
S K E T C H - B A S E D G E O M E T R I C

M O N I T O R I N G O F D I S T R I B U T E D S T R E A M

Q U E R I E S

by kostas athanasoglou

committee:

Professor Minos Garofalakis (Supervisor)

Assistant Professor Vasilis Samoladas

Assistant Professor Antonios Deligiannakis

Submitted to the Department of Electronic and Computer

Engineering in partial fulfillment of the requirements for

the degree of Master of Science (MoS) in Electronics and

Computer Engineering

Technical University of Crete

March 2012

By Kostas Athanasoglou: Sketch-based Geometric Monitoring of Distributed

Stream Queries , Submitted to the Department of Electronic and Com-

puter Engineering in partial fulfillment of the requirements for the

degree of Master of Science (MoS) in Electronics and Computer Engi-

neering, © March 2012

We have seen that computer programming is an art,

because it applies accumulated knowledge to the world,

because it requires skill and ingenuity, and especially

because it produces objects of beauty.

— Donald E. Knuth

A C K N O W L E D G M E N T S

Above all, I would like to thank my family for their lifelong support

and the useful advice not only in my years in the university, but in

my life in general. Without them, all these beautiful years learning and

studying the field of Electronics and Computer Engineering would not

be possible.

Special thanks to my supervisor Minos Garofalakis for trusting me

this work, for his valuable recommendations regarding the progress of

the work and his useful guidance, whenever I had problems.

Many thanks to Mr. Vasilis Samoladas for his useful insight in solving

the various geometric problems that arose in this work and suggesting

efficient algorithms for finding meaningful solutions and also to Mr.

Antonios Deligiannakis for his useful comments regarding the work.

v

A B S T R A C T

Emerging large-scale monitoring applications rely on continuous track-

ing of complex data-analysis queries over collections of massive, physically-

distributed data streams. Thus, in addition to the space- and time-

efficiency requirements of conventional stream processing (at each

remote monitor site), effective solutions also need to guarantee commu-

nication efficiency (over the underlying communication network). The

complexity of the monitored query adds to the difficulty of the problem

- this is especially true for non-linear queries (e.g., joins), where no ob-

vious solutions exist for distributing the monitor condition across sites.

The recently proposed geometric method offers a generic methodology

for splitting an arbitrary (non-linear) global threshold-monitoring task

into a collection of local site constraints; still, the approach relies on

maintaining the complete stream(s) at each site, thus raising serious

efficiency concerns for massive data streams. In this paper, we propose

novel algorithms for efficiently tracking a broad class of complex aggre-

gate queries in such distributed-streams settings. Our tracking schemes

rely on a novel combination of the geometric method with compact

sketch summaries of local data streams, and maintain approximate

answers with provable error guarantees, while optimizing space and

processing costs at each remote site and communication cost across

the network. One of our key insights lies in employing the geometric

method in the lower-dimensional sketching space for monitoring the

sketch-based estimation query. Due to the complex, highly non-linear

nature of these estimates, efficiently monitoring the local geometric

constraints poses challenging algorithmic issues for which we propose

novel solutions. Experimental results on real-life data streams verify

the effectiveness of our approach.

vii

C O N T E N T S

1 introduction 1

2 related work 5

3 background material 7

3.1 Sketches 7

3.1.1 AGMS Sketches 8

3.1.2 Fast-AGMS Sketches 9

3.2 Geometric Method and Distributed Monitoring 11

3.2.1 Problem Formulation 11

3.2.2 Geometric Interpretation 13

3.2.3 Local Constraints 15

4 computing the self-join 17

4.1 Basic threshold crossing problem 17

4.2 From threshold crossing to value monitoring 18

4.3 Using sketch summaries 19

4.4 Using mean for sketch estimation 20

4.5 Using median for sketch estimation 21

5 handling range queries 25

6 extending to inner-joins 27

7 experiments and conclusions 31

7.1 Experiments 31

7.1.1 Using a static reference vector 31

7.1.2 Using a dynamic reference vector 35

7.2 Conclusions 35

8 worst case analysis 37

i appendix 41

a calculating min/max of the mean using lagrange 43

bibliography 45

ix

L I S T O F F I G U R E S

Figure 1 Structure of the Fast-AGMS sketch summary 10

Figure 2 Illustration of Theorem 3.2.1. The drift vectors

held by 5 nodes and the balls constructed by them

are depicted. The convex hull of the drift vectors is

highlighted in gray. As stated by the theorem, the

union of the balls bounds the convex hull. 15

Figure 3 θ− ε tradeoff for self-join queries 32

Figure 4 θ− ε tradeoff for range queries 34

Figure 5 θ− ε tradeoff for self-join queries using a refer-

ence vector 36

Figure 6 Worst-case communication 37

L I S T O F TA B L E S

Table 1 Notation Summary 18

Table 2 High threshold τh and low threshold τl varia-

tions 33

x

1
I N T R O D U C T I O N

Traditional data-management systems are typically built on a pull-based

paradigm, where users issue one-shot queries to static data sets residing

on disk, and the system processes these queries and returns their results.

Recent years, however, have witnessed the emergence of a new class

of large-scale event monitoring applications, that require the ability to

efficiently process continuous, high-volume streams of data in real time.

Examples include monitoring systems for IP and sensor networks, real-

time analysis tools for financial data streams, and event and operations

monitoring applications for enterprise clouds and data centers. As both

the scale of today’s networked systems, and the volumes and rates of

the associated data streams continue to increase with no bound in sight,

algorithms and tools for effectively analyzing them are becoming an

important research mandate.

Large-scale stream processing applications rely on continuous, event-

driven monitoring, that is, real-time tracking of measurements and

events, rather than one-shot answers to sporadic queries. Furthermore,

the vast majority of these applications are inherently distributed, with

several remote monitor sites observing their local, high-speed data

streams and exchanging information through a communication net-

work. This distribution of the data naturally implies critical communi-

cation constraints that typically prohibit centralizing all the streaming

data, due to either the huge volume of the data (e.g., in IP-network

monitoring, where the massive amounts of collected utilization and

traffic information can overwhelm the production IP network), or power

and bandwidth restrictions (e.g., in wireless sensornets, where commu-

nication is the key determinant of sensor battery life [15]). Finally, an

important requirement of large-scale event monitoring is the effective

support for tracking complex, holistic queries that provide a global view

of the data by combining and correlating information across the collec-

tion of remote monitor sites. For instance, tracking aggregates over the

result of a distributed join (the “workhorse” operator for combining ta-

1

2 introduction

bles in relational databases) can provide unique, real-time insights into

the workings of a large-scale distributed system, including system-wide

correlations and potential anomalies [10]. Monitoring the precise value

of such holistic queries without continuously centralizing all the data

seems hopeless; luckily, when tracking statistical behavior and patterns

in large scale systems, approximate answers (with reasonable approxima-

tion error guarantees) are often sufficient. This often allows algorithms

to effectively tradeoff efficiency with approximation quality [10].

Given the prohibitive cost of data centralization, it is clear that real-

izing sophisticated, large-scale distributed data-stream analysis tools

must rely on novel algorithmic paradigms for processing local streams

of data in situ (i.e., locally at the sites where the data is observed). This,

of course, implies the need for intelligently decomposing a (possibly

complex) global data-analysis and monitoring query into a collection of

safe, local queries that can be tracked independently at each site (without

communication), while guaranteeing correctness for the global monitor-

ing operation. This decomposition process can enable truly distributed,

event-driven processing of real-time streaming data, using a push-based

paradigm, where sites monitor their local queries and communicate only

when some local query constraints are violated [10, 34]. Nevertheless,

effectively decomposing a complex, holistic query over the global collec-

tions of streams into such local constraints is far from straightforward,

especially in the case of non-linear queries (e.g., joins) [34].

The need of many recent applications is the ability to process in real

time huge amount of data that are stored distributively. A common

set-up is: many distributed nodes that are geographically spread, com-

municate with a central coordinator that is responsible for answering

user-provided queries. Each client receives huge amount of data which

are called data streams and must communicate with the coordinator

as little as possible. Each client does not know the others’ data and

there are inherent communication constraints. These systems are called

data stream systems [5]. Examples of these systems are: sensor nets

[29], real-time analysis of financial data [36] and intrusion detection.

A useful class of queries are the so called monitoring queries, where

the user is interested in monitoring an aggregate value over the col-

lection of the data and receive an alert when something interesting

introduction 3

about the data comes up. This constitutes a shift from the traditional

pull paradigm of DBMS where users issue different queries, the system

receives these queries and responds with the appropriate answer. Mon-

itoring queries are based on a push paradigm where the coordinator

is aware of one or maybe several queries, monitors the data and when

any of the queries has a significant change, informs the user about that

change. This is usually called threshold crossing when we are interested

about the time where the function value has crossed from the one side

of the threshold to the other or function value monitoring queries when

we are interested on the actual value of the function within specified

error-guarantees [13]. Typically in these systems, approximate query

answers are sufficient. There is no need to know exactly the query

answer. Often a good approximation is enough. The solutions provided

in these monitoring queries must be efficient in both space and time

requirements. That is, local nodes cannot store the whole data as they

are streaming by (considering the huge amount of data and usually the

high dimensionality of them), but only a recent history or a summary of

them. Solutions must also be communication efficient, that is the local

nodes must communicate with the coordinator when something impor-

tant has happened. That is a threshold crossing for threshold crossing

queries or the function value exceeded the required error-guarantees in

function value monitoring queries.

Our problem contains technical bottlenecks: even efficient streaming

solutions can lead to constant updates and become highly communication-

inefficient. To deal with the huge size of data, we are using sketches,

that is randomized linear projections of the data on random variables,

as presented in [1], [2] and [8]. The use of sketches helps us deal with

the limited storage space that is typically available on the local nodes,

but also on the rapid-rate which the streams are changing because are

very easy to update. We specifically focus on the Fast-AGMS sketches

which were presented in [10], which is the latest work and provide the

best error guarantees for join operations of the underlying data they

represent.

We focus on the join operator which is the most important correlation

operator in the relation world. We are often interested in correlating

different data, so we focus on the specific operator.

2
R E L AT E D W O R K

There is plenty of related work in the field, but several of them differ

on important aspects from our work. Some of them, focus on a single

data stream and don’t consider a distributed environment like [3], [6]

and [31]. Others are centralized and consider one-shot computations

on the data streams.

These works do not consider communication efficiency issues. The set

of queries they consider is broad: quantile-summary computation [22],

distinct values [20], set-expression cardinalities [17], counting frequent

elements (heavy hitters) [11], [31], approximating large Haar wavelet

coefficients [21], estimating join sizes and stream norms [1], [2], [16].

More recent work focuses on communication cost for approximating

different queries in a distributed setting, but assume computation is

triggered either periodically or in response to a one-shot request, hence

it is not applicable for continuous monitoring. This work includes

quantiles [22] and heavy hitters [30].

The technique of morphing one-shot solutions to continuous prob-

lems entails propagating each change and recomputing the solutions.

This quickly becomes communication inefficient or involves periodic

updates and other heuristics that can no longer provide real-time esti-

mation guarantees.

Prior research has looked at the monitoring of single values (e.g.

SUM of distributed values) [32] proposed a scheme based on adaptive

filters, [26] propose building a Kalman filter. BBQ system [15] builds a

dynamic multidimensional probabilistic model. This was extended to

the continuous case in the Ken system [7].

Closest to our work are [4] (tracking approximate top-k values)

and [14] (set-expression cardinalities), as well as distributed quan-

tile tracking [12] (approximately tracking one-dimensional quantile

summaries). All these consider tradeoff between accuracy and com-

municatoin for monitoring a limited class of continuous queries over

distributed streams.

5

6 related work

Other recent work on distributed trigger monitoring includes [28],

[25] and [24].

3
B A C K G R O U N D M AT E R I A L

3.1 sketches

Through research in the last decade, sketching techniques evolved as

the premier approximation technique for aggregate queries over data

streams. All sketching techniques share one common feature: they are

based on randomized algorithms that combine random seeds with

data to produce random variables that have distributions connected to

the true value of the aggregate being estimated. By measuring certain

characteristics of the distribution, correct estimates of the aggregate

are obtained. The interesting thing about all sketching techniques that

have been proposed is that the combination of randomization and

data is a linear operation with the result that, as observed in [9], [27],

sketching techniques can be used to perform distributed computation

of aggregates without the need to send the actual data values. The

tight connection with both data-streaming and distributed computation

makes sketching techniques important from both the theoretical and

practical point of view.

Sketches can be used as the actual approximation technique - like in

this work, in which case they require a single pass over the data or as

the basic technique in multi-pass techniques such as skimmed sketches

[18] and red-sketches [19]. For either application, it is important to un-

derstand as well as possible its approximation behavior depending on

the characteristics of the problem and to be able to predict as accurately

as possible the estimation error. As opposed to most approximation

techniques - one of the few exceptions are sampling techniques [23] -

theoretical approximation guarantees in the form of confidence bounds

are provided for all types of sketches from the beginning. All the theo-

retical guarantees that we know of are expressed as memory and update

time requirements in terms of big-O notation, and are parameterized

by ε, the target relative error, δ, the target confidence (the relative error

7

8 background material

is at most ε with probability at least 1− δ), and the characteristics of

the data - usually the first and the second frequency moments.

3.1.1 AGMS Sketches

Techniques based on small-space pseudo-random sketch summaries of

the data have proved to be very effective tools for dealing with massive,

rapid-rate data streams in a centralized setting [1], [2], [8], [16]. The key

idea in such sketching techniques is to represent a streaming frequency

vector f using a much smaller sketch vector (denoted by sk(f)) that

can be easily maintained as the updates incrementally rendering f

are streaming by. Typically, the entries of the sketch vector sk(f) are

appropriately defined random variables with some desirable properties

that can provide probabilistic guarantees for the quality of the data

approximation. More specifically, consider the AGMS (or “tug-of-war”)

sketches proposed by Alon, Gibbons, Matias, and Szegedy in their

seminal papers [1], [2]: The ith entry in an AGMS sketch sk(f) is

defined as the random variable
∑U−1
v=0 f[v]ξi[v], where {ξi[v] : v ∈

[U]} is a family of four-wise independent binary random variables

uniformly distributed in {−1,+1} (with mutually-independent families

used across different entries of the sketch). The key here is that, using

appropriate pseudo-random hash functions, each such family can be

efficiently constructed on-line in small (i.e., O(logU)) space [1]. Note

that, by construction, each entry of sk(f) is essentially a randomized linear

projection (i.e., an inner product) of the f vector (using the corresponding

ξ family), that can be easily maintained over the input update stream:

Start with each counter sk(f)[i] = 0 and, for each i, simply set

sk(f)[i] = sk(f)[i] + ξ[v] (respectively, sk(f)[i] = sk(f)[i] − ξi[v])

whenever an insertion (resp., deletion) of v is observed in the stream.

Another critical property is the linearity of such sketch structures: Given

two “parallel” sketches (built using the same ξ families) sk(f1) and

sk(f2) and scalars α,β then

sk(αf1 +βf2) = αsk(f1) +βsk(f2)

3.1 sketches 9

(i.e., the sketch of a linear combination of streams is simply the linear

combination of their individual sketches). The following theorem sum-

marizes some of the basic estimation properties of AGMS sketches (for

centralized streams) that we employ in our study (Throughout, the no-

tation x ∈ (y± z) is equivalent to |x− y| 6 z). For these sketches, we use

the standard “inner product” operator over sketch vectors as shorthand

for a slightly more complex operator, involving both averaging and

median-selection operations over the sketch-vector components [1], [2] –

formally, each sketch vector can be viewed as a two-dimensional n×m

array, where n = O
(
1
ε2

)
,m = O (log(1/δ)) and the “inner product” in

the sketch-vector space for both the join and self-join case is defined as

sk(f1)sk(f2) = median
j=1,...,m

{
1

n

n∑
i=1

sk(f1)[i, j]sk(f2)[i, j]

}

Theorem 3.1.1. ([1], [2]) Let sk(f1) and sk(f2) denote two parallel sketches

comprising O
(
1
ε2

log(1/δ)
)

counters, built over the streams f1 and f2,

where ε, 1− δ denote the desired bounds on error and probabilistic confidence,

respectively. Then, with probability at least 1− δ, ‖sk(f1) − sk(f2)‖2 ∈ (1±

ε) ‖f1 − f2‖2 and sk(f1)sk(f2) ∈ (f1f2 ± ε ‖f1‖ ‖f2‖). The processing

time required to maintain each sketch is O
(
1
ε2

log(1/δ)
)

per update.

Thus, the self-join of the difference of the sketch vectors gives a high-

probability, ε relative-error estimate of the self-join of the difference

of the actual streams (so, naturally, ‖sk(f1)‖2 ∈ (1± ε) ‖f1‖2); simi-

larly, the inner product of the sketch vectors gives a high-probability

estimate of the join of the two streams to within an additive error

of ε ‖f1‖ ‖f2‖. To provide ε relative-error guarantees for the binary

join query f1f2. Theorem 3.1.1 can be applied with error bound ε ′ =

ε(f1f2)/(‖f1‖ ‖f2‖), giving a total sketching space requirement of

O

(
‖f1‖2‖f2‖2
ε2(f1f2)2

log(1/δ)
)

counters [2].

3.1.2 Fast-AGMS Sketches

A drawback of AGMS randomized sketches is that every streaming

update must “touch” every component of the sketch vector (to update

the corresponding randomized linear projection). This requirement,

however, could pose significant practical problems when dealing with

10 background material

Figure 1. Structure of the Fast-AGMS sketch summary

massive, rapid-rate data streams. Since sketch-summary sizes can vary

from tens to hundreds of Kilobytes, especially when tight error guar-

antees are required, for example, for join or multi-join aggregates [2],

[16], touching every counter in such sketches is simply infeasible when

dealing with large data rates (e.g., monitoring a high-capacity network

link). The proposed Fast-AGMS sketch structure in [10] solves this prob-

lem by guaranteeing logarithmic-time (i.e., O(log(1/δ))) sketch update

and tracking costs, while offering essentially the same (in fact, slightly

improved) space/accuracy tradeoff as basic AGMS sketches. That is,

there is an improvement of the update time from O
(
1
ε2

log(1/δ)
)

to

O(log(1/δ)).

A Fast-AGMS sketch for a stream f over [U] (also denoted by sk(f))

comprises b× d counters (i.e., linear projections) arranged in d hash ta-

bles, each with b hash buckets. Each hash table l = 1, . . . ,d is associated

with: (1) a pairwise-independent hash function hl() that maps incoming

stream elements uniformly over the b hash buckets (i.e., hl : [U]→ [b]);

and (2) a family {ξl[v] : v ∈ [U]} of four-wise independent {−1,+1}

random variables (as in basic AGMS). To update sk(f) in response to an

addition of u to element v, we use the hl() hash functions to determine

the appropriate buckets in the sketch, setting

sk(f)[hl(v), l] = sk(f)[hl(v), l] + uξl(v),

for each l = 1, . . . ,d. Note that the required time per update is only

O(d), since each update touches only one bucket per hash table. The

structure of the sketch is illustrated in Figure 1.

3.2 geometric method and distributed monitoring 11

Now, given two parallel Fast-AGMS sketches sk(f1) and sk(f2) (using

the same hash functions and ξ families), we estimate the inner product

f1f2 by the sketch “inner product”:

sk(f1)sk(f2) = median
l=1,...,d

{
b∑
i=1

sk(f1)[i, l]sk(f2)[i, l]

}

In other words, rather than averaging over independent linear pro-

jections built over the entire [U] domain, our Fast-AGMS sketch aver-

ages over partitions of [U] generated randomly (through the hl() hash

functions). As the following theorem shows, this results in essentially

identical space/accuracy tradeoffs as basic AGMS sketching, while

requiring only O(d) = O(log(1/δ)) processing time per update (since

an element only touches a single partition, i.e., bucket, per hash table).

Theorem 3.1.2. Let sk(f1) and sk(f2) denote two parallel Fast-AGMS sketches

of streams f1 and f2, with parameters b = 8
ε2

and d = 4 log(1/δ), where

ε, 1− δ denote the desired bounds on error and probabilistic confidence, re-

spectively. Then, with probability at least 1− δ, ‖sk(f1) − sk(f2)‖2 ∈ (1±

ε) ‖f1 − f2‖2 and sk(f1)sk(f2) ∈ (f1f2 ± εf1f2). The processing time re-

quired to maintain each sketch is O(log(1/δ)) per update.

The proof of the theorem is contained in [10].

3.2 geometric method and distributed monitoring

3.2.1 Problem Formulation

Monitoring data streams in a distributed system is the focus of much

research in recent years. Most of the proposed schemes, however, deal

with monitoring simple aggregated values, such as the frequency of

appearance of items in the streams. More involved challenges, such

as the important task of feature selection (e.g., by monitoring the in-

formation gain of various features), the computation of inner-join and

range-queries still require very high communication overhead using

naive, centralized algorithms.

Let S = {s1, s2, . . . , sn}, be a set of n data streams, collected at nodes

P = {p1,p2, . . . ,pn}. Let v1(t), v2(t), . . . , vn(t) be d-dimensional real

vectors derived from the streams (the value of these vectors varies over

12 background material

time). These vectors are called local statistics vectors. Let w1,w2, . . . ,wn

be positive weights assigned to the streams.

The weight wi assigned to the node pi usually corresponds to the

number of data items its local statistics vector is derived from. Assume,

for example, that we would like to determine whether the frequency of

occurrence of a certain data item in a set of streams is above a certain

threshold value. In this case, the weight we assign to each node at time

t is the number of data items received on the stream at time t (and vi(t)

is a scalar holding the frequency of occurence of the item in the stream

si). In this setup weights change over time. A variant of the problem

stated above is for each node to maintain the frequency of occurrence

of the item in the recent Ni data items received on the stream (this is

known as working with a sliding window of size Ni). In this work,

the proposed solution uses sketch summaries instead of the original

vectors in each local node and hence, the size of each local vector is

fixed and equal to the pre-defined sketch summary size.

Let v(t) =
∑n
i=1wivi(t)∑n
i=1wi

. v(t) is called the global statistics vector. Let

f : Rd → R be an arbitrary function from the space of d-dimensional

vectors to the reals. f is called the monitored function. We are interested

in determining at any given time, t, whether or not f(v(t)) > r, where

r is a predetermined threshold value.

We used the coordinator-based setting presented in [34]. The algo-

rithm constructs a vector called the estimate vector, denoted by e(t). The

estimate vector is constructed from the local statistics vectors collected

from the nodes at certain times, as dictated by the algorithm. The last

statistics vector collected from the node pi is denoted by v′. Each node

remembers the last statistics vector collected from it. The estimate vector

is the weighted average of the latest statistics vectors collected from the

nodes, i.e., e(t) =
∑n
i=1wiv

′∑n
i=1wi

.

From time to time, as dictated by the algorithm, an updated statistics

vector is collected from one or more nodes, and the estimate vector is

updated. At any given time the estimate vector is known to all nodes.

We designate a coordinator node and denote it by p1. The coordinator

is responsible for collecting local statistics vectors from the nodes,

calculating the estimate vector, and distributing it to the nodes. In

both settings, each node pi maintains a parameter called the statistics

3.2 geometric method and distributed monitoring 13

delta vector. This vector is denoted by ∆vi(t). The statistics delta vector

held by the node pi is the difference between the current local statistics

vector and the last statistics vector collected from the node, i.e., ∆vi(t) =

vi(t) − v
′.

In both settings, each node pi also maintains a parameter called the

drift vector. This vector is denoted by ui(t). The algorithm employs a

mechanism for balancing the local statistics vectors of a subset of the

nodes. Consider the case where at a certain time t the statistics delta

vector in two equally weighted nodes, pi and pj, cancel each other out:

that is ∆vi(t) = −∆vj(t). As shown in [34], balancing the local statistics

vectors held by pi and pj can improve the efficiency of the algorithm.

The coordinator facilitates this balancing by sending each node a slack

vector, denoted by δi. The sum of the slack vectors sent to the nodes is

0. The drift vector held by each node is calculated as follows:

ui(t) = e(t) +∆vi(t) +
δi
wi

Throughout this work, all the proposed geometric algorithms make

use of this balancing process.

3.2.2 Geometric Interpretation

At the heart of the geometric approach is the ability to decompose the

monitoring task into local constraints on streams. As data arrives on

the streams, each node verifies that the local constraint on its stream

has not been violated. It is shown in [34] that as long as none of

these constraints have been violated, the query result is guaranteed

to remain unchanged, and thus no communication is required. This

cannot be done solely by observing the value of the monitored function

on each stream. Therefore, an estimated global statistics vector, called

the estimate vector, is known to all nodes. The estimate vector is said

to be correct at a given time if the value of the monitored function

on the estimate vector and the value of the monitored function on the

global statistics vector at that time (this value is unknown to any singe

node) are on the same side of the threshold. Given an initially correct

estimate vector, our goal is to set local constraints on each stream such

14 background material

that as long as no constraints have been violated, the estimate vector

remains correct, and thus no communication is required. The method

for decomposing the monitoring task is based on the following, easily

verifiable observation: at any given time the weighted average of the

drift vectors held by the nodes is equal to the global statistics vector,

∑n
i=1wiui(t)∑n
i=1wi

= v(t)

This property is known as the convexity property of the drift vectors.

The geometric interpretation of this property is that the global statistics

vector is in the convex hull of the drift vectors held by the nodes,

v(t) ∈ Conv(u1(t),u2(t), . . . ,un(t)) (3.1)

This observation enables us to take advantage of Theorem 3.2.1 in

order to decompose the monitoring task.

Theorem 3.2.1. Let x,y1,y2, . . . ,yn ∈ Rd be a set of vectors in Rd.

Let Conv(x,y1,y2, . . . ,yn) be the convex hull of x,y1,y2, . . . ,yn. Let

B(x,yi) be a ball centered at x+yi2 and with a radius of
∥∥x−yi

2

∥∥, i.e. B(x,yi) ={
z|
∥∥z− x+yi

2

∥∥ 6
∥∥x−yi

2

∥∥}, thenConv(x,y1,y2, . . . ,yn) ⊂
⋃n
i=1 B(x,yi).

Theorem 3.2.1 is used to bound the convex hull of n + 1 vectors

in Rd by the union of n d-dimensional balls. In our case it is used

to bound the convex hull of the estimate vector and the drift vectors

i.e., Conv(x,y1,y2, . . . ,yn), by a set of n balls, where each ball is con-

structed independently by one of the nodes. Each node, pi, constructs

a ball B(x,yi) which is centered at e(t)+ui(t)2 and has a radius of∥∥x−yi
2

∥∥. Note that at any given time each node has all the information

required to independently construct its ball. Theorem 3.2.1 states that

Conv(e(t),u1(t),u2(t), . . . ,un(t)) ⊂
⋃
i B(e(t),ui(t)).

The application of Theorem 3.2.1 is illustrated in Figure 2, which

depicts a setup comprised of 5 nodes, each holding a statistics vector

vi(t) ∈ R2. The drift vectors held by the nodes (u1(t), . . . ,ut(t)), the

global statistics vector v(t) and the estimate vector e(t) are depicted,

as are the balls constructed by the nodes. The convex hull of the drift

vectors is highlighted in gray, and one can see that, as the theorem

3.2 geometric method and distributed monitoring 15

Figure 2. Illustration of Theorem 3.2.1. The drift vectors held by 5 nodes and the
balls constructed by them are depicted. The convex hull of the drift
vectors is highlighted in gray. As stated by the theorem, the union of
the balls bounds the convex hull.

states, the area defined by the convex hull is bounded by the set of

balls.

3.2.3 Local Constraints

The local constraint on each stream is set as follows: the monitored

function f and threshold r can be seen as inducing a coloring over Rd.

The vectors {x|f(x) > r} are said to be green, while the vectors {y|f(y) <

r} are said to be red. The local constraint each node maintains is to

check whether the ball B(e(t),ui(t)) (the ball centered at e(t)+ui(t)2

and having a radius of
∥∥∥e(t)−ui(t)2

∥∥∥ is monochromatic, i.e., whether

all the vectors contained in the ball have the same color. Testing for

monochromicity is done by finding the maximal and minimal values of

f in the ball. This is done locally at each node hence has no effect on

the communication load.

If all the local constraints are upheld, the estimate vector is cor-

rect: because all the balls contain the estimate vector, and all the balls

are monochromatic, the set of vectors defined by the union of all

the balls is monochromatic as well. Since the union of all the balls

contains the convex hull of the drift vectors and the estimate vector

Conv(e(t),u1(t),u2(t), . . . ,un(t)), and according to Equation (3.1) the

global statistics vector is contained in the convex hull of the drift vectors,

the estimate vector and the global statistics vector have the same color.

Therefore, they are on the same side of the threshold, i.e., the estimate

vector is correct.

4
C O M P U T I N G T H E S E L F - J O I N

We have a distributed environment consisting of n nodes and a global

vector vt at time t. The global vector is the sum of the local vectors v(i)t

observed at each node i at time t: vt =
∑n
i=1 v

(i)
t .

We predefine one of the n nodes as the coordinator, which is re-

sponsible for answering our query; the self join of the global vector:

f(vt) = ‖vt‖2.

Throught the section, we use the symbols summarized in Table 1.

4.1 basic threshold crossing problem

Before discussing the more complicated function monitor problem,

let’s illustrate the simpler threshold crossing problem. In a thresh-

old crossing query, we are interested if this function value crosses a

predetermined threshold τ.

One trivial way for solving this problem is for every time instant t,

each local node sends its local vector v(t)i to the coordinator and the

coordinator calculates the value of f(vt). If f(vt) crosses the threshold

τ, we issue an alert. This method is highly communication-inefficient

because the local nodes need to contact the coordinator at each time

t. We seek to find a more efficient way of calculating the threshold

crossing, by finding appropriate local conditions in each node i. Then,

the node i will test only its local conditions at each time t, without

communicating with the coordinator. The node must remain silent (no

communication overhead) as long as there is no threshold violation.

The most effective solution known so far is the geometric method

discussed in Section 3.2. Each local node finds a safe zone for its local

node v(t)i . As long as the value of v(t)i remains in this zone, it is

guaranteed that the global vector vt won’t cross the threshold. Note

that this method tests the domain of the function and not the function

value itself.

17

18 computing the self-join

Table 1. Notation Summary

Notation Description

n Total number of nodes.

θ Total error bound we want to guarantee for query answering.

ε Sketching error.

v
(i)
t Local statistics vector at time t at node i.

vt Global statistics vector at time t: vt =
∑n
i=1 v

(i)
t .

ṽ
(i)
t Local sketched statistics vector at time t at node i.

ṽt Global sketched statistics vector at time t: ṽt =
∑n
i=1 ṽ

(i)
t .

δ
(i)
t Local drift vector of node i at time t.

δt Total drift vector at time t: δt =
∑n
i=1 δ

(i)
t .

xt A point inside the local ball that each node constructs.

x̃t The sketched version of xt.

et The estimation vector sent from the coordinator to each local node.

At time t = 1 a global synchronization occurs at our system so each

local node i sends v(t)i to the coordinating node and v1 is computed and

distributed to all nodes (that is the initial estimation vector). Whenever

there is a global synchronization at time t and vt is computed by the

coordinator, the resulting vector is the estimation vector, that is the last

estimated position of the global vector.

At subsequent times, each node observes modifications to its local

vector, the drift vectors, which are denoted as u(t)n .

4.2 from threshold crossing to value monitoring

In the function value monitoring problem, we want the coordinator to

provide query answers of f(vt) within θ error bounds. If we allow a

global synchronization step at time t = s, where each node n sends its

local vector v(n)s to the coordinator site, then the coordinator can calcu-

late the function value of vs =
∑n
i=1 v

(n)
s , which will then distribute to

the nodes as the estimate vector. We want to guarantee that the value

provided as answer from the coordinator is bounded by:

(1− θ)f(vt) 6 f(vs) 6 (1+ θ)f(vt)

The running quantity vt is bounded by the balls of each local node,

constructed with center the estimate vector vs sent from the coordinator

to each local node at time t = s and diameter the local drift vector

4.3 using sketch summaries 19

multiplied by the number of nodes n: nδ(i)t of the node i. So, to

ensure the above equation, each node i must construct locally a ball

Bi(vs,δ(i)t) =

{
z|

∥∥∥∥z− vs+δ
(i)
t

2

∥∥∥∥ 6

∥∥∥∥vs−δ(i)t2 ∥∥∥∥} and check locally if:

(1− θ) max
xt∈Bi

f(xt) 6 f(vs) 6 (1+ θ) min
xt∈Bi

f(xt)

and if f(·) > 0, then this is the same as:

max
xt∈Bi

f(xt) 6
f(vs)

1− θ

min
xt∈Bi

f(xt) >
f(vs)

1+ θ

(4.1)

For the case where f(·) < 0, the bounds are reversed.

So by setting the above thresholds at each local node, we can guaran-

tee that the value f(vs) used by our coordinator to answer our queries,

will be within θ bounds from the actual function value of the global

vector.

4.3 using sketch summaries

To further reduce communication between nodes and the coordinator,

we can use sketches instead of the original vectors. The sketch linearity

property makes the convexity property hold, so it enables us this option.

As already stated, we will use the Fast-AGMS sketch summaries, which

are proven to be the best choice for estimating join sizes.

Let’s call ṽ(n)t the Fast-AGMS sketch of the local vector v(n)t and ṽt

the Fast-AGMS sketch of the global vector vt, where t denotes time.

The use of sketches in the query answer estimation (where the func-

tion used is f(vt) = ‖vt‖2) introduces an additional sketching error ε:

‖ṽt‖2 ∈ (1± ε) ‖vt‖2 ⇔ f(ṽt) ∈ (1± ε)f(vt)ṽt (4.2)

So we must adjust the local conditions found in Eq.(4.1) to take into

consideration these sketching errors:

f(ṽs)

1+ ε
6 f(vs) 6

f(ṽs)

1− ε
f(x̃t)

1+ ε
6 f(xt) 6

f(x̃t)

1− ε

(4.3)

20 computing the self-join

Combining the above two equations with Eq. (4.1), we get:

min
x̃t∈Bi

(
f(x̃t)

1+ ε

)
>

f(ṽs)

(1− ε)(1+ θ)

max
x̃t∈Bi

(
f(x̃t)

1− ε

)
6

f(ṽs)

(1+ ε)(1− θ)

(4.4)

and solving for f(x̃t):

min
x̃t∈Bi

f(x̃t) >
f(ṽs)(1+ ε)

(1− ε)(1+ θ)

max
x̃t∈Bi

f(x̃t) 6
f(ṽs)(1− ε)

(1+ ε)(1− θ)

(4.5)

The following conditions must be met:

1+ ε

(1− ε)(1+ θ)
< 1

1− ε

(1+ ε)(1− θ)
> 1

(4.6)

and by combining them, gives us the condition: θ > 2ε
1−ε .

4.4 using mean for sketch estimation

reasoning for using the mean An interesting property of

the AGMS-style sketches presented in [33], is that if we use AGMS-

sketches and average over k independent estimators Y = 1
kX, each one

having the form X = ṽ2t , then Y follows a normal distribution and

we can use the mean, instead of the median to reduce the variance of

the estimator. If each node holds ṽ(n)t which is the local average of

the sketches produced by k independent sketching families, then we

can assume that ṽt follows a normal distribution and the join can be

estimated by its mean: f(ṽt) = 1
n

∑n
j=1 v

2
j , where ṽt = [v1, . . . , vn].

efficient calculation using the mean In order for each

local node n, to check if f(ṽ(n)t) has crossed any of the two thresholds

calculated in Eq. (4.5), it must check if the function values of the ball B

defined by the center ṽ(n)t and having a radius of ũ(n)t , where ũ(n)t the

drift vector of ṽ(n)t are monochromatic or not.

If we can efficiently calculate the maximum and the minimum func-

tion value inside this ball B, then we can compare them with the

threshold and see if we have a crossing or not.

4.5 using median for sketch estimation 21

This problem is the same as finding the minimum and the maximum

values of x, where x is constrained in a ball of center a (that’s our

sketch vector ṽ(n)t) and with a radius of r (that’s the distance of the

drift vector from the sketch vector r =
∣∣∣ṽ(n)t − ũ

(n)
t

∣∣∣):
max /min

{
f(x) = x2

}
: |x−a|2 6 r2

Theorem 4.4.1. The value of f(x) = x2 inside the ball |x−a|2 6 r2 is

the distance of x from the origin and it is minimized/maximized in the two

points xm = a− r a
|a|

, xM = a+ r a
|a|

respectively that are found on the

intersection of the surface of the ball with the line that starts from the origin

and passes through the center a of the ball.

Proof. We want to show that |xm|2 6 |x|2 6 |xM|2 ,∀x ∈ |x−a|2 6 r2.

The squares of the magnitudes of xm and xM are:

|xm|2 = |a|2 + r2 − 2 |ar| = (|a|− r)2

|xM|2 = |a|2 + r2 + 2 |ar| = (|a|+ r)2

Now x can be written as x = a+ u with |u| 6 r and its magnitude

satisfies the following equations from triangle inequality:

|a|− |u| 6 |a+u| 6 |a|+ |u|

If we square the above equations and take into consideration that |u| 6 r

we conclude our proof.

We also present in Appendix A, a computational solution for finding

xm, xM using Lagrange multipliers.

4.5 using median for sketch estimation

At first we state some properties of the median. We define the operator

Mi [x] = median
i

{xi} for shorthand.

Theorem 4.5.1. If f : R → R is monotonic (increasing or decreasing) then

Mi [f(x)] = f(Mi [x])

Corollary 4.5.1. Mi [αx+β] = αMi [x] +β

22 computing the self-join

Theorem 4.5.2. If x1 ≺ x2 (that is x1 dominates x2) then Mi [x1] 6

Mi [x2]

Corollary 4.5.2. If x,y ∈ Rn then Mi [x] + min{y} 6 Mi [x+y] 6

Mi [x] + max{y}

Corollary 4.5.3. Mi [x] is continuous. That isMi [a] is defined, limx→aMi [x]

exists and limx→aMi [x] =Mi [a]

The original definition for the self-join of a vector using sketches is:

f(ṽt) = median
j=1,...,n

{
1

m

m∑
i=1

ṽt[i, j]2
}

Here, ṽt is seen as an m× n array, where we first take the average

sum of the squares of each column and then take the median of these

resulting averages.

We define each column of this matrix as vi ∈ Rm and vi2 ∈ R is the

sum of the squares of each column. Now, the problem is transformed

into finding these vi, that maximize (respectively minimize)Mi
[
1
mvi

2
]

and because the scaling factor 1
m does not modify our answer, it is

the same as maximizing/minimizing Mi
[
vi
2
]

with the constraint that

v = [v1 . . . vn] ∈ Rm×n is constrained within a ball of center c =

[c1 . . . cn] ∈ Rm×n and a radius r ∈ R: |v− c| 6 r2.

Assume that s = [s1 . . . sn] ∈ Rm×n is a solution that maximizes

Mi
[
si
2
]

and that each si has a distance ρi from ci: ρi = |si − ci|.

The key observation in our algorithm is that a solution Mi
[
si
2
]

will

always be dominated by a solutionMi

[(
ci + ρi

ci
|ci|

)2]
=Mi

[
(|ci|+ ρi)

2
]
,

so the initial abstract problem of finding the maximum Mi
[
si
2
]

is now

broken down into the more specific problem of finding the right ρi for

each si. Also notice that
∑n
i=1 ρ

2
i = r2:

n∑
i=1

ρ2i =

n∑
i=1

|si|
2 +

n∑
i=1

|ci|
2 − 2

n∑
i=1

sici = |s|2 + |c|2 − 2sc = r2

So the problem now is try to distribute r2 to ρ1, . . . , ρn in order to

maximize Mi
[
si
2
]
. We propose an iterative algorithm (Algorithm 1) to

solve this problem. The algorithm is based on the following Theorem:

4.5 using median for sketch estimation 23

Theorem 4.5.3. All centers ci that have received a radius ρi, will be equal

to the maximum median µ̂ = max {Mi [ci + ρi]}. That is:

∀i : ρi > 0⇒ ci + ρi = µ̂

Proof. We define S = {si = ci + ρi, ρi > 0} as the set with all the possi-

ble solutions si that have received a radius ρi.

If |S| = 1 then it will contain Mi [ci] which is the median when none

of si has received any radius. All of the available r2 will be given to

Mi [ci] which will either continue to be the median, or it will become

greater than the next ordered element ci+1. In the first case, si will be

the maximum median so it is proven. In the latter case, ci+1 will also

receive a radius, so |S| > 1, which contradicts our original assumption.

If |S| > 1, let’s argue that one of them, say sj, has received a radius

but is not equal to the maximum median. That is there is j : ρj > 0 for

which cj + ρj 6= µ̂.

Suppose that cj + ρj > µ̂. Hence, cj + ρj > ci + ρi, ∀(ci + ρi) ∈

S with i 6= j. Then, we can distribute the quantity ε = cj + ρj − µ̂

to these ci + ρi ∈ S with i 6= j and take a set S ′ = {ci + pi + εi}

such that ci + ρi + εi > µ̂ ∀(ci + ρi + εi) ∈ S. Then, µ̂ is no longer

max {Mi [ci + ρi]}.

Accordingly we can prove it, for the case that cj + ρj 6 µ̂.

Based on Theorem 4.5.3, we have that the maximum median µ̂ will

be equal to:

µ̂ = cn
2
+ ρn

2
= cn

2+1
+ ρn

2+1
= . . . = cn

2+k−1
+ ρn

2+k−1

So, we need to find that k for the following equation to be true:

n/2+k−1∑
i=n/2

(µ− ci)
2 = r2

24 computing the self-join

Expanding the square, we can see that k is found by solving this second

degree equation:

kµ2 − 2µ

n/2+k−1∑
i=n/2

ci +

n/2+k−1∑
i=n/2

ci
2 − r2 = 0

µ =

∑n/2+k−1
i=n/2

ci +
√∑n/2+k−1

i=n/2
ci − k(

∑n/2+k−1
i=n/2

ci2 − r2)

k
(4.7)

Our algorithm progresses by increasing k, while µ 6 cn/2+k.

Algorithm 1: MaxMedian

Data: c = [|c1| , . . . , |cn|]: array with center magnitudes, r2: radius of
the ball

Result: Find ρi so Mi
[
si
2
]

becomes maximum
begin

avail←− r2 ; // available radius to distribute among ρi
sort(c, ascending)
k←− 1
while true do

m←− Equation (4.7)
if m 6 cn/2+k then

return m
else

k←− k+ 1

end

5
H A N D L I N G R A N G E Q U E R I E S

We now turn our attention to a different type of problem, which models

a join with a constant relation. In a frequent special case, that of range

queries, the constant relation ζ may contain exactly one record for each

value of the join attribute in a given subset. Thus, ζ · vt is the number

of tuples of vt “in range” ζ. However, any constant relation ζ can be

used, provided that its Fast-AGMS sketch ζ̃ = [ζ1, . . . , ζn], ζi ∈ Rm is

available. The relevant threshold function to monitor is

f(x̃) =Mi [ζixi] (5.1)

We shall tackle this problem by trying to bound the ball radius. So,

assume that we wish to compute

r> = inf
{
‖x̃− c̃‖

∣∣ f(x̃) > τ}
In the trivial case where f(c̃) > τ, it is trivially r> = 0. So, assume

µ = f(c̃) < τ. Our goal is to compute a minimum-length change u to c,

so that

f(c+ u) =Mi [ζi(ci + ui)] > τ

while r2> =
∑
i u
2
i is minimum.

Let us consider the properties of such an optimum u. First, we note

that if ζi = 0, then also ui = 0. Then, for ζi 6= 0,

ζi(ci + ui) 6 ζi(ci + ‖ui‖
ζi
‖ζi‖

) = ζici + ‖ζi‖ ‖ui‖

and we can change ui to ‖ui‖ ζi
‖ζi‖

while retaining optimality.

Finally, the main observation is that ui 6= 0 implies ζi(ci + ui) = τ,

for, if that is not the case, then u is not optimal; we can substitute ui

by a slightly shorter vector, without affecting the overall median, but

slightly decreasing the overall distance r>.

25

26 handling range queries

Now, let us consider the set of indices

L = {i|ζici < τ}.

Since we have Mi [ζici] < τ, it is clear that L contains at least half of

the total indices, |L| > (n+ 1)/2. An optimal solution can be found

by selecting a subset U ⊆ L of size |U| = |L|− (n− 1)/2, and, for each

i ∈ U, computing an appropriate ui such that ζi(ci + ui) = τ. Clearly,

ui = ρiζi/ ‖ζi‖ with

ρi = (τ− ζici)/ ‖ζi‖

and r2> =
∑
i∈U ρ

2
i .

Overall, the algorithm we propose is the following:

Algorithm 2: Computation of r> for range queries
Data: c = [c1, . . . , cn]: array with center
τ: target median
Result: Find minimum r> = ‖u‖ such that Mi [ζi(ci + ui)] > τ
begin

L = {i | ζici < τ}
if |L| < (n+ 1)/2 then

return 0; // Trivial case
for i ∈ L do

ρi =
τ−ζici
‖ζi‖

// If ζi = 0 ρi =∞
k = |L|− (n− 1)/2
U = {select k elements of L with the least ρi}

return
√∑

i∈U ρ
2
i

end

The algorithm for r< can be derived in a straightforward way simi-

larly to the one above.

6
E X T E N D I N G T O I N N E R - J O I N S

We now turn our attention to a more complicated monitoring problem,

where the global statistic comprises of the concatenation of two sketches

ṽt =< x̃t, ỹt >

corresponding to two relations, and the monitored function is the sketch

estimate of the inner product of the sketched vectors, corresponding to

the size of the inner join:

f(ṽt) =Mi [xiyi]

where x̃t = [x1, . . . , xn] and ỹt = [y1, . . . ,yn].

For this problem, essentially the same reasoning applied to the range

query case leads us to a bound-of-ball-radius solution. Again, we focus

on the computation of r>.

Thus, we are given two centers ã = [a1, . . . ,an] and b̃ = [b1, . . . ,bn].

Our goal is to minimize r2> =
∑
i(pi − ai)

2 + (qi − bi)
2 under the

constraint

Mi [piqi] > τ.

Let us consider the set of indices

L = {i | aibi < τ}

If |L| < (n+ 1)/2, we are done, since r> = 0 is the trivial optimum

solution. Else, we must compute the cost ρi for each index i ∈ L and

choose a subset U ⊆ L of size |L|− (n− 1)/2 of indices of least cost ρi,

which will yield the minimum radius r>.

The cost ρ for some index i (which we drop for clarity) can be

specified as a constrained optimization problem: given a,b, minimize

27

28 extending to inner-joins

ρ2 = (p− a)2 + (q− b)2 under the constraint pq = τ. We now consider

the following cases:

case a = b In this case, we wish to minimize (p− a)2 + (q− a)2

for pq > τ > a2. Given any pair of vectors p,q with pq > τ, it is easy

to check that vectors p ′ = ‖p‖ a
‖a‖ and q ′ = ‖q‖ a

‖a‖ have p ′q ′ > τ and

also

(p ′ − a)2 + (q ′ − a)2 6 (p− a)2 + (q− a)2.

Thus, for an optimal pair p,q, both vectors will be collinear to a. Solving

the corresponding one-dimensional problem yields a cost

ρ2 = 2(
√
τ− ‖a‖)2

case a = −b We wish to minimize (p− a)2 + (q+ a)2 for pq >

τ > −a2. Using Lagrange multipliers,

Λ = (p− a)2 + (q+ a)2 − λ(pq− τ)

and from ∂Λ/∂p = ∂Λ/∂q = 0 we get

2(p− a) − λq = 2(q+ a) − λp = 0 (6.1)

Thus, (λ− 2)(p+ q) = 0. Now, we have two cases:

λ = 2 implies p− q = a (by Eq. 6.1) and τ > −a2/4. In this case, the

quantity to minimize is

ρ2 = (p−a)2+(q+a)2 = p2+q2 = (p−q)2+ 2pq = a2+ 2τ

λ 6= 2 implies p+ q = 0 and thus pq = −p2 = τ 6 0. Also, (2+ λ)p =

2a implies that

ρ2 = 2(p− a)2 = 2(
√
−τ− |a|)2

extending to inner-joins 29

Putting everything together, we have

ρ2 =

0 if τ < −a2,

2(
√
−τ− a)2 if −a2 6 τ 6 −a2/4,

2τ+ a2 if −a2/4 < τ.

case a 6= ±b We employ Lagrange multipliers to this case. The

Lagrangian is

Λ = (p− a)2 + (q− b)2 − λ(pq− τ)

and we obtain the system

∂Λ

∂p
= 2(p− a) − λq = 0 (6.2)

∂Λ

∂q
= 2(q− b) − λp = 0 (6.3)

∂Λ

∂λ
= pq− τ = 0 (6.4)

The first two equations resolve to the system

2p− λq = 2a

−λp+ 2q = 2b

The determinant of this system is 4− λ2, with roots λ = ±2. For λ = 2

the system implies a = −b and for λ = −2 the system implies a = b.

Since we assume a 6= ±b, the determinant is non-zero and we solve to

get

p =
4a+ 2λb

4− λ2
(6.5)

q =
2λa+ 4b

4− λ2
(6.6)

By substituting into Eq. 6.4 we get

(4a+ 2λb)(2λa+ 4b) = m(4− λ2)2 (6.7)

which is a depressed quartic equation. One of its real solutions yields

the optimal p,q, from which the cost ρ can be computed.

7
E X P E R I M E N T S A N D C O N C L U S I O N S

7.1 experiments

7.1.1 Using a static reference vector

We use similar datasets as the ones presented in [10] for our experiments.

The first dataset is available in http://ita.ee.lbl.gov/html/contrib/

WorldCup.html and contains HTTP requests made to the World Cup

’94 web site. The second dataset is available here http://crawdad.cs.

dartmouth.edu/meta.php?name=ibm/watson#N100AD and contains SNMP

records about network users such as number of packets and bytes

from/to each user’s machine. The data are collected from a corporate

research center (IBM Watson research center) over several weeks. From

the World Cup ’94 dataset, we measured the size attribute and from

the Crawdad dataset the shortRet attribute.

The experiments performed evaluated the communication cost re-

quired by each method, by affecting the methods parameters. Specifi-

cally the sketching error ε and the model error θ.

In Figure ((a)), we can see the graph for the World Cup ’94 dataset

and in Figure ((b)) the graph for the IBM dataset.

We only considered the range 5-50% for ε, where the geometric

method makes sense. We present the whole range, to explain what is

going on in each case, but we can also argue that the geometric method

seems to perform better by selecting appropriate parameters which

don’t have to be guessed at each time.

For the range 5-15%, the geometric method does not perform as

good, because of the lack of good exploitation of sketches. Let’s see

how each method operates in this range. In the Naive method, each site

calculates its local sketch and because there are no prediction models,

when a violation occurs, it sends to the coordinator only its id (its

stream id and its node id) and the local sketch. Furthermore, there is

31

http://ita.ee.lbl.gov/html/contrib/WorldCup.html
http://ita.ee.lbl.gov/html/contrib/WorldCup.html
http://crawdad.cs.dartmouth.edu/meta.php?name=ibm/watson#N100AD
http://crawdad.cs.dartmouth.edu/meta.php?name=ibm/watson#N100AD

32 experiments and conclusions

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

140.00%

θ-ε tradeoff for HTTP data

Self-join queries

Naive 10% Naive 4% Naive 2%

Geometric 10% Geometric 4% Geometric 2%

ε

C
o

m
m

u
n

ic
a

tio
n

 C
o

st

(a) World Cup (HTTP) dataset

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

140.00%

θ-ε tradeoff for HTTP data

Self-join queries

Naive 10% Naive 4% Naive 2%

Geometric 10% Geometric 4% Geometric 2%

ε

C
o

m
m

u
n

ic
a

tio
n

 C
o

st

(b) CRAWDAD dataset

Figure 3. θ− ε tradeoff for self-join queries

7.1 experiments 33

Table 2. High threshold τh and low threshold τl variations

ε+ θ = 10% ε+ θ = 4% ε+ θ = 2%

ε/(ε+ θ) τh τl τh τl τh τl

5% 1.09 0.92 1.04 0.97 1.02 0.98

10% 1.08 0.94 1.03 0.97 1.01 0.99

15% 1.06 0.95 1.02 0.98 1.01 0.99

20% 1.04 0.96 1.02 0.98 1.01 0.99

25% 1.03 0.98 1.01 0.99 1.01 1.00

30% 1.01 0.99 1.00 1.00 1.00 1.00

35% 1.00 1.01 1.00 1.00 1.00 1.00

40% 0.98 1.02 0.99 1.01 1.00 1.00

45% 0.97 1.04 0.99 1.01 0.99 1.01

50% 0.95 1.05 0.98 1.02 0.99 1.01

no additional communication from the coordinator. In the geometric

method, when a violation occurs, each site sends its sketch, but there

is also an additional communication cost from the coordinator which

sends the estimate vector back to all the local nodes and additionally

the slack vectors used for the balancing process. Bearing also in mind,

that for small values of the sketching error ε, the sketch size is bigger.

The safe zone is also bigger, but due to how the F2-norm increases

(quadratically), we have several local violations especially in the start.

When this happens, the sites (and the coordinator) prefer to send the

difference of the sketch from the last time, instead of sending the sketch.

Hence, we have no good exploitation of the sketches.

For the range 20-30%, there is a good balance of the sketch size and

the safe zone size, which causes the geometric method to perform better.

Local violations don’t occur as frequently, and when they do, commu-

nication is being made by using the sketches instead of sending the

history of updates. Here we can see differences in the communication

cost of up to 20%.

For the range 35-50%, the geometric method starts to lose its perfor-

mance gains, because of the two thresholds τl and τh coming close

to each other. In Table 2, we present the values of τl and τh for the

different error margins.

The performance on the IBM dataset is similar. We used this dataset

to show that the behavior is not tailored to one specific dataset.

Figure (a), presents the communication cost for a range query [0, 100].

As we can see, for small ranges, the communication cost is higher. The

34 experiments and conclusions

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

θ-ε tradeoff for HTTP data

Range queries

N10%, R100 N4%, R100 G10%, R100 G4%, R100

ε

C
o

m
m

u
n

ic
a

tio
n

 C
o

st

(a) 0, 100 range

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

θ-ε tradeoff for HTTP data

Range queries

N10%, R10000 N4%, R10000 G10%, R10000 G4%, R10000

ε

C
o

m
m

u
n

ic
a

tio
n

 C
o

st

(b) 0, 10000 range

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

140.00%

θ-ε tradeoff for HTTP data

Range queries

N10%, R1000000 N4%, R1000000 G10%, R1000000 G4%, R1000000

ε

C
o

m
m

u
n

ic
a

tio
n

 C
o

st

(c) 0, 1000000 range

Figure 4. θ− ε tradeoff for range queries

7.2 conclusions 35

local conditions for the naive method, depend on the small number of

elements that contribute to the F2 norm and due to the small magnitude

of the value, it tends to change more frequently.

Figure (b), presents a range query [0, 10000]. Here the communication

cost drops significantly from the [0, 100] case. The benefits of the

geometric method are again obvious for the ε = 30% case.

Figure (c) presents the last range query [0, 1000000]. As the range

increases, the behavior starts to resemble that of the inner-join case. The

results are comparable to the inner-join scenario.

7.1.2 Using a dynamic reference vector

According to [35], a technique for reducing the local violations in

each node, is changing the estimate vector that is calculated from the

coordinator in a synchronization step to a different vector (a reference

vector), which has the property to be further from the threshold surface.

This tends to give bigger safe zones, hence more space for the drift

vectors to move.

The process for determining the new reference vector is the following:

In a synchronization phase, we determine the estimate vector e and

also e∗ which is the vector on the threshold surface that is closest to e.

Using Algorithm 2, we can obtain the vector u which is the closest to

the threshold surface from the ball center and use it as e∗.

Once e∗ has been computed, the coordinator sets the reference vector

to be equal to the estimate vector and iteratively examines new reference

vectors by doubling the distance of the previous reference vector from

e∗, i.e. the reference vector ri examined in the i-th iteration is e∗ +

2i(e− e∗). In each iteration we calculate the vector on the threshold

surface that is closest to ri. If this vector is e∗, we proceed to the next

iteration, or else we settle to ri from the previous iteration.

In Figure ((a)), we can see the graph for the World Cup ’94 dataset

and in Figure ((b)) the graph for the IBM dataset containing the new

results by using the reference vector ri.

7.2 conclusions

36 experiments and conclusions

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

140.00%

θ-ε tradeoff for HTTP data

Self-join queries

Naive 10% Naive 4% Naive 2%

Geometric 10% Geometric 4% Geometric 2%

Reference 10% Reference 4% Reference 2%

ε

C
o

m
m

u
n

ic
a

tio
n

 C
o

st

(a) World Cup (HTTP) dataset

5% 10% 15% 20% 25% 30% 35% 40% 45% 50%
0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

140.00%

θ-ε tradeoff for SNMP data

Self-join queries

Naive 10% Naive 4% Naive 2%

Geometric 10% Geometric 4% Geometric 2%

Reference 10% Reference 4% Reference 2%

ε

C
o

m
m

u
n

ic
a

tio
n

 C
o

st

(b) CRAWDAD dataset

Figure 5. θ− ε tradeoff for self-join queries using a reference vector

8
W O R S T C A S E A N A LY S I S

The geometric method triggers a communication, when at least one

of the balls is not monochromatic. According to Eq.(4.5) there are two

thresholds that must be checked τh =
(1−ε)f(ṽs)
(1−θ)(1+ε) and τl =

(1+ε)f(ṽs)
(1+θ)(1−ε) .

For our case to be comparable with [10], we consider that each update

causes an element of the local stream to increase by +1 and that the

global statistics vector is calculated as the sum (and not the average)

of the local statistics vectors. That is v ′t =
∑n
i=1 v

(i)
t = nvt and its

sketched versions ṽ ′t =
∑n
i=1 ṽ

(i)
t = nṽt respectively.

As we can see, the new global statistics vector ṽ ′t can be obtained

from the old one scaled by a constant factor n. In the remaining section,

we denote ṽt the sketch of the new scaled global statistics vector.

Each local vector receives an update that changes one of its coordi-

nates by +1. If ṽ(i)t the local vector then an update can be modelled by

a vector that has one at one of its coordinates and zero elsewhere:

δ =

0

...

1

...

0

vs

p : f(p) = τhigh

p : f(p) = τlow

δ

Figure 6. Worst-case communication

37

38 worst case analysis

The norm of each local statistics vector will change at most by 1:

∥∥∥ṽ(i)t + δ
∥∥∥ 6

∥∥∥ṽ(i)t ∥∥∥+ ‖δ‖ = ∥∥∥ṽ(i)t ∥∥∥+ 1 (8.1)

The worst case scenario is for all updates to have a direction towards

the threshold surface of τh (because we assume only insertions). The

worst case is depicted in Fig.6. If p is the point on the upper threshold

surface that is closest to the estimation vector, that is:

f(p) =
(1− ε)f(ṽs)

(1− θ)(1+ ε)
= τh

p = arg min
p
‖ṽs −p‖

Then, the worst case communication is for each local update to be

collinear with the vector that starts at ṽs and ends at p. Let’s call this

vector d. According to Eq.(8.1), after N updates, the local sketched

statistics vectors will change as follows:

ṽ
(i)
s+N = ṽ

(i)
s +

Nnd

‖d‖
(8.2)

and so will the global sketched statistics vectors:

ṽs+N =

n∑
i=1

ṽ
(i)
s+N = ṽs +

Nnd

‖d‖

The local ball that each node constructs will change according to Eq.(8.2).

If we set τ = 1−ε
(1−θ)(1+ε) , we will have a communication at time t ′

when:

‖ṽt ′‖ = τ1/2 ‖ṽs‖

and the new upper threshold will become (τ1/2)2 ‖ṽs‖. So generally,

while:

‖ṽt‖ 6 τm/2 ‖ṽs‖ , t > s

we have m− 1 communications.

worst case analysis 39

To have m− 1 communications after N updates the following condi-

tion must be true:

∥∥∥∥ṽs +Nn d

‖d‖

∥∥∥∥ 6 τm/2 ‖ṽs‖ (8.3)

From the triangle inequality:

∥∥∥∥ṽs +Nn d

‖d‖

∥∥∥∥ 6 ‖ṽs‖+Nn

and so Eq.(8.3) becomes:

‖ṽs‖+Nn 6 τm/2 ‖ṽs‖

Nn 6 τm/2(‖ṽs‖− 1)

m > 2 logτ
Nn

‖ṽs − 1‖

and changing the logarithm base and replacing back τ:

m >
(1− θ)(1+ ε)

(
log(Nn) − log(‖ṽs − 1‖)

)
1− ε

So the worst case communication is:

O

(
(1− θ)(1+ ε)

(
logN+ logn) − log(‖ṽs − 1‖)

)
1− ε

)
(8.4)

The respective result found in [10] is:

O

(
n

(ε+ 2ψ)4
log
(n
δ

)
logN

)

with θ = (ε+ 2ψ) the total error (from sketch and prediction models),

n the number of nodes, δ the confidence probability and N the number

of updates.

Comparing the two results, we can see that our worst case commu-

nication is dependent logarithmically from the number of nodes n, so

theoretically scales better for a very large number of nodes.

Part I

A P P E N D I X

A
C A L C U L AT I N G M I N / M A X O F T H E M E A N U S I N G

L A G R A N G E

We want to maximize/minimize the function f(x̃t) = 1
n

∑n
i=1 x

2
i subject

to
∑j
i=1(xi − ci)

2 = r2.

The problem is solved using Lagrange Multipliers. We create the

function:

Λ(x, λ) =
1

n

n∑
i=1

x2i + λ

(
n∑
i=1

(xi − ci)
2 − r2

)

We then solve the following equations:

∂Λ

∂xi
= 0 (.1)

1

n
2xi + 2λ(xi − ci) = 0 (.2)

xi + λn(xi − ci) = 0 (.3)

xi(1+ λn) − λnci = 0 (.4)

xi =
λnci
1+ λn

(.5)

We also have to solve:

∂Λ

∂λ
= 0 (.6)

n∑
i=1

(xi − ci)
2 − r2 = 0 (.7)

Which according to Eq. (.5), becomes:

n∑
i=1

(
λnci
1+ λn

− ci

)2
− r2 = 0

n∑
i=1

(
λnci − ci(1+ λn)

1+ λn

)2
− r2 = 0

n∑
i=1

(
−ci
1+ λn

)2
− r2 = 0

1

(1+ λn)2

n∑
i=1

c2i = r2

43

44 calculating min/max of the mean using lagrange

(1+ λn)2 =

∑n
i=1 c

2
i

r2

The quantity
∑n
i=1 c

2
i

r2
> 0, so we solve for λ:

±(1+ λn) =

√∑n
i=1 c

2
i

r

So we have the following 2 solutions for λ:

1+ λn =

√∑
c2i
r

−1− λn =

√∑
c2i
r

=

λ =

√∑
c2i−r

rn

λ = −

√∑
c2i+r

rn

Now we can solve for xi:

xi =
(
√∑

c2i ± r)ci√∑
c2i

which represent the minimum/maximum points.

B I B L I O G R A P H Y

[1] Noga Alon, Yossi Matias, and Mario Szegedy. The space

complexity of approximating the frequency moments. Pro-

ceedings of the twenty-eighth annual ACM symposium on Theory

of computing - STOC ’96, pages 20–29, 1996. doi: 10.1145/

237814.237823. URL http://portal.acm.org/citation.cfm?

doid=237814.237823. (Cited on pages 3, 5, 8, and 9.)

[2] Noga Alon, Phillip B. Gibbons, Yossi Matias, and Mario Szegedy.

Tracking join and self-join sizes in limited storage. Proceedings of

the eighteenth ACM SIGMOD-SIGACT-SIGART symposium on Prin-

ciples of database systems - PODS ’99, (March):10–20, 1999. doi:

10.1145/303976.303978. URL http://portal.acm.org/citation.

cfm?doid=303976.303978. (Cited on pages 3, 5, 8, 9, and 10.)

[3] Arvind Arasu and Gurmeet Singh Manku. Approximate counts

and quantiles over sliding windows. Proceedings of the twenty-

third ACM SIGMOD-SIGACT-SIGART symposium on Principles of

database systems - PODS ’04, page 286, 2004. doi: 10.1145/

1055558.1055598. URL http://portal.acm.org/citation.cfm?

doid=1055558.1055598. (Cited on page 5.)

[4] Brian Babcock and Chris Olston. Distributed top-k monitoring.

In Proceedings of the 2003 ACM SIGMOD international conference

on Management of data, pages 28–39, New York, New York, USA,

2003. ACM. ISBN 158113634X. doi: 10.1145/872763.872764.

URL http://portal.acm.org/citation.cfm?doid=872757.

872764http://portal.acm.org/citation.cfm?id=872764. (Cited

on page 5.)

[5] Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and

Jennifer Widom. Models and issues in data stream systems. Pro-

ceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART sympo-

sium on Principles of database systems - PODS ’02, page 1, 2002. doi:

10.1145/543614.543615. URL http://portal.acm.org/citation.

cfm?doid=543613.543615. (Cited on page 2.)

45

http://portal.acm.org/citation.cfm?doid=237814.237823
http://portal.acm.org/citation.cfm?doid=237814.237823
http://portal.acm.org/citation.cfm?doid=303976.303978
http://portal.acm.org/citation.cfm?doid=303976.303978
http://portal.acm.org/citation.cfm?doid=1055558.1055598
http://portal.acm.org/citation.cfm?doid=1055558.1055598
http://portal.acm.org/citation.cfm?doid=872757.872764 http://portal.acm.org/citation.cfm?id=872764
http://portal.acm.org/citation.cfm?doid=872757.872764 http://portal.acm.org/citation.cfm?id=872764
http://portal.acm.org/citation.cfm?doid=543613.543615
http://portal.acm.org/citation.cfm?doid=543613.543615

46 bibliography

[6] M Charikar. Finding frequent items in data streams. Theoretical

Computer Science, 312(1):3–15, January 2004. ISSN 03043975. doi: 10.

1016/S0304-3975(03)00400-6. URL http://linkinghub.elsevier.

com/retrieve/pii/S0304397503004006. (Cited on page 5.)

[7] D. Chu, A. Deshpande, J.M. Hellerstein, and W. Hong. Ap-

proximate data collection in sensor networks using probabilistic

models. In Data Engineering, 2006. ICDE’06. Proceedings of the 22nd

International Conference on, pages 48–48. IEEE, 2006. ISBN 0-7695-

2570-9. doi: 10.1109/ICDE.2006.21. URL http://ieeexplore.

ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1617416http:

//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1617416.

(Cited on page 5.)

[8] G Cormode and S Muthukrishnan. An improved data stream

summary: the count-min sketch and its applications. Journal

of Algorithms, 55(1):58–75, April 2005. ISSN 01966774. doi:

10.1016/j.jalgor.2003.12.001. URL http://linkinghub.elsevier.

com/retrieve/pii/S0196677403001913. (Cited on pages 3 and 8.)

[9] Graham Cormode and Minos Garofalakis. Sketching Streams

Through the Net : Distributed Approximate Query Tracking. 31st

VLDB Conference, pages 13–24, 2005. (Cited on page 7.)

[10] Graham Cormode and Minos Garofalakis. Approximate continu-

ous querying over distributed streams. ACM Trans. Database Syst.,

33(2):1–39, 2008. ISSN 0362-5915. doi: http://doi.acm.org/10.1145/

1366102.1366106. (Cited on pages 2, 3, 10, 11, 31, 37, and 39.)

[11] Graham Cormode and S. Muthukrishnan. What’s hot and what’s

not: tracking most frequent items dynamically. ACM Trans-

actions on Database Systems, 30(1):249–278, March 2005. ISSN

03625915. doi: 10.1145/1061318.1061325. URL http://portal.acm.

org/citation.cfm?doid=1061318.1061325. (Cited on page 5.)

[12] Graham Cormode, Minos Garofalakis, S Muthukrishnan, and Ra-

jeev Rastogi. Holistic aggregates in a networked world: distributed

tracking of approximate quantiles. In SIGMOD ’05: Proceedings of

the 2005 ACM SIGMOD international conference on Management of

data, pages 25–36, New York, NY, USA, 2005. ACM. ISBN 1-59593-

http://linkinghub.elsevier.com/retrieve/pii/S0304397503004006
http://linkinghub.elsevier.com/retrieve/pii/S0304397503004006
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1617416 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1617416
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1617416 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1617416
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1617416 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1617416
http://linkinghub.elsevier.com/retrieve/pii/S0196677403001913
http://linkinghub.elsevier.com/retrieve/pii/S0196677403001913
http://portal.acm.org/citation.cfm?doid=1061318.1061325
http://portal.acm.org/citation.cfm?doid=1061318.1061325

bibliography 47

060-4. doi: http://doi.acm.org/10.1145/1066157.1066161. (Cited

on page 5.)

[13] Graham Cormode, S. Muthukrishnan, and K. Yi. Algorithms for

distributed functional monitoring. ACM Transactions on Algorithms

(TALG), 7(2):21, 2011. URL http://portal.acm.org/citation.

cfm?id=1921667. (Cited on page 3.)

[14] Abhinandan Das, S. Ganguly, M. Garofalakis, and R. Rastogi.

Distributed set-expression cardinality estimation. In Proceedings of

the Thirtieth international conference on Very large data bases-Volume

30, pages 312–323. VLDB Endowment, 2004. URL http://portal.

acm.org/citation.cfm?id=1316718. (Cited on page 5.)

[15] Amol Deshpande, Carlos Guestrin, S.R. Madden, J.M. Hellerstein,

and W. Hong. Model-driven data acquisition in sensor networks.

In Proceedings of the Thirtieth international conference on Very large

data bases-Volume 30, pages 588–599. VLDB Endowment, 2004.

URL http://portal.acm.org/citation.cfm?id=1316741. (Cited

on pages 1 and 5.)

[16] Alin Dobra, Minos Garofalakis, Johannes Gehrke, and Rajeev Ras-

togi. Processing complex aggregate queries over data streams.

Proceedings of the 2002 ACM SIGMOD international conference

on Management of data - SIGMOD ’02, page 61, 2002. doi:

10.1145/564696.564699. URL http://portal.acm.org/citation.

cfm?doid=564691.564699. (Cited on pages 5, 8, and 10.)

[17] Sumit Ganguly and Minos Garofalakis. Processing set ex-

pressions over continuous update streams. Proceedings of the

2003, page 265, 2003. doi: 10.1145/872788.872790. URL http:

//portal.acm.org/citation.cfm?doid=872757.872790http:

//portal.acm.org/citation.cfm?id=872757.872790. (Cited on

page 5.)

[18] Sumit Ganguly, Minos Garofalakis, and Rajeev Rastogi. Processing

Data-Stream Join Aggregates Using Skimmed Sketches. In Proc.

Int. Conf. on Extending Database Technology (EDBT), 2004. (Cited on

page 7.)

http://portal.acm.org/citation.cfm?id=1921667
http://portal.acm.org/citation.cfm?id=1921667
http://portal.acm.org/citation.cfm?id=1316718
http://portal.acm.org/citation.cfm?id=1316718
http://portal.acm.org/citation.cfm?id=1316741
http://portal.acm.org/citation.cfm?doid=564691.564699
http://portal.acm.org/citation.cfm?doid=564691.564699
http://portal.acm.org/citation.cfm?doid=872757.872790 http://portal.acm.org/citation.cfm?id=872757.872790
http://portal.acm.org/citation.cfm?doid=872757.872790 http://portal.acm.org/citation.cfm?id=872757.872790
http://portal.acm.org/citation.cfm?doid=872757.872790 http://portal.acm.org/citation.cfm?id=872757.872790

48 bibliography

[19] Sumit Ganguly, Deepanjan Kesh, and Chandan Saha. Practical

Algorithms for Tracking Database Join Sizes. FSTTCS, 2005. (Cited

on page 7.)

[20] PB Gibbons. Distinct sampling for highly-accurate an-

swers to distinct values queries and event reports. Pro-

ceedings of the International Conference on Very, 2001. URL

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.

80.2580&rep=rep1&type=pdf. (Cited on page 5.)

[21] AC Gilbert, Yannis Kotidis, and S Muthukrishnan. Surf-

ing wavelets on streams: One-pass summaries for ap-

proximate aggregate queries. Proceedings of the, 2001.

URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.

1.1.119.5031&rep=rep1&type=pdf. (Cited on page 5.)

[22] Michael Greenwald and Sanjeev Khanna. Space-efficient on-

line computation of quantile summaries. ACM SIGMOD

Record, 30(2):58–66, June 2001. ISSN 01635808. doi: 10.1145/

376284.375670. URL http://portal.acm.org/citation.cfm?

doid=376284.375670. (Cited on page 5.)

[23] J Haas and M Hellerstein. Ripple Joins for Online Aggregation.

SIGMOD, pages 287–298, 1999. (Cited on page 7.)

[24] L. Huang, X. Nguyen, M. Garofalakis, J. M. Hellerstein, M. I.

Jordan, a. D. Joseph, and N. Taft. Communication-Efficient

Online Detection of Network-Wide Anomalies. IEEE INFO-

COM 2007 - 26th IEEE International Conference on Computer Com-

munications, pages 134–142, 2007. doi: 10.1109/INFCOM.2007.

24. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=4215606. (Cited on page 6.)

[25] Ling Huang, Minos Garofalakis, A.D. Joseph, and Nina Taft.

Communication-efficient tracking of distributed cumulative trig-

gers. 27th International Conference on Distributed Computing Systems

(ICDCS ’07), pages 54–54, 2007. doi: 10.1109/ICDCS.2007.93.

URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=4268207http://www.computer.org/portal/web/

csdl/doi/10.1109/ICDCS.2007.93. (Cited on page 6.)

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.80.2580&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.80.2580&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.119.5031&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.119.5031&rep=rep1&type=pdf
http://portal.acm.org/citation.cfm?doid=376284.375670
http://portal.acm.org/citation.cfm?doid=376284.375670
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4215606
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4215606
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4268207 http://www.computer.org/portal/web/csdl/doi/10.1109/ICDCS.2007.93
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4268207 http://www.computer.org/portal/web/csdl/doi/10.1109/ICDCS.2007.93
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4268207 http://www.computer.org/portal/web/csdl/doi/10.1109/ICDCS.2007.93

bibliography 49

[26] Ankur Jain, E.Y. Chang, and Y.F. Wang. Adaptive stream

resource management using kalman filters. In Proceedings of

the 2004 ACM SIGMOD international conference on Management

of data, pages 11–22, New York, New York, USA, 2004. ACM.

ISBN 1581138598. doi: 10.1145/1007568.1007573. URL http:

//portal.acm.org/citation.cfm?doid=1007568.1007573http:

//portal.acm.org/citation.cfm?id=1007573. (Cited on page 5.)

[27] D. Kempe, a. Dobra, and J. Gehrke. Gossip-based computa-

tion of aggregate information. 44th Annual IEEE Symposium on

Foundations of Computer Science, 2003. Proceedings., pages 482–491.

doi: 10.1109/SFCS.2003.1238221. URL http://ieeexplore.ieee.

org/lpdocs/epic03/wrapper.htm?arnumber=1238221. (Cited on

page 7.)

[28] Ram Keralapura, Graham Cormode, and Jeyashankher Ra-

mamirtham. Communication-efficient distributed monitoring of

thresholded counts. Proceedings of the 2006 ACM SIGMOD inter-

national conference on Management of data - SIGMOD ’06, page 289,

2006. doi: 10.1145/1142473.1142507. URL http://portal.acm.

org/citation.cfm?doid=1142473.1142507. (Cited on page 6.)

[29] S. Madden and M.J. Franklin. Fjording the stream: an archi-

tecture for queries over streaming sensor data. Proceedings 18th

International Conference on Data Engineering, pages 555–566, 2001.

doi: 10.1109/ICDE.2002.994774. URL http://ieeexplore.ieee.

org/lpdocs/epic03/wrapper.htm?arnumber=994774. (Cited on

page 2.)

[30] a. Manjhi, V. Shkapenyuk, K. Dhamdhere, and C. Olston. Finding

(Recently) Frequent Items in Distributed Data Streams. 21st Inter-

national Conference on Data Engineering (ICDE’05), pages 767–778,

2004. doi: 10.1109/ICDE.2005.68. URL http://ieeexplore.ieee.

org/lpdocs/epic03/wrapper.htm?arnumber=1410191. (Cited on

page 5.)

[31] G.S. Manku and R. Motwani. Approximate frequency counts over

data streams. In Proceedings of the 28th international conference on

Very Large Data Bases, pages 346–357. VLDB Endowment, 2002.

http://portal.acm.org/citation.cfm?doid=1007568.1007573 http://portal.acm.org/citation.cfm?id=1007573
http://portal.acm.org/citation.cfm?doid=1007568.1007573 http://portal.acm.org/citation.cfm?id=1007573
http://portal.acm.org/citation.cfm?doid=1007568.1007573 http://portal.acm.org/citation.cfm?id=1007573
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1238221
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1238221
http://portal.acm.org/citation.cfm?doid=1142473.1142507
http://portal.acm.org/citation.cfm?doid=1142473.1142507
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=994774
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=994774
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1410191
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1410191

50 bibliography

URL http://portal.acm.org/citation.cfm?id=1287400. (Cited

on page 5.)

[32] Chris Olston, Jing Jiang, and Jennifer Widom. Adaptive fil-

ters for continuous queries over distributed data streams. Pro-

ceedings of the 2003 ACM SIGMOD international conference on

on Management of data - SIGMOD ’03, page 563, 2003. doi:

10.1145/872824.872825. URL http://portal.acm.org/citation.

cfm?doid=872757.872825. (Cited on page 5.)

[33] Florin Rusu and Alin Dobra. Sketches for size of join estimation.

ACM Transactions on Database Systems (TODS), 33(3):1–46, 2008.

URL http://portal.acm.org/citation.cfm?id=1386121. (Cited

on page 20.)

[34] Izchak Sharfman, Assaf Schuster, and Daniel Keren. A geometric

approach to monitoring threshold functions over distributed data

streams. ACM Trans. Database Syst., 32(4):23, 2007. ISSN 0362-

5915. doi: http://doi.acm.org/10.1145/1292609.1292613. (Cited

on pages 2, 12, and 13.)

[35] Izchak Sharfman, Assaf Schuster, and Daniel Keren. Shape

sensitive geometric monitoring. Proceedings of the twenty-

seventh ACM SIGMOD-SIGACT-SIGART symposium on Principles

of database systems - PODS ’08, page 301, 2008. doi: 10.1145/

1376916.1376958. URL http://portal.acm.org/citation.cfm?

doid=1376916.1376958. (Cited on page 35.)

[36] Y. Zhu and D. Shasha. StatStream: Statistical Monitoring of Thou-

sands of Data Streams in Real Time. Proceeding of the 28th VLDB

Conference, Hong Kong, China, 2002. URL http://www.mendeley.

com/research/no-title-avail/. (Cited on page 2.)

http://portal.acm.org/citation.cfm?id=1287400
http://portal.acm.org/citation.cfm?doid=872757.872825
http://portal.acm.org/citation.cfm?doid=872757.872825
http://portal.acm.org/citation.cfm?id=1386121
http://portal.acm.org/citation.cfm?doid=1376916.1376958
http://portal.acm.org/citation.cfm?doid=1376916.1376958
http://www.mendeley.com/research/no-title-avail/
http://www.mendeley.com/research/no-title-avail/

	Dedication
	Acknowledgments
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Related Work
	3 Background Material
	3.1 Sketches
	3.1.1 AGMS Sketches
	3.1.2 Fast-AGMS Sketches

	3.2 Geometric Method and Distributed Monitoring
	3.2.1 Problem Formulation
	3.2.2 Geometric Interpretation
	3.2.3 Local Constraints

	4 Computing the Self-Join
	4.1 Basic threshold crossing problem
	4.2 From threshold crossing to value monitoring
	4.3 Using sketch summaries
	4.4 Using mean for sketch estimation
	4.5 Using median for sketch estimation

	5 Handling Range Queries
	6 Extending to Inner-Joins
	7 Experiments and Conclusions
	7.1 Experiments
	7.1.1 Using a static reference vector
	7.1.2 Using a dynamic reference vector

	7.2 Conclusions

	8 Worst Case Analysis
	Appendix
	A Calculating min/max of the mean using Lagrange
	Bibliography

