
TECHNICAL UNIVERSITY OF CRETE
ELECTRONICS AND COMPUTER ENGINEERING

Discriminative Training of Language Models

by

Nikolaos Fitopoulos

ELECTRONICS AND COMPUTER ENGINEERING

2014



Abstract

The present thesis investigates the use of discriminative training on continuous

Language Models. The main motivation for dealing with continuous language models

was that by construction they overcome the limits of N-gram based models. N-gram

models have been widely used in Language Modeling, but suffer from lack of generaliz-

ability and contain a very large number of parameters that are hard to adapt. Another

flaw of N-gram models is the need for a large amount of training data, in order to

cover as many N-grams as possible. Continuous Gaussian Mixture Language Models

(GMLMs) for Speech Recognition have proven to be effective in terms of smoothing

unseen events and adapting efficiently while using relatively small amount of data

when compared to N-gram models.

The training and testing data were extracted from the Wall Street Journal Corpus.

Although the size of the vocabulary used in the corpus is large, the actual number of

words being used in the present thesis is resticted. Data has the form of a continuous-

space vector and consists of the history of each word in the corpus. The dimensions

of these vectors were reduced by using SVD and LDA techniques.

As far as the main objective of the thesis is concerned, attempts focus on improv-

ing the performance of GMLMs that have been previously trained by using the ML

criterion on Language Models by adapting and using the Maximum Mutual Infor-

mation(MMI) Estimation Method previously deployed in training HMMs for acous-

tic models. MMI acoustic models have proven to perform better than ML models,

therefore MMI training gave a strong incentive in order to apply it on continuous

language models. In addition, other discriminative criteria such as Minimum Phone

Error (MPE) or Minimum Classification Error(MCE) are also theoretically investi-

gated. Perplexity is the metric being used to measure the effectiveness of the presented

method. The experiments of the thesis focus on testing MMI models that are smoothed

with their correspondent baseline ML model and MMI models that are unsmoothed,

with mixed results. The desired improvement is achieved in the case of unsmoothed

MMI models against ML models.
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Chapter 1

Introduction

1.1 Speech Recognition

In general, speech recognition processes involve building Acoustic Models and Language

Models. Acoustic Models deal with matching utterances to a sequence of words. This

matching process uses the maximization of the posterior probability of a specific word

sequence S given a certain utterance (observation) O. This probability is the following:

P (S|O) =
P (O|S)P (S)

P (O)
(1.1)

The maximization of the probability above can be achieved by maximizing the numer-

ator term P(O|S)P(S). Acoustic modeling estimates likelihoods similar to P(O|S). These

likelihoods follow a distribution that models spoken language [1]. Term P(S) represents

the probability of a particular word sequence. Language modeling estimates these proba-

bilities.

After having estimated an acoustic model along with a language model, speech recog-

nition tasks can take place for a given segment of speech: the acoustic model can decide

upon which word sequence was uttered and, subsequently, the language model calculates

how probable this word sequence is and gives alternate and maybe more probable choices,

thus enhancing the accuracy of the recognition process.

1.2 What is a Language Model?

Language modeling constitutes a very important part of speech recognition; it provides

awareness of grammar, syntax rules and vocabulary of a spoken language. In other words,

a Language Model can be considered as the ”glue” that sticks speech segments together

in a coherent way [1]. Along with these rules, the language model is supplemented by

stochastic processes that facilitate fast search within the rules list and cover any possible



1.3. Usage of Language Models 8

Figure 1.1: Simplified depiction of a speech recognition task

gaps.

By definition, a stochastic Language Model calculates the probability of potential word

sequences in a text, utilizing a specific probability distribution. This means that the word

sequence <w1 w2 ... wi> occurrence has the following probability:

P (w1 · · ·wi) = P (w1)P (w2|w1)P (w3|w1w2) · · ·P (wi|w1 · · ·wi−2wi−1) (1.2)

according to the chain rule of probability[2].

1.3 Usage of Language Models

Word sequence probabilities provided by a Language Model have proven to be a valuable

tool in word prediction[2]. In such prediction processes, a recognizer scans a speech seg-

ment and attempts to predict the word that follows the previously read sequence. This

prediction is accommodated by the probabilities included in the language model used by

the recogniser.

Word prediction procedures are useful in speech recognition or hand-writing recognition

systems, in which input can be very noisy and ambiguous. Therefore, previous words during

the word-scanning process can provide a strong hint on which word is the next one.
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Predicting the next word in a context can also be useful in communication systems

that help the disabled in communication. For instance, people who are unable to speak or

use sign-language to communicate use systems that speak for them, letting them choose

words with simple hand movements by selecting from a menu of possible words. Having

all possible words of a language available in a list is rather strenuous, so predicting which

words are the most possible to be used next is extremely important for this task.

Real-word spelling errors can also be drastically reduced by using word prediction

techniques. These errors result in false but existing words, thus their detection is difficult

than this of conventional spelling errors that lead to non-existing words. The elimination

of these errors is made by estimating the probability of the examined word sequence.

The challenge is that sentences of low probability may also occur in the context.However,

context-sensitive spelling error correction may be used to alleviate this problem[2].

1.4 N-gram models

If the equation (1.2) is used for all the potential word sequences of any size, we will need

a great deal of corpora and plenty of time to calculate these probabilities. This problem

is solved by using an approximation: the word depends on its previous n-1 words. This

assumption is the basis of N-gram models, in which the probability P(w1 ... wi) would be

calculated as:

P (w1 · · ·wi) ≈
i∏

k=1

P (wk|wk−n+1 · · ·wk−1) (1.3)

In this work, a Language Model has been built in order to calculate the probability

of a word occurrence when having observed the previous two words (this is referred to as

history of the current word), thus the trigram scheme is being followed. According to the

trigram model, the probability P(w1 ... wi) is evaluated as:

P (w1 · · ·wi) ≈
i∏

k=1

P (wk|wk−2wk−1) (1.4)

The training process of N-gram models involves counting N-grams within the training

corpus. Subsequently, this count is normalized by dividing with the count of the N-grams
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that share the same N-1 words, as shown below:

P (wn|wn−N+1 · · ·wn−1) =
C(wn−N+1 · · ·wn−1wn)

C(wn−N+1 · · ·wn−1)
(1.5)

The above equation estimates the probability of occurrence of the word wn given the

word sequence <wn−N+1 ... wn−1> [2]. In the case of a trigram model, the equation (2.3)

is simplified as following:

P (wn|wn−2wn−1) =
C(wn−2wn−1wn)

C(wn−2wn−1)
(1.6)

1.5 N-gram smoothing

The sparseness of data is a major problem in building a N-gram language model; several

word sequences may not occur in a training corpus and, as a result, are given zero probabil-

ity [3]. This inefficiency in modeling unseen events requires the development of techniques

that smooth the models.

A smoothing technique was introduced by Katz [4] in 1987. This technique, the ”n-

gram back-off model”, estimates the probability P(wn|wn−N+1 ... wn−1) for a generally

unseen sequence w by backing-off to probabilities of lower order N-grams. For instance,

the estimation of the probability of a scarce trigram can be reduced to the estimation of

the respective bigram. The equation of this back-off model is the following:

P (wn|wn−N+1 · · ·wn−1) = d
C(wn−N+1 · · ·wn−1wn)

C(wn−N+1 · · ·wn−1)
(1.7)

if C(wn−N+1 ... wn) is higher than a positive constant k, or:

P (wn|wn−N+1 · · ·wn−1) = aP (wn|wn−N+2 · · ·wn−1) (1.8)

if it is lower than k. Term d is a discount factor and a is the back-off weight. Intuitively,

if the count of the N-gram is rather high, the respective probability is scaled down by d.

If it is low, this probability is boosted by a.
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Another N-gram smoothing process described in [1] is the Interpolation Smoothing,

where a N-gram of high order is linearly interpolated with a N-gram of a lower order. This

interpolation enables the incorporation of additional useful information concerning a less

frequent N-gram. The resulting probability PI is expressed as follows:

PI(wn|wn−N+1 · · ·wn−1) = λP (wn|wn−N+1 · · ·wn−1) + (1− λ)PI(wn|wn−N+2 · · ·wn−1)
(1.9)

where λ is a constant between 0 and 1. High values of λ are advised for N-grams that

are ubiquitous within the training corpus, while lower values are applied to N-grams of

low occurrence. This happens because highly observed sequences produce a more reliable

model, while scarce sequences derive a more ’overfitted’ and less generalized model.

1.6 N-gram drawbacks and Continuous Models

Although the above N-gram smoothing techniques alleviate the problem of zero proba-

bilities, there are some other issues that persist even after smoothing; N-gram models

may contain a very large number of parameters, considering that each different N-gram

within the corpus has to be kept in memory. This fact also referred to as curse of di-

mensionality [5]. As a result, N-grams face extreme computational difficulties, especially

in large-vocabulary tasks [11]. The probabilities shown in Part 1.4 reflect both problems

of generalizability and adaptability; many possible N-grams are technically left out of the

model because of limited data and the number of parameters is very high considering a

medium-sized vocabulary.

Another problem of N-grams is the lack of semantic and syntactic correlation; similarity

between sentences is not taken into account by N-grams and any similarity is restricted

within the boundaries of each N-gram. Examining similar sentences may prove very effec-

tive in combating the lack of generalizability of a language model [5].

Therefore, the two main challenges for N-gram models are generalizability and adapt-

ability of the parameters [11]. An alternative solution to the problems mentioned above is

the projection of the words onto the continuous space. This method was initially proposed

in [5], where a neural continuous language model is created. The main idea of continuous

language models is to represent each word by using continuous-space vectors which follow

a certain probability distribution.[11]. A continuous representation of a language model
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offers the opportunity to work with larger vocabulary sizes, adapt the model parameters

faster and incorporate the notion of similarity among text with highly correlated context.

Results in [5] and [6] indicate improvement in perplexity figures where continuous language

models are used against back-off N-gram models.

1.7 Gaussian Mixture Models

In [11], Gaussian Mixture Models (GMMs) have been used in order to model likelihoods in

a continuous-space matter. The major advantage of modeling with GMMs is the efficient

parameter adaptation even with limited data available.

A Gaussian Mixture Model defines a (previously unknown) probability density function

p(x) of the random variable x as the linear combination of J Gaussian probability density

functions and has the following form:

p(x) =
J∑
j=1

p(x|j)Pj (1.10)

where

J∑
j=1

Pj = 1,

∫
X

p(x|j)dx = 1 (1.11)

In equation (1.10), each Gaussian density function p(x|j) is scaled by the mixture coef-

ficients, Pj [9]. The density functions p(x|j) are called components of the mixture.

1.8 Thesis Objectives and Structure

The present thesis attempts to apply the Maximum Mutual Information (MMI) discrim-

inative training technique to continuous Gaussian Mixture Language Models (GMLMs)

which are initially built according to the technique described in [11]. The MMI training

procedure being used in this thesis was applied to [13], where discriminative training is

investigated against Maximum Likelihood Estimation (MLE) in HMM parameter estima-

tion for speech recognition tasks. The main incentive of this work is the improvement of
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GMLM performance in the same way it was achieved in the training of the acoustic models

in [13].

As far as the structure of the thesis is concerned, the second chapter analyses the

continuous space models and describes the data preparation procedure as well as dimen-

sionality issues and how they are resolved by using Linear Discriminant Analysis (LDA)

and Singular Value Decomposition (SVD), the third chapter refers to discriminative train-

ing in general, analyses the derivation of the MMI estimation technique, compares it to

MLE and refers to additional smoothing techniques, the fourth chapter elaborates on the

implementation of MMI training in the GMLMs, presents the perplexity metric which is

used in measuring the effectiveness of a language model and finally gives the experimental

results of the presented method. The final chapter is about future work that can be done

in discriminative training of language model parameters.
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Chapter 2

Continuous Language Models

As mentioned in the above chapter, Continuous Language Models have showed hopeful

improvements when compared to their respective N-gram based models. Previous work on

continuous space models as well as a more thorough investigation on such models follows

in the present chapter. Subsequently, the formation of data that is used from these models

in the current work will be analysed and finally, there will be a reference on Maximum

Likelihood Parameter Estimation applied to continuous LMs.

2.1 Previous Work

Initial ventures to express a language model into continuous space were made in [5], where

a language model was built by using the structures of a neural network. The words of the

vocabulary were expressed as feature vectors in Rm, which are vectors of m dimensions and

have real values. Subsequently, the probabilities p(wn | wn−N+1 ... wn−1) of the language

model were transformed into functions of the correspondent feature vectors of the words

involved. The parameters of these functions were then iteratively estimated by using a

neural network.Work on Continuous Language Models has also been done in [8], where a

continuous language model was used onto a previously built telephone speech recognition

system. The desired model would perform a one-pass recognition and help in creating a

lattice that would reduce time complexity. The model parameters in [8] were also estimated

by a neural network structure. The results gave improved Word Error Rate figures when

compared to back-off n-gram models. The paper of M.Afify et al.[11], which builds a

languagel model for speech recognition of the Arabic language, steps on the research made

in both [8] and [5] and proceeds in proposing the use of Gaussian Mixture Models (GMMs)

for the formation of the probability functions of the continuous feature vectors initially

proposed in [5]. The GMMs are more adaptive than the neural networks that still have

a large number of parameters to be trained [11]. The approach of [11] is used in the

current thesis because it seems to overcome both generalizability issues of unseen events

and adaptability issues of the model parameters.
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Figure 2.1: Incorporation of discrete variables into a continuous probability function

2.2 Description of a Continuous Language Model

Although there is no formal definition for a Continuous Language Model, we could refer

to certain common qualities that each Continuous LM has. The most basic quality of

a continuous LM is the continuous-space form of the data of the model. This data is

represented by discrete random variables (the words of the vocabulary) that are projected

onto continuous-space feature vectors [5].

A second quality of a continuous LM is that there is a function that models each word

probability within the LM; the probabilities p(wn|wn−N+1 ... wn−1) of each n-th word to

be preceded by the word sequence wn−1n−N+1 are transformed into functions that map the

word feature vectors to the probability space over the words of the vocabulary.
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2.3 Data Formation

The above part described the general form of data and models used in continuous-space

language modeling. The present section refers to the exact process of shaping the data

so as to fit into certain continuous language models. In particular, describes the way in

which the data, in form of plain text, is transformed into continuous-space vectors. The in-

volved methods are the Singular Value Decomposition (SVD) and the Linear Discriminant

Analysis (LDA), which will be analysed further below.

2.3.1 Text Corpus

The text that is used as training and testing data is extracted from the Wall Street Journal

’94 (WSJ94) corpus. The punctuation marks (e.g. period, comma, hyphen, doublequote)

are written as the word that describes it and not as the respective mark, for example the

sentence ”The result was a social and economic disaster.” is written as ”the result was

a social and economic disaster period” . The beginning and the end of a sentence are

denoted by the special symbols <s> and </s> respectively. The sentence ends either with

a period or a questionmark. As a result, the previous sentence will be written in the corpus

as follows: ”<s> the result was a social and economic disaster period </s>” .

The training corpus of WSJ94 consists of 150000 sentences, whereas the test set contains

6000 sentences.

2.3.2 Initial Word Mapping

The number of different words used in the corpus is rather high. This fact impedes the

implementation of a language model analysed above because of the great number of pa-

rameters to be estimated for each GMM that corresponds to a single word. Therefore, a

reduction of the number of different words, or else the size of the vocabulary, is needed.

In order to decrease the vocabulary size from X to V, the frequency of each word in the

corpus is estimated and subsequently the X - V less frequent words are notated as an

unknown word, or <unk>. In the present work, the words considered as ”known” are 2699

plus the unknown word.

What follows is the representation of each word into a vector, which is initially done

by assigning an indicator vector to each word. The indicator vector wi of word i has V

dimensions and consists of zeros, except from the i-th dimension, which is equal to one
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[11]. As a result, the indicator vector is a V × 1 matrix. This vector will now be referred

to as word vector.

2.3.3 History Vectors

The language model built in the present work is a trigram, which means that each word in

the corpus depends only on its previous two words. These two words constitute the history

of the word. As a result, the two previous word vectors can be concatenated in order to

form the history vector of the current word. These history vectors are the data of each

word. For instance, the word wi has a history vector that is a concatenation of the word

vectors of wi−2 and wi−1:

hij = wi−2wi−1 (2.1)

where hij is the jth history vector of the ith word.

Word and history vectors have an excessive number of dimensions, that technically

prohibit any computation needed for the language model estimations. The following parts

describe the ways in which the word vectors of 2700 dimensions are transformed into vectors

of significantly lower number of dimensions.

2.4 Dimensionality Reduction

It is obvious that handling a vector of V dimensions is rather difficult. Thus, mapping

indicator vectors to a lower dimension is important to the procedure of building the desired

language models. In order to do so, a matrix A of dimensions M × V is needed, where

M < V . If we assume that the resulting vector after the reduction of each wi is ui, we

have:

ui = Awi (2.2)

2.4.1 Singular Value Decomposition

The Singular Value Decomposition is a matrix factorization method that is used in dimen-

sionality reduction. The SVD method states that every m × n matrix A is factorized as
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follows:

A = Q1ΣQ2 (2.3)

where Q1 is an orthogonal m × m matrix, the columns of which are the eigenvectors

of the matrix AAT . Q2 is an orthogonal n × n matrix the columns of which are the

eigenvectors of the matrix ATA. The matrix Σ is diagonal, has m × n dimensions and its

diagonal consists of the square roots of non-zero eigenvalues (singular values) of both AAT

and ATA [20].

The dimensionality reduction of A can be done by processing the singular values of Σ;

we can reject the singular values that are lower than an arbitrary floor and keep the rest.

This rejection is safe because the columns that contain a low singular value do not bear

significant information. As a result, only the columns that have a singular value higher

than the threshold are kept. For example, we want to maintain 100 singular values. Thus,

the Σ matrix will now be a 100 × 100 matrix, while Q1 and Q2 will be m × 100 and 100

× 100 matrices respectively. The procedure is shown below:


a11 · · · a1n
...

. . .
...

am1 · · · amn

 =


q111 · · · q11m

...
. . .

...

q1m1 · · · q1mm



σ11 · · · 0

0 σ22 0
...

. . .
...

0 · · · σmm



q211 · · · q21n

...
. . .

...

q2n1 · · · q2nn




a11 · · · a1,100
...

. . .
...

am1 · · · am,100

 =


q111 · · · q11,100

...
. . .

...

q1m1 · · · q1m,100



σ1,1 · · · 0

0 σ2,2 0
...

. . .
...

0 · · · σ100,100




q211 · · · q21,100

...
. . .

...

q2100,1 · · · q2100,100


The result is the new m × 100 matrix A. We should also note that the elements of the

diagonal in matrix Σ are already sorted in descending order, hence the retainment of the

100 larger values is a trivial process.
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2.4.2 Linear Discriminant Analysis

A dimension reduction can also be possible by using a linear transorfmation of the following

form:

y = θTx (2.4)

where x is the initial matrix that needs the reduction, θT is the matrix that performs

the linear transformation and y is the resulting matrix with reduced number of dimensions.

Moreover, LDA attempts to reduce dimensionality while preserving the information

needed for the discrimination between the classes [21]. Therefore the analysis requires that

data has appropriate class labels. We associate words with class labels and assign each

observed history vector to the corresponding word class. LDA estimates the between and

within class scatters in order to find the optimal transformation matrix.

The first step of the LDA technique is the estimation of the mean vector for each word

class j :

µj =
1

Nj

Nj∑
i=1

xi (2.5)

where the word classes are equiprobable and xn is the n-th data point that belongs to

the j-th word class. Nj is the number of data points of the class j. The next step is the

estimation of the covariance matrix within the word class j :

SWj =
1

Nj

Nj∑
i=1

(xi − µj)(xi − µj)T (2.6)

The estimation of the mean vector and covariance matrix for the whole data set follows:

µ =
1

N

N∑
i=1

xi (2.7)
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S =
1

Nj

N∑
i=1

(xi − µ)(xi − µ)T (2.8)

The main idea of LDA is to maximize the ratio of between-class variance to the within-

class variance in any data set in order to assure maximum separation [10]. The covariance

matrix of (2.8) can be considered as the between-class variance because the difference

between all the data points of the set and the general mean vector can be thought of the

difference between each class and the mean of the entire data. The mean within-class

covariance is expressed as:

SWmean =
1

N

N∑
i=1

NjS
W
j (2.9)

The criterion that is maximized by LDA is as follows:

θ̂ = arg max
θp

|θTp Sθp|
|θTp SWmeanθp|

(2.10)

As a result, the θ that satisfies the condition in (2.10) is chosen as the matrix that

conducts the transformation of the form in (2.4).

2.4.3 Usage of SVD and LDA in the present work

The estimation of the matrix A of (2.2) can be carried out by applying the SVD method

on the co-occurrence matrix of the word document. A co-occurrence matrix E consists of

the elements eij, each of which holds the number of times word i follows word j in the

document. This co-occurrence matrix approximates the correlation between each word,

i.e. how often a word is followed by another [11].

In our case, the size of this matrix is 2700 × 2700. The result of applying SVD on the

co-occurrence matrix using 100 singular values is a matrix A of dimensions 2700 × 100.

Matrix A then transforms each of the 2700 word vectors by using (4.2), which results in

having 2700 word vectors of size 100 × 1, which is a significant reduction when compared

to their initial size (2700 × 1). If we assume that the initial word vector of each i is
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Figure 2.2: The process of data formation

denoted as wi, the matrix A maps wi to the new word vectors ui, according to the linear

transformation of (2.2).

A similar dimensionality reduction can be achieved in the history vectors of each word

in the corpus. The means to achieve it is by applying LDA; the history vectors, which

are now 200 × 1 vectors (two word vectors concatenated of 100 dimensions each) can be

transformed into vectors of lower dimension. As proposed in [11], a linear mapping of the

form

uij = Bhij (2.11)

In our case, the above mapping can decrease each of the history vectors hij dimensions

from 200 down to, say, 50. B is a 50 × 200 matrix, which implies that the resulting mapped

history vector uij will have 50 × 1 dimensions.
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Figure 2.3: Depiction of a GMLM and its components

2.5 Gaussian Mixture Language Models (GMLMs)

The Gaussian distribution is widely used in stochastic processes because it has proven to

model effectively the majority of random variables in a very wide spectrum of scientific

disciplines. In particular, Gaussian Mixture Models (GMMs), which have been mentioned

in part 1.7 were used in continuous-space language models in [11] and [12] with satisfactory

results.

The current work uses GMMs in order to model every p(h|wi) likelihood, where h is the

history vector that was decribed above and wi is the i-th word of our vocabulary. There

are V different mixtures, where V is the size of the vocabulary, one for each word. The

value of p(h|wi) is then used in order to estimate the posterior p(wi|h) through the rule of

Bayes:

p(wi|h) =
p(wi)p(h|wi)∑
j p(wj)p(h|wj)

(2.12)

This posterior is used in recognition of the following word for a given history (two words

in the case of trigram) within the speech segment to be processed.
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2.5.1 Maximum Likelihood Estimation of GMLM parameters

The GMLMs of the present thesis, both baseline and newly created, consist of 2700 mix-

tures, where 2700 = V. Each mixture has m Gaussians each of which j includes a mean

vector, µjm, a covariance matrix σ2
jm and priors cjm that sum to 1 and constitute the

weights of each Gaussian in the mixture.

Baseline Language Models train the GMLM parameters with the Maximum Likeli-

hood Estimation criterion, utilising the Expectation-Maximization (EM) algorithm, which

is described in its general form in [18]. EM algorithm for calculating maximum likelihood

estimates contains two steps; the E-step, where the posterior probabilities p(wj|hn) for each

data point n are estimated by using the Bayes rule and the M-step, where the likelihoods

p(h|wj) are maximized with respect to means, covariances and weights and, by using the

posterior probabilities estimated in E-step, yield the following update equations [14]:

µjm =
1

Njm

Nj∑
n=1

p(wj|hn)hn (2.13)

σ2
jm =

1

Njm

Nj∑
n=1

p(wj|hn)hn(hn − µjm)(hn − µjm)T (2.14)

cjm =
Njm

Nj

(2.15)

where Njm is the total count of data points of the m-th component of the j-th mixture,

while Nj is the total count of the data points of the j-th mixture. During a pass of the

algorithm, the first step is the evaluation of p(wj|hn), which is then fitted into the equations

of (2.13) to (2.15). The process is repeated until the value of log-likelihood ln p(H|wj) =∑
n ln p(hn|wj) converges.



Chapter 3

Discriminative Training

3.1 Introduction

In general, a Discriminative training technique tries to make the correct hypothesis more

probable and, at the same time, tries to penalize any incorrect competing hypotheses.

Thus, the method aims at finding a suitable objective function to be optimized according

to specific requirements being set from this method. Such objective functions depend

on the parameters that are to be trained and are also called training criteria. Maximum

Mutual Information (MMI) and Minimum Classification Error (MCE) have been the most

used discriminative training criteria [13]. This chapter deals with elaborating on the MMI

training method.

3.2 Discriminative criteria

The training criterion being used in the present work is the MMI, but there are some other

proposed criteria which are worth to be mentioned, such as the Minimum Classification

Error (MCE) [22] and the Minimum Phone Error (MPE) along with its extension, the

Minimum Word Error (MWE), which are introduced in [13].

3.2.1 Minimum Classification Error

The task on which MCE focuses is the isolated word recognition. The main idea of MCE

objective function is that each utterance (observation) O that occurs during the speech

recognition process corresponds to one of a fixed number of classes i = 1 . . . M. The

conditional likelihood gi(O ;λ) of each class i is defined as follows:

gi(O;λ) = log p(O|Mi, λ) (3.1)
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where Mi is the model that corresponds to the i -th class and λ represents the model

parameters. In addition, a misclassification measure is also defined:

di(O) = −gi(O;λ) + log(
1

M − 1

∑
j,j 6=i

exp gj(O;λ)η)1/η (3.2)

The above measure gets positive values when the observation O is not classified as

belonging to the i -th class and negative values when being classified in i -th class. These

di(O) values are incorporated into sigmoid functions, as shown below:

li(O) =
1

1 + exp(−γdi(O))
(3.3)

The factors η and γ are positive constants. The objective function of MCE is formed

by the sum of li(O) over all the correct classes. By definition, the sigmoid factors li(O)

of (3.3) are equal to zero when di(O) values are negative and equal to one when they are

positive. Therefore, the objective function for an utterance that was recognised correctly

is equal to zero, while misclassified utterances set the objective function value to one. It

is obvious that the minimisation of the objective function is required in order to increase

the recognition accuracy of the system.

3.2.2 Minimum Phone Error

The Minimum Phone Error (MPE) criterion, which was originally proposed in [13], involves

maximising the phone transcription accuracy of a speech recognition system. The objective

function of MPE is the following:

FMPE(λ) =
R∑
r=1

∑
s

P κ
λ (s|Or)A(s, sr) (3.4)

where λ represents the model parameters, s is the current sentence(observation) and

A(s,sr) is the raw phone transcription accuracy of the sentence s given the reference

sentence sr, which equals the number of reference phones minus the number of errors.

κ is a constant that scales down the posterior probability of the sentence s being the

correct one.
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The objective function of (3.4) can be expanded as follows:

FMPE(λ) =
R∑
r=1

∑
s pλ(Or|s)κP (s)κA(s, sr)∑

u pλ(Or|u)κP (u)κ
(3.5)

From the above, it is obvious that the MPE objective function is an average of the raw

phone accuracy A(s,sr) over all possible sentences s weighted by the pλ(Or|s) terms, which

express the likelihood of observation Or given the model of sentence s.

In general, the maximisation of the MPE criterion tries to make the more accurate

transcriptions more probable than their competitors. Specifically, the term A(s,sr), which

is in the numerator of the criterion of (3.5), is the main target of this maximisation;

sentences that have higher values of A(s,sr) are given higher probability than sentences of

lower phone accuracy.

As far as the likelihood scaling is concerned, the scaling factor κ accomodates the

smoothing of the MPE criterion, in order to make it more differentiable. In this way, less

probable sentences also contribute to the MPE objective function along with the sentences

that have been given higher probability. In general, high values of κ tend to exclude

less likely sentences from the objective function, while lower values tend to incorporate

them more into the criterion, thus rendering the system more flexible to unseen events

(generalisation).

3.2.3 Minimum Word Error

The Minimum Word Error criterion is identical to the Minimum Phone Error objective

function, with the only difference being the transcription accuracy A(s,sr); in MWE, it

is measured in words instead of phones. MWE is expected to be more effective in terms

of word recognition because it maximizes the word accuracy and, as a result, is a better

approximation to the word error [13].

3.3 MMI Training

The MMI theoretical basis can be traced back to Information Theory. The measure of

uncertainty of a random event, also called entropy [15], is as follows:
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H(X) = −
∑
X

P (X)logP (X) (3.6)

if the random variable that models the event is assumed to be X. In the same way, the

conditional entropy of a random event X given the observed event Y is defined in [16] as:

H(X|Y ) = −
∑
X,Y

P (X, Y )logP (X|Y ) (3.7)

The average amount of information that Y provides for X could be empirically quan-

tified as the difference between the entropy H(X) and the conditional entropy H(X|Y). Let

this difference be notated as I(X;Y):

I(X;Y ) = H(X)−H(X|Y ) (3.8)

The above equation can be expressed in probability and log-likelihood terms as follows:

I(X;Y ) = H(X)−H(X|Y )

= −
∑
X

P (X)logP (X)− (−
∑
X,Y

P (X, Y )logP (X|Y ))

= −
∑
X,Y

P (X, Y )logP (X) +
∑
X,Y

P (X, Y )logP (X|Y )

= −
∑
X,Y

P (X, Y )(logP (X)− logP (X|Y ))

=
∑
X,Y

P (X, Y )log
P (X|Y )

P (X)

=
∑
X,Y

P (X, Y )log
P (Y |X)

P (Y )

3.3.1 MMI Objective function

In general, an objective function is a criterion that needs to be maximized or minimized

in order to train HMM parameters optimally. [13]. The objective function of the MMI
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training procedure could be derived from the form of I(X;Y) which was described in the

previous section, because the maximization of this term is equivalent to the minimization of

the entropy H(X|Y). This fact means that the uncertainty of variable X given the observed

variable Y is reduced.

Thus, the objective function for MMI Estimation used in [13] is produced by making

the assumption that the logP (Y |X)
P (Y )

term is sufficient for parameter estimation, since P(X,Y)

is unknown [16].

The random variable Y mentioned above is the variable being observed, whereas the

random variable X is the one that models the ”actual event”. This means that X represents

the correct transcriptions in speech recognition tasks. If O are the observations, sr are the

correct transcriptions and λ is the parameter set of the HMM to be estimated, the MMI

objective function is as follows:

FMMI(λ) =
R∑
r=1

log
Pλ(Or|sr)P (sr)∑
s Pλ(Or|s)P (s)

(3.9)

where Pλ(Or|sr) is the likelihood of the observations Or given the HMM that derives

the correct transcriptions sr and consists of the parameter set λ. The P(sr) term is the

probability of the sentence sr, provided by a language model. The denominator in equation

(3.9) was derived from P(Or) by applying the law of total probability over all possible

transcriptions s.

3.3.2 Why MMI?

While MPE has reportedly better results than MMI in acoustic models built in [13], an

MPE implementation of the present thesis would require the incorporation of phoneme

structure into the model. This fact makes the MPE method a less strong ’candidate’ for

the desired task. MCE is closer to MMI in terms of competing hypotheses distinction,

however there has been less work that would allow a precise implementation of a language

model.

3.3.3 Comparison with Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE) has been the most used training procedure for

HMM parameters so far. MLE attempts to maximize the likelihood of the observations,
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which was referred to as Pλ(Or|sr) above. As a result, the MLE objective function is:

FMLE(λ) =
R∑
r=1

logPλ(Or|sr) (3.10)

MLE derives models that can be easily trained by using the globally convergent Baum-

Welch algorithm [17]. This fact has made it the predominant method for HMM parameter

estimation. However, MLE assumes that the training data follow a certain probability

distribution. In the (realistic) case where the data do not generally follow this distribution,

MLE will not perform as desired [16]. Additionally, in order to truly achieve full compliance

with a specific distribution, a virtually infinite amount of data will be needed.

The assumption of a false distribution in MLE could be alleviated by the simulta-

neous maximization of the mutual information between the observations and the actual

transcriptions [16]. Hence, MMIE is a way to theoretically improve the performance of a

recognition system trained by using MLE methods. One obvious fact about the two esti-

mation methods is that their objective functions have a common numerator, the Pλ(Or|sr)
term (if we assume that the P(sr) term does not affect the optimization of the objective

function). The difference between the two lies in the denominator of the MMI objective

function, which consists of the sum of the common probabilties between the current obser-

vation and any possible transcription s. As a result, the maximization of FMMI(λ) implies

the minimization of Pλ(Or|s) for every false transcription s, which means that the wrong

hypotheses will become less probable against the correct hypothesis sr [16].

3.4 Optimization

The maximization of the MMI objective function is the key to the optimal parameter

estimation. The general method having been used for ML HMM parameter estimation is

the Expectation-Maximization (EM) algorithm, which consists of two steps; the E-Step,

where statistics are gathered in order to estimate the unknown distributions and the M-

Step, where the likelihoods of the previously estimated distributions are maximized in

order to find the optimal parameters for the distribution [18]. In most cases, this method

is convergent for MLE tasks.

However, the optimization of discriminative criteria is quite different. A rational func-

tion, the discriminative objective function, is to be maximized. Among the proposed
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solutions to the problem of optimizing discriminative criteria is the Extended Baum-Welch

(EB) algorithm, the update equations of which are easy to adapt to the parameter esti-

mation [13]. The process of building the update equations according to the EB algorithm

relies heavily on the use of auxiliary functions, which help in optimizing the discriminative

criteria, as the one in Equation (3.9).

3.4.1 Auxiliary Functions

The smooth function G(λ, λ’) is called a strong-sense auxiliary function around λ’ of the

F(λ) function that is to be maximized if the following inequality holds:

G(λ, λ′)−G(λ′, λ′) ≤ F (λ)− F (λ′) (3.11)

If there is a maximum of the auxiliary function G(λ, λ’) with respect to λ, then it

is ensured that this maximum will also increase the ”main” function F(λ), as implied by

the inequality (3.11). Therefore, applying iterative maximization on the auxiliary function

leads to finding a local maximum of the function F(λ) [13].

A more ”loose” version of auxiliary function is the weak-sense auxiliary function. Such

functions are useful in cases of inability to optimize some terms of a strong-sense auxiliary

function. According to [13], a weak-sense auxiliary function G(λ, λ’) for function F(λ)

around λ’ has the following property:

∂

∂λ
G(λ, λ′) =

∂

∂λ
F (λ) (3.12)

around the point λ = λ’. Although the maximization of the auxiliary function does

not now imply that F(λ) increases, the covergence (if achieved) to a particular λ after a

number of iterations guarrantees that F(λ) has reached a local maximum.

3.4.2 Smoothing functions

A smoothing function G(λ,λ’) has the following property:

G(λ, λ′) ≤ G(λ′, λ′) (3.13)
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This kind of function reaches its maximum point in λ = λ’. This property is useful in

creating strong-sense auxiliary functions. For example, if a smoothing function is added to

an objective function, then an auxiliary function is generated, because the maximum of the

smoothing function is at point λ and the inequality of (3.11) holds. Adding a smoothing

function to a weak-sense auxiliary function can also help in the optimization process, as it

will be explained in the following part.

3.4.3 MLE auxiliary functions

The MLE objective function (Eq. 3.10) is closely related to the form of the MMIE objective

function (Eq. 3.9) because FMMI(λ) is a difference of log likelihoods, whose form is similar

to the log likelihood of FMLE(λ). Hence, the derivation of the MLE auxiliary function can

be useful for the derivation of the respective MMI auxiliary function.

As mentioned above, the objective function of Maximum Likelihood Estimation is a

sum of log-likelihoods of the observation given the correct transcription, symbolized as

P(O|sr,λ). Assuming that the HMM to be estimated is denoted as M and that each HMM

corresponds to each correct transcription, P(O|sr,λ) can be expressed as P(O|M,λ), which

is equal to the sum
∑

x P(O|M,λ,x), where x is any potential state sequence within the

HMM. If we denote the likelihood P(O|M,λ,x) as fx(λ), a log-likelihood term within the

sum of the MLE objective function will now be:

F (λ) = log
∑
x

fx(λ) (3.14)

which is the function to be maximized.

A strong-sense auxiliary function G(λ,λ’) for function (2.9) around the point λ = λ’

is appropriate if the inequality of (3.11) holds. The auxiliary function used in [13] is the

posterior probability of the state sequence x and has the following form:

G(λ, λ′) =
∑
x

fx(λ
′)∑

y fy(λ
′)

log fx(λ) (3.15)

The auxiliary function of (3.15) can be written as:
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G(λ, λ′) =
∑
x

fx(λ
′)∑

y fy(λ
′)

log
∑
y

fy(λ) +
∑
x

fx(λ
′)∑

y fy(λ
′)

log
fx(λ)∑
y fy(λ)

(3.16)

= log
∑
y

fy(λ) +
∑
x

fx(λ
′)∑

y fy(λ
′)

log
fx(λ)∑
y fy(λ)

(3.17)

Given the expression of (3.17), the inequality of (3.11) reduces to:

G(λ, λ′)−G(λ′, λ′) ≤ F (λ, λ′)− F (λ′, λ′) (3.18)

⇒ log
∑
y

fy(λ)− log
∑
y

fy(λ
′) +

∑
x

fx(λ
′)∑

y fy(λ
′)

(log
fx(λ)∑
y fy(λ)

− log
fx(λ

′)∑
y fy(λ

′)
) (3.19)

≤ log
∑
x

fx(λ)− log
∑
x

fx(λ
′) (3.20)

⇒
∑
x

fx(λ
′)∑

y fy(λ
′)

(log
fx(λ)∑
y fy(λ)

− log
fx(λ

′)∑
y fy(λ

′)
) ≤ 0 (3.21)

The inequality of (3.21) has the form:
∑

x p(x) log q(x)
p(x)
≤ 0, from which we get:∑

x p(x) ( q(x)
p(x)

- 1) ≤ 0 ⇒
∑

x (p(x) - q(x)) ≤ 0 ⇒ 0 ≤ 0, because p(x) and q(x) sum

to one [13]. As a result, the function of (3.15) is a strong-sense auxiliary function for F(λ).

For convenience, the above auxiliary function can be expressed as the sum over all the

Gaussians in the HMM. If the sum over the posterior probabilities fx(λ′)∑
y fy(λ

′)
of every state

sequence x that contains state j at time t is denoted as γj(t), the auxiliary function now

becomes:

G(λ, λ′) =
J∑
j=1

T∑
t=1

γj(t) logN (o(t)|µj, σ2
j ) (3.22)

The term o(t) is the data observed at time t. The above case assumes that one Gaussian

per state is used. A different case is the use of a GMM, as it occurs in the present thesis.

For the sake of simplicity though, we will stick to the case of a single Gaussian per state

for the time being.

By replacing the term N with the full expression of the Gaussian pdf, the auxiliary

function of (3.22) becomes:
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G(λ, λ′) =
J∑
j=1

−1

2
(γj log(2πσ2) +

θj(O
2)− 2θj(O)µj + γjµ

2
j

σ2
j

) (3.23)

=
J∑
j=1

Q(γj, θj(O), θj(O
2)|µj, σ2

j ) (3.24)

where:

θj(O) =
T∑
t=1

γj(t)o(t) (3.25)

θj(O
2) =

T∑
t=1

γj(t)o(t)
2 (3.26)

γj =
T∑
t=1

γj(t) (3.27)

and Q(· · · ) has the form:

Q(t,X, S|µ, σ2) = −1

2
(t log(2πσ2) +

S − 2Xµ+ tµ2

σ2
) (3.28)

where t corresponds to γj, X corresponds to θj(O) and S is θj(O
2). As a result,

the function that will be maximized for the MLE is the one in equation (3.28). Having

maximized Q for each state j leads to the maximization of the whole auxiliary function in

(3.24).

3.4.4 MMI Estimation auxiliary function

The MMI objective function in Equation (3.9) has a numerator which includes the like-

lihood of the observed data given the correct transcription, P(Or|sr), and a denominator

that contains all the respective likelihoods for every possible transcription,
∑

sP(Or|s).
If we assume that the HMM that derives the correct transcription is Mnum and Mden is

the HMM that produces all possible transcriptions, the MMI objective function will be:

F(λ) = logP(O|Mnum,λ) - logP(O|Mden,λ). It is obvious that both likelihoods resemble

the likelihood of the MLE objective function. Therefore, the same auxiliary function can
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be used for both the numerator and the denominator likelihood. As a result, we get two

strong-sense auxiliary functions, Gnum(λ,λ’) and Gden(λ,λ’) which have the form of the

(3.15) equation.

Thus, the difference Gnum(λ,λ’) - Gden(λ,λ’) could serve as an auxiliary function of

MMI objective function. However, it is no longer strong-sense because the condition of

(3.13) is not satisfied, but it still is a weak-sense auxiliary function [13]. Another issue that

arises is the convexity of the ”candidate” auxiliary function Gnum(λ,λ’) - Gden(λ,λ’) ; the

areas where γnumj is smaller than γdenj are generally concave and, as a result, difficult to

maximize. The solution to this problem is the addition of a smoothing function Gsm(λ,λ’)

which has a differential equal to zero around λ’ [13]. In this way, the position of the local

optima will not be affected and the outcome will still be a weak-sense auxiliary function

as follows:

G(λ, λ′) = Gnum(λ, λ′)−Gden(λ, λ′) +Gsm(λ, λ′) (3.29)

The smoothing function that could be used might have the form:

Gsm(λ, λ′) =
J∑
j

Q(Dj, Djµ
′
j, Dj(µ

′2
j + σ

′2
j )|µj, σ2

j ) (3.30)

The function in (3.30) is of the same form of the one in (3.28). The Dj terms are

positive constants that scale the contribution of the smoothing function Gsm to the total

auxiliary function. It reaches a maximum as every log- Gaussian pdf does and as a result

it has a zero differential with respect to both µ′j and σ
′2
j , which satisfies the condition of

the weak-sense auxiliary function.

The form of the auxiliary function for the MMI objective function around λ = λ’ will

eventually be:

G(λ, λ′) =
J∑
j=1

(Q(γnumj , θnumj (O), θnumj (O2)|µj, σ2
j )−Q(γdenj , θdenj (O), θdenj (O2)|µj, σ2

j )

+Q(Dj, Djµ
′
j, Dj(µ

′2
j + σ

′2
j )|µj, σ2

j ))

The procedure described above assumed a single Gaussian per HMM state. The current
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thesis is though using Gaussian Mixture Models. This fact does not change the above

analysis because every function that refers to the state j of the HMM can in the same way

refer to the GMM of the state j and the component m of this GMM. Thus, γnumj , γdenj ,

θnumj (O), θdenj (O), θnumj (O2) and θdenj (O2) will now be denoted as: γnumjm , γdenjm , θnumjm (O),

θdenjm (O), θnumjm (O2) and θdenjm (O2).

3.4.5 Update equations for MMI Training

The means and the covariance matrices can now be estimated by maximizing the auxiliary

function G(λ,λ’). This maximization leads to the Extended Baum-Welch update equations

below:

µjm =
θnumjm (O)− θdenjm (O) +Djmµ

′
jm

γnumjm − γdenjm +Djm

(3.31)

σ2
jm =

θnumjm (O2)− θdenjm (O2) +Djm(σ
′2
jm + µ

′2
jm)

γnumjm − γdenjm +Djm

− µ2
jm (3.32)

where µ′jm is the old means vector and σ
′2
jm is the old covariance matrix of the distribu-

tion of m-th component of the j-th state. (3.31) and (3.32) equations are applied iteratively

until they converge.

3.4.6 I-smoothing

In [13], a variation concerning the incorporation of priors over the parameters of each

Gaussian into the auxiliary function for the MMI objective function is also proposed. The

main idea is the use of prior log-likelihoods over means and covariances of the numerator

term which have the following form:

log p(µ, σ2) = Q(τ, τµprior, τ(σ2
prior + µ2

prior)|µ, σ2) (3.33)

The above equation has the same form as the Q(· · · ) function defined in (3.28). The

constant τ adjusts the contribution of this prior distribution to the total auxiliary function.
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In particular, I-smoothing, which is the variation being proposed in [13], uses the (3.33)

equation as follows:

log p(µ, σ2) = Q(τ I , τ I
θnumjm (O)

γnumjm

, τ I
θnumjm (O2)

γnumjm

|µjm, σ2
jm) (3.34)

If the prior log likelihood of (3.34) is added to the auxiliary function G(λ,λ’), the γ

and θ terms for the numerator will be:

γnum
′

jm = γnumjm + τ I (3.35)

θnumjm (O)′ = θnumjm (O)
γnumjm + τ I

γnumjm

(3.36)

θnumjm (O2)′ = θnumjm (O2)
γnumjm + τ I

γnumjm

(3.37)

It is obvious that higher values of τ I mean that the priors have more influence on the

target models. In practice, these prior estimates of means and covariances can be obtained

by using the corresponding ML parameters for the j-th state and the m-th component.

The update equations for the MMI training can now be expressed as [19]:

µjm =
θnumjm − θdenjm +Djmµ

′
jm + τ IµPjm

γnumjm − γdenjm +Djm + τ I
(3.38)

σ2
jm =

θnumjm (O2)− θdenjm (O2) +Djm(σ
′2
jm + µ

′2
jm) + τ I(σ2

jm
P

+ µ2
jm

P
)

γnumjm − γdenjm +Djm + τ I
(3.39)

The terms µPjm and σ2
jm

P
are the prior ML estimates of the means and covariance

matrices of the Gaussian of the j-th state and the m-th component. These estimates are

theoretically drawn from the a distribution of the form in (3.34). In the experiments of

the present work, the statistics of the correspondent baseline GMMs will be used, but this

is to be analysed further in the respective chapter.
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3.4.7 Weights update equation

As previously mentioned, the intuitive weak-sense auxiliary function for the MMI objective

function is the Gnum(λ,λ’) - Gden(λ,λ’). In the case of a Gaussian Mixture Model instead

of a single Gaussian per state, the term (both for numerator and denominator) G(λ,λ’) as

previously expressed in (3.22) will now be:

G(λ, λ′) =
J∑
j=1

T∑
t=1

M∑
m=1

γjm(t) log(N (o(t)|µjm, σ2
jm)cjm) (3.40)

=
J∑
j=1

T∑
t=1

M∑
m=1

γjm(t)(log(N (o(t)|µjm, σ2
jm) + log cjm) (3.41)

The cjm terms are the m weights of each Gaussian in the j-th GMM, being subject

to the sum-to-one constraint, which means that
∑M

m=1 cjm = 1 for each j. Considering

the form of G(λ,λ’) in (3.41), the auxiliary function for the MMI objective function now

becomes:

GMMI(λ, λ
′) =

J∑
j=1

T∑
t=1

M∑
m=1

(γnumjm (t)(log(N (o(t)|µjm, σ2
jm) + log cjm)

− γdenjm (t)(log(N (o(t)|µjm, σ2
jm) + log cjm)

Hence, the terms including the weights in the above auxiliary function are:

M∑
m=1

(γnumjm − γdenjm ) log cjm (3.42)

In order to estimate the weights cjm, it is enough to maximize the term in (3.42).

However, we need an iterative update equation which uses the values previously estimated

so as to calculate the values of the current iteration. (3.42) has the same differential with

respect to cjm at point cjm = c
′
jm with the following function [13]:
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G(λ, λ′) =
M∑
m=1

γnumjm log cjm −
γdenjm

c
′
jm

cjm (3.43)

The terms c
′
jm are the original values of weights. As a result, the auxiliary function

in (3.43) is a weak-sense auxiliary function for the function in (3.42). Nevertheless, it is

necessary to add a smoothing function to the auxiliary function of (3.44) so as to make

it differentiable in areas that may be concave, in a similar fashion to the addition of a

smoothing function in section 3.4.4. A smoothing function that can be used is the following:

Gsm =
M∑
m=1

kjm(c
(p)
jm log c

(p+1)
jm − c(p+1)

jm ) (3.44)

The terms c
(p)
jm are the weights of the current (p) iteration, while the terms c

(p+1)
jm are

the weights of the next (p+1) iteration. The kjm terms are positive constants. Gsm is a

smoothing function, because its differential w.r.t. c
(p+1)
jm equals to zero at the point c

(p+1)
jm

= c
(p)
jm, which means that it reaches a maximum at the desired point. After the addition

of the smoothing function, the auxiliary function becomes:

G(λ, λ′) =
M∑
m=1

γnumjm log c
(p+1)
jm −

γdenjm

c
′
jm

c
(p+1)
jm + kjm(c

(p)
jm log c

(p+1)
jm − c(p+1)

jm ) (3.45)

As stated in [13], constants kjm should result in having all coefficients -
γdenjm

c
′
jm

- kjm of

the term c
(p+1)
jm equal to a constant value for each m. In this way, the term

∑M
m=1 (-

γdenjm

c
′
jm

-

kjm) c
(p+1)
jm is independent of the m component of the mixture and, because of the sum-to-

one constraint for cjm, it is a constant value for each m. After applying the Baum-Welch

algorithm, the update equation for the weights is proved to be:

c
(p+1)
jm =

γnumjm + kjmc
(p)
jm∑M

m=1 γ
num
jm + kjmc

(p)
jm

(3.46)

The constant kjm is set to be:
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kjm = (max
m

γdenjm

c
′
jm

)−
γdenjm

c
′
jm

(3.47)

In general,the convergence of (3.46) is slower than the update equations for means and

covariances mentioned in part 3.4.5. In some cases, 100 iterations are necessary for the

values to converge.

3.4.8 Smoothing weights with priors

Prior information of weights might prove useful in case of insufficient training data; their

incorporation into the auxiliary function for the MMI objective function is implemented

in the same way that the priors of means and covariances did: An appropriate prior

distribution of weights is chosen and subsequently it is added to the log-expressed MMI

auxiliary function. As mentioned in [13], this prior distibution is
∑

m τW
γnum
jm∑

m γnum
jm

log cjm.

This distribution is maximized at the same point where cjm equals the Maximum Likelihood

estimate. The constant τW sets the width of the prior, serving the same purpose as τ I

for the means and covariance smoothing. The only factor affecting the update equation of

weights is γnumjm , as indicated in (3.46). After the addition of the weight prior, this factor

will be:

γ
′num
jm = γnumjm +

τWγnumjm∑
m γ

num
jm

(3.48)

This results in having the following update equation for weights [19]:

c
(p+1)
jm =

γnumjm + kjmc
(p)
jm + τW cPjm∑

m γ
num
jm + kjmc

(p)
jm + τW cPjm

(3.49)

The term cPjm, which is equal to
γnum
jm∑

m γnum
jm

, is the prior estimate of weight cjm. In this

work, this estimate is obtained by the baseline GMMs.
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3.5 Adaptation to the Thesis Objectives

The above analysis referred to a Maximum Mutual Information estimation method which

estimates the parameters (means, covariances, weights) of a HMM built for speech recog-

nition tasks. The present work attempts to extend this analysis to non-acoustic data in

order to train a continuous-space language model. The baseline language models, to which

the discriminatively trained language models are compared, were built by using the HRest

tool of the HTK toolkit, which performs Baum-Welch re-estimation of the parameters [19].

The distribution of the baseline language models is a Gaussian Mixture Model, which is

an assumption to be preserved in this thesis.

The main idea of this adaptation is the assumption that each word of the language

model is modeled by a single-state HMM, which is trained by using the update equations

of the MMI training technique for the state j. Hence, the term γjm refers to the sum of

the posterior probabilities for each observation, given the model for j-th word. The desired

result of this adaptation would be the better discrimination between word models.

Assuming that the m-th component of the Gaussian of the single-state HMM of the j-th

word is denoted as Mjm, the likelihood of each observation O is symbolized as P(O|Mjm).

The γnumjm term, which is the posterior probability of the correct hypothesis(numerator) for

the m-th component of the j-th word given the observation O, can now be expressed as:

γnumjm =
p(O|Mjm)cjm∑
m p(O|Mjm)cjm

(3.50)

The γdenjm term, which is the posterior probability of all the hypotheses(denominator)

for the m-th component of the j-th word given the observation O, is:

γdenjm =
p(O|Mjm)cjm∑

j

∑
m p(O|Mjm)cjm

(3.51)

The difference between γnumjm and γdenjm lies in the denominator term; the denominator

of γnumjm only considers the likelihoods of the correct model, whereas the denominator of

γdenjm takes into account the likelihoods of all the word models.
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Chapter 4

Implementation and Experimental

Evaluation

4.1 Implementation Process

4.1.1 Formation of data

The first step of the current project is the conversion of each word of the vocabulary into a

manageable continuous vector. As mentioned before, each word is initially represented by

a V x 1 indicator vector, where V is the vocabulary size. The co-ocurrence matrix that is

used for the SVD applied on each indicator vector is calculated by running a simple perl

script (cooccurrence.pl).

The same script also creates the indexed training and testing files, in which the words

are substituted by their correspondent indexes within the vocabulary. For example, the

word ”we” is at the 95th place of the vocabulary, so it is substituted by the index 95 at the

indexed file.

The following steps involve the reduction of the dimensions of the indicator vectors

through SVD. In particular, the co-occurrence matrix is an input to the Matlab function

svds that estimates the 100 x 100 matrix A of SVD. Each indicator vector is then multiplied

by A and, as a result, the 2700 dimensions are cut down to 100.

After the 2700 1x100 word vectors had been created, the perl script create ngrams.pl

was run in order to form the trigrams that appear in the whole training corpus. The output

of this script is a folder that contains a specific file for each word. This file holds every

history vector (made up by the vectors of the two previous words of the word being read)

of this word. Therefore, this folder contains 2700 history files.

The next action was the calculation of the A matrix needed for the LDA process. The

LDA matrix is calculated by using the Matlab script lda statistics.m. This projection

matrix transforms each history vector and, as a result, reduces the dimensions of each

from 100 to 50. The transformation has the form described in (2.11). The 1 x 50 history
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vectors are now ready to be used within the training process.

4.1.2 Baseline Models

The baseline models that are used as a base for the creation of the MMI-trained models are

created by utilising the HTK 3.4.1 toolkit. These baseline models are trained by using the

EM algorithm. Instead of performing this training process by starting from scratch, the

HTK tool HRest was used in order to estimate the parameters of the distribution of each

word. HRest is actually designed for estimating the parameters (means, covariances) of

HMMs. In our case, the distribution of each word is assumed to be the output of a single-

state HMM which is estimated by using HRest. Specifically, the projected history vectors

of each word (which are the files created by the create ngrams.pl script) had been set as

input to the HRest tool and,after a number of iterations of Baum-Welch re-estimation

update formulae, the parameters of each distribution were finally estimated. The baseline

models were trained by using Baum-Welch re-estimation update equations and hence the

ML criterion was used.

4.1.3 MMI Training Implementation Issues

Applying the MMI Training method onto estimating the parameters of Continuous GMM

Language Models in the same fashion it was applied on training Continuous GMLMs in

[11] proved to be quite challenging because of the great number of calculations needed in

order to estimate γdenjm factors.

Lattices

As stated above, the calculation of posterior probabilities γdenj can be extremely time-

consuming: these posteriors need to be evaluated for each observation, while the denom-

inators of these posteriors require the calculation of P (O|Mjm) terms for every word j

in the vocabulary. For example, if a vocabulary of 3000 words in the vocabulary and

200000 different observations in the training set are assumed, the P (O|Mjm) term will be

re-evaluated up to 600.000.000 times, which shows the importance of saving time in the

training procedure.

The lattices to be created could have the form that is used in HTK tools, in the same

way used in [13]: each word is represented by an arc, while start and end times of each

observation (word) are represented by nodes that are connected by the arcs, forming a
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Figure 4.1: A lattice during 3 observation times

graph. Each arc is given a likelihood value, which is calculated by using the baseline

language model. The lattice then rejects any likelihood value that is below a specific

threshold: this means that the evaluation of P (O|Mjm) terms will be restricted to the

most likely cases, which significantly reduces the training time.

An example of a lattice could be the following: Let the vocabulary of a speech recogni-

tion task consist of three words, w1, w2 and w3. The observations are assumed to be three,

which means that there are three time snapshots, t1, t2 and t3. The lattice will be a graph

consisting of three nodes per time snapshot. The arcs of the graph represent a word given

its previous word; for example, the arc that goes from the node (t1, w1) to the node (t2,w3)

represents word w3 which was preceded by w1. In this case, the different P (O|Mjm) terms

would be (32) (3-1) = 18. Tasks of larger vocabularies and more observations would be

much more time-demanding. The main notion behind the usage of lattices is the rejection

of any arc that has a relatively low likelihood value P (O|Mjm).

The HMMIRest Approach

An initial approach was the use of HMMIRest HTK tool, which is used in HMM parameter

estimation through discriminative training (MPE, MWE or MMI options are available).

The main incentive for trying HMMIRest was the great saving of time. HMMIRest requires

the usage of lattices, whose importance was analysed in the above section.
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In particular, two kinds of lattices have to be created in order to make HMMIRest work:

the numerator lattice and the denominator lattice. The numerator lattice represents the

correct word sequence throughout the whole training set. The denominator lattice contains

confusable hypotheses for each observation (history) through a one-pass recognition process

of the training corpus.

The main problem concerning the usage of HMMIRest was the construction of the

lattices; the lattices in HTK are built by using a special recognition tool, HDecode. This

tool performs a one-pass recognition through the training data and then constructs both

the numerator and the denominator lattice. The construction of these lattices required

phone-marked data and an exact phoneme analysis for each word of the vocabulary. This

analysis was hard to obtain, hence after having made several unsuccessful efforts to achieve

such compatibility, the plan to use HMMIRest was finally abandoned.

4.1.4 MATLAB MMI Implementation

The eventual decision about the implementation of MMI was to use MATLAB for the

construction of the required MMI-trained language models. The main challenge in this

decision was the extreme time complexity.

The steps for implementing MMI training on the existing baseline language models are:

� Start reading the history vectors files for each word, starting from the first word in

the vocabulary.

� Estimate γnumjm and γdenjm . This estimation requires the calculation of the Gaussian

multivariate distribution for every observation(history vector) of every word. The

calculation of γdenjm is the main bottleneck of the process, because the value of the

Gaussian distribution for the specific observation has to be calculated for every word

in the vocabulary.

� Estimate θnumjm and θdenjm .

� Estimate θnumjm (O2) and θdenjm (O2).

� Apply the MMI update equations for 100 iterations in order to calculate means,

covariance matrices and weights.

The key to reduce time at the above process was the way of reading the history vectors;

a serial way is definitely more expensive than a parallel one. Therefore, the history vectors
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of a word were loaded simultaneously into the MATLAB code that implemented the MMI

training process, hence making use of the so-called ’vectorization’ of the MATLAB code.

4.2 Experimental Evaluation

4.3 Summary

The present chapter describes the experiments that tested the newly created MMI language

models in terms of perplexity, a metric that is widely used in language model evaluation

tasks. At first, the experiments involve the testing of unsmoothed models, which show

only a slight improvement compared to the baseline ML models. Subsequently, models

with smoothed mean vectors and covariance matrices are tested. Such models further

improve perplexity figures. The final experiments involve component weight smoothing,

which gives the best results in the thesis. However, variances within the covariance matrices

had to be floored to certain values in order to produce better perplexity figures, a fact that

certainly affects the accuracy of the generated models.

4.3.1 Perplexity as a metric

In the introduction of the current chapter, it was noted that perplexity is the metric that

measures the performance of the investigated language model. The notion of perplexity

is ultimately derived from entropy, which was mentioned as the measure of the average

uncertainty of a random event. In other words, entropy measures the amount of information

in a random variable. It is usually measured in bits, which explains the fact that logarithms

of base 2 are normally used, but using any other base leads to a linear scaling of results

that is acceptable [7].

A simple example that demonstrates the notion of entropy is the following: Suppose

we want to flip a fair coin; this experiment has two potential equiprobable results, heads

or tails. Thus, the entropy of the random variable X that represents the outcome of the

experiment is evaluated as:
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H(X) = −
∑
X

P (X) logP (X)

= −1

2
log

1

2
− 1

2
log

1

2
= 1.

The entropy that equals to 1 means that 1 bit is the amount of information needed in

order to represent random variable X, which is correct according to the intuition that 2

different kinds of results need one bit to represent them.

Assuming that the entropy H(X) has a 2-based logarithm, the term

ppl2(X) = 2H(X) (4.1)

is called the perplexity of the random variable X. The value of perplexity is equivalent

to the size of an imaginary equivalent list, whose words are equally probable[1]. In other

words, perplexity expresses the average number of different guesses that could be made

through an experiment that is modeled by X. For example, the above experiment of tossing

the fair coin has an entopy that equals to one. This implies that the perplexity is equal

to 21 = 2, which means that there are two different guesses that can be made for this

experiment.

In the experiments of this work, the perplexity is evaluated by using natural logarithm-

based entropy, which makes calculations with natural log-probabilities easier. As a result,

the perplexity is calculated as follows:

pplexp(X) = eH(X) (4.2)

The shift from 2 base to exponential base does not incur any change in the perplexity

figures, considering that

2log2X = elogeX (4.3)

The only difference in using natural logarithms is that entropy is now measured in nats

and not in bits.
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However, in the present work, the perplexity should involve cross-entropy instead of

the initial definition of entropy:

pplexp(X, q) = e−
∑

X P (X) loge q(X) (4.4)

where q(X) is the probability which follows a distribution other than the prior P(X).

4.3.2 Testing Process

The test set that was used for the testing process of the generated language models was

extracted from the WSJ94, like the training set. It consists of 6000 sentences which are

different from the sentences used for training.

The exact process is the following: Each word in the test corpus is substituted by its

correspondent index in the vocabulary list that contains the 2700 words. For example, the

word ”out” is at the 100th position of the vocabulary list, hence it is substituted by ”100”.

After creating this index file, the history h of each index (the previous two words) in every

sentence is serially read. When the history of the word of index i is read, the probability

p(wi|h) is evaluated as follows:

p(wi|h) =
p(wi)p(h|wi)∑
j p(wj)p(h|wj)

(4.5)

according to Bayes’ theorem. The p(h|wi) term is the likelihood of the current history given

the Gaussian Mixture Model of the ith word, while p(wi) is the prior unigram probability

of the ith word. The denominator in (4.5) is derived from the law of total probability:

p(h) =
∑

j p(h,wj) =
∑

jp(h|wj), where j is the index of every word in the vocabulary.

The posterior probabilities of (4.5) are then expressed in log-probabilities, which makes

the calculation of perplexity more comfortable.

After the log-probabilities are estimated for each word in the sentence, the perplexity

of this sentence is evaluated as:

ppl(sentence) = exp{
−
∑

j log p(wj|h)

words− oovs+ 1
} (4.6)
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However, not all of the N words should be taken into account, because <unk> words, which

are out of the vocabulary (oovs), cannot be in the total word count. The log-probability

of the </s> token is also included in the sum over all log-probabilities in the sentence. As

a result, the tokens that actually contribute to the estimation of the sentence perplexity

are the words that exist in the vocabulary plus the </s> token, that is words+oovs+1.

4.4 Results

The experimental process involves testing the new MMI-trained language models for vari-

ous number of components per mixture. Apart from the number of components, another

significant factor is the restriction in covariance values; extremely low covariances lead to

excessive values of perplexity, which is an aspect of data overfitting, which occurs when

there is a small number of observations for some classes. This is the main reason for the

need of a variance floor, which sets a minimum value that a covariance may have. Through-

out the experimental process, it was found that the higher the variance floor, the lower

the perplexity values. However, a high variance floor causes distortion of the actual model.

Therefore, the increase of variance floor improves the perplexity figures, though sacrificing

model accuracy.

The first experiments involved a comparison between the baseline GMM models and

the produced MMI models over the first 1000 sentences of the test set of WSJ94 corpus.

At first, the number of components per mixture was set to 2, then to 4 and eventually

to 8. The covariance values of each model and mixture were floored to 0.05. The MMI

models are smoothed with the correspondent baseline (ML) models. In particular, the

mean vectors and covariance matrices of each mixture are smoothed with the means and

covariances of the respective ML baseline models. The smoothing constant is initially set

to 100. The results are given below:

Components Baseline Models Smoothed MMI Models
2 355.11 338.52
4 331.47 327.43
8 306.34 312.36
16 287.69 310.25
32 280.85 311.09

Table 4.1: Performance of Baseline and smoothed MMI Models (τ I = 100)

The experiment above shows that there is a slight improvement of perplexity for low
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number of Gaussians per mixture, while higher number puts baseline models on the lead;

this might be explained by the fact that when I-smoothing is applied to a large number

of parameters, the distortion due to the incorporation of the priors is more visible than in

MMI models of 2 or 4 Gaussians per mixture.

The following experiment sets the smoothing constant to 25, with slightly better results:

Components Baseline Models Smoothed MMI Models
2 355.11 314.65
4 331.47 303.11

Table 4.2: Performance of Baseline and smoothed MMI Models (τ I = 25)

The next course of experiments includes comparison of baseline models to unsmoothed

MMI models, which are expected to surpass baseline models performance for high numbers

of Gaussians per mixture (8, 16 or 32). The results of this comparison are below:

Components Baseline Models MMI Models
2 355.11 303.64
4 331.47 287.15
8 306.34 270.04
16 287.69 260.47
32 280.85 256.61

Table 4.3: Performance of Baseline and MMI Models

The results of the experimental part of the thesis showed mixed performance of MMI

models. Smoothed MMI models for number of Gaussians per mixture equal to 2 and 4

narrowly outperform the respective baseline models. For 8 or 16 Gaussians per mixture,

baseline models perform better.

This mixed behavior is not the same in non-smoothed MMI models: for any number of

Gaussians per mixture, MMI models perform better than the correspondent baseline ML

models, while the gap between the perplexity figures has now widened.

The following experiments examine models that use history vectors of lower dimensions.

This means that the LDA matrix projects the vectors to dimensions less than 50. Initially,

vectors of 40 dimensions are used. The results are shown in the table below:
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Components Baseline Models MMI Models
2 255.45 281.67
4 207.29 244.51

Table 4.4: Performance of Baseline and unsmoothed MMI Models for 40-dimensional vec-
tors

The respective results for history vectors of 30 dimensions are given below:

Components Baseline Models MMI Models
2 234.91 283.24
4 208.40 258.52

Table 4.5: Performance of Baseline and unsmoothed MMI Models for 30-dimensional vec-
tors

The case of 20-dimensional vectors is examined next, with the results given in the

following table:

Components Baseline Models MMI Models
2 235.54 292.18
4 226.04 268.24

Table 4.6: Performance of Baseline and unsmoothed MMI Models for 20-dimensional vec-
tors

The above results do not encourage any further experimentation with MMI models, as

baseline models give better perplexity figures. Although baseline models may give better

results in terms of perplexity, this reduction in dimensions may lead to a distortion of the

model.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions of the present work

The current thesis involved the study of continuous-space language modeling and focused

on the MMI training of continuous Language Models. The MMI models were built upon

baseline ML-estimated models. There were implementation issues that involved time com-

plexity, because lattices were not used. The experiments involved the comparison of

MMI models and baseline ML models in terms of perplexity. The results showed that

unsmoothed MMI models outperformed baseline models, while MMI models that were

smoothed with their respective baseline model showed mixed results; for small number

of components per mixture, MMI GMLMs showed slightly better figures, while for higher

number of components per mixture they performed worse than their baseline counterparts.

In the case of less dimensions (40, 30 or 20 per history vector), baseline models perform

better that their respective MMI models

5.2 Future Work

5.2.1 MPE Implementation

The present thesis utilised Maximum Mutual Information Estimation methods in order to

train language models in a discriminative matter. The results could be further improved by

using alternate techniques. Such technique is the previously mentioned Minimum Phone

Error (MPE) method which reportedly gives better results than the MMI training method

when applied during the training process of HMMs of acoustic models. However, there are

some cases where the amount of the training data is small and, as a result, the generalisation

of MMI is more effective than that of MPE. Another challenge to be beaten is the formation

of data so as to fit in the MPE method; MPE uses phone accuracy, thus data should be

’pseudo-analysed’ into phones in order to be trained by MPE.
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5.2.2 Lattice adjustment

As mentioned in 4.6.3 the generation of lattices is very important in saving training time.

Implementations over acoustic models in [13] and in [23] use lattices and give very en-

couraging results. Lattice-based MMI can essentially reduce the training time while ap-

proximating the actual MMI. In general, the lattice structure in a MMI training scheme

stores the most probable hypotheses for a given utterance and at the same time rejects

hypotheses of lower probability.

The main challenge of building lattices for a language model is, as in MPE, the adjust-

ment of the available data. Lattices refer to start and end times of phone speech segments

and are more close to an acoustic implementation than a word-level implementation. Nev-

ertheless, a lattice-based MMI language model would be really effective in terms of both

performance and time complexity.
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