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Abstract 
 

We  report  the  first  real-time  spectral  mapper based  on  the  combination  of  snap-shot  spectral  

imaging  and spectral  classification  algorithms.  High  accuracy  is accompanied  with  much  faster,  

by  3  orders  of  magnitude, spectral mapping, as compared with scanning spectral systems. This new 

technology is intended to enable spectral mapping at nearly video rates in all kinds of dynamic bio-

optical effects as well as in applications where the target-probe relative position is randomly and fast 

changing. With this system adapted to a thin hysteroscope for imaging of the endometrial tissue, we 

also report, for the first time, spectral analysis of the endometrium and unsupervised/objective 

clustering of the spectra.  We  have implemented  a method combining the k-means algorithm with 

the  silhouette  criterion  for  estimating  the  number  of  the distinguishable spectral classes that 

may correspond to different medical conditions of the tissue. It was found that there are five-well 

defined clusters of spectra, while preliminary clinical data seem to correlate well with the tissue 

pathology.  
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Introduction 
 

Spectral Imaging (SI) has the unique advantage of combining the advantages of both imaging and 

spectroscopy (high spatial and spectral resolution) in a single instrument. In SI, light intensity is 

recorded as a function of both wavelength and location. In the image domain, the data set includes 

a full image at each individual wavelength. In the spectroscopy domain, a fully resolved spectrum at 

each individual pixel can be recorded. Multiple images of the same scene at different wavelengths 

are acquired in time sequence for obtaining the spectra.  

Unlike images taken with standard color (RGB) cameras, SI information is not discernible to the 

human eye. In SI, a series of images is acquired at many wavelengths, producing the so-called spectral 

cube. Each pixel in the spectral cube, therefore, represents the spectrum of the scene at that point. 

The nature of imagery data is typically multidimensional, spanning spatial and spectral dimensions 

(x, y, λ).  

Over the last decade SI development and applications was increasingly migrating from defense 

domain towards prevalently civilian uses, mainly being driven by biomedical applications. SI is the 

first choice analytical technology for these applications due to the high heterogeneity of the 

biological tissues and due to the need for disentangling the spectral information from multiple, 

spatially and spectrally overlapping biomarkers.  It should be noted however that the traditional 

spectral imaging cameras based on spatial or spectral scanning techniques have limited applicability 

in several biomedical applications.   

With the today’s SI technological solutions and concepts, the capturing and post-processing of the 

spectral cube (composed by tens of images or millions of pixel spectra) is a computational intensive 

and time consuming procedure. Indicatively, typical capturing and post-capturing processing times 

are in the range of several minutes, which restricts the applicability of SI to time invariant and 

stationary targets. There are several biomedical and non-biomedical applications, in which the steps 

of capturing, processing and of displaying the spectral patterns/classes corresponding to millions of 

spectra, need to be available in real-time. In endoscopy, for example, stationary imaging conditions 

can never be achieved due to unavoidable organ or endoscopic tip motions during the examination 

time.  Another example referring to both in vivo and in vitro imaging is the case where the spectral 

or color characteristics of the target change as a result of biomarker-tissue interaction. Here, it is very 
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difficult to monitor the uptake kinetics separately for each biomarker because color changes are in 

several times occurring it times shorter than the typical scanning time of SI devices. 

Another typical example relates with the need for simultaneous monitoring the uptake kinetics of 

multiple biomarkers, administered to the same biological sample and exhibiting different 

excitation/emission spectral characteristics. There are numerous other biomedical and non-

biomedical applications requiring spectral imaging and analysis of transient or moving scenes such as 

combustion studies, imaging from aerial platforms, where scanning time needs to be very short or, 

in the best case, zero. This need motivates the development of “single shot” or “single exposure” 

spectral imagers capable of recording the information required for constructing the spectral cube 

without spectral or spatial scanning. 

Attempts to address this need are limited to suboptimal and rather trivial approaches based mainly 

on image replication, filtering and image projection optics [1]. With these set-ups, the number of 

spectral images acquired equals to the number of imaging sensors or, alternatively, all spectral 

images are projected onto a single sensor. With these configurations, 4-6 images can be captured 

simultaneously at a reasonable spatial resolution. However, most applications dealing with complex 

materials require the simultaneous capturing of more than 8-10 spectral bands for enabling 

meaningful spectral unmixing and classification. Very recently, more advanced optoelectronic set ups 

have been reported, capable of capturing more than 15 spectral images [2]. The basic disadvantage 

of these methods is that they require significant post-processing time for reconstructing the spectral 

images. Another disadvantage is that the reconstructed images are of much lesser than the sensor’s 

resolution.  These drawbacks together with lack of fast, specialized and integrated platforms for data 

processing and analysis set serious obstacles to their clinical/laboratory implementation.        

SI platforms integrating reconfigurable single exposure SI with advanced computational methods 

capable of providing real time spectral mapping remain still an open, demanding and high impact 

problem. More specifically, there is a clear and unmet need for alternative SI methods, designs and 

devices, allowing for the real-time calculation and live display of the thematic/diagnostic maps. The 

ability of displaying a diagnostic map in nearly video rates is expected to substantially advance 

analytical sciences and change biomedical practices. The availability of the thematic map in real time 

will, for example, guide medical actions, such as biopsy sampling and/or treatment, during the 

diagnostic scanning/interrogation of the tissue.   
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Chapter 1 describes the basic principles of electromagnetic wave theory, fluorescence and 

phosphorescence.  

Chapter 2 analyzes the phenomena occurred by light - tissue interaction, including tissue optics 

fundamentals, optical reaction of basic chromophores and scatterers, as well as the diagnostic value 

of the “optical window” in visible and near-infrared tissue spectroscopy. 

In Chapter 3 the endometrial physiology and pathology is outlined, with emphasis given to 

histological compositional and structural changes. 

In Chapter 4, all endometrium imaging techniques are depicted, including classical and state of the 

art methods. 

Chapter 5 reports all steps of the development of a scanning multispectral hysteroscope, including 

its clinical evaluation results.  

Chapter 6 presents the clustering methods used on spectra obtained from the endometrium, along 

with K-Means modifications, validation procedures and correlation of the extracted clusters with 

endometrial tissue conditions. 

Chapter 7 describes explicitly a method for simultaneous spectral imaging using multiple bandpass 

filters using standard color digital cameras. Also, a device able of previewing 6 spectral bands in real 

time is presented.  

Finally, the results and conclusions of this project are discussed.  
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Chapter 1 - Electromagnetic wave theory 
 

1.1 Electromagnetic radiation 

 

Electromagnetic radiation (EM radiation or EMR) is one of the fundamental phenomena of electromagnetism, 

behaving as waves and also as photon particles propagating through space, carrying radiant energy (figure 1). 

In a vacuum, it propagates at a characteristic speed, the speed of light, normally in straight lines. EMR is 

emitted and absorbed by charged particles. As an electromagnetic wave, it has both electric and magnetic 

field components, which oscillate in a fixed relationship to one another, perpendicular to each other and 

perpendicular to the direction of energy and wave propagation. 

 

FIGURE 1 THE ELECTROMAGNETIC WAVES THAT COMPOSE ELECTROMAGNETIC RADIATION CAN BE IMAGINED AS A SELF-PROPAGATING TRANSVERSE OSCILLATING 

WAVE OF ELECTRIC AND MAGNETIC FIELDS. 

 

The modern theory that explains the nature of light includes the notion of wave–particle duality (figure 2). 

More generally, the theory states that everything has both a particle nature and a wave nature, and various 

experiments can be done to bring out one or the other. The particle nature is more easily discerned if an object 

has a large mass, and it was not until a bold proposition by Louis de Broglie in 1924 that the scientific 

community realized that electrons also exhibited wave–particle duality.  
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FIGURE 2. ARTIST’S IMPRESSION, INSPIRED BY THE WORK OF THE ARTIST MAURITS CORNELIS ESCHER, OF THE CONTINUOUS MORPHING BETWEEN PARTICLE- 

AND WAVE-LIKE BEHAVIOUR OF LIGHT. CREDIT: NICOLAS BRUNNER AND JAMIE SIMMONDS 

 

EMR is characterized by the frequency or wavelength of its wave. The electromagnetic spectrum, in order of 

increasing frequency and decreasing wavelength, consists of radio waves, microwaves, infrared radiation, 

visible light, ultraviolet radiation, X-rays and gamma rays (figure 3). The eyes of various organisms sense a 

somewhat variable but relatively small range of frequencies of EMR called the visible spectrum or light. Higher 

frequencies correspond to proportionately more energy carried by each photon; for instance, a single gamma 

ray photon carries far more energy than a single photon of visible light. 

Electromagnetic radiation is associated with EM fields that are free to propagate themselves without the 

continuing influence of the moving charges that produced them, because they have achieved sufficient 

distance from those charges. Thus, EMR is sometimes referred to as the far field. In this language, the near 

field refers to EM fields near the charges and current that directly produced them, as for example with simple 

magnets and static electricity phenomena. In EMR, the magnetic and electric fields are each induced by 

changes in the other type of field, thus propagating itself as a wave. This close relationship assures that both 

types of fields in EMR stand in phase and in a fixed ratio of intensity to each other, with maxima and nodes in 

each found at the same places in space. 

Electric and magnetic fields obey the properties of superposition, so fields due to particular particles or time-

varying electric or magnetic fields contribute to the fields due to other causes. (As these fields are vector fields, 

all magnetic and electric field vectors add together according to vector addition.) These properties cause 

various phenomena including refraction and diffraction. For instance, a travelling EM wave incident on an 

atomic structure induces oscillation in the atoms, thereby causing them to emit their own EM waves. These 

emissions then alter the impinging wave through interference. 
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FIGURE 3 ELECTROMAGNETIC SPECTRUM WITH VISIBLE LIGHT HIGHLIGHTED 

 

EMR carries energy—sometimes called radiant energy—through space continuously away from the source 

(this is not true of the near-field part of the EM field). EMR also carries both momentum and angular 

momentum. These properties may all be imparted to matter with which it interacts. EMR is produced from 

other types of energy when created, and it is converted to other types of energy when it is destroyed. The 

photon is the quantum of the electromagnetic interaction, and is the basic "unit" or constituent of all forms 

of EMR. The quantum nature of light becomes more apparent at high frequencies (thus high photon energy). 

Such photons behave more like particles than lower-frequency photons do. 

In classical physics, EMR is considered to be produced when charged particles are accelerated by forces acting 

on them. Electrons are responsible for emission of most EMR because they have low mass, and therefore are 

easily accelerated by a variety of mechanisms. Rapidly moving electrons are most sharply accelerated when 

they encounter a region of force, so they are responsible for producing much of the highest frequency 

electromagnetic radiation observed in nature. Quantum processes can also produce EMR, such as when 

atomic nuclei undergo gamma decay, and processes such as neutral pion decay. 

The effects of EMR upon biological systems (and also to many other chemical systems, under standard 

conditions) depends both upon the radiation's power and frequency. For lower frequencies of EMR up to those 

of visible light (i.e., radio, microwave, infrared), the damage done to cells and also to many ordinary materials 

under such conditions is determined mainly by heating effects, and thus by the radiation power. By contrast, 

for higher frequency radiations at ultraviolet frequencies and above (i.e., X-rays and gamma rays) the damage 

to chemical materials and living cells by EMR is far larger than that done by simple heating, due to the ability 

of single photons in such high frequency EMR to damage individual molecules chemically. 
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1.2 Fluorescence – Phosphorescence 

  
From  the  microscopic  point  of  view  and  according  to  the  quantum  theory,  the  energy levels  in  atoms  

and  molecules  are  quantized.  If  the  energy  of  the  incident  photon  (h∙ν) matches  the  gap  between  to  

energy  levels  in  the  molecule,  it  can  be  absorbed  by  the molecule,  otherwise  the  molecule  will  be  

transparent  to  that  radiation,  and  it  will  pass through. When photon is absorbed by the molecule, the 

transitions between the specific energy levels can be divided into high energy electronic transitions (UV and 

VIS regions) and  low  energy  vibrational  or  rotational  transitions  (NIR  and  IR  regions) [NY 3-4] .  As  it  is 

shown in Jablonski  diagram,  Figure 4,  after  the  absorption  of  a  photon  and  the subsequent excitation to 

the higher energy level (S0 --> Sn), the molecule relaxes down to the lowest excited energy level; then 

relaxation from the lowest excited state to the ground state may happen through different processes. If the 

spin state of the initial and the final energy levels be the same (S1 --> S0), the relaxation is called fluorescence.   

If  the  spin  state  of  the  initial  and  the  final  energy  levels  are  different  (T1  -->  S0),  the relaxation  is  

called  phosphorescence. Fluorescence and phosphorescence are radiative processes.  Transitions  between  

the  same  spin  states  are  called  internal  conversion  (IC), while such transitions between different spin 

states are called intersystem crossing (ISC). 

Usually the stable ground state in most molecules is the singlet state (S0 in Figure 1.4), while the triplet states 

(T1, 2 in Figure 1.4) are unstable excited states with an increased internal energy. Oxygen is one of the rare 

molecules for which the lowest triplet state is the ground state. Excited molecular oxygen is in the singlet state. 

This is important in the photodynamical reaction occurring during photodynamic therapy (PDT) [5]. There  is  

another  type  of  photon-electron  transition  called  stimulated  emission,  which happens in atoms. 

 

 

FIGURE 4. JABLONSKI DIAGRAM. ENERGY LEVELS AND THE POSSIBLE PATHWAYS FOLLOWING LIGHT ABSORPTION BY AN ABSORBING MOLECULE (CHROMOPHORE). 
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When an atom or molecule already is in an excited state, then an incoming photon with quantum energy equal 

to the excess internal energy of that atom or molecule, can produce a second photon of the same energy by 

stimulating the atom or molecule to fall down to its lower energy state, shown in Figure 5. This is the principle 

of the light amplification happens in lasers (Light Amplification by Stimulated Emission of Radiation).  Photons 

produced  by  stimulated  emission  have  the  same  phase  and  frequency,  resulting  in  very intense and 

coherent light (laser).   

 

 

FIGURE 5. STIMULATED EMISSION. THE ELECTRON IN THE EXCITED STATE FALLS INTO THE LOWER STATE EMITTING A PHOTON. 
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Chapter 2 – Light Tissue interaction 
 

2.1 Tissue optics 
 

Once a light beam is produced and aimed at a tissue, as the energy reaches the biological interface, one of the 

following four interactions will occur: a) absorption - specific molecules in the tissue, known as chromophores, 

absorb the optical energy of the photons and convert it into other forms, b) reflection - the light beam bounces 

off the surface with no penetration or interaction at all, c) transmission - the light beam can pass through 

superficial tissues to interact with deeper areas, or d) scattering -  once the light beam enters the target tissue 

it will scatter in various directions (figure 6).  

 

Additionally, various interaction mechanisms between light and tissue are identified in the following major 

categories of interactions that lead to alterations of the tissue structure or composition: a) Photochemical: 

absorption of light by molecules present in or added to tissue (basis for Photodynamic Therapy - PDT), b) 

Thermal: biological effects due to deposition of thermal energy in tissue (basis for in laser surgery), c) 

Photoablative: in the ultra violet (UV) wavelength range photons posses sufficient energy to cause photo – 

dissociation of biopolymers and subsequent desorption of the fragments (basis for sterilization / purification 

processes) and d) Electromechanical: occurs at very high fluence rates where dieletric breakdown of tissue is 

induced which can lead to the formation of plasma. The rapid expansion of such plasma generates a shock 

wave which can rupture the tissue.  

 

 

FIGURE 6.  LIGHT TISSUE INTERACTION MECHANISMS 



 

19 
 

2.2 Optical properties of human tissues 
 

In  general,  three  photophysical  processes  affect  light  propagation  in  biological  tissues: refraction, 

scattering and absorption [6] . These are defined in forms of refraction index (n), scattering coefficient (µs) 

and absorption coefficient (µa), respectively. Scattering of light occurs  in  media  that  contains  fluctuations  

in  the  refractive  index  (n),  whether  such fluctuations are discrete particles or more continuous variations 

in (n).   

In biomedical optics, scattering of photons is an important event. Scattering provides feedback during 

therapeutic procedures, and has diagnostic values as well. It depends on the ultrastructure of a tissue, e.g., 

the density of lipid membranes in the cells, the size of nuclei, the presence of collagen fibers, the status of 

hydration in the tissue, etc ]7].  

 Another important event in biomedical optics is absorption of photons. Absorption is the primary event that 

allows a laser or other light source to cause a potentially therapeutic (or damaging) effect on a tissue. Without 

absorption, there is no energy transfer to the tissue and the tissue is left unaffected by the light. It also provides 

a diagnostic role, as well. Absorption can provide a clue as to the chemical composition of a tissue, and serve 

as a mechanism of optical contrast during imaging [7]. 

As  stated  earlier,  scattering  and  absorption  are  defined  by  their  coefficients.  These coefficients are used 

and investigated as fingerprints in biological optics. While absorption coefficient (µa) provides information on 

the concentration of various chromophores [8] , the scattering  properties  provide  information  on  the  form,  

size,  and  concentration  of  the scattering  components  in  the  medium [9-10].  

The scattering properties are divided to scattering coefficient (µs), the reduced scattering coefficient (µs'), and 

anisotropy factor (g). There are other terms of concerns in tissue optical properties, such as: the total 

attenuation coefficient (µt), and the effective attenuation coefficient (µeff).  

 

 

2.3 Propagation of continuous-wave light in tissues - Basic principles 
 

Biological tissues are multi composite and inhomogenous media. Each type of fiber structure or cell, including 

its specific organelles, may vary in terms of shape, size, refractive index, etc (figure 7). Therefore, light 

propagation within a tissue may be followed, at the same time, by multiple scattering, absorption, reflection, 



 

20 
 

transmission and depends on the scattering and absorbing parameters of the above-mentioned biological 

matter parameters.  

 

 

FIGURE 7. MAJOR ORGANELLES AND INCLUSIONS OF THE CELL. 

 

 A system of noninteracting spherical particles is the simplest tissue model. Mie theory rigorously describes 

the diffraction of light in a spherical particle. The development of this model involves taking into account the 

structures of the spherical particles, namely, the multilayered spheres and the spheres with radial 

nonhomogeneity, anisotropy, and optical activity.  

Because connective tissue consists of fiber structures, a system of long cylinders is the most appropriate model 

for it. Muscular tissue, skin dermis, dura mater, eye cornea, and sclera belong to this type of tissue formed 

essentially by collagen fibrils. The solution of the problem of light diffraction in a single homogeneous or 

multilayered cylinder is also well understood.  

Phase contrast microscopy has been used in particular to show that the structure of the refraction index 

inhomogeneities in mammalian tissues is similar to the structure of frozen turbulence in a number of cases 

[11]. This fact is of fundamental importance for understanding the peculiarities of light propagation in tissue, 

and it may be a key to the solution of the inverse problem of tissue structure reconstruction. 

Currently, two approaches are followed in tissue light propagation modelling. The first one models tissues as 

a medium with a continuous random spatial distribution of optical parameters [11-12], where the second one 

considers tissue as a discrete ensemble of scatterers [13-14]. The choice of the approach is dictated by both 

the structural specificity of the tissue under study and the kind of light scattering characteristics that are to be 
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obtained. For example, blood is the most important biological example of a disperse system that entirely 

corresponds to the model of discrete particles. 

Biological media are often modeled as ensembles of homogeneous spherical particles, since many cells and 

microorganisms, particularly blood cells, are close in shape to spheres or ellipsoids (figure 7). The sizes of cells 

and tissue structure elements vary in size from a few tenths of nanometers to hundreds of micrometers [15].  

 

 

2.4 Major absorbers and scatterers 
  

Molecules that absorb light are called chromophores (figure 8). Depending how light is absorbed, these  

molecules  are  divided  to  two  types:  those  that  absorb  light  through  electric transitions and those that 

absorb light through vibrational transitions. Electronic transitions are relatively energetic and hence are 

associated with absorption of UV, VIS, and NIR wavelengths. Porphyrins are effective chromophores for 

absorbing photons. Hemoglobin and vitamin B12 are examples of porphyrins in biology. Protoporphyrin IX 

(PpIX) is one of the important factors in PDT. The field of infrared spectroscopy, studies the variety of bonds, 

which can resonantly vibrate or twist in response to IR wavelengths and thereby absorb such photons.  Perhaps  

the  most  dominant  chromophore  in  biology, which  absorbs  via  vibrational  transitions,  is  water.  In the 

IR region, the absorption of water is the strongest contributor to tissue absorption.    

 

FIGURE 8. ABSORPTION SPECTRUM OF MAJOR TISSUE CHROMOPHORES 

 



 

22 
 

About  the  biological  scatteres,  it  can  be  said  that  the  light  scattered  by  a  tissue  has interacted with  

the  ultrastructure  of  the  tissue.  Tissue ultrastructure extends from membranes to membrane aggregates, 

collagen fibers, nuclei, and cells. Photons are most strongly  scattered  by  those  structures  whose  size  

matches  the  photon  wavelength. Scattering  of  light  by  structures  on  the  same  size  scale  as  the  photon  

wavelength  is described by Mie theory. Scattering of light by structures much smaller than the photon 

wavelength is called the Rayleigh limit of Mie scattering, or simply Rayleigh scattering.  

Mitochondria, collagen fibers, and fibrils are examples of structures which scatter light in biology.  

Mitochondria  are  intracellular  organelles  about  1  µm  in  length  (variable)  which  are composed of many 

folded internal lipid membranes called cristae. The basic lipid bilayer membrane is about 9 nm in width. The 

refractive index mismatch between lipid and the surrounding aqueous medium causes strong scattering of 

light.  Folding of lipid membranes presents larger size lipid structures, which affect longer wavelengths of light. 

The density of lipid/water interfaces within the mitochondria make them especially strong scatterers of light. 

Collagen fibers (about 2-3 µm in diameter) are composed of bundles of smaller collagen fibrils about 0.3 µm 

in diameter (variable). Mie scattering from collagen fibers dominates scattering in the infrared wavelength 

range. About fibrils, it must be said that  the  periodic  fluctuations  in  refractive  index  on  this  ultrastructureal  

level,  appear  to contribute  a  Rayleigh  scattering  component  that  dominates  the  visible  and  ultraviolet 

wavelength ranges. 

 

 

2.5 Optical window in biological tissue 
 

 

The Optical window (also known as therapeutic window) defines the range of wavelengths where light has its 

maximum depth of penetration in tissue. Within the NIR window, scattering is the most dominant light-tissue 

interaction, and therefore the propagating light becomes diffuse rapidly. Since scattering increases the 

distance travelled by photons within tissue, the probability of photon absorption also increases. Because 

scattering has weak dependence on wavelength, the optical window is primarily limited by absorption, due to 

either blood at short wavelengths or water at long wavelengths.  
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FIGURE 9. ABSORPTION SPECTRA OF SOME IMPORTANT CHROMOPHORES IN HUMAN SKIN TISSUE, AS FUNCTION OF WAVELENGTH. ADAPTED FROM REF [18]. 

 

Constituting 75 % of the tissue, water is the most important absorber in tissue, dominating in the UV (λ < 

200 nm), and IR (λ > 1300 nm) region [NY 28]. Other important chromophores in tissue are hemoglobin and 

melanin.  The absorption of light by blood depends on the oxygenated (HbO2) and deoxygenated (Hb) 

haemoglobin. The absorption spectra shows one sharp peak at about 430 nm for HbO2, while dropping off 

until 530 nm, the spectra picks  up  at  540  nm  and  576  nm,  and  finally  its  lowest  absorption  takes  

place  for wavelengths  above  600  nm  (Figure  9).  Melanin is a pigment in hair, skin and eye. Protecting the 

organism from UV radiation is the main function of melanin in the skin. Melanin absorption decreases with 

increasing wavelength.  The low-absorbing region between approximately 630 nm and 1300 nm is referred 

to as the tissue optical window. In this range, the penetration of light into biological tissue is at its deepest.   

  

 

 

 

 

 

 



 

24 
 

Chapter 3 – Endometrial physiology and pathology  
 

The uterus is the site of many physiological processes related to pregnancy, starting at implantation. 

It is the endometrium that is invaded by the trobhoblast and the endometrium that in part 

determines the degree of maternal-fetal contact. Human female reproductive physiology and 

behavior have evolved to handle substantial energy demands and determine not only the viability of 

conception, but also 9-month gestation and often several years of lactation, with babies that are 

larger and larger-brained than all other primates. Only humans have such invasive fetal burrowing to 

maximize the transfer of glucose and oxygen from mother to fetus. 

 

3.1 Endometrial Physiology 

 
3.1.1 Uterus 

 

The uterus is a major female hormone-responsive reproductive sex organ of most mammals including humans. 

On the one end, the cervix opens into the vagina, while the other is connected to the fallopian tubes.  It is 

within the uterus that the fetus develops during gestation. The uterus consists of a body and a cervix. The 

cervix protrudes into the vagina. The uterus is held in position within the pelvis by condensations of endopelvic 

fascia, which are called ligaments. These ligaments include the pubocervical, transverse cervical ligaments, 

cardinal ligaments and the uterosacral ligaments. It is covered by a sheet-like fold of peritoneum, the broad 

ligament [19]. 

 

FIGURE 10. THE UTERUS. CUTAWAY VIEWS SHOW REGIONS OF THE UTERUS AND CERVIX AND ITS RELATIONSHIP TO THE UTERINE (FALLOPIAN) TUBES AND 

VAGINA. 
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The uterus is essential in sexual response by directing blood flow to the pelvis and to the external genitalia, 

including the ovaries, vagina, labia, and clitoris. The reproductive function of the uterus is to accept a fertilized 

ovum which passes through the utero-tubal junction from the fallopian tube. It implants into the 

endometrium, and derives nourishment from blood vessels which develop exclusively for this purpose. The 

fertilized ovum becomes an embryo, attaches to a wall of the uterus, creates a placenta, and develops into a 

fetus (gestates) until childbirth. Due to anatomical barriers such as the pelvis, the uterus is pushed partially 

into the abdomen due to its expansion during pregnancy. Even during pregnancy the mass of a human uterus 

amounts to only about a kilogram. 

 

FIGURE 11. ANATOMY OF THE FEMALE REPRODUCTIVE SYSTEM. THE ORGANS IN THE FEMALE REPRODUCTIVE SYSTEM INCLUDE THE UTERUS, OVARIES, FALLOPIAN 

TUBES, CERVIX, AND VAGINA. THE UTERUS HAS A MUSCULAR OUTER LAYER CALLED THE MYOMETRIUM AND AN INNER LINING CALLED THE ENDOMETRIUM. 

 

The uterus is essential in sexual response by directing blood flow to the pelvis and to the external genitalia, 

including the ovaries, vagina, labia, and clitoris. The reproductive function of the uterus is to accept a fertilized 

ovum which passes through the utero-tubal junction from the fallopian tube. It implants into the 

endometrium, and derives nourishment from blood vessels which develop exclusively for this purpose. The 

fertilized ovum becomes an embryo, attaches to a wall of the uterus, creates a placenta, and develops into a 

fetus (gestates) until childbirth. Due to anatomical barriers such as the pelvis, the uterus is pushed partially 

into the abdomen due to its expansion during pregnancy. Even during pregnancy the mass of a human uterus 

amounts to only about a kilogram. 

The uterus is located inside the pelvis immediately dorsal (and usually somewhat rostral) to the urinary bladder 

and ventral to the rectum. The human uterus is pear-shaped and about 7.5 cm long. The uterus can be divided 

anatomically into four segments: The fundus, corpus, cervix and the internal orifice. Uterus is consisted of 

three layers, the endometrium, the myometrium and the perimetrium, from innermost to outermost. 



 

26 
 

3.1.2 Endometrium 

 

The endometrium is the inner mucous membrane of the mammalian uterus. During the follicular 

phase of the menstrual cycle, the endometrium thickens in preparation to accept an embryo should 

conception occur. If pregnancy occurs, the endometrium undergoes a process called decidualization. The 

placenta, which is fetal derived, invades the endometrium to allow for the transport of nutrients and oxygen 

from the mother to the fetus. If conception does not occur, the endometrial lining begins to breakdown and 

sheds through menstruation. 

 

Function 

The endometrium is the innermost glandular layer and functions as a lining for the uterus, preventing 

adhesions between the opposed walls of the myometrium, thereby maintaining the patency of the uterine 

cavity. During the menstrual cycle or estrous cycle, the endometrium grows to a thick, blood vessel-rich, 

glandular tissue layer. This represents an optimal environment for the implantation of a blastocyst upon its 

arrival in the uterus. The endometrium is central, echogenic (detectable using ultrasound scanners), and has 

an average thickness of 6.7 mm. During pregnancy, the glands and blood vessels in the endometrium further 

increase in size and number. Vascular spaces fuse and become interconnected, forming the placenta, which 

supplies oxygen and nutrition to the embryo and foetus. 

 

Cycle 

The enometrial lining undergoes cyclic regeneration. The endometrium initially proliferates under the 

influence of estrogen. However, once ovulation occurs, in addition to estrogen, the ovary will also start to 

produce progesterone. This changes the proliferative pattern of the endometrium to a secretory lining. 

Eventually, the secretory lining provides a hospitable environment for one or more blastocysts. If a blastocyst 

implants, then the lining remains as decidua. The decidua becomes part of the placenta; it provides support 

and protection for the gestation. In humans, the cycle of building and shedding the endometrial lining lasts an 

average of 28 days. The endometrium itself produces certain hormones at different points along the cycle. 

This affects other portions of the reproductive system. 
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Histology 

The endometrium consists of a single layer of columnar epithelium resting on the stroma, a layer of 

connective tissue that varies in thickness according to hormonal influences. Simple tubular uterine glands 

reach from the endometrial surface through to the base of the stroma, which also carries a rich blood supply 

of spiral arteries. In a woman of reproductive age, two layers of endometrium can be distinguished. These two 

layers occur only in endometrium lining the cavity of the uterus, not in the lining of the Fallopian tubes [20]. 

The functional layer is adjacent to the uterine cavity. This layer is built up after the end of menstruation 

during the first part of the previous menstrual cycle. Proliferation is induced by estrogen (follicular phase of 

menstrual cycle), and later changes in this layer are engendered by progestrone from the corpus luteum (luteal 

phase). It is adapted to provide an optimum environment for the implantation and growth of the embryo. This 

layer is completely shed during menstruation. The basal layer, adjacent to the myometrium and below the 

functional layer, is not shed at any time during the menstrual cycle, and from it the functional layer develops.  

In the absence of progesterone, the arteries supplying blood to the functional layer constrict, so that 

cells in that layer become ischaemic and die, leading to menstruation. It is possible to identify the phase of the 

menstrual cycle by observing histological differences at each phase: 

 

PHASE DAYS THICKNESS EPITHELIUM 

MENSTRUAL PHASE 1–4 Thin Absent 

PROLIFERATIVE 

PHASE 

4–14 Intermediate Columnar 

SECRETORY PHASE 15–

28 

Thick Columnar. Also visible are helicine branches of uterine 

artery 

 

TABLE 1. IDENTIFYING THE PHASE OF THE MENSTRUAL CYCLE BY OBSERVING HISTOLOGICAL DIFFERENCES. 
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Chorionic tissue can result in marked endometrial changes, known as an Arias-Stella reaction, that 

have an appearance similar to cancer [21]. Historically, this change was diagnosed as endometrial cancer and 

it is important only in so far as it should not be misdiagnosed as cancer. 

 

3.2 Endometrial Pathology 
 

Endometrial pathology refers to any condition that affects the endometrium. Some of the more familiar 

endometrial conditions include fibroids, cysts, endometriosis and endometrial cancer. 

 

3.2.1 Adenomyosis 

Adenomyosis is a medical condition characterized by the presence of ectopic glandular tissue found in muscle 

[22]. Previously named as endometriosis interna, adenomyosis actually differs from endometriosis and these 

two disease entities are found together in only 10% of the case. It usually refers to ectopic endometrial tissue 

(the inner lining of the uterus) within the myometrium (the thick, muscular layer of the uterus). The term 

"adenomyometritis" specifically implies involvement of the uterus [24-24]. The condition is typically found in 

women between the ages of 35 and 50. Patients with adenomyosis can have painful and/or profuse menses 

(dysmenorrhea & menorrhagia, respectively). However, because the endometrial glands can be trapped in the 

myometrium, it is possible to have increased pain without increased blood. (This can be used to distinguish 

adenomyosis from endometrial hyperplasia; in the latter condition, increased bleeding is more common). In 

adenomyosis, basal endometrium penetrates into hyperplastic myometrial fibers. Therefore, unlike functional 

layer, basal layer does not undergo typical cyclic changes with menstrual cycle [23]. Adenomyosis may involve 

the uterus focally, creating an adenomyoma. With diffuse involvement, the uterus becomes bulky and heavier. 

 

3.2.2 Endometritis 

Endometritis refers to inflammation of the endometrium [24], the inner lining of the uterus. Pathologists have 

traditionally classified endometritis as either acute or chronic: acute endometritis is characterized by the 

presence of microabscesses or neutrophils within the endometrial glands, while chronic endometritis is 

distinguished by variable numbers of plasma cells within the endometrial stroma. The most common cause of 

endometritis is infection. Symptoms include lower abdominal pain, fever and abnormal vaginal bleeding or 

discharge. Caesarean section, prolonged rupture of membranes and long labor with multiple vaginal 
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examinations are important risk factors. Treatment is usually with broad-spectrum antibiotics. The term 

"endomyometritis" is sometimes used to specify inflammation of the endometrium and the myometrium [25]. 

 

3.2.3 Endometriosis 

Endometriosis is a gynecological condition in which cells from the lining of the uterus (endometrium) appear 

and flourish outside the uterine cavity, most commonly on the membrane which lines the abdominal cavity, 

the peritoneum. The uterine cavity is lined with endometrial cells, which are under the influence of female 

hormones. Endometrial cells in areas outside the uterus are also influenced by hormonal changes and respond 

in a way that is similar to the cells found inside the uterus. Symptoms of endometriosis are pain and infertility. 

The pain often is worse with the menstrual cycle and is the most common cause of secondary dysmenorrhea. 

Endometriosis was first identified by Baron Carl von Rokitansky in 1860 [26]. Endometriosis is typically seen 

during the reproductive years; it has been estimated that endometriosis occurs in roughly 6–10% of women. 

Symptoms may depend on the site of active endometriosis. Its main but not universal symptom is pelvic pain 

in various manifestations. Endometriosis is a common finding in women with infertility [27]. Endometriosis 

has a significant social and psychological impact [28]. There is no cure for endometriosis, but it can be treated 

in a variety of ways, including pain medication, hormonal treatments, and surgery [29]. 

An endometrioma, endometrioid cyst, endometrial cyst, or chocolate cyst of ovary is a condition related to 

endometriosis. It is caused by endometriosis [26], and formed when a tiny patch of endometrial tissue (the 

mucous membrane that makes up the inner layer of the uterine wall) bleeds, sloughs off, becomes 

transplanted, and grows and enlarges inside the ovaries. As the blood builds up over months and years, it turns 

brown. When it ruptures, the material spills over into the pelvis and onto the surface of the uterus, bladder, 

bowel, and the corresponding spaces between. 

 

3.2.4 Uterine fibroid 

A uterine fibroid is a leiomyoma (benign (non-cancerous) tumor from smooth muscle tissue) that originates 

from the smooth muscle layer (myometrium) of the uterus. Fibroids are often multiple and if the uterus 

contains too many leiomyomata to count, it is referred to as diffuse uterine leiomyomatosis. The malignant 

version of a fibroid is extremely uncommon and termed a leiomyosarcoma. Other common names are uterine 

leiomyoma [30], myoma, fibromyoma, fibroleiomyoma. Fibroids are the most common benign tumors in 

females and typically found during the middle and later reproductive years. While most fibroids are 

asymptomatic, they can grow and cause heavy and painful menstruation, painful sexual intercourse, and 
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urinary frequency and urgency. Some fibroids may interfere with pregnancy although this appears to be very 

rare [31]. In the United States, symptoms caused by uterine fibroids are a very frequent indication for 

hysterectomy [32].  

 

3.2.5 Endometrial Hyperplasia 

Most cases of endometrial hyperplasia result from high levels of estrogens, combined with insufficient levels 

of the progesterone-like hormones which ordinarily counteract estrogen's proliferative effects on this tissue. 

This may occur in a number of settings, including obesity, polycystic ovary syndrome, estrogen producing 

tumours (e.g. granulosa cell tumour) and certain formulations of estrogen replacement therapy. Endometrial 

hyperplasia is a significant risk factor for the development or even co-existence of endometrial cancer, so 

careful monitoring and treatment of women with this disorder is essential. Like other hyperplastic disorders, 

endometrial hyperplasia initially represents a physiological response of endometrial tissue to the growth-

promoting actions of estrogen. However, the gland-forming cells of a hyperplastic endometrium may also 

undergo changes over time which predispose them to cancerous transformation. Several histopathology 

subtypes of endometrial hyperplasia are recognisable to the pathologist, with different therapeutic and 

prognostic implications [33].  

 

3.2.6 Endometrial Cancer 

Endometrial cancer is any of several types of malignancies that arise from the endometrium, or lining, of the 

uterus. Endometrial cancers are the most common gynecologic cancers in developed countries [34], with over 

142,200 women diagnosed each year. The incidence is on a slow rise secondary to an increasing population 

age and an increasing body mass index, with 39% of cases attributed to obesity [35], The most common 

subtype, endometrioid adenocarcinoma, typically occurs within a few decades of menopause, is associated 

with obesity, excessive estrogen exposure, often develops in the setting of endometrial hyperplasia, and 

presents most often with vaginal bleeding. Endometrial carcinoma is the third most common cause of 

gynecologic cancer death (behind ovarian and cervical cancer). A total abdominal hysterectomy (surgical 

removal of the uterus) with bilateral salpingo-oophorectomy is the most common therapeutic approach. 

Endometrial cancer may sometimes be referred to as uterine cancer. However, different cancers may develop 

not only from the endometrium itself but also from other tissues of the uterus, including cervical cancer, 

sarcoma of the myometrium, and trophoblastic disease.  
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Most endometrial cancers are carcinomas (usually adenocarcinomas), meaning that they originate from the 

single layer of epithelial cells that line the endometrium and form the endometrial glands. There are many 

microscopic subtypes of endometrial carcinoma, but they are broadly organized into two categories, type I 

and type II, based on clinical features and pathogenesis [36].  

The first type, type I endometrial cancers occur most commonly in pre- and peri-menopausal women, are 

more common in white women, often with a history of excessive thickening of the inner lining of the uterus 

(endometrial hyperplasia) and exposure to elevated levels of estrogen that are not counterbalanced by 

progesterone (unopposed estrogen exposure). Type I endometrial cancers are often low-grade, minimally 

invasive into the underlying uterine wall (myometrium), and are of the endometrioid type, and carry a good 

prognosis [36]. In endometrioid cancer, the cancer cells grow in patterns reminiscent of normal endometrium.  

The second type, type II endometrial cancers usually occur in older, post-menopausal women, are more 

common in African-Americans, and are not associated with increased exposure to estrogen. Type II 

endometrial cancers are often high-grade, with deep invasion into the underlying uterine wall (myometrium), 

and are of the serous or clear cell type, and carry a poorer prognosis [36]. 

 

3.2.7 Asherman’s syndrome 

Asherman's syndrome (AS) or Fritsch syndrome, is a condition characterized by adhesions and/or fibrosis of 

the endometrium most often associated with dilation and curettage of the intrauterine cavity [37]. A number 

of other terms have been used to describe the condition and related conditions including: injurious 

intrauterine adhesions, uterine/cervical atresia, traumatic uterine atrophy, sclerotic endometrium, 

endometrial sclerosis, and intrauterine synechiae [38]. 

 

3.2.8 Endometrial Polyp 

An endometrial polyp or uterine polyp is a mass in the inner lining of the uterus [40]. They may have a large 

flat base (sessile) or be attached to the uterus by an elongated pedicle (pedunculated) [40-41]. Pedunculated 

polyps are more common than sessile ones [42]. They range in size from a few millimeters to several 

centimeters [41]. If pedunculated, they can protrude through the cervix into the vagina [43] Small blood 

vessels may be present, particularly in large polyps [40].  

No definitive cause of endometrial polyps is known, but they appear to be affected by hormone levels and 

grow in response to circulating estrogen.[41] They often cause no symptoms [42]. Where they occur, 
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symptoms include irregular menstrual bleeding, bleeding between menstrual periods, excessively heavy 

menstrual bleeding (menorrhagia), and vaginal bleeding after menopause [44]. Bleeding from the blood 

vessels of the polyp contributes to an increase of blood loss during menstruation and blood "spotting" 

between menstrual periods, or after menopause [44] If the polyp protrudes through the cervix into the vagina, 

pain (dysmenorrhea) may result [42].  
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Chapter 4 - Endometrial Imaging techniques 
 

4.1 Classical Methods 

 

4.1.1 Saline Infusion sonohysterography 

Saline infusion sonohysterography refers to a procedure in which fluid is instilled into the uterine cavity 

transcervically to provide enhanced endometrial visualization during transvaginal ultrasound examination. 

The technique improves sonographic detection of endometrial pathology, such as polyps, hyperplasia, cancer, 

leiomyomas, and adhesions. In addition, it can help avoid invasive diagnostic procedures in some patients as 

well as optimize the preoperative triage process for those women who require therapeutic intervention. It is 

easily and rapidly performed at minimal cost, well-tolerated by patients, and is virtually devoid of 

complications. 

 

 

FIGURE 12. ENDOMETRIAL POLYP SEEN IN A SALINE INFUSION SONOHYTEROGRAM [45]. 

 

4.1.2 Transvaginal ultrasound 

Transvaginal ultrasound is a imaging technique used to create a picture of the genital tract in women. The 

hand-held device that produces the ultrasound waves is inserted directly into the vagina, close to the pelvic 

structures, thus often producing a clearer and less distorted image than obtained through transabdominal 

ultrasound technology, where the probe is located externally on the skin of the abdomen. Transvaginal 
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ultrasound can used to evaluate problems or abnormalities of the female genital tract. It may provide more 

accurate information than transabdominal ultrasound for women who are obese, for women who are being 

evaluated or treated for infertility, or for women who have difficulty keeping a full bladder. However, it does 

provide a view of a smaller area than the transabdominal ultrasound.  

 

 

FIGURE 13. GROOSY THICKENED ENDOMETRIUM DETECTED BY TRANSVAGINAL SONOGRAPHY OF THE UTERUS [46]. 

 

4.1.3 MRI 

Magnetic resonance imaging (MRI) is a commonly used technique in the workup of obstetric and gynecologic 

abnormalities and in the pre- and postprocedural evaluation for uterine artery embolization. Optimal MRI of 

the female pelvis and uterus should be performed on a high–field-strength MRI system that uses local phased-

array coils. The increased signal-to-noise ratio provided by the surface coils allows for small field-of-view 

imaging that results in higher spatial resolution [47]. Contrast enhancement is used to document the extent 

of endometrial carcinoma invasion or to detect the presence of necrosis in uterine leiomyomas. Dynamic 

contrast injection can be used in women who are considering uterine artery embolization (UAE) in order to 

evaluate the uterine arteries and the potential collateral gonadal arterial supply. 

 

FIGURE 14. MRI DEPICTION OF ENDOMETRIAL HYPERPLASIA. (A) AXIAL AND (B) SAGITTAL T2-WEIGHTED IMAGES OF THE UTERUS SHOW CYSTIC THICKENING OF 

THE ENDOMETRIAL CANAL (ARROWS) IN A PATIENT ON TAMOXIFEN FOR BREAST CANCER [47]. 
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4.1.4 Diagnostic hysteroscopy 

Hysteroscopy is the examination of the internal cavity of the uterus (endometrium) with the use of a fine 

endoscope (hysteroscope) which is inserted into the uterus through the vagina and cervix. With hysteroscopy 

the endometrium is examined and treated more reliably than with any other method (transvaginal ultrasound, 

hysterosalpingogram, dilatation & Curretage, etc). Hysteroscopy is performed for a variety of  gynecological  

problems  such  as  abnormal  uterine  bleeding  (menorrhagia), infertility, polyps, fibroids, endometrial 

adhesions, uterine diaphragm, endometrial hyperplasia,  cancer  etc.  Diagnostic  and  micro-invasive  

hysteroscopy  is  performed under local anesthesia while invasive hysteroscopy is performed either under 

local, general  or  epidural  anesthesia,  depending  on  medical  settings  and  patient’s characteristics. Hospital 

stay ranges from a one hour to one day depending on the case.  As  a  diagnostic  and  therapeutic  tool  

hysteroscopy  is  essential  in  modern gynecology and is performed with great safety and accuracy. 

 

 

FIGURE 15. VIEW OF A SUBMUCOUS FIBROID BY HYSTEROSCOPY. 

 

4.2 Novel diagnostic Advances in Endoscopy  
 

 

Conventional white light endoscopy is associated with a disproportionate miss rate for subtle lesions (e.g. flat 

adenomas). Numerous studies have demonstrated that experienced gastroenterologists miss up to 6% of 

advanced adenomas and 24% of all adenomas. Certain endoscopic techniques are associated highly with 

missed lesions. Therefore,  the  present  and  future  directions  of  endoscopy  are  to  improve  the diagnostic  

techniques  through  monitoring  adenoma  detection  rates,  withdrawal time  with  better  education  and  

practice  improvement  interventions.  However, subtle  dysplastic  and  early  neoplastic  lesions  remain  often  

too  small,  flat  or depressed to be detected during regular standard white-light endoscopy even with ideal  
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(improved)  techniques.  This  has  led  to  intensified  efforts  to  develop  other alternative,  optically  based  

techniques  as  well  as  other  diagnostic  modalities  that would compete with and/or be complementary to 

existing conventional endoscopic 

Imaging  enhanced  technologies  that  are  currently  available  in  endoscopy  include field enhancement 

techniques such as chromoendoscopy, auto fluorescence imaging (AFI) narrow band imaging (NBI) and digital 

image processing (like FICE and i-Scan), as well as point enhancement techniques, such as high definition 

television (HDTV) endoscopy  and  confocal  laser  endomicroscopy  (CLE).  These enhancements offer 

improved visualization of lesions and/or abnormalities, which, in turn, may provide guidance in determining 

optimal treatment. Currently, endoscopes with integrated zoom  lenses  and  probe  microscopes  small  

enough  to  be  passed  through  the accessory endoscopic channel are available. With these add-ons, intestinal 

tissue can be visualized at a cellular or sub cellular level and may be able to provide in vivo optical histology.  

Endoscopic  systems  that  are  equipped  with  field  enhancement modes accommodate high resolution 

optical sensors and provide high-magnification capabilities  and  improved  image  quality.  High  resolution  

endoscopes  with  high-density  charge  coupled  device  (CCD)  provided  resolutions  from  0.6  up  to  2 

megapixels (HDTV systems) and produce high magnification images for the detection of microscopic 

abnormalities in tissue. They provide image enlargement up to 120 times compared with 30 times with 

standard endoscopes. In this thesis the above mentioned  novel  endoscopic  imaging  enhancement  

technologies  will  be  reviewed and a new approach for enhanced image in hysteroscopy will be presented. 

 

4.2.1 Chromoendoscopy 

Chromoendoscopy involves the topical application of stains or pigments to impose tissue localization, 

characterization or diagnosis during endoscopy.  This  image enhancement  method  has  been  applied  in  a  

variety  of  clinical  settings  and throughout all gastrointestinal tract segments that are accessible to an 

endoscope, as the equipment needed is widely available and the staining techniques are simple, inexpensive 

and safe. Examples of stained tissues are in Figure 16. Interest has been renewed in recent years in part 

because of the  development of new technologies such  as  endoscopic  mucosal  resection  and  photodynamic  

therapy,  which  require precise visual tissue characterization.  However, staining of the entire mucosa is a 

time consuming process. Thus, efforts have been made to develop so-called virtual chromoendoscopy  with  

the  use  of  narrow  band  imaging  or  the  Fujinon  intelligent color enhancement system (FICE) to enhance 

mucosal contrast with no requirements for  the  use  of  topical  stains.  Like  many  endoscopic  techniques,  

the  impact  of chromoendoscopy  on  clinical  outcomes  relative  to  standard  endoscopic  and histological 

methods has not been established in large controlled trials. 
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4.2.2 Auto fluorescence Imaging (AFI) Endoscopy   

Living tissues contains proteins that emit auto fluorescence when exposed to proper wavelength of light 

(ultraviolet and blue).  Many  devices  have  been  manufactured and  patented  for  auto  fluorescence  

endoscopy,  initially  for  bronchoscopy.  The principle of operation is simple: a powerful ultraviolet or blue 

light source is used to excite  the  living  tissue  and  a  video  camera  module,  featuring  one  very  sensitive 

optics  sensor  (e.g.  a  CCD)  filtered  to  observe  only  the  excitation  spectrum  and another for conventional 

endoscopic images. Deuterium lamps were initially utilized as excitation sources but soon were replaced by 

lasers coupled with a conventional white light source.  Lasers have numerous advantages as they offer very 

high intensity, narrow monochromatic illumination and a variety of wavelength available.  

The  recent  advances  in  semiconductor  technologies  have  provided  small  size powerful blue lasers (at 

405nm wavelength) that have allowed the designers of the endoscopes  to  integrate  the  laser  at  the  tip  of  

the  endoscope.  Also  CMOS  image sensors  have  been  manufactured  especially  for  endoscopic  applications  

with dimensions that enable the placement of two image sensors at the end tip of many endoscopes.  

 

FIGURE 16. A, COLONOSCOPIC VIEW OF HYPERPLASTIC POLYP. B, COLONOSCOPIC VIEW OF ADENOMATOUS POLYP. IN BOTH CASES TISSUE WAS STAINED WITH 

0.9% INDIGO CARMINE BYE [48]. 

 

Olympus, in order to provide better image enhancement in its endoscopic high range systems “EVIS LUCERA 

SPECTRUM”, utilizes a 540-560nm reflectance image along with the 390-470nm excitation image. The pseudo 

color AFI image displayed to the user is created by assigning the auto fluorescence image to the Green Color 

plane of the pseudo color image and the reflectance image to the Red and Blue Color planes (Figure 17).  Other 

companies use similar concepts for better visualization of the fluorescent tissue.  

The  common  fluorescence  substances  in  the  living  tissue  include  amino  acids  like NADH, flavin, and 

collagen richly found in the connective tissue. Several investigators have reported studies of auto fluorescence 

from living tissue.  Although efforts in such studies, relationship between the auto fluorescence and the 

malignancy of the lesion is not still unclear in several tissue types. Gono K. et al. also investigated auto 

fluorescence spectra of the living tissue. A spectroscope was used and attached to it was an optical fiber probe 
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compatible for an instrumental channel of the endoscope body. Several auto fluorescence spectra from 

normal colon tissues and adenomas were selected. 

A recent multi-centre study by Curvers et al investigated the diagnostic potential of endoscopic  tri-modal  

imaging  including  autofluorescence  imaging  (AFI)  as  well  as high resolution endoscopy , and narrow band 

imaging (NBI) for the detection of early neoplasia in Barrett’s esophagus. The investigators noted that the 

addition of AFI to high resolution endoscopy increased the detection of both the number of patients and the 

number of lesions with early neoplasia in patients with Barrett’s esophagus.  

Furthermore,  the  initial  false  positive  rate  of  AFI  was  reduced  after  detailed inspection  with  NBI.  The 

results  of  this  study  demonstrate  the  promising  role  of prototype endoscopic systems combining the use 

of AFI and NBI technologies in one endoscope. 

 

FIGURE 17. IMAGE OF COLON POLYPS. UPPER LEFT IS WHITE LIGHT IMAGE. UPPER RIGHT IS AFI PSEUDO COLOR IMAGE. BOTH RIGHT IS THE GREEN CHANNEL 

REFLECTANCE IMAGE AND BOTTOM LEFT THE FLUORESCENCE IMAGE. 

 

Moreover, colonic autofluorescence has also been described both at glandular and cellular level and appears 

to be promising. In the studies by DaCosta et al dysplastic and adenomatous epithelial cells had much higher 

autofluorescence and contained numerous highly auto fluorescent lysosomal granules.  Epithelial 

autofluorescence may be helpful in distinguishing hyperplastic and adenomatous lesions. 

 

4.2.3 Narrow band Imaging (NBI) Endoscopy   

Narrow Band Imaging was developed by Olympus as an optical image improvement technology that enhances 

vessels in the surface of the mucosa.  In the NBI endoscopic system, RGB and bandpass filters are rotated in 
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front of a Xenon lamp to provide illumination to generate either a traditional RGB image or a narrow band 

wavelength pseudo color image. As the illumination changes sequentially with the rotating filters, a CCD 

detects each image. Next, an image processor produces color images by composing the images acquired. If 

the filters are the common RGB filters, the image produced is equivalent with that captured by a color (RGB) 

CCD camera.  

However, it is difficult to see information that appears in a specific wavelength. For that reason, the narrow 

band pass filters used in NBI systems are selected in the blue filter  wavelength  and  designed  to  correspond  

to  the  absorption  spectrum  of  the hemoglobin.  Also, because blue light penetrates into the superficial-

most layers, the mucosal pattern is highlighted, whereas the deeper layers are not seen. 

 

 

FIGURE 18. NBI IMAGE ACQUISITION PROCESS (LEFT) AND NBI OPTICAL FILTER PROPERTIES (RIGHT BOTTOM). 

 

The  initial  designs  of  the  NBI  systems  incorporated  three  bandpass  filters,  one  at 415nm, the second 

one at 540nm and a third at 600nm. Each image captured was assigned  to  the  responding  channel  of  the  

pseudo  color  NBI  image  (Figure  18).  In another initial NBI system (EVIS 240; Olympus Co Ltd) a xenon lamp 

and rotation disk with 3  broadband filters and three NBI  filters at 415nm, 445nm and  500nm were selected  

o  obtain  images  of  the  micro-vascular  structure.  Because  415nm  is  the hemoglobin  absorption  band,  

the  thin  blood  vessels  such  as  capillaries  on  the mucosal  surface  can  be  seen  most  clearly  on  this  

wavelength.  The latest designs though use only the first two bandpass filters at 415nm and 540nm.  Early 

studies have demonstrated the value of this technology in the evaluation of patients with upper GI lesions 

including Barrett’s esophagus dysplasia.  NBI technology  is  also  useful  in  the  classification  of  colorectal  

lesions  as  many researchers  have  demonstrated.  However, a few recent studies have revealed conflicting 

results with no improvement in adenoma detection rates with the use of this novel technique. The results of 

Gross et al prospective randomized back-to-back trial  comparing  narrow  band  imaging  to  conventional  

colonoscopy  for  adenoma detection shows that the miss rate for polyps, and for adenomas, may be lower 
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with high definition NBI than for standard colonoscopy. East et al also demonstrated that NBI could play a role 

in adenoma detection in high risk groups as they found that a second  additional  examination  with  NBI  

doubled  the  total  number  of  adenomas detected in 62 patients with hereditary non-polyposis colorectal 

cancer. 

 

 

FIGURE 19. IRREGULAR MUCOSA WITH HIGH-GRADE NEOPLASIA IN A PATIENT WITH LONG-STANDING ULCERATIVE COLITIS. A, VIEWED WITH WHITE LIGHT 

ENDOSCOPY AND B, BY NBI, REVEALING A KUDO TYPE IV PIT PATTERN. 

 

4.2.4 Fujinon intelligent color enhancement (FICE) and i-Scan endoscopic systems   

Eager to provide endoscopic systems with image enhancement technologies, Fujinon and  most  recently  

Pentax  Medical  Company  developed  all-digital  endoscopic systems  to  provide  diagnostic  assistance  to  

the  physicians.  To many researchers these systems are known as computed virtual chromoendoscopy imaging 

systems, as their aim is to provide similar visual results without staining. While the NBI system depends  on  

optical  filters  within  the  light  source,  the  FICE  system  is  based  on  a computed  spectral  estimation  

technology  that  processes  the  reflected  photons  to reconstruct virtual images with a choice of different 

wavelengths. An RGB image is captured and disintegrated into each color component.  Then,  a4nd  in  real  

time,  a digital  signal  processor  performs  matrix  calculations  for  each  pixel  using  stored coefficients 

corresponding to a desired wavelength. After that a pseudo color image is reconstructed featuring one to 

three selected wavelengths. Various combinations of wavelengths are preset for the user that provide image 

enhancement for specific areas of interest.    This  leads  to  enhancement  of  the  tissue  microvasculature  as  

a result  of  the  differential  optical  absorption  of  light  by  hemoglobin  in  the  mucosa. These abnormal 

areas can be defined by the magnification.   
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FIGURE 20. EARLY GASTRIC CANCER AS SEEN WITH WHITE LIGHT (LEFT) AND WITH FICE (RIGHT). 

 

The i-Scan system is considered as a digital contrast method, with three modes of image enhancement:  

surface enhancement (SE), contrast enhancement (CE) and tone enhancement (TE). In SE mode, the structure 

is enhanced through the detection of the edges and their enhancement.  In common endoscopic image sensor 

systems, minor  changes  in  structure  are  perceived  as  noise,  and  the  area  that  shows  such changes is 

smoothed out from their image processing algorithms. With SE, on the other  hand,  adjustment  of  the  noise  

erasure  function  allows  more  evident enhancement  of  the  edges,  which  corresponds  to  minor  changes  

in  structure, making  it  easier  to  check  changes  on  the  basis  of  structural  differences.  With  CE mode,  

areas  lower  in  luminance  intensity  compared  to  surrounding  pixels  are identified  from  the  luminance  

intensity  data  of  each  pixel,  followed  by  relative enhancement of the Blue color channel through the slight 

suppression of Red and Green color channels in this low luminance area, resulting in slightly a bluish white 

color  of  the  area  applied.  Finally, with TE mode the RGB color channels of an ordinary endoscope image are 

split into each color channel (Red, Green and Blue), and each channel is converted independently along the 

tone curve, followed by a re-synthesis of the three components to yield a pseudo color image. The tone curve 

is changed according to the need of the user and provides various modes, depending in the area of application. 

Sample images can be seen in figure 20.  

The  FICE  system  used  in  esophageal  neoplasia  demonstrated  improvement  in  the detection of early 

neoplasia. The application of FICE technology in the detection and classification of colorectal lesions is also 

being currently investigated. Pohl et al in their prospective trial compared computed virtual chromoendoscopy 

system (FICE) with other modalities such as standard colonoscopy, conventional chromoendoscopy with  

indigo  carmine  in  low  and  high  magnification  modes  for  determination  of colonic  lesion  histology. Based 

on this study, the FICE system was able to identify morphological details that efficiently predicted 

adenomatous histology and was superior to standard colonoscopy and equivalent to conventional 

chromoendoscopy. As far as i-Scan endoscopic system is concerned, similar studies are yet available. 
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FIGURE 21. ESOPHAGEAL CANCER AS CAPTURED WITH AN I-SCAN SYSTEM. A, THE CONVENTIONAL WHITE LIGHT IMAGE. B, SE + CE MODES ENABLED CAPTURED 

IMAGE. C, TE MODE CAPTURED IMAGE. 

 

4.2.5 Confocal laser endomicroscopy (CLE) 

Confocal  laser  endomicroscopy  (CLE)  is  one  of  the  newest  advancements  in diagnostic endoscopy. Recent 

technologic advances allowed for a confocal imaging microscope  to  be  integrated  into  the  tip  of  a  

conventional  endoscope  (Pentax Medical Company), or in a probe, which can be passed through the working 

channel of the endoscope (Mauna Kea Technologies). The aim of this technology is to provide real-time in vivo 

histologic images, or so-called “virtual biopsy specimens,” of the GI mucosa during endoscopy. Confocal 

endomicroscopy allows high resolution imaging of cellular and sub cellular tissue when optical slices of the 

mucosal surface created by  detecting  reflected  light  and  tissue  autofluorescence  enhances  through  the 

administration  of  IV  or  topical  contrast  fluorescent  contrast  agents,  like  IV fluorescein sodium. Sample 

images are available in figure 22.  

The first report on the use of confocal endomicroscopy was made from Kiesslich et al in 42 patients during 

ongoing colonoscopy in diagnosing intraepithelial neoplasia and colorectal cancer.  A  total  of  134  small  

lesions  (mean  size  4  mm)  were  identified during  colonoscopy  after  staining  with  methylene  blue.  

According  to  the  study, intraepithelial neoplasia was predicted with the help of the confocal endoscope with 

a  sensitivity  of  97%  and  a  specificity  of  99%  (accuracy,  99%).  The  potential applications of this technology 

extends beyond the discrimination of neoplastic and non-neoplastic  (hyperplastic)  polyps,  to  detection  of  

other  pathologies  such  as Barrett’s  esophagus,  esophagitis,  gastritis,  coeliac  disease,  etc.  In a study of 63 

patients with Barrett’s esophagus using fluorescein-aided endomicroscopy, Kiesslich et al predicted Barrett’s 

esophagus with a sensitivity of 98% and specificity of 94%. A limitation of the confocal system used in the 

above studies includes its reliance on a single integrated confocal endoscope.  Recently, a miniature probe 

confocal laser endomicroscopy was developed to overcome that difficulty. At this moment is the world  

smallest  microscope,  available  through  the  integration  of  numerous technological advances in miniature 

optics, nanomaterials, high speed scanning and advanced  real  time  image  processing.  This probe can be 

passed through the accessory channel of almost any endoscope and be used as needed in any endoscopy case. 
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Becker et al studied 7 patients with various GI pathologies and confirmed that mini  probe-based  confocal  

microscopy  in  conjunction  with  video  mosaicing  can provide  images  similar  to  standard  histopathology.  

Another  concern  regarding confocal  endomicroscopy  is  the  learning  curve  of  the  physicians  and  the  

reliable interpretation of the images. Very good knowledge of histopathology is needed for the endoscopist. 

According to Buchner et al, the interpretation of images is highly reliable among physicians, while the learning 

curve appears to be rapid among new users, achieving accuracy greater than 80% after 60 cases. 

 

 

FIGURE 22.  TUBULAR ADENOMA WITH LOW GRADE INTRAEPITHELIAL NEOPLASIA (A) ANALYSIS OF A COLONIC POLYP WITH WHITE-LIGHT ENDOSCOPY, (B) 

CHROMOENDOSCOPY, (C, D) FLUORESCEIN-BASED CONFOCAL ENDOMICROSCOPY IN DIFFERENT IMAGING DEPTHS AND (E) FINAL HISTOLOGY. CHROMOENDOSCOPY 

HIGHLIGHTS SURFACE ARCHITECTURE WITH TUBULAR STAINING PATTERN. ENDOMICROSCOPY OF THE SURFACE SHOWS CHARACTERISTIC TUBULAR CELLULAR AND 

TISSUE ARCHITECTURE (C, BLUE ARROW). AT A DEPTH OF AROUND 150 ΜM, SUBEPITHELIAL CAPILLARIES BECOME VISIBLE (D, RED ARROW). FINAL HISTOLOGY (E) 

CONFIRMS THE PRESENCE OF TUBULAR ADENOMA (BLUE ARROW) WITH LOW-GRADE INTRAEPITHELIAL NEOPLASIA (RED ARROW). 
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Chapter 5 - A Novel Endoscopic Spectral Imaging Platform 
Integrating K-Means Clustering for Early and non-Invasive 
Diagnosis of Endometrial Pathology 
 

Introduction 

 

As discussed in chapter 4, after several decades of technology and application development, endoscopy has 

been established as an indispensable diagnostic tool to a variety of internal medicine fields. However it has 

been widely recognized that there is significant room for improvement mainly through the merging of 

endoscopy with novel and advanced optical imaging methods and technologies. These include confocal 

imaging (CI), optical coherence tomography (OCT) and spectral imaging (SI) [49]. CI and OCT with or without 

contrast enhancing agents, provide histological information in vivo for the very small tissue area. Spectral 

imaging provides, in principle, information for a much larger tissue area, which is essential in the clinical 

practice. Integrated to endoscopy, this imaging modality provides enhanced visualization of several invisible 

features of diagnostic importance. 

There has been a considerable effort towards the integration of general purpose tunable filter technologies 

for enabling endoscopic spectral imaging. These include revolving discrete filter arrangements known as NBI, 

liquid crystal tunable filters (LCTFs), acousto-optical tunable filters (AOTFs) and Michelson interferometers 

[50]. Although the last three approaches can provide complete spectrum, they suffer from several limitations, 

which make them suboptimal solutions for endoscopy. Particularly, LCTFs are polarization dependent electro-

optic devices with a poor light throughput being approximately 30%. AOTFs produce blurry images due to 

second order harmonics from the acoustic driver. The operating wavelength range of both AOTFs and LCTFs is 

limited to either the visible or to the NIR spectral range, requiring the interchange of different modules if one 

wants to cover the entire sensitivity spectral range of the silicon based imaging sensors (CCD and CMOS). 

Additionally, the full width half maximum (FWHM) of these tunable filters varies significantly together with 

the light throughput across the operating wavelength range, which makes their calibration cumbersome. 

These technical shortcomings of tunable filter technologies together with their relatively high cost comprise a 

barrier to their adoption in the clinical research and diagnosis. This barrier becomes even higher when their 

integration to endoscopy is attempted with the main problems, being the very low light throughput of 

endoscopes and especially of the thin ones (2-4 mm). For this reason, simplified and rather trivial solutions 

have been employed instead, which allows for only a partial exploitation of the diagnostic potential of SI. The 

basic representative of this class of instruments is the so-called Narrow Band Imaging (NBI) endoscopy. NBI 
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was developed primarily for enhancing the visualization of mucosal microvasculature and to identify vascular 

alterations indicative of pathologic conditions [51]. It is based on the simple interchange of two (415nm, 

540nm) or three band-pass filters in front of a white-light source, which is coupled with the illumination path 

of the endoscope. This discrete, band-pass light-filtering arrangement produces a higher contrast between 

vascular structures and the surrounding mucosa [52]. Higher contrast is obtained by exploiting the existing 

light-absorption differences between these tissues, which are maximized within predetermined wavelength 

ranges. However, the provided enhancement, although useful is some cases, it is of limited diagnostic 

importance. This is because the development of consensus regarding the predictive value of the various 

vascular patterns is still pending [53]. The collection of a full spectral cube remains much more valuable than 

simply inspecting discreet spectral bands. This is because two-dimensional spectroscopy can provide NBI and 

on top of it “spectral signatures” of tissue lesions. The latter correspond to quantitative information with 

regard to biochemical and structural changes associated with several clinical conditions. This would enable 

the non- invasive, early detection and grading, while, at the same time, providing guidance for biopsy 

sampling, surgical treatment and follow up.  

In an attempt to address this demand we present in this report an affordable, high-throughput and fast SI 

system that can be integrated to existing endoscopic workstations without changing significantly routine 

practices. This is because it provides both live color imaging and pixel by pixel spectral analysis. The system 

has been successfully adapted to a thin (3.5 mm) endoscope, which was used for inspecting the endometrium 

(hysteroscope). We also report our findings from the spectral measurement and analysis of the endometrium, 

which, to the best of our knowledge, are both presented for the first time. Particularly, the obtained millions 

of spectra were automatically clustered on the basis of their distinct spectral characteristics. This process 

revealed objectively that there are 5 to 6 distinguishable spectral clusters that may correspond to different 

medical conditions. The pilot clinical use of developed “Spectral Clustering” (SpeCL) endoscope in identifying 

and mapping pathologic conditions of the endometrium are finally presented and discussed. 

 

 

5.1 Materials and methods 
 

5.1.1 SPECL System Design and Set-Up 
 

The SPECL hardware design was based upon a tunable wavelength light source and a camera operating in both 

color and monochrome modes. The tunable light source was built around a variable optical filter (VOF), which 
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has the property of transmitting a narrow spectral band of the incident light while all the other frequencies 

are blocked (figure 23). The center wavelength of the transmitted band changes continuously along its 

longitudinal axis and therefore it can act as a tunable filter when it is translated along this axis in front of a 

focused light source.  

 

FIGURE 23. VOF’S TRANSMISSION SPECTRUM 

 

The VOF operates in the spectral range 400-1000nm (Schott Veril) covering both the visible and the near 

infrared bands. It is quite convenient that this wavelength range matches the sensitivity range of the silicon-

based imaging sensors. As discussed in the introduction, the wide operation spectral range of VOF improves 

its competiveness as compared with the AOTFs and LCTF. Fig. 24 illustrates the block diagram of the SPECL 

endoscope. The VOF was mounted onto a motorized linear translation stage with about 160 mm stroke. A 

unipolar stepper motor was used, which is a robust closed loop control system for ensuring high positioning 

accuracy. The linear motion of the filter is controlled with the aid of an in-house built electronic unit, which is 

interfaced with a personal computer via USB 2.0 port. The unit has been built around the AT mega 162 (Atmel), 

low-power 8-bit microcontroller, which is based on the AVR enhanced RISC architecture. The light source is a 

Xenon bulb (150 W), which is focused onto the VOF’s surface with the aid of a parabolic mirror. An 

electronically controllable mechanical iris and a cold mirror system are interposed in the light path, both 

filtering the beam before it reaches the VOF. This is done for minimizing the risk of thermal damaging. Actually, 

the dichroic mirror system combines two dichroic mirrors placed between the VOF and the iris, each one 

forming approximately at 45o angle with the VOF. The first dichroic mirror (Thorlabs DMSP805R), which 

transmits >90% in the spectral range 380-790nm and reflects > 90% in the spectral range 820-1300nm was 
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used to “cover” UV-visible part of the VOF. The second dichroic mirror (Thorlabs DMSP 1000R), transmits >90% 

in the spectral range 520-985nm and reflects > 90% in the spectral range 1020-1550 nm and it was used for 

protecting the red-NIR part of the VOF. The mirror set is moved together with the VOF and ensures that a 

great amount of the out of band energy of the light source is rejected (reflected), while at the same time the 

transmitted in band energy to the VOF remains substantially unchanged. The filter is removed away from the 

light spot when the user selects to switch the system to the color imaging mode. In this way, when the SPECL 

system operates in the color imaging mode, the VOF is cooled down to ambient temperatures. A color camera 

(Sony ICX674) with its infrared IR-cut filter removed, is used for capturing both color and monochrome (visible 

and near infrared) spectral images. The role of the camera’s IR-cut filter in ensuring correct, IR-free color 

reproduction and imaging is substituted by the extending part of first dichroic mirror, in the right side of the 

VOF (fig 24). Switching between spectral and color imaging is performed rapidly, through computer control, 

which toggles the camera’s output between the monochrome/color states. It also rotates the multihole-type 

iris so that more light passed through the iris holes when it is switched to operate in the SI mode. 

 

 

 

 

 

 

FIGURE 24 THE BLOCK DIAGRAM OF THE SPECTRAL CLUSTERING ENDOSCOPE 
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5.1.2 SPECL System Operation-Spectral and Color Image Acquisition 
 

Before acquiring spectral or color images, the SPECL system is calibrated. Calibration refers to both color and 

spectral imaging and it is performed by utilizing a reference sample with unity reflectance across the entire 

400-1000nm spectral range. The system scans the sample step by step and the gray values of the sample serve 

as a feedback for the system to automatically regulate the sensor’s exposure time and/or the light source’s 

iris. Calibration process ends when the gray values reach a certain value for all spectral bands. When the user 

activates e.g. the spectral imaging procedure the VOF is moved to the corresponding position and the camera 

captures the image in a synchronized manner. Then, the filter is moved to the next position and the procedure 

continues until the entire set of the predetermined set of images is collected. Image capturing is performed 

with the exposure/iris settings as they have been determined during calibration and have been stored in a 

look-up-table for every tuning step. 

With the SPECL system calibrated and switched to the color imaging mode, the operator inserts the endoscope 

into the hollow organ, while inspecting a color or a monochrome spectral image onto one of the two monitors 

of the system. Monochrome spectral image offers a similar to the NBI operations as it can be used for 

enhancing the observed contrast. The SPECL system integrates a fast spectral scanning procedure which 

operates as follows: With either real time color or spectral imaging, the operator locates a suspicious area to 

be analyzed. The system is then switched to the spectral scanning mode and ten seconds are given to the 

operator and to the patient to prepare and remain still. Next, and within two seconds, fifteen full resolution 

spectral images and one color image are collected and stored in system’s hard drive. Upon completing the 

scanning procedure, the system switches back automatically to the real time color imaging mode. This stack 

of images (spectral cube) is then processed for detecting and correcting image misregistration problems and 

for calculating the cluster map image (CMI), based on the algorithms that will be described below. Calculations 

last for approximately two seconds and upon completing this second task, an artificial image is displayed on 

the second monitor. Each cluster in this image is represented with an artificial color for facilitating localization 

and identification of abnormal areas. 

 

5.2 Clinical Evaluation 
 

A set of 50 random patients were examined with our SIES in collaboration with the University Hospital of 

Ioannina.  The patients were referred for hysteroscopy after previous ultrasonic check and/or prior doctor 

advice. During the examination, only doctors and medically trained personnel were present. The users of the 
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SIES were trained previously ex-vivo.  In all cases spectral cubes were acquired from various areas of interest 

according to the physician’s opinion. A  total  of  88  spectral  cubes  of  diagnostic  importance  were  finally  

selected.  Inside that  set,  5  spectral  cubes  were  of  undeveloped  endometrium,  20  of  polyps,  6  of 

hyperplastic  endometrium,  6  of  endometriosis,  2  of  dysfunctional  uterus  bleeding (DUB) and 14 of various 

pathologies. The remaining spectral cubes were of normal endometrium. The total amount of data was more 

than 150 GB. Examples of acquired spectral cubes follow. 

 

 

FIGURE 25. SPECTRAL AND COLOR IMAGES ACQUIRED FORM THE ENDOMETRIUM. NUMBERS AT THE BOTTOM RIGHT OF THE IMAGES 

REPRESENT THE CENTRAL WAVELENGTH. CLINICAL IMAGE: ENDOMETRIAL POLYP. 

 

 

 

FIGURE 26. SPECTRAL AND COLOR IMAGES ACQUIRED FORM THE ENDOMETRIUM. NUMBERS AT THE BOTTOM RIGHT OF THE IMAGES 

REPRESENT THE CENTRAL WAVELENGTH. CLINICAL IMAGE: ENDOMETRITIS. 
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FIGURE 27. SPECTRAL AND COLOR IMAGES ACQUIRED FORM THE ENDOMETRIUM. NUMBERS AT THE BOTTOM RIGHT OF THE IMAGES 

REPRESENT THE CENTRAL WAVELENGTH. IN CLINICAL IMAGE: HYPERPLASTIC TISSUE. 

 

 

5.2.1 Invisible Features observed with SPECL system 

Invisible cyst 

 

 

FIGURE 28. COLOR (LEFT) AND SPECTRAL IMAGE @ 675NM  (RIGHT) 

 

On the top left of the 675nm band image (marked) there can be seen a cyst which is invisible in the color 

image.   
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Micro vascular pattern 

 

FIGURE 29. COLOR (LEFT) AND SPECTRAL IMAGE @ 575NM (RIGHT) 

 

On  the  575nm  band  image  (right),  the  micro  vascular  pattern  is  very  clearly distinguished, allowing the 

physician of better visualization of atypical blood vessel patterns, suspicious of neoplastic tumors growth. 

 

Polyp’s blood vessels 

 

 

FIGURE 30. COLOR (LEFT) AND SPECTRAL IMAGE @ 575NM (RIGHT) 

 

On the 575nm band image (right), the micro vascular pattern on the polyp can be clearly seen. 
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Deep Vessel 

 

FIGURE 31. COLOR (LEFT) AND SPECTRAL IMAGE @ 550NM  (RIGHT) 

 

On the 550nm band image (marked), blood vessels are seen that are not visible on the color image. 

 

Deep Vessel 

 

FIGURE 32. COLOR (LEFT) AND SPECTRAL IMAGE @700NM (RIGHT) 

 

On the 700nm band image (markes), a shadow on its center can been seen, featuring probably a deeper vessel. 
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Vascular pattern 

 

FIGURE 33FIGURE 5.8. COLOR (LEFT) AND SPECTRAL IMAGE @470NM  (RIGHT) 

 

On  the  470nm  band  image  (right),  the  vascular  pattern  can  be  seen  with  greater contrast  than  in  the  

color  image  and  at  the  same  time,  the  edges  of  the endometrium surface are enhanced. 
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Chapter 6 – Simultaneous spectral imaging using multiple 
band-pass filters 
 

Introduction 

 

In this chapter, it is described explicitly a method for simultaneous spectral imaging using multiple 

bandpass filters and standard color digital cameras. Also, a device able of previewing 6 spectral bands 

in real time is presented. This device will be miniaturized and integrated to a thin hysteroscope, able 

of performing real time, non-invasive diagnosis for pathological conditions in endometrium. 

 

 

6.1. Hyperspectral Imaging using Multiple Band - pass Filters (MBPFs) 
 

 

6.1.1 Capturing color information with imaging sensors 
 

In most cases, color information is captured by standard digital cameras through color filter arrays 

(CFA), or color filter mosaic (CFM), i.e. a mosaic of tiny color filters placed over the pixel sensors of an imaging 

sensor. Color filters are needed because the typical photosensors detect light intensity with little or no 

wavelength specificity, and therefore cannot separate color information. Since sensors are made of 

semiconductors they obey to solid-state physics. 

The color filters filter the light by wavelength range, such that the separated filtered intensities include 

information about the color of light. For example, the Bayer filter (figure 48), which is used in most single chip 

digital image sensors, gives information about the intensity of light in red, green, and blue (RGB) wavelength 

regions. The raw image data captured by the image sensor is then converted to a full-color image (with 

intensities of all three primary colors represented at each pixel) by a demosaicing algorithm which is tailored 

for each type of color filter. The spectral transmittance of the CFA elements along with the demosaicing 

algorithm jointly determine the color rendition. The sensor's passband quantum efficiency and span of the 

CFA's spectral responses are typically wider than the visible spectrum, thus all visible colors can be 
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distinguished. The responses of the filters do not generally correspond to the CIE color matching functions, so 

a color translation is required to convert the tristimulus values into a common, absolute color space. 

 

 

 

FIGURE 34.A: THE BAYER COLOR FILTER MOSAIC. EACH TWO-BY-TWO SUBMOSAIC CONTAINS 2 GREEN, 1 BLUE AND 1 RED 

FILTER, EACH COVERING ONE PIXEL SENSOR, PLACED ON A SQUARE GRID. 6.1.B: EACH COLOR MICROFILTER TRANSMITS SPECIFIC 

SPECTRAL BANDS. 

 

 

In Table 2, a list of CFAs is presented. CFAs combined with imaging sensors are used in digital cameras, 

camcorders and scanners to create digital images. Each CFA has a different relative spectral response, 

depending on the micro-color filters that are used and modify the spectral response of the camera (figures 49 

& 50).  

A full color image is reconstructed from the incomplete color samples output from an image sensor 

overlaid with a CFA. Also known as CFA interpolation or color reconstruction, another common spelling is 

demosaicking. Most modern digital cameras acquire images using a single image sensor overlaid with a CFA, 

so demosaicing is part of the processing pipeline required to render these images into a viewable format. 

Many modern digital cameras can save images in a raw format allowing the user to demosaic it using software, 

rather than using the camera's built-in firmware. 
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FIGURE 35. RELATIVE SPECTRAL RESPONSE OF A SONY, ICX445 CCD IMAGING SENSOR. A BAYER CFA IS USED. 

 

 

 

FIGURE 36. RELATIVE SPECTRAL RESPONSE OF A SONY, ICX419 CCD IMAGING SENSOR. A CMYG CFA IS USED. 
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Pattern Name Description Pattern size (pixels) 

 

Bayer 

filter 

Very common RGB filter. With one blue, one red, 

and two green. 
2×2 

 

RGBE 

filter 

Bayer-like with one of the green filters modified to 

"emerald"; used in a few Sony cameras. 
2×2 

 

CYYM 

filter 

One cyan, two yellow, and one magenta; used in a 

few cameras of Kodak. 
2×2 

 

CYGM 

filter 

One cyan, one yellow, one green, and one magenta; 

used in a few cameras. 
2×2 

 

RGBW 

Bayer 

Traditional RGBW similar to Bayer and RGBE 

patterns. 
2×2 

 

RGBW 

#1 

Three example RGBW filters from Kodak, with 50% 

white. 

4×4 

 

RGBW 

#2 

 

RGBW 

#3 
2×4 

 

TABLE 2 LIST OF COLOR FILTER ARRAYS. 

 

http://en.wikipedia.org/wiki/File:Bayer_pattern.svg
http://en.wikipedia.org/wiki/File:RGBE_filter.svg
http://en.wikipedia.org/wiki/File:CYYM_pattern.svg
http://en.wikipedia.org/wiki/File:CYGM_pattern.svg
http://en.wikipedia.org/wiki/File:RGBW_Bayer.svg
http://en.wikipedia.org/wiki/File:RGBW_number_1.svg
http://en.wikipedia.org/wiki/File:RGBW_number_2.svg
http://en.wikipedia.org/wiki/File:RGBW_number_3.svg
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6.1.2 Measuring the spectral sensitivity of a color camera manually  
 

 

The relative spectral response of a camera was calculated by stimulating it with very narrow band 

illumination, of the same intensity at each wavelength, produced by a monochromator. This method is 

conceptually very simple and can be very accurate. The equipment is required to produce sufficiently intense 

narrow band illumination at uniformly spaced wavelengths. Various researchers have investigated methods 

for characterization which do not use such equipment [71], as this equipment is relatively expensive and not 

always readily available, but still these methods are liable to errors.  

To measure the relative spectral response of a color CCD camera (Point Grey Research, DR2-13S2C-CS 

in our case), the following experimental setup was designed: A halogen lamp (Thorlabs OSL1-EC) with a fiber 

optic was coupled to a tunable diffraction grating monochromator (Optometrics, MC1-03), with a minimum 

tuning step of 0.2nm and 3.4nm FWHM (figure 51). The camera was focused at the exit slit of the 

monochromator, in a distance of 20cm. Between the camera and the monochromator, a cube beam splitter 

(Edmund Optics NT47009, 25mm, non polarizing) was mounted, splitting 50% of the monochromatic light to 

the camera and the other 50% to an optical power and energy meter (Thorlabs PM1000D). Through this setup, 

the output light from the monochromator was kept to a constant value (3.5μW) by adjusting the output 

intensity of the halogen lamp. This process should be done for almost every tuning step (which in our case was 

5nm), as the transmittance of the monochromator and the emission spectra of the halogen source alter 

throughout their wavelength active range. The combination of the halogen lamp, the monochromator and the 

photometer produced a tunable wavelength light source with a flat response between 400 and 1000 nm.   

In contrast to the human eye, CCD chips are also sensitive to near infrared light. In the case of color 

cameras this would lead to a predominance of red. An IR cut filter (figure 54) corrects this situation. However, 

cameras without IR cut filter provide more flexibility because they enable the users to apply their own filter 

depending on the particular requirements.  
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FIGURE 37. SAMPLE OUTPUT OPTICAL SIGNALS FROM A TUNABLE DIFFRACTION GRATING MONOCHROMATOR, MEASURED WITH 

A SPECTROMETER. 

 

 

 

 

 

 

 

 

FIGURE 38. SAMPLE OUTPUT OPTICAL SIGNALS FROM A TUNABLE DIFFRACTION GRATING MONOCHROMATOR, CAPTURED WITH 

A DIGITAL CAMERA. 
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FIGURE 39. EXPERIMENTALLY MEASURED SPECTRAL SENSITIVITY OF A SONY ICX204AK CCD SENSOR FOR RGB CHANNELS 

RESPECTIVELY. CAMERA SETTINGS WERE SET AT THE DEFAULT VALUES. 

 

 

FIGURE 40. IR CUT-OFF FILTER. EDMUND OPTICS LTD, WWW. EDMUNDOPTICS.EU    

 

6.1.3 Camera parameters – Maximizing the image quality 
 

Image formation and quality, apart from the spectral characteristics of the imaging sensor, is also 

determined by several factors, such as illumination, lens and camera parameters. In the following matrix, basic 

camera parameters for optimal image quality are discussed. 
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Parameter Determination 

Shutter Sensor’s exposure time 

Gain Amplification of the sensor’s output signal 

Offset (Brightness) Increase of the grey / color levels 

Sharpness Enhance blurred images 

Gamma Manipulation of the middle grey / color levels 

Saturation Adjustment of color saturation 

Hue  Shift color values 

White Balance Adjust red and blue color channel amplidication 

 

TABLE 3 BASIC CAMERA SETTING PARAMETERS AND THEIR DEFINITIONS. 

 

Controlling the white balance 

 

White balance (WB) is a name given to a system of color correction to deal with differing lighting 

conditions (figure 53), describing how to manipulate the white balance of a color camera's Bayer tile pattern 

(e.g. R, G1, G2, B). Adjusting the white balance by modifying the relative gain of R, G and B in an image enables 

white areas to look "whiter".In principle, one wants to scale all relative luminances in an image so that objects 

which are believed to be neutral, appear so. If a surface with R=240  was believed to be a white object, and if 

255 is the count which corresponds to white, one could multiply all red values by 255/240. Doing analogously 

for green and blue would result, at least in theory, in a color balanced image. In this type of transformation 

the 3x3 matrix is a diagonal matrix. 

 

[
𝑅
𝐺
𝐵
] = [

255/𝑅′𝑤
0
0

   
0

255/𝐺′𝑤
0

  
0
0

255/𝐵′𝑤

] [
𝑅′
𝐺′
𝐵′
] 

 

where R, G and B are the color balanced red, green, and blue components of a pixel in the image; R’, G’ and B’ 

are the red, green, and blue components of the image before color balancing, and R’w, G’w and B’w are the red, 
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green, and blue components of a pixel which is believed to be a white surface in the image before color 

balancing. This is a simple scaling of the red, green, and blue channels, and is why color balance tools in 

Photoshop and the GIMP have a white eyedropper tool. It has been demonstrated that performing the white 

balancing in the phosphor set assumed by sRGB (standard RGB color space) tends to produce large errors in 

chromatic colors, even though it can render the neutral surfaces perfectly neutral (figure 55). 

 In most digital cameras WB operation is performed through taking some subset of the target image 

and looking at the relative red to green and blue to green response. The general idea is to scale the gain of red 

and blue channels, so that the response is 1:1:1. For example, if the average pixel on the target was 222 (R), 

232 (G), 236 (B) then all the reds should be scaled up by 232/222 and the blues down by 232/236 [WB2].  

Practically, the most accurate and stable way to perform a white balance calibration is achieved as 

follows: The camera is focused to a white calibration card, typically made by Barium Sulfate (BaSO4), which is 

the reflective standard. A light source illuminates the card at a constant intensity level. Many light sources 

(e.g. halogen lamps) need a warm up time to stabilize their color temperature. Then, the iris of the lens and 

the shutter time of the camera are set to a constant value and then the WB algorithm adjusts the gains of RGB 

channels to an equal outcome value. Through iris and shutter adjustment, the WB process should be 

performed to a relatively high value (e.g. 225 when using an 8-bit camera). This tactic assures that variations 

in the light source intensity levels will not affect the color calibration (figure 55).  Also, it is wise to set the iris 

diameter to lower levels, in order to achieve high depth of field and the shutter time to medium to low levels, 

in order to avoid flickering in lower levels and not to sacrifice framerate at high shutter levels.   
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FIGURE 41. WHITE BALANCE OPERATION BY ADJUSTING THE LIGHT SOURCE’S INTENSITY LEVEL TO A LOW LEVEL (A) AND 

GRADUALLY INCREASING IT AND BY ADJUSTING THE LIGHT SOURCE’S INTENSITY LEVEL TO A HIGH LEVEL (B) AND GRADUALLY 

DECREASING IT. NOTICE THAT IN SECOND CASE, RGB VALUES ARE NOT AFFECTED BY THE VARIATIONS OF THE LIGHT SOURCE’S 

INTENSITIES. 

 

 

 

 



 

64 
 

 

 

 

FIGURE 42.INDICATIVE ILLUMINATION SPECTRA OF A HALOGEN LAMP (A), A WHITE LIGHT LED (B) AND A XENON LAMP (C). 
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Through white balance and the global adjustment of the color channels of a camera, the overall 

mixture of colors in an image is changed and a color correction is performed, in order to compensate with the 

variable emission spectra of light sources that illuminate a scene.   

 

 

FIGURE 43. MODIFIED SPECTRAL SENSITIVITY OF A SONY ICX204AK CCD SENSOR BY THE WHITE BALANCE OPERATION. THE 

ILLUMINATING SOURCE WAS A HALOGEN LAMP. 

 

 

6.2 Multi bandpass filters combined with color cameras 
 

Multi band pass filters, i.e. filters that transmit light in several discrete narrow spectral bands, are 

widely used in fluorescence imaging applications as a means of rapidly identifying positively labeled multi-

color samples. The filters are optimized to provide high transmission, steep edges and deep blocking for 

balance in contrast, brightness, and color representation. In this work, MBPFs are used in combination with 

color CCD cameras, which allows the acquisition of multiple spectral images at specified spectral bands.   
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FIGURE 44. 
TRANSMISSION 

SPECTRA FOR 

PRODUCTS FF01 

422/503/572 (A) 

AND FF01 

464/542/639 

(B), SEMROCK, 
ROCHESTER, NY, WWW.SEMROCK.COM. 

 

 

Multi band pass filters (MBPFs), i.e. filters that transmit light in several discrete narrow spectral bands 

(figure 58), are widely used in fluorescence imaging applications as a means of rapidly identifying positively 

labeled multi-color samples. The filters are optimized to provide high transmission, steep edges and deep 

blocking for balance in contrast, brightness, and color representation. In this work, MBPFs are used in 

combination with color CCD cameras and spectral unmixing algorithms, which allow the acquisition of multiple 

spectral images at specified spectral bands.   

 

When using MBPFs in the visible spectrum, the out of band rejection might present leaks in the IR 

spectrum (figure 58a), thus, carefully selected, extra IR cut filters must be used. Also, by performing WB 

operation to sensors coupled with MBPFs, the spectral sensitivity of the sensor is modified twice, once form 

the illumination source used and again by the MBPF transmittance. For example, in figure 57, the spectral 

sensitivity of a color CCD sensor is presented, coupled with a Semrock 422/500/572 MBPF (figure 58) and 

illuminated by a halogen lamp (figure 56c). Notice the amplification on the red channel, as a result of the 

MBPF’s very limited transmittance in the red bands.        

 

6.2.1 Channel unmixing algorithm 
 

When a triple bandpass filter, with central wavelengths λ1, λ2, λ3, is coupled to a Bayer tiled CCD, the sensitivity 

of each pixel, apart from the spectral characteristics of the Bayer pattern microfilters, is modified again by the 

transmittance characteristics of the filter (figure 57, table 2). Since RGB microfilters are approximately broad, 

http://www.semrock.com/
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with each one covering a wide area of the active CCD sensitivity spectrum, when coupling a triple MBPF, each 

pixel will unevenly be sensitive to any of the three narrow spectral bands.  

This fact implies that a pixel value for the e.g. Red channel will be a summation of captured photons in all three 

narrow spectral bands of the MBPF. Assuming that the spectral bands of the MBPF are located in the red, 

green and blue channel sensitivity areas of an optical sensor and that RBroad, is the value of the R channel, then 

RNarrow, RGreem and RBlue, will be the R channel values recorded at the red, green and blue band of the MBPF. 

Making the same assumptions for the G and B channels, equation (1) derives    

 

 𝑅𝐵𝑟𝑜𝑎𝑑 = 𝑅𝑁𝑎𝑟𝑟𝑜𝑤 + 𝑅𝐺𝑟𝑒𝑒𝑛 + 𝑅𝐵𝑙𝑢𝑒 

                                   𝐺𝐵𝑟𝑜𝑎𝑑 = 𝐺𝑅𝑒𝑑 + 𝐺𝑁𝑎𝑟𝑟𝑜𝑤 + 𝐺𝐵𝑙𝑢𝑒                                (1) 

𝐵𝐵𝑟𝑜𝑎𝑑 = 𝐵𝑅𝑒𝑑 + 𝐵𝐺𝑟𝑒𝑒𝑛 +𝐵𝑁𝑎𝑟𝑟𝑜𝑤 

The initial objective of this thesis was to decide if the above fact could lead to a system, where each one RGB 

channel of a color camera will acquire only one narrow spectral band, after performing an unmixing algorithm 

that would eliminate the “crosstalking” of the channels in all MBPF’s bands. By advancing mathematically the 

equation (1), the above hypothesis is possible. Specifically, by noticing that for the e.g. red channel, the RGreen 

value, apart from being a fraction of RBroad, is also a fraction of GNarrow. This may be expressed as a ratio of the 

areas covered within the region of MBPF’s green spectral band between GNarrow and RBroad. This ratio is 

furthermore a weighted coefficient between RGreen and GNarrow. So, by formulating mathematically the curves 

of the active spectrum of the RGB channels and by calculating their integrals at the MBPF’s bands, equation 

(1) leads to eq. (2). 

 

 

𝑅𝐵𝑟𝑜𝑎𝑑 = 𝑤𝑅𝑅 ∙ 𝑅𝑁𝑎𝑟𝑟𝑜𝑤 +𝑤𝑅𝐺 ∙ 𝐺𝑁𝑎𝑟𝑟𝑜𝑤 +𝑤𝑅𝐵 ∙ 𝐵𝑁𝑎𝑟𝑟𝑜𝑤 

                   𝐺𝐵𝑟𝑜𝑎𝑑 = 𝑤𝐺𝑅 ∙ 𝑅𝑁𝑎𝑟𝑟𝑜𝑤 +𝑤𝐺𝐺 ∙ 𝐺𝑁𝑎𝑟𝑟𝑜𝑤 +𝑤𝐺𝐵 ∙ 𝐵𝑁𝑎𝑟𝑟𝑜𝑤              (2) 

𝐵𝐵𝑟𝑜𝑎𝑑 = 𝑤𝐵𝑅 ∙ 𝑅𝑁𝑎𝑟𝑟𝑜𝑤 +𝑤𝐵𝐺 ∙ 𝐺𝑁𝑎𝑟𝑟𝑜𝑤 +𝑤𝐵𝐵 ∙ 𝐵𝑁𝑎𝑟𝑟𝑜𝑤 

 

Converting these 3 equations system to matrix form, we have: 
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[

𝑅𝐵𝑟𝑜𝑎𝑑
𝐺𝐵𝑟𝑜𝑎𝑑
𝐵𝐵𝑟𝑜𝑎𝑑

] = [

𝑤𝑅𝑅 𝑤𝑅𝐺 𝑤𝐵𝑅
𝑤𝐺𝑅 𝑤𝐺𝐺 𝑤𝐵𝐺
𝑤𝐵𝑅 𝑤𝐵𝐺 𝑤𝐵𝐵

] ∙ [

𝑅𝑁𝑎𝑟𝑟𝑜𝑤
𝐺𝑁𝑎𝑟𝑟𝑜𝑤
𝐵𝑁𝑎𝑟𝑟𝑜𝑤

]        (3) 

or 

[

𝑅𝐵𝑟𝑜𝑎𝑑
𝐺𝐵𝑟𝑜𝑎𝑑
𝐵𝐵𝑟𝑜𝑎𝑑

] = 𝑊 ∙ [

𝑅𝑁𝑎𝑟𝑟𝑜𝑤
𝐺𝑁𝑎𝑟𝑟𝑜𝑤
𝐵𝑁𝑎𝑟𝑟𝑜𝑤

]    (4) 

 

where W is the weight matrix, RBroad, GBroad, BBroad, are the signal values of the light intensities as it is recorded 

by a color sensor and RNarrow, GNarrow, BNarrow are the actual spectral band light intensities, before light reaches 

the sensor’s surface. Since “broad” signals are known and W matrix can be calculated as it described in 

subchapter 2.2.1, then spectral intensities of the “narrow” signals can be calculated by a matrix inversion: 

 

[

𝑅𝑁𝑎𝑟𝑟𝑜𝑤
𝐺𝑁𝑎𝑟𝑟𝑜𝑤
𝐵𝑁𝑎𝑟𝑟𝑜𝑤

] = 𝑊−1  ∙ [

𝑅𝐵𝑟𝑜𝑎𝑑
𝐺𝐵𝑟𝑜𝑎𝑑
𝐵𝐵𝑟𝑜𝑎𝑑

] 

 

This process enables the concurrent acquisition of any three spectral bands, by using a triple MBPF and an 

ordinary color camera. This setup may be expanded to the concurrent capturing of four spectral bands, by 

using CMYG color cameras and quadruple MBPFs. Also, with the use of optical dispersing elements, more than 

one cameras can be used, to increase the number of the acquired spectral bands.  

 

 

Optomechanical Engineering 

 

Optomechanical engineering, as a subset of mechanical engineering, specializes in optical systems, which 

usually have much higher design and manufacturing specifications than most machinery. They often require 

submicron precision during design and manufacturing. In addition, materials that are used in optical systems, 

such as glass filters, tend to have unusual physical properties, regarding great sensitivity to heat tolerance and 

mechanical stress.   For the described imaging device, a conceptualization and design of a precision two-CCD 

camera system should be developed, involving beam splitting elements, relay lens, triple band pass filters and 
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detachable x, y, z stages with micron mobility. The design was modeled using Solidworks 3D CAD design 

software and manufactured at a specialized in micromachining machinery. A complete model of the snapshot 

multispectral imaging device is shown in figure 59. 

 

 

 

FIGURE 59: DIAGONAL VIEW OF THE EXPERIMENTAL SETUP 

 

 

6.3 Results 
 

 

Experimental performance is illustrated in Figure 60, presenting reflectance measurements versus 

wavelength. Each graph refers to a different color sample of the MacBeth checkerboard array target (figure 

59).  The chart’s 24 color patches have spectral reflectances intended to mimic those of natural objects such 

as human skin, foliage, and flowers, to have consistent color appearance under a variety of lighting conditions 

and to be stable over time. Solid curves represent the reflectance spectra, and asterisks (*) represent the 

multispectral data obtained. The results indicate that the method enables simultaneous measurement of 

three spectral bands for a wide range of spectra. The reflection spectrum is successfully measured for all color 

samples with an average error of 6%. It can be seen that while most measurements offer a better match than 
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6%, there are still some inaccuracies observed. Moreover, the measured spectral bands might not be optimally 

located relative to the RGB sensitivity spectra. 

These preliminary findings demonstrate that the developed method could be used for simultaneous 

multispectral imaging applications. The key advantage of the approach is the simple implementation in terms 

of hardware complexity that can correspondingly lead to low-cost applications. Further, this method could be 

used for a new generation of multispectral sensors based on the commonly used 3CCD sensor design, by using 

polychroic mirrors and color CCDs. Thus 12-band multispectral imaging sensors would be virtually the same 

size and weight as existing 3CCD sensors.  

 

 

FIGURE 45 THE MACBETH COLORCHECKER CHART 
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FIGURE 46. MEASUREMENTS OF REflECTANCE OF THE CHECKERBOARD SAMPLES (ASTERISK) AND REflECTANCE SPECTRA (SOLID CURVE). 
EACH GRAPH CORRESPONDS TO A DIFFERENT COLOR SAMPLE 

 

 
(a) 
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FIGURE 47. SNAPSHOT MULTISPECTRAL IMAGING DEVICE, CAPTURING 6 NARROW SPECTRAL BANDS SIMULTANEOUSLY, AT VIDEO 

RATES. (A) FINGERTIPS TISSUE INSPECTION. (B) LIPS TISSUE INSPECTION. 

 

 

 

 

 

 

 

 

 

 

 

(b) 
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Chapter 7 - Clustering of Spectra Obtained from the 
Endometrium 
 

Introduction 
 

The SPECL endoscopic platform was used for examining the inner lining of the uterus, known as endometrium. 

In fact, the SPECL system enabled for the first time the collection of spectra from the endometrium 

corresponding to a wide range of clinical conditions. The examination of the endometrium is routinely 

performed with the aid of a very thin rigid endoscope (3.5 mm diameter), which it is called hysteroscope. 

Hysteroscopy is performed for a variety of gynecological conditions, such as abnormal uterine bleeding 

(menorrhagia), infertility, polyps, fibroids, endometrial adhesions, uterine diaphragm, endometrial 

hyperplasia, cancer etc.  

Although endometrial abnormalities are manifold that may be the etiology of several conditions ranging from 

infertility to cancer, all the existing diagnostic tests including transvaginal ultrasonography, 

sonohysterography and diagnostic hysteroscopy, have been proved to be just moderately accurate in 

detecting intrauterine pathology [54-55]. Very recently and in an attempt to improve the diagnostic 

performance of hysteroscopy, the NBI endoscopy technique has been used in examining the endometrium 

but with the limitations outlined in introduction [56]. 

The SPECL system was installed in the outpatient clinic of the Obstetrics and Gynecology department of the 

University of Ioannina, Ioannina, Greece. The SPECL’s camera and tunable light source was coupled with a 3.5 

mm Bettochi Hopkins II hysteroscope (Karl Storz). A clinical study is currently underway with the purpose of 

establishing the spectral patterns of various pathologic conditions of the endometrium. The participants of 

the study are examined with the SPECL endoscope following the standard endoscopic procedures and 

guidelines. All women participating to the study have signed an informed consent and the ethics committee 

of the hospital has approved the study. During the preliminary phase of this large study, data were obtained 

from fifteen cases with different conditions (normal and pathologic). Particularly, these cases span a wide 

spectrum of conditions including normal, polyps, inflammation, abnormal uterine bleeding, endometrial 

hyperplasia and cancer (biopsy confirmed). By following the procedures described in paragraph II.B, 25 

spectral cubes were collected from all these cases using the SPECL system. 

It is easy to realize that it is impossible to visually analyze this huge number of spectra (2 million per spectral 

cube) and a number of further processing steps should be employed. The following sections will present an 

overview of the current workflow analysis, involving all the major steps of processing spectra for 
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misregistration problems, establishing a sampling rate (spatial and / or spectral dimension reduction) for 

almost real time analysis, image filtering, background removal, as well as clustering for estimating the number 

of the distinguishable spectral classes that might correlate with the normal/pathologic conditions of the 

endometrium.  

 

 

7.1 Processing workflow of endometrium spectra 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Endoscope Calibration 

System parameter(s) configuration (shutter, gain, etc), as previously discussed in Chapter 5. 

2. Image stack acquisition  

FIGURE 48. SPECL SYSTEM DATA WORKFLOW 
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A 12-band spectral cube is acquired1, saved and documented upon basic patient info. Other image and video 

operations are also provided, particularly recording video streams for specific timeframes (data are stored 

with single float precision), as previously discussed in Chapter 5.  

3. Reduce sampling rate 

In order to achieve (almost) real time performance with consumer based processing units (i5/i7 desktop 

computers), image down-sampling is required. Three approaches were tested: 

 Block Processing, 

 Resize Image(s), 

 Sample pixels along horizontal and vertical axes at a constant period. 

Block processing enables image processing in configurable blocks (3x3, 9x9, etc.) of pixels without altering the 

original (1280x1024) spatial dimensions of the spectral cube. While each block is processed sequentially, 

enabling operations on very large images, real benefits of this method account for systems with little memory 

and not for real time performance. Also accumulating X number of clustered blocks into a single map will 

increase both code complexity and process time. On the other hand, image resizing scales down the spatial 

dimensions of the spectral cube based on 3 different algorithms:  

 Nearest-neighbor interpolation,  

 Bi-linear interpolation, where the output pixel value is a weighted average of pixels in the 

nearest 2-by-2 neighborhood (averaging-based subsampling provides robustness 2  against 

noise), 

 Bi-cubic interpolation, where the output pixel value is a weighted average of pixels in the 

nearest 4-by-4 neighborhood.  

 

After clustering, regardless of the resizing algorithm, the resulting maps are visually almost identical, whereas 

in terms of performance, nearest-neighbor is the fastest method as it involves only pixel assignment without 

weighting.  Also, image resizing causes an increasing fluctuation in the mantissa of each pixel value explaining 

                                                             
1  @ 440, 470, 500, 525, 550, 575, 600, 625, 650, 675, 700 and 830 nm   
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the slight increase in the k-means processing time (segmentation). Nearest-neighbor interpolation is similar 

with a fast 2-dimentional sampling at a constant period achieving even lower processing times3: 

 

CPU i5@2.5GHz i7@2.8Ghz 

Method 
Reduce image  
stack (sec) 

Segmentation 
(sec) 

Reduce image  
stack (sec) 

Segmentation 
(sec) 

Block - - - - 
BL 0.42 5.56 0.35 3.13 
BC 0.48 5.76 0.37 3.32 
NN 0.38 5.96 0.32 4.10 
Sampling 0.29 3.95 0.23 2.33 

 

TABLE 4. PROCESSING TIMES FOR SEVERAL DOWNSAMPLING TECHNIQUES. 

 

Four times down-sampling (or even eight times) is possible without significant loss of information due to the 

endoscope's high camera resolution against the narrow optical field of view of the attached fibreoptic 

instrument. 

 

4. Registration 

Registration of a camera acquisition system relatively to an optical tracker is an important step for image 

guided applications. It is necessary in order to be able to compare data obtained from different modalities. 

Common causes of misalignment are patient's inadvertent movements during acquisition time and 

geometric distortions due to image capturing at different wavelengths by different sensors.  The proposed 

endoscope system implements spectral imaging based on a linear variable filter avoiding major distortions 

due to different sensors. However, during screening tests a patient may experience discomfort or even 

pain, inevitably resulting in a series of movements (inadvertent or not). One way to perform registration 

consists on finding some common cues between the images in a spectral cube. Several approaches were 

tested: 

 

 Control point registration [user based], 

 Video stabilization using point feature matching [feature based], 

 Automatic registration [intensity based] 

                                                             
3 Testing parameters are: downscale by 4 (1280x1024320x256), wiener smoothing + remove background, k-means clustering (k=6) for 
an 11-dimensional single matrix i.e. 320x256x11 (images @830nm are omitted). Segmentation time is the sum of 4 consequent runs (for 
a single run elapsed time is <1 sec @i7).   
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In Control Point Registration, the user picks points in a pair of images that identify the same feature or 

landmark in the images. Then, a spatial mapping is inferred from the positions of these control points. Since it 

is not possible for the endoscope operator to simultaneously perform a medical examination and specify 

alignment points, this method was omitted. On the other hand, the problem of registration is similar to 

stabilizing a video that was captured from a jittery or moving platform. One way to stabilize a video is to track 

a salient feature such as edges or corners and use those anchors points to cancel out all perturbations relative 

to them. This approach automatically searches for the "background plane" in the image sequence, and uses 

its observed distortion to correct for camera motion. The stabilization algorithm involves two steps. First, we 

determine the affine image transformations between all neighboring frames of the sequence using a Random 

Sampling and Consensus (RANSAC) [57] procedure applied to point correspondences between two images. 

Second, we warp the video frames to achieve a stabilized video. 

 

Using RANSAC method for estimating geometric transforms in computer vision 

 

Random sample consensus, or RANSAC, is an iterative method for estimating a mathematical model from a data 

set that contains outliers. The RANSAC algorithm works by identifying the outliers in a data set and estimating the 

desired model using data that does not contain outliers. RANSAC is accomplished with the following steps: 

1. Randomly selecting a subset of the data set 

2. Fitting a model to the selected subset 

3. Determining the number of outliers 

4. Repeating steps 1-3 for a prescribed number of iterations 

It is a non-deterministic algorithm in the sense that it produces a reasonable result only with a certain probability, 

with this probability increasing as more iterations are allowed. The algorithm was first published by Fischler and 

Bolles at in 1981. A basic assumption is that the data consists of "inliers", i.e., data whose distribution can be 

explained by some set of model parameters, though may be subject to noise, and "outliers" which are data that do 

not fit the model. The outliers can come, e.g., from extreme values of the noise or from erroneous measurements 

or incorrect hypotheses about the interpretation of data. RANSAC also assumes that, given a (usually small) set of 

inliers, there exists a procedure which can estimate the parameters of a model that optimally explains or fits this 

data. 

Let p be the probability that the RANSAC algorithm in some iteration selects only inliers from the input data set 

when it chooses the n points from which the model parameters are estimated. When this happens, the resulting 
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model is likely to be useful so p gives the probability that the algorithm produces a useful result. Let w be the 

probability of choosing an inlier each time a single point is selected, that is, 

w = number of inliers in data / number of points in data 

A common case is that w is not well known beforehand, but some rough value can be given. Assuming that the n 

points needed for estimating a model are selected independently, wn is the probability that all n points are inliers 

and 1 – wn is the probability that at least one of the n points is an outlier, a case which implies that a bad model will 

be estimated from this point set. That probability to the power of k is the probability that the algorithm never 

selects a set of n points which all are inliers and this must be the same as 1 - p. Consequently, 

𝟏 − 𝒑 = (𝟏 − 𝒘𝒏)𝒌 

which, after taking the logarithm of both sides, leads to 

𝒌 =
𝐥𝐨𝐠 (𝟏 − 𝒑)

𝐥𝐨𝐠 (𝟏 − 𝒘𝒏)
 

This result assumes that the n data points are selected independently, that is, a point which has been selected once 

is replaced and can be selected again in the same iteration. 

To gain additional confidence, the standard deviation or multiples thereof can be added to k. The standard deviation 

of k is defined as 

𝑺𝑫(𝒌) =
√𝟏 −𝒘𝒏

𝒘𝒏
 

An advantage of RANSAC is its ability to do robust estimation of the model parameters, i.e., it can estimate the 

parameters with a high degree of accuracy even when a significant number of outliers are present in the data set. 

A disadvantage of RANSAC is that there is no upper bound on the time it takes to compute these parameters. When 

the number of iterations computed is limited the solution obtained may not be optimal, and it may not even be one 

that fits the data in a good way. In this way RANSAC offers a trade-off; by computing a greater number of iterations 

the probability of a reasonable model being produced is increased. Moreover, RANSAC is not always able to find 

the optimal set even for moderately contaminated sets and it usually performs badly when the number of inliers is 

less than 50%. Optimal RANSAC was proposed to handle both these problems and is capable of finding the optimal 

set for heavily contaminated sets, even for an inlier ratio under 5%. Another disadvantage of RANSAC is that it 

requires the setting of problem-specific thresholds. RANSAC can only estimate one model for a particular data set. 

As for any one-model approach when two (or more) model instances exist, RANSAC may fail to find either one. The 

Hough transform is one alternative robust estimation technique that may be useful when more than one model 

instance is present. Another approach for multi model fitting is known as PEARL, which combines model sampling 
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from data points as in RANSAC with iterative re-estimation of inliers and the multi-model fitting being formulated 

as an optimization problem with a global energy functional describing the quality of the overall solution. 

 

(1)  [Visualization] Produce a red-cyan color composite image to demonstrate the pixel-wise difference. There is obviously a vertical and 

horizontal offset between the two frames. 

   

 

 

 

 

 

 

 

 

 

(2) Determine an affine transformation that will correct for the distortion between the two frames. As input we must provide a set of point 

correspondences between the two frames. To generate these correspondences, we first collect points of interest from both frames, then 

select likely correspondences between them. To have the best chance that these points will have corresponding points in the other 

frame, we want points around salient image features such as corners (or edges). The FAST4 corner detector algorithm is one of the 

fastest options. 

 

 

                                                             
4  (Other) Algorithms used:   Harris corner detection (by Harris & Stephens), Minimum eigenvalue (by Shi & Tomasi), or  Local intensity 

comparison (Features from Accelerated Segment Test, FAST by Rosten & Drummond) method. 

Color composite (frame A = red, frame B = cyan)

COLOR COMPOSITE (FRAME A = RED, FRAME B = CYAN) 

Frame A Frame B



 

82 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(3) Next we pick correspondences between the points derived above. For each point, we extract a 9-by-9 block centered around it. The 

matching cost we use between points is the sum of squared differences (SSD) between their respective image regions. Points in frame 

A and frame B are matched putatively. (Note that there is no uniqueness constraint, so points from frame B can correspond to multiple 

points in frame A). 

 

 

 

 

 

. 

 

 

 

 

 

  

(4) Many of the point correspondences obtained in the previous step are incorrect. But we can still derive a robust estimate of the geometric 

transform between the two images using the Random Sample Consensus (RANSAC) algorithm. For added robustness, we run the 

algorithm multiple times and calculate a cost for each result. This cost is obtained by projecting frame B onto frame A according to the 

derived transform, and taking the sum of absolute difference (SAD) between the two images. We take the best transform as the one 

that minimizes this cost. 

 

 

 

 

 

 

 

Corners in A Corners in B
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THE IMAGE ON THE LEFT SHOWS THE SAME COLOR 

COMPOSITE GIVEN ABOVE, BUT ADDED ARE THE POINTS 

FROM FRAME A IN RED, AND THE POINTS FROM FRAME B IN 

GREEN. YELLOW LINES ARE DRAWN BETWEEN POINTS TO 

SHOW THE CORRESPONDENCES SELECTED BY THE ABOVE 

PROCEDURE. MANY OF THESE CORRESPONDENCES ARE 

CORRECT, BUT THERE IS ALSO A SIGNIFICANT NUMBER OF 

OUTLIERS. 

THE IMAGE ON THE LEFT IS A COLOR COMPOSITE SHOWING 

FRAME A OVERLAID WITH THE REPROJECTED FRAME B, 
ALONG WITH THE REPROJECTED POINT CORRESPONDENCES. 
THE INLIER CORRESPONDENCES ARE NEARLY COINCIDENT. 
THE CORES OF THE IMAGES ARE BOTH ALIGNED, SUCH THAT 

THE RED-CYAN COLOR COMPOSITE BECOMES ALMOST 

PURELY BLACK-AND-WHITE IN THE FOREGROUND REGION. 
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(5) Given a set of video frames, we can now use the above procedure to estimate the distortion between all frames as affine transforms, 

where the cumulative distortion of a frame relative to the first frame will be the product of all the preceding inter-frame transforms. 

Finally, intensity-based automatic image registration is an iterative process that requires you specify a pair of 

images, a metric, an optimizer, and a transformation type. The metric defines the image similarity metric for 

evaluating the accuracy of the registration. This image similarity metric takes two images and returns a scalar 

value that describes how similar the images are. The optimizer defines the methodology for minimizing or 

maximizing the similarity metric. The transformation type defines the type of 2-D transformation that brings 

the misaligned image into alignment with the reference image. The process begins with the transform type 

you specify and an internally determined transformation matrix. Together, they determine the specific image 

transformation that is applied to the image with bilinear interpolation. Next, the metric compares the 

transformed moving image to the fixed image and a metric value is computed. The method described above 

is an another type of registration, where instead of extracting features, a metric such as mean square error 

between images is used for evaluating similarity. Specifically two metrics were implemented, mean square 

error and Mutual Information Metric [58] (maximizes the number of coincident pixels with the same relative 

brightness value) and two optimizers, gradient descent (adjusts the transformation parameters so that the 

optimization follows the gradient of the image similarity metric in the direction of the extrema) and One-plus-

one evolutionary optimizer (perturbs/mutates a set of parameters that produce the best possible registration 

result). The results of the following table present typical execution times for all three methods: 

 

 

 

 

 

 

CPU i5@2.5GHz 

Method 

Registration 
(sec) 

Control point registration  (user specific) 

Video stabilization  (/4) 3.42 
Video stabilization  (/8) 2.55 

MSE+GD+params1 (/8) 7.56 
MSE+GD+params2 (/8) 130.24(~2min) 

MI+GD+params1     (/8) 43.80 

MI+GD+params2     (/8) 13.31 

EO+MI+params1    (/8)  5.17 

FIGURE 49. LEFT – UNREGISTERED / RIGHT - REGISTERED 
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TABLE 5. PROCESSING TIMES FOR SEVERAL IMAGE REGISTRATION ALGORITHMS. 

 

Overall video stabilization required the minimum execution time but registration with gradient descent 

optimizer and mutual information metric produced the most visually registered image stack. Furthermore 

video stabilization was the most sensitive parameter-wise, requiring fine tuning across different stacks. 

 

 

5. Smoothing  

Smoothing reduces additive noise, while producing less pixelated segmentation maps.  Mean, gaussian, 

median and wiener filtering have been tested. Comparative maps are presented in the following sections. 

All filters produced similar results, but in terms of execution time reduction, the Wiener filter was selected. The 

goal of the Wiener filter is to filter out noise that has corrupted a signal. It is based on a statistical approach. Typical 

filters are designed for a desired frequency response. However, the design of the Wiener filter takes a different 

approach. One is assumed to have knowledge of the spectral properties of the original signal and the noise, and 

one seeks the linear time-invariant filter whose output would come as close to the original signal as possible. Wiener 

filters are characterized by the following: 

1. Assumption: signal and (additive) noise are stationary linear stochastic processes with known spectral 

characteristics or known autocorrelation and cross-correlation 

2. Requirement: the filter must be physically realizable/causal (this requirement can be dropped, resulting in 

a non-causal solution) 

3. Performance criterion: minimum mean-square error (MMSE) 

 

Wiener filter problem setup 

Suppose the input i(t) to a time-varying linear system consists of signal s(t) and additive noise n(t), i.e., i(t) 

=s(t)+n(t). If the impulse response of the system is h(t—τ,t), the system output is obtained by the 

convolution 






  dtithty )(),()(         (A-l) 

EO+MI+params2    (/8) 13.52 
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where the integration limits have been defined so as to permit acausal filters. If the desired filter output is 

d(t), the error signal is 






 d)t(i)t,(h)t(d)t(e      (A-2) 

and the expected error power (mean-squared error) is 

 22 ]d)t(i)t,(h)t(dE)]t(e[E 




     (A-3) 

By assuming interchangeability of integration and averaging, and defining 

Φdi(t,t-τ) = E[d(t)i(t-τ)] 

Φdd(t,t-τ) = E[d(t)i(t-τ)] 

and 

Φii(t,t-τ) = E[i(t)i(t-τ)] 

expression (A-3) becomes 

'dd)'t,t()t,'(h)t,(hd)t,t()t,(h2)t,t()]t(e[E iididd

2   












  (A-4) 

The optimum filter h(r, t) will minimize E[e2(t)] in (A-4). 

If h(τ,t) is the response function for the optimum filter, the mean-square error will increase for any 

perturbation δh(τ, t) from the optimum. For the perturbed system 
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 (A-5) 

When E[e2(t)] is a minimum, the difference ∆ in mean-square error for equations (A-4) and (A-5) is always 

positive, being equal to 



 

86 
 



 



 



















'dd)t,t()]t,'(h)]t,(h'dd)'t,t()]t,(h)t,'(h2

d)t,t()t,(h[2

iiii

di   (A-6) 

Since the last term in equation (A-6) can be written as a perfect square, it is always positive. Thus ∆ will be 

positive if 
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di
    (A-7) 

 

that is, if the optimum filter response satisfies the integral equation 






 0'd)'t,t()t,'(h)t,t( iidi
    (A-8) 

Equation (A-8) is the nonstationary form of the Wiener-Hopf equation and involves time-dependent 

correlation functions and a time-varying linear filter. 

 

 

6. Remove background 

Background information consists mainly of black pixels around images. Removing these pixels with low 

intensity values enhances greatly execution times during clustering. Comparative results are presented in the 

following sections. 

  

 

 

 

 

 

 

 

 

Iintensity    

λwavelength   

Iintensity   

λwavelength   

λwavelength   

The image on the left depicts two different pixels from a spectral 

cube across different wavelengths. Background pixels are nearly 

zero for every λ: 

  ∀ 𝒙, 𝒚  𝒑(𝒙, 𝒚, 𝝀)𝝀  ≤ 𝜯𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅 

(Typical threshold values ~ 0.1-0.4) 
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7. Clustering  

 

Image segmentation aims to extract regions by dividing an image into disjoint sets of pixel segments or 

clusters. In the case of (multi/hyper) spectral data, clustering can organize a large quantity of unordered N-

dimensional pixels (in this case N=11) into a small number of meaningful and coherent clusters, thereby 

providing a basis for intuitive and informative understanding of data. Several algorithms have been proposed 

for clustering spectral data, such as convex cone analysis, multi-thresholding, isoclustering, histogram-based 

segmentation methods applied to the spectral index image, segmentation of hyperspectral images based on 

the histogram of the principal components or based on a multicomponent hidden Markov chain mode. Also, 

statistical hyperspectral image segmentation approach based on Gaussian mixture models and Bayesian 

segmentation using hidden Markov modeling. Among them, K-means is an established unsupervised method 

for image segmentation, well-understood with several optimized versions for performance as well as modified 

versions for specific domains (k-medoids, kernel k-means, spherical k-means. etc.).  

 

In general, given a set S of pixels p, k-means clustering aims to partition them into k sets (𝑆 = { 𝑆1, 𝑆2, … , 𝑆𝑘}) 

so as to minimize the within-cluster distance: 

 

𝑎𝑟𝑔𝑺𝑚𝑖𝑛∑ ∑ 𝐷(𝑝𝑗 − 𝜇𝜄)

𝑝𝑗∈ 𝑆𝑖

𝑘

𝑖=1

,   𝜇𝜄:𝑚𝑒𝑎𝑛 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑆𝑖 (𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑)  

 

The algorithm starts by randomly assigning k clusters in spectral space. Each pixel in the input image stack is 

assigned to the nearest cluster center and the cluster center locations are moved to the average of their cluster 

values. This step is repeated until convergence (the assignments no longer change) or when a number of steps 

(user defined) are completed. An important step for accurate clustering is to determine a similarity/distance 

metric  𝐷 .  The metric reflects the degree of closeness or separation of the target objects and should 

correspond to the characteristics that are believed to distinguish the clusters embedded in the data. In many 

cases, these characteristics are dependent on the data or the problem context at hand, and there is no 

measure that is universally best for all kinds of clustering problems. Moreover, K-means clustering requires 

not only a distance metric, but also a way to compute the centroid μ of a cluster. That is, the criterion that is 

minimized in k-means is the sum of point-to-centroid distances, summed over all clusters. Thus, it is natural 

to want the centroid to be the point that minimizes the point-to-centroid distances within a cluster. The 

arithmetic mean does that for (squared) Euclidean distance and there exist only a few distances for which the 
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centroid is easily computable. More specifically, candidates functions for 𝐷 must be non-negative, equal to 

zero for identical pixels and to comply with the triangular (in)equality. Given an initial set of k means 

m1
(1),…,mk

(1), the algorithm proceeds by alternating between two steps: 

 

Assignment step: Assign each observation to the cluster whose mean yields the least within-cluster sum of squares 

(WCSS). 

𝑺𝒊
(𝒕)
= {𝒙𝒑 −𝒎𝒊

(𝒕)
||𝟐 ≤ | |𝒙𝒑 −𝒎𝒊

(𝒕)
| |𝟐∀𝟏 ≤ 𝒋 ≤ 𝒌}  

where each xp is assigned to exactly one S(t), even if it could be is assigned to two or more of them. 

Update step: Calculate the new means to be the centroids of the observations in the new clusters. 

𝑚𝑖
(𝑡+1)

=
1

|𝑆𝑖
(𝑡)
|
∑ 𝑥𝑗

𝑥𝑗∈𝑆𝑖
(𝑡)

 

Since the arithmetic mean is a least-squares estimator, this also minimizes the within-cluster sum of squares (WCSS) 

objective. 

 

Common metrics are Euclidean, Camberra, Chebychev, Correlation, Jaccard, Manhattan, Cosine, etc. Cosine 

metric is a measure of similarity between two vectors (in this case 11-dimentional pixel vectors) by measuring 

the cosine of the angle between them. The result of the cosine function is equal to 1 when the angle is 0, and 

it is less than 1 when the angle is of any other value. As the angle between the vectors shortens, the cosine 

angle approaches 1, meaning that the two vectors are more similar. This is a direct analogy with another 

established technique for classification of spectral data, spectral angle mapper (SAM); SAM is relatively 

insensitive to illumination (magnitude) and albedo effects.  

Similarly, the  cosine  distance  measure depends only on  the  direction  of  the  feature  vectors  and  is  

independent of  their  magnitude. Cosine similarity is a convenient technique for producing clusters immune 

to illumination differences (invariance to multiplicative scaling) between pixel vectors. Moreover, it is not 

possible to directly substitute cosine with spectral angle, as SAM does not comply with the property of triangle 

(in)equality.   
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3 2 

1 

(1) GRAYSCALE IMAGE,   

(2) K-MEANS WITH (SQUARE) EUCLIDEAN METRIC,  

(3) K-MEANS WITH COSINE METRIC. IT IS VISUALLY PERCEPTIBLE –ALSO BY THE AID OF HAND-DRAWN ROIS, THAT IN (3), 

CLUSTER REGIONS ARE MORE SIMILAR WITH THE ORIGINAL GRAYSCALE IMAGE (1). 



 

90 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In both examples Euclidean metric produces (near) concentric cluster ellipsoids due to illumination scaling 

effects of the original grayscale images. 

Other parameters worth mentioning are: 

a. Batch/update phases 

For robustness, we use a k-means version with a two-phase iterative algorithm: The first phase 

uses batch updates, where in each iteration pixels are reassigned to their nearest cluster 

centroid, all at once, followed by recalculation of cluster centroids. This phase occasionally 

does not converge to solution of a local minimum, that is, a partition of the data where moving 

any single point to a different cluster increases the total sum of distances (more likely to 

4 

5 6 

(4) GRAYSCALE IMAGE,   

(5) K-MEANS WITH (SQUARE) EUCLIDEAN METRIC,  

(6) K-MEANS WITH COSINE METRIC. IT IS VISUALLY APPARENT, THAT IN (6), CLUSTER REGIONS ARE 

MORE SIMILAR WITH THE ORIGINAL GRAYSCALE IMAGE (4). 
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happen for small data sets). Although, the batch phase is fast, it only approximates a solution 

used as a starting point for the second phase. The second phase uses online updates, where 

points are individually reassigned reducing the sum of distances (cluster centroids are 

recomputed after each reassignment). Each iteration during the second phase consists of one 

pass through all the points. The second phase will converge to a local minimum, although 

there may be other local minima with lower total sum of distances.  

b. Replicates 

The problem of finding the global minimum can only be solved in general by an exhaustive (or 

clever, or lucky) choice of starting points, but using several replicates with random starting 

points typically results in a solution that is a global minimum. In order to bypass this inherent 

problem of K-means we repeat clustering a preconfigured number of times, each with a new 

set of initial cluster centroid positions. K-means returns the solution with the lowest value of 

the within-cluster sums of point-to-centroid distances.  

c. Initial centroid positions 

Three approaches were tested with similar results: 

i. Select k pixels at random, 

ii. Perform a preliminary clustering phase on a random 10% subsample of pixels, 

iii. Perform a preliminary clustering phase using K-Means++ for supplying initial centroid 

positions [61]. 

 

The results of the following table present typical execution times5 for several parameter sets: 

 

 

Clustering 
Algorithm 

Parameter Set 
 

 
CPU i5@2.5GHz 

 

 
CPU i7@2.8Ghz 

 

   

#clusters replicates 
Background  

Thr. 
Subsample 

Reduce image 
Stack+smooth 

(sec) 
Clustering 

(sec) 

Reduce image 
Stack+smooth 

(sec) 
Clustering 

(sec) 

KM+cos+rand.sam.  5 0 0.6 4 0.295 0.535   
 6 0 0.6 4 0.289 1.032   
 7 0 0.6 4 0.306 0.625   
 8 0 0.6 4 0.294 1.237   
 5 2 0.6 4 0.312 1.364   
 6 2 0.6 4 0.313 2.223   
 7 2 0.6 4 0.293 2.336   
 8 2 0.6 4 0.301 2.390   
 5 4 0.6 4 0.291 2.463   
 6 4 0.6 4 0.288 2.517   
 7 4 0.6 4 0.296 2.797   
 8 4 0.6 4 0.301 3.724   

                                                             
5 Registration time is not included. 
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 5 0 0.6 8 0.224 0.256   
 6 0 0.6 8 0.245 0.333   
 7 0 0.6 8 0.245 0.277   
 8 0 0.6 8 0.242 0.282   
 5 2 0.6 8 0.268 0.617   
 6 2 0.6 8 0.234 0.374   
 7 2 0.6 8 0.239 0.433   
 8 2 0.6 8 0.242 0.531   
 5 4 0.6 8 0.251 0.476   
 6 4 0.6 8 0.234 0.775   
 7 4 0.6 8 0.256 1.063   
 8 4 0.6 8 0.248 1.056   

 5 2 0 4 0.312 1.679   
 8 2 0 4 0.290 3.194   
 5 2 0 8 0.241 0.510   
 8 2 0 8 0.231 1.151   
KM+cos+cluster  5 2 0.6 4 0.299 0.771   
 8 2 0.6 4 0.292 2.417   
 5 2 0.6 8 0.269 0.310   
 8 2 0.6 8 0.243 0.524   
KM+Euc+rand.sam.  5 2 0.6 4 0.270 5.001   
 8 2 0.6 4 0.286 6.876   
 5 2 0.6 8 0.240 0.663   
 8 2 0.6 8 0.243 1.964   
KM+cos+rand.sam. 

+norm@700  5 2 0.6 4 0.326 1.201   

 8 2 0.6 4 0.286 3.360   
KM+Euc+rand.sam. 

+norm@700  5 2 0.6 4 0.297 
 

3.120 
  

 8 2 0.6 4 0.301 5.122   
         

↑ 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠      ↑ 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 

↑ 𝑟𝑒𝑝𝑙𝑖𝑐.          ↑ 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 

↑ 𝑠𝑢𝑏𝑠𝑎𝑚𝑝.    ↓ 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 

↑ 𝑏𝑎𝑐𝑘. 𝑡ℎ𝑟.    ↑ 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 

𝑐𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚     ↓ 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 

𝐸𝑢𝑐𝑙.  𝑠𝑖𝑚       ↑ 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 

 

TABLE 6. TYPICAL EXECUTION TIMES FOR SEVERAL PARAMETER SETS. 

 

8. Validation Tests  

The  process  of  evaluating  the  results  of  cluster  analysis  in  a  quantitative  and  objective way is 

called cluster validation. It usually has four main components: 

(1) Determine whether there is non-random structure in the data;  

(2) Determine the number of clusters;  
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(3) Evaluate how well a clustering solution fits the given data when the data is the only information 

available;  

(4) Evaluate how well a clustering solution agrees with partitions obtained based on other data 

sources.  

 

Among these, Component (3) is known as internal validation while Component (4) is referred to as 

external validation.  Component  (1)  is  fundamental  for  cluster  analysis  because  almost  every  

clustering algorithm will find clusters in a dataset, even if there is no cluster structure in it. However, this 

component is not the focus of this report because earlier research and screening tests on the (sub)typing 

of  endometrial neoplasia and cancer with ratio maps of the acquired spectral images confirmed a 

plurality of different structures with different symptoms. 

We can use internal and/or external validation to determine the number of clusters in a dataset. In the 

context of this study, we do not have a ground-truth partition of the data to which we can compare our 

solution. Therefore, the number of clusters in our data is determined using internal validation only.  

Specifically, two  main  measures  are  used  to  evaluate  clustering  solutions  internally:  fitness  and 

stability, both of which are employed in this study. Evaluating the fitness of a clustering solution refers to 

the quality of a clustering solution, usually evaluated by indices that are based  on  geometrical  properties  

of  clusters  such  as  compactness,  separation,  and connectedness, as  these  criteria  are  the  ones  

being  optimized  by  most  clustering methods [63-64]: 

a.     Silhouette index, 

b.     Davies-Bouldin, 

c.     Calinski-Harabasz, 

d.     Dunn index, 

e.     R-squared index, 

f.     Hubert-Levin (C-index), 

g.     Krzanowski-Lai index, 

h.     Hartigan index, 

Furthermore, the  stability  of  a  clustering  solution,  which  usually  refers  to  how  robust  a  clustering 

solution  is  under  perturbation  or  sub-sampling  of  the  original  data [65-66], is another commonly-

used validation criterion. A stable clustering solution  is  considered  to  have  captured  the  underlying  

structure  of  a  dataset,  under  the assumption  that  this  clustering  solution  should be reproducible on 

other datasets drawn from the same source. One of the methods we use to estimate the number of 
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clusters for our dataset is to assess the stability of clustering results by replication analysis [64]. To  

perform  replication  analysis,  a dataset  is  split  into  two  equal  subsets.  As  the  core  part  of  the  

analysis,  the  partition performed  on  one  subset  is  used  as  the  “ground  truth”  to  group  the  items  

in  the  other subset  via  classification: 

1. Two disjoint subsets, A and B, are selected at random from a dataset D; Subset A is grouped into 

k disjoint clusters and subset B is also grouped into k disjoint clusters.  

2. A classification model is built to learn the class structure of subset A, assuming A is the training 

set and Clustered(A) is the ground truth; The data points in subset B are classified using the this 

classification model. 

3. The degree of replication between A and B is measured by the agreement between the two 

partitions of subset B, Classified(B) and Clustered(B).  

In Step (2) of the procedure of replication analysis, a strong classification algorithm which has a small empirical 

classification error is needed, so that the agreement between Classified(B) and Clustered(B) can be attributed 

to the intrinsic stability of the clustering solution, without considering the influence a poor classifier may have 

on the agreement. However, there is no known and agreed-upon optimal classification algorithm [64].  An 

intuitive choice would be a classifier that mimicked the clustering algorithm used to analyze subsets A and B. 

When no such choice is available, a k-nearest neighbor classifier is proposed17. In our experiments we used a 

modified version of Nearest Neighbor classifier with cosine distance metric. Four measurements of agreement 

were used: 

a. Rand index,                  

b. Adjusted Rand index,   

c. Jaccard index, 

d.   Fowlkes-Mallows (FM) index. 

 

 

Internal indices 

The following sections provide the precise definitions of the most important internal quality indices used in 

this study, which have been proposed by various authors in order to determine an optimal clustering. These 

indices, also called quality indices, are all denoted by the same letter C. Let us also denote by d the distance 

function between two points.  
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Silhouette method 

Assume the data have been clustered via any technique, such as k-means, into k clusters. For each datum i, let 

 a(i) be the average dissimilarity of i with all other data within the same cluster. Any measure of 

dissimilarity can be used but distance measures are the most common. We can interpret  

 a(i) as how well i is assigned to its cluster (the smaller the value, the better the assignment). We then 

define the average dissimilarity of point i to a cluster c as the the average of the distance from i to 

points in c. 

 b(i) be the lowest average dissimilarity of i to any other cluster which i is not a member. The cluster 

with this lowest average dissimilarity is said to be the "neighbouring cluster" of i because it is the next 

best fit cluster for point i.  

We now define: 

𝒔(𝒊) =

{
 
 

 
 𝟏 −

𝒂(𝒊)

𝒃(𝒊)
, 𝒊𝒇 𝒂(𝒊) < 𝒃(𝒊)

𝟎, 𝒊𝒇 𝒂(𝒊) = 𝟎

𝒃(𝒊)

𝒂(𝒊)
− 𝟏, 𝒊𝒇 𝒂(𝒊) > 𝒃(𝒊)

 

From the above definition it is clear that 

−𝟏 ≤ 𝒔(𝒊) ≤ 𝟏 

For s(i) to be close to 1 we require 𝑎(𝑖) ≪ 𝑏(𝑖). As a(i) is a measure of how dissimilar i is to its own cluster, a 

small value means it is well matched. Furthermore, a large b(i) implies that i is badly matched to its 

neighbouring cluster. Thus an s(i) close to one means that the datum is appropriately clustered. If s(i) is close 

to negative one, then by the same logic we see that i would be more appropriate if it was clustered in its 

neighbouring cluster. An s(i) near zero means that the datum is on the border of two natural clusters. 

The average s(i) over all data of a cluster is a measure of how tightly grouped all the data in the cluster are. 

Thus the average s(i) over all data of the entire dataset is a measure of how appropriately the data has been 

clustered. If there are too many or too few clusters, as may occur when a poor choice of k is used in the k-

means algorithm, some of the clusters will typically display much narrower silhouettes than the rest. Thus 

silhouette plots and averages may be used to determine the natural number of clusters within a dataset. 
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Davies–Bouldin method 

Let Ri,j be a measure of how good the clustering scheme is. This measure, by definition has to account for Mi,j 

the separation between the ith and the jth cluster, which ideally has to be as large as possible, and Si, the within 

cluster scatter for cluster i, which has to be as low as possible. Hence the Davies Bouldin Index is defined as 

the ratio of Si and Mi,j such that these properties are conserved: 

1. 𝑅𝑖,𝑗 ≥ 0 

2. 𝑅𝑖,𝑗 = 𝑅𝑗,𝑖 

3. 𝐼𝑓 𝑆𝑗 ≥ 𝑆𝑘  𝑎𝑛𝑑 𝑀𝑖,𝑗 = 𝑀𝑖,𝑘  𝑡ℎ𝑒𝑛 𝑅𝑖,𝑗 > 𝑅𝑖,𝑘 

4. 𝑎𝑛𝑑 𝑖𝑓 𝑆𝑗 = 𝑆𝑘  𝑎𝑛𝑑 𝑀𝑖,𝑗 ≤ 𝑀𝑖,𝑘 , 𝑡ℎ𝑒𝑛 𝑅𝑖,𝑗 > 𝑅𝑖,𝑘 

𝑅𝑖,𝑗 =
𝑆𝑖 + 𝑆𝑗

𝑀𝑖,𝑗
 

This is the symmetry condition. Due to such a formulation, the lower the value, the better the separation 

of the clusters and the 'tightness' inside the clusters. If N is the number of clusters: 

𝐷𝐵 ≡
1

𝑁
∑𝐷𝑖

𝑁

𝑖=1

 

DB is called the Davies Bouldin Index. This is dependent both on the data as well as the algorithm. Di 

chooses the worst case scenario, and this value is equal to Ri,j for the most similar cluster to cluster i. There 

could be many variations to this formulation, like choosing the average of the cluster similarity, weighted 

average and so on. 

These conditions constrain the index so defined to be symmetric and non-negative. Due to the way it is 

defined, as a function of the ratio of the within cluster scatter, to the between cluster separation, a lower 

value will mean that the clustering is better. It happens to be the average similarity between each cluster 

and its most similar one, averaged over all the clusters, where the similarity is defined as Si above. This 

affirms the idea that no cluster has to be similar to another, and hence the best clustering scheme 

essentially minimizes the Davies Bouldin Index. This index thus defined is an average over all the i clusters, 

and hence a good measure of deciding how many clusters actually exists in the data is to plot it against 

the number of clusters it is calculated over. The number i for which this value is the lowest is a good 

measure of the number of clusters the data could be ideally classified into. This has applications in deciding 

the value of k in the kmeans algorithm, where the value of k is not known apriori. 
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Dunn method 

 

Let Ci be a cluster of vectors. Let x and y be any two n dimensional feature vectors assigned to the same 

cluster Ci. 

𝛥𝑖 = max
𝑥,𝑦∈𝐶𝑖

𝑑(𝑥, 𝑦) ,    𝑤ℎ𝑖𝑐ℎ 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑠 𝑡ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  

𝛥𝑖 =
1

|𝐶𝑖||𝐶𝑖 − 1|
∑ 𝑑(𝑥, 𝑦),    𝑤ℎ𝑖𝑐ℎ 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑠 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑎𝑙𝑙 𝑝𝑎𝑖𝑟𝑠

𝑥,𝑦∈𝐶𝑖,𝑥≠𝑦

 

𝛥𝑖 =
 𝑑(𝑥, 𝜇)𝑥∈𝐶𝑖

|𝐶𝑖|
,    𝜇 =

 𝑥𝑥∈𝐶𝑖

|𝐶𝑖|
,   𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑠 𝑡ℎ𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡𝑠 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑚𝑒𝑎𝑛 

 

This can also be said about the intercluster distance, where similar formulations can be made, using either 

the closest two data points, one in each cluster, or the farthest two, or the distance between the centroids 

and so on. The definition of the index includes any such formulation, and the family of indices so formed 

are called Dunn-like Indices. Let δ(Ci,Cj)  be this intercluster distance metric, between clusters Ci and Cj. 

With the above notation, if there are m clusters, then the Dunn Index for the set is defined as: 

𝐷𝐼𝑚 = min
1≤𝑖≤𝑚

{ min
1≤𝑗≤𝑚,𝑗≠1

{
𝛿(𝐶𝑖, 𝐶𝑗)

max
1≤𝑘≤𝑚

𝛥𝑘
}} 

 

Being defined in this way, the DI depends on m, the number of clusters in the set. If the number of clusters 

is not known apriori, the m for which the DI is the highest can be chosen as the number of clusters. There 

is also some flexibility when it comes to the definition of d(x,y) where any of the well known metrics can 

be used, like Manhattan distance or Euclidean distance based on the geometry of the clustering problem. 

This formulation has a peculiar problem, in that if one of the clusters is badly behaved, where the others 

are tightly packed, since the denominator contains a 'max' term instead of an average term, the Dunn 

Index for that set of clusters will be uncharacteristically low. This is thus some sort of a worst case 

indicator, and has to be used keeping that in mind. 
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Calinski-Harabasz method 

The cluster index of Calinski and Harabasz is calculated using the following equation: 

 

𝐶𝐻(𝐾) =
[𝑡𝑟𝑎𝑐𝑒

𝐵
𝐾
− 1]

[𝑡𝑟𝑎𝑐𝑒
𝑊
𝑁
− 𝐾]

 𝑓𝑜𝑟 𝐾 ∈ 𝑁, 

where B denotes the error sum of squares between different clusters (inter-cluster) 

𝑡𝑟𝑎𝑐𝑒 𝐵 =  ∑|𝐶𝑘||𝐶𝑘̅̅ ̅ − �̅�|
2

𝐾

𝑘=1

 

and W the squared differences of all objects in a cluster from their respective cluster center (intra-cluster) 

 

𝑡𝑟𝑎𝑐𝑒 𝑊 = ∑∑𝑤𝑘,𝑖||𝑥𝑖 − 𝐶𝑘̅̅ ̅||
2

𝑁

𝑖=1

𝐾

𝑘=1

 

Calculated for each possible cluster solution the maximal achieved index value indicates the best clustering 

of the data. The important characteristic of the index is the fact that on the one hand trace W will start at 

a comparably large value. With increasing number of clustersK, approaching the optimal clustering 

solution in K* groups, the value should significantly decrease due to an increasing compactness of each 

cluster. As soon as the optimal solution is exceeded an increase in compactness and thereby a decrease 

in value might still occur; this decrease, however, should be notably smaller. On the other hand, trace T 

should behave in the opposite direction, getting higher as the number of clusters K increases, but should 

also reveal a kind of softening in its rise if K gets larger than K*. 

 

 

Hubert-Levin (C-index) method 

 

Let us consider the distances between the pairs of points inside each cluster. One computes the following 

three quantities: 

 SW is the sum of the NW distances between all the pairs of points inside each cluster; 
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 S min is the sum of the NW smallest distances between all the pairs of points in the entire data set. 

There are NT such pairs: one takes the sum of the N W smallest values ; 

 Smax is the sum of the NW largest distances between all the pairs of points in the entire data set. 

There are NT such pairs: one takes the sum of the NW largest values. 

The C-index is defined like this: 

𝐶 =
𝑆𝑤 − 𝑆𝑚𝑖𝑛
𝑆𝑚𝑎𝑥 − 𝑆𝑚𝑖𝑛

 

If one considers the NT distances between pairs of points as a sequence of values sorted in increasing 

order, the C index uses the NW smallest values and the NW largest values in order to compute the sums 

Smin and Smax: the sum S involves the NW distances in this sequence which correspond to pairs present in 

some cluster (that is to say pairs whose two points are in a same cluster). No more than 3NW distances are 

effectively retained in the calculation of this index. 

 

 

Krzanowski-Lai index 

Krzanowski and Lai developed a cluster index that, similar to the index of Calinski and Harabasz, is based 

on the squared differences of all objects in a cluster from their respective cluster center – trace W. The 

authors define DIFF(K) as the difference between a clustering of the data in K and a clustering in K-1 

clusters. Let J be the number of variables that have been measured on each 𝑥𝑖 ∈ 𝑋 and trace Wk the sum 

of squares function that corresponds to the clustering in K clusters, their measure DIFF(K) is then defined 

as follows: 

𝐷𝐼𝐹𝐹(𝐾) = (𝐾 − 1)
2
𝐽  𝑡𝑟𝑎𝑐𝑒 𝑊𝐾−1 − 𝐾

2
𝐽  𝑡𝑟𝑎𝑐𝑒 𝑊𝐾 

 

Here, the introduction of the normalizing factor 2/J is derived from the observation that – given 

independently uniformly distributed measurements on each variable 𝑗 ∈ [1,… , 𝐽] – the optimal clustering 

of the data will reduce the sum of squares exactly by this factor. The authors claim that if there exists an 

optimal clustering solution in K* groups, the value of DIFF(K*) should be comparably large and positive. In 

contrast, all values of DIFF(K*) for K>K* will have rather small values (maybe even negative), while values 

for K<K* will be rather large and positive. Bringing these observations together, the KL(K) is defined as 

follows: 
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𝐾𝐿(𝐾) = |
𝐷𝐼𝐹𝐹(𝐾)

𝐷𝐼𝐹𝐹(𝑘 + 1)
| 

 

The optimal cluster solution is then indicated by the highest value of KL(K). 

 

 

9. Pseudocolor Correction  

K-means algorithm returns an integer for each pixel indicating cluster membership, while a pseudocolor map 

can be induced by representing pixels with k different colors (numbers). However, as membership is 

represented by a set of numbers randomly generated by k-means, a map is required to depict not only 

different clusters but cluster colors should also be consistent with different symptoms/pathologies.  Previous 

clinical trials utilized a 12 color scale based on a ratio index between the 575 nm and the 675 nm images. A 

correction scheme is implemented by comparing clustering centroids against ratio centroids with Spectral 

Angle Mapper (other spectral metrics could also be used). If a cluster centroid spectrum is similar with a ratio 

centroid, calculated as the mean spectrum of all spectra in the image with the same ratio index value, then 

the corresponding cluster(s) on the thematic map is (re)colored based on the 12 color scale. Finally a 

morphological closing operator (dilation and erosion) is performed on the pseudocolor map for merging small 

partitions. Also, if the image stack is subsampled, then the pseudocolor map is resized to original spatial 

dimensions (1280x1024) by nearest-neighbor interpolation. 
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18  

  

RATIO INDEX 

K=4 K=6 

K=10 K=8 

K=12 K=14 

RATIO INDEX VERSUS K-MEANS FOR 

K=4,6,8,10,12,14. MAPS HAVE BEEN CORECTED WITH 

RATIO INDEX COLOR SCALE CAUSING ONE OR MORE 

OF THE  ORIGINAL K CLUSTERS TO MERGE. MERGING 

OCCURS WHEN TWO OR MORE K-MEANS CENTROIDS 

ARE SIMILAR WITH THE SAME RATIO INDEX CENTROID. 
SIMILARITY IS DEFINED BY MEASURING THE  ANGLE 

BETWEEN SPECTRA (SAM). 

RATIO INDEX 
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RATIO INDEX VERSUS K-MEANS FOR DIFFERENT 

DISTANCE METRICS. EUCLIDEAN METRIC PRODUCES 

(NEAR) CONCENTRIC CLUSTER ELLIPSOIDS DUE TO 

ILLUMINATION SCALING EFFECTS OF THE ORIGINAL 

GRAYSCALE IMAGES. MAPS HAVE ALSO BEEN 

CORECTED WITH RATIO INDEX COLOR SCALE.  

RATIO INDEX 

EUCLIDEAN DISTANCE METRIC (K=6) 

NORMALIZED EUCLIDEAN DISTANCE METRIC (K=6) {@700} 

COSINE DISTANCE METRIC (K=6)  
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RATIO INDEX VERSUS K-MEANS FOR DIFFERENT 

FEATURES (K=6, COSINE). 575NM AND 675 NM 

IMAGES WERE USED FOR RATIO INDEX. K-MEANS WITH 

ONLY 575 AND 675NM IMAGES YIELDS A VERY SIMILAR 

MAP WITH RATIO MAP  (WITH YELLOW ARE 

UNDERLINED THE FEATURES USED FOR EACH K-MEAN 

RUN). 

RATIO INDEX 

@440, 470, 500, 525, 550, 575, 600, 625, 650, 675, 700 
@440, 470, 500, 525, 550, 575, 600, 625, 650, 675, 700 

@440, 470, 500, 525, 550, 575, 600, 625, 650, 675, 700 @440, 470, 500, 525, 550, 575, 600, 625, 650, 675, 700 
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@440, 470, 500, 525, 550, 575, 600, 625, 650, 675, 700 

DIFFERENT MAPS WITH/WITHOUT PRE/POST 

PROCESSING (K-MEANS MAP EVALUATION WITHOUT 

FILTERING).  

RATIO INDEXPROCESSED  

RATIO INDEXRAW 

SUBSAMPLE /4  SUBSAMPLE /8 

SUBSAMPLE /4, NO (PRE)SMOOTHING BY WIENER FILTERING, 
 NO (POST) CLOSING 

@440, 470, 500, 525, 550, 575, 600, 625, 650, 675, 700 @440, 470, 500, 525, 550, 575, 600, 625, 650, 675, 700 

SUBSAMPLE /8, NO (PRE)SMOOTHING BY WIENER FILTERING, 
 NO (POST) CLOSING 

 

SUBSAMPLE /4, NO (PRE)SMOOTHING BY WIENER FILTERING, 
 NO (POST) CLOSING, NO BACKGROUND REMOVAL 

 

SUBSAMPLE /8, NO (PRE)SMOOTHING BY WIENER FILTERING, 
 NO (POST) CLOSING, NO BACKGROUND REMOVAL 
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(A)  MEAN SPECTRA FROM RATIO INDEX, (B) MEAN SPECTRA FROM K-MEANS CLUSTERS, (C) K-MEANS COSINE CENTROIDS, 
(D) NORMALIZED MEAN SPECTRA FROM RATIO INDEX. LEGENDS/COLORS  INDICATE ANGLE SIMILARITY BETWEEN K-MEANS AND RATIO SPECTRA. 
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Cluster Validation 

(a) fitness: 

[image stack is reduced by subsampling /8 as it was not possible to evaluate indexes at higher sampling rates due to hardware restrictions] 

 

 

All of the above indexes were implemented using Euclidean distance metric; the first eight plots depict different indexes for a   

normalized set of features @700nm (prior to normalization image @700 is processed by a gaussian filter eliminating any 

distinct features), while the next eight plots validate cluster number with standard normalization (every feature normalized to 

o-1 range, dividing by the largest element of every feature). Different normalization strategies affect both k-means clustering 

outcome and validation indexes. Some indexes didn’t produce meaningful results (R-square, Hartigan), others are prone to 

noise and outliers (Krzanowski-Lai), while others always predict the minimum k (Dunn index). This result is also reproduced with 

other k ranges (k= 3 – 8, k= 3 – 12, k= 2 – 12) due to overlapping clusters.  

Finally based on these preliminary results, the mean outcome of Silhouette, Davies-Bouldin, Calinski-Harabasz and C-index is 

5,75 =~6 clusters  
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Results and discussion 
 

The light throughput  of  the  SPECL’s-VOF  light  source was measured with the photometer 

(Thorlabs PM100D) and found to increase from 30-60% in the range 400-460 nm and then  

remained  flat  for  all  other  wavelengths  within  the visible and the infrared wavelength 

range. The FWHM of the SPECL’s-VOF  light  source  was  measured  with  the spectrometer  

(Ocean  Optics  USB4000)  and  found  to  range from  about  11nm  to  about  14  nm,  indicating  

a  quite sufficient spectral resolution across the operating wavelength range.  The  combined  

high  and  flat  light  throughput  and spectral  resolution  was  the  key  factor  that  enabled  

the SPECL endoscope to perform fast (within 2 s) and of high spatial  resolution,  imaging.  This 

was obtained even in the case of a 3.5 mm thin, low throughput hysteroscope. Figure 36 

illustrates a series of representative spectral images belonging to a spectral cube. In the 

bottom-right part of the figure  the  corresponding  color  image  and  the  calculated spectral  

clustering  map  (bottom  right)  are  displayed.  As expected, the 440nm image shows 

superficial blood vessels with high contrast due to the high absorption of oxy-, deoxy-

hemoglobin in the vicinity of this band. In the NIR band the blood vessels and the superficial 

features of the endometrium become transparent, thus allowing for the visualization of 

underlying features, such as connective tissue (whiter areas).  

The clustering map shows, with different pseudocolors, 5 to 6 distinguishable spectral classes. 

It is clearly seen that their spatial  heterogeneity  can  be  identified  neither  in  the  raw color  

nor  in  the  spectral  images,  which  indicates  the diagnostic value of this artificial image. The 

number of the different  clusters  appearing  in  the  clustering  map  was determined to be 5 

to 6 on the basis of the maximization of the  Silhouette  index.  Going  one  step  further,  we  

have attempted to correlate the “colors” of the particular clusters with endometrial tissue 

conditions, on the basis of the  data collected, thus far (spectral cubes and biopsies). 

Particularly green hues seem to correspond to normal tissue; blue-purple areas indicate the 

presence of inflammation, while red shows incipient and white-yellow atypical hyperplasia. 

Interestingly, figure 36 was selected because it shows that all these conditions are possible to 

coexist at the same tissue area.  It  is  worth  noticing  that  the  system  has  successfully 

identified  five  out  of  the  five  cases  with  biopsy  confirmed atypical hyperplasia. Despite 

these very good initial results, a higher  confidence,  with  regard  to  the  SPECL’s  diagnostic 

performance,  need  to  be  established.  Clinical  testing  of SPECL  endoscope  is  currently  

underway  for  establishing sensitivity-specificity  statistics  in  a  sufficient  number  of clinical 

trial participants, which have been defined with the aid of calculations of statistical power. 
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FIGURE 50. SPECTRAL AND COLOR-CODED IMAGES OF THE ENDOMETRIUM. DIFFERENT ARTIFICIAL COLORS CORRESPOND TO DIFFERENT 

MEDICAL CONDITIONS. 
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7.2 Identification of endometrial physiology and pathology with the use 
of multispectral hysteroscopy. 
 

7.2.1 Identification of the menstrual cycle healthy endometrium conditions 
 

Menstrual circle 

As it was stated in Chapter 5 (Endometrial physiology and pathology), the menstrual cycle is 

the cycle of changes that occurs in the uterus and ovary for the purpose of sexual reproduction 

[68-69]. It is essential for the production of eggs and for the preparation of the uterus for 

pregnancy [68]. The menstrual cycle occurs only in fertile female humans and other female 

primates.  

In humans, the length of a menstrual cycle varies greatly among women (ranging from 25 to 

35 days), with 28 days designated as the average length. Each cycle can be divided into three 

phases based on events in the ovary (ovarian cycle) or in the uterus (uterine cycle) [1]. The 

ovarian cycle consists of the follicular phase, ovulation, and luteal phase whereas the uterine 

cycle is divided into menstruation, proliferative phase, and secretory phase. Both cycles are 

controlled by the endocrine system and the normal hormonal changes that occur can be 

interfered with using hormonal contraception to prevent reproduction [70].  

By convention, menstrual cycles are counted from the first day of menstrual bleeding. 

Stimulated by gradually increasing amounts of estrogen in the follicular phase, discharges of 

blood (menses) slow then stop, and the lining of the uterus thickens. Follicles in the ovary 

begin developing under the influence of a complex interplay of hormones, and after several 

days one or occasionally two become dominant (non-dominant follicles atrophy and die). 

Approximately mid-cycle, 24–36 hours after the Luteinizing Hormone (LH) surges, the 

dominant follicle releases an ovum, or egg, in an event called ovulation. After ovulation, the 

egg only lives for 24 hours or less without fertilization while the remains of the dominant 

follicle in the ovary become a corpus luteum; this body has a primary function of producing 

large amounts of progesterone. Under the influence of progesterone, the endometrium 

(uterine lining) changes to prepare for potential implantation of an embryo to establish a 

pregnancy. If implantation does not occur within approximately two weeks, the corpus luteum 

will involute, causing sharp drops in levels of both progesterone and estrogen. The hormone 

drop causes the uterus to shed its lining and egg in a process termed menstruation. 
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In the menstrual cycle, changes occur in the female reproductive system as well as other 

systems (which lead to breast tenderness or mood changes, for example). A woman's first 

menstruation is termed menarche, and occurs typically around age 12-13. The end of a 

woman's reproductive phase is called the menopause, which commonly occurs somewhere 

between the ages of 45 and 55. 

The following figures (37 – 41) show several cases of healthy endometrium hysteroscopic 

images, along with their pseudocolor map, where each ‘color’ is correlated to a tissue 

condition. Results are summed in table 7.     

 

 

 

 

 

 

FIGURE 51. EARLY PROLIFERATIVE PHASE. HYSTEROSCOPIC IMAGE (LEFT)AND PSEUDOCOLOR MAP (RIGHT).  

 

 

 

 

 

 

FIGURE 52 . LATE PROLIFERATIVE PHASE. LEFT COLUMN: HYSTEROSCOPIC IMAGE (LEFT)AND PSEUDOCOLOR 

MAP (RIGHT). 
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FIGURE 53 . OVULATORY PHASE. LEFT COLUMN HYSTEROSCOPIC IMAGE (LEFT)AND PSEUDOCOLOR MAP 

(RIGHT). 

 

 

 

 

 

 

FIGURE 54 . EARLY SECRETORY PHASE. HYSTEROSCOPIC IMAGE (LEFT)AND PSEUDOCOLOR MAP (RIGHT). 

 

 

 

 

 

 

FIGURE 55 . LATE SECRETORY PHASE. HYSTEROSCOPIC IMAGE (LEFT) AND PSEUDOCOLOR MAP (RIGHT). 
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Phase Days Hysteroscopic findings Corresponding 

pseudocolor 

Early 

Proliferative 

3 – 8 The basal layer is visible, along with the 

main arteries. Small arterioles appear 

like speckled spots. 

Green 

Late 

Proliferative 

9 – 12 Increased size of spiral arterioles. Green, Purple 

Ovulatory 14 – 16 Not identified characteristic 

hysteroscopic image 

Green, Purple, 

scarce Red spots 

Early 

Secretory 

17 – 22 Typical form of the glands, spiral arteries 

size is increased even more 

Purple, Green 

Late 

Secretory 

23 - 25 The thickness of the endometrium is 

increased and spiral arteries are no 

longer visible 

Green, Purple 

 

TABLE 7. IDENTIFICATION OF THE MENSTRUAL CYCLE. COLOR SEQUENCE FOLLOWS DESCENDING ORDER OF 

COLOR APPEARANCE. 

 

 

 

7.2.2 Identification of the AUB conditions, with the use of hyperspectral hysteroscopy 
 

Abnormal uterine bleeding (AUB) refers to not expected uterine bleeding situations. Such 

abnormal abnormal situations are bleeding between periods, spotting anytime in the 

menstrual circle, bleeding heavier, for more days than normal or after menopause. Also, 

menstrual circles that are longer than 35 days, or shorter than 21 days are abnormal. The lack 

of periods for 3-6 months (amenorrhea) is abnormal too.  

AUB may have many causes. These include miscarriage, ectopic pregnancy, adenomyosis, 

infection of the uterus or the cervix, fibroids, polyps, endometrial hyperplasia, etc. The 

following figures (42 - 47) show several cases of pathological endometrium hysteroscopic 

images, along with their pseudocolor map, where each ‘color’ is correlated to a tissue 

condition. Results are summed in table 8.    
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FIGURE 56 . NONFUNCTIONAL ENDOMETRIAL POLYP LOCATED AT THE LEFT SIDE WALL. HYSTEROSCOPIC 

IMAGE (LEFT) AND PSEUDOCOLOR MAP (RIGHT). 

 

 

 

 

 

 

FIGURE 57. FUNCTIONAL ENDOMETRIAL POLYP LOCATED AT THE UTERUS FUNDUS. HYSTEROSCOPIC IMAGE 

(LEFT)AND PSEUDOCOLOR MAP (RIGHT). 

 

 

 

 

 

 

FIGURE 58. SUBMUCOSAL FIBROMYOMA. HYSTEROSCOPIC IMAGE (LEFT)AND PSEUDOCOLOR MAP (RIGHT). 
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FIGURE 59. ENDOMETRITIS. HYSTEROSCOPIC IMAGE (LEFT)AND PSEUDOCOLOR MAP (RIGHT). 

 

 

 

 

 

 

FIGURE 60. COMPLEX ATYPICAL HYPERPLASIA. HYSTEROSCOPIC IMAGE (LEFT)AND PSEUDOCOLOR MAP 

(RIGHT). 

 

 

 

 

 

 

FIGURE 61. ENDOMETRIAL ADENOCARCINOMA. LEFT COLUMN HYSTEROSCOPIC IMAGE (LEFT)AND 

PSEUDOCOLOR MAP (RIGHT). 
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AUB Hysteroscopic findings Corresponding 

pseudocolor 

Nonfunctional 

endometrial polyp 

Endometrial eminences Yellow, Red 

Functional 

endometrial polyp 

Endometrial eminences Purple Green 

Submucosal 

fibromyoma 

The surface of the fibroids is whitish and 

crossed by one or more vessels 

Red, Yellow 

Endometritis Increased vascularization, 

mikropolypodiasis, swelling and thickening 

of the endometrium 

Purple, Blue 

Complex atypical 

hyperplasia 

Polypoid formations, areas of necrosis and 

non-uniform presence of glandular orifices 

Red, Yellow 

Endometrial 

adenocarcinoma 

Cystic glandular formations coexisting or 

not with cystic atrophy 

Variety of colors 

 

TABLE 8. IDENTIFICATION OF THE ENDOMETRIAL PATHOLOGY WITH CORRELATED CLUSTERING PSEUDOCOLORS 

 

 

 

ENDOMETRIAL TISSUE CONDITION CORRELATED PSEUDOCOLOR 

FUNCTIONAL ENDOMETRIUM Green 

INFLAMATION Blue, Purple 

HYPERPLASIA  Red 

FIBROSIS Yellow 

 

TABLE 9. PSEUDOCOLORS CORRELATED WITH PARTICULAR ENDOMETRIAL TISSUE CONDITIONS 
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Conclusions 
 

 A novel spectral clustering endoscope was described and it was identified that in the case of 

the endometrium there are 5 to 6 distinguishable clusters of spectra. Preliminary clinical 

validation, currently in progress, shows that the identified clusters of spectra correlate well 

with tissue pathology. This new technology is therefore of high potential; to provide in vivo, 

early detection, and grading of the lesion, to minimize the need for biopsies, to offer objective 

follow up, to guide and to evaluate treatments. 

 

Discussion 
 

 

A novel snapshot spectral clustering endoscope was developed and it has been identified that 

in the case of the endometrium there are 5 to 6 distinguishable clusters of spectra.  

Preliminary clinical  validation,  currently  in  progress,  shows  that  the identified  clusters  of  

spectra  correlate  well  with  tissue pathology.  This  new  technology  is  therefore  of  high 

potential; to provide in vivo, early detection, and grading of the  lesion,  to  minimize  the  need  

for  biopsies,  to  offer objective follow up, to guide and to evaluate treatments. 

This project aims at developing the next generation of spectral imaging devices, incorporating 

novel optoelectronic hardware for enabling the instantaneous acquisition of spectral images 

and innovative software solutions for calculating/displaying spectral clustering maps 

(thematic maps) in (nearly) real-time, related to endometrial pathology. To the best of our 

knowledge such an efficient and integrated solution has not been reported so far. This 

development is expected to open new horizons in spectral imaging applications since: a) it will 

expand the applications of spectral imaging to dynamically changing phenomena and targets; 

b) it will enable the clinical implementation of spectral imaging to a variety of biomedical 

applications, where the shortening of the examination time and objectivity is crucial.  Besides 

the expected innovations at the system’s level, several particular innovations related with the 

system’s components are expected to enrich the outcomes of this project, including: a) 

methods and apparatus for separating images on the basis of their spectral components; b) 
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Computing platforms for (real-time) processing of spectral cube data based on novel 

algorithms and data steaming methods.  

Despite these very good initial results, a higher confidence, with regard to the snapshot 

spectral hysteroscope diagnostic performance, need to be established. Clinical testing of 

SPECL endoscope is currently underway for establishing sensitivity-specificity statistics in a 

sufficient number of clinical trial participants, which have been defined with the aid of 

calculations of statistical power. 
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