

 Technical University of Crete
 Electronic and Computer Engineering Department

 Microprocessor & Hardware Laboratory

 Diploma Thesis

 Implementation of Object Detecting and Tracking

 Algorithms on Parallel Graphical Processing Units

 Author: Supervisor:

 Theofilos Paganos Assistant Professor:

 Yannis Papaefstathiou

 June 2013

1

Abstract

Object Detection and Video Tracking are important subfields of Computer Vision

science, which is a rapidly growing field of multimedia and autonomous robotic

systems. In spite of the fact that a significant number of applications have been

developed, generating very accurate results, they lack in processing efficiency, fast

time execution and low power consumption. The reason is that these applications

are highly complex schemes with many heavyweight

sub-algorithms. For this thesis we studied two algorithms of Computer Science,

the Receptive Field Cooccurence Histograms (RFCH) and the Tracking-Learning-

Detecting (TLD). They belong to the subfields of Computer Science, Object

Detection and Video Tracking respectively. Our focus was on the identification of

the algorithms hotspots that are responsible for their execution bulk, and the

improvement of their performance. For the acceleration of their performance we

experimented with scalable hardware, especially with NVidia graphics processing

units. These hardware cards can be programmed via a parallel computing

platform called CUDA (Compute Unified Device Architecture), towards the needs

of a developer. Our needs were to parallelize the hotspots of RFCH and TLD in an

efficient way so as to improve their performance, a task in which we succeeded.

2

List of Figures

Figure 1.1: Architecture of a computational grid and the interaction

between the GPU resources and different memory elements . 10

Figure 1.2: Multiprocessors with their components . 11

Figure 1.3: Floating operations per second . 12

Figure 1.4: Comparison of the bandwidth of Global Memory towards RAM 12

Figure 4.1: The Image of a training object . 22

Figure 4.2: The scene in which the application searches for the object that has been trained . 23

Figure 4.3: Clustering an Image and the pixels that have survived the procedure 24

Figure 4.4: Example of searching for the yellow soda can and its relative response 26

Figure 4.5: Dataflow steps of the Software version of RFCH until the completion of the
detection . 28

Figure 6.1: the cuda_storeFeature function . 40

Figure 6.2: High level architecture of CalculateClusters module . 42

Figure 6.3: ClusterFeatures training phase GPU implementation . 46

Figure 6.4: ClusterFeatures detecting phase GPU implementation . 47

Figure 6.5: A parallel reduction example . 51

Figure 6.6: High level architecture of CalculateRFCH . 53

Figure 6.7: High level architecture of the Detector Module . 56

Figure 7.1: The meteorite seems small to the human eye . 67

Figure 7.2: While the meteorite heads towards earth it seems larger . 68

Figure 7.3: Bounding box of a moving car . 69

3

Figure 7.4: Two frames after Figure 7.3 . 70

4

List of Tables

Table 7.1: Speedup of the RFCH modules with the GTX 285 . 60

Table 7.2: Speedup of the RFCH modules with the GTX 580 . 61

Table 7.3: Experiments on our system by increasing the objects on the GTX 285 63

Table 7.4: Experiments on our system by increasing the objects on the GTX 580 64

Table 7.5: Experiments on our system by increasing the scenes on the GTX 285 64

Table 7.6: Results of the TLD GPU implementation on the meteor video 69

Table 7.7: Results of the TLD GPU implementation on the car video . 70

5

Contents

1 Introduction . 7

 1.1 Computer Vision Science . 7
 1.2 Compute Unified Device Architecture (CUDA) . 9

 1.3 Computer Vision through Hardware . 13

2 Object Recognition and Video Tracking . 14

 2.1 Object Recognition and Object Detection . 14

 2.1.1 Appearance based methods . 15

 2.1.2 Feature based methods . 16

 2.2 Video Tracking . 17

3 Related Work . 19

 4 The RFCH and TLD algorithms . 21

 4.1 RFCH . 21

 4.1.1 Introduction . 21

 4.1.2 RFCH functionality . 22

 i) Image Descriptors . 23

 ii) Image Quantization . 23

 iii) Histogram Matching . 25

 iv) Detecting an Object . 25

 v) Free parameters . 26

 4.2 The TLD (Tracking-Learning-Detection) Algorithm . 29

 4.2.1 Introduction . 29

 4.2.2 TLD functionality . 29

 i) Features . 29

 ii) Randomized Forests . 30

5 Assessing the Applications . 31

 5.1 Introduction . 31

 5.2 RFCH . 31

 5.2.1 RFCH main functions . 31

 5.2.2 Identifying Hotspots . 32

 5.3 TLD 34

 5.3.1 Identifying Hotspots . 34

6

6 Parallel Implementation of the two Algorithms . 36

 6.1 Introduction to System Architecture . 36

 6.2 RFCH Parallel Implementation . 39

 6.2.1 CalculateClusters Module . 39

 6.2.2 ClusterFeatures Module . 43

 6.2.3 CalculateRFCH Module . 48

 6.3 BPTLD Parallel Implementation . 53

 6.3.1 Detector Module . 54

 6.4 Difficulties Experienced . 57

7 Performance and Evaluation of the Parallel Implemented Algorithms 59

 7.1 Introduction . 59

 7.2 RFCH . 59

 7.2.1 Speedup on the GTX 285 . 60

 7.2.2 Speedup on the GTX 580 . 61

 7.2.3 Comparing Results . 61

 7.2.4 Overall Performance . 63

 7.2.5 Applied Optimization on the RFCH Modules . 65

 7.3 BPTLD . 66

 7.3.1 Evaluation of our modules through experimental videos 67

 7.3.2 Applied Optimization on the Detector Module 71

 7.3.3 An FPGA Implementation of the BPTLD Algorithm 72

8 Conclusions and Future Work . 73

 8.1 Conclusions . 73

 8.2 Future Work . 74

7

Chapter 1

Introduction

In this chapter we introduce the reader to computer vision, a field of computer

science we have studied, and how it has been applied since robust algorithms

have appeared. Also, we introduce the CUDA (Compute Unified Device

Architecture) technology which uses NVidia GPUs for supercomputing, and the

interaction between CUDA and computer vision.

1.1 Computer vision science

Computer vision is a field that includes methods for acquiring, processing and
analyzing high-dimensional data from the real world in order to produce
numerical or symbolic information. A theme in the development of this field has
been to duplicate the abilities of human vision by electronically perceiving and
understanding an image. This understanding of the image can be seen as the
disentangling of symbolic information from image data using models constructed
with the aid of geometry, physics, statistics, and learning theory. Computer vision
has also been described as the enterprise of automating and integrating a wide
range of processes and representations for vision perception [1].

Applications range from tasks such as industrial machine vision systems which,
say, inspect bottles speeding by on a production line, to research into artificial
intelligence and computers or robots that can comprehend the world around
them. The computer vision and machine vision fields have significant overlap.
Computer vision covers the core technology of automated image analysis, which
is used in many fields. Machine vision usually refers to a process of combining
automated image analysis with other methods and technologies to provide
automated inspection and robot guidance in industrial applications.

As a scientific discipline, computer vision is concerned with the theory behind
artificial systems that extract information from images. The image data can take

http://en.wikipedia.org/wiki/Machine_vision

8

many forms, such as video sequences, views from multiple cameras, or multi-
dimensional data from a medical scanner.

As a technological discipline, computer vision seeks to apply its theories and
models to the construction of computer vision systems. Some examples of
applications of computer vision may include systems for:

 Controlling processes, i.e., industrial robots

 Navigation, e.g., by an autonomous vehicle or mobile robot

 Visual surveillance or people counting

 Indexing databases of images and image sequences

 Modeling objects or environments, e.g., medical image analysis or
topographical modeling

 Automatic inspection, as in manufacturing applications.

Sub-domains of computer vision include scene reconstruction, event
detection, video tracking, object recognition, object detection, learning (training),
indexing, motion estimation, and image restoration.

In most practical computer vision applications, the computers are pre-
programmed to solve a particular task, but methods based on learning are now
becoming increasingly common.

http://en.wikipedia.org/wiki/Industrial_robots
http://en.wikipedia.org/wiki/Autonomous_vehicle
http://en.wikipedia.org/wiki/People_counter
http://en.wikipedia.org/wiki/Video_tracking
http://en.wikipedia.org/wiki/Object_recognition
http://en.wikipedia.org/wiki/Motion_estimation
http://en.wikipedia.org/wiki/Image_restoration

9

1.2 Compute Unified Device Architecture (CUDA)

CUDA (Compute Unified Device Architecture) is a parallel computing platform and

programming model created by NVidia and implemented by the graphics

processing units (GPUs) that they produce. CUDA gives developers access to the

virtual instruction set and memory of the parallel computational elements in

CUDA enabled GPUs. Using CUDA, the latest NVidia GPUs become accessible for

computation like CPUs. Unlike CPUs, however, GPUs have a parallel throughput

architecture that emphasizes executing many concurrent threads slowly, rather

than executing a single thread very quickly. This approach of solving general-

purpose problems on GPUs is known as GPGPU.

The CUDA platform is accessible to software developers through CUDA-

accelerated libraries, compiler directives and extensions to industry-standard

programming languages, including C, C++ and Fortran. C/C++ programmers use

CUDA C/C++ compiled with nvcc. Third party wrappers are also available

for Python, Perl, Fortran, Java, Ruby, Lua, Haskell, MATLAB, IDL, and native

support in Mathematica.

In the CUDA programming framework, the GPU is viewed as a compute device

that is a co-processor to the CPU. The GPU has its own DRAM, referred to as

device memory, and executes a very high number of threads in parallel. More

precisely, data-parallel portions of an application are executed on the device as

kernels which run in parallel on many threads. In order to organize threads

running in parallel on the GPU, CUDA organizes them into logical blocks. Each

block is mapped onto a multiprocessor in the GPU. All the threads in one block

can be synchronized together and communicate with each other. Because there

are a limited number of threads that a block can contain, these blocks are further

organized into grids allowing for a larger number of threads to run concurrently,

as illustrated in Figure 1.1.

As we can see, there is a strict memory hierarchy for the kind of memory each

resource can access. 32-bit registers and local memory are accessed only by

http://en.wikipedia.org/wiki/NVIDIA
http://developer.nvidia.com/cuda/gpu-accelerated-libraries
http://developer.nvidia.com/cuda/gpu-accelerated-libraries
http://en.wikipedia.org/wiki/Directive_(programming)
http://en.wikipedia.org/wiki/Fortran

10

unique threads of the grid, a shared memory fragment can be accessed only by

threads that reside on a unique block and any thread of any block can access

Global, Constant and Texture Memory.

Threads in different blocks cannot be synchronized, nor can they communicate

even if they are in the same grid. All the threads in the same grid run the same

GPU code. The GPU contains many streaming multiprocessors (SMs) and each SM

has a number of processor cores, depending on the compute capability and how

technologically advanced a card is.

For this thesis we studied two cards of compute capabilities 1.3 and 2.0. These are

the NVidia GTX 285 and the NVidia GTX 580 respectively. The GTX 285 has 30 SMs

with 8 cores in each SM, while the GTX 580 has 16 SMs with 32 cores in each SM.

Figure 1.1: Architecture of a computational grid and the interaction between the GPU resources

and different memory elements

11

As we mentioned, blocks are scheduled to a SM so they can be processed not only

by the cores it contains, but also with the help of other resources, such are the

maximum number of threads a SM can handle, shared memory, registers,

constant and texture caches as shown in Figure 1.2. The number of blocks that are

assigned to a SM each time depends on the maximum number of threads, shared

memory and registers the kernel needs to run.

Figure 1.2: Multiprocessors with their components.

CUDA enabled GPUs have grown their capabilities in the past years with amazing
results in computations over a period of time. The Figure 1.3 shows how many
billions of floating-point operations are executed per second in comparison to the
CPUs.

12

Figure 1.3: Floating operations per second

The Figure 1.4 shows the theoretical bandwidth of the Global Memory in different
GPUs in comparison to CPU RAM.

Figure 1.4: Comparison of the bandwidth of Global Memory towards RAM.

13

1.3 Computer Vision through Hardware

Although Computer Vision theory and its applications have been evolved and
developed in the last years with great results and state of the art programs, they
lack in processing efficiency, fast time execution and low power consumption.
These facts are serious drawbacks for real world applications, such as real time
robotic systems.

There are different ways in which computer vision algorithms analyze data but
they almost all are heavy and complex, computation-wise. This increases the
power consumption of the CPU and time execution. One way to overcome these
problems is to wait for computer vision science to come up with new ideas for its
data processing or try to implement parts of an algorithm that are heavyweight
on hardware such are Field-programmable Gate Arrays (FPGAs) and Graphics
Processor Units (GPUs).

By taking advantage of the parallel computing nature of hardware, processing
time can be reduced dramatically while keeping low the wattage that is consumed
for complex calculations.
Specifically for FPGAs, data can be divided into chunks and pass each chunk into
custom processors that work in parallel, while for GPUs, data can be transferred
to their vast device memory, and with the help of billions of available threads that
work virtually in parallel, great results can be achieved by extracting the inherent
parallelism of a computer vision algorithm.
All this comes down to better performance and to a realistic use of computer
vision programs in everyday life.

14

Chapter 2

Object Recognition and Video Tracking

In this chapter we try to analyze two of the many subfields of computer vision
science, object recognition and video tracking. We chose these because the
algorithms we studied for this thesis belong to these two major categories.

2.1 Object Recognition and Object Detection

Object Recognition in computer vision is the task of finding a given object in an

image or video sequence. Humans recognize a multitude of objects in images with

little effort, despite the fact that the image of the objects may vary somewhat in

different viewpoints, in many different sizes and scales or even when they are

translated or rotated. Objects can even be recognized when they are partially

obstructed from view. This task is still a challenge for computer vision systems in

general [2].

An object recognition algorithm is typically designed to classify an object in one of

several predefined classes, assuming that the segmentation of the object has

already been performed. Commonly, the test images show a single object that is

centered in the image and occupies most of the image area. The test image may

also have a black background [3], making the task even more simple.

Most of the object recognition algorithms may be used for object detection by

using a search window and scanning the image for the object. The task for an

object detection algorithm is much harder. Its purpose is to search for a specific

object in an image of a complex scene.

Regarding the computational complexity, some methods are more suitable for

searching than others. Two fundamental goals of object detection algorithms are

15

to identify a known object in a realistic environment and also to determine its

location.

There are two major methods that recognition algorithms base their calculations

on: appearance based methods and feature based methods.

2.1.1 Appearance based methods

These methods use example images (called templates or exemplars) of the

objects to perform recognition. Objects look different under varying conditions,

such as changes in lighting or color, changes in viewing direction and changes in

size and/or shape.

Some of these methods include:

 Edge matching. It uses edge detection techniques, such as the Canny edge
detection [4] J.Canny, to find edges. Its main strategy is to detect edges in
templates and images and then compare edges to find the template.

 Greyscale matching. Edges are robust to illumination changes but throw away
a lot of information. A solution to this loss of information is to compute pixel
distance as a function of both pixel position and pixel intensity.

 Gradient Matching. This is another way of saving information by comparing
image gradients. Matching is performed like matching greyscale images.

 Histograms of receptive field responses. This method avoids explicit point
correspondences, and the relations between different image points are
implicitly coded in the receptive field responses. This is a very efficient
method, while work based on it can be found in [5] by Ekvall and Kragic, [6] by
Schiele and Crowley and in [7] by Linde and Lindeberg.

16

2.1.2 Feature based methods

A search is used to find feasible matches between object features and image
features. The primary constraint is that a single position of the object must
account for all of the feasible matches. The methods that extract features from
the objects to be recognized and the images to be searched are based on surface
patches, corners and linear edges.

Some of these methods are:

 Interpretation trees. A method for searching for feasible matches is to

search through a tree. Each node in the tree represents a set of matches

and the root node represents an empty set. Each other node is the union of

the matches in the parent node and one additional match. Wildcard is used

for features with no match, while nodes are “pruned” when the set of

matches is infeasible. Also, a pruned node has no children.

 Pose consistency. It is also called Alignment, since the object is being
aligned to the image. The correspondences between image features and
model features are not independent; there are geometric constraints. A
small number of correspondences yield the object position and the others
must be consistent with this. The general idea of pose consistency is that
we hypothesize a match between a sufficiently large group of image
features and a sufficiently large group of object features, and then we can
recover the missing camera parameters from this hypothesis (and so render
the rest of the object).
The strategy followed is that the hypothesis is generated using a small
number of correspondences (e.g. triples of points for 3D recognition) and
projects other model features into the image (backproject) and verifies
additional correspondences.

17

 Pose clustering. The general idea is that each object leads to many correct
sets of correspondences, each of which has (roughly) the same pose. Then
an accumulator array that represents pose space for each object is used for
pose voting. The main strategy is that for each object an accumulator array
is set up that represents pose space – each element in the accumulator
array corresponds to a “bucket” in pose space. Then each image frame
group is taken, and hypothesizes a correspondence between it and every
frame group on every object. For each of these correspondences, pose
parameters are determined and make an entry in the accumulator array for
the current object at the pose value.
If there are large numbers of votes in any object’s accumulator array, this
can be interpreted as evidence for the presence of that object at that pose.
The evidence can be checked using a verification method. It is noted that
this method uses sets of correspondences, rather than individual
correspondences.
This implementation is easier, since each set yields a small number of
possible object poses.

2.2 Video Tracking

Video tracking [8] is the process of locating a moving object (or multiple objects)
over time using a camera or a video stream. It has a variety of uses, some of
which are: human-computer interaction, security and surveillance, video
communication and compression, augmented reality, traffic control, medical
imaging and video editing. Video tracking can be a time-consuming process due to
the amount of data that is contained in video. Adding further to the complexity is
the possible need to use object recognition techniques for tracking.

The objective of video tracking is to associate target objects in consecutive video
frames. The association can be especially difficult when the objects are moving
fast relative to the frame rate. Another situation that increases the complexity of
the problem is when the tracked object changes orientation over time. For these
situations, video tracking systems usually employ a motion model which describes
how the image of the target might change for different possible motions of the
object.

18

Examples of simple motion models are:

 When tracking planar objects, the motion model is a 2D transformation (affine
transformation or homography) of an image of the object (e.g. the initial
frame).

 When the target is a rigid 3D object, the motion model defines its aspect
depending on its 3D position and orientation.

 For video compression, key frames are divided into macroblocks. The motion
model is a disruption of a key frame, where each macroblock is translated by a
motion vector given by the motion parameters.

 The image of deformable objects can be covered with a mesh; the motion of
the object is defined by the position of the nodes of the mesh.

To perform video tracking, an algorithm analyzes sequential video frames and
outputs the movement of targets between the frames. There are a variety of
algorithms, each having strengths and weaknesses. Considering the intended use
is important when choosing which algorithm to use. There are two major
components of a visual tracking system: target representation and localization, as
well as filtering and data association.

http://en.wikipedia.org/wiki/Video_frame

19

Chapter 3

Related Work

In [9] Park et al. present their work as a real time image processing technique
using modern programmable Graphic Processing Units (GPU). By utilizing NVIDIA’s
GPU programming framework as a computational resource, they realized
significant acceleration in image processing algorithm computations. They
showed that a range of computer vision algorithms map readily to CUDA with
significant performance gains. Specifically, they demonstrated the efficiency of
their approach by a parallelization and optimization of Canny’s edge detection
algorithm [4], and applying it to a computation and data-intensive video motion
tracking algorithm known as “Vector Coherence Mapping” (VCM). Their results
show the promise of using such common low-cost processors for intensive
computer vision tasks. They managed to achieve 3.15 times speed enhancement
with a 8600MGT card, and with a 8800GTS-512 showed 22.96 times performance
enhancement.

The authors in [10] and [11] deal with the problem of the Canny edge detection,
which is a basic step in image processing and one of the first steps performed by
many computer vision algorithms, in order to identify sharp discontinuities in an
image, such as changes in luminosity or in intensity due to changes in scene
structure. The authors in [10] proposed a new self-adapt threshold Canny edge
detector and also presented an FPGA implementation of their algorithm suitable
for mobile robotic systems. Their hardware implementation uses the Altera
Cyclone EP1C60240C8 and can perform the algorithm on a grey-scale image
360x280 in 2.5ms clocked at 27MHz. In [11] the authors present another
implementation of the Canny edge detector that takes advantage of 4-pixel
parallel computation, which increases the throughput of the design without
increasing the need for on-chip cache memories. They showed increased
throughputs for high resolution images and a computation time of 3.09ms for a
1.2Mpixel image on a Spartan-6 FPGA clocked at 200MHz.

20

Nikitakis, Papaioanou and Papaefstathiou [12] introduced a novel approach of an

object recognition system implementing in Hardware FPGA the robust algorithm

RFCH. Their main focus was to increase its performance so as to be able to handle

the object recognition task of today’s highly sophisticated embedded multimedia

systems while keeping its energy consumption at low levels. Their low-power

embedded system is at least 15 times faster than the software version on a low-

voltage high-end CPU, while consuming at least 60 times less energy.

Changjian Gao et al. [13] presented a novel approach to use FPGAs to accelerate

the Haar-classifier based face detection algorithm. With highly pipelined

microarchitecture and utilizing abundant parallel arithmetic units in the FPGA,

they have achieved real-time performance of face detection, having very high

detection rate and low false positives. Their approach is flexible toward the

resources available on the FPGA chip. This work also provides an understanding

toward using FPGA for implementing non-systolic based vision algorithm

acceleration. Our implementation is realized on a HiTech Global PCIe card that

contains a Xilinx XC5VLX110T FPGA chip. They have achieved a x72 speedup for

the Haar function and an overall application speedup of x20.

The authors in [14] present an FPGA-based system for detecting people from

video. The system is designed to use JPEG-compressed frames from a network

camera. Unlike previous approaches that use techniques such as background

subtraction and motion detection, they use a machine-learning-based approach

to train an accurate detector. They address the hardware design challenges

involved in implementing such a detector, along with JPEG decompression, on an

FPGA. They also present an algorithm that efficiently combines JPEG

decompression with the detection process. The system is demonstrated on an

automated video surveillance application and the performance of both hardware

and software implementations are analyzed. The results show that the system can

detect people accurately at a rate of about 2.5 frames per second on a Virtex-II

2V1000 using a MicroBlaze processor running at 75 MHz, communicating with

dedicated hardware over FSL links.

21

Chapter 4

The Receptive Field Co-occurrence Histogram (RFCH)

algorithm and the Tracking-Learning-Detecting (TLD)

algorithm

In this chapter we will look into the basic principles behind the RFCH and TLD
algorithms which make these particular applications so robust.

4.1 RFCH

4.1.1 Introduction

The authors of [5] came up with the present algorithm with one important
difference from any other related work. The histograms that are generated are
statistical representations of a handful of descriptor responses and the
combinations between them, not just Laplacian responses or just color intensity
as in [15].

A Receptive Field Cooccurrence Histogram (RFCH) is able to capture more than
other methods of the geometric properties of an object. Instead of just counting
the descriptor responses for each pixel, the histogram is built from pairs of
descriptor responses.
The pixel pairs are constrained based on their relative distance. This way, only
pixel pairs separated by less than a maximum distance, dmax, are considered.
Hence the histogram represents not only how common a certain descriptor
response is in the image, but also how common it is that certain combinations of
descriptor responses occur close to each other.

This leads to the conclusion that this application can preserve more geometrical
information since the representation of images through the receptive field
cooccurence histograms are more consistent to filter and color responses of

22

pixels (array points) that lie relatively close to each other.

4.1.2 RFCH functionality

From now on, any reference to the word «object» is a type of image as shown in
Figure 4.1 and by the word «scene» we mean an image as illustrated in Figure 4.2.
The objects are the images that are trained and are detected in the scenes. The
algorithm returns the coordinates of the object in the scene and a statistical
representation of the match between the object and the object in the scene.

Figure 4.1: The Image of a training object. The black background helps the application on
focusing only on the object itself.

23

Figure 4.2: The scene in which the application searches for the object that has been trained, in our case
the yellow and blue truck.

i) Image Descriptors

One of the benefits of this algorithm is that it takes advantage of many image
descriptors that an image can respond to. Some of these are the Laplacian, Gabor,
Color and Gradient Magnitude. In [5] it is shown that using a mixture of the
image descriptors is the optimal choice for object recognition and object
detection tasks.

ii) Image Quantization

The histograms used in object recognition algorithms are eligible to become huge,
thus increasing the computational complexity of their further analysis and the
general performance of the application. This depends on the multidimensional
nature of the receptive field histograms, and by using cooccurence histograms,
their size increases exponentially. For example, using 15 bins in a 6-dimensional
histogram 15⁶ bins (~ 10⁷) will be generated. And by using cooccurence
histograms, the bins generated are close to 10¹⁴.

To cope with this problem of exponential progression of the size of the histogram,
the input data (image features) must be clustered so the dimensions of the
histogram can be reduced. By choosing the number of clusters, we can control the
histogram size to our choice. In [5] the authors have chosen 80 clusters and that

24

resulted in constructing dense histograms, while the different bins generated
have high counts. The N cluster centers have a dimensionality equal to the
number of image descriptors used. The algorithm which reduces the dimension
uses the K-Means clustering algorithm [16] and after the quantization, each
object ends up with its own cluster scheme and the RFCH is calculated based on
the quantized training image.

In the detecting phase, when the program searches for an already trained object
in a scene, the image of the scene is quantized with the same cluster centers as
the cluster scheme of the object being searched for. Quantizing the search image
also has a positive effect on object detection performance. Pixels lying too far
from any cluster in the descriptor space are classified as the background and not
incorporated in the histogram. This is because each cluster center has a radius
that depends on the average distance to that cluster center. In this point a free
parameter is used (α), which denotes the size of the cluster-centers.

Figure 4.3: Clustering an Image (left) and the pixels that have survived the procedure (right)

The above processing step in Figure 4.3 shows exactly what is mentioned above
while searching for the Santa-cup in the whole scene. The image has been
quantized with the cluster scheme of the Santa-cup and the pixels that lie too far
away from their nearest cluster are ignored and have been set as a black
background [3].

25

iii) Histogram Matching

After the histogram construction of both object and scene, the algorithm tries to
find out in which level those two histograms match. This is done with a histogram
intersection with the below formula,

 μ(h1,h2) = ∑ [] []

where hi[n] denotes the frequency of receptive field combinations in bin n for
image i, quantized into N cluster centers. The higher the value of μ(h1,h2), the
better the match between the histograms. Before matching, the histograms are
normalized with the total number of pixel pairs.

Another method for testing histogram similarity is χ²;

 μ(h1,h2) = ∑
 [] []

 [] []

in this case the lower the value of μ(h1,h2), the better the match between object
and scene.
In [5] it is mentioned that using the latter way of histogram intersection drops the
performance in object detection tasks, while it boosts performance in object
recognition image databases.

iv) Detecting an object

After quantizing the image scene with the cluster scheme of the object that is to
be detected, the image is scanned using a small search window. The window is
shifted such that consecutive windows overlap to 50 % and the RFCH of the
window is compared with the object’s RFCH. This is the first step of the detecting
phase, while the second step uses only one search window with a size of the
whole scene and then returns the best match. The first step shows the
coordinates of the object in the image, while the second step returns the best
match.

26

The matching vote μ(hobject,hwindow) indicates the likelihood that the window
contains the object. Once the entire image has been searched through, a vote
matrix provides a hypothesis of the object’s location. In Figure 4.4 it is shown how
the vote matrix reveals a strong response of the yellow soda can’s real position. It
also has a slight response of the far left yellow raisin box because of the same
color responses of the two objects.

Figure 4.4: Example of searching for the yellow soda can and its relative response

v) Free parameters

The free parameters are in the discretion of the programmer to select the right
values for their use of the application and by experimenting on them getting the
best performance. These are:

 Number of cluster-centers, N. Too few cluster-centers reduce the
detection rate. We experimented with 80 cluster centers and 7 image
descriptors.

 Maximum pixel distance, dmax. Best performance is noticed when using a
range of 1 to 10. We experimented with different pixel distances but
settled to dmax=10.

 Size of cluster-centers, α. Pixels that lie outside of the cluster centers are
classified as background and not taken into account. We have selected
α=2.0 and ruled that it is optimal.

27

 Search window size. This is the serious drawback of the object detection
task because the optimal search window is unknown. We have used 165
search windows, which are boxes of 6400 pixels each.

28

GetImageFeatures

CalculateClusters

ClusterFeatures

CalculateRFCH

Store Object’s RFCH

FindObjectInImage

GetImageFeatures

ClusterFeatures

Sliding
Window
Finished?

NO

CalculateRFCH

MatchRFCHs

Store Best Match

Return Coordinates

YES

TRAINING1ST DETECTING
PROCESS

ClusterFeatures

CalculateRFCH

MatchRFCHs

Return Best Match

2nd DETECTING
PROCESS

GetImageFeatures

Features[]

Features[]
Features[]

ClusterPoints[]

 SqrRadius[]

BinnedImage[] BinnedImage[]
BinnedImage[]

RFCH[] RFCH[]

RFCH[]

MatchImage

Figure 4.5: Dataflow steps of the Software version of RFCH until the completion of the
detection

29

4.2 The TLD (Tracking-Learning-Detection) Algorithm

4.2.1 Introduction

The TLD algorithm was introduced by Zdenek Kalal et al. [17] which performs
accurate tracking in real time. As a software implementation reference, we used
the BPTLD [18] which has been the first published implementation of this scheme
in C++.
The present application is a video tracking algorithm and utilizes a video stream,
either from an existing video or a web camera. On the video stream, the user
draws a bounding box around the object that is to be detected and tracked, with
the help of the mouse interface. The projection of the video stream and the
interface events are assisted by the OpenCV library¹ [19].

In [17] the authors describe the present application as a long-term online tracking
method with minimum prior information. Long-term refers to sequences of
possibly infinite length that contain frame-cuts, fast camera movements and the
possibility the object may temporarily disappear from the scene or cause limited
shape changes. Online means that the tracking does not exploit information from
the future and processes the footage in one pass. Minimum prior information
indicates that the object is not known in advance and the only information about
it comes from the first frame, where it was selected by the user.

4.2.2 TLD functionality

i) Features

The object detector of the TLD is based on features called 2bit Binary Patterns
(2bitBP) and they measure gradient orientation within a certain area, quantize it
and output 2² different processing codes. The certain area that is quantized is a
pixel area of the frame and is called a patch. Each Image patch is described by a
number of local 2bitBP which position, scale and aspect ratio are generated at

¹ OpenCV (Open Source Computer Vision Library) is a library of programming functions mainly aimed at real-time
computer vision, developed by Intel, and now supported by Willow Garage and Itseez.

http://en.wikipedia.org/wiki/Library_%28computing%29
http://en.wikipedia.org/wiki/Computer_vision
http://en.wikipedia.org/wiki/Intel_Corporation
http://en.wikipedia.org/wiki/Willow_Garage

30

random and these features are arbitrarily partitioned into several groups of the
same size.
Each group represents a different view of the patch appearance and the response
of each group is represented by a discrete vector that is called a branch.
The branch belongs to a randomized forest which is utilized as a classifier for the
detection task.

ii) Randomized Forests

The randomized forest approach, which yields high classification accuracy, is
based on an ensemble of trees which can vote for the most popular object. In
order to create these ensembles, the above-mentioned random vectors govern
the growth of each tree in the ensemble. The random forests consist of a
combination of tree predictors such that each tree depends on the values of a
random vector sampled independently while the same distribution is applied for
all the trees in the forest.

A random forest classifier utilizes several decision trees and each decision tree is
passed through on a number of features. The leaf-nodes of each tree specify the
probability of an object match and the probabilities from all trees are averaged to
yield a final probability. All decision trees sample the same Integral image, which
is a digital representation of an actual image. The Integral Image is often seen in
computer vision applications as Viola and Jones in [20] showed that by applying a
large number of simple rectangular filters in an image, a robust description of the
Image (Integral Image) is built based on the features that describe it. These
rectangular features provide a very good representation of the Image and cope
very well with training tasks.

31

Chapter 5

Assessing the Applications

5.1 Introduction

In [21] an optimal procedure is introduced for porting programs to an NVidia GPU
via CUDA, which we tried to follow as much as possible. This is done by the steps
of assessing, parallelizing and optimizing the CUDA code written.
For an existing project, in our case RFCH and BPTLD, the first step is to assess the
application and to locate the parts of the code that are responsible for the bulk of
the execution time. Armed with this knowledge, we could evaluate these
bottlenecks for parallelization and start to investigate GPU acceleration.
Many codes accomplish a significant portion of the work with a relatively small
amount of code. Using a profiler, the developer can identify such hotspots and
start to compile a list of candidates for parallelization. We used the Intel VTune
Amplifier XE and a Intel® Core™2 Duo Processor @1.83GHz for a profiling analysis
on both RFCH and BPTLD.

5.2 RFCH

We are going to show the most important functions of the RFCH application and
then the hotspots identified.

5.2.1 RFCH main functions

GetImageFeatures(). After a real image is processed so the machine can interact
with it, the image is passed to the present function and returns the array
Features[] which represents the desired combination of feature descriptors.

CalculateClusters(). This function takes as input the Features[] array and
calculates the cluster scheme of an object to be detected. Two arrays are
produced that carry the information of the scheme, the ClusterPoint[] and

32

SqrRadius[].

ClusterFeatures(). Using as input the Features[] array and the two arrays
calculated at CalculateClusters, a quantized version of the image that the
Features[] represents is generated. This could be an object or a whole scene and
the output of this function is the binnedImage[] array.

CalculateRFCH(). This function creates a normalized receptive field cooccurence
histogram of either an object or scene that is quantized with a cluster scheme of
an object. Its input is the binnedImage[] array and it returns the histogram
RFCH[], which is an array of 6400 elements.

MatchRFCHs(). The histogram intersection is performed here and takes as input
two histograms, one of the object that is to be detected and another of the
histogram of the scene. A floating variable is returned that presents the best
match.

FindObjectInImage().This function scans a scene with a sliding window, calculating
the RFCH of the window and then compares it with the object's RFCH. When the
whole image is scanned, it returns the best match along with the coordinates of
the object that had the best match.

5.2.2 Identifying Hotspots

With the help of the Intel VTune Amplifier XE, three functions were identified as
the major hotspots of the algorithm, taking over the execution time of the
application as much as 97.8%. These are the CalculateClusters(), ClusterFeatures()
and CalculateRFCH(). They are selected to be implemented on hardware NVidia
GPUs via CUDA. All other functions will be running on software, such are the
GetImageFeatures() and MatchRFCHs().

The next step is to figure out the computational complexity of each function and
the reasons the algorithms behind each function are drawbacks for better
performance in the software version. These reasons will be the base of our
parallelization strategy.

33

 CalculateClusters:
The computational complexity of this function is O(nfNT), where n is the
number of samples, f the number of features, N the number of clusters and
T the number of iterations until all clusters have been fully updated.
CalculateClusters works in an iterative manner of the K-Means algorithm in
a while-loop. Inside the while-loop there is a for-loop that generates
307,200 iterations (the total number of pixels), while other smaller nested
loops inside the big for-loop exist and execute code. In addition to the
above, the algorithm contains many if-conditions making it even more
heavyweight. After the 307,200 iterations an update occurs to the
ClusterPoint[] array and the while-loop performs one more iteration. Based
on our experiments the average iterations of the while-loop are 70.
All of the above makes this training function the most time consuming in
the RFCH application.

 ClusterFeatures:
The computational complexity of this function is O(nfN), where n is the
number of samples, f the number of features and N the number of clusters.
This algorithm quantizes the image and starts with a for-loop of 640
iterations that is nested inside a for-loop of 480 iterations. These two loops
generate 307,200 iterations while other nested for-loops of size 80 and 7
can produce 172,032,000 iterations of specific calculations, if-conditions
and memory accessing.

 CalculateRFCH:
The complexity of this function is O(nd²), where n is the image input size
and d is the maximum distance set between pixels.
There are two different inputs for this function depending on the phase of
the algorithm. One uses all of the pixels of an image or object, meaning
307.200 iterations for starters, and the second one takes as input the
sliding window which is set to 6400 pixels, leaving us with 6400 iterations.

34

In addition to the iterations, CalculateRFCH performs a while-loop that can
reach up to 221 iterations with many if-conditions.

Taking the above into account, our goal for the CUDA ports to a GPU is mainly
to parallelize the 307,200 iterations generated by the algorithms, with each
thread performing the work of each iteration. Except for the CalculateRFCH in
the first phase of the detection process, where we have to parallelize 6400
iterations.

5.3 TLD

We will show the results of the profiler applied on the TLD and the reasons of
the execution bulk.

5.3.1 Identifying Hotspots

Running the BPTLD algorithm on the Intel VTune Amplifier XE we could
evaluate the hotspots and be directed on how the TLD could be boosted
performance-wise.
It showed that a particular function, the sumRect(), occupies more than 50% of
the execution time. SumRect() is part of the detection process of the
application, while the whole detecting task occupies 90% of the overall
execution.
SumRect() itself is a very simple function; it is basically an Integral Image
computation. Four different integers access four different values of the
Integral Image array and then the integers are added up. The result of this
operation is returned to the detection task.
While sumRect() has no large complexity, the fact that is called by the detector
many times makes this function the application’s major hotspot. For each
frame it is called about 1,863,680 times by the Detect() method of the C++
Detector class of the BPTLD. SumRect() computes values and is called four
times in the heart of five nested for-loops, the first one generating 5 loops, the
second and the third could generate 30 to 32 iterations each depending on the
width and height of the Integral Image. The fourth loop creates 13 iterations

35

and the last one generates 7 iterations. 13 and 7 are the number of total ferns
and total nodes of the classification tree respectively.
Having identified the problem and understanding the above, we have selected
to parallelize the Detect() method with an immediate minimization of the
utilization of sumRect() by the CPU. Our strategy is based on parallelizing the
two larger loops, which together can create a maximum of 32x32 = 1024
iterations. Following the RFCH assessing methodology our goal is to create
1024 threads and modify any needed changes in the original C++ code so each
thread replaces an iteration, and to parallelize the detecting task to an
efficient level of performance acceleration.

36

Chapter 6

Parallel Implementation of the two Algorithms

6.1 Introduction to System Architecture

For the better comprehension of this part of the thesis, we will try to explain
some technical terms and to introduce the reader to basic CUDA characteristics.
When we refer to the word «module», we mean a function of our application
which contains both CPU (Host) and GPU utilities.
Initializing arrays and a general use of the CPU thread was needed and we tried to
occupy it as little as possible.

As for the GPU, utilities could be CUDA APIs that perform instructions on GPU and
Host memory; such are memory allocations and deallocations, memory copies
and initializing arrays that reside on the GPU.

Our modules are responsible for the preparation and the call of a kernel. A kernel
is considered a part of the module and it is a function executed by the GPU. The
module guides the kernel by setting its grid dimension and the right of accessing
specific variables stored in the Global Memory of the GPU.
The grid dimension are the boundaries of what a kernel can use in terms of
resources of the GPU, as are the number of blocks and the number of threads
containing each block.
It is called by the Host as:
kernel<<<threads_per_block, blocks_per_grid>>>(arguments).

The threads_per_block and blocks_per_grid are of type dim3. This type is an
integer vector type that is used to specify dimensions. When defining a variable of
type dim3, any component left unspecified is initialized to 1.
Each distinct thread and block has an ID number and they can range up to
three dimensions (X, Y, Z). We experimented with both one-dimension and
two-dimension blocks and threads.

37

The CUDA API provides built-in variables only to be accessed by the kernel that
store the index of the blocks and threads and also the block and grid dimensions.
For the threads, these variables are the threadIdx.x, the threadIdx.y and the
threadIdx.z, depending on the dimensionality of the threads. If the threads are
one-dimensional, threadIdx.y and threadIdx.z are set to 1. If the threads are two-
dimensional, only threadIdx.z is set to 1.
These variables show the position of the threads in a thread block.
The threadIdx.z cannot exceed 64, while the first two dimensions have a
maximum of 512 threads per thread block or 1024 per thread block depending on
the compute capability of the GPU. 512 threads is the maximum for cards with
compute capability of 1.3 and 1024 threads is the maximum for compute
capability 2.x GPUs.
The blocks have indexing IDs that range up to 65535 for the first two dimensions
of compute capability 1.x, while all dimensions of cards with compute capability
2.x enjoy IDs that range up to 65535. The variables that characterize the IDs are
the blockIdx.x, the blockIdx.y and the blockIdx.z. Each block dimension contains
the threads that have IDs referenced to the same dimension.
The blockdim.x variable has a constant value, which is the number of threads that
have been set to that dimension by the CPU. The same is enforced to the rest of
the two dimensions.
The grid is defined by its own variables, the gridDim.x and the gridDim.y. For cards
of compute capability 2.x one more dimension is added with the variable
gridDim.z.

As we have mentioned, threadIdx is the index number of a thread in a certain
block. This is very useful for the kernel code as the developer can handle threads
and guide them. But most of the times the kernel needs the global ID of a thread,
meaning the ID number that is associated with the thread in the whole grid.
The global index of a one-dimensional thread can be computed as
tidx = blockIdx.x * blockDim.x + threadIdx.x, marking it with its own ID in the block
and in which block of the grid it exists.
In the same way the thread index of a two-dimensional thread will be assigned as:
tidx = blockIdx.x * blockDim.x + threadIdx.x
tidy = blockIdx.y * blockDim.y + threadIdx.y

38

A very important fact of CUDA computing is the organization of threads in groups

of 32 called warps. This division is done by the multiprocessors. Calculations and

accessing memory are the main utilities of the threads. These calculations and

memory accesses are all done by the warps in clock cycles. The warp scheduler

unleashes a warp for an execution and when a warp has finished its work, the

warp scheduler will let the next batch of 32 threads perform its work. Needed

clock cycles differ for each instruction; two clock cycles are needed to issue

Global Memory instruction.

This is the true nature of the GPU, that not all threads run in parallel. What is

really running in parallel are the multiprocessors with their cores and a few

threads every time in clock cycles.

It is always a better practice to set the total number of threads in the grid to a

multiple of 32. In this way a multiprocessor will use as much of its resources it can

and keeping it busy by doing maximum work in each clock cycle. Most

importantly, warp divergence will be avoided, a phenomenon we will analyze in

the next paragraph. We have managed to keep all of our threads in the RFCH GPU

implementation to a multiple of 32 and noticed some performance increase. For

the BPTLD GPU implementation a multiple of 32 could not always be selected,

since the grid dimension changes due to other parameters.

Although scheduling threads in groups has its advantages, when if-else

statements or similar conditions are needed for the kernel execution, it is very

likely that warps will be divided and branched. Then, threads in a warp will take

different directions of execution, which is called warp divergence. This is an

inevitable loss in performance.

For example:

 if(tidx<10)

 do A

 else

 do B

39

The above code divides the warp into two different paths, and the code below

 if(tidx<32)

 do A

 else

 do B

will allow all the threads in the first warp of the kernel to follow its own path,

while the next warps will take different paths but they won’t be diverged. The

above will definitely perform better.

6.2 RFCH Parallel Implementation

6.2.1 CalculateClusters Module

This module is applied only in the training process of the RFCH algorithm and

calculates the needed cluster points and square radius characteristics of the

object that is about to be detected.

Both cluster points and square radius characteristics derive from the Feature[]

array, stored in the Global Memory via a function made just for that reason, the

cuda_storeFeature.

It transforms this two-dimensional array into one-dimension and then by using

the CUDA API cudaMemcpyToSymbol it’s copied to the GPU as shown in Figure

6.1.

This function will copy a number of elements of an array that resides in RAM to an

existing array that resides in Global Memory or Constant Memory. These GPU

arrays are defined as:

 __device__ (__constant__) data_type name_of_array[size_of_array].

In our case the array is defined as

 __device__ unsigned char dev_feature[2150400].

With this syntax, the nvcc compiler will identify the variable as a device variable

40

and allocate memory for it with the size depending on the data_type and

size_of_array.

The function cuda_storeFeature and the fact that Features[] is stored in the

Global Memory so it can be accessed any time by any module, is tremendously

useful for our application and for later calculations.

HOST

GPU

GPU

GLOBAL

MEMORY

FEATURE

ARRAY

Figure 6.1: the cuda_storeFeature function

Our kernel takes as input the clusterPoint array, which is initialized by the Host,

and by accessing the Feature[] array via threads, it calculates two intermediate

arrays that will update the cluster points on the Host.

This is done in an iterative manner. Once the clusters have been updated on Host,

the kernel will be called again and again with input the updated clusters. The two

intermediate arrays will be updated in the kernel and copied back to the Host,

which will update the clusters one more time. This process will be done until all

clusters have been fully updated.

When the cluster points are fully updated, the squareRadius array is generated

using one of the intermediate arrays.

Then both clusterPoint and squareRadius are stored in the Constant Memory of

the GPU by calling the appropriate CUDA API cudaMemcpyToSymbol.

This time our arrays are defined as Constant Memory variables as:

41

__constant__ unsigned char dev_clusterPointx[560] and

__constant__ float dev_sqrRadiusx[80], where x the ID of the object to be

detected.

The architecture of our grid in the NVidia GTX 285 is one-dimensional with the

number of blocks being 600 and the maximum threads the card can offer for each

block, 512. This creates a grid of 600*512 = 307,200 active threads.

For the NVidia GTX 580 we used 300 blocks and the maximum threads per block

the card offers which is 1024. The grid and the architecture of our module are

shown in Figure 6.2.

The arguments passed to the kernel from the Host is the clusterPoint[] array, the

two intermediate arrays, and xsize and ysize. The xsize is an integer variable with

a value of 640, while ysize is an integer variable with a value of 480. They

represent the X-axis and Y-axis of the image and their combination is a pixel pair.

Both grids will generate 307,200 active threads, exactly the amount of iterations

we wanted to parallelize. This number represents the 640x480 dimension of our

images.

42

Figure 6.2: High level architecture of CalculateClusters module. X depends on the GPU we are

running the module, 599 for the GTX 285 and 299 for GTX 580.

Loop unrolling was very important in this module, since the present algorithm
utilizes important unparalleled loops.

An example from our code is shown below.

#pragma unroll 80

for (i = 0; i < 80; i++)

 {

 dist = 0;

#pragma unroll 7

 for (f = 0; f < 7; f++)

 {

 dist += (float) ((dev_feature1[f * 307200 + tidx] -

dev_clusterPoint[f * 80 + i]) * (dev_feature1[f * 307200 +

tidx] - dev_clusterPoint[f * 80 + i]));

 }
 }

43

By using the nvcc compiler optimization directive #pragma unroll N, where N is

the number of iterations the for-loop will iterate, the compiler tries to parallelize

the loops as much as possible, and therefore gain performance.

Below we can see the thread divergence that occurs in our kernel.

 for (f = 0; f < 7; f++)

 {

 if (dev_feature[f * 307200 + tidx] != 0)

 {

 ok = true;

 }

 }

The threads (tidx) will diverge in this if-statement, thus dividing the warps that

they belong in, and threads in the same warp will execute different instructions.

For this example, the values of the Feature[] array that are not equal with zero

are very few compared to the whole array. Keeping in mind that this is a training

procedure for an object with a black background, the 0 value represents a black

colored pixel. Actually, most threads won’t do any work in this kernel from this

step and beyond since the object takes over a small part of the whole image.

But we had to launch the kernel anyway with all the necessary threads to access

the Features[] array, since we don’t know in advance which indices of the array

are greater than zero.

6.2.2 ClusterFeatures Module

This part of the RFCH algorithm is used both in the training and the detecting part
of the application. For the training procedure, it quantizes the object we want to

44

match with the whole scene and in the detecting process it quantizes that scene
with a respective cluster scheme.

Our goal in this CUDA module was to parallelize two nested for-loops, the first
one generating 480 iterations with the second one executing 640 iterations of
each iteration of the first loop.
To achieve this, we decided to take advantage of the two-dimensional blocks and
threads that CUDA and the GPU offer with each dimension replacing a for-loop.

In the NVidia GTX 285 graphics card, we set the first dimension to 40 blocks and
16 threads in each block, while the second dimension has 30 blocks of 16 threads
each. The indexing IDs of the blocks range from (0, 0) to (39, 29) and the 256
threads containing a block have indexing IDs ranging from (0, 0) to (15, 15).

All these values are combined to construct 2-D blocks and 2-D threads.
The number of 2-D blocks is generated by the multiplication of the number of
blocks in each dimension. The above grid for example contains 40*30=1200
blocks.
The total amount of 2-D threads in a 2-D block is the product of the multiplication
of the amount of threads containing each 1-D block. In our example this number
is 16*16 = 256.
The total amount of threads that we can take advantage of for the whole grid is
the total amount of threads in a 2-D block, multiplied by the number of the 2-D
blocks, 256*1200 = 307,200, which is exactly the amount of iterations we want to
parallelize.

For the NVidia GTX 580 we also used two-dimension threading and the maximum
threads per block the card offers.
The first dimension has 20 blocks with 32 threads in each block producing 640
threads and the second dimension has 15 blocks with 32 threads each producing
480 threads, thus creating a computational grid of 300 active blocks with 32x32 =
1024 threads per block.
The indexing IDs of the blocks range from (0, 0) to (19, 14) and the 1024 threads
containing a block have indexing IDs ranging from (0, 0) to (31, 31).

45

The arguments passed from the Host to the kernel are the fid, xsize and ysize.
The fid is an integer, which represents the ID of the object we are processing at
the time and the kernel will understand which cluster scheme it will use for its
computations.

The ClusterFeatures module produces the array binnedImage[], which has a size
of 307,200 integers and represents a quantized version of the 640 pixels x 480
pixels of each image or object.
The production of the array is done by using the Feature[] array of the object or
scene given- depending on which phase of the application ClusterFeatures is in -
and the ClusterPoint and SquareRadius arrays of an object that have been created
by the CalculateClusters module.

The Feature[] array resides in the non-cached off-chip Global Memory of the GPU
after we transferred it to the Device as shown in Figure 6.1. If the application is in
the training phase, cuda_storeFeature has already been called and the Feature[]
array of an object is stored.
In the detecting phase it is called right before ClusterFeatures and stores the
Feature[] array of the image.
The ClusterPoint and SquareRadius arrays reside in the faster cached off-chip
Constant Memory.

The reason we decided to store the ClusterPoint and SquareRadius arrays in the
Constant Memory is that both meet the restrictions and requirements of that
memory.
The crucial factor of the Constant Memory is its limited size, only 64 KB.
Also, variables and arrays residing in Constant Memory have read-only
permissions.
The size of ClusterPoint is 560 bytes and SquareRadius has a size of 80 float
variables, which means that in memory are stored 80 x 8 = 640 bytes.
Concluding, a total of 1200 bytes are needed for each object and we can store in
the Constant Memory 64000 bytes/1200 bytes = 53 objects.
This is a theoretical result because in practice Constant Memory is used by CUDA
to store arguments for the kernel.
The latter arrays are needed only to extract the information they carry and not to
store new ones, meeting the restriction of read-only permission.
The same restriction is also met by the Feature[] array but its size is 2.15 MB,

46

which exceeds the 64 KB boundary limit of the Constant Memory.

The binnedImage[] array is later needed by the function CalculateRFCH, and since
we have ported to CUDA only the versions of CalculateRFCH that execute the
detecting phases, the binnedImage[] must be copied to the Host memory when
the application is in training mode.
Figure 6.3 shows exactly that and how the needed arrays interact with the
computational grid.
In Figure 6.4 is shown how the binnedImage[] just resides in the Global Memory
of the Graphics card after calculations, waiting for the CUDA version of
CalculateRFCH to access it when the application is in detecting mode.
This means that the module in the latter case is basically only a kernel call,
since we have eliminated any other GPU API and CPU execution.

Figure 6.3: ClusterFeatures training phase GPU implementation

47

Figure 6.4: ClusterFeatures detecting phase GPU implementation

In this kernel we also used the directive #pragma unroll for loops that had to be
optimized.
For example in this kernel code segment :

#pragma unroll 80

for (i = 0; i < 80; i++)

 {

 dist = 0;

#pragma unroll 7

 for (f = 0; f < 7; f++)

 {

 dist += (float) ((dev_feature1[f * 307200 + (xsize *

tidy + tidx)] - dev_clusterPoint[f * 80 + i]) * (dev_feature1[f

* 307200 + (xsize * tidy + tidx)] - dev_clusterPoint[f * 80 +

i]));

48

 }

 }

This piece of code is the same with the CalculateClusters mentioned in the
previous model, with the difference that the Feature[] array is accessed by two-
dimensional threads, characterized by tidx and tidy for each thread.

Also, warp divergence is noticed in the kernel of ClusterFeatures via the below
code:

 for (f = 0; f < 7; f++)

 {

 if (dev_feature[f * 307200 + (xsize * tidy + tidx)] != 0)

 {

 ok = true;

 }

 }

As we can see, the two-dimensional threads that access the Features[] array are

branched, which leads to warp divergence.

For the training phase of the ClusterFeatures most values of Features[] are equal

to zero in the same way as in CalculateClusters. But all threads that access the

Features[] array are needed since we don’t know its values in advance.

For the detecting phase, the values of the Features[] array are mostly different

than zero, because it is an interpretation of a scene image. The values that are

different from zero exceed 83% of the total values in the examples that we used.

In this case, most of the threads perform maximum work keeping the

multiprocessors fully occupied.

6.2.3 CalculateRFCH Module

CalculateRFCH calculates the Receptive Field’s Co-occurrence Histogram and uses
as input the binnedImage[] array which resides in the Global Memory of the GPU.

49

This part of the application was the least time-consuming compared to the
previous functions, but the nature of its algorithm is challenging for a CUDA port,
due to its many divergent branches and the calculation of a histogram.

The CalculateRFCH is used in both detecting phases, slightly altered, with the
main algorithm being the same.
In the first phase it analyzes small windows of the quantized image
(binnedImage), different every time, repeatedly until the RFCH application can
find the object in the image.
In the second phase it analyzes the whole binnedImage[], creates the co-
occurrence histogram of the image and compares it with the histogram of an
object via histogram intersection to get the best match.

In the first phase of the detection our objective was to parallelize two nested for-
loops, each one generating 80 iterations, a total of 6400 iterations, and in the
second phase the two nested for-loops generate 640x480 = 307,200 iterations
which had to be parallelized.
For that reason we used two-dimension threading but the selection of the
computational grid for each card differs this time because of the crucial factors of
the compute capability and processing schedule of each card, in addition to the
nature of our kernel.

In the NVidia GTX 580, each dimension has been selected to have 20 blocks with 4
threads per block. Overall, our grid consists of 400 active blocks with 16 threads
per block, producing 6400 active threads, each thread representing an iteration of
the combination of the two for-loops.
Likewise, for the Matching Image algorithm, we used two-dimension blocks and
threads but with a different grid so as to parallelize 307,200 iterations. We used
16 threads per block, 4 threads in each block of a dimension, the first dimension
consisting of 160 blocks and the second dimension 120 blocks, a total of 19200
blocks.

For the NVidia GTX 285 and for the first phase of the detection, we set our grid to
25 blocks with 256 threads each, each dimension containing 5 blocks of 16
threads.
For the second phase of the detection and for the same graphics card, we also

50

used 256 threads per block but since the two nested loops that ought to be
parallelized generated 307,200 iterations, we used 307200/256 = 1200 blocks.

The kernel’s arguments are the xsize, ysize and the limits of the sliding window.
These limits change every time the CalculateRFCH is called in the first detection
stage, while in the second phase these limits will produce one sliding window with
a size of 307,200.

The final result of CalculateRFCH is a normalized histogram and it derives from an
original pre-histogram and the variable pixels, which represents the total number
of bins calculated. Pixels is calculated by using an array that resides in the shared
memory of each block in a way that each thread of a block (whose ID is an index
of the array) counts how many times it has generated a bin for the pre-histogram.
Using a parallel reduction technique for all the arrays in each shared memory of a
block, we can count how many bins have been generated for the pre-histogram,
and this is the total number of pixel pairs.

Parallel reduction is a method for summing values in an array. Starting with the
whole array and using half of the threads that can access it, each thread sums two
values, one value that the thread can access respectively to its ID and array index,
and one value which has the array index of the thread ID plus half of the size of
the array as shown in Figure 6.5.
By dividing by 2 the quantity of threads used and the size of the array repetitively
until only one thread is used (with ID 0) and two elements of the array, we have
stored the summation result in the index 0 of the array.
Every step above is utilized almost simultaneously in each shared memory of a
block and since shared memory accesses are very fast because they are on-chip
memories, we get very good results performance-wise.

51

Figure 6.5: A parallel reduction example

Except for the variable pixels, our kernel stores in a large array all the bins that
have been generated, and this will be the main source for the calculation of the
pre-histogram.

Residing the array in the Global Memory of the GPU, a sample CUDA code is
called, which is found in the NVidia forum [22] and it is a fully optimized
Histogram Generator. By running this CUDA code on the GPU, we could extract
the pre-histogram.

Histogramming procedure in computer science is the method of constructing an
array depending on an input array. This is done by counting how many times a
certain value has appeared in the latter array. This value will be the index of the
new array and its respective value will be the times it has appeared.
Because this is a difficult procedure to parallelize and also since it is used in many
applications, we used the above sample code which can vary to the size of the
histogram (number of bins) and the size of the original array.
In our case and in the second phase of the detection, the input array calculated

52

from our kernel had a size of approximately 68,000,000 integers with values
ranging from 0 to 6399.

Concluding our results, dividing each value of the histogram with the variable
pixels, we finally compute the normalized histogram RFCH.

We could not avoid warp divergence in this module, too. The code below proves
it.

 if (dev_binIm[tidx + tidy * imxsize] >= 0)

 {

 ...
 }

This code line is executed in the beginning of the kernel and allows the threads
that access the quantized image and extract a non-negative value, to continue
with the instructions that lead to the kernel’s results.
This is an obvious warp divergence.

For the first detection phase that utilizes the sliding window, 6400 values of the
array are checked every time, while in the second phase 307,200 values are
checked. In the software version both training phase and the second detecting
phase access the whole binnedImage[] of 307,200 values. In the training phase
the if-statement allows a small number of iterations to proceed, which makes it
relatively fast. But the number of iterations that will proceed are unknown, so a
CUDA port of this phase would have to be implemented with 307,200 threads.
In this case CPU time is faster than the GPU implementation.

53

Figure 6.6: High level architecture of CalculateRFCH.
X and Y are the max indexes of a block dimension and vary in each situation depending on the
GPU and the phase of the algorithm.

6.3 BPTLD Parallel Implementation

As mentioned in the previous chapter, the selected part of the BPTLD that we

decided to port to an NVidia GPU is the Detect() method of the application. The

rest of the algorithm will be executed by the Host CPU.

This leads to a new function, which is a version of the original Detect() method,

the Detector module.

54

6.3.1 Detector Module

This module is basically a function containing CUDA APIs, which allows the Global

memory of the GPU and the memory of the CPU to interact with each other. Also,

it contains the preparation and the call of the kernel.

As input for our kernel we used the arrays:

 ferns_nodes_feature_xp

 ferns_nodes_feature_yp

 ferns_nodes_feature_wp

 ferns_nodes_feature_hp

 ferns_posteriors

They are all two-dimensional and have a size of 91 float variables, except for the

latter array with 212,992 float variables. One of the actions of the CPU thread is

to initialize these arrays only the first time the module is called, hence the first

detection, except for ferns_posteriors which is updated every time the module is

called. To calculate the values of these arrays, the application calls the Classifier

Class.

Since the CPU would have a considerable amount of work of memory copying the

above arrays to the GPU, we decided to use asynchronous memory copy. These

CUDA APIs won’t block the CPU thread as other default APIs would, the Host

stream will keep processing the work we have assigned it to do without stalling,

and the result is an obvious performance gain.

One more array that was essential for our kernel was the planar_data which we

had to retrieve from the IntegralImage Class, which is the image frame’s digital

representation. Without it we could not have used the function sumRect, which is

the cornerstone of the detecting process because of its most important

computational results and the busiest function of the TLD. The array has a size of

55

1,237,776 integers, and due to its considerable size, we decided to try the zero

copy memory optimization in which we succeeded with noticeable performance.

Zero copy enables GPU threads to directly access Host memory.

Asynchronous memory copies and the zero copy method require mapped pinned

memory from the arrays that reside at the Host side of the module. A page-

locked or pinned memory transfer attains the highest bandwidth between the

host and the device, and is allocated using the cudaHostAlloc() function in the

Runtime API. It basically allocates Host variables in a page-locked fragment of the

RAM.

Pinned memory is physical RAM that is set aside and not allowed to be paged out

by the OS. So once pinned, that amount of memory becomes unavailable to other

Host processes, and the Device can fetch it without help from the CPU using DMA

(direct memory access). Without DMA, when the CPU performs I/O, it is typically

fully occupied for the entire duration of the read or write operation, and is thus

unavailable to perform other work.

Not-locked memory can generate a page fault on access, and it is stored not only

in memory, so the Driver needs to access every page of non-locked memory, copy

it into a pinned buffer and pass it to DMA. This is a typical slow synchronous page-

by-page copy.

The Detector module receives as input from the application the tbb, which is an

array of 5 double precision values. We store it in the cached Constant Memory of

the GPU and it is used to check if and how the bounding boxes overlap by using a

device function accessed only by active threads.

After setting the dimensions of the computational grid using the NVidia GTX 285

compute capability 1.3, the kernel is ready to launch with two-dimensional 64

blocks and two-dimensional 16 threads in each block activating a total of 1024

threads. 1024 is the maximum number of iterations we might need to parallelize

depending on the width and height of the integral Image.

56

The module must return back to the application a C++ two-dimensional type of

vector, the bbs, which CUDA cannot support. So we had to calculate the elements

of the vector through our kernel and push them into the bbs using standard

vector functions at Host.

Each value of the vector contains an array of six values, the bb, and these arrays

are calculated in the kernel and copied back to the Host. Every time a kernel

execution has finished its work, the module updates the bbs vector.

The kernel outputs have as a base of their calculation the results of the sumRect

function, which we implemented as an exclusive device function only to be run by

the threads of the GPU. In figure 6.7 we can see the illustration of the Detect

module GPU implementation on the GTX 285.

BLOC
K (0,7)

BLOCK
(1,7)

BLOCK
(7,7)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

……

GPU
GRID

HOST

……

Pinned
memory

Non-Pinned
memory

bb arrays

secondary parameters

GLOBAL
GPU

MEMORY
GTX 285

BLOCK
(7,0)

BLOCK
(0,0)

BLOCK
(1,0) ……

.

.

.

.

.

BLOCK
(7,7)

BLOCK
(0,7)

BLOCK
(1,7)

cudaMemcpy()

zero_copy()

write back

……

Integral
Image array Leaf Posterior matrix

Figure 6.7: High level architecture of the Detector Module

57

6.4 Difficulties Experienced

During the experimental part of this thesis we dealt with many drawbacks, both

technical and theoretical. The CUDA platform was something new for us with its

own computing philosophy, different from anything we had met before. We had

to get used to not only parallel computing, which has its own mentality, but also

to all the new APIs that CUDA offers, and to the code that the GPU can

understand and compile. This process took us a respectable amount of time and

effort, starting with simple examples and gradually gaining experience to achieve

an efficient implementation of our modules.

We believe that every software application contains an inherent parallelism that

is waiting for a CUDA developer to extract. But even an experienced developer

might not be able to overcome the software time of an application because of its

deep serial nature, or achieve a very small speedup that is not worth trying for.

And even if a well-designed parallelization has been drawn, the hardware has

limits on its resources. This is the job of a hardware engineer, to smoothly tie

together the limits and the power of the hardware as well as the designed

parallelism of the application. Of course, this job demands many experiments and

a lot of time, especially if it is a new studied technology.

For the completion of this thesis, we had to learn a great deal about how Linux

libraries work and how they are linked to each other for compiling and running

programs. Using Linux is the easiest way to experiment with CUDA, CUDA-enabled

GPUs, as well as using OpenCV for the TLD implementation. Since we do not own

a personal computer with a CUDA- enabled NVidia GPU, we had to use servers

that belong to the Technical University of Crete and contain NVidia GPUs with a

CUDA framework. These servers are Linux installed machines and give a user the

opportunity to connect to them via the ssh protocol. These servers were the

“iraklis” with an NVidia GTX 285 and the “pc16” with an NVidia GTX 580.

The “pc16” has a very good GPU, whereas the rest of the machine, especially the

motherboard, cannot cope with its capabilities. We had many difficulties with it

58

because of its sporadically crashing while running the RFCH modules at their most

difficult computations. With the help of the Laboratory staff that administrates

the server, we could finally extract the results we wanted.

The TLD could only be run on the “iraklis” server, which is a more stable machine

than the «pc16». We experienced problems with the OpenCV library. Although

OpenCV was installed to “iraklis” it was under root privilege, meaning that only an

administrator could use it. As a simple user, we had to compile and install OpenCV

at the hard disk fragment of “iraklis”, which was given to us for our uses. After

that we had to link the TLD application to the OpenCV library that was installed in

our space of the server. Only then could the TLD be run successfully by “iraklis”.

For the installation of OpenCV and the projection of the video sequence from the

TLD, we had to connect to the server with ssh –X. This command option enables

the user to utilize the graphics interface of the server.

We feel that we have learned many useful utilities around Linux and Linux

servers, but until we could finally run our applications it took us a lot of time and

effort to deeply understand Linux Operating Systems. Finally, we overcame the

difficulties and we are contented with the result.

59

Chapter 7

Performance and Evaluation of the Parallel Implemented

Algorithms

7.1 Introduction

In this chapter we will show our results through the implemented RFCH and TLD

modules and try to analyze them.

We used very accurate timers written in C that NVidia uses for its CUDA samples.

CUDA programs can be very fast, so each millisecond and even microsecond

counts for comparing performance; no standard C or C++ timers are that

accurate. CUDA offers timers itself, but we noticed a slight aggravation in our

performance as they are not lightweight APIs and we preferred not to use them.

We also used the NVidia Visual Profiler, an excellent tool for evaluating the

performance of a CUDA application.

7.2 RFCH

As we expected, the GTX 580 could accelerate our modules faster than the GTX

285 because of its superior capabilities and resources. This acceleration could be

done by understanding the hardware differences and scheduling processes of the

multiprocessors.

We achieved a very good speedup for the ClusterFeatures Module especially for

the detecting phase because the CPU thread does minimal work; the kernel does

60

everything. We also used the directive #pragma unroll for the rest of the for-loops

inside the kernel, which extracts very good results.

CalculateRFCH as noted in the previous chapter was very challenging and

interesting for a CUDA port implementation. Its branch divergence, a while-loop

inside the body of the algorithm, the unexpected number of bins each thread will

produce and the calculation of a histogram are serious drawbacks for a decent

speedup and parallelization.

A while-loop will almost never perform well, as most loops will not on the GPU.

Most of the times we know the amount of iterations in a for-loop and we can use

#pragma unroll N, where N the number of iterations. In a while loop the number

of iterations is unexpected in most applications.

7.2.1 Speedup on the GTX 285

 Modules Software
time (s)

CUDA time
(s)

 Speedup

CalculateClusters – 1 object 23.4 1.79 13
ClusterFeatures – 1 object 0.14 0.00147 95
ClusterFeatures – 1 scene in the 1st detecting phase 1.97 0.0049 402
ClusterFeatures – 1 scene in the 2nd detecting phase 1.95 0.0048 406
CalculateRFCH – Part of the sliding window Detection
Algorithm

0.013 0.0055 2.4

CalculateRFCH – Part of the MatchImage Detection
Algorithm

0.7 0.218 3.2

Table 7.1: Speedup of the RFCH modules with the GTX 285

The above measurements have been recorded with the help of the “iraklis” server

of the Technical University of Crete. The CPU of this server is the

61

Intel® Xeon® Processor E5430, 12M Cache, 2.66 GHz, 1333 MHz FSB.

7.2.2 Speedup on the GTX 580

 Modules Software
time (s)

CUDA time
(s)

 Speedup

CalculateClusters – 1 object 23.4 1.69 13.8
ClusterFeatures – 1 object 0.14 0.00122 114.8
ClusterFeatures – 1 scene in the 1st detecting phase 1.96 0.00210 933
ClusterFeatures – 1 scene in the 2nd detecting phase 1.95 0.00170 1147
CalculateRFCH – Part of the sliding window Detection
Algorithm

0.013 0.0018 7.2

CalculateRFCH – Part of the MatchImage Detection
Algorithm

0.7 0.06 11.7

Table 7.2: Speedup of the RFCH modules with the GTX 580

The above measurements have been recorded with the help of the “pc16” server

of the Technical University of Crete. The CPU of this server is the

Intel® Core™2 Duo Processor E8400 6M Cache, 3.00 GHz, 1333 MHz FSB.

7.2.3 Comparing Results

First of all, we noticed that all the modules perform better when running on the

GTX 580 rather than the GTX 285.

For the CalculateClusters module, we noticed slight performance acceleration in

the GTX 580 using 1024 threads in a block which this card can offer. The reasons

for the small difference in performance between the two cards is that although

the kernel runs faster with the compute capability 2.0 card, its execution time is

sidelined by the many memory copies to and from the device, the inevitable

62

occupation and calculations of the CPU thread and the fact that the kernel is

called iteratively with a while-loop until all the cluster features are fully updated.

Inserting the mentioned while-loop inside the kernel could be a logical thought

but not realistic because of the terrible performance it will produce.

For the ClusterFeatures module by using the maximum threads per block, 1024,

we achieved a great acceleration for our module, even though very good

performance is also noticed by the GTX 285.

The vast differences between the training module and the detecting module of

the ClusterFeatures are due to the fact that in the training phase we have to copy

back to the Host the binnedImage[] array. Also we have a much greater branch

divergence in the training phase, which practically means that most threads will

perform less work in comparison to the detecting phase.

Using many threads per block is generally a good practice because it hides the

latency in Global Memory accesses. If a group of threads (warp) stalls on an

access then the next warp will try to access it, and the scheduler will return back

to the stalled warp when it has finally finished its work. More warps per

multiprocessor means more latency hidden.

Sometimes adding more threads will not perform better and this depends mostly

on the nature of the kernel and the scheduling patterns of each card. If the kernel

doesn’t need many memory accesses and the threads are occupied mostly on

calculations using their 32-bit registers, then using fewer threads per block could

accelerate the speedup. The selection of threads is not an exact science; the

developer must experiment with block sizes and observe performance.

A multiprocessor has a floor on how many threads can be scheduled on it at a

time, so if the number of threads per block is relatively small, then more blocks

can be scheduled on each multiprocessor; thus more blocks are processed in a

clock cycle.

Also, if fewer threads occupy a multiprocessor then fewer 32-bit registers are

occupied and more registers can be assigned to each thread. Registers have a

throughput of TBs/s.

63

An example of the above phenomenon is the CalculateRFCH module parallel

implementation on the 2.0 compute capability card. By using only 16 threads per

block, we achieved the maximum performance for this module. We experimented

with the same grid architecture on the GTX 285 but not with the same results, for

the kernel performed worse than with the GTX 580. We believe that this is a

combination of parameters. Since we reduced the threads in the block, the

number of blocks increases. The GTX 285 does not process blocks as fast as the

GTX 580, due to a worse clock rate. Also, the much needed shared memory in this

module is accessed by the threads slower than the shared memory of the GTX

580, about 2x slower.

The difference in performance of this module run by the two cards is not relative

only to the kernel; the Histogram Generator is faster on a compute capability 2.0

card, about 5 times.

7.2.4 Overall Performance

Overall speedup with the help of GTX 285

 Configuration Software time (s) Hardware time (s) Speedup

1 object - 1 scene 28.28 4.19 6.7

4 objects – 1 scene 114.30 14.85 7.7

7 objects – 1 scene 202.35 25.24 8.0

Table 7.3: Experiments on our system by increasing the objects on the GTX 285.

The measurements of the software time and the functions of our CUDA version

that were not implemented in the GPU were done by the “iraklis” CPU.

64

Overall speedup with the help of GTX 580

 Configuration Software time (s) Hardware time (s) Speedup

1 object - 1 scene 30.54 3.07 7.89

4 objects – 1 scene 123.3 9.6 12.85

7 objects – 1 scene 218.06 16.67 13.1

Table 7.4: Experiments on our system by increasing the objects on the GTX 580.

The measurements of the software time and the functions of our CUDA version

that were not implemented in the GPU were done by the “pc16” CPU.

By keeping the number of scenes stable and increasing the number of objects to

be detected, we noticed a slight increase in performance. When adding an object,

then both training and detecting execution time increases. Since we have

managed to achieve a considerable speedup, the fact that performance increases

by adding more objects is a positive confirmation of our overall system.

 Configuration Software time (s) Hardware time (s) Speedup

7 objects - 1 scene 202.35 25.24 8

7 objects - 2 scenes 234.07 38.34 6.1

7 objects - 3 scenes 265.84 50.87 5.22

7 objects - 4 scenes 299.14 62.23 4.8

Table 7.5: Experiments on our system by increasing the scenes on the GTX 285

The measurements of the software time and the functions of our CUDA version

that were not implemented in the GPU were done by the “iraklis” CPU.

By keeping the number of objects to be detected stable and adding more scenes,

we noticed a decline in performance. In this case the training execution time does

not change depending on the configuration; just the detecting procedure time

grows. Since our speedup for the main module of detection, the CalculateRFCH,

on the NVidia GTX 285 is relatively low, the above results do not surprise us.

65

7.2.5 Applied Optimization on the RFCH modules

A considerable difference in performance was noticed when we identified that
certain methods of GPU computations could be altered in the search of higher
acceleration.

 Using Constant Memory. The cluster scheme, the ClusterPoint[] array and
SqrRadius[] array, was first stored in the Global Memory which generates
low throughput. Since the arrays are relatively small and have been used
only for extracting their elements, we decided to store them in the faster
Constant Memory. Constant Memory is faster but variables stored there
have read-only permissions. Also, one has to be careful with Constant
Memory due to its limited size.

 Eliminating data transfers. We tried as much as possible not to transfer
unnecessary data from and to the GPUs for a smaller execution time. For
example, the CalculateRFCH detecting module needs the binnedImage[]
array which is generated in the ClusterFeatures detecting module. We
could have copied the result back to the Host and pass it to the
CalculateRFCH module by reference and then the latter module could copy
it back to the Device again. Instead, when the binnedImage[] is created, it
just resides in the Global Memory waiting for the CalculateRFCH to utilize it.
We have eliminated two memory transactions.

 Constrain the Global Memory stores. We tried not to store unnecessary
variables in the Global Memory. This does not help for an acceleration of
the application, but mostly to avoid memory segments overlapping, thus
losing important data. For example, we have used only one device array of
Features, replacing the elements of it each time an object or scene is about
to be processed. We could have used a Features[] array for each object or
scene, but since its size is 2.15 MB and in the case the algorithm is about to
process over 500 images, the Global Memory will overflow since the Device
Memory is limited to about 1 GB.

66

 Shared memory and its attributes. While our first design of the
CalculateRFCH module was with the use of shared memory, we will
mention it as a very important CUDA optimization. That’s because it is a
very fast on-chip memory fragment and able to use techniques such as
parallel reduction or parallel scan.

 Selecting block sizes. Depending on the kernel, different block sizes might
boost the kernel execution as mentioned above. A characteristic example is
the CalculateRFCH module.

7.3 BPTLD

For our experiments on this hardware algorithm, we used the NVidia GTX 285. We
selected two videos for the verification and the metrics of our system, while we
were able to compare the C++ implementation with ours.

67

7.3.1 Evaluation of our modules through experimental videos

The first video shows the meteorite that hit Russia in December of 2012.

Figure 7.1: The meteorite seems small to the human eye

Figure 7.1 shows one of the first frames of the video sequence and it shows the
bounding box around the meteorite while it is still far from earth.

68

Figure 7.2: While the meteorite heads towards earth it seems larger

Figure 7.2 shows the bounding box around the meteorite after a few frames. This
time the meteorite has come much closer to earth. We selected this video to
show that the BPTLD actually does identify an object while it changes shape as is
stated in [17].
In this case the meteorite seems much larger to the human eye but also to the
machine. Its tail has grown and its illumination characteristics have altered.

69

Below is the table of the software and parallel implementation execution times
and comparisons.

Studied Entity Software time
(ms)

Hardware
time(ms)

Speedup

Detect module with
I/O

110 7.5 14.5

Detect module
without I/O (kernel)

110 3 36.7

Table 7.6: Results of the TLD GPU implementation in software and hardware on the meteor
video.

We experimented with one more video which shows a moving white car. We
made this video to test if the Detector will identify the object by keeping the
camera unsteady as it is mentioned in the original paper [17].

Figure 7.3: Tracking bounding box of a moving car.

70

The next frame capture is two frames following for Figure 7.3 while the camera
has changed its position to the left. We can understand that because the frame
captures less of the pavement on the right.

Figure 7.4: Two frames after Figure 7.3.

Although the camera was unsteady on purpose, the Detector manages to track
the object.

The software and hardware comparison is shown in the table below.

Studied Entity Software time
(ms)

Hardware
time(ms)

Speedup

Detect module with
I/O

123 8.4 14.5

Detect module
without I/O (kernel)

123 0.65 37.8

Table 7.7: Results of the TLD GPU implementation in software and hardware on the car video.

71

We believe that the small differences in time between the two experimental
videos are due to the fact that the bounding box of the second video is larger and
also due to the fast camera movement.

7.3.2 Applied Optimization on the Detector module

We applied the following optimization techniques in the Detector module:

 Asynchronous memory copy between the CPU host and the Device
Memory. By not blocking the CPU thread, execution time is reduced.

 Using Constant Memory. The input of the Detector module, the tbb is
stored in Constant Memory because of its very small size and we only need
threads to extract information from it and not for threads to store new
ones.

 Selecting block sizes. As mentioned, the optimal block size, which was
found experimentally, is 16 threads per block. This way our kernel runs
faster.

72

7.3.3 An FPGA Implementation of the BPTLD Algorithm

We will show the results of another implementation [25] of the BPTLD algorithm

based on FPGA hardware, which utilizes a distributed memory subsystem divided

in blocks. The CPU used for timing the software version is a 2.4 GHZ dual core

state of the art CPU.

When the above implementation executes the complete algorithm with a

conventional memory subsystem accessing a single block at a time, the

performance generated is virtually the same with the one the CPU generates as

we can see in Table 7.7. This is because the classification problem, when solved

with the Random Forest approach, is memory bound, and the prototype is used

with an on-chip memory which has roughly the same bandwidth as the one

utilized in the Intel CPU.

When the number of blocks is increased, thus creating a distributed memory, the

implementation ends up with a considerable speedup over the software. The

speedup which is achieved does not include any I/O overhead between the FPGA

and the Host in software-hardware co-design scenario.

Memory
partitioning in
blocks
(dual port)

Average collisions
(with scrambling)

Speedup @
200 Mhz

Effective Memory
BW (TB/sec)

1 32 0.96 0.29

8 2.65 14.64 3.54

16 3.15 23.27 5.95

32 3.6 41.98 10.42

Table 7.7: Performance evaluation on a Virtex-6 VLX130T device at 200Mhz

73

Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis we described an efficient way to improve the performance of the

Receptive Field Cooccurence Histogram and the Tracking-Learning-Detecting

Algorithms using NVidia GPUs via the CUDA architecture.

We have designed CUDA modules based on the function hotspots of the above

algorithms, so as to accelerate the overall performance of these applications.

These modules have a dual nature of both software and hardware. The GPU

works as co-processor to the CPU which runs C++ code.

Our hardware modules are based on parallelizing the loops that are responsible

for the bulk of execution, by utilizing the threads of the GPUs which virtually run

in parallel. Our experiments showed that we achieved an overall speedup of over

13X in both algorithms, while the maximum speedup we achieved for a single

module (ClusterFeatures) was over 1000X.

For the RFCH, the hardware is not fixed to a specific input image size because it is

not designed to transform a real image into a form that a machine can

understand. This is the work of the software. The hardware modules must know

at least the size of the input image for them to launch the appropriate number of

threads that can access every pixel. We experimented with input images of size

640x480.

For the BPTLD, we concluded that its respective module can process 640x480 size

of frames of high resolution (as the meteor example) and low resolution (as the

white car example), in addition to handling object and camera alterations to a

certain limit.

74

8.2 Future Work

Although we are content with our results, we believe a greater acceleration can

be achieved. CUDA and the NVidia GPUs have evolved tremendously in the last

years, due to the successful architecture and the relatively developer-friendly

framework NVidia has constructed. The very good documentation and the many

sample codes NVidia has published is a proof of the successful developing product

that they have created.

The features and capabilities of the CUDA-enabled GPUs are truly vast and

impressive. For a better performance of the algorithms we have studied,

additional research could be done on the inherent parallelism of our modules,

while experimenting on the different GPUs that are in the market.

Each card, having its own features, could be selected depending on what the

developer wants to get out of the card. Even cards that are not as fast

computation-wise may win in energy efficiency.

The CalculateClusters module was hard to parallelize efficiently because of the

complexity of the K-Means algorithm. Additional research should be done,

perhaps experimenting with the very fast shared memory using array

decomposition techniques. These techniques should be studied for every module

and for every CUDA application, since the results of using shared memory are

astonishing.

For the TLD implementation, we believe that if it is to be used in real world

applications, the video stream must not be generated and displayed by the NVidia

card itself. The card will be busy in other tasks, which will not cope well with the

kernel, the CUDA APIs and the execution of the CUDA code. These problems could

be memory collisions in the Device Memory with a result of data losses,

segmentation faults on pointers residing in the memory as a result of unexpected

termination while the application is running. As a result we may face an overall

unstable execution of the TLD implementation. Also, it would be interesting to

experiment with different machines and cards on this module with the restriction

75

that the machine will support OpenCV compiled with the CUDA compiler, which is

an important factor of the BPTLD (as in the NVidia GTX 285).

76

Bibliography

[1]: http://en.wikipedia.org/wiki/Computer_vision

[2]: http://en.wikipedia.org/wiki/Outline_of_object_recognition

[3]: Sameer A. Nene and Shree K. Nayar and Hiroshi Murase, \Columbia Object
Image Library (COIL-100)" in Technical Report CUCS-006-96, Department of
Computer Science, Columbia University, 1996.

[4]: JOHN CANNY. A Computational Approach to Edge Detection. IEEE
TRANSACTIONS ON PATTERN ANALYSIS
AND MACHINE INTELLIGENCE, VOL. PAMI-8, NO. 6, NOVEMBER 1986

[5]: S.Ekvall, D.Kragic, \Receptive Field Coocuurrence Histograms for Object
Detection", in
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 84 - 89,
2005

[6]: B. Schiele and J. L. Crowley, \Recognition without correspondence using
multidimensional receptive fields histograms", International Journal of Computer
Vision, vol. 36, no. 1, pp. 31{50, 2000.

[7]: O. Linde and T. Lindeberg, \Object recognition using composed receptive field
histograms of higher dimensionality", 17th International Conference on Pattern
Recognition, ICPR'04, 2004.

[8]: http://en.wikipedia.org/wiki/Video_tracking

[9]: Seung In Park, Sean P. Ponce, Jing Huang, Yong Cao and Francis Quek.
Low-Cost, High-Speed Computer Vision Using NVIDIA’s CUDA Architecture. Center
of Human Computer Interaction,Virginia Polytechnic Institute and University
Blacksburg, VA 24060, USA

http://en.wikipedia.org/wiki/Computer_vision

77

[10]: Wenhao He and Kui Yuan, An Improved Canny Edge Detector and its
Realization on FPGA", in Proceedings of the 7th World Congress on Intelligent
Control and Automation. June 25 - 27, 2008, Chongqing, China.

[11]: Christos Gentsos, Calliope-Louisa Sotiropoulou, Spiridon Nikolaidis and
Nikolaos Vassiliadis, Real-Time Canny Edge Detection Parallel Implementation for
FPGAs", International Conference on Electronics, Circuits, and Systems (ICECS),
pp.499, 2010.

[12]: Antonis Nikitakis, Savvas Papaioanou, Ioannis Papaeftstathiou, A novel low-

power embedded object recognition system working at multi-frames per second.

October 11-October 12, Tampere, Finland

[13]: Changjian Gao and Shih-Lien Lu, \Novel FPGA based HAAR classifier face
detection algorithm acceleration", International Conference on Field
Programmable Logic and Applications, pp.373 - 378, 2008.

[14]: Vinod Nair and Pierre-Olivier Laprise and James J. Clark, \An FPGA-Based
People Detection System", in EURASIP Journal on Applied Signal Processing
2005:7, 1{15.

[15]: P. Chang and J. Krumm, “Object recognition with color cooccurrence
histograms,” in CVPR’99, pp. 498–504, 1999..

[16]: J. B. MacQueen, \Some Methods for classification and Analysis of
Multivariate Observations", Proceedings of 5-th Berkeley Symposium on
Mathematical Statistics and Probability, pp. 1:281{297, University of California
Press, 1967.

[17]: KALAL ZDENEK, MATAS JIRI, MIKOLAJCZYK KRYSTIAN. 2009. Online learning
of robust object detectors during unstable tracking. In 3rd On-line Learning for
Computer Vision Workshop, Kyoto, Japan, IEEE CS.

[18]: BPTLD.2011. https://github.com/Ninjakannon/BPTLD.git

[19]: http://opencv.org/.

http://www.computer.org/csdl/proceedings/estimedia/2012/4968/00/06507033.pdf
http://www.computer.org/csdl/proceedings/estimedia/2012/4968/00/06507033.pdf

78

[20]: VIOLA PAUL, JONES MICHAEL. 2001. Rapid Object Detection using a Boosted
Cascade of Simple Features.
International Conference on Computer Vision and Pattern Recognition.

[21]: http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/

[22]: https://devtalk.nvidia.com/default/topic/511531/code-general-purpose-
histogram/

[23]: http://www.nvidia.com/object/cuda_home_new.html

[24]: NVIDIA, CUDA Programming Guide Version 4.0. 2011, NVIDIA Corporation:
Santa Clara, California.

[25]: ANTONIS NIKITAKIS. 2013. A novel Embedded system for vision tracking.
(Unpublished).

