencies, or resolutions, be J

we are considering J = logN levels. Therefore, the frequency index j varies as 1 . . . J

corresponding to the scales 21, . . . , 2J . If we imagine these data sequences stacked on top

of one another, then they constitute a hierarchical pyramid structure with logN levels.

The original signal x(n) is at the bottom or zero level. At jth level, the signal sequence is

obtained from the data sequence (approximate coefficients) in the (j − 1)th. The equation

to compute a 1-D wavelet transform at level j using orthogonal filters of length L given

13
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by

αj(i) =
L−1∑
m=0

αj−1(2i−m)h(m) where,1 ≤ j ≤ logN ,0 ≤ i ≤ Nj − 1 (2.30)

bj(i) =
L−1∑
m=0

αj−1(2i−m)l(m) where,1 ≤ j ≤ logN ,0 ≤ i ≤ Nj − 1 (2.31)

where, αj(i), bj(i) the ith approximate and detail coefficients at level j, h, l the low and

high pass filter obtained from the chosen wavelet, Nj = N
2j

the number of approximate

coefficients at level j.

Regarding the wavelet function, various families can be used in DWT. In this study,

we use the Haar wavelet transform because of the high performance reported in a previous

study on the same data [14]. The Haar wavelet function is given by

ψ(t) =


1, if 0 ≤ t ≤ 1

2

−1, if 1
2
≤ t ≤ 1

0, otherwise

(2.32)

and its scaling function φ(t) as:

φ(t) =

{
1, if 0 ≤ t ≤ 1

0, otherwise
(2.33)

The Haar transform is the simplest of the wavelet transforms and can be considered as

averages and differences between every two adjacent values of the input data.

2.2 Classification

2.2.1 k - Nearest Neighbor Classifier

The k nearest neighbor algorithm is a simple method for classification. Given a new

data-point, k nearest neighbor classifies it based on the labels of the set of data-points,

which are closest to it and called nearest neighbors.
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2.2 Classification

Let a set of labeled observations x1,x2, . . . ,xK and an unlabeled observation x′. The

k nearest neighbor classifier assigns the observation x′ the label which is the most frequent

among the k nearest neighbors. The nearest neighbors are defined measuring the distance

of the observation x′ from each of the label observations xi where i = 1 . . . K. The most

common distance metric for the k nearest neighbor classifier is the Euclidean distance,

which is given by

di = ‖x′ − xi‖, (2.34)

where di is the Euclidean distance of the unlabeled observation x′ from each of the labeled

observations xi.
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Chapter 3

Problem Specification and Related

Work

In this diploma thesis, we have encountered the problem of the discrimination between

the various stages of cervical neoplasia based on the aceto-whitening effect kinetics.

The data used in this thesis is captured using the digital colposcope DySIS [15]. DySIS

is an imaging device which perform tissue imaging using a 1024×768, 8 bit/channel digital

color charge coupled device (CCD) video camera. The camera is interfaced with a dual-

core microprocessor computer, through a fire-wire (IEEE-1394) cable for data processing

and display. In addition, systems calibration is performed by using a Ba2SO4 calibration

plate, in order to ensure device-independent and reproducible imaging. An embedded

image registration algorithm is used in order to correct the misalignment of the images

which is provoked by tissue contractions and micro-movements of patients.

DySIS imaging device records the aceto-whitening effect, capturing an image stack

after the application of acetic acid solution to the cervix. Acetic acid solution is used in

conventional colposcopic examination as a contrast agent. It interacts with the abnormal

tissues, provoking transient alterations to their light scattering properties. The degree

and the duration of the latter is associated with the degree of the lesion and called aceto-

whitening effect. In Figure 3.1 depicted the evolution of the aceto-whitening effect for

high grade tissue types.

After the application of the contrast agent, a series of images is captured successively

during the evolution of aceto-whitening effect. From the green channel of the captured

image stack, the Intensity of the back scattered light as a function time is extracted for
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(a) Captured image at 7th sec (b) Captured image at 70th sec (c) Captured image at 175th sec

Figure 3.1: Depiction of acetowhitening effect at spesific time instances

every image pixel, expressing the temporal characteristics of the aceto-whitening effect.

The green channel has been selected for the monitoring of the aceto-whitening effect

due to its great dynamic range and high S/N ratio. The obtained image stack pixels,

which represent a time sequence, can be processed in order to be calculated a series

of parameters. After the processing of the curves a pseudo-color map is generated with

different colors corresponding to different values of parameters, allowing the visualization

of the spatial distribution of parameters which express quantitatively the aceto-whitening

effect kinetics.

Tissue type Patients Curves Percentage

Normal 12 72 19%

Inflammation 7 42 11%

HPV 8 65 18%

CIN1 9 50 13%

CIN2 5 26 7%

CIN3 22 110 30%

Cancer 1 6 2%

Total 64 371 100%

Table 3.1: Information about the curves of the first dataset
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3.1 Data Description

3.1 Data Description

In this study, we use two datasets. The first dataset consists of 371 Intensity of the Back

Scattered Light (IBSL) vs time curves. These curves obtained from 64 patients who

underwent colposcopic examination with automated capturing of an image stack in the

clinics of Hammersmith Hospital and St Mary’s Hospital in London, United Kingdom

and Alexandra Hospital in Athens, Greece. More specifically, an image was captured

before the application of acetic acid solution as reference image. After the application of

3% acetic acid solution, a series of images were captured automatically with a frequency

of 1 image every 7 seconds from the 7th second to the 84th second and with a frequency

of 1 image every 10 seconds until the 234th second. The final image was captured in

the 240th second. Thus, each image stack (Figure 3.2) consists of 29 images and can

be viewed as a 3-dimensional M × N × K matrix , where M and N are the spatial

dimensions of each image and K is the number of captured images. Each pixel of an

image stack corresponds to a curve which represents the intensity of the backscattered

light in different time points. From the available image stacks a total of 371 curves were

extracted from 73 tissue points which were subsequently biopsied. Each tissue point

corresponds approximately to five curves. The extracted curves represent seven tissue

types, covering all the stages of the disease as well as the normal case (Figure 3.3). More

specifically 72 curves correspond to Normal tissues, 42 curves to Inflammation, 65 curves

to HPV, 50 curves to CIN1, 26 curves to CIN2, 110 curves to CIN3 and 6 curves of Cancer

tissues. The above information about the curves is summarized into the Table 3.1.

As regards the second dataset, it consists of image stacks which are captured during

the colposcopic examination. The image stacks are discriminated in three main categories

depending on the stage of cervix neoplasia. More specifically, there are seven image stacks

from high grade clinical cases, two image stacks from low grade clinical cases and two

image stacks from normal clinical cases. In this case the image stack consists of fewer

captured images, since the final images were captured in the 185th second. More specifi-

cally, after the application of acetic acid a series of images were captured automatically

with a frequency of 1 image every 7 seconds from the 7th second to the 84th and with a

frequency of 1 image every 10 seconds until the 185th second.

The image stacks can be viewed as an M×N×K matrix where M×N the resolution

of each image. In this case the resolution of the images is 768× 1024, which means that
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Figure 3.2: Image stack visualization

Figure 3.3: Characteristic curves of all the possible classes

there are 786.432 IBSL vs time extracted curves for each one of the above mentioned

clinical cases.
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3.2 Influential Work

The optical imaging techniques for cervical cancer screening require the development of

image processing techniques to automate the interpretation of colposcopic image stream.

In this section, we give a short overview of the most notable techniques of image processing

used to assess the acetowhitening effect kinetics quantitatively and accurately.

Park et al. [16] proposed an diagnostic tool for the automated identification of cervical

neoplasia from digital images. The image analysis was performed in two stages. Firstly,

patterns with similar optical characteristics were clustered together More specifically, a

variant of the k-means algorithm was used to segment the areas which present different

characteristics. After the clustering, classification algorithms were used to discriminate

the type of tissues(normal, low grade, high grade, cancer tissues) containing in the clus-

tered areas. Five features, such as the intensity value of red, green and blue channels; the

ratio of intensity of the green to red channel; and the changes in grayscale intensity values,

were selected as the most relevant for the classification. Given these five features they

proposed an ensemble classifier consisting of a linear classifier with Euclidean distance,

a linear classifier with Mahalanobis distance, 7- nearest neighbor classifier and a support

vector machine with a linear kernel. The proposed method reached a performance with

sensitivity and specificity 79% and 88% to distinguish high grade from low grade and

normal cases.

Li et al. [17] developed a system for automated diagnosis of cervical neoplasia using

only two cervical images captured before and after the application of acetic acid respec-

tively. The system calculated the opacity index to discriminate high grade cases from low

grade and normal cases. They determine the opacity index by subtracting the pre-acetic-

acid from the post-acetic-acid image and applying clustering algorithms. The sensitivity

and specificity of the proposed method is 94% and 87% respectively.

Acosta-Mesa et al. [18] proposed a simple classification approach to discriminate

automatically normal and abnormal tissues based on the intensity value of each pixel over

time. Firstly, the intensity value over time was fitted using a polynomial function. Then,

a k-NN classification algorithm was used over the entire length of the aceto-whitening

temporal patterns. Euclidean distance was used as similarity distance and various values

of k was examined. For k = 20 the algorithm had the better performance with sensitivity

and specificity of 71% and 59%.
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Acosta-Mesa et al. [19] proposed a second classification strategy to classify the tissue

type based on the intensity value over time. Firstly, they reduced the dimensionality of

temporal curves calculating approximations of them through discretization techniques.

Piecewise Linear Approximation (PLA) and Piecewise Slope Approximation (PSA) were

the two discretization techniques which were used. After the discretization stage, the

PLA and PSA representation were used in combination with a Naive Bays classifier. The

PLA, PSA methods reached a performance with sensitivity 67%, 61% and specificity 76%,

70% respectively . In this pilot study the parameters for the discretization techniques

were selected experimentally.

In a third study Fragoso et al. [20] presented the results from the two above mentioned

approaches [18, 19]with a new classification approach. More specifically, they compared

the performance of three classifcation methods, namely kNN, Naive Bayes and C4.5. In

addition, in this work they used the PLA and PSA discretization techniques. However,

in this study the parameters of the discretization techniques was optimized as a single

parameter using evolutionary programming. The sensitivity of the proposed techniques

was between 53% − 71% while the specificity was between 59% − 80%. Assessing the

results authors supported that the low performance due to the similarity of normal and

abnormal epithelium as regards the temporal pattern. Thus, they proposed the combina-

tion between temporal patterns and characteristics of the cervical epithelium to perform

better classification performance.

Wu et al. [21] studied the performance of multivariate statistics algorithms in terms

of their ability to separate accurately the different types of cervical tissues based on ace-

towhitening effect kinetics. More specifically, they study the classification performance of

Principal Component Analysis (PCA) and Support Vector Machine (SVM) for discrim-

ination between CIN lesions based on the kinetics of acetowhitening process. PCA was

used to reduce the dimension of the acetowhitening kinetics curves. More specifically,

they kept the most informative PCs and projected the original onto the feature space,

reducing the dimensionality of the data. The new data representation was used by a

SVM classifier with a radial basis (RBF) kernel. They also provided results from the

SVM algorithm using the original data. Applying these two classification approaches,

they conducted two trials. In the first trial, they focused on the separation of CIN lesions

and non-CIN tissues. In the second trial they focused on the separation of high-grade

(CIN2/3) lesions form other tissue types. In the first trial both of the two classification
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approaches achieved similar performance with a sensitivity of 95% and a specificity of

96%. In the second trial the performance of the classification approach based on the orig-

inal data is slightly better than the one based on the two PC scores. More specifically,

the sensitivity is 91% for both of the two classification approaches, but the specificity is

90%and 87% respectively, implying the new data representation led to loss of information.

Park et al. [22] proposed a domain-specific automated image analysis framework for

the discrimination of the several tissue types of the cervix. In this study, they include

domain-specific diagnostic features in a probabilistic manner using conditional random

fields (CRF). They proposed a conditional random field model which includes both the

optical characteristics of each tissue type and the diagnostic relationships between neigh-

boring regions. Firstly, they design a k-means algorithm to extract anatomical feature

and segment the image into tissue type regions. Given the diagnostic features extracted

from each segmented image region, the classify the tissue in each region as normal or

abnormal using an automated image classification algorithm using a CRF-based classier.

The diagnostic performance of the proposed approach reached a performance with sensi-

tivity 70% and specificity 80% in detecting neoplastic tissues.
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Chapter 4

Our Approach

The main purpose of this study is the design of a model which will provide objective dis-

crimination between the various stages of cervical neoplasia. Thus, we have to evaluate

the impact of the feature extraction methods, described in Section 2.1, on the perfor-

mance of a 1-NN classifier in order to explore which of them is more beneficial for the

classification problem.

We examine two major cases and evaluate the impact of the above mentioned feature

extraction methods. In the first case, the performance of the 1-NN classifier using the

entire feature set is evaluated while in the second case the performance using a subset of

the entire feature set is examined.

In order to examine the impact of the feature extraction methods we use the first

dataset which was described in Section 3.1. As shown in the Table 3.1 the dataset

includes 371 observations. Each observation is labeled and belongs to one of the seven

classes mentioned in Section 3.1. In addition, each observation consists of 29 features,

corresponding to the intensity of the back scattered light in specific time instances. The

discrete wavelet transform operates on feature vectors whose length is an integer power

of two. Thus, we apply cubic spline interpolation to original observations so that the new

feature vectors contain 32 features. Furthermore by applying interpolation to the original

curves we achieve the smoothing of them [14]. After the interpolation, each observation

consists of 32 features. The feature extraction methods described above, namely WT,

PCA, KPCA, PAA, APAA and SAX are applied to the first dataset and the sets of the

extracted features are obtained. KPCA and SAX have a parameter which has to be

selected properly. More specifically, for KPCA, we have to define the standard deviation

25



4. OUR APPROACH

σ of the Gaussian kernel while for SAX we have to define the alphabet size. The optimal

parameters are selected with respect to classification performance obtaining from the

mean AUC score of 100 repeated 10 fold validation.

The classification performance of 1-nearest neighbor classifier is evaluated for various

classification cases. The performance is measured in terms of accuracy, sensitivity, speci-

ficity and Area Under the ROC Curve (AUC) using 10-fold cross validation. The final

results for each classification task constitute the average results of 100 repeated 10-fold

cross validation.

After the performance evaluation of the feature extraction methods using the entire

feature set, we examine the performance of the methods using a subset of the entire

set of features. Keeping a subset of the entire set of features, we achieve to reduce the

computational cost maintaining high performance.

Margariti [14] showed that a subset of the WT can achieve similar performance with

the one obtained by using the entire set of coefficients. More specifically, the results of

her study showed that we can achieve same performance by keeping only 5 of the 32

coefficients. Based on these results, we keep 5 coefficients of the entire feature sets and

compare the performance of the feature extraction methods. As regards the other feature

extraction methods, the feature subset consists also of 5 features for fairness reasons.

In order to select a subset of the Wavelet Coefficients (WCs), Sequential Backward

Elimination (SBE) is used [14]. SBE is a commonly used search method in feature

subset selection [7]. The selection procedure starts with the entire set of features and

at each step the sub-optimal subset is found by removing the feature whose absent least

decreases a performance measure p. The procedure terminates when a specific criterion

is satisfied. In this case, AUC score constitutes the performance measure p and the

termination criterion is the number of features to be 5. The AUC score for each feature

subset is the mean AUC value of 10 repeated 10-fold-validation. In each step of (SBE),

the algorithm drops the feature which yields the lower mean AUC score. Consequently,

for each of 13 classification cases which examined before, a feature subset consisting of

5 WCs is extracted using the (SBE) algorithm and the performance of the method is

evaluated. Regarding the PCA and KPCA, the percentage of retained variance among

the data constitutes the criterion for keeping the most important principal components.

More specifically, it is known that the first principal components retain as much of the

variance in the data as possible, thus the first five principal components are kept. The
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retained variance keeping 5 principal components is approximately 99% for each examined

classification case. In PAA and SAX, we set the segments number of the new time series

representation to 5. In PAA and SAX the new 5-dimensional time series representation

is approximated by segmenting the sequences into 5 equal-length sections and recording

the mean value of these sections. However, in SAX a further transformation is applied

to obtain a discrete representation of the time series. Finally, in APAA we define the

segments number of the new time series representation to 3. In APAA two numbers are

required per segment, which mean that the new time series representation consist of 6

features. However, subtracking the last feature which represents the right endpoint of

each segment and is the same for each time series, we obtain 5 features.

So far, we have selected the number of retained PCs of PCA and KPCA based on

the number of selected features. Next, we will examine whether we can use less features

achieving the same performance. In addition, we will examine the relation between the

percentage of total variation that the selected PCs contribute and the classification per-

formance. We assume that the most discriminative information is captured by the largest

variance in the feature space. Since the direction of the largest variance encodes the most

information this is likely to be true. However, there are cases where the discriminative

information actually resides in the directions of the smallest variance, such that PCA

could greatly hurt classification performance. In this case, the classification performance

increase as the total variation increase.

Furthermore, we present another approach which tries to improve the classification

performance of k-NN combining PCA, KPCA and WCs. The basic idea behind combi-

nation of PCs and WCs is rather intuitive. The added 5 PCs exported form both PCA

and KPCA are selected so that they cover most variance and present high AUC score.

The added 5 WCs are selected so that they present high AUC score for each classification

case.

In order to evaluate the performance of this approach the below procedure is followed.

The dataset is divided into training and test sets. PCA, KPCA and WT are applied in-

dependently to training data, producing PCA, KPCA and WT features, correspondingly.

Then, the original data in training set is mapped onto the lower-dimensional spaces and

the WCs are selected. Thus, three transformed training sets are produced, two of which

contains PCs instead of original features and the other selected WCs. Then, these trans-
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formed datasets are merged, so that the resulting training sets contains PCA, KPCA,

WT features and class labe from the original training set.

After the combination of the three different types of features, we examine the per-

formance of the above approach using a Subset of the entire set of Combined Feature

(SCF). Firstly, we follow the procedure which was described above to extract a set of PCs

and WCs. Then, we try to extract a subset of the entire set of features achieving similar

classification performance with the one obtained by using the entire set of coefficients.

To be able to evaluate the learnt classifier, the test set should also be transformed to

the same format. This is done in a similar way, so that test set is transformed indepen-

dently with PCA, KPCA and WT models, and PCs and WCs are constructed. Then,

PCs are merged with WCs and class labels from the original training set.

In order to select a subset of the entire set of PCs and WCs, SBE is used. Thus, for

each of 13 classification cases which were examined before, a feature subset consisting

of 5 SCF is extracted using the SBE algorithm and the performance of the method is

evaluated.

As we mention above, the main purpose of this study is to find a classification model

which will discriminate the various tissue types of cervix, based on information provided

by an image stack and will generate a pseudo-color map with different colors represent-

ing different tissue types. Such a classification model has to offer a time-efficient way

to classify objectively the various tissue types. Thus, we present the execution time of

classification using each of the four feature extraction methods which present high clas-

sification performance. The results have been generated on a quad core processor of 2.4

Ghz and with 6 GB RAM memory. Table 5.33 shows results related to the execution

time of each methods. It is noted that PCA presents better performance than the other

methods.
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Chapter 5

Performance Evaluation

5.1 Performance Evaluation using the Entire Set of

Features

In this section, we present the impact of the feature extraction to the performance to

1-NN classifier. A 1-NN is applied at the entire set of features extracted using the above

mention feature extraction methods and the performance of classification is evaluated.

In Tables 5.1- 5.13 the results related to the performance of each feature extraction

method for various classification cases is presented. The results indicate that using the

entire extracted feature set all the proposed methods present similar performance expect

for the SAX which gives the least promising results. More specifically, SAX method has

an AUC score 10% − 20% lower than the other feature extraction methods for various

classification cases. The other feature extraction methods present similar AUC score as

using the raw data. In most classification cases the AUC score is quite high, however

there some classification cases where the discrimination of the various classes is quite

difficult.
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feat AUC %(std) Acc%(std) Sens%(std) Spec%(std)

none 32 96.79(0.46) 96.90(0.46) 95.25(0.67) 98.32(0.65)

Wavelet 32 96.82(0.46) 96.92(0.46) 95.41(0.58) 98.22(0.64)

PCA 32 96.85(0.47) 96.95(0.48) 95.38(0.59) 98.31(0.67)

KPCA 32 96.57(0.44) 96.64(0.45) 95.46(0.56) 97.66(0.75)

PAA 16 96.32(0.53) 96.39(0.52) 95.22(0.70) 97.41(0.65)

APAA 32 96.16(0.45) 96.20(0.46) 95.68(0.58) 96.66(0.69)

SAX 16 69.89(1.00) 70.42(0.98) 62.36(1.36) 77.40(1.21)

Table 5.1: Classification between High versus Low grade of neoplasia

feat AUC %(std) Acc%(std) Sens%(std) Spec%(std)

none 32 97.04(0.92) 96.97(0.91) 97.54(1.17) 96.54(1.28)

Wavelet 32 96.96(0.87) 96.91(0.83) 97.38(1.41) 96.55(1.07)

PCA 32 97.01(0.91) 96.96(0.89) 97.46(1.27) 96.57(1.02)

KPCA 32 97.18(0.72) 97.16(0.66) 97.52(1.28) 96.88(0.67)

PAA 16 96.96(0.90) 96.90(0.94) 97.44(1.17) 96.48(1.30)

APAA 32 95.15(1.03) 95.34(1.01) 93.62(1.52) 96.66(1.14)

SAX 16 78.83(1.45) 79.29(1.50) 75.32(1.97) 82.34(2.06)

Table 5.2: Classification between CIN1 versus HPV
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5.1 Performance Evaluation using the Entire Set of Features

feat AUC %(std) Acc%(std) Sens%(std) Spec%(std)

none 32 85.07(1.68) 85.28(1.59) 87.42(1.80) 82.74(2.76)

Wavelet 32 85.15(1.45) 85.34(1.45) 87.40(1.67) 82.88(2.36)

PCA 32 85.37(1.39) 85.55(1.33) 87.66(1.48) 83.05(2.09

KPCA 32 84.91(1.85) 85.09(1.74) 87.08(2.33) 82.71(2.74)

PAA 16 84.43(1.48) 84.57(1.42) 85.80(1.67) 83.10(2.28)

APAA 32 88.92(1.40) 89.00(1.44) 89.52(2.07) 88.38(1.95)

SAX 16 79.90(1.65) 79.67(1.61) 77.58(2.04) 82.17(2.61)

Table 5.3: Classification between CIN1 versus Inflammation

feat AUC %(std) Acc%(std) Sens%(std) Spec%(std)

none 32 95.92(1.32) 96.26(1.25) 97.57(1.59) 94.24(2.09)

Wavelet 32 95.97(1.28) 96.29(1.20) 97.46(1.42) 94.48(1.88)

PCA 32 95.92(1.38) 96.26(1.31) 97.58(1.58) 94.21(2.12)

KPCA 32 95.72(1.52) 96.11(1.43) 97.63(1.57) 93.76(2.53)

PAA 16 92.46(1.42) 92.90(1.39) 94.58(1.81) 90.29(2.16)

APAA 32 93.77(1.20) 93.70(0.97) 93.49(0.78) 94.02(2.40)

SAX 16 85.33(1.25) 84.17(1.30) 80.00(1.78) 90.62(1.06)

Table 5.4: Classification between HPV versus Inflammation

feat AUC %(std) Acc%(std) Sens%(std) Spec%(std)

none 32 90.09(1.03) 90.18(0.95) 90.61(0.95) 89.56(1.67)

Wavelet 32 90.26(1.05) 90.34(0.99) 90.67(0.99) 89.88(1.60)

PCA 32 90.01(1.15) 90.12(1.04) 90.62(0.89) 89.40(1.87)

KPCA 32 90.26(1.01) 90.29(0.95) 90.44(0.97) 90.06(1.59)

PAA 16 90.87(1.08) 90.78(1.02) 90.44(1.07) 91.26(1.77)

APAA 32 90.19(1.21) 89.99(1.11) 89.06(1.10) 91.34(2.03)

SAX 16 79.44(1.33) 78.63(1.31) 74.99(1.76) 83.88(1.92)

Table 5.5: Classification between Normal versus CIN1
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5. PERFORMANCE EVALUATION

feat AUC %(std) Acc%(std) Sens%(std) Spec%(std)

none 32 84.51(1.00) 84.52(0.97) 81.50(1.44) 87.50(1.31)

Wavelet 32 84.62(1.07) 84.61(1.07) 81.54(1.43) 87.65(1.51)

PCA 32 84.58(1.18) 84.60(1.17) 81.57(1.37) 87.61(1.68)

KPCA 32 84.56(1.08) 84.58(1.09) 81.66(1.35) 87.48(1.60)

PAA 16 82.56(1.11) 82.57(1.09) 79.96(1.39) 85.15(1.59)

APAA 32 83.61(1.26) 83.63(1.25) 80.48(1.89) 86.75(1.39)

SAX 16 74.29(1.29) 74.33(1.29) 62.49(1.88) 86.07(1.85)

Table 5.6: Classification between Normal-Inflammation vs HPV-CIN1

feat AUC %(std) Acc%(std) Sens%(std) Spec%(std)

none 32 97.39(0.64) 97.22(0.45) 97.01(0.36) 97.76(1.15)

Wavelet 32 97.42(0.60) 97.22(0.45) 96.99(0.38) 97.84(1.01)

PCA 32 97.46(0.65) 97.27(0.48) 97.05(0.41) 97.86(1.15)

KPCA 32 97.38(0.57) 97.19(0.40) 96.96(0.36) 97.82(1.03)

PAA 16 96.24(0.69) 96.56(0.44) 96.95(0.40) 95.52(1.34)

APAA 32 96.52(0.59) 96.85(0.44) 97.24(0.43) 95.80(1.08)

SAX 16 70.96(1.52) 73.51(1.42) 76.48(1.67) 65.44(2.46)

Table 5.7: Classification between CIN2/3 vs CIN1

feat AUC %(std) Acc%(std) Sens%(std) Spec%(std)

none 32 88.42(1.08) 92.41(0.62) 81.92(1.98) 94.94(0.51)

Wavelet 32 88.26(1.06) 92.32(0.57) 81.65(2.02) 94.89(0.48)

PCA 32 88.25(0.98) 92.27(0.49) 81.69(1.97) 94.82(0.42)

KPCA 32 88.28(1.01) 92.34(0.61) 81.65(1.95) 94.91(0.56)

PAA 16 87.75(1.13) 92.24(0.56) 80.42(2.22) 95.09(0.50)

APAA 32 85.35(1.15) 91.08(0.57) 75.99(2.28) 94.71(0.48)

SAX 16 66.04(1.10) 83.71(0.56) 37.15(2.13) 94.92(0.48)

Table 5.8: Classification between Normal versus all the others classes
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5.1 Performance Evaluation using the Entire Set of Features

feat AUC %(std) Acc%(std) Sens%(std) Spec%(std)

none 32 82.36(1.69) 94.30(0.54) 66.83(3.20) 97.81(0.45)

Wavelet 32 82.39(1.75) 94.33(0.62) 67.02(3.20) 97.81(0.49)

PCA 32 82.13(1.71) 94.22(0.57) 66.48(3.33) 97.77(0.44)

KPCA 32 82.11(1.46) 94.25(0.58) 66.36(2.74) 97.81(0.49)

PAA 16 80.65(1.60) 93.31(0.62) 64.24(3.01) 97.02(0.49)

APAA 32 85.03(1.35) 94.80(0.53) 72.45(2.61) 97.65(0.44)

SAX 16 69.62(1.26) 90.09(0.41) 43.19(2.46) 96.08(0.36)

Table 5.9: Classification between Inflammation versus all the others classes

feat AUC %(std) Acc%(std) Sens%(std) Spec%(std)

none 32 92.30(1.35) 95.07(0.64) 88.02(2.59) 96.57(0.48)

Wavelet 32 92.02(1.16) 94.94(0.56) 87.52(2.23) 96.52(0.45)

PCA 32 91.94(1.19) 94.92(0.56) 87.38(2.24) 96.53(0.44)

KPCA 32 92.15(1.24) 95.00(0.62) 87.68(2.35) 96.56(0.47)

PAA 16 89.70(1.14) 93.70(0.62) 83.51(2.14) 95.87(0.58)

APAA 32 87.79(0.96) 92.20(0.60) 80.98(1.82) 94.58(0.61)

SAX 16 73.54(1.70) 88.10(0.64) 51.08(3.32) 95.96(0.44)

Table 5.10: Classification between HPV versus all the others classes

feat AUC %(std) Acc%(std) Sens%(std) Spec%(std)

none 32 85.59(1.52) 92.01(0.59) 76.80(2.97) 94.37(0.46)

Wavelet 32 85.54(1.29) 92.05(0.52) 76.62(2.49) 94.46(0.42)

PCA 32 85.54(1.48) 91.99(0.57) 76.70(2.92) 94.38(0.47)

KPCA 32 85.50(1.32) 92.05(0.50) 76.54(2.63) 94.47(0.43)

PAA 16 85.32(1.30) 91.86(0.56) 76.38(2.52) 94.27(0.49)

APAA 32 86.32(1.51) 93.29(0.57) 76.78(2.99) 95.86(0.46)

SAX 16 65.71(1.45) 87.15(0.67) 36.36(2.76) 95.06(0.59)

Table 5.11: Classification between CIN1 versus all the others classes
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5. PERFORMANCE EVALUATION

feat AUC %(std) Acc%(std) Sens%(std) Spec%(std)

none 32 81.84(1.47) 95.72(0.41) 65.88(2.54) 97.97(0.37)

Wavelet 32 81.89(1.81) 95.76(0.48) 65.77(3.35) 98.02(0.42)

PCA 32 82.09(1.76) 95.71(0.41) 66.27(2.73) 97.93(0.42)

KPCA 32 82.13(1.61) 95.70(0.47) 66.42(2.73) 97.91(0.44)

PAA 16 81.30(1.97) 95.19(0.46) 65.15(3.62) 97.46(0.44)

APAA 32 81.27(1.69) 94.99(0.46) 65.35(2.81) 97.22(0.43)

SAX 16 64.08(2.24) 91.59(0.53) 32.19(4.00) 96.07(0.43)

Table 5.12: Classification between CIN2 versus all the others classes

feat AUC %(std) Acc%(std) Sens%(std) Spec%(std)

none 32 91.39(0.67) 93.00(0.55) 87.43(1.21) 95.35(0.60)

Wavelet 32 91.49(0.68) 93.12(0.54) 87.49(1.21) 95.50(0.53)

PCA 32 91.44(0.75) 93.10(0.56) 87.35(1.41) 95.52(0.51)

KPCA 32 91.23(0.78) 92.82(0.57) 87.32(1.49) 95.13(0.55)

PAA 16 90.67(0.87) 92.44(0.66) 86.33(1.57) 95.02(0.60)

APAA 32 91.40(0.76) 92.94(0.58) 87.62(1.41) 95.19(0.54)

SAX 16 71.82(1.24) 76.35(0.97) 60.67(2.16) 82.96(0.86)

Table 5.13: Classification between CIN3 versus all the others classes

5.2 Performance Evaluation using a Subset of Fea-

tures

In the Tables 5.14- 5.26 the results related to the performance of a 1-NN in combination

to specific feature extraction methods for various classification tasks is presented. The

results indicate that using a subset of the entire feature set, Wt, PCA and KPCA present

similar performance. Same performance is achieved using the entire feature set. APAA

and PAA present slightly worse performance while SAX present the worst performance

having an AUC score 10%− 20% lower than the others.
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5.2 Performance Evaluation using a Subset of Features

feat AUC %(std) Acc%(std) Sens%(std) Spec%(std)

none 32 96.83(0.43) 96.94(0.44) 95.33(0.59) 98.32(0.64)

Wavelet 5 95.54(0.59) 95.55(0.60) 95.28(0.74) 95.79(0.89)

PCA 5 96.20(0.38) 96.26(0.39) 95.26(0.55) 97.12(0.60)

KPCA 5 95.80(0.59) 95.84(0.61) 95.21(0.63) 96.38(0.88)

PAA 5 92.68(0.54) 92.60(0.55) 93.78(0.76) 91.59(0.84)

APAA 5 92.82(0.67) 92.78(0.67) 93.22(0.76) 92.41(0.96)

SAX 5 71.23(1.16) 72.26(1.12) 56.76(1.93) 85.69(1.34)

Table 5.14: Classification between High versus Low grade of neoplasia

feat AUC %(std) Acc%(std) Sens%(std) Spec%(std)

none 32 97.04(0.83) 96.98(0.83) 97.56(1.26) 96.54(1.19)

Wavelet 5 96.72(0.95) 96.64(0.92) 97.20(1.56) 96.22(1.10)

PCA 5 96.86(0.80) 96.83(0.75) 97.16(1.45) 96.57(0.69)

KPCA 5 96.09(0.83) 96.13(0.79) 95.66(1.33) 96.49(1.03)

PAA 5 96.86(0.93) 96.78(0.93) 97.40(1.35) 96.31(1.24)

APAA 5 95.34(0.86) 95.53(0.78) 93.78(1.61) 96.88(0.71)

SAX 5 75.84(1.21) 76.36(1.24) 71.80(1.76) 79.86(1.8)7

Table 5.15: Classification between CIN1 versus HPV
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5. PERFORMANCE EVALUATION

feat AUC %(std) Acc%(std) Sens%(std) Spec%(std)

none 32 85.30(1.51) 85.45(1.47) 87.48(1.79) 83.02(2.57)

Wavelet 5 84.79(1.82) 84.78(1.77) 85.02(2.63) 84.50(2.90)

PCA 5 85.10(1.59) 85.27(1.57) 87.40(1.85) 82.74(2.47)

KPCA 5 84.91(1.63) 85.11(1.67) 87.14(2.38) 82.69(2.03)

PAA 5 82.57(1.35) 82.70(1.35) 84.24(1.71) 80.86(2.03)

APAA 5 81.42(1.75) 81.51(1.74) 82.24(2.11) 80.64(2.61)

SAX 5 68.37(2.20) 67.70(2.33) 60.90(3.81) 75.79(1.89)

Table 5.16: Classification between CIN1 versus Inflammation

feat AUC %(std) Acc%(std) Sens%(std) Spec%(std)

none 32 95.95(1.35) 96.24(1.35) 97.40(1.73) 94.45(1.92)

Wavelet 5 94.97(1.29) 95.50(1.25) 97.42(1.54) 92.55(1.71)

PCA 5 96.21(1.29) 96.54(1.22) 97.82(1.32) 94.57(2.14)

KPCA 5 94.88(1.43) 95.04(1.43) 95.60(1.96) 94.17(1.93)

PAA 5 90.74(1.47) 91.31(1.37) 93.34(1.56) 88.17(1.96)

APAA 5 88.04(1.14) 88.55(1.14) 90.42(1.53) 85.67(1.79)

SAX 5 83.83(1.21) 83.28(1.16) 81.40(1.24) 86.19(2.00)

Table 5.17: Classification between HPV versus Inflammation

feat AUC %(std) Acc%(std) Sens%(std) Spec%(std)

none 32 90.16(1.03) 90.22(0.96) 90.58(0.94) 89.70(1.57)

Wavelet 5 91.05(1.32) 91.12(1.21) 91.49(1.11) 90.60(2.28)

PCA 5 89.85(0.87) 89.93(0.82) 90.33(0.99) 89.36(1.45)

KPCA 5 90.39(0.92) 90.57(0.86) 91.31(1.02) 89.50(1.54)

PAA 5 87.67(1.25) 87.66(1.17) 87.64(1.16) 87.70(2.00)

APAA 5 86.61(1.30) 87.23(1.26) 90.06(1.59) 83.16(2.15)

SAX 5 67.91(1.73) 65.14(1.74) 52.51(2.46) 83.32(2.51)

Table 5.18: Classification between Normal versus CIN1
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5.2 Performance Evaluation using a Subset of Features

feat AUC %(std) Acc%(std) Sens%(std) Spec%(std)

none 32 84.60(1.03) 84.62(1.05) 81.58(1.48) 87.63(1.48)

Wavelet 5 85.33(0.90) 85.31(0.92) 86.80(1.24) 83.84(1.11)

PCA 5 83.39(1.07) 83.40(1.05) 80.74(1.16) 86.04(1.68)

KPCA 5 82.87(1.19) 82.88(1.17) 81.16(1.21) 84.59(1.87)

PAA 5 79.86(1.06) 79.86(1.06) 76.76(1.44) 82.93(1.57)

APAA 5 78.34(1.19) 78.31(1.19) 79.35(1.62) 77.29(1.83)

SAX 5 67.57(1.23) 67.61(1.21) 51.89(1.69) 83.19(1.73)

Table 5.19: Classification between Normal-Inflammation vs HPV-CIN1

feat AUC %(std) Acc%(std) Sens%(std) Spec%(std)

none 32 97.31(0.69) 97.17(0.48) 97.01(0.37) 97.60(1.24)

Wavelet 5 97.55(0.52) 97.61(0.33) 97.68(0.31) 97.42(1.04)

PCA 5 96.38(0.50) 96.62(0.35) 96.90(0.34) 95.86(0.95)

KPCA 5 96.35(0.77) 96.78(0.56) 97.29(0.52) 95.42(1.40)

PAA 5 94.14(0.84) 95.15(0.52) 96.33(0.41) 91.94(1.62)

APAA 5 92.15(0.72) 93.97(0.59) 96.10(0.59) 88.20(1.19)

SAX 5 76.87(1.78) 76.32(1.34) 75.68(1.41) 78.04(3.34)

Table 5.20: Classification between CIN2/3 vs CIN1

feat AUC %(std) Acc%(std) Sens%(std) Spec%(std)

none 32 88.19(1.14) 92.27(0.63) 81.53(2.13) 94.86(0.47)

Wavelet 5 87.92(0.99) 93.02(0.54) 79.58(1.88) 96.25(0.49)

PCA 5 88.37(1.03) 92.26(0.59) 81.97(1.97) 94.74(0.54)

KPCA 5 87.81(1.09) 91.50(0.59) 81.75(2.01) 93.85(0.47)

PAA 5 83.95(0.99) 90.13(0.56) 73.85(1.85) 94.05(0.51)

APAA 5 84.08(1.39) 89.38(0.70) 75.44(2.63) 92.74(0.53)

SAX 5 63.30(1.14) 82.27(0.65) 32.26(2.13) 94.31(0.60)

Table 5.21: Classification between Normal versus all the others classes
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feat AUC %(std) Acc%(std) Sens%(std) Spec%(std)

none 32 82.23(1.53) 94.30(0.52) 66.45(2.91) 97.85(0.44)

Wavelet 5 88.18(1.56) 95.01(0.60) 79.29(2.98) 97.02(0.55)

PCA 5 82.38(1.65) 94.54(0.61) 66.71(3.17) 98.09(0.47)

KPCA 5 82.11(1.56) 94.51(0.51) 66.10(3.05) 98.13(0.43)

PAA 5 77.33(1.25) 92.64(0.45) 57.36(2.35) 97.14(0.42)

APAA 5 76.21(1.40) 91.16(0.61) 56.98(2.42) 95.52(0.60)

SAX 5 59.54(1.19) 88.33(0.43) 22.24(2.33) 96.76(0.38)

Table 5.22: Classification between Inflammation versus all the others classes

feat AUC %(std) Acc%(std) Sens%(std) Spec%(std)

none 32 91.92(1.24) 94.89(0.58) 87.28(2.43) 96.51(0.46)

Wavelet 5 90.83(1.37) 94.35(0.62) 85.37(2.76) 96.25(0.44)

PCA 5 91.19(1.22) 94.44(0.68) 86.15(2.21) 96.20(0.57)

KPCA 5 90.88(1.20) 94.38(0.59) 85.43(2.33) 96.28(0.52)

PAA 5 87.13(1.19) 92.57(0.69) 78.82(2.23) 95.49(0.59)

APAA 5 85.44(1.34) 91.71(0.64) 75.80(2.54) 95.08(0.47)

SAX 5 67.54(1.31) 85.24(0.62) 40.31(2.56) 94.78(0.55)

Table 5.23: Classification between HPV versus all the others classes

feat AUC %(std) Acc%(std) Sens%(std) Spec%(std)

none 32 85.66(1.36) 92.05(0.59) 76.92(2.58) 94.41(0.47)

Wavelet 5 86.36(1.51) 92.81(0.45) 77.54(3.09) 95.19(0.36)

PCA 5 84.12(1.49) 91.57(0.53) 73.92(2.97) 94.31(0.42)

KPCA 5 84.20(1.52) 91.55(0.56) 74.14(3.00) 94.26(0.42)

PAA 5 81.40(1.22) 90.02(0.52) 69.60(2.38) 93.20(0.47)

APAA 5 79.34(1.37) 90.55(0.55) 64.00(2.73) 94.68(0.50)

SAX 5 55.22(1.29) 84.22(0.60) 15.52(2.58) 94.93(0.62)

Table 5.24: Classification between CIN1 versus all the others classes
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5.3 Relation between Retained Variance and Classification Performance

feat AUC %(std) Acc%(std) Sens%(std) Spec%(std)

none 32 82.25(1.91) 95.75(0.42) 66.42(3.23) 97.97(0.40)

Wavelet 5 83.58(1.95) 95.72(0.53) 69.62(3.56) 97.68(0.48)

PCA 5 81.90(1.91) 95.25(0.44) 65.92(3.19) 97.46(0.40)

KPCA 5 81.04(2.08) 95.13(0.42) 64.81(3.84) 97.41(0.38)

PAA 5 77.86(2.14) 94.78(0.41) 58.35(3.28) 97.52(0.36)

APAA 5 79.86(2.03) 94.74(0.46) 62.65(3.72) 97.15(0.41)

SAX 5 53.10(1.14) 92.12(0.32) 7.81(2.01) 98.48(0.31)

Table 5.25: Classification between CIN2 versus all the others classes

feat AUC %(std) Acc%(std) Sens%(std) Spec%(std)

none 32 91.29(0.75) 92.98(0.56) 87.14(1.44) 95.45(0.56)

Wavelet 5 89.80(0.70) 91.88(0.55) 84.70(1.24) 94.90(0.53)

PCA 5 90.76(0.70) 92.56(0.51) 86.33(1.32) 95.19(0.48)

KPCA 5 90.55(0.74) 92.25(0.57) 86.38(1.44) 94.72(0.65)

PAA 5 87.09(0.82) 88.64(0.67) 83.27(1.38) 90.90(0.62)

APAA 5 86.59(0.81) 88.75(0.67) 81.26(1.50) 91.91(0.75)

SAX 5 65.65(1.21) 76.56(0.88) 38.85(2.21) 92.46(0.70)

Table 5.26: Classification between CIN3 versus all the others classes

5.3 Relation between Retained Variance and Classi-

fication Performance

Tables 5.27- 5.30 present the classification performance and the percentage of total varia-

tion contribute retained Principal Components (PCs) extracted from PCA technique and

KPCA respectively. More specifically, we present the AUC score for various classification

cases the percentage of total variation contribute m retained PCs, where m = 1 . . . 5.

In addition, the AUC performance using all the available PCs is presented in the final

column of the Tables. The results indicate that using the five first PCs we can achieve

the same or even better performance as by using the entire feature set. In addition, it is
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5. PERFORMANCE EVALUATION

indicated that in some cases similar performance is achieved using the first three or four

PCs.
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5.3 Relation between Retained Variance and Classification Performance

Case # PCs Variation(%) AUC(%) AUC(%) (32 features)

1 0.91 67.49

High 1,2 0.97 78.48

vs 1,2,3 0.99 94.26 96.76

Low 1,2,3,4 0.99 95.93

1,2,3,4,5 0.99 96.22

1 0.88 77.80

CIN1 1,2 0.97 91.53

vs 1,2,3 0.99 96.15 96.88

HPV 1,2,3,4 0.99 96.35

1,2,3,4,5 0.99 96.99

1 0.83 66.98

CIN1 1,2 0.96 83.01

vs 1,2,3 0.99 81.80 85.05

Inflammation 1,2,3,4 0.99 85.18

1,2,3,4,5 0.99 85.34

1 0.91 77.48

HPV 1,2 0.97 91.64

vs 1,2,3 0.99 88.94 96.09

Inflammation 1,2,3,4 0.99 95.05

1,2,3,4,5 0.99 96.16

1 0.92 70.95

Normal 1,2 0.98 82.70

vs 1,2,3 0.99 88.85 90.00

CIN1 1,2,3,4 0.99 90.24

1,2,3,4,5 0.99 89.70

Normal 1 0.91 63.29

Inflammation 1,2 0.98 75.09

vs 1,2,3 0.99 78.80 84.78

HPV 1,2,3,4 0.99 83.37

CIN1 1,2,3,4,5 0.99 83.62

1 0.91 82.37

CIN2/3 1,2 0.98 90.86

vs 1,2,3 0.99 93.61 97.37

CIN1 1,2,3,4 0.99 96.44

1,2,3,4,5 0.99 96.46

Table 5.27: Retained PCs using PCA and AUC score for various Classification Cases
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Case # PCs Variation(%) AUC(%) AUC(%) (32 features)

1 0.90 53.10

Normal 1,2 0.97 69.87

vs 1,2,3 0.99 86.44 88.17

All 1,2,3,4 0.99 88.59

1,2,3,4,5 0.99 88.45

1 0.90 61.50

Inflammation 1,2 0.97 74.12

vs 1,2,3 0.99 77.70 82.35

All 1,2,3,4 0.99 80.90

1,2,3,4,5 0.99 82.28

1 0.90 61.04

HPV 1,2 0.97 76.97

vs 1,2,3 0.99 86.36 92.01

All 1,2,3,4 0.99 90.45

1,2,3,4,5 0.99 90.91

1 0.90 66.24

CIN1 1,2 0.97 75.58

vs 1,2,3 0.99 78.86 85.51

All 1,2,3,4 0.99 84.19

1,2,3,4,5 0.99 84.46

1 0.90 61.40

CIN2 1,2 0.97 69.02

vs 1,2,3 0.99 79.79 81.82

All 1,2,3,4 0.99 81.72

1,2,3,4,5 0.99 82.15

1 0.90 66.24

CIN3 1,2 0.97 72.86

vs 1,2,3 0.99 88.57 91.41

All 1,2,3,4 0.99 90.71

1,2,3,4,5 0.99 90.62

Table 5.28: Retained PCs using PCA and AUC score for One versus All Classification

Cases
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5.3 Relation between Retained Variance and Classification Performance

Case # PCs Variation(%) AUC(%) AUC(%) (32 features)

1 0.86 67.03

High 1,2 0.92 78.40

vs 1,2,3 0.97 86.82 96.50

Low 1,2,3,4 0.99 94.14

1,2,3,4,5 0.99 95.83

1 0.85 77.41

CIN1 1,2 0.94 90.36

vs 1,2,3 0.98 95.76 97.04

HPV 1,2,3,4 0.99 95.98

1,2,3,4,5 0.99 96.06

1 0.81 66.76

CIN1 1,2 0.95 82.40

vs 1,2,3 0.97 82.64 85.06

Inflammation 1,2,3,4 0.98 81.93

1,2,3,4,5 0.99 84.75

1 0.87 77.31

HPV 1,2 0.94 91.95

vs 1,2,3 0.98 89.50 95.91

Inflammation 1,2,3,4 0.99 89.58

1,2,3,4,5 0.99 94.71

1 0.89 70.96

Normal 1,2 0.95 83.02

vs 1,2,3 0.97 82.43 90.24

CIN1 1,2,3,4 0.99 88.90

1,2,3,4,5 0.99 90.49

Normal 1 0.88 64.13

Inflammation 1,2 0.95 75.09

vs 1,2,3 0.98 76.31 84.60

HPV 1,2,3,4 0.99 78.90

CIN1 1,2,3,4,5 0.99 83.11

1 0.86 81.58

CIN2/3 1,2 0.94 90.72

vs 1,2,3 0.98 90.76 97.34

CIN1 1,2,3,4 0.99 93.49

1,2,3,4,5 0.99 96.14

Table 5.29: Retained PCs using KPCA and AUC score for various classification cases
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Case # PCs Variation(%) AUC(%) AUC(%) (32 features)

1 0.85 53.47

Normal 1,2 0.92 70.15

vs 1,2,3 0.96 75.20 88.10

All 1,2,3,4 0.99 86.17

1,2,3,4,5 0.99 87.74

1 0.90 60.98

Inflammation 1,2 0.97 74.00

vs 1,2,3 0.99 77.58 82.16

All 1,2,3,4 0.99 81.01

1,2,3,4,5 0.99 82.36

1 0.91 60.69

HPV 1,2 0.97 77.09

vs 1,2,3 0.99 86.24 92.02

All 1,2,3,4 0.99 90.39

1,2,3,4,5 0.99 91.10

1 0.85 67.15

CIN1 1,2 0.92 76.11

vs 1,2,3 0.96 77.72 85.63

All 1,2,3,4 0.99 79.52

1,2,3,4,5 0.99 83.90

1 0.86 61.81

CIN2 1,2 0.92 68.77

vs 1,2,3 0.96 72.39 82.18

All 1,2,3,4 0.99 79.69

1,2,3,4,5 0.99 81.42

1 0.85 66.89

CIN3 1,2 0.92 72.65

vs 1,2,3 0.96 80.19 91.24

All 1,2,3,4 0.99 88.79

1,2,3,4,5 0.99 90.55

Table 5.30: Retained PCs using KPCA and AUC score for ”one vs all” classification

cases
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5.4 Combination of PCA, KPCA, and WT features

5.4 Combination of PCA, KPCA, and WT features

In Tables 5.31- 5.32 the results related to the performance of PCA, WT, SCF for various

classification tasks is presented. The results indicate that using a subset of combined

PCs and WTs we can achieve better classification performance than using individual

feature of PCA and WT for various classification cases and especially for cases where the

discrimination of various classes is quite difficult.

5.5 Execution Time

Table 5.33 shows results related to the execution time of each feature extraction methodm

mentioned above. It is noted that PCA presents better performance.

Method Execution Time

Wavelet 22 min

PCA 11.2 sec

KPCA 36.07 sec

PAA 70 sec

APAA 40 min

Table 5.33: Execution Time
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Case Feat AUC Accuracy Sensitivity Specificity

High SCF 97.27(0.54) 97.26(0.56) 97.39(0.57) 97.15(0.84)

vs PCA 96.25(0.38) 96.31(0.39) 95.35(0.49) 97.15(0.55)

Low Wavelet 96.26(0.62) 96.33(0.62) 95.29(0.82) 97.24(0.86)

CIN1 SCF 97.04(0.74) 96.96(0.75) 97.60(0.94) 96.46(0.99)

vs PCA 96.96(0.83) 96.92(0.78) 97.30(1.40) 96.63(0.61)

HPV Wavelet 96.31(0.90) 96.16(0.81) 97.50(1.62) 95.12(0.88)

CIN1 SCF 90.75(2.12) 90.79(2.10) 91.26(2.46) 90.24(3.20)

vs PCA 85.21(1.19) 85.38(1.20) 87.34(1.82) 83.05(1.80)

Inflammation Wavelet 86.40(1.97) 87.42(1.93) 86.68(2.29) 86.12(3.14)

HPV SCF 95.95(1.25) 96.30(1.27) 97.63(1.54) 94.24(1.83)

vs PCA 95.84(1.21) 96.21(1.20) 97.55(1.59) 94.12(2.13)

Inflammation Wavelet 94.97(1.16) 95.47(1.08) 97.45(1.40) 92.40(2.11)

Normal SCF 92.54(1.18 92.80(1.18 94.00(1.41) 91.08(1.69)

vs PCA 90.08(0.93) 90.16(0.86) 90.62(0.93) 89.48(1.57)

CIN1 Wavelet 91.14(1.17) 91.44(1.03) 92.76(0.93) 89.54(2.18)

Normal

Inflammation SCF 88.16(1.13) 88.18(1.14) 86.53(1.55) 89.82(1.58)

vs PCA 85.44(1.19) 83.45(1.16) 85.71(1.42) 86.17(1.69)

HPV Wavelet 86.18(0.94) 87.18(0.96) 82.68(1.32) 90.65(1.26)

CIN1

CIN2/3 SCF 98.60(0.53) 98.13(0.43) 97.60(0.49) 99.60(0.98)

vs PCA 96.43(0.64) 96.67(0.41) 96.96(0.30) 95.90(1.22)

CIN1 Wavelet 97.62(0.59) 97.65(0.36) 97.69(0.26) 97.54(1.13)

Table 5.31: Classification performance using WCs, PCs, SCF
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5.5 Execution Time

Case Feat AUC Accuracy Sensitivity Specificity

Normal SCF 90.36(1.06) 93.37(0.63) 85.46(1.96) 95.27(0.57)

vs PCA 87.54(0.84) 92.32(0.49) 80.29(1.56) 94.74(0.48)

All Wavelet 88.08(1.12) 93.14(0.62) 79.76(2.12) 96.36(0.48)

Inflammation SCF 90.27(1.40) 95.41(0.50) 83.57(2.78) 96.92(0.44)

vs PCA 82.43(1.62) 94.55(0.56) 66.76(3.12) 98.10(0.45)

All Wavelet 87.99(1.46) 94.97(0.52) 78.81(2.86) 97.04(0.47)

HPV SCF 91.11(0.97) 94.61(0.47) 85.66(1.95) 96.51(0.46)

vs PCA 91.04(1.13) 94.40(0.49) 85.83(2.30) 96.22(0.43)

All Wavelet 91.22(1.06) 94.52(0.54) 86.09(1.98) 96.31(0.43)

CIN1 SCF 86.70(1.20) 93.03(0.50) 78.04(2.36) 95.36(0.44)

vs PCA 84.14(1.41) 91.58(0.47) 73.94(2.88) 94.33(0.41)

All Wavelet 84.73(1.43) 90.81(0.61) 76.40(2.74) 93.06(0.52)

CIN2 SCF 88.23(2.20) 95.28(0.48) 80.58(4.14) 96.77(0.40)

vs PCA 81.59(1.95) 95.20(0.45) 66.12(3.36) 97.40(0.42)

All Wavelet 82.79(2.16) 95.05(0.44) 68.69(3.92) 96.73(0.40)

CIN3 SCF 90.84(0.79) 92.43(0.62) 86.93(1.41) 94.74(0.61)

vs PCA 90.72(0.76) 92.54(0.55) 86.25(1.45) 95.19(0.50)

All Wavelet 89.05(0.81) 90.92(0.62) 84.47(1.53) 93.63(0.64)

Table 5.32: Classification performance using WCs, PCs, SCF
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Chapter 6

Mapping and Visualization of the

Results

In this Chapter we present maps generated after the classification process. The generated

pseudo-color map with different colors representing different tissue types, is overlaid onto

the color image of the cervix providing valuable information about the stage of cervical

neoplasia.

Taking into account the classification performance of 1-NN classifier using each of

the proposed feature extraction methods as well as the execution time of each method

we select three of them, namely PCA, WT and the combination of PCs and WCs as

described in Section 5.4, to generate pseudo-color maps representing the stages of disease.

WT, PCA obtain similar classification performance. However the execution time of PCA

is lower, which constitutes an important advantage of this method. As regards the

combination of PCs and WCs, it presents slightly better results in terms of classification

performance.

In order to generate pseudo-color maps, we use the dataset distributed in Chapter 3

and consists of images stacks. As it is referred in Chapter 3 after the application of

acetic acid a series of images were captured automatically with a frequency of 1 image

every 7 seconds from the 7th second to the 84th and with a frequency of 1 image every 10

seconds until the 185th second. The image stacks can be viewed as an M×N×K matrix

where M ×N is the resolution of each image. In this case the resolution of the images is

768× 1024, which means that there are 786.432 extracted curves from each image stack

corresponding to clinical cases.
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6. MAPPING AND VISUALIZATION OF THE RESULTS

The generation of pseudo-color map which provides valuable information about the

stage of cervical neoplasia requires the classification of 786.432 extracted curves which

were described above. However, before the classification the training of the classifier is

required. In the training stage we use the first dataset which was described in Chapter 3

and consists of 371 labeled curves. During the training stage a simple multiclass classifi-

cation model is build constructing one 1-NN for each pair of classes. In our case, where

the there are c = 7 different classes, c(c− 1)/2 = 21 different 1-NN classifiers are trained

to distinguish the samples of one class from the samples of another class. For each one of

the 21 classifiers different features are extracted and used in the training stage. After the

training, the classification stage follows. Each of the unknown patterns are classified from

the different trained classifiers and the decision about the class win which the pattern

belong is done according to the maximum voting.

Figures 6.5- 6.10 help us visualize the classification results through the mapping

procedure. The available images that we use for the mapping depict one case of high

grade neoplasia, one case of low grade neoplasia and one case of no evidence of disease.

The visualization of classification for the rest clinical cases can be found in Appendix A.

For each patient we will present six images, the first two frames are the images before

and at 185 sec after the acetic acid application, respectively. The third and fourth image

present the mapping for distinguishing each class versus all the others by using the five

selected WT features and the five first PCs, respectively. The fifth image shows the

mapping that is produced by the combination of WCs, PCs. Finally, the last image

illustrates the mapping that is produced by current method.

Figure 6.1 illustrates the color used to describe each class. More precisely, when the

class is Normal no color is used for the mapping of the pixel. In the Inflammation case

the color blue is used, while in the HPV the cyan. CIN1 is mapped with green color,

CIN2 with yellow, CIN3 with orange and finally Cancer with red. Figure illustrates The

colormap used by DySIS device is slightly different than in our case. More precisely, for

the pixels that are classified as normal, no color or blue is used, for the low grade cases

the colors green and red are chosen (red represents the more severe cases) and for the

high grade yellow and white (white represents the more severe cases).

The visualization of classification for clinical cases verifies the high performance of the

proposed methods. More specifically, patient 71 was diagnosed with high grade cervical

neoplasia. Figures 6.3 and 6.4 indicate that the three mapping strategies present the
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Figure 6.1: Legend of colormap

same behavior, classifying correctly the critical regions. A few differences between them

can been seen in the classification of some non-biopsy areas. However, they are classified

as low grade cases by each strategy.

Patient 77 was diagnosed with normal grade cervical neoplasia. Figures 6.5 and 6.6

show that the three mapping strategies present high performance since each one of them

classifies all the image pixels as low grade.

Patient 12 does not present any evidence of disease. Figures 6.8 and 6.9 illustrate the

fact that the tree classification strategies classify the majority of the pixels as normal.

However there is a region where the tissues areclassified as HPV using 5 WCs and as

Inflammation using 5 PCs.
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(a) Pre acetic acid image

(b) Post acetic acid image

Figure 6.2: Pre and Post acetic acid image for patient 71 with high grade cervical lesion
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(a) Mapping with 5 WCs

(b) Mapping with 5 PCs

Figure 6.3: Mapping for patient 71 with high grade cervical lesion
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(a) Mapping with combination of 5 PCs, WCs

(b) Mapping with DySIS method

Figure 6.4: Mapping for patient 71 with high grade cervical lesion
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(a) Pre acetic acid image

(b) Post acetic acid image

Figure 6.5: Pre and Post acetic acid image for patient 77 with low grade cervical lesion
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(a) Mapping with 5 WCs

(b) Mapping with 5 PCs

Figure 6.6: Mapping for patient 77 with low grade cervical lesion
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(a) Mapping with combination of 5 PCs, WCs

(b) Mapping with DySIS method

Figure 6.7: Mapping for patient 77 with low grade cervical lesion
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(a) Pre acetic acid image

(b) Post acetic acid image

Figure 6.8: Pre and Post acetic acid image for patient 12 with no evidence of disease
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(a) Mapping with 5 WCs

(b) Mapping with 5 PCs

Figure 6.9: Mapping for patient 12 with no evidence of disease
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(a) Mapping with combination of 5 PCs, WCs

(b) Mapping with DySIS method

Figure 6.10: Mapping for patient 12 with no evidence of disease
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Chapter 7

Conclusion and Future Work

The main purpose of this study was the evaluation of temporal feature extraction methods

from normal and abnormal cervical epithelium images acquired by Dynamic Contrast

Enhanced Optical Imaging (DCE-OI) In order to reduce the data dimensionality and

extract valuable information, various feature extraction methods including, WT, PCA,

KPCA, PAA, APAA, SAX were implemented and evaluated using 1-nn classifier. The

results indicate that using a subset of the entire feature set, WT, PCA and KPCA

methods present similar or better performance compared to using the entire feature set.

Also, selection of the best features extracted from PCA and WT demonstrates better

performance for some classification cases. Regarding the execution times, PCA presents

better performance than the other methods. Thus, high discrimination performance

between the various stages of cervical neoplasia and Normal cases as well can be achieved

with low computational cost.

PCA, WT and combination of these were also used for the mapping process of image

stacks obtained from patients with High and Low grade disease and no evidence of dis-

ease as well. The mapping can provide valuable, real-time information which can assist

medical personnel in the diagnosis of cervical cancer.

Regarding the future work, different and more sophisticated classification algorithms

can be implemented in order to improve the performance of classification. In addition,

the above mentioned methods have to be evaluated using larger datasets. Finally, clas-

sification strategies which combine temporal and spatial information could contribute to

more accurate results.
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Appendix A

Mapping and Visualization

High Grade Cervical Neoplasia

Patient 103

Figures A.1- A.3 illustrate the classification results for patient 103 who was diagnosed

with high grade cervical neoplasia.

(a) Pre acetic acid image (b) Post acetic acid image

Figure A.1: Pre and Post acetic acid image for patient 103 with high grade cervical lesion
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(a) Mapping with 5 WCs

(b) Mapping with 5 PCs

Figure A.2: Mapping for patient 103 with high grade cervical lesion
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(a) Mapping with combination of 5 PCs, WCs

(b) Mapping with DySIS device

Figure A.3: Mapping for patient 103 with high grade cervical lesion
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Patient 106

Figures A.4- A.6 illustrate the classification results for patient 106 who was diagnosed

with high grade cervical neoplasia.

(a) Pre acetic acid image (b) Post acetic acid image

Figure A.4: Pre and Post acetic acid image for patient 106 with high grade cervical lesion
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(a) Mapping with 5 WCs

(b) Mapping with 5 PCs

Figure A.5: Mapping for patient 106 with high grade cervical lesion
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(a) Mapping with combination of 5 PCs, WCs

(b) Mapping with DySIS device

Figure A.6: Mapping for patient 106 with high grade cervical lesion
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Patient 107

Figures A.7- A.9 illustrate the classification results for patient 107 who was diagnosed

with high grade cervical neoplasia.

(a) Pre acetic acid image (b) Post acetic acid image

Figure A.7: Pre and Post acetic acid image for patient 107 with high grade cervical lesion
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(a) Mapping with 5 WCs

(b) Mapping with 5 PCs

Figure A.8: Mapping for patient 107 with high grade cervical lesion
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(a) Mapping with combination of 5 PCs, WCs

(b) Mapping with DySIS device

Figure A.9: Mapping for patient 107 with high grade cervical lesion
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Patient 110

Figures A.10- A.12 illustrate the classification results for patient 110 who was diag-

nosed with high grade cervical neoplasia.

(a) Pre acetic acid image (b) Post acetic acid image

Figure A.10: Pre and Post acetic acid image for patient 110 with high grade cervical

lesion
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(a) Mapping with 5 WCs

(b) Mapping with 5 PCs

Figure A.11: Mapping for patient 110 with high grade cervical lesion
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(a) Mapping with combination of 5 PCs, WCs

(b) Mapping with DySIS device

Figure A.12: Mapping for patient 110 with high grade cervical lesion
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Patient 114

Figures A.13- A.15 illustrate the classification results for patient 110 who was diag-

nosed with high grade cervical neoplasia.

(a) Pre acetic acid image (b) Post acetic acid image

Figure A.13: Pre and Post acetic acid image for patient 114 with high grade cervical

lesion
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(a) Mapping with 5 WCs

(b) Mapping with 5 PCs

Figure A.14: Mapping for patient 114 with high grade cervical lesion
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(a) Mapping with combination of 5 PCs, WCs

(b) Mapping with DySIS device

Figure A.15: Mapping for patient 114 with high grade cervical lesion
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Low Grade Cervical Neoplasia

Patient 86

Figures A.16- A.18 illustrate the classification results for patient 86 who was diag-

nosed with high grade cervical neoplasia.

(a) Pre acetic acid image (b) Post acetic acid image

Figure A.16: Pre and Post acetic acid image for patient 86 with high grade cervical lesion
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(a) Mapping with 5 WCs

(b) Mapping with 5 PCs

Figure A.17: Mapping for patient 86 with high grade cervical lesion
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(a) Mapping with combination of 5 PCs, WCs

(b) Mapping with DySIS device

Figure A.18: Mapping for patient 86 with high grade cervical lesion
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No evidence of neoplasia

Patient 38

Figures A.19- A.21 illustrate the classification results for patient 38 who does not

present evidence of disease.

(a) Pre acetic acid image (b) Post acetic acid image

Figure A.19: Pre and Post acetic acid image for patient 38 with high grade cervical lesion
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(a) Mapping with 5 WCs

(b) Mapping with 5 PCs

Figure A.20: Mapping for patient 38 with high grade cervical lesion
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(a) Mapping with combination of 5 PCs, WCs

(b) Mapping with DySIS device

Figure A.21: Mapping for patient 38 with high grade cervical lesion
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