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Abstract

This diploma thesis deals with a new method in acquiring and reconstruct-
ing the spectral cube in hyper spectral imaging. The method employs a
spatial variable band-pass optical filter, which is translated over a two di-
mensional sensor’s area. That way the sensor’s pixel columns acquire optical
information captured at different wavelengths at a time. By translating the
variable filter, all the spectral bands are captured by the sensor’s pixels in
time sequence. After completing the acquisition process, the spectral and
spatial information are stored in a multiplexed fusion. The next step is to
disentangle the multiplexed information, so that the spectral cube to contain
a stack of images each one captured at a different wavelength. The specially
developed method relies on the re-sampling of the stored data with the aid
of geometrical transformations. This results in a straightforward and fast
de-multiplexing of the dataset and the reconstruction of spectral cube con-
sisted of hundreds of narrow band spectral images, spanning both the visible
and near infrared part of the spectrum. Technical evaluation of the method
showed a series of distincted advantages over prior art included but not lim-
ited to unparallel light throughput and high, user defined spectral resolution.
Moreover, the measurement of Modulation Transfer Function(MTF) of the
system with the contribution of a specially developed method showed that
the spatial resolution of the spectral images, in terms of lp/mm, is high and
wavelength dependent. The above features make our approach suitable in
demanding spectral imaging applications, such as microscopic images and
non-destructive analysis.
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Chapter 1

Introduction

It is important to outline the bedrocks of this work in order to render read-
ers familiar with the basic concepts and developed methods and interested
throughout the progress of the presentation. However, followers who feel
confident, as far as their knowledge is concerned on these scientific domains,
may sidestep this section of introduction and continue with the following
chapters.

1.1 Spectroscopy

If it had been for a single scientific term that could thoroughly describe
the topic of this project, that would be spectroscopy 1 2. Spectroscopy
responds to the field of study including the interaction between matter and
radiated energy. Historically, it is originated from the dispersion of visible
light according to its wavelength. Later on, the concept was greatly ex-
panded to comprise any interaction with radiative energy as a function of
its wavelength(λ) or frequency(ν). As a result, the definition of spectroscopy
was expanded to an alternative field, that one of frequency ν. A further ex-
tension added energy(E) as a variable, due to the equation E = h · ν .
Spectroscopic data is often represented by a spectrum, meaning the plot of
the response in proportion of wavelength or frequency.

As it has been mentioned above, spectroscopy is strictly associated with
the measurement of radiation intensity with reference to the wavelength or
frequency. This sort of measurements can be conducted by experimental
spectroscopic devices such as spectrometers, spectrophotometers, spectro-
graphs or spectral analyzers.

1.2 Spectrometry

Spectrometry 3 constitutes the technique that is being used so as to assess
the concentration or amount of a specific chemical compound. It is a com-

1http://en.wikipedia.org/wiki/Spectroscopy
2http://loke.as.arizona.edu/˜ckulesa/camp/spectroscopy_intro.html
3http://en.wikipedia.org/wiki/Spectrometry
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mon practice to combine spectrometry along with spectroscopy, mentioned
above, in physical and analytical chemistry for the identification of sub-
stances through the spectrum either emitted from or absorbed by them.In
addition, they do contribute to the field of astronomy and remote sensing
as well. The majority of large telescopes is equipped with spectrometers,
since the last ones have been instrumental to measurements, as far as chem-
ical compositions and natural properties of astronomical objects are con-
cerned.

1.3 Spectral Imaging (SI)

Spectral imaging is a branch of spectroscopy and photography in which a
complete spectrum or partial spectral information (such as the Doppler shift
or Zeeman splitting of a spectral line) is acquired at each position of an im-
age plane. Spectral imaging does allow extraction of additional information
the human eye fails to capture with its receptors for red, green and blue.
Applications related to astronomy, solar physics, analysis of plasmas in nu-
clear fusion experiments, planetology, and Earth remote sensing are sparked
by the benefits of spectral imaging.

Various distinctions among techniques are applied, based on criteria includ-
ing spectral range, spectral resolution, number of bands, width and con-
tiguousness of bands, and application. The terms include Multi Spectral
Imaging 1.3.3, Hyper Spectral Imaging 1.3.4, full spectral imaging,
imaging spectroscopy or chemical imaging. These terms are seldom applied
to the use of only four or five bands that are all within the visible light
range.

Important new developments in the field of biomedical optical imaging (OI)
allow for unprecedented visualization of tissue microstructure and enable
quantitative mapping of disease-specific endogenous and exogenous sub-
stances [1]. Spectral imaging (SI) is one of the most promising OI modalities,
belonging to this general field, and it will be reviewed in more detail in this
section of Chapter 1.

SI combines spectroscopy with imaging. A spectral imager provides
spectral information at each pixel of a two-dimensional (2D) detector array.
The SI systems acquire a three-dimensional (3D) data set of spectral and
spatial information, known as spectral cube. The spectral cube can be con-
sidered as a stack of images, each of them acquired at a different wavelength.
Combined spatial and spectral information offers great potential for the non-
destructive/invasive investigation of a variety of studied samples.

Spectroscopy finds applications in analytical chemistry since a long time.
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Different spectroscopy types and modalities exist, depending on the optical
property that it is intended to be measured, namely, absorption, sponta-
neous emission (fluorescence, phosphorescence), scattering (Rayleigh elastic,
Raman inelastic) spectroscopy, etc. As the light travels into the sample, pho-
tons are experiencing absorption, which may result in fluorescence emission
and multiple scattering due to the local variation of the index of refraction.
Spectrometers measure the intensity of the light emerging from the sample
as a function of the wavelength. The collected light passes through a light-
dispersing element (grating), which spatially splits the light wavelengths
onto the surface of an optical sensor array, interfaced with a computer for
recording and processing the spectrum. Sample illumination can be provided
by either a broadband (e.g., white light) or a narrowband light source. In
the first case, the measured spectra provide information for the absorption
and scattering characteristics of the tissue. In the second case, the measured
spectra probe the fluorescence characteristics of the sample. Particularly, in
steady-state fluorescence spectroscopy, a narrowband light source is used
for fluorescence excitation, such as lasers, LEDs, or filtered light sources,
emitting typically in the blue-ultraviolet band. A sensitive optical sensor is
used for collecting the emission spectra. [2]

The collected emission spectra can provide diagnostic information for the
compositional status of the sample. This makes spectroscopy an indispens-
able tool for nondestructive analysis and for the development of novel, non-
invasive diagnostic approaches. Particularly, in biomedical sciences, the di-
agnostic potential of tissue spectroscopy is based on the assumption that the
absorption, fluorescence, and scattering characteristics of the tissue change
during the progress of the disease.

Over the last 20 years, spectroscopy has been extensively investigated as a
tool for identifying various pathologic conditions on the basis of their spec-
tral signatures. It has been demonstrated that spectroscopy can successfully
probe intrinsic or extrinsic chromophores and fluorophores, the concentra-
tion of which changes during the development of the disease. In its con-
ventional configuration, spectroscopy uses single-point probes that cannot
easily sample large areas or small areas at high spatial resolution (SR). It is
obvious that this configuration is clearly suboptimal when solid and highly
heterogeneous materials, such as the biological tissues, are examined. In
these cases, the collected spectrum is the result of the integration of the
light emitted from a great number of area points. This has the effect of
mixing together signals originating from both pathologic and healthy areas,
which makes the spectral signature-based identification problematic. Look-
ing at the same problem from another perspective, point spectroscopies
are considered as inefficient in cases where the mapping of some character-
istic, spectrally identifiable property, is of the utmost importance.
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Spectroscopy probes optical signals with high spectral resolution but
with poor spatial resolution (SR). The vastly improved computational
power together with the recent technological developments in tunable op-
tical filter and imaging sensor technologies have become the catalysts for
merging together imaging and spectroscopy. Both areas, imaging and spec-
troscopy, continue to be affected by technological innovations that enable
faster acquisition of superior-quality data. SI has the unique feature
of combining the advantages of both imaging and spectroscopy
(high spatial and spectral resolution) in a single instrument. In
SI, light intensity is recorded as a function of both wavelength and location.
In the image domain, the data set includes a full image at each individual
wavelength. In the spectroscopy domain, a fully resolved spectrum at each
individual pixel can be recorded. These devices can measure the spectral
content of light energy at every point in an image. Multiple images of the
same scene at different wavelengths are acquired for obtaining the spectra.
As an example, an SI device integrating an imaging sensor with 1000×1000
pixels provides 1 million individual spectra. A spectrum containing 100 data
points results from an equal number of spectral images. Assuming that the
intensity in each pixel is sampled at 8 bits, then the size of the resulting
spectral cube equals to 100 Mbytes. Due to the huge size of the collected
data sets, SI data processing, analysis, and storage require fast comput-
ers and huge mass memory devices. Several mathematical approaches are
used for spectral classification and image segmentation on the basis of the
acquired spectral characteristics. The spectra are classified using spectral
similarity measures, and the resulting different spectral classes are recog-
nized as color-coded image clusters. SI can be easily adapted to a variety of
OI instruments such as camera lenses, telescopes, microscopes, endoscopes,
etc. For this reason, applications of SI span from planet and earth inspection
(remote sensing) to internal medicine and molecular biology. [1]

1.3.1 Spectral Cubes

The information that is primarily collected by spectral imagers and then
appropriately processed based on the kind of application running, is stored
in 3D data structures for further analysis. This sort of data structures
are known as Spectral Cubes (SC) 4. A spectral cube consists the three
dimensional projection of a great number of consecutive and registered sets
of hyper spectral or multi spectral images. Being more specific, the first two
dimensions respond to spatial dimensions, for account of pixel coordinates
and the third one refers to spectral dimension, meaning a specific wavelength
of the electromagnetic spectrum. A glance at figures 1.1a and 1.1b offer

4http://en.wikipedia.org/wiki/Hyperspectral_imaging

http://en.wikipedia.org/wiki/Hyperspectral_imaging
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profound perception of how a spectral cube does look like.

(a) 3-D projection (b) 3-D coordinates

Figure 1.1: Hyper Spectral Cubes

1.3.2 Color vs. Spectral Imaging

Photons encountering the pixels of an imaging sensor create electrons in
pixel cells (photoelectric effect); thereby, the number of photons is
proportional to the number of electrons. The photon’s wavelength in-
formation, however, is not “transferred” to the electrons. Hence, unfiltered
imaging chips are color blind. Color or SI devices employ optical filters
placed in front of the imaging chip. Color imagers use either Si charge cou-
pled devices (CCD) or C-MOS sensors, which are sensitive in the visible and
in the near-infrared (NIR) part of the spectrum (400-1000 nm). A band-pass
filter is used for rejecting the NIR band (700-1000 nm). In 3-chip configu-
rations, three photon channels are created with the aid of a trichroic prism
assembly, which directs the appropriate wavelength ranges of light to their
respective sensors. Camera electronics combine the red, green, and blue
(R, G, B) imaging channels composing a high-quality color image, which is
delivered to external devices through an analog or digital interface. An al-
ternative, cheaper, and more popular color camera configuration employs a
single chip, where the color filters are spread, similar to a mosaic, across all
pixels of the sensor. Due to the fact that each pixel “sees” only one primary
color, three pixels are required to record the color of the corresponding area
of the object. This reduces significantly the SR of the imager. This un-
wanted effect is partially compensated with a method called “spatial color
interpolation” carried out by the camera electronics. The interpolation
algorithm estimates the two missing primary color values for a certain pixel
by analyzing the values of its adjacent pixels. In practice, even the most
excellent color space interpolation methods cause a low-pass effect. Thus,
single chip cameras yield images that are more blurred than those of 3-chip
or of monochrome cameras. This is especially evident in cases of subtle,
fiber-shaped image structures. Color cameras emulate the human vision for
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color reproduction and are real-time devices since they record three spectral
bands simultaneously at very high frame rates. Human vision-emulating
color imaging devices usually describe color with three parameters (RGB
values), which are easy to interpret since they model familiar color percep-
tion processes. They share, however, the limitations of human color vision.
Color cameras and human color vision allocate the incoming light to three
color coordinates, thus missing significant spectral information. Due to this
fact, objects emitting or remitting light with completely different spectral
components can have precisely the same RGB coordinates, a phenomenon
known as metamerism. The direct impact of the metamerism is the inabil-
ity of the color imaging systems to distinguish between materials having the
same color appearance but different chemical composition. This sets serious
limitations to their analytical power and consequently, to their diagnostic
capabilities. [1]

Unlike images taken with standard color (RGB) cameras, SI information is
not discernible to the human eye. In SI, a series of images is acquired at
many wavelengths, producing a spectral cube. Each pixel in the spectral
cube, therefore, represents the spectrum of the scene at that point. The
nature of imagery data is typically multidimensional, spanning spatial and
spectral dimensions (x, y, λ).

A color camera captures typically three images corresponding to the band-
pass characteristics of the RGB primary color filters. Color image pixels
miss significant spectral information as it is integrated into three, broad
spectral bands. The color of a pixel can be represented as vector in a three-
dimensional “color space” having the RGB values as coordinates. SI systems
collect a stack of pictures, where each image is acquired at a narrow spectral
band and all together compose the spectral cube. A complete spectrum can
be calculated for every image pixel, which can be otherwise represented as
a vector in a “multidimensional spectral space”.

1.3.3 Multi Spectral Imaging

Multi Spectral Imaging (MI) 5 is responsible for capturing image data at
specific frequencies across the electromagnetic spectrum. The wavelengths
may be separated by filters or by the use of instruments that are sensitive
to particular wavelengths, including light from frequencies beyond the vis-
ible light range, such as infrared. MI images are the main type of images
acquired by remote sensing (RS) radiometers. Dividing the spectrum into
many bands, MI is the opposite of panchromatic, which records only the
total intensity of radiation falling on each pixel. Spectral imaging with more

5http://en.wikipedia.org/wiki/Hyperspectral_imaging

http://en.wikipedia.org/wiki/Hyperspectral_imaging
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numerous bands, finer spectral resolution or wider spectral coverage may be
called Hyper Spectral or Ultra Spectral (1.3.4).

1.3.4 Hyper Spectral Imaging

Hyper Spectral Imaging (HI) 6 is a technology widely used for remote
imaging, in an effort to extract a maximum of information out of images
captured under strongly varying imaging conditions. It provides options for
three-dimensional data generation with high spectral resolution across the
full electromagnetic spectrum of frequencies, beyond the visible. This visual
extension beyond the scope of human eye renders HI a powerful analytical
tool, which has been extensively used in a wide variety of fields includ-
ing agriculture, medicine, artistics [3] [4], satellite imaging [5], astronomy,
surveillance [6], [7], chemical imaging, physics and environment [5].

1.3.5 Hyper Spectral vs Multi Spectral Imaging

Figure 1.2: Multi Spectral vs. Hyper
Spectral Imaging

The distinction between Hyper
Spectral and Multi Spectral per-
tains to the number of narrow bands
or the type of measurement. Multi
Spectral deals with several images
at discrete and somewhat narrow
bands. Being “discrete and some-
what narrow” is what distinguishes
MI in the visible from color pho-
tography. A MI sensor may have
many bands covering the spectrum
from the visible to the long wave in-
frared. MI images do not produce
the “spectrum” of an object. On the
other hand, Hyper Spectral deals
with imaging narrow spectral bands
over a continuous spectral range,
and produce the spectra of all pixels
in the scene. So, a sensor with only 20 bands can also be HI when it covers
the range from 500 to 700 nm with 20 bands each 10 nm wide. Figure 1.2
helps us looking at the differences pinpointed above more closely.

6http://en.wikipedia.org/wiki/Hyperspectral_imaging

http://en.wikipedia.org/wiki/Hyperspectral_imaging
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1.4 Hyper Spectral Analysis

Spectral analysis 7 when combined with spatial data adds a significant
amount of information that can be used to improve image exploitation and
interpretation. To combine spectral information with spatial imagery, the
sensor or camera has to be able to create images within the user defined
narrow spectral bands rather than the wide-band imagery that the conven-
tional cameras produce. Compared to conventional filter based imaging sys-
tems, spectral cameras provide higher spectral and spatial resolution, flexi-
ble wavelength selections in software, broader spectral coverage and shorter
acquisition times.

1.5 Hyper Spectral Cameras

Hyper Spectral Analysis can be achieved by an hyper spectral camera system
that includes optics, an imaging spectrograph, a camera displaying the spec-
tral information and a software package to display and calculate the results.
Hyper spectral cameras are used to acquire the hyper spectral target image
at tens or hundreds of wavelengths simultaneously. Such developed soft-
wares create new possibilities for imaging applications where spectroscopy
methods can be totally attuned to standard and efficient image processing
methods. The recorded full spectrum for each pixel of the image can be
leveraged to a wide variety of purposes, such as classification, material de-
tection, accurate colour calculations or chemometrics over the full range.
[1]

1.5.1 Hardware Configuration and Calibration

SI camera systems, either HSI or MSI, consist of a monochrome sensor,
an electronically controlled spatial or spectral scanning mechanism, imaging
optics, and a computer platform for storage, display analysis, and processing
of imaging data. Control electronics synchronize the scanning and the data
capturing processes, so that a set of spectral images are collected as members
of the spectral cube. [1]

The number of the spectral bands that an SI system is capable of acquiring
determines the distinction between multi spectral imaging (MSI) and hyper
spectral imaging (HSI). MSI devices typically acquire 5-20 spectral bands,
while HSI systems acquire up to a few hundreds of spectral bands (see 1.3.5).

7http://en.wikipedia.org/wiki/Hyperspectral_imaging

http://en.wikipedia.org/wiki/Hyperspectral_imaging
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Ultra spectral imaging (USI) devices are currently under development with
the capacity of acquiring thousands of very narrow spectral bands.

SI systems use monochrome sensors or sensor arrays, which can capture
only two of the three spectral dimensions of the spectral cube at a time.
To capture the third dimension, spatial or spectral scanning is required.
Depending on the method employed for building the spectral cube, SI devices
are classified in different categories. The categorization is as follows:

1. whiskbroom SI devices, where a linear sensor array is used to collect
the spectrum (λ dimension) from a single point at a time; the other
two spatial coordinates are collected with (x, y) spatial scanning.

2. pushbroom SI devices in which a 2D sensor array is used, the one
dimension of which captures the first spatial (x) coordinate and the
other the spectral coordinate in each camera frame; the second spatial
coordinate (y) is captured with line (slit) scanning.

3. staring SI devices, where a 2D sensor array is coupled with an imaging
monochromator, which is tuned to scan the spectral domain and in
each scanning step, a full spectral image frame is recorded.

Whiskbroom and pushbroom imagers utilizing spatial scanning for building
the spectral cube do not provide live display of spectral images, since they
are calculated from the spectra after the completion of the spatial scanning
of the corresponding area. Staring imagers, on the other hand, are based on
the tuning of the imaging wavelength and the spectra are calculated from
the spectral cube composed by the spectral images that are captured in
time sequence. Compared to the other approaches, staring imagers have the
advantage of displaying live spectral images, which is essential for aiming
and focusing.

Selecting the SI camera optimal configuration and components requires a
“systems” approach. The intended application determines the SI system’s
spectral range and resolution. Si CCD detectors can be used to cover the
spectral range ultraviolet(UV), visible and NIR up to 1 µm. InGaAs de-
tectors are suitable for the up to 1.7 µm NIR range. For longer infrared
wavelengths, HgCdTe or InSb cameras must be used. Ideally, the wave-
length range of the monochromators should match at least a significant part
of the spectral range within which the selected detector is sensitive. Narrow-
band imaging and monochromator optics reduce the overall light throughput
of an SI system. Moreover, the light throughput of the monochromator de-
pends on the wavelength. Furthermore, the quantum efficiency (QE) of the
detector also changes with the wavelength.

SI system’s calibration is very essential in order to achieve “device-indepen-
dent” spectral measurements. Calibration can be performed with the aid
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of a reference sample displaying a known or a flat spectrum over the entire
operating wavelength range. A calibration curve or a lookup table can be
obtained by comparing the known spectral characteristics of the calibration
sample with that measured by the SI system spectra. Image brightness can
be corrected on the basis of the calibration data, after spectral image ac-
quisition. The calibration curve or the lookup table can also be integrated
into the system’s software for controlling the detector’s exposure time dur-
ing image acquisition, in all tuning steps of the filter. By changing the
detector’s exposure or gain settings, the wavelength dependence of the SI
system’s response is compensated and the spectral images that are acquired
and captured are calibrated. [1]

1.6 Hyper Spectral Imaging Applications

As it has already been mentioned, there exist numerous applications emerg-
ing from the spectral analysis that is being provided by Hyper Spectral
imaging. For nearly a decade, this technology was primarily used for pur-
poses like surveillance, reconnaissance, environmental and geological studies.
However, the application of hyper spectral imaging in the biomedical arena
has been negligible due to high-instrumentation costs and problems arising
from the clinical use of hyper spectral sensors. With recent achievements in
sensor technology and increasing affordability of high performance spectral
imagers, hyper spectral systems constitute one of the most important key
areas in medical imaging. The early diagnosis of cancer, one of the thorniest
medical problems, is now possible, since the evolution of hyper spectral sen-
sors allows the scanning of a patient’s body to identify precancerous lesions
or to provide critical spectral data through endoscopic procedures. The
extension and improvement of hyper spectral imaging in biomedical and
clinical diagnosis is within the grasp of researchers. [8] [9]

The advantages of this technology regarding diagnostic health care applica-
tions include a high-resolution imaging of tissues either at macroscopic or
cellular levels and the capability to generate highly accurate spectral infor-
mation related to the patient, tissue sample, or any other disease condition.
In particular, the vast investment of hyper spectral imaging in medicine lies
on the generation of wavelength-specific criteria for disease conditions on
spectral features. As a consequence, an ideal technology for high-through-
put patient screening and non-invasive diagnosis is begotten.

Due to their unparalleled ability to reveal abnormal spectral signatures,
hyper spectral medical instruments hold great potential for non-invasive di-
agnosis of cancer, retinal abnormalities and assessment of wound conditions,
for instance diabetes. A portable hyper spectral imager could also aid the
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analysis of human body fluids, such as blood, urine, saliva, semen and deter-
mine blood oxygenation levels of tissues, which could be of prime importance
during surgeries. Yet importantly, it could perform diagnosis for dental dis-
eases. It is a great advantage for a patient the fact that not only does an
early diagnosis of an ailment take place, but an appropriate treatment may
also be applied at the same time. [1]

Hyper spectral signatures when combined with targeting algorithms would
in essence offer unique diagnostic information. There is an increasing level
of interest on the part of health care providers to investigate possible ways
of reducing health care costs by providing timely treatments for many types
of disease conditions. Hyper Spectral scanning imaging is expected to
contribute a lot in this pursuit. [2]

1.7 Measures of Spectral Similarity

Considering the spectral nature of the project, it is essential to be able to
compare the estimated spectra with the reference spectra, in order to probe
the efficiency of the system. The spatial information is perceived as a group
of n-dimensional vectors in the processing procedure, where n responds to
the total number of different spectra being measured. As a consequence,
a wide variety of statistic measures can be applied in order to measure the
degree of similarity between the achieved and expected results. The metrics,
which has been used for the needs of this implementation, are following. [10]
[11]

1.7.1 Euclidean Distance/Euclidean Norm

In mathematics, the Euclidean Distance or Euclidean Norm is the or-
dinary distance between two points that one would measure with a ruler. In
Cartesian coordinates if p = (p1, p2, ....., pn) and q = (q1, q2, ....., qn) are two
points in Euclidean n-space, then the distance from p to q or from q to p
is given by the formula:

d(p, q) = d(q, p) =
√

(q1 − p1)2 + (q2 − p2)2 + · · ·+ (qn − pn)2

=

√√√√ n∑
i=1

(qi − pi)2

= || q − p || (1.7.1.1)
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1.7.2 Root Mean Square Error (RMSE)

Mean Square Error (MSE) is one of many ways to quantify the difference
between values implied by an estimator and the true values of the quantity
being estimated. MSE measures the average of the squares of errors. The
error is the amount by which the value implied by the estimator differs from
the quantity that is being estimated. Taking the square root of MSE yields
the Root Mean Square Error (RMSE) or Root Mean Square Devi-
ation (RMSD), which has the same units as the quantity being estimated.
If p = (p1, p2, ...., pn) and q = (q1, q2, ...., qn) are two vectors, then the 1.7.2
between them is given by the formula 1.7.2.1:

RMSE(p, q) =

√∑n
i=1(pi − qi)2

n
(1.7.2.1)

1.7.3 Spectral Angle Mapper (SAM)

The Spectral Angle Mapper is a physically based spectral classifier that
determines the spectral similarity between the vectors of measured and refer-
ence spectra. This kind of similarity is estimated based on the angle between
the two aforementioned vectors. The smaller the angle is, the greater ap-
proach to the reference spectra is achieved. In other words, smaller angles
reflect increased similarity. This angle metric between vectors p and q is
estimated by the formula 1.7.3.1:

SAM(p, q) = θ̂ = arccos

(
p ∗ q

|| p |||| q ||

)
(1.7.3.1)



Chapter 2

Hyper Spectral Imager

2.1 Problem Definition And Description

The task assigned to this thesis does require an innovative reconstruction of
the three dimensional data structure, known to us, as spectral cube (1.3.1).
This kind of spectral cube is going to result from the spectral distinction in
the images provided by a hyper spectral scanning procedure. This form of
distinction aims at creating a set of images, where each one responds to a
specific rather than multiple spectral bands. Although it may seem to be a
simple task to deal with, there is a wide variety of aspects to be implemented
and factors that must be taken into consideration, in order to provide an
efficient solution. The diversity of activities that has to be covered gives a
multilateral potential to the nature of the required work.

First of all, a spectral cube is consisted of a great number of images captured
in very close narrow bands. These images are gained by a hyper spectral
camera, which needs to be constructed as well [9], for the purposes of this
project. As long as this type of hyper spectral camera has been available, the
second step of the procedure is to capture the consecutive images manually
step by step and later automatically.

After having successfully acquired the images, which must be noiseless and
well focused, from the experimental set up, the aforementioned reconstruc-
tion leads the implementation [12]. Being more specific, this reconstruc-
tion refers to the acquisition of a new set of images, in which a single one
wavelength is represented by each one of the new reconstructed images. In
particular, we manage to provide a series of registered images that are algo-
rithmically reconstructed and each one responds to a single band every few
nanometers across the electromagnetic spectrum. As a result, our spectral
cube is created by the hyper spectral scanning of a “target-scene”. Last but
not least, the spectral response is being estimated at different pixel positions,
in order to demonstrate the efficiency and accuracy of the implementation,
before the head start of new phases [13].

High light throughput, not real-time reconstruction and protection from
photobleaching phenomena are expected to be the main characteristics of
our HSI.

22
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2.2 Set Ups

2.2.1 Manual-Step Set Up

The initial concept of the experimental set up includes the construction
of a system that is going to perform manual hyper spectral scanning by
the contribution of a user. The different parts required along with all the
necessary technical information, are included in the following tables and
figures.

Figure 2.1: Manual-Step HSI Set Up

The marked different components are listed right above:

1. Sofradir-EC(Electrophysics) L25F1.4 25mm f/1.4 C-Mount Objective
Lens with Iris (figure 2.4, table 2.1)

2. Linear Variable Short-Wave Pass Filter(330 − 745 nm, #83 − 983,
Edmund Optics) (figure 2.5, table 2.2)

3. PointGrey Dragonflyr2 1/3” Sonyr CCDs BW or Color (IEEE-1394a
FireWire digital camera) (figure 2.7, tables 2.3, 2.4)

4. Halogen/Xenon Light Source (figure 2.8, table 2.5, figure 2.11)
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5. Filter Holder, Stepper Stage

6. X-Rite ColorCheckerr (figure 2.13)

Figure 2.2: Optical Elements

It should be also mentioned that the FlyCap Point Grey Research pro-
gram has been used for calibration, viewing and capturing purposes of the
hyper spectral scanned images. Calibration and focus of lens are performed
once, before the beginning of the hyper spectral scanning.

2.2.2 Auto-Step Set Up

The final experimental set up has been upgraded to a new imaging system
that performs the hyper spectral scanning procedure automatically. This
task includes automatic and thus, accurate movement of a stepper motor
that holds the variable filter. Apart from this, the auto-step HSI provides
calibration automatically, as well. In this point, it should be mentioned that
the calibration of camera and the focus of lens take place once, before the
beginning of the hyper spectral scanning, right as in the manual-step set
up. The only difference is that all these procedures are implemented by the
contribution of an appropriately designed matlab GUI. The single inter-
vention along with the abolishment of the “slit-scan” technique are
the two innovations we introduce in such a HSI. The used components and
materials are the same with those of the manual-step set up and are going
to be presented analytically in the following section of this Chapter.
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Figure 2.3: Auto-step HSI

2.2.3 Technical Specifications And Features

Sofradir-EC(Electrophysics) L25F1.4 25mm f/1.4 C-Mount Ob-
jective Lens with Iris

Figure 2.4: Sofradir-EC

The Sofra L25F1.4 25mm F1.4 C-Mount
Objective Lens features manual focus and
an integrated adjustable iris diaphragm.
These lenses also feature broadband lens
coatings making them ideal low cost solu-
tions for imaging in the near-infrared spec-
tral range with reduced flare and ghosting.
A C-Mount Extension Tube kit is also avail-
able for those applications requiring close
focus and higher magnification.

FEATURES universal C-Mount for cameras and
viewers, manual focus, integral
adjustable iris diaphragm, broad-
band lens coatings for near-infrared
imaging.

TECH SPECS Objective Lens 7−→ 25mm

Table 2.1: Sofradir-EC Specifications

Linear Variable Band-Pass Filter(330− 745 nm, #83− 983, Ed-
mund Optics)

Designed for both individual and combined use, short, long-wave and band-
pass Variable Edge Filters allow for blocking and passing of targeted wave-
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lengths. Used independently, the short-wave linear variable filter has a
wavelength range of 330 − 750 nm with an average transmission of 97%
from 400 − 750 nm. The long-wave linear variable filter has a wavelength
range of 300− 845 nm and an average transmission of 97% across the entire
range. Bandpass filters only transmit a certain wavelength band, and block
others. When combined, Linear Variable Filters can operate as a laser-line
filter or a variable bandpass filter with tunable center wavelength and band-
width.

Figure 2.5: Linear Variable Fil-
ter

A linear variable filter has an interference
coating intentionally wedged in one direc-
tion to create a linear shift of the center
wavelength across the length of the sub-
strate. This shift allows for the broad filter-
ing capabilities demonstrated by the short
and long-wave variable filters. Short and
long-wave variable filters work inversely of
one another; the short-wave variable filter
passes light throughout the filter’s length
until a blocking band is reached, whereas
the long-wave variable filter blocks light until a transmission band is reached.
Blocking and transmission bands are adjustable by reorienting the filter to
the light source.

With its broad blocking and transmission range, a single linear variable filter
can replace an entire filter set. When synchronized with a single moving
grading spectrometer, combined long and short-wave linear variable filters
reduce scattered light and harmonics. In addition, combined linear variable
filters can be used as a single variable excitation filter for various fluorescence
applications using white light sources.

Dimensions (mm) 15× 60

Slope Factor (%) 1.6

Linear Dispersion (%) 0.57

Transmission (%)
400-750 nm 97

Optical Density OD > 4.0

Wavelength (nm) 330− 750

RoHS compliant

Table 2.2: Specs of Linear Band-pass Filter.
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Figure 2.6: Transmission of Band-Pass Filter.

PointGrey Dragonflyr2 1/3” Sonyr CCDs BW or Color

The Dragonflyr2 is a flexible, full-featured IEEE-1394a (FireWire) camera
designed for imaging product development. The Dragonflyr2 has an 8-pin
GPIO connector located on the back of the camera and case. Inputs can be
configured to accept an external trigger signal. Outputs can be configured
to send an output signal, strobe or PWM signal and can drive most TTL
devices at approximately 10mA. The Dragonfly2 has a logic level serial port
with a bandwidth capacity of up to 115.2 Kbps.

Figure 2.7: PointGrey Dragonflyr2
CCD Camera

The Dragonflyr2 is also equipped
with the ability to save and re-
store camera settings and imaging
parameters via on-board memory
channels. This is useful for sav-
ing default power-up settings, such
as gain, shutter, video format and
frame rate, etc., that are different
from the factory defaults. The field-
programmable gate array (FPGA) chip controls all camera functionality,
including exposure, resolution and frame rate, pixel binning, user memory
channels and more. It can also be updated with new functionality in the
field.

The two different models of the Dragonfly2 CCDs Camera that were used
for the measurements of this project and their specifications are included in
tables 2.3 and 2.4, respectively.



28

Models Lens Specification

DR2-BW/COL-XX Sony 1/3” CCD, BW/COLOR,
640× 480

DR2-HIBW/HICOL-XX Sony 1/3” CCD, BW/COLOR,
1024× 768

Table 2.3: Dragonflyr2 CCD Camera Models.

Specification BW/COL HIBW/HICOL

Image Sensor Type Sony 1/3” progressive scan CCDs

Image Sensor Model 1CX424 1CX204

Sensor pixel size 7.4µm square pixels 4.65µm square pixels

Maximum Resolution 640× 480 1024× 768

Maximum Frame Rate 60 FPS 30 FPS

Lens Mount C/CS-Mount, M12 microlens

A/D Converter Analog Devices 12-bit analog-to-digital converter

Video Data Output 8, 16 and 24-bit digital data

Partial Image Modes Pixel binning and region of interest modes via Format 7

Interfaces 6-pin IEEE-1394 for camera control and video data transmission 8

Power Requirements 8-30V, max 2W at 12V

Gain Automatic/Manual/One Push Gain modes 0dB to 24dB

Shutter Automatic/Manual/One Push/Extended Shutter modes 0.01ms to 66.63ms at 15 FPS, greater than 5s in extended mode

Gamma 0.50 to 4.00

Trigger Modes DCAM v1.31 Modes 0, 1, 3, 4, 5 and 14

Signal To Noise Ratio Greater than 60dB at 0dB gain

Dimensions 64mm× 51mm (bare board w/o case or lens

Mass 45 grams (bare board w/ lens holder and C-mount adapter)

Camera Specification IIDC 1394-based Digital Camera Specification v1.31

Emissions Compliance Complies with CE rules and Part 15 Class A of FCC Rules

Operating Temp. Commercial grade electronics rated from 0° to 45°C

Storage Temperature -30° to 60°C

Remote Head Option Available with 6-inch shielded ribbon cable

Case Enclosed Option Available (except with remote head option)

Table 2.4: Dragonflyr2 CCD Camera Specifications.

Light Source

Figure 2.8: Halogen Fiber Illu-
minator

The experimental procedure of the hyper
spectral scanning has been held with the
contribution of a light source. The Halo-
gen OSL 1 -EC Fiber Illuminator was
the first light source to be included in the
setup. This unit is a high intensity fiber
coupled light source that contains a 150 W
halogen lamp with a 1000:1 exponentially
variable control. It is designed to deliver
strong, cool light for microscopy and lab applications.
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Specifications

Input Voltage 110-120 VAC, 220-240 VAC, 180W MAX

Light Input 40.000 foot-candles

Lamp Adjustment Range 1000:1(0 to 100%)

Color Temperature 3200K with standard EKE Lamp at Max Intensity

Lamp Life 250-10.000 hours

Humidity Range 0-80% Non considering

Weight(Light Source w/o Fiber bundle) 7.5lbs(3.4kg)

Table 2.5: OSL 1-EC Fiber Illuminator specifications

A careful look at the emission diagram (figure 2.9) provides useful informa-
tion about the ability of the lamp to maintain the emitted spectra informa-
tion inalterable and noiseless. It is obvious that the dynamic range of the
OSL 1-EC Fiber Illuminator is extremely low at the wavelength range from
300 to 500 nm.

Figure 2.9: OSL 1-EC emission diagram

This fact indicates that the acquired spectra information under these con-
ditions of illumination in the hyper spectral scanning procedure will be dis-
torted in the aforementioned electromagnetic area. This is the reason for
inserting an other kind of light source that is more sensitive in the ultra
violet and violet region, so as to be able to improve the performance of the
hyper spectral imager and get satisfactory results across the whole range of
the variable filter. The light source that is going to sidestep this blue band
insufficiency is the Xenon Nova 201315-20, Storz.
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(a) product

Specifications

Low-Intensity Illumination yes

High-Intensity Illumination yes

Watts(generator) 175

# of lamps 1

Lamp Duration 500 hours

Light Temperature 6000 K

Power Needed 100-240 VAC

Hz(operating) 50/60

Weight 8.8lbs (4kg)

Illumination Level Setting continuous

Mode (imaging system) manual

(b) specifications

Figure 2.11: Xenon Nova 201315-20, Storz

X-Rite ColorCheckerr

The X-Rite ColorCheckerr is a unique test pattern,which is scientifically
designed to help determine the true color balance or optical density of any
color rendition system. It is an industry standard that provides a non-sub-
jective comparison with a “test pattern” of 24 scientifically prepared colored
squares. Each color square(or patch) represents a natural object-human
skin, foliage, blue sky, etc, providing a qualitative reference to quantifiable
values. Each color will reflect light in the same way in all parts of the visible
spectrum, thus maintaining color consistency over different illumination op-
tions. Some applications include spectroscopy, machine vision, photography,
graphic arts, electronic publishing, and television. It is ideal for testing and
standardizing color inspection and analysis systems.

The component of our hyper spectral imager, which is used as the target-
image, is the Large X-Rite ColorCheckerr #37-756, Edmund.

(a) product

Specifications

Length (inches) 8

Width (inches) 11.5

Number of Patches 24

RoHS Compliant

(b) specifications

Figure 2.13: X-Rite ColorCheckerr
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2.3 Scanning Procedure and Experimen-

tal Conditions

Figure 2.14: Purplish
Blue(patch no.8), Moderate
Red(patch no.9), Green(patch
no.14), Red(patch no.15)

The experimental hyper spectral scanning
procedure is conducted under darkness con-
ditions, with the only light contribution
that one of the selected light source. The
four patches of the X-Rite ColorCheckerr

shown in figure 2.14, are chosen to be the
target of scanning. The variable linear fil-
ter is being moved manually in front of the
CCD camera by the user. The step of the
filter movement does respond to 0.5 mm
in the stepper stage. It needs to be men-
tioned that the procedure starts when the
filter covers an initial small part of the CCD
camera and ends up when the whole filter
has passed through it. In this way, a com-
plete hyper spectral cube of images is obtained. The images are handled by
specific settings as far as gain, shutter and frame rate are concerned. These
parameters are set to values that best serve the calibration conditions of
experiment and camera equipment and at the same time prevent measure-
ments from being obscured and saturated. Furthermore, it should be stated
that a lot of attention is poured in the focusing of lens, so as to assure fo-
cused and clear images that will lead to an efficient reconstruction. All of
these procedures are taking place only once and before the beginning of
scanning in both set ups.

2.4 Reconstruction Algorithm

The main purpose of the reconstruction is to provide images that correspond
to a single specific wavelength across the whole region of the scanned area
of the filter. The images, captured by the aforementioned hyper spectral
scanning procedure, except for the first and the last one, contain a great
many of bands on account of the serial movement of filter. In other words,
the algorithm that is going to be developed, needs to be able to pinpoint and
separate the different spectral bands in the consecutive images. After having
successfully completed the separating section, the founded same bands in
the hyper spectral images must be processed [14] [15], and appropriately
connected in order to result in the reconstruction of the initial target-image
and thus, the acquisition of the reconstructed spectral cube.



32

In this point, it is important to state the criterion upon which the separation
of different spectral bands takes place and the kind of connection that is
required. The step of the filter movement is initially corresponded to 50
columns of each new scanned image. Being more specific, a step of 0.5 mm
of the filter movement through the CCD camera is algorithmically translated
to a shift of 50 columns between two consecutive scanned images. However,
this shift is parameterized in the respective code (algorithm 1) and assigned
to a lot of other values, whose behavior must be and is examined extensively
in the section “Results” (2.5).

The construction of the final spectral cube is based on the diagonal connec-
tion of the spectral bands. This kind of connection refers to three different
phases of scanning, that one till the total covering of image-target by the
filter, that of total covering and that of uncovering. As far as the till-cov-
ering part is concerned, each image adds a fixed number of columns to the
reconstruction till the maximum number of columns, provided by the type
of CCD camera used, is reached, whereas, the same number of columns are
subtracted during the till-uncovering process.

Figure 2.15 lends valuable insight to the conceptualization of the algorith-
mic concept mentioned above [16] [17]. In particular, it demonstrates the
consecutive steps of filter leftwise or rightwise through the CCD camera that
should be pinpointed in the scanned images. Then, the following diagonal
incorporation of all covering phases results in the reconstructed cube.
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(a) rightwise(scanning from left to right)
(b) leftwise(scanning from right to left)

Figure 2.15: Schematic Diagonal Reconstruction Of Spectral Cube
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2.5 Results

2.5.1 Spectral Cube Images & Spectra

It is expected that the patches would behave differently while the filter is
scanning the target-image. This can be justified by the fact that blue bands
cause illumination of blue patch, green bands of green patch, red bands of
red and moderate red patch, respectively. Thus, illumination of a specific
patch is accompanied with a sense of darkness for the rest of the three others.
The aforementioned alternation in illumination constitutes a good way to
confirm the efficient function of the reconstruction algorithm at a first stage.
Reconstructed spectral images consisted of different fixed number of columns
representing the step of the filter, are following. Estimated and reference
spectra are also included, so as to examine quantitatively the effectiveness
of our reconstruction.
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(a) 430 nm (b) 460 nm (c) 490 nm (d) 510 nm

(e) 520 nm (f) 540 nm (g) 555 nm (h) 575 nm

(i) 595 nm (j) 630 nm (k) 665 nm (l) 695 nm

(m) reference and estimated spectra

Figure 2.16: step of reconstruction 7−→ 50 columns



36

(a) 430 nm (b) 460 nm (c) 490 nm (d) 510 nm

(e) 520 nm (f) 540 nm (g) 555 nm (h) 575 nm

(i) 595 nm (j) 630 nm (k) 665 nm (l) 695 nm

(m) reference and estimated spectra

Figure 2.17: step of reconstruction 7−→ 100 columns
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(a) 430 nm (b) 460 nm (c) 490 nm (d) 510 nm

(e) 520 nm (f) 540 nm (g) 555 nm (h) 575 nm

(i) 595 nm (j) 630 nm (k) 665 nm (l) 695 nm

(m) reference and estimated spectra

Figure 2.18: step of reconstruction 7−→ 150 columns
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(a) 430 nm (b) 460 nm (c) 490 nm (d) 510 nm

(e) 520 nm (f) 540 nm (g) 555 nm (h) 575 nm

(i) 595 nm (j) 630 nm (k) 665 nm (l) 695 nm

(m) reference and estimated spectra

Figure 2.19: step of reconstruction 7−→ 200 columns
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(a) 430 nm (b) 460 nm (c) 490 nm (d) 510 nm

(e) 520 nm (f) 540 nm (g) 555 nm (h) 575 nm

(i) 595 nm (j) 630 nm (k) 665 nm (l) 695 nm

(m) reference and estimated spectra

Figure 2.20: step of reconstruction 7−→ 300 columns
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Judging by figures 2.16, 2.17, 2.18, 2.19 and 2.20, the required alterna-
tion in illumination of patches is achieved at all different selections of the
columns-step. However, a problem is derived, as far as the appearance and
quality of images are concerned. This does refer to the observation of stripes
of different intensity across the same spectral bands. Chances are that this
malfunction regards to the improper separation of the spectral bands. Al-
though, larger steps eliminate this phenomenon, they do not obliterate it.
As a result, there must be other approaches to the reconstruction rather
than corresponding a fixed number of columns-step to each step of the fil-
ter, which may lead to a more efficient solution.

Despite the fact that the reconstructed images leave a lot to be desired, a
great tendency of similarity is observed between the estimated and reference
spectra, as the comparisons suggest, except for the Purplish Blue patch. It
is necessary to mention that larger steps respond to lower values of mean
square error(mse) between the two curves and thus, to more efficient recon-
struction [13] [10]. The difference is not actually important, but this does
not mean that these stripes do not affect the estimation of spectra. So,
undistorted reconstructed images indicate efficiency and efficacy.

An other important issue that needs to be discussed is the difference of
spectra concerning the Purplish Blue patch. The low dynamic range of the
Halogen light source is responsible for this misalignment, which is solved
by replacing it with the Xenon light source, as it is analytically explained
in subsection 2.2.3 of this Chapter. Re-conducting the same experiments
under these circumstances, improves the aforementioned spectra estimation,
as expected (see figure 2.21).

Figure 2.21: Halogen vs. Xenon light source 7−→ reflectance of Purplish Blue
patch
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2.6 Brief Summary

Figure 2.22 provides a flow-diagram of all the procedures developed and pre-
sented in Chapter 2. Each part is represented by a rounded-corner rectangle
and constitutes a different phase of the total implementation.

Hyper Spectral Imager Set Up

Manual/Auto scanning procedure

Image Processing

Spectral Cube Reconstruction

Spectra Estimation

Evaluation

Figure 2.22: Flow-Diagram of the HSI implementation



Chapter 3

Algorithmic Prediction of Steps

3.1 Problem Definition

Although the estimation of spectra has been quite accurate and satisfying
(Chapter 2), the reconstructed images are “stripe-distorted”. This dis-
tortion does vary across the different spectral bands. Regardless the number
or the extent of stripes, the problem calls for solution, since these images
are far from being functional.

It should be reminded that the step of filter in front of the CCD responds to
0.5 mm, while capturing the images from the experimental scanning set up.
In addition, it should be mentioned that this step has been algorithmically
translated to a fixed number(e.g 50, 100, 150, etc.) of columns for each one
of the hyper spectral scanned images, so far.

The distorted appearance of the reconstructed cube images is likely to be
sparked by this initial fixed correspondence of steps. Being more spe-
cific, the aforementioned step of the filter should be assigned to a number of
columns that is not fixed, but repeatedly predicted by an appropriate opti-
mized algorithm [18] [11]. This does make sense since the step of the filter
can be steady and known in advance, whereas the number of columns that
belongs to a specific spectral band of a hyper spectral image cannot.

3.2 Software

The exact number of columns that must be leveraged to the reconstruction
of images as the filter is moving and scanning the “target-image”, is going to
be induced by an algorithm. This algorithmic approach is likely to pinpoint
the step interpreted in columns, between two consecutive scans. So, the
suggested algorithmic process works on two consecutive images each time
and ends up covering the whole set and thus, offering all the necessary steps
for the reconstruction.

After having successfully predicted the steps, an axis that incorporates them
is created for each spectral band. The connection of the axis’ points yields
the spectral cube images. The prediction of steps and diagonal incor-
poration of the columns-points render an innovative perspective to the
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implementation of the project and may be giving a head start to the proper,
non-distorted or at least improved reconstruction of images. A thorough pre-
sentation of the developed algorithms is going to offer insight to the points
mentioned above.

spectral posi-
tioning of a pixel

groupspectral
pixel neighbor-

hood positioning

step = new
Position -

old Position

prediction of all
spectral bands

reconstructed
spectal cube

connection
of the same

spectral bands

separation
of the same

spectral bands

Figure 3.1: Flow-chart of Dynamic Reconstruction presented in Chapter 3.

3.3 Preconception

The main idea of the algorithm that predicts the number of columns for each
step of the filter, is based on locating the number of columns of the last band
of the previous scan to the current one. At its essence, this change of position
in the oriented set of columns would result in the desirable shift. However,
the aforementioned algorithmic procedure is complicated and seeks further
explanation for complete conceptualization. On account of this complexity,
the presentation is going to be rather extensive and notably detailed.

As it has already been stated, the used “target-image” is consisted of four
different colored patches. Each patch is characterized by a unique spectrum.
This means that a region of a spectral curve may be flat in some consecutive
bands, while the same region of an other patch’s spectral curve may reflect
fluctuations. As a consequence, each image cannot be featured by a single
one step. On the contrary, the algorithm should be implemented in each
patch separately and exclude 4 different “step-results”.

The final choice of a single one step of each quartet has not been decided
yet. It is under trial phase and will be confirmed by the auto-step camera.
In this stage, the maximum of all 4 steps is chosen, due to the fact that a
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smaller step does not contain regions of a larger step and is more likely to
cause distorted images, earlier.

It is essential to underline that the algorithmic concept described above, re-
sponds specifically to the current target. Chances are that if a different target
was used, the proper prediction of steps would not have been possible. How-
ever, the elimination of stripes will be firstly examined in these four patches
of the color checker, and then, if applicable, the algorithmic procedure will
be expanded, in order to provide some kind of calibration for any kind of
target-images.

3.4 Algorithmic Prediction

The algorithmic function, which predicts the step between two consecutive
hyper spectral images, scans the bounds of each patch and tries to locate
the columns where the current spectrum and the spectrum of the previous
subelement have the minimum difference. The term spectrum indicates the
median value of a small neighborhood of pixels (algorithm 2). This quantity
constitutes the criterion that accounts for the comparison between the two
images.

Figure 3.2: subele-
ments for comparison

In this way, we will be able to pinpoint the change
of columns-position of filter at every new scan. Fig-
ure 3.2 depicts the bounds of each patch, as well as
how pixel-neighborhoods(or pixel-subelements) do
look like and are oriented. Subelements are cho-
sen in the middle of the picture in order to assure
uniform illumination conditions, which are essen-
tial for an efficient post processing.

Using algorithm 3 for each one of the four differ-
ent patches, yields four different steps of columns and their corresponding
spectral difference between the new and old position. As it has already been
mentioned, the criterion for the comparison is the minimum spectral dif-
ference. Table 3.1 contains the aforementioned steps along with spectral
differences for all four patches that are estimated for 10 consecutive scanned
images, as an example.
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Table 3.1: Steps and Spectral Difference of 4 Patches

Steps Spectral Difference

Patches

Green Red Purplish Blue Moderate Red Green Red Purplish Blue Moderate Red

218 157 110 80 0 0 0 0

156 150 155 86 0 0 0 0

178 96 118 95 0 0 0 0

151 85 139 82 0 0 0 0

152 106 154 82 0 0 0 0

137 158 158 89 0 0 0 0

151 108 155 96 0 0 0 0

112 158 137 95 0 0 0 0

151 128 178 287 0 0 0 0

99 157 153 352 0 0 0 0

As it is outlined, the largest step along with the minimum spectral difference
is chosen for the reconstruction. However, if the largest step is not accompa-
nied with the minimum difference of spectra, a smaller one with the second
minimum difference is selected. The aforementioned procedure is applied by
algorithms 4 and 5 , across the whole set of the scanned hyper spectral
images. After their successful execution, a column-axis is created, where the
columns correspond to the steps, which are included in table 3.2.

Table 3.2: Selected Step

218 156 178 151 154 158 155 158 287 352

Table 3.2 describes the last step between the previous and the current image
of hyper spectral scanning. However, apart from the first image, which only
contains one band and thus one step, the rest do contain more bands, which
demonstrate more steps. For example, the second image includes the second
and first band-step of the filter, the third image includes the third, second
and first band-step of the filter and so on, until the total bands-steps of
filter match the second dimension of scanned images, meaning the number
of columns. This task is being implemented by algorithm 6.

Giving table 3.2 as input into algorithm 6 yields table 3.3.

1 218 0 0 0 0 0 0

1 156 156+218=374 0 0 0 0 0

1 178 178+156=334 334+218=552 0 0 0 0

1 151 151+178=329 329+156=485 485+218=703 0 0 0

1 154 154+151=305 305+178=483 483+156=639 639+218=857 0 0

1 158 158+154=312 312+151=463 463+178=641 641+156=797 797+218=1015 0

1 155 155+158=313 313+154=467 467+151=618 618+178=796 796+156=952 952+218=1170=1024

1 158 158+155=313 313+158=471 471+154=625 625+151=776 776+178=954 954+156=1110=1024

1 287 287+158=445 445+155=600 600+158=758 758+154=912 912+151=1063=1024 0

1 352 352+287=639 639+158=797 797+155=952 952+158=1110=1024 0 0

Table 3.3: Axis of all Spectral Steps

Algorithm 7 is being executed right after algorithm 6. Taking the output
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of the latter as input into the first one, produces the new columns-bounds
for each one of the spectral cube images. The concept shown in figure
2.15, which is associated with the diagonal connection of spectral bands, is
fundamental for the appropriate reconstruction that we adopt.

The execution of the aforementioned algorithm results in the construction
of table 3.4. Being more specific, each row of the table indicates a spectral
band. In other words, the number of total rows equals to the total number of
the reconstructed spectral bands. For each spectral band, pairs of columns
that are algorithmically pinpointed through the consecutive hyper spectral
images, respond to separate sections of a spectral band.

1 218 156 374 334 552 485 703 639 857 797 1015 952 1024

1 156 178 334 329 485 483 639 641 797 796 952 954 1024

1 178 151 329 305 483 463 641 618 796 776 954 0 0

1 151 154 305 312 463 467 618 625 776 912 1024 0 0

1 154 158 312 313 467 471 625 758 912 0 0 0 0

1 158 155 313 313 471 600 758 952 1024 0 0 0 0

1 155 158 313 445 600 797 952 0 0 0 0 0 0

1 158 287 445 639 797 0 0 0 0 0 0 0 0

1 287 352 639 0 0 0 0 0 0 0 0 0 0

Table 3.4: Pre-Completed Axis Table

Columns across each row of table 3.4 correspond to the spectral bounds of
a specific wavelength that is being reconstructed. These bounds derive from
the consecutive scanned images and are expressed in pairs. The first number
of a pair illustrates the beginning and the second one the end of the specific
spectral section of the same spectral band. For example, if we elaborate on
the first row of the aforementioned table, we realize that there is a total of
14 columns, which indicates 7 pairs of columns (first pair: 1-218, last pair:
952-1024).

One last issue has been left in order to come up with the final axis of steps
that will lead to the functional reconstruction of images. This is exactly
where algorithm 8 lies. It is responsible for the proper behavior between
the pairs of columns. In other words, it checks the last bound of the current
pair and the first of the next one. Three different relations, which are going
to be explained through an example, are likely to arise. The appropriate
modifications are made, as well.

Consider that the pre-completed axis is the table 3.5.

Table 3.5: Example for conception of Algorithm 8

a b c d
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Then, the possible cases and their respective modifications may be:

i. if b = c, then c = c+ 1

ii. if c < b, then c = b+ 1

iii. if c > b, then c = c . loss of information in the reconstructed image

Inserting table 3.4 as input into algorithm 8, produces the results, which
are depicted in table 3.6. This table constitutes the final axis of steps, whose
appropriate connection gives the desirable reconstructed cube images.

1 218 219 374 375 552 553 703 704 857 858 1015 1016 1024

1 156 178 334 335 485 486 639 641 797 798 952 954 1024

1 178 179 329 330 483 484 641 642 796 797 1024 0 0

1 151 154 305 312 463 467 618 625 776 912 1024 0 0

1 154 158 312 313 467 471 625 758 912 0 0 0 0

1 158 159 313 314 471 600 758 952 1024 0 0 0 0

1 155 158 313 445 600 797 952 0 0 0 0 0 0

1 158 287 445 639 797 0 0 0 0 0 0 0 0

1 287 352 639 0 0 0 0 0 0 0 0 0 0

Table 3.6: zero-green values indicate the end of pairs of bounds for a specific
spectral band, light red non-zero values indicate uncompleted functional pairs of
bounds due to inadequate number of images that are used for this example, since
the execution of algorithms is being presented only in a subset of 10 images.

Algorithm 9 offers proper connection of the pairs-columns that are depicted
in table 3.6. Each row corresponds to a different reconstructed spectral cube
image. Repetitive automatic connection of bounds for all rows of table yields
the whole reconstructed spectral cube.

3.5 Results

3.5.1 Spectral Cube Images

The spectral cube images that are derived from the aforementioned algo-
rithmic prediction of steps are shown in figure 3.3.



48

(a) 430 nm (b) 445 nm (c) 500 nm (d) 510 nm

(e) 515 nm (f) 525 nm (g) 530 nm (h) 540 nm

(i) 550 nm (j) 555 nm (k) 570 nm (l) 640 nm

(m) 650 nm (n) 695 nm (o) 705 nm (p) 715 nm

Figure 3.3: Spectral Cube Images of dynamically predicted steps

It is obvious that although the stripes have been eliminated significantly, the
reconstruction is not functional due to the loss of information that is linked
to larger steps. There are images with empty columns, which means that
the algorithmic procedure leaks and thus, cannot be adopted. Furthermore,
it cannot be applied to other target-images as it should, in order to provide
some sort of calibration to the reconstruction that our HSI performs. As a
result, all these algorithmic procedures that have been presented in Chapter
3, contributed a lot to the elimination of abnormalities in the intensity of
reconstructed images and helped us verify that the step of columns is not
fixed, as it was proposed in the beginning. However, as long as the expected
results have not been reached, the research should be expanded.



Chapter 4

An Alternative Algorithmic
Prediction

Since the algorithmic procedures of fixed and dynamically predicted step
that have been implemented so far (Chapter 2 and 3), are far from pro-
viding an efficient reconstructed spectral cube, it is necessary to struggle to
come up with an other algorithm that may yields better results, as far as
the prediction of steps is concerned. A well known post processing imaging
technique is the execution of mathematical operations between the images
[19], because they can offer valuable information about the intensity of pixel
values without having an impact on the content [13]. The images we use
in order to reconstruct the cube, derive from the consecutive scanning of a
target-scene with the contribution of the variable filter. As a result, each
new image contains a new spectral band from the current scanning. This
means that if we subtract two consecutive images, we are supposed to find
the new inserted band, as the pixel values in this area will be differentiated.
So, previous bands will give differences very close to zero (not zero as we are
taking into consideration the existent noise) and the new inserted band will
yield differences far from zero. This discrimination from a specific thresh-
old is going to be the criterion of selecting the steps between two consecutive
hyper spectral scanned images.

For the time being, we are going to analyze thoroughly how is the aforemen-
tioned threshold selected. Firstly, we are subtracting the scanned images in
groups of two. Being more specific, this subtraction responds to the previous
and current image of scanning. In this way, a matrix with the differences
of pixel values is provided. The dimensions are the same with those of the
scanned images. The second step is to find the mean value of differences
across all columns of the matrix. This means that we have as many mean
values as the columns of the image. The next action concerns the estimation
of the median value [11] of all the mean values of the previous task. This
median value minus the very small number of 10−6, is the threshold that
is used for the discrimination between the previous and new spectral band.
The number of columns that are equal or smaller than this threshold con-
stitute the previous bands, at odds with the rest of columns that indicate
the new spectral band and thus, the step we are interested in. It is im-
portant to mention that the aforementioned discrimination is implemented
under strict algorithmic conditions due to the existent noise. It is crucial
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for the algorithm to find positions that conform to the criterion but they
are accompanied with a sense of continuity. For instance, we may find that
column 12 abides by the criterion and the next column that does so is the
100th. In this case, we choose 101 as the step and not 13.

The algorithmic approach of this Chapter is a kind of dynamic prediction
like the one presented in Chapter 3. As a result, a great many of algorithmic
functions remain the same. These correspond to the creation and connection
of the separate spectral bands. The only thing that is differentiated, is the
way the prediction of steps is being held. The functions that are responsible
for this differentiation are going to be analyzed in the next sections of this
Chapter.

4.1 Block Diagram of Implementation

subtraction
of consecutive

scanned images
step of last band

prediction of all
spectral bands

reconstructed
spectral cube

connection
of the same

spectral bands

separation
of the same

spectral bands

Figure 4.1: Flow-chart of the Alternative Dynamic Reconstruction

4.2 Developed Algorithms

After having successfully predicted the steps by subtraction of raw images
between two consecutive scans through algorithms 10, 11, 12, the previously
developed algorithms (6, 7, 8, 9) are being used for proper separation and
connection of all separate bands that yield the reconstructed images. De-
tailed description and execution of these algorithms are presented in Chapter
3 and specifically in section 3.4.
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4.3 Results

410 nm 415 nm 420 nm 425 nm

440 nm 445 nm 450 nm 455 nm

470 nm 475 nm 480 nm 485 nm

500 nm 505 nm 510 nm 515 nm
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530 nm 535 nm 540 nm 545 nm

560 nm 565 nm 570 nm 575 nm

590 nm 595 nm 600 nm 605 nm

620 nm 625 nm 630 nm 635 nm
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650 nm 655 nm 660 nm 665 nm

680 nm 685 nm 690 nm 695 nm

710 nm 715 nm 720 nm 725 nm

740 nm 745 nm 750 nm 755 nm

Figure 4.4: Reconstructed Cube Images with dynamically predicted steps by sub-
traction of Raw Hyper Spectral Images

4.4 Efficiency

The efficiency of such an algorithmic procedure does cling to a uniform and
satisfactory performance for all kinds of target-images being used. This fact
demonstrates that the step of the filter should be responded to the same
columns-steps for each spectral band, no matter what is the content or
texture of the target-scene. In other words, some sort of calibration should
be applied and offer a clear reconstruction for all cases. That makes sense
since the movement of the filter in each spectral band remains the same at
every hyper spectral scanning procedure of our HSI. As a consequence, the
step of columns that responds to the movement of filter should be the same,
as well.

Taking all these into consideration, it is obvious that an effective algorithmic
approach for the reconstruction we present, should hardly be affected by the



54

type of target-image being used. Letting alone the target-image, the devel-
oped algorithmic function must produce the same columns-steps for every
performed reconstruction. Arguably, this is an apparent way to check the
efficiency of the alternative algorithmic approach that is being described in
this Chapter. Performing a great many of dynamic predictions at different
targets, we realize that not only are the columns-steps across the same spec-
tral bands differentiated, but also the reconstruction is getting distorted by
stripes. This result holds important evidence that although this algorithmic
approach is effective for the initial target-image we used, it is not able to
provide our HSI with a globally efficient reconstruction. To sum up, this
alternative algorithmic approach is inappropriate.



Chapter 5

Further Investigation

The implementations developed in Chapters 2 and 3 aimed at the Black
and White(BW) reconstruction of Hyper Spectral Cubes. The inefficient re-
sults led us to the decision of further investigating the problem we encounter.
It seems to be prevalent and we should cope with this situation, even if it
is unlikely to find a solution. Outlining the factors that contribute to this
malfunction of our imaging system would be evenly important. Elaborat-
ing on the behavior of the scanned hyper spectral images and performing
color reconstruction [15] are going to be the two main subjects of this Chap-
ter.

5.1 Raw Hyper Spectral Images

The Hyper Spectral Images provided by the scanning procedure need to be
probed in detail, since the reconstructed images result from parts of them.
Diagrams of spectra and histograms are going to be plotted in different pixel
positions of the same patches across the whole scanned cube, so as to outline
the shifts in spectra and the number of pixel counts, as far as the intensity
values are concerned. Such information would be valuable and useful in
order to specify the answer to our problem. The raw images used for the
estimations come from both HSIs, manual-step and auto-step.
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5.1.1 Manual HSI

(a) Purplish Blue (b) Moderate Red

(c) Green (d) Red

Figure 5.1: Manual HSI

Looking at figure 5.1, we observe that all patches, except for the Purplish
Blue one that is too noisy to extract any conclusions, there are shifts across
the different positions inside the same patches, but they are extremely nar-
row and not wide, as expected. It seems that the inserted bands resulting
from the movement of the filter, are very close. As a result, very small
spectral differences are indicated in consecutive pixel positions. Histograms
[11] comprise similar intensities and some unremarkable but expected shifts,
as well. Letting alone the spectral shifts, the distribution of pixel values
[13] should remain unaffected, as it is indicated by the diagrams. However,
chances are that noise and reflections of light in the set up account for some
small deviations.
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5.1.2 Auto HSI

(a) Purplish Blue (b) Moderate Red

(c) Green (d) Red

Figure 5.2: Auto HSI

Figure 5.2 does absolutely confirm the results from the previous figure,
which pinpoints convergence between the manual-step and auto-step HSI.
It should be stated that accuracy in the movement of the filter is provided
and this is why the shifts of spectra are even more narrow than the previous
diagrams of the manual-step set up. We see evidence that the movement of
the filter in front of the CCD camera is accompanied with the insertion of
bands that cover a big part of the sensor and thus, a big part of the new
scanned image. As a consequence, there is enough distance between the
pixels of the previous and the current scan. This is exactly where the wide
steps of columns that are introduced by our algorithmic implementation so
far, lie.
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5.2 Color Reconstruction

Color Reconstruction consists the second landmark in our attempt to cue a
response towards the problematic reconstruction. We are replacing the BW
CCD camera with a color(COL) one and re-conducting the hyper spectral
scanning experiments. The reconstruction is implemented with the fixed
and dynamically predicted steps, so as to examine whether or not the
spectral bands are separated correctly from the hyper spectral scanned im-
ages and then are connected properly. This task is within the gasp of our
investigation and is expected to demystify an explanation, if not a solution,
to our problem.

5.2.1 Fixed-Step

(a) 430 nm (b) 435 nm (c) 455 nm (d) 480 nm

(e) 500 nm (f) 510 nm (g) 520 nm (h) 525 nm

(i) 530 nm (j) 545 nm (k) 560 nm (l) 575 nm

(m) 585 nm (n) 600 nm (o) 620 nm (p) 625 nm

Figure 5.3: step of color reconstruction 7−→ 50 columns
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(a) 430 nm (b) 445 nm (c) 455 nm (d) 465 nm

(e) 480 nm (f) 510 nm (g) 530 nm (h) 550 nm

(i) 560 nm (j) 570 nm (k) 580 nm (l) 590 nm

(m) 600 nm (n) 610 nm (o) 620 nm (p) 655 nm

Figure 5.4: step of color reconstruction 7−→ 100 columns
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(a) 430 nm (b) 445 nm (c) 455 nm (d) 465 nm

(e) 480 nm (f) 510 nm (g) 530 nm (h) 550 nm

(i) 560 nm (j) 570 nm (k) 580 nm (l) 590 nm

(m) 600 nm (n) 610 nm (o) 620 nm (p) 655 nm

Figure 5.5: step of color reconstruction 7−→ 200 columns

Looking carefully at figures 5.3 , 5.4 and 5.5 , we realize that smaller fixed
steps are accompanied with improper separation of spectral bands. Being
more specific, small steps require a large number of scanned images in order
to form a reconstructed band and this fact allows the insertion of next bands
of the variable filter that should be corresponded to other spectral images.
For instance, a blue image ends up containing green bands, if the step is
assigned to 50 columns. Increasing the number of columns improves the
reconstruction, but still yields stripes.

An other important issue that should be mentioned is that these stripes
are not uniformly distributed in all spectral bands. This is sparked by the
fact that although the filter is characterized as being linear, it contains
some deviations across the wavelength range. They are not important but
still can have great impact on the processing. As a consequence, different
wavelengths respond to different shifts. This not absolutely linear corre-
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spondence accounts for the fact that a fixed number of columns-steps may
be sufficient for some spectral bands but insufficient for some others. As
a conclusion, it is possible to find a large fixed step that would perform a
satisfactory reconstruction for the majority of images, but it is unlikely to
achieve a reconstruction totally free of stripes.

5.2.2 Dynamically Predicted-Step

(a) 430 nm (b) 445 nm (c) 455 nm (d) 465 nm

(e) 480 nm (f) 510 nm (g) 530 nm (h) 550 nm

(i) 560 nm (j) 570 nm (k) 580 nm (l) 590 nm

(m) 600 nm (n) 610 nm (o) 620 nm (p) 655 nm

Figure 5.6: dynamically predicted color reconstruction

Judging by figures 5.3, 5.4, 5.5 and 5.6, it is obvious that neither fixed-step
nor dynamically predicted-step algorithm does render the color reconstruc-
tion effective. However, color reconstruction shed light on the reason why
is the distortion of images more intense with smaller steps. So, we end up
to the conclusion that large column-steps are generally needed for each step
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of the filter, in order to avoid spectral contamination. Although such an
improvement is crucial for the quality of the reconstructed cube, it does not
guarantee the total attenuation of stripes. There are still images, which are
distorted, but the number of them has been markedly reduced. The problem
is pretty deeply ingrained and may pertain to reasons that go beyond the
scope of our approach.



Chapter 6

Final Implementation

The algorithmic techniques that have been followed so far and pertain to
the reconstruction of hyper spectral cubes, have not been able to come up
with reconstructed images of high quality, as required. The reasons for
this malfunction vary and depend on the developed algorithmic concept.
We have dealt with reconstructed images marked by stripes (Chapter 2,
Chapter 5), reconstructed images that miss spectral information (Chapter
3, Chapter 5) and clear reconstructed images but only with specific target-
images (Chapter 4). All these methods have been consecutively developed
in order to sidestep all of the aforementioned problems. However, none of
them have led to successful results.

Chances are that the reason for this malfunction may be deeply ingrained
in issues, such as the incorporation of the hardware of our HSI, the
distance between the CCD camera and the variable edge filter, the
consecutive and physically inevitable reflections of light inside the
filter due to its thickness, the leak of some bands that concerns
the “no slit-scan” technique we have adopted and the single-time
calibration before the beginning of the hyper spectral scanning.
All these factors render our HSI extremely sensitive to intrinsic and external
phenomena, which are not easily retreated.

In this Chapter, we are going to apply a method to measure exactly the
columns of each new inserted spectral band, as strictly as it is possible.
Assuring that the columns-steps in each step of the filter is not erroneous
will give our investigation a head start. Not only is our research going to
be limited in the domains mentioned above, but it is also likely to realize
that the functionality of the introduced reconstruction cannot be completed
with perfection.

6.1 Measuring the Step of Filter

Our auto-step HSI is programmable to take shots by doing equal movements
of the motor step across the wavelength range. It should be mentioned
that the amount of movement is changeable by having parameterized the
respective code. Being more specific, it is possible to reduce or increase the
distance of the filter’s movement inside the CCD camera during the hyper
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spectral scanning procedure. This refers to the alternation of a parameter in
the arduino file that controls the movement of the filter. Smaller movement
of the filter step indicates a total number of more scanned images than larger
movement does. Despite the distance of filter’s movement, it is crucial to
measure exactly the step of columns. This is implemented by processing a
small number of the first scanned images. In the very beginning of the hyper
spectral scanning, the CCD camera is not totally covered by the filter. In
this way, the end of the filter is visible as “no-content” information in the
scanned image. This “no-content” information is moved in the next scan.
Marking and pinpointing the exact position of these two consecutive “no-
content” regions in scanned images result in estimating the step of columns
that responds to the step of the filter. Subtracting the two column-positions
gives us the desired step. We are going to perform a lot of experiments with
different parameters in order to test and characterize the performance of the
HSI.

6.2 Experiments

Our first attempt has been held by reducing the movement of the motor step.
Although the reconstructed images have been improved, the stripes have not
been totally attenuated. The same experiments have then been conducted
by augmenting the movement of the motor step of the filter. The big-
ger the step of the filter, the more distortion in the reconstructed
images.

6.2.1 Calibration

Since the distortion still remains, we are going to perform calibration in
each individual spectral band, as far as the values of shutter and gain are
concerned. It is important to mention that the scanning procedure of the
previous implementations was not individually calibrated at each step. This
may significantly contributed to the creation of these stripes of different
shadings.

6.3 Algorithmic Procedure

The exact measurement of the step of filter indicates that it is fixed with
an unremarkable deviation approximately up to 5 columns. This fact spurs
the application of the fixed-step algorithmic reconstruction (algorithm
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1), which is notably developed in Chapter 2 and specifically in section
2.4.

6.4 Results

6.4.1 Step of 30 columns

The hyper spectral scanning procedure yields a total of 350 images. The re-
constructed images are algorithmically created by incorporating 30 columns
of each new scanned spectral band. Figures 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7
depict instances of the reconstructed cube at all different spectral regions of
the variable filter.

Figure 6.1: Ultra Violet Region
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Figure 6.2: Violet Region
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Figure 6.3: Cyan Region
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Figure 6.4: Green Region
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Figure 6.5: Yellow Region
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Figure 6.6: NIR Region
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Figure 6.7: IR Region

Looking carefully at figures listed right above, it is demonstrated that we
have come up with a remarkably improved cube reconstruction at odds with
all the previous implementations. However, some bands of the filter and
precisely the yellow and NIR region (figures 6.5 and 6.6 respectively) are
still problematic. This misalignment will be the incentive for an intrusion
to the hardware of the set up. Being more specific, attempts to reduce the
distance between the filter and CCD camera will be conducted. In this way,
physical phenomena like consecutive reflections and alternations in direction
of light, which enhance the vulnerability of the set up during scanning, are
likely to be eliminated.

It is necessary to mention that the reconstructed images regarding this im-
plementation are not accompanied with their exact wavelength, because
different movement of the motor step does require different correspondence.
What is more, it is important to evaluate whether the too small movements
we have provoked, such as 30 or 60 columns, truly indicate different spectral
bands or not. Results of larger movements of the motor step have not been
cited, since the reconstruction they perform is much more distorted.



Chapter 7

Modulation Transfer Function

7.1 Introduction

Most optical systems are expected to perform to a predetermined level of im-
age integrity. Photographic optics, photolithographic optics, contact lenses,
video systems, fax and copy optics are included in the list of such optical
systems. A convenient and reliable measure of this quality level is the abil-
ity of the optical system to transfer various levels of detail from object to
image. Imaging performance is measured in terms of contrast (degrees of
gray) or modulation, and is related to the degradation of the image of a
perfect source produced by the lens.

Modulation Transfer Function (MTF) 1, is one of the most important
and fundamental parameters by which image quality is measured. Optical
designers and engineers frequently refer to MTF data, especially in applica-
tions where success or failure is contingent on how accurately a particular
object is imaged. To truly grasp MTF, it is necessary to first understand
the ideas of resolution and contrast, as well as how an object’s image is
transferred from object to image plane. While initially daunting, under-
standing and eventually interpreting MTF data is a very powerful tool for
any optical designer. With knowledge and experience, MTF can make se-
lecting the appropriate lens a far easier endeavor, despite the multitude of
offerings.

The Modulation Transfer Function (MTF) constitutes, as the name suggests,
a measure of the transfer of modulation (or contrast/sharpness) from the
subject to the image. In other words, it measures how faithfully the system
reproduces (or transfers) detail from the object to the image produced by
the lens. It is generally expressed as the ratio of the relative image contrast
divided by the relative object contrast:

Modulation Transfer Function =
Relative Image Contrast

Relative Object Contrast

(7.1.0.1)

1http://www.trioptics.com/knowledgebase/mtf.php
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So, the sharpness of an imaging system or of a component of the system
(lens, film, image sensor, scanner, enlarging lens, etc.) is characterized by
the MTF, which is also known as Spatial Frequency Response (SFR)
2. It is the contrast at a given spatial frequency relative to low frequencies.
High spatial frequencies correspond to fine image detail. The more extended
the response, the finer the detail, the sharper the image produced by the
system. [20]

7.2 The Components Of MTF

As it has been previously mentioned, it is necessary to first define two terms
regarding MTF, which are required in order to truly characterize image
performance:

i. resolution

ii. contrast

7.2.1 Resolution

Resolution 3 is an imaging system’s ability to distinguish object detail. It
is often expressed in terms of line-pairs per millimeter (where a line-pair
is a sequence of one black line and one white line). This measure of line-
pairs per millimeter (lp/mm) is also known as frequency. The inverse of the
frequency yields the spacing in millimeters between two resolved lines. Bar
targets with a series of equally spaced, alternating white and black bars are
ideal for testing system performance . For all imaging optics, when imaging
such a pattern, perfect line edges become blurred to a degree, like in figure
7.1. High-resolution images are those which exhibit a large amount of detail
as a result of minimal blurring. Conversely, low-resolution images lack fine
detail.

2http://en.wikipedia.org/wiki/Spatial_frequency
3http://en.wikipedia.org/wiki/Optical_resolution

http://en.wikipedia.org/wiki/Spatial_frequency
http://en.wikipedia.org/wiki/Optical_resolution
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Figure 7.1: Perfect Line Edges before and after passing through a low-frequency
pattern (left), high-frequency pattern (right), their corresponding MTF value (bot-
tom).

A MTF curve is represented above. The x-axis represents the spatial fre-
quency in line pairs per mm (here on the image sensor). The maximum
attainable frequency on the sensor is called the Nyquist frequency and cor-
responds to alternating dark and bright lines one pixel wide. The y-axis
(MTF value) represents the contrast restitution for the corresponding spa-
tial frequency. This value is between 0 and 100%, meaning complete oblit-
eration or perfect restitution of the frequency, respectively. The value of the
MTF at frequency 0 is always 100% since a flat field is considered to have
been reproduced perfectly, with no intensity loss. Attenuation due to lens
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transmission is measured separately.

A practical way of understanding line-pairs is to think of them as pixels on a
camera sensor, where a single line-pair corresponds to two pixels (see figure
7.2). Two camera sensor pixels are needed for each line-pair of resolution:
one pixel is dedicated to the red line and the other to the blank space between
pixels. Using the aforementioned metaphor, image resolution of the camera
can now be specified as equal to twice its pixel size.

Figure 7.2: Imaging Resolution Scenarios where (a) the line-pair is not resolved
and (b) the line-pair is resolved.

7.2.2 Contrast/Modulation

Consider normalizing the intensity of a bar target by assigning a maximum
value to the white bars and zero value to the black bars. Plotting these values
results in a square wave, from which the notion of contrast can be more easily
seen in figure 7.3. Mathematically, contrast is calculated with equation
(7.2.2.1), which is known as Michelson contrast equation:

Contrast/Modulation =
Imax − Imin
Imax + Imin

(7.2.2.1)
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Figure 7.3: Contrast expressed as a square wave at different levels of resolution.

Based on equation (7.2.2.1), MTF is defined as:

MTF (f) =
Mcaptured(f)

Moriginal(f)
(7.2.2.2)

where Mcaptured and Moriginal are the modulations of the captured and the
original image target respectively. The original target modulations are ac-
companied with the manufacturer.

When this same principle is applied to the imaging example in figure 7.1,
the intensity pattern before and after imaging can be seen in figure 7.4.
Contrast or Modulation can then be defined as how faithfully the minimum
and maximum intensity values are transferred from object plane to image
plane.

To understand the relation between contrast 4 and image quality, consider an
imaging lens with the same resolution as the one in figure 7.1 and figure 7.4
, but used to image an object with a greater line-pair frequency. Figure 7.5
illustrates that as the spatial frequency of the lines increases, the contrast
of the image decreases. This effect is always present when working with
imaging lenses of the same resolution. For the image to appear defined,
black must be truly black and white truly white, with a minimal amount of
grayscale between.

4http://en.wikipedia.org/wiki/Contrast_(vision)

http://en.wikipedia.org/wiki/Contrast_(vision)
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Figure 7.4: Contrast of a low-frequency bar target.

Figure 7.5: Contrast of a high-frequency bar target.

The point at which we can no longer see any variation in the image, as in
the end of figure 7.6 (defined as straight line at a middle intensity value), is
the point at which MTF is zero and that is the definition of the “resolution”
of the lens. In this case, the final pattern set with an MTF value a little bit
larger than zero, is classified as “just resolved” 5 by the lens.

5http://www.photo.net/learn/optics/mtf/

http://www.photo.net/learn/optics/mtf/
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Figure 7.6: A → original test pattern, B → image of the test pattern produced by
the lens, C → spatial-line profile of the original test pattern (white → 255, black
→ 0), D → spatial-line profile of the image of the test pattern produced by lens
(white → 255, black → 0).The fluctuations of MTF values are depicted in diagram
D, where the value of 0.1 responds to the state of “just being resolved”.

7.3 What Do the Numbers Really Mean?

Now that the components of the Modulation Transfer Function (MTF),
resolution and contrast/modulation, are defined, consider MTF itself.
The MTF of a lens, as the name implies, is a measurement of its ability to
transfer contrast at a particular resolution from the object to the image. In
other words, MTF consists a way to incorporate resolution and contrast into
a single specification. As line spacing decreases and thus frequency increases
on the test target, it becomes increasingly difficult for the lens to efficiently
transfer this decrease in contrast and as a result, MTF decreases.

Line pairs 6 are often described in terms of their frequency; the number of
lines which fit within a given unit. This frequency is usually expressed in
terms of lp/mm, indicating the number of line pairs that are concentrated
into a millimeter(mm). Alternatively, sometimes this frequency is instead
expressed in terms of cycles/mm or line widths (LW), where two LW’s
equals to one lp.

MTF is a function of spatial resolution f, which refers to the smallest fre-
quency, depending on the test method, the system can resolve. The cut-off
frequency fc is the frequency that MTF reaches zero and is given by equation
(7.3.0.3):

6http://en.wikipedia.org/wiki/Line_pair

http://en.wikipedia.org/wiki/Line_pair
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fc =
1

λ× F#
(7.3.0.3)

F# 7 is the f-stop number, which is defined as the focal length divided by
the diameter of the lens :

F# =
focal length

diameter
(7.3.0.4)

As we deal with the mathematical and physical background of the Modu-
lation Transfer Function [21], spread and transfer functions that contribute
to the calculation of the aforementioned quantity are introduced. In the
optical-image capture system lies the formula:

g(x, y) = h(x, y) ∗ ∗f(x, y) (7.3.0.5)

It should be mentioned that (x, y) are the spatial co-ordinates; f(x, y) is
the original input image; g(x, y) is the captured image; h(x, y) is considered
as the system’s impulse response; ∗∗ denotes 2d-convolution. When equa-
tion (7.3.0.5) is converted into the frequency domain, equation (7.3.0.6) is
derived:

G(u, v) = H(u, v)× F (u, v) (7.3.0.6)

In equation (7.3.0.6), (u, v) are the co-ordinates in frequency domain; G(u, v),
F (u, v), H(u, v) are the fourier transform of the captured image, original
input image and impulse response function, respectively. H(u, v) is also de-
fined as the transfer function. When H(u, v) is normalized to have the unit
value at zero spatial frequency, if applicable, H(u, v) is referred to as the
Optical Transfer Function (OTF) 8.

OTF is a complex function, having both the magnitude 9 and phase 10

portion. The magnitude portion is referred to as the Modulation Transfer
Function (MTF) and the phase portion as the Phase Transfer Function
(PTF):

7https://en.wikipedia.org/wiki/F-number
8http://en.wikipedia.org/wiki/Optical_transfer_function
9http://en.wikipedia.org/wiki/Magnitude_(mathematics)

10http://en.wikipedia.org/wiki/Phase_factor

https://en.wikipedia.org/wiki/F-number
http://en.wikipedia.org/wiki/Optical_transfer_function
http://en.wikipedia.org/wiki/Magnitude_(mathematics)
http://en.wikipedia.org/wiki/Phase_factor
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OTF = H(u, v) = | H(u, v) | e−jθ(u,v) (7.3.0.7)

MTF ≡ | H(u, v) | (7.3.0.8)

PTF ≡ θ(u, v) (7.3.0.9)

When the input image is a delta function δ(x, y), we will have the captured
output image as a Point Spread Function (PSF) 11:

PSF (x, y) ≡ g(x, y) = h(x, y) ∗ ∗δ(x, y)

= h(x, y) (7.3.0.10)

When the input image is a line like:

f(x, y) = δ(x)1(y) (7.3.0.11)

Then the output image g(x, y) is a Line Spread Function (LSF):

LSF (x) ≡ g(x, y) = h(x, y) ∗ ∗f(x, y)

= h(x, y) ∗ ∗[δ(x)1(y)]

= PSF (x, y) ∗ ∗[δ(x)1(y)] (7.3.0.12)

The y direction convolution with a constant is equivalent to an integration
over the y direction, so:

LSF (x) =

∫ +∞

−∞
h(x, y′) dy′ (7.3.0.13)

11http://en.wikipedia.org/wiki/Point_spread_function

http://en.wikipedia.org/wiki/Point_spread_function


81

Therefore, we can tell that the MTF of the x direction is the magnitude of the
one-dimensional Fourier transform of the line spread function (LSF):

MTF (u) = MTF (u, 0) = | F{LSF (x)} | (7.3.0.14)

When the input image f(x, y) is a step function:

f(x, y) = u(x)1(y) (7.3.0.15)

Then the output image g(x, y) is an Edge Spread Function (ESF):

ESF (x) ≡ g(x, y) = h(x, y) ∗ ∗f(x, y)

= h(x, y) ∗ ∗[u(x)1(y)]

= PSF (x, y) ∗ ∗[u(x)1(y)] (7.3.0.16)

The convolution between the PSF and a constant produces an LSF in the y
direction; the convolution between the PSF and a unit-step function is an
integration:

ESF (x) =

∫ x

−∞
LSF (x′) dx′ (7.3.0.17)

Therefore, the derivative of the ESF generates the LSF in the x direc-
tion:

d

dx
ESF (x) =

d

dx

∫ x

−∞
LSF (x′) dx′ = LSF (x) (7.3.0.18)

Thus, MTF of the x direction can also be calculated from the ESF:

MTF (u) = MTF (u, 0)

= | F{LSF (x)} |

= | F{ d
dx
ESF (x)} | (7.3.0.19)
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7.3.1 Overall Imaging MTF Perfomance

In traditional system integration (and less crucial applications), the sys-
tem’s performance is roughly estimated using the principle of the weakest
link. The principle of the weakest link proposes that a system’s resolution
is solely limited by the component with the lowest resolution. Although
this approach is very useful for quick estimations, it is actually flawed be-
cause every component within the system inserts error to the image, yielding
poorer image quality than the weakest link alone.

Every component within a system has an associated modulation transfer
function (MTF) and, as a result, contributes to the overall MTF of the sys-
tem. This includes the imaging lens, camera sensor, image capture boards,
and video cables, for instance. The resulting MTF of the system is the
product of all the MTF curves of its components, as it is depicted in figure
7.7.

Figure 7.7: System-MTF is the Product of the MTF of Individual Components:
Lens MTF × Sensor MTF = Overall System MTF .

MTF is one of the best tools available to quantify the overall imaging perfor-
mance of a system in terms of resolution and contrast. As a result, knowing
the MTF curves of each imaging lens and camera sensor within a system
allows a designer to make the appropriate selection when optimizing for a
particular resolution.

7.4 Methods and Test Targets

Three different kinds of resolution targets are usually used in order to mea-
sure MTF:

i. slanted-edge or knife-edge target

ii. sine-wave target
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iii. grill or bar pattern target

Further analysis and elaboration concerning individually each one of the
aforementioned cases are following.

7.4.1 Slanted-Edge/Knife-Edge Analysis

Slanted-edge target is a square target that contains four slanted edges. These
are contrast edges compared with the background. The method used to mea-
sure MTF by slanted-edge target is called slanted-edge method or slanted-
edge analysis. Figure 7.8 illustrates a widespread preferred target for this
type of MTF analysis.

Figure 7.8: QA-62 target for slanted-edge MTF analysis.

The basic idea for this method is that after having the ESF, we get the LSF
by estimating the first derivative of ESF, and then the prime type of MTF
by computing the Fourier transform of the LSF. The normalized aforemen-
tioned Fourier transform constitutes the Spatial Frequency Response (SFR),
denoted as the MTF. The flowchart depicted in figure 7.9 provides a thor-
ough inspection of this concept.



84

Start

Region of Interest (ROI)

Gray balance, density calibration

2-D resolution conversion Edge Spread Function

First derivative Line Spread Function

Fourier Transform Modulation Tranfer Function

End

Figure 7.9: Flow-chart of the slanted-edge method.

7.4.2 Sine-Wave Target Analysis

Figure 7.10: Sine Wave Target M-13-
60-1x

Sine-wave analysis is performed by
the contribution of the appropriate
sine-wave targets, like this one de-
picted in figure 7.10. Each of the
sinewave patterns has a different
frequency. There exist two different
ways to estimate Modulation Trans-
fer Function using this kind of anal-
ysis:

i. Direct method

ii. Fourier method

The modulation of captured images
in such cases is calculated using equation (7.4.2.1).

Modulation(f) =
Fundamental Frequency Component

DC Component
(7.4.2.1)

Direct Sine-Wave Method

The flowchart of the direct method is shown in figure 7.11. When getting the
captured image, the averaged peak value along with the mean value(direct
component) of the sinewave are calculated. Two auxiliary steps have to be
completed before the modulation is computed: gray balance and density
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calibration of the reflective target. The modulation is based on the optical
density, using equation (7.4.2.2):

Modulation =
A−B
B

(7.4.2.2)

Figure 7.11: Flow chart of the direct method using sine-wave target.

Fourier Sine-Wave Method

The flowchart of the Fourier analysis method is shown in figure 7.12.The
difference between the Fourier and the aforementioned Direct method is that
after doing the Fourier analysis, equation (7.4.2.3) is utilized to compute the
modulation.

Modulation =
2× F (N)

F (0)
(7.4.2.3)

Figure 7.12: Flow chart of the fourier analysis method using sine-wave target.

It is necessary to clarify that F (0) is the DC component energy and F (N) is
the energy at N , where N is the number of sinusoidal cycles in the selected
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Region of Interest. Fourier analysis has its advantage over the direct method
because by Fourier transformation, we can effectively suppress the random
white noise.

7.4.3 Grill/Square-Wave Analysis Pattern

An accurate sinewave target is very dificult to fabricate if we want only the
single frequency in the sinusoidal function. Therefore, sometimes we use
the grill/bar/square wave target, as the one depicted in figure 7.13, which
is much easier to produce. The depicted numbers indicate the line pairs per
millimeter (lp/mm).

Figure 7.13: Grill Pattern Target

However, we similarly use the direct method for sinewave target, the ratio of
the captured and the original modulation is larger than the MTF due to the
fact that the bar pattern has lots of frequencies except for thr fundamental
frequency. As a result, unnecessary energy will be included. Contrast
Transfer Function (CTF) 12 is defined, for an infinite square wave, as
the ratio of the captured and original modulations, which is similar to the
MTF defined for the sinewave target. Coltman formulas yield the following
equations between MTF and CTF:

MTF (f) =
π

4

(
CTF (f) +

1

3
CTF (3f)−

1

5
CTF (5f) +

1

7
CTF (7f) +

1

11
CTF (11f)−

1

13
CTF (13f) + · · ·

)
(7.4.3.1)

CTF (f) =
4

π

(
MTF (f)−

1

3
MTF (3f) +

1

5
MTF (5f)−

1

7
MTF (7f) +

1

9
MTF (9f)−

1

11
MTF (11f) + · · ·

)
(7.4.3.2)

Considering the Coltman formulas in order to calculate the MTF, a set of
higher harmonically related frequencies for CTF measurement. Neverthe-

12http://en.wikipedia.org/wiki/Contrast_transfer_function

http://en.wikipedia.org/wiki/Contrast_transfer_function
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less, it is impractical to have many harmonic frequencies. Therefore, the
first term of equation (7.4.3.1) stands as the approximate MTF.

MTF (f) ' π

4
CTF (f) (7.4.3.3)

As equation (7.4.3.3) indicates, CTF is usually higher than the according
MTF. If the measured CTF is directly considered as the MTF, without
multiplying the CTF quantity by π

4 , a high-biased MTF is obtained. Like
the sinewave pattern, grill pattern also is characterized by two different
methods:

i. Direct method

ii. Fourier method

Direct Grill Pattern Analysis

The direct method of the grill pattern requires one more step than the
sinewave target, as the ratio of the modulations is the CTF. So, it is essential
to multiply CTF by the factor of π

4 , in order to acquire MTF.

Fourier Grill Pattern Analysis

The Fourier method of the grill pattern analysis has two differences com-
pared to the respective method of the sinewave target. The first one is the
multiplication of CTF by π

4 , so as to get MTF. The second and the last one
is that the modulation of the Fourier method needs to be normalized by
4
π :

Modulation =

2F (N)
F (0)(

4
π

) (7.4.3.4)

7.4.4 Comparison of Methods

The aforementioned MTF analysis methods along with their test targets are
useful when evaluating or calibrating an imaging system’s perfomance or
image quality. This could include troubleshooting the system, certifying or
evaluating measurements, as well as establishing a foundation to ensure the
system works well with another. Image quality can be defined by different
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components, particularly resolution, contrast, modulation transfer function
(MTF), depth of field (DOF) 13, and distortion; therefore, one or more types
of test targets may be necessary or helpful depending upon the type of sys-
tem being constructed or what does it need to be measured. Fortunately,
an array of targets exists that cater towards specific systems including cam-
eras, visual displays, or even a single, thin lens. Table 7.1 summarizes the
potential of each method [22], whose selection would lead to the appropriate
test target.

ANALYSIS PROS CONS

Slanted-Edge single measurement, sim-
pler and more popular
method, edges are easy
to generate, super-sam-
pling to improve spatial
resolution of analysis

further computational,
long post-processing of the
measurement(e.g subpixel
localization, robust model
fitting, Hough transform),
limited variety of test
targets

Sine-Wave direct way to measure the
signal constrast as a func-
tion of frequency, pattern
where the optical density
varies between black and
white smoothly, line pro-
file looks like a sine-wave,
image quality information
over a full range of fre-
quencies instead of only the
maximum obtainable res-
olution, suppress random
white noise

measurement not in the
same form as the image in-
formation is encoded, dif-
ficult to produce, lots of
measurements, the image
of such patterns is hard to
measure by eye

Square-Wave easy generation of such
patterns, direct use of
Michelson equation ei-
ther in spatial(direct
method) or frequency
domain(fourier method),
measurement in the same
form as the image informa-
tion is encoded

small distortion (not im-
portant) in the MTF, be-
cause transferring CTF to
MTF is not a simple linear
transformation and yields a
slightly higher MTF, lots of
measurements

Table 7.1: Comparison of available methods for MTF analysis

13http://en.wikipedia.org/wiki/Depth_of_field

http://en.wikipedia.org/wiki/Depth_of_field
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ANALYSIS DIRECT FOURIER

Sine-Wave MTF (f0) =
Mf0

out

Mf0
in MTF (f0) =

2Ff0 (N)

Ff0 (0)

Square-Wave MTF (f0) = π
4CTF (f0) MTF (f0) =

2Ff0 (N)

Ff0 (0) /
4
π

Table 7.2: Sine-Wave vs. Square-Wave analysis

Despite the method that is adopted for measuring a system’s performance,
there exists a great number of other factors that influence MTF measure-
ments. It is important to take into consideration each one of them, so as to
minimize the inserted error in estimations, sparked by the environment or
the equipment. The most important factors causing abberations are listed
below:

i. Field Position

ii. Spatial Orientation

iii. Focal Length

iv. Numerical Apperture (NA)

v. Light Wavelength

vi. Light used for Illumination (blue light gives higher MTF than red
light. Normally, white light is used)

vii. Size of Sensor

viii. Type of Sensor (if the sensor is more sensitive to blue than red light,
the result will be a higher MTF than a detector more sensitive to red)

7.5 Characterization

7.5.1 Characterization of our HSI

Taking seriously into consideration the contents of table 7.1, we adopt the
square-wave pattern analysis. Our first priority was to create the ap-
propriate software for our HSI from scratch. So, this task would be suitably
accompanied with the development of a method that has rarely been used
so far. In this way, slanted-edge analysis is being excluded as there are
a lot of developed software systems that perform this kind of MTF mea-
surements. SFRedge is the most prominent of them, contributed by Peter
D.Burns.
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Among sine-wave and square-wave pattern analysis, we ended up to the
latter, as it provides the eligibility through the direct method to process the
signals in the spatial domain where the image information is encoded and
should be handled. However, the same processing could be implemented in
the frequency domain as well, providing us with the ability to compare the
two different ways of the same method.

As it is widely known, there is always a trade-off for all engineering issues.
In this case, we prefer a more direct method with lots of measurements
and a little distortion rather than a pre-existed, further computational but
single measurement method (slanted-edge analysis) or a direct but only per-
formed in the frequency domain and eye-inconvenient method (sine-wave
analysis).

7.5.2 Test-Target

Resolution and constrast test targets use a variety of patterns, depending on
the adopted processing method, to measure an optical system’s resolution.
Test Targets often feature an array of lines, dots, or other patterns to which
an imaging system focuses on, in order to determine its level of precision.
They do allow imaging systems to maintain a high level of accuracy over
time or multiple applications.

Being more specific, square-wave analysis is performed by test patterns
of consecutive bar patterns with augmented frequency. Such targets feature
series of lines of specific frequencies that measure resolution by determining
how far an imaging system can distinguish individual lines. The more dif-
ferent groups of variable frequencies in the test-target, the wider range of
tested resolution the system reaches.

Variable Frequency Target #43−488 from Edmund Optics, which is depicted
in figure 7.14, meets the requirements for a successful MTF square-wave
analysis. It is made from soda lime float glass, which is transparent in the
visible region, with deposited chromium of optical density greater than 3.0.
Further technical information is provided by table 7.3.
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Figure 7.14: The Target we use to evaluate resolution of the Spectral Imager:
Edmund Variable Frequency Target #43− 488

Dimensions (inches) 2× 2

Pattern Size (mm) 25.4× 39.37

Resolution Range (lp/mm) 5− 200

Wide Step Size (mm) 1

Step Increments (lp/mm) 5

Edges beveled

Thickness (mm) 1.5

Flatness (mm) 0.00254

Surface Quality 40− 10

Substrate Soda Lime Float Glass

Optical Density (OD) ≥ 3.0

Coating Vacuum deposited durable
chromium

Table 7.3: Technical information of resolution target #43− 488.

It is important to mention that this kind of target and analysis correspond
to the evaluation of the overall MTF system performance, as it has been ex-
tensively discussed in section 7.3.1. Specialized methods that go far beyond
our implementation along with necessary feedback from the constructors are
required in order to be able to estimate MTF of the separate components
of an imaging system, such as the lens and sensor alone.

7.5.3 Experimental Set-Ups For Measuring MTF

As it has already been stated, the Hyper Spectral Imager we introduce,
consists of two different set-ups, the manual-step, which is the initial con-
struction, and auto-step. The first one is accompanied with the manual
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movement of the filter in front of the CCD sensor, while the second one has
been advanced to an automatic stepper filter scanning. As a consequence,
the auto-step set up enhance the precision of measurements since the exact
movement of the filter is guaranteed across all steps and experimental con-
ditions are more ideal due to the enclosed automatic set up. As a result,
noise and light from the environment are eliminated. Moreover, calibration
is provided. All these facts influence the overall performance of the spectral
imager. So, a different and specifically a better MTF behavior is expected
by the automatic one. We are going to examine the MTF performance of
each set-up separately. However, the measurements are going to be taken
in the same wavelengths, so as to provide comparable results.

7.5.4 MTF of Hyper Spectral Scanning Procedure
of HSI

MTF performance is being depicted in figures 7.16 for the manual and 7.18
for the automatic HSI. Each one of these figures shows the raw overall
MTF for a specific wavelength of the imaging system in the frequency range
between 0 lp/mm, where the system’s efficiency to transfer contrast from
object to the image captured by the system is maximum and 70 lp/mm,
where we can no longer see any variation in the image, meaning that this
is the point at which MTF reaches zero. This is also called “cut-off fre-
quency”. 65 lp/mm and 50 lp/mm are the points at which MTF is a little
bit larger than zero in the auto-step and manual-step HSI, respectively. In
this case, the final pattern set is classified as “just being resolved”.

In this point, we should concentrate on estimating the maximum resolution
reached by the specifications of the lens and properties of the CCD sensor
being used, in order to verify the results, as far as the spatial frequencies
are concerned. The maximum resolution can be evaluated theoretically.
The resolution of our CCD sensor is 1024 × 768, meaning that there are
1024 pixels in width. In order to detect line pairs, one pixel for the white
space and an other one for the black space are needed. So, one line pair
corresponds to 2 pixels. In our case, a maximum of 1024/2 = 512 lp can be
recorded. Furthermore, the sensor measures 7 mm across, which indicates a
maximum resolution of 512/7 ≈ 73 lp/mm, which is close to 50 lp/mm and
even closer to 65 lp/mm, where our HSIs, not alone the lens, just resolve
the pattern.
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MTF perfomance of manual-step HSI

(a) 400 nm (b) 555 nm (c) 730 nm

Figure 7.15: captured MTF target of Manual HSI

(a) 400 nm (b) 555 nm (c) 730 nm

Figure 7.16: Raw MTF of Manual Set Up

MTF perfomance of auto-step HSI

(a) 400 nm (b) 555 nm (c) 730 nm

Figure 7.17: captured MTF target of auto-step HSI
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(a) 400 nm (b) 555 nm (c) 730 nm

Figure 7.18: Raw MTF

Comparisons

Plotting all MTF curves of the three different chosen wavelengths in a com-
mon diagram gives us the opportunity to compare the performance in dif-
ferent spectral bands of the filter. Based on the properties ( see table 2.2 )
of the variable filter being used, it is expected that the bands in the range
of 400-745 nm would have the best response due to the specification of 97%
transmission. On the other hand, spectral bandwidth in the range of 330-400
nm are expected to join a worse response, as the transmission in this area is
fluctuated between 50% and 97%. However, judging by the figure 7.19, we
realize that the two different HSIs correspond to different performances in
the same wavelengths.

Being more specific, only the auto-step HSI abides by the expected perfor-
mance mentioned above. This includes better performance in 730 and 555
nm, and worse in 400 nm. This behavior is verified by looking at figure
7.19b. However, the manual HSI does not follow the expected behavior.
Figure 7.19a shows better MTF performance in 400, 555nm and worse
performance in 730 nm. In this point, it should be stated that we have in-
troduced and implemented a method for measuring the net total MTF of
an imaging system and not the MTF of separate components alone. This
net MTF represents the combined result from lens, camera sensor, filter, raw
conversion, in addition to any sharpening and other post-processing. The
construction of the manual HSI was the initial set up, so there were a lot
of leaks that justify the respective MTF performance, which is boosted by
upgrading the set up to the auto-step.

Furthermore, the specifications of the HSI, we introduce, hold a fundamental
role. It is far from the “slit-scan” technique. This factor indicates possible
deviation in the outgoing wavelengths of the scanning procedure due to con-
secutive reflections and alternations in the direction of light. The use of the
slit guarantees limitation and accuracy, as far as the movements of the filter
across the spectral range, are concerned. It is also important the fact that
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the tasks of lens’ focusing and camera’s calibration take place once, before
the beginning of the hyper spectral scanning procedure. As a consequence,
although each spectral band of the filter may require extra intervention for
capturing a perfect image, this is not possible in one scanning for our HSI.
For instance, an image that is not so well focused or illuminated gives a poor
MTF estimation. This is the reason why the captured images of the MTF
target(7.15 and 7.17) are cited, apart from their MTF curves.

Considering all these parameters provides justification of the unexpected
MTF performance in the three tested wavelengths.

(a) manual HSI (b) auto HSI

Figure 7.19: MTF performances of Hyper Spectral Scanning procedure in the three
different chosen wavelengths

Looking at figures 7.19a and 7.19b more closely, we get a first, superficial
impression of low MTF performance and extensively, low imaging efficiency
of both systems, especially of the manual-step one. Conspicuous low MTF
values are observed even in low spatial frequencies of 5 and 10 lp/mm. In
addition, both systems after reaching a specific spatial frequency, tend to
decrease slowly with increasing spatial frequency. In this range till the cut-
off frequency is touched, MTF values with some oscillations, are observed.
These oscillations indicate very small increments and decrements between
increasing frequencies. This situation is known as “spurious-resolution”
and is of practical importance with respect to focus-errors and motion-in-
duced blurring. Undesirable reflections between the optical surfaces, light
scattering at the interior barrel components and noise may affect a lot the
total net MTF of our imaging system. Although all these erroneous factors
cannot be seen with naked eye, they distort the final results, even if the
quality of captured images is not as bad as the MTF values indicate.

As a result, resolving power and contrast rendition of a total imaging system
are two characteristics too close and too far at the same time. We should be
very careful with such MTF characterizations and remember that good MTF
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values are no guarantee for brilliant images and vice versa. The overall MTF
performance is strictly associated with all possible technical and physical
misalignments, which sometimes may be inevitable.

Manual vs. Auto-Step HSI

Figure 7.20: Manual vs. Auto-Step HSI MTF performance of Hyper Spectral
Scanning.

As expected, auto-step HSI yields a better MTF performance than the man-
ual-step HSI. It is important that the resolution of the automatic imaging
system has been augmented by at least 20% in each measured frequency
compared to the prime, manual set up. The imaging efficiency has been
markedly improved and provides us with a final, balanced and quite satis-
factory appraisal over a continuum of spatial frequencies, keeping in mind
all physical problems and motion artifacts that such an imaging device may
encounter, especially without a slit.
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Auto-Step HSI with slit vs. without slit

Figure 7.21: Auto-Step HSI “with slit” vs. “without slit” MTF performance of
Hyper Spectral Scanning.

The last task was to evaluate the MTF perfomance of the HSI we intro-
duce, by adopting the slit-scan technique. In this way, we have been able to
ensure less quantity of incoming light and thus, minimize spectral contam-
ination during the hyper spectral scanning procedure. Phenomena such as
light scattering, consecutive reflections and possible alternations in the light
direction are eliminated, as well. As a result, the spatial and spectral reso-
lution are boosted, which means that the MTF performance is improved, as
we can realize by looking at figure 7.21. This figure depicts the comparison
between the HSI with and without a slit entrance, and the supremacy of
the first on the second one. It is essential to mention that the set up we
have constructed, can be easily modified in order to hold or not a slit, based
on the type of application being developed. Our priority for this project,
was to perform the reconstruction of the hyper spectral scanning without a
slit, but it was also important to see the difference in resolving power of the
same set up equipped with the slit entrance.
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7.5.5 MTF of Reconstruction Procedure

Figure 7.22: MTF Performance along Reconstructed Images #1 − 18. All of
them contain stripes. However, the greater the wavelength, the lighter the intensity
of stripes.

As far as the caption of figure 7.22 indicates, the MTF performance of
the reconstructed spectral cube in bands distorted by stripes, is quite sat-
isfactory. The colorbar shows the direction of the filter’s hyper spectral
scanning. Looking at MTF curves more closely, we realize that the MTF of
reconstruction follows the same pattern as that one of the scanning proce-
dure, which was analytically presented in section 7.5.4. Being more specific,
this pattern refers to the augmentation of MTF values as the wavelength is
increasing. Conspicuous low values are observed in UV and Violet region.
However, greater values up to 25% are depicted in frequencies between 0
and 25 lp/mm. Larger values of frequency are accompanied with low values
of resolution, exactly as it was captured in the hyper spectral scanning MTF
performance. It is important that the different functions of our HSI pertain
to similar MTF evaluations. The thinking goes that this fact indicates a
verified overall appraisal.
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Figure 7.23: MTF Performance along Reconstructed Images #19− 36. None of
them does contain stripes.

Figure 7.24: MTF Performance along Reconstructed Images #37− 54. None of
them does contain stripes.

Figures 7.23 and 7.24 depict the MTF performance of reconstruction of
larger wavelength bands, green and red, respectively. It is deduced that in-
creased values are obtained, especially in the first three variable frequencies,
5, 10 and 15 lp/mm. In general, the MTF performance is enhanced com-
pared to that one of smaller wavelengths. However, it is of great importance
that there are no stripes in these reconstructed images. Some signs of spu-
rious resolution at values equal or greater than 20 lp/mm are pinpointed,
as well. Meanwhile, keeping in mind that a group of spectral bands are
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not perfectly reconstructed, we hold evidence that the performance of the
reconstruction is as satisfactory as this one of the hyper spectral scanning
function.

7.6 Developed Software For MTF Esti-

mation

As it has been analytically presented in section 7.5.1, we choose to develop
a software that performs the direct square-wave MTF analysis, whose
implementation dates back to section 7.4.3.

A Graphical User Interface (GUI) for direct square-wave MTF analysis
has been developed due to the multiple needs of our laboratory to charac-
terize the performance of a great number of optoelectronic imaging systems.
The concept of implementation was conformed to the chosen #43−488 Ed-
mund test target and respective mathematical background that square-wave
analysis requires.

The user of the aforementioned GUI will be asked to deal with the environ-
ment that is shown in figure 7.25.

Figure 7.25: Snapshot of MTF-GUI environment.

Firstly, user has to choose the image of test target that is captured by the
imaging system, whose performance is being tested through the “image-
button”. The wavelength at which the image is being shot as well as the
lens aperture, are being asked as an input before moving on. Secondly,
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pressing the “mtf-button” opens the previously selected image and gives
user the opportunity to select a region of interest (ROI) in a specific fre-
quency, or otherwise a specific group of lp/mm. The Modulation Transfer
Function is being estimating in this area and the result along with the spa-
tial profile are depicted. This process can be repeated for as many variable
frequencies as the user wants. After having evaluated the mtf-value at the
desirable frequencies, there is a “plot-button”, whose clicking offers the
mtf-curve across the frequencies that user has inserted before. Data, in-
cluding mtf values and respective frequencies, are saved into text(.txt) and
excel(.xls) files for further possible post processing. Furthermore, diagrams
can also be saved by pressing the “save-button”. There are two more
buttons left. The “clear session-button”, which clears the existent mea-
surements and prepares the system for a new mtf evaluation session. Last
but yet important, the “close-button” is responsible for closing the GUI
application.

A flow chart of the described procedure that user should follow in order to
come up with the desirable mtf results of the tested system, is illustrated in
figure 7.26 for better understanding.
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Start

Image captured image

wavelength, aperture
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continue
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End

choose

give
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view

yes

no

Figure 7.26: Flow-chart for the MTF evaluation of a specific spectral band.

The function of GUI while performing the flow of chart 7.26 is depicted in
figure 7.27:
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Figure 7.27: MTF-GUI performing evaluations.



Chapter 8

Conclusion and Future Work

The HSI that has been presented so far is fully equipped with the functions
of hyper spectral scanning and reconstruction of spectral cubes. Calibration
and configuration settings consist fundamental parts of this imaging system,
which could find prospective application on medicine, agriculture, surveil-
lance, mineralogy, astronomy and environment. The principal conclusion is
that this type of imaging system is able to provide functional hyper spec-
tral and single-spectral images across the electromagnetic spectrum divided
into many more close bands, beyond the scope of human eye. The spectral
response of the depicted visual material/sample conveys useful information
as far as its composition and behavior are concerned in multidimensional
spaces, which is strictly associated with non-invasive and non-destructive
analysis.

Despite the fact that the HSI is provided with live display of the hyper
spectral scanning procedure, the reconstruction procedure is not real-time.
It requires the completion of the hyper spectral acquisition first. Curse of
dimensionality is a fact for these structures of data. Furthermore, time
complexity for acquiring the reconstructed spectral cube is O(n3), where n
represents the number of scanned images. The light throughput is extremely
high due to the non slit-scan technique and photobleaching phenomena are
kept away giving HSI a promising perspective for the protection of the tested
samples. The system’s MTF performance is satisfactory, which means that
the HSI is endowed with a good level of resolution and contrast.

The fact that the development of the HSI is completed within the require-
ments of this thesis does not indicate that there is not any potential of
further improvement and perfection. Being more specific, we have exten-
sively coped with the problem of distorted and low-quality reconstructions.
Although there has been important improvement throughout the implemen-
tation of this project, the procedure of reconstruction has not been perfected
due to physical and constructive misalignments that may require long time
of research and experimental trials. As a consequence, there exists strong
evidence that the hyper spectral camera we introduce is efficient and it
can be even more in terms of the reconstruction procedure and thus, light
throughput.
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Algorithm 1 Algorithmic Diagonal Reconstruction of Spectral Cube

Require: images respond to the raw images of the hyper spectral scanning procedure, step to

the fixed number of columns for each step of the filter, reverse to the direction of scanning

which can be either rightwise(reverse = 0) or leftwise(reverse = 1).

1: function createSpectalCube(images, step, reverse)

2: [a, b, c, z]← size(images); . c responds to the dimensionality of color coordinates, z
to the total number of raw images

3: cubeImage← zeros(a, b, c, z);

4: if (reverse == 0) then

5: for i← 1 to z do

6: axis← [0 : step : b, b];
7: x← 1;
8: pic← i;

9: for j ← 1 to (length(axis)− 1) do

10: if pic ≤ z then

11: cubeImage(:, ((axis(x) + 1) : axis(x + 1)), :, i)←
12: images(:, ((axis(x) + 1) : axis(x + 1)), :, pic);

13: x← x + 1;
14: pic← pic + 1;

15: end if

16: end for

17: end for

18: else

19: for i← 1 to z do

20: num← ceil(b/step) + 1;
21: axis← zeros(1, num);
22: h← b;

23: for k ← 1 to num do

24: if k == 1 then

25: axis(1, k)← h;

26: else

27: h← h− step;

28: if (h == 0) then

29: h← 0;

30: end if

31: axis(1, k)← h;

32: end if

33: end for

34: x← 1;
35: pic← i;
36: for l← 1 to (num− 1) do

37: if pic ≤ z then

38: cubeImage(:, ((axis(1, x + 1) + 1) : axis(1, x)), :, i)←
39: images(:, ((axis(1, x + 1) + 1) : axis(1, x)), :, pic);

40: x← x + 1;
41: pic← pic + 1;

42: end if

43: end for

44: end for

45: end if

46: return cubeImage; . 3-D matrix of the reconstructed cube

47: end function
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Algorithm 2 Estimating Spectrum of a pixel-neighborhood

Require: r1, r2, c1, c2 demonstrate the bounds of a subelement inside a patch. Specifically,

r1 and r2 respond to the lower and upper bound of rows, whereas c1 and c2 to the lower and

upper bound of columns respectively.

1: function estimateSpectrum(image, r1, r2, c1, c2)

2: spectrum← median(median((image((r1 : r2), (c1 : c2)))));

3: return spectrum; . spectrum of a (r2− r1)× (c2− c1) pixel-neighborhood

4: end function
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Algorithm 3 Step of columns of a single patch

Require: r1 and r2 respond to the lower and upper bound of rows, whereas c1 and c2 to

the lower and upper bound of columns respectively, len is the number of columns that a

subelement has, colSub is the number of first column of the patch’s subelement, previousSpec

consists the spectrum of the subelement of the previous image, threshold is used to minimize

the difference of spectrums.

1: function PredictedStepForEachPatch(image, len, c1, c2, r1, r2, colSub, previousSpec, threshold)

2: addTo← (len− 1);
3: iterTill← (c2− addTo);
4: axisOfPatch← [c1 : iterTill];
5: metric← zeros(length(axisOfPatch), 1);

6: for i← 1 to length(axisOfPatch) do

7: metric(i)← abs(estimateSpectrum(image, r1, r2, axisOfPatch(i),
8: (axisOfPatch(i) + addTo))− previousSpec);

9: end for

10: minimumMetric← min(metric);

11: if (minimumMetric ≤ threshold) then

12: [row, column]← find(metric == minimumMetric);

13: if (length(row) == 1) then

14: position← axisOfPatch(row);

15: else

16: positionPro← axisOfPatch(row);
17: stepPro← abs(positionPro− colSub);
18: [r, c]← find(stepPro == max(stepPro));
19: if (length(c) == 1) then

20: position← positionPro(c);

21: else

22: position← stepPro(c(end));

23: end if

24: end if

25: step← abs(position− colSub);
26: verify ← abs(estimateSpectrum(image, ri, r2, position, (position + addTo))
27: −previousSpec);

28: if ((verify −minimumMetric) == 0) then

29: fprintf(′′Criterion Satisfied.′′);

30: else

31: fprintf(′′Criterion Not Satisfied.′′);

32: end if

33: newPosCol← position;
34: newPosColEnd← (newPosCol + addTo);

35: else

36: step← 0;
37: newPosCol← 0;
38: newPosColEnd← 0;
39: fprintf(′′None Satisfactory Citerion.′′);

40: end if

41: return step, newPosCol, newPosColEnd; . step, first and last column of new position.

42: end function
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Algorithm 4 Choice Of The Appropriate Step Between Two Consecutive Scans

Require: stepsArray demonstrate the steps and specArray the spectral differences of the

four patches. For instance, if we consider the first row of table 3.1 , stepsArray responds

to columns 1-4, whereas specArray to columns 5-8, columns to the number of columns of

images.

1: function chooseStepsFrom4Patches(stepsArray, specArray, columns)

2: [r, c]← find(stepsArray(1, :) == max(stepsArray(1, :)));

3: if (length(c) == 1) then

4: if (specArray(1, c) == min(specArray(1, :))) then

5: stepToChoose← stepsArray(1, c);

6: else

7: [r, c]← find(specArray(1, :) == min(specArray(1, :)));

8: if (length(c) == 1) then

9: stepToChoose← stepsArray(1, c);

10: else

11: temp← stepsArray(1, c);
12: stepToChoose← max(temp);

13: end if

14: end if

15: else

16: if (stepsArray(1, c(1)) == columns) then

17: len← length(c);
18: sortedStepsArray ← sort(stepsArray(1, :), ascend);
19: if (length(sortedStepsArray) == len) then

20: stepToChoose← stepsArray(1, c(1));

21: else

22: sortedMinus← sortedStepsArray(1 : (end− len));
23: len← length(sortedMinus);
24: array ← zeros(1, len);
25: for i← 1 to len do

26: [r temp, c temp]← find(stepsArray(1, :) == sortedMinus(i));
27: array(1, i) = ctemp;

28: end for

29: if ((len > 1) && (len < 4)) then

30: if (specArray(1, array(1)) == specArray(1, array(2))) || (specArray(1, array(1)) >
31: specArray(1, array(2)))) then

32: stepToChoose← sortedMinus(end);

33: else

34: stepToChoose← sortedMinus(1);

35: end if

36: else

37: stepToChoose← sortedMinus;

38: end if

39: end if

40: else

41: [r1, c1]← find(specArray(1, c) == min(specArray(1, c)));
42: if (length(c1) == 1) then

43: stepToChoose← stepsArray(1, c(c1));

44: else

45: stepToChoose← stepsArray(1, c(c1(1)));

46: end if

47: end if

48: end if

49: return stepToChoose; . step between two consecutive images

50: end function
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Algorithm 5 Choice Of The Appropriate Step Between All Consecutive Scans

Require: steps4Patches demonstrate the table 3.1 .

1: function choosingForAllPatches(steps4Patches, columns)

2: [a, b]← size(steps4Patches);
3: steps← zeros(1, a);

4: for i← 1 to a do

5: steps(1, i)← chooseFromSteps4Patches(steps4Patches(i, (1 : 4)),
6: steps4Patches(i, (5 : 8)), columns);

7: end for

8: return steps; . matrix with the steps for all the hyper spectral images

9: end function
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Algorithm 6 Produce Axis Of Steps

Require: shiftMatrix responds to the axis obtained by algorithm 5, limit to the second

dimension of scanned images(number of columns).

1: function produceAxis(shiftMatrix, limit)

2: b← length(shiftMatrix);

3: for i← 1 to (b− 1) do

4: check ← 1;
5: counter ← 0;
6: index← i + 1;
7: pivot1← index;

8: for k ← 1 to index do

9: if (check == 1) then

10: if (k == 1) then

11: axis(i, k)← 1;

12: else if (k == 2) then

13: axis(i, k)← shiftMatrix(1, index);

14: else

15: previous← k − 1;
16: pivot1← pivot1− 1;
17: axis(i, k)← axis(i, previous) + shiftMatrix(1, pivot1);

18: end if

19: if (axis(i, k) ≥ limit) then

20: counter ← counter + 1;

21: if (counter == 1) then

22: axis(i, k)← limit;
23: check ← 2;

24: end if

25: end if

26: end if

27: end for

28: end for

29: return axis; . pre completed total axis

30: end function
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Algorithm 7 Pre-Complete The Total Axis Of Steps

Require: oldAxis responds to the axis obtained by algorithm 6, limit to the second dimension

of scanned images(number of columns).

1: function precompleteAxis(oldAxis, limit)

2: [rows, cols]← size(oldAxis);

3: for i← 1 to rows do

4: pic← i;
5: cleft← 1;
6: counter ← 1;

7: for k ← pic to rows do

8: if (oldAxis(k, cleft) > 0) && (oldAxis(k, cleft) < limit) then

9: if (oldAxis(k, (cleft + 1)) ≤ limit) then

10: axis(pic, counter)← oldAxis(k, cleft);
11: axis(pic, (counter + 1))← oldAxis(k, (cleft + 1));
12: if (axis(pic, (counter + 1)) == limit) then

13: break;

14: end if
15: cleft← cleft + 1;
16: counter ← counter + 2;

17: end if

18: end if

19: end for

20: end for

21: return axis; . pre completed total axis

22: end function
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Algorithm 8 Complete The Total Axis Of Steps

Require: precompletedAxis responds to the pre-completed axis obtained as output by the

previously described algorithm 7, limit to the second dimension of scanned images(number

of columns).

1: function completeAxis(precompletedAxis, limit)

2: [rows, columns]← size(precompletedAxis);

3: for i← 1 to rows do

4: for j ← 2 : 2 to (columns− 2) do

5: if (precompletedAxis(i, j + 1) 6= 0) then

6: if (precompletedAxis(i, (j + 1)) == precompletedAxis(i, j)) then . case i

7: precompletedAxis(i, (j + 1))← (precompletedAxis(i, (j + 1)) + 1);

8: else if (precompletedAxis(i, (j + 1)) < precompletedAxis(i, j)) then . case ii

9: precompletedAxis(i, (j + 1))← (precompletedAxis(i, j) + 1);

10: else . case iii

11: precompletedAxis(i, (j + 1))← precompletedAxis(i, (j + 1));

12: end if

13: end if

14: end for

15: [a, b]← find(precompletedAxis(i, (1 : end)) == 0);

16: if (length(b) ≥ 1) then

17: if (precompletedAxis(i, (b(1)− 1)) < limit) then

18: precompletedAxis(i, (b(1)− 1))← limit; . if the second column of last pair is less than
19: . limit, it is then assigned to the value of limit
20: end if

21: end if

22: end for

23: return finalAxis; . completed, final axis for reconstruction

24: end function
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Algorithm 9 Connect The Axis of Cube Images

Require: axis responds to the output-axis of algorithm 8, images to the whole set of images

obtained by the hyper spectral scanning procedure, upRow, downRow to the first and last

row of axis.

1: function connectAxisCube(axis, images, upRow, downRow)

2: [rows, columns]← size(axis);
3: [a, b, c, z]← size(images);
4: cubeImage← zeros(a, b, c, rows);

5: for i← upRow to downRow do

6: pic← i;

7: for j ← 1 : 2 to (columns− 1) do

8: if (axis(i, j + 1) > 0) then

9: cubeImage(:, (axis(i, j) : axis(i, j + 1)), :, i)← images(:, (axis(i, j) : axis(i, j + 1)), :, pic);
10: pic← pic + 1;

11: end if

12: end for

13: end for

14: return spectralCube; . reconstructed spectral cube images

15: end function
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Algorithm 10 Detects the first column that abides by the threshold

Require: columnsOfMedian responds to the columns that are equal or smaller than the

threshold, subset to the continuous number of columns that we want the criterion to be

valid, threshold to the aforementioned threshold.

1: function detectFirstData(columnsOfMedian, subset, threshold)

2: len← length(columnsOfMedian);

3: for i← 1 to (len− subset) do

4: counter ← 0;
5: for j ← i to (i + (subset− 2)) do

6: if (abs(columnsOfMedian(j)− columnsOfMedian(j + 1)) <= threshold) then

7: counter ← counter + 1;

8: end if

9: end for

10: if (counter == (subset− 1)) then

11: firstDataPoint← columnsOfMedian(i);
12: break;

13: end if

14: end for

15: return firstDataPoint; . number of first column that responds to the criterion

16: end function
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Algorithm 11 Detects the last column that abides by the threshold

Require: columnsOfMedian responds to the columns that are equal or smaller than the

threshold, subset to the continuous number of columns that we want the criterion to be

valid, startSearch to the number of column before the last column that the search starts,

threshold to the threshold that derives from the criterion.

1: function detectLastData(columnsOfMedian, subset, startSearch, threshold)

2: len← length(columnsOfMedian);

3: for i← (len− startSearch) to (len− subset) do

4: counter ← 0;
5: for j ← i to (i + (subset− 1)) do

6: dif ← abs(columnsOfMedian(j)− columnsOfMedian(j + 1));
7: if (dif ≥ threshold) then

8: counter ← counter + 1;

9: end if

10: end for

11: if (counter ≥ 1) then

12: lastDataPoint← columnsOfMedian(i);
13: if (lastDataPoint < 200) then

14: lastDataPoint← columnsOfMedian(end);

15: end if
16: break;

17: else

18: lastDataPoint← columnsOfMedian(end);

19: end if

20: end for

21: return lastDataPoint; . number of last column that responds to the criterion

22: end function
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Algorithm 12 Finds the columns-step between two consecutive scans

Require: limit1 and limit2 respond to allowed number of candidate first columns, maxCol

to the second dimension of images(number of columns), firstDataPoint to the output of

algorithm 10, lastDataPoint to the output of algorithm 11.

1: function findStep(limit1, limit2, maxCol, firstDataPoint, lastDataPoint)

2: if ((firstDataPoint ≤ limit1) && (lastDataPoint ≤ maxCol)) then

3: stepColumn← (lastDataPoint + 1);
4: if (stepColumn > maxCol) then

5: stepColumn← maxCol;

6: end if

7: else if ((firstDataPoint ≥ limit2) && (lastDataPoint ≤ maxCol)) then

8: stepColumn← (firstDataPoint− 1);

9: else

10: stepColumn← −10;
11: fprintf(“Wrong Prediction”);

12: end if

13: return stepColumn; . step expressed in columns between two consecutive scans

14: end function
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