

TECHNICAL UNIVERSITY OF CRETE

SCHOOL OF ELECTROINC AND COMPUTER
ENGINEERING

DIPLOMA THESIS

FPGA-based Data Mining from
Streams

Pavlos Giakoumakis

Committee

Professor Apostolos Dollas (supervisor)
Associate Professor Ioannis Papaefstathiou

Professor Minos Garofalakis

October 15, 2014

Abstract:
Data Stream Mining is a relatively new field of Data Mining and Hoeffding

trees is a very popular classification algorithm on streaming data (instances).
The basic Hoeffding tree algorithm, with some extensions, was originally pre-
sented as VFDT (Very Fast Decision Trees) by Domingos and Hulten.

We studied Hoeffding trees and the most of its available extensions. There is
a large number of customizations and that makes it hard to study them all and
select a “good case” to be implemented and optimized in custom hardware.
Nevertheless, we found that the main behavior of the algorithm remains similar.
Thus, we selected a configuration very close to the initial VFDT algorithm.

Hoeffding Trees are highly parallelizable and employ operations on the leaves
that seem to fit well on FPGAs. We designed a simple processing unit (the At-
tribute Processor - AP) that could be used by very small embedded systems,
and is capable of updating a leaf and computing the best (binary) split sug-
gestions, using negligible resources.

By using a group of APs we designed the Attribute Processing Array (APA). It
can easily take full advantage of the bandwidth of a single memory controller
port (in our case the Convey Coprocessor MC port) with very low resources.

To exploit the processing power of Convey’s HC-2ex we had to make a
clever partitioning between hardware and software by selecting a custom in-
struction set and designing a collection of “utility” hardware modules, that all
together compose an interesting architecture.

Keywords: Data Stream Mining, Machine Learning, Decision Trees, Hoeffding Trees,
VFDT, Hardware Accelerators, Field Programmable Gate Array, Convey Computer

iv

Contents

1 Introduction 1
1.1 The Classification Problem . 1
1.2 Decision Trees . 1
1.3 Market Analysis . 2

1.3.1 Embedded Systems . 2
1.3.2 High Performance Computing 3

1.4 Motivation . 4
1.5 Contribution . 4
1.6 Thesis Structure . 5

2 Literature Review 7
2.1 Introduction . 7
2.2 Hoeffding Trees . 7

2.2.1 Selecting a Different Bound . 8
2.2.2 VFDT . 8
2.2.3 Available Frameworks . 9

2.3 Coarse-Grained Parallelism . 9
2.4 Parallel Software Implementations . 10

2.4.1 Vertical Hoeffding Tree . 10
2.5 Related Hardware Implementations 11

2.5.1 HC-CART . 11
2.6 Other Work . 11

3 Understanding Hoeffding Trees 13
3.1 Introduction . 13

3.1.1 Chapter Structure . 13
3.2 Simplified Algorithm View . 13

3.2.1 Train on Instance . 14
3.2.2 Test on Instance . 14
3.2.3 Leaves . 15

3.3 Profiling . 15
3.4 Available Parallelism . 19

3.4.1 Traversing the Tree . 20
3.4.2 Parallel Leaf Processing . 21
3.4.3 Update Statistics . 21
3.4.4 Compute Best Split Suggestions 21

v

4 System Architecture 23
4.1 Introduction . 23
4.2 Hardware - Software Partitioning . 23
4.3 Instruction Set Architecture . 24
4.4 Hardware Modules . 25

4.4.1 Extended Attribute Processing Array 26
4.4.2 Memory Controller Management Unit 27
4.4.3 Attribute Processing Array . 28
4.4.4 Attribute Processor . 28
4.4.5 Update Cache . 29
4.4.6 Compute Best Split Suggestions 31
4.4.7 ABS Cache . 36
4.4.8 Extended Cache . 38
4.4.9 Dedicated Arithmetic Unit . 39

5 Verification and Evaluation 41
5.1 Introduction . 41
5.2 Convey HC-1 and HC-2ex . 41
5.3 System Architecture for Evaluation 42
5.4 Resource Analysis . 42
5.5 Clock Results . 43
5.6 Software . 43

5.6.1 Test Data Generator . 44
5.6.2 MOA Benchmark . 45
5.6.3 Convey Software Core Structure 45
5.6.4 C . 46
5.6.5 C-Opt . 46
5.6.6 Scripts . 46

5.7 System Level Verification . 47
5.8 Evaluation . 47

6 Conclusion and Future Work 53
6.1 Conclusion . 53
6.2 Future Work . 54

A Theoretical Bounds 55
A.1 About Theoretical Bounds . 55
A.2 Reviewing Hoeffding Bound . 55

B Multiway Splits 57
B.1 Introduction . 57
B.2 Observing the Conditional Entropy 57

C Measurements in Detail 61
C.1 Time Tables . 61
C.2 Speedup Tables . 64
C.3 Time Tables . 64

vi

List of Figures

1.1 The classification problem . 1
1.2 Decision tree . 2
1.3 Market segmentation . 3

2.1 SAMOA - Vertical Hoeffding Tree . 10

3.1 Train on instance . 14
3.2 Test on instance . 15
3.3 Cuboid of Statistics . 16
3.4 Available Parallelism . 20

4.1 Hardware - Software partitioning . 24
4.2 Instruction Set Architecture . 25
4.3 EAPA Commands . 26
4.4 EAPA Architecture . 26
4.5 MCMU Architecture . 27
4.6 APA Architecture . 28
4.7 AP Architecture . 29
4.8 Update Cache architecture . 30
4.9 Binary Split . 33
4.10 Binary Split Statistics . 34
4.11 Nominal Attribute Statistics . 34
4.12 ABS Cache Architecture . 37
4.13 ABS Cache - Control FSM . 37
4.14 Extended Cache . 38
4.15 Extended Cache . 39

5.1 The abstracted architecture of a Convey Computer 42
5.2 The abstracted software architecture in a Convey Computer . . . 43
5.3 Evaluation personality architecture. 43
5.4 Time to process multiple leaves . 47
5.5 Speedup when processing multiple leaves 48
5.6 Time to process multiple leaves for different number of attributes. . 48
5.7 Speedup when processing multiple leaves for different number of

attributes. 49
5.8 Time to process multiple leaves for different number of classes. . . 49
5.9 Speedup when processing multiple leaves for different number of

classes. 50

vii

5.10 Time to process multiple leaves for different number of values per
attribute. 50

5.11 Speedup when processing multiple leaves for different number of
values per attribute. 51

5.12 Time to process multiple leaves and instances. 51
5.13 Speedup when processing multiple leaves and instances. 52

viii

List of Tables

3.1 The two configurations used for profiling. 16
3.2 Time to train 10K instances for configuration 1. The instances con-

tain 10 attributes, 4 classes and 32 values. 18
3.3 Time to train 10K instances for configuration 2. The instances con-

tain 32 attributes, 8 classes and 64 values. 18
3.4 Time to test 10K instances for configuration 1. The instances con-

tain 10 attributes, 4 classes and 32 values. 19
3.5 Time to test 10K instances for configuration 2. The instances con-

tain 32 attributes, 8 classes and 64 values. 19

5.1 Utilization Report for Virtex 6 LX760 . 44
5.2 Utilization Report for Virtex 5 LX330 . 44

C.1 Time to process multiple leaves . 61
C.2 Time to process multiple leaves for different number of attributes. . 62
C.3 Time to process multiple leaves for different number of classes. . . 62
C.4 Time to process multiple leaves for different number of values per

attribute. 63
C.5 Time to process multiple leaves and instances. 63
C.6 Speedup when processing multiple leaves 64
C.7 Speedup when processing multiple leaves for different number of

attributes. 64
C.8 Speedup when processing multiple leaves for different number of

classes. 65
C.9 Speedup when processing multiple leaves for different number of

values per attribute. 65
C.10Speedup when processing multiple leaves and instances. 66

ix

x

Chapter 1

Introduction

With the emergence and evolution of computers we could solve increasingly
larger problems, but collecting digital information to support a model was not
easier than processing them. However, today in many domains we have an
almost infinite amount of digital information available that is impossible to pro-
cess with classic algorithms. Data Stream Mining is a relatively new field that
aims to address the processing of data streams with new intelligent algorithms.
Hoeffding trees is a data stream classification algorithm based decision trees
that grow dynamically.

1.1 The Classification Problem

Classification is the process of assigning unseen instances to categories, based
upon an existing model. To generate the needed model a training mechanism
must process a set of instances with known labels. Moreover, we are trying to
learn the underlying concepts under a set of instances, and generate a model
f , to accurately predict the class y = f(x) of any instance with attribute values
x.

x yf

Figure 1.1: Using a model f to classify an instance with attribute values x.

1.2 Decision Trees

A decision tree is structure that can be used to ease decisions. An example
decision tree is shown in Figure 1.2. Each node of the tree contains a test on an

1

Day?

else

Sunday

Weather?

Go to the office

Read a newspaper

Go for a walk

else

sunny

Figure 1.2: A very simple decision tree.

attribute and one branch for each possible outcome of the test. Leaves con-
tain valuable information that describe the selected decision. Such information
may be a class label or the sufficient statistics to make a class prediction. De-
cision tree learners induce decision trees to address classification problems. A
newly arrived instance will begin from the root and will follow branches to lower
levels until it reaches a leaf. The adequate leaf operations will be triggered ei-
ther to assign a class label to the instance for test instances, either to update
the leaf’s structures for training instances.

1.3 Market Analysis

The market for hardware-based implementations of Hoeffding trees is divided
into two segments, the embedded systems and the high performance com-
puting (Figure 1.3). Nevertheless, an additional segment of hybrid systems may
exist. Many embedded applications may need a low cost, power efficient
classification system that is able to process real time data streams. Various
combinations of cost, power consumption and performance are needed, de-
pending on the application field. On the other hand, in high performance
computing, the goal is to provide a system capable of swiftly processing enor-
mous amounts of data. Power consumption stills a very significant factor. Fur-
thermore, for long running systems, lowering the power consumption will con-
siderably reduce maintenance cost.

1.3.1 Embedded Systems

We could easily distinguish a plethora of applications that would benefit from
an embedded system that is capable of coping data streams. These systems
must comply with some requirements such as:

• System cost.

• Real-time performance requirements.

2

Hoeffding Trees

Embedded Systems

High Performance

Systems

High Secondary

Storage Bandwidth

Host – Coprocessor

Architectures

Power Consumption

Host – Coprocessor

Communication

Overhead

Power Consumption

Live Data Streams

No Secondary

Storage

Battery Life & Cost

Maintenance –

Operating Cost

Per Unit Cost

Real Time

Processing Power

per €

Processing Power

per Watt

Input Usually

Resides in

Secondary Storage

Disk I/O is likely to

DominateBig Data

Figure 1.3: Market segmentation for Hoeffding Trees classification algorithm.

• Power consumption specifications.

• Time to market.

The aforementioned requirements, all together along with other, make a po-
tential reconfigurable hardware solution ideal for such applications. Moreover,
micro-controllers and low power CPUs will fail to provide the required perfor-
mance, while high-end CPUs will fail to provide the required performance per
watt relation.

1.3.2 High Performance Computing

Many applications may favor from a high performance data stream classifi-
cation hardware implementation. Generally, we could recognize two notable
categories of applications that will take advantage of it:

• Very fast data streams.

• Very large databases.

3

1.4 Motivation

Our motivations included:

1. Examine a data stream mining algorithm and how it could be imple-
mented in an FPGA using HDL languages.

2. Implement a data stream mining algorithm in a Convey computer, evalu-
ate HC-2ex as a platform to implement data stream mining algorithm and
rate the viability of such a system.

3. Examine the Dataflow paradigm. This paradigm results in well-performing
FPGA systems. It is almost a synonym to what FPGAs can do.

4. Examine a simple version of Hoeffding tree algorithm and if it maps well
on FPGAs. This algorithm has the benefit of having heavier refinements,
or of being the basis for decision tree ensembles. A good result in the ba-
sic algorithm means that possibly a whole area of Hoeffding-tree-based
algorithms will benefit from it.

1.5 Contribution

Contributions of this thesis include:

• To the best of our knowledge, this is the first implementation of a data
stream mining algorithm in the Convey’s platforms. Convey has an all-
round versatile coprocessor memory subsystem that is able to provide
nearly-constant streams of data even for non-sequential accesses. On
the other side, our algorithm normally requests data sequentially. So we
could use a system with a memory controller optimized only for only se-
quential accesses and possibly get bigger bandwidth. However, our im-
plementation showed exceptional performance results and Convey HC-
2ex seems as a viable solution for CPU-FPGA implementations of data
stream mining algorithms.

• We analyzed the Hoeffding tree algorithm and noted the types of paral-
lelism that exist on a simple Hoeffding tree version.

• We profiled the algorithm and found/confirmed that for large leaves the
heaviest part on training the algorithm is the leaf processing.

• We analyzed the process to compute the best binary split suggestions
on a nominal attribute of a Hoeffding tree and noted five refinements-
optimizations. These optimizations result in simpler and smaller hardware.
Two of them are able to shrink the cost to compute the split suggestions
and at least one will be beneficial for software implementations too.

4

• We implemented a fully pipelined; stream based; Memory-controller-port
oriented system to process leaves in hardware (nominal attributes only).

• We measured our single memory-controller-port FPGA based system and
the results show that our system is able to obtain a speedup against the
corresponding single threaded MOA procedure of up to more than 160x.

• We noted that with 64 memory controller ports available in the Convey
platform, this speedups may result in a massive speedup or throughput
increase of up to four orders of magnitude against the corresponding
single-threaded MOA implementation.

1.6 Thesis Structure

The rest of this thesis is organized as follows. Chapter 2 reviews the related liter-
ature. Chapter 3 provides a simplified description the Hoeffding tree algorithm,
shows the profiling results and describes the available parallelism. Chapter 4
presents the architecture of our implementation. Chapter 5 verifies and evalu-
ates the presented architecture. Finally, chapter 6 gives some ideas for future
work.

5

6

Chapter 2

Literature Review

2.1 Introduction

In this chapter we review the most important literature related with our work.
Excepting [1] in where its authors published the algorithm, most of the exam-
ined literature covers four fields. Each field tries to address very different issues:

• Work that refines the main algorithm.

• Refinements that try to address concept drift in data streams.

• Refinements that try to address noisy data.

• Hoeffding tree ensembles.

However this chapter does not follow this structure.
Furthermore, [2] and [3] are very good for someone to get introduced with,

and understand the algorithm and the related field. They cover a vast area of
related literature from evaluation of data stream mining algorithms and data
stream generators, to Hoeffding trees, Hoeffding tree ensembles and concept
drift.

2.2 Hoeffding Trees

Traditional learners that induce and use decision trees such as C4.5 [4], CART
[5], SLIQ [6] and SPRINT [7] are batch algorithms and during the training phase
they need to access each instance multiple times. Normally, when the train-
ing phase is complete, the induced tree will remain static for classification use.
Hoeffding tree algorithm [1] is a decision tree algorithm for data stream classi-
fication with an incremental nature. It begins with a single node, the root, and
employs the Hoeffding bound[8] to make split decisions. Furthermore, it will se-
lect the two best split suggestions (the two that maximize/minimize a function
e.g. Information Gain or Gini index), and will uses the Hoeffding bound to de-
cide if it is beneficial to apply the best split suggestion. In [1] Domingos et al.

7

also prove that the output of the algorithm is asymptotically nearly identical to
that of a conventional learner. For more information about how the algorithm
employs Hoeffding Bound please refer on Appendix A.

2.2.1 Selecting a Different Bound

In [9] Rutkowski et al. noted that Hoeffding inequality is incorrectly used in Ho-
effding trees and proposed the use of McDiarmid’s bound for both information
gain and Gini index. In [10] Rutkowski et al. proposed another method based
on the Gaussian Approximation, and in [11] they present a CART decision tree
for mining data streams based on Gaussian approximation. However, our work
can be applied regardless to which bound the algorithm will use.

2.2.2 VFDT

The VFDT (Very Fast Decision Tree learner) is a decision-tree learning system
based on the Hoeffding tree algorithm. It was published together with the al-
gorithm in [1]. The refinements are listed below:

Ties. When the two attributes with the best score (Information Gain or Gini in-
dex) in a leaf have very small difference (smaller than a predefined thresh-
old), then it is considered that there is a tie and VFDT splits on the best
attribute.

Score computation. VFDT has a parameter to not check for split decisions for
every instance, but to accumulate instances on leaves and check a leaf
only when it observed enough (more than nmin) instances.

Leaf deactivation. The system deactivates the least promising leaves. During
deactivation the main statistic structures are discarded and the corre-
sponding memory is freed, so that it could be used for splitting other, more
promising, leaves. A deactivated leaf may reactivated if it becomes more
promising than currently active leaves.

Poor Attributes. When the difference between the score of an attribute and
the best score observed from all attributes becomes greater than the Ho-
effding bound, then it can be dropped from consideration and the corre-
sponding memory could be freed.

Initialization. It can be initialized with a conventional RAM-based learner on a
small subset of the data. This option can improve the “learning curve”
and help the system to early achieve higher accuracy.

Rescans. VFDT can rescan previously observed instances. This is useful for slow
streams.

Authors also measure and evaluate the VFDT system from various aspects.

8

2.2.3 Available Frameworks

VFML

VFML (Very Fast Machine Learning) [12] is a toolkit for mining high-speed data
streams and very large data sets. It is written mainly in C and comes under
a modified BSD license. Many algorithms are included in the same bundle,
but someone could implement more by using the provided API. Unfortunately,
VFML development stopped long time ago and even the compilation is tricky
as it was written to be compiled with older tool versions. It implements a refined
VFDT algorithm.

MOA

MOA (Massive Online Analysis) [13] is the most popular open source framework
for data stream mining. It is written in Java and is closed related with WEKA
[14] (it also use some code from WEKA). One of the best features supported
by MOA is the capability to easily write your own plugins. Its Hoeffding tree im-
plementation is based on VFDT but also has many other refinements. However,
it lacks some of the features implemented in VFML or some of the refinements
presented in VFDT. Many researchers write their own refinements as MOA plug-
ins.

SAMOA Framework

Scalable Advanced Massive Online Analysis (SAMOA) [15] is a framework for
distributed streaming machine learning. It includes a variety of distributed im-
plementations of known algorithms, but also comes with a powerful API for
developing new algorithms in distributed systems and offers a very high level
of system abstraction. Researchers can utilize the provided functionality to
concentrate to their algorithms and ignore lower level issues. SAMOA aims for
scalability and, as soon as the implemented algorithm and the circumstances
allow it, the same implementation could be able to exploit systems with vastly
different capabilities. One very important and almost unique characteristic of
SAMOA is that it addresses big data problems in all of three dimensions (vol-
ume, velocity, variety) [16]. SAMOA employs a Streaming Processing Engine
(SPE), such as S4 [17] or Storm [18] to execute an algorithm and provides one
more possibility of integrating new SPEs to it.

2.3 Coarse-Grained Parallelism

In [19, 20, 21, 16], authors describe three types of extract coarsed-grained par-
allelism in decision tree classification algorithms: the synchronous, the parti-
tioned and the hybrid methods. In the synchronous method all workers pro-
cess the same node, but on a different part of the dataset. Dataset can be

9

partitioned horizontally or vertically. In horizontal partitioning each worker will
process a different instance, while on vertical partitioning each worker will pro-
cess a different attribute. The partitioned method implies that each worker
will work on a different part of the tree. Finally, a hybrid method between the
synchronous and partitioned tree construction is possible.

2.4 Parallel Software Implementations

2.4.1 Vertical Hoeffding Tree

Vertical Hoeffding Tree (VHT) algorithm is presented in [16]. VHT is a paral-
lel version of Hoeffding tree. An implementation of this algorithm is included
in SAMOA. It is optimized for problems with a massive amount of attributes.
Furthermore, its architecture is comprised of four PI (Processing Item – an ab-
stracted notion of a processor) types as shown in figure 2.1. The source PI

result

1

source PI

1

model-aggregator PI local-statistic PI

n

evaluator PI

1
source

attribute

computation-result

control

Figure 2.1: SAMOA - Vertical Hoeffding Tree (source: [16])

handles or generates the input data. The model-aggregator PI holds the tree
model and coordinates the whole processing. The local-statistic PIs process
leaves by either updating them or computing the best split suggestions. Each
leaf is divided in multiple parts, where each part resides in a different local-
statistic PI. To process a leaf each local-statistic PI processes its own part of the
leaf. Evaluator PI is responsible for evaluating the classification results taken
from model-aggregator PI. Five streams of content events (messages) are gen-
erated between the PIs. New instances from the source PI arrive to the model-
aggregator PI via the source stream. Model-aggregator splits the instances
and sends them to the local-statistic PIs through the attribute stream. It also
sends control messages via the control stream to instruct local-statistic PIs to
perform computations. Any results from a local-statistic PI arrive back to the
model-aggregator PI via the computation-result stream. Finally, any classifica-
tion results are sent to the evaluator PI through the result stream.

10

2.5 Related Hardware Implementations

2.5.1 HC-CART

Chrysos et al. in [21] present HC-CART, a CPU-FPGA system, based on Convey
HC-1 [22], that implements the CART algorithm and shows impressive speedups
of up to two orders of magnitude over single threaded solutions together with
an exceptional power efficiency. To succeed this, HC-CART takes advandage
of:

• The parallelism when evaluating different attributes

• The high memory bandwidth available in Convey’s FPGAs.

• The high processing throughput offered by FPGAs.

Furthermore, HC-CART is the first combined software/hardware system where a
multi-FPGA architecture is integrated with a popular software framework (rpart
library of the R-project [23]. From our aspect of view we also note that:

1. Computation of Gini-index is suitable for FPGA implementations and we
could provide a Hoeffding tree solution based on Gini Index instead of
Information Gain if needed.

2. The high level architecture used in HC-CART to combine multiple mod-
ules that process different attributes and the results are being compined
by a tree structure of comparatores such as the solution proposed by
Naranayan in [24]. We could use a similar structure in our problem.

2.6 Other Work

Tong et al. in [25] develop an online traffic classifier, based upon the C4.5
algorithm, that classifies packet flows. They apply 10-fold cross validation to
evaluate the accuracy of the classifier and they use Entropy-MDL discretiza-
tion to handle continuous attributes. They also try different feature sets and
different number of packets for training to find the best configuration for their
problem. However, the trees are trained with WEKA, so they do not implement
the training phase and they have very small models that fit completely in FPGA
memory resources. They implemented two designs one for high performance,
one for low cost. Their system has good clock frequencies but a small and
field-restrictive design (the whole model resides in FPGA) and a Virtex 6 speed
grade 2 device which is very fast.

Kestur et al. in [26] present SHARK (Streaming Hardware Accelerator with
Run-time Reconfigurability). SHARK is a streaming model-framework for FPGA
designs. Is layered hieratically in five levels of module categories:

• Utilities, which are basic arithmetic or logic functions.

11

• User-IPs, which are implement frame-level operations such as 2D convolu-
tion

• Cores, which are frame-level operations at a higher scale than user-IPs.

• Wrappers, which are basically composed of multiple cores but they also
have to parse the configuration stream and route the data to the appro-
priate cores.

• Stream-pipe, which is the streaming pipeline composed of wrappers and
custom logic. During configuration a stream pipe broadcasts the config-
uration data to the wrappers without parsing them.

Each module, except utility modules, interface with multiple input/output data
streams and with one configuration stream. All streams use the LocalLink in-
terface of Xilinx. SHARK is suitable for bottom-up design methodologies. Fur-
thermore, authors also note that an accelerator can be reconfigured in three
ways:

• Compile-time configuration.

• Run-time reconfiguration (they mean configuration through registers not
partial reconfiguration).

• Partial reconfiguration.

Lastly, they implement an example system (the Saliency algorithm) where they
have only one pipe-stream that is reconfigured multiple times to execute dif-
ferent parts of the algorithm. In this manner they save FPGA resources. The
system measured to be nearly equivalent with an Nvidia GeForce 8800 GTX
in throughput (5x compared with a CPU), but with 37x and 14x times higher
performance-per-watt than the CPU and GPU implementations respectively.

12

Chapter 3

Understanding Hoeffding Trees

3.1 Introduction

In this chapter we examine Hoeffding trees from a different aspect. The aim
is to gain an intuitive understanding about their behavior, and explore how a
designer could benefit from parallelism. The algorithm is highly parameteriz-
able and this makes understanding the effects of different parameters manda-
tory. However, all of its variations exhibit very similar behaviors, and it would
be beneficial to study a more abstracted version that is easier to understand.
We examine a binary Hoeffding tree with only nominal attributes and majority
class classifiers on the leaves. To drive the split process we use the information
gain. We ignore any memory management operations seen in Hoeffding tree
implementations, such as poor attribute removal and leaf deactivation.

3.1.1 Chapter Structure

To understand Hoeffding trees we examine the algorithm from three different
points of view:

• The simplified view. Here, we try to explore the main characteristics of the
algorithm.

• The profiling view, presents measurements to quantify the benefits of any
optimization discussed in the available parallelism section.

• The available parallelism view, presents the potential parallelism available
in Hoeffding trees.

3.2 Simplified Algorithm View

Hoeffding trees as a data stream classification algorithm provide two methods,
train-on-instance and test-on-instance, to handle train and test instances re-
spectively. Under this interface, Hoeffding trees try to model the data stream by

13

keeping statistics organized to the leaves of a decision tree structure. Leaves
could be though as independent entities that provide an interface of three
methods, train-on-instance, test-on-instance and get-best-split-suggestions. A
Hoeffding tree will use these to operate. Two types of attributes exist, nominal
and numeric, but we examine here only the nominals. The two types have very
different needs from the leaves.

3.2.1 Train on Instance

Train on instance will run for every training instance. Figure 3.1 presents the
corresponding UML activity diagram. When a new instance arrive, it will be

Pass Instance to

Leaf

Update Leaf

Statistics

[else] Compute Split

Suggestions

Select the Two Best

Split Suggestions

[Gainful to Split]
Split

[else]

[Updates After the Last Check < nmin]

Figure 3.1: UML activity diagram for train on instance operation.

passed through the root to a leaf and its attribute values will be used to update
the leaf. If number of instances seen on this leaf is greater than the parameter
nmin, the algorithm will heuristically search for split suggestions and will evaluate
them with aid of a function, such as information gain. If the best of them satisfy
the Hoeffding inequality, then it will be applied to the leaf. The leaf will be
replaced by a node that points to new leaves.

3.2.2 Test on Instance

Figure 3.2 shows the UML activity diagram for the generic test on instance func-
tion. The system will sort the instance to a leaf and the will use the leaf statistics

14

and the attribute values of the instance to make a class prediction. Further-
more, some classifiers may also update some statistics after the prediction (e.g.
adaptive methods may keep statistics about accuracy to select between dif-
ferent alternatives).

Pass Instance to

Leaf

Make Prediction

Figure 3.2: UML activity diagram for test on instance operation.

3.2.3 Leaves

Many types of leaves exist, but we concentrate on leaves - majority class clas-
sifiers, with only nominal attributes. In the case where all attributes have the
same number of numbers, the statistics for these leaves form a cuboid. Further-
more, each instance defines a set of (attribute, class, value) vectors. Leaves
count the occurrences of these vector, and statistics essentially form a cuboid
structure, where the three dimensions represent the attribute, class and value
and each point holds the number of its occurrences. Figure 3.3 shows a graph-
ical 3D representation of the statistics. Many of these points may be zeros.
Hence, many implementations use lists to store the statistics.

3.3 Profiling

To profile the algorithm we used MOA [13]. MOA (Massive Online Analysis) is
an open source framework for data stream mining. The profiling was done with
Netbeans IDE 8.0 in a Q6600 2.4 GHz with 2GB RAM system. We used Java 7
update 65 (OpenJDK). The installed OS was Fedora 20 (Heisenbug). The MOA
version was 2014.4.

Due to high overhead the execution was very slow limiting the number of in-
stances that we could examine. Processing only some thousands of instances
results in a tree with only a few nodes. This means that the sort-to-leaf oper-
ation will take less time than in a system with thousands of nodes. Thus, to
overcome the case of examining only very small tree structures, we wrote two
extension classes for MOA that help us to run the experiment into two phases.

15

Classes

Attributes

Figure 3.3: The statistics inside a leaf with only nominal attributes, represented
as cuboid.

Each class undertakes one phase. In the first phase, we train a Hoeffding tree
classifier, and generate a bucket of instances to be used for profiling. We store
them both in a file through the Serializable Interface of Java. In the second
phase, we load them from the file and use the instances to either train or test
the classifier. The two phases can run in different machines, under a different
environment. In this manner, we run the first phase in a server, and the second
phase in aforementioned environment, where we profiled it.

We configured the algorithm to run as much close to the described algo-
rithm as it was possible. We set the limit for the memory consumed by the tree
and the memory estimation period to their maximum values, so that no mem-
ory estimation will be triggered. Moreover, we disabled poor attribute removal,
we selected the majority class classifier as the leaf prediction method and we
set the grace period nmin (the number of instances seen by a leaf before we
check for a split) to 1.

Two data streams have been used for profiling. Table 3.1 presents their
main characteristics. We focus on characteristics that directly affect the per-

Configuration 1 Configuration 2

Stream Generator RandomTreeGenerator1,2

Number of Attributes 10 32

Number of Classes 4 8

Number of Attribute Values 32 64

Table 3.1: The two configurations used for profiling.

1The maximum depth of the tree concept is 3.
2The first level of the tree that can have leaves, above the maximum depth, is 2.

16

formance. A random generator is used to generate the instances. Note that
the nature of the stream may also have impacts in performance.

We concentrate on the training process, but we profile both the training and
the testing procedures. We expect that training will be much more heavier that
the testing as testing. When profiling the training procedure, we expect:

• The most time consuming part will be to compute the best split sugges-
tions.

• The cost to traverse the tree structure normally increases with the number
of processed training instances, as the tree grows and the paths from the
root to the leaves become longer.

• The cost to update the leaf statistics (learn from instance) remains nearly
constant. Moreover, it may execute for every instance too but it only up-
dates one element of the leaf statistics for each attribute.

• The cost to compute the best split suggestions may decrease while the
tree grows. The main reason is that splits drop attributes. For binary splits,
where we have “attribute-equal-to-value” and “attribute-not-equal-to-
value” branches, the sub-tree under the equal branch will only get in-
stances that will have only the corresponding value for this attribute.

• The cost to compute the best split suggestions will be higher for the second
configuration.

When profiling the training procedure, we expect:

• The most time consuming part will be to traverse the tree structure.

• The cost to traverse the tree structure normally increases with the number
of processed training instances, as the tree grows and the paths from the
root to the leaves become longer.

• The cost to find the majority class will be constant as it is proportional to
the number of classes.

Table 3.2 presents the measurements to train a tree with a stream of the
first configuration, while table 3.3 presents the measurements for the second
configuration. As expected, the most time consuming part in processing a
training instance is the computation of the split suggestions, its cost decreases
while the tree grows, and it is much heavier for the second configuration where
we have more attributes, classes, and values. The cost to update the leaf
statistics (learn from instance) is not that stable. Especially in configuration 2,
it shows an increasing trend together with the tree. Nevertheless, its growth is
insignificant and it may be incidental. Moreover, for configuration 2 the cost
to sort instances to leaves grows as expected, but for configuration 1, oddly, it
decreases. This decrease may be incidental too.

Tables 3.2 and 3.3 presents the corresponding results where we profile the
testing process. We took the same files generated to profile the training pro-

17

Training Instances Seen Before Profiling

10K 100K 1M 10M

Time for 10K instances (ms)

→ Train-on-instance 6336.771 5188.522 5785.802 4235.383�

Attempt to split 6241.265 5119.335 5639.917 4146.075�

Compute Best Split
Suggestions 6171.487 5051.770 5572.282 4080.867�

Learn from instance 60.235 28.618 114.036 61.992�

Filter instance to leaf 15.919 22.065 13.580 9.147

Table 3.2: Time to train 10K instances for configuration 1. The instances contain
10 attributes, 4 classes and 32 values.

Training Instances Seen Before Profiling

10K 100K 1M 10M

Time for 10K instances (ms)

→ Train-on-instance 79941.498 79306.900 78547.427 76036.711�
Attempt to split 79829.019 79164.291 78352.249 75751.794�

Compute Best Split
Suggestions 79474.482 78828.976 78006.590 75422.133�

Learn from instance 59.424 69.097 117.534 201.724�

Filter instance to leaf 11.674 30.462 36.427 43.138

Table 3.3: Time to train 10K instances for configuration 2. The instances contain
32 attributes, 8 classes and 64 values.

cedures, but we used the instance buckets as testing instances instead. As
expected, the cost to sort an instance to a leaf determines the overall cost of
the test-on-instance operation, the cost to find the majority class on a leaf is
almost constant, and the cost to traverse the tree structure grows with every
new training instance. Note that, paradoxically, the cost to sort an instance to
a leaf seems different between the train-on-instance and test-on-instance op-
erations. This seems even more strange because they begin sharing the same
tree structure. Someone could argue that the reason for this is that when pro-
filing the training process the tree continuous to grow. However, a tree trained
with millions of instances, cannot be affected that much. Maybe the reason
is that in test-on-instance operations a much larger portion of the memory ac-
cesses refer to the tree structure, and a larger portion of the caches will contain
tree nodes.

18

Training Instances Seen
Before Profiling

10K 100K 1M 10M

Time for 10K instances (ms)

→ Test-on-instance 16.436 48.168 176.344 68.965�

Filter instance to leaf 5.150 40.932 165.951 61.461�

Find the Majority Class 4.353 3.971 5.291 4.669

Table 3.4: Time to test 10K instances for configuration 1. The instances contain
10 attributes, 4 classes and 32 values.

Training Instances Seen
Before Profiling

10K 100K 1M 10M

Time for 10K instances (ms)

→ Test-on-instance 19.249 51.076 96.326 98.335�

Filter instance to leaf 6.845 43.004 88.275 89.064�

Find the Majority Class 4.784 4.387 4.436 5.418

Table 3.5: Time to test 10K instances for configuration 2. The instances contain
32 attributes, 8 classes and 64 values.

3.4 Available Parallelism

The available parallelism could be divided into two categories, according to
whether it primarily optimizes throughput or latency. For clarity, throughput and
latency refer to instance processing. Due to the fact that usually we have
countless instances available, improving throughput is more important than la-
tency. Obviously, by decreasing latency, throughput increases and in cases
where the rate of instance arrivals exceed the processing power, a through-
put increase will decrease latency. Similarly, parallelism could be divided into
parallelism between different instances and parallelism inside the processing of
one instance. Figure 3.4 visualize all available types of parallelism. For differ-
ent instances, we can traverse the tree structure in parallel, and if they reach
different leaves we could also process them in parallel. Some leaf operations
are permitted to execute simultaneously even if they refer to the same leaf.
For example, the test-on-instance operation for implementations that do not
update statistics for test operations. Finally, it is better to break up the com-
putation into sub-problems and examine the parallelism of each new problem
independently. The following subsections describe the available parallelism in

19

O
p

ti
m

iz
e

Th
ro

u
gh

p
u

t

Between Different
Instances

Between Different
Leaves

Leaf Operations

Read Only Leaf
Operations

Read/Write LOPs
Traversing the

“finalized” Sub-Tree

O
p

ti
m

iz
e

La
te

n
cy

Same Instance

Between Attributes

Between Values

Between Classes
(For some

extensions)

Different Branches
to Split

Figure 3.4: Condensed diagram of all types of parallelism present on Hoeffding
trees.

various cases.

3.4.1 Traversing the Tree

A very important type of parallelism when traversing the tree structure is the
parallelism between different parts of the tree. The partitioned method pre-
sented in section 2.3 exploits this type of parallelism.

However, this is not the best way to exploit parallelism in our case, where tree
nodes are static and only leaves can be updated. Here, we have unlimited
parallelism available and in a shared memory system we can just allow multiple
workers to work on the whole tree except the leaves. In a distributed memory
system, where workers work on different address spaces, a tree replication is
possible.

Furthermore, leaves should be treated differently. There, in an update, it
may be beneficial to wait for it to complete until sorting new instances to this
particular leaf. Alternatively, we could submit the instance for processing in the
particular leaf and continue with the next instance. However, instances sorted
to different leaves can be processed simultaneously. The capability of comput-
ing on different leaves simultaneously is discussed in the next subsection.

20

3.4.2 Parallel Leaf Processing

Leaf operations that do not conflict could be executed in parallel. Processing
of different leaves does not conflict. Operations that do not alter the leaves
(read-only) does not conflict between each other, even if they refer to the
same leaf, but they conflict with operations that update the leaf. In the later
case, system must guarantee that read-only operations will always read con-
sistent data and usually the order of execution must be preserved. Operations
that modify the leaves generally conflict with any other processing to the same
leaf.

3.4.3 Update Statistics

A training instance sorted to a leaf will trigger one or more routines to update
its statistics. For nominal leaves, we have at least the statistics that form the
cuboid presented in figure 3.3. An instance having several attributes could up-
date these attributes in parallel. If we have a batch of instances we can do
even more. Every training instance defines an ensemble of (attribute, class,
value) pairs that define a different point in the statistics cuboid. Multiple in-
stances define a larger set of (attribute, class, value) pairs, but some of them
will refer to the same points of the cuboid. A solution is to generate (attribute,
class, value, count) vectors with reduce operations and use them to update
the statistics.

3.4.4 Compute Best Split Suggestions

To compute the best split suggestions actually we execute a number of smaller
sub-tasks:

1. Heuristically select the candidates for a split on each attribute.

2. Evaluate all the candidates.

3. Select for each attribute the best candidate.

4. Select the two best candidates from all attributes.

Obviously, tasks 1, 2, and 3 could execute in parallel for different attributes. Task
1 and 2 (especially 2) could also execute in parallel for different split candidates
even on the same attribute.

21

22

Chapter 4

System Architecture

4.1 Introduction

This chapter present a flexible architecture designed to be the basis for more
complex architectures. Moreover, we could define an extra layer of hardware
to utilize the hardware modules presented here, possibly extended, together
with other hardware modules, to compose a field specific solution.

4.2 Hardware - Software Partitioning

The problem is composed of two independent entities. These are the main tree
structure and the leaves. Consequently, a carefully designed solution should
be partitioned into the two corresponding parts. We analyzed these two parts
and found that it would be better to implement the leaf functionality into hard-
ware, while leaving the host to handle the tree structure. Some reasons for this
decision include:

• Leaf operations seem much heavier than traversing the tree.

• It is very easy to increase the throughput for tree traversals with off-the-
shelf hardware. Hence, the host processor is enough to leverage the
speedups on the overwhelmingly heavier leaf operations.

• A hardware based implementation of the whole algorithm, restricts the
possible benefits from research, as it removes the flexibility to explore how
a high throughput system could be utilized to refine the algorithm or to
accelerate other algorithms that employ the same leaf operations.

• The tree structure could also contain scheduling functionality that is easier
to implement in software.

Except from these, it is better to implement first a small kernel, observe the
results and then expand it. By implementing leaf operations on hardware and
letting the tree for software, we define a hardware - software partition. As

23

we see, the aforementioned partitioning is the most appropriate, but in the
future someone could also implement other modules that manage the tree in
hardware.

For high performance computing a key property is that we can separate
the tree structure from the main leaf data. Thus, the tree and the leaves could
reside in two completely different address spaces. Figure 4.1 presents the case
where the host holds the tree structure and a small fraction of each leaf, while
a coprocessor has the rest of it. The host can run simple leaf operations and
dispatch the heavy ones to the coprocessor. In our implementation, where we

Root

S
ta
ti
s
ti
c
s

S
ta
ti
s
ti
c
s

S
ta
ti
s
ti
c
s

S
ta
ti
s
ti
c
s

S
ta
ti
s
ti
c
s

S
ta
ti
s
ti
c
s

Figure 4.1: Hardware - software partitioning. Leaves consist of two parts the,
with each part residing in a different address space.

use majority class classifiers on leaves, test-on-instance operations are com-
pletely served by the host, since these operations are very light. In contrast,
train-on-instance operations employ both the host and the coprocessor. The
host maps instances on leaves with the aid of the tree structure and then either
it process them or it triggers leaf operations on the coprocessor, depending on
if they are training or test instances.

4.3 Instruction Set Architecture

Hardware - software partitioning defines an Instruction Set Architecture (ISA),
in its broader sense, as an interface between the software and a hardware

24

module. Depending on the implementation, it may not provide assembly in-
structions, but a communication protocol instead. However, the two concepts
are very close and usually interchangeable. Figure 4.2 presents how the ISA
links the software with our hardware modules. We use an ISA consisting of two

Software

Attribute
Processor

Attribute
Processing Array

CAE Personality

uc

cuc

Update Check

Create Update
Check

Figure 4.2: The Instruction Set Architecture.

instructions:

Create, Update and Check (cuc). The hardware initializes the statistics of the
leaf to zeros, updates the leaf with a packet of instances and then com-
putes the best split suggestions. The best suggestions are returned to the
host for further processing. Simultaneously, it store the updated leaves to
the memory.

Update and Check (uc). Same as the cuc instruction but instead of initializing
the leaf to zeros it loads the preexisting statistics from the memory.

In our case, where we use the Convey system, these to instructions are imple-
mented as coprocessor assembly instructions.

4.4 Hardware Modules

In this section we describe our architecture in a top - down manner. All modules
are completely implemented in pure VHDL/Verilog and do not contain any
primitive modules nor other vendor provided modules.

25

4.4.1 Extended Attribute Processing Array

EAPA (Extended Attribute Processing Array) is designed to fully utilize a single
memory controller port. It can be connected directly to a memory port with-
out intervention of any additional modules, as it contains the required DMA
engines. The interface to the memory controller port is the one that is defined
from the Convey Computer. Except from the memory interface it also has an
simple write-only interface, based upon valid and ready handshaking signals,
from where it receives a stream of commands. The format of the commands is
shown in figure 4.3. It is designed to utilize less routing resources. Note that actu-
ally, in the case where the bit 82 is 1, instruction is the Convey’s CAEP instruction
itself.

0 aeg_idx aeg_data

82 82 063

1

82 82 0

- instruction

31

64

Figure 4.3: Two types of commands exist, write register commands and instruc-
tions.

Extended Attribute Processing Array
(EAPA)

Command
FIFO

Idle
Detection

Commands

Idle

MC Port

Attributes

Instances

Updated Attributes

Best Split Suggestion

Attribute
Processing

Array

MCM
Multi-DMA

Engine

Figure 4.4: The architecture of an Extended Attribute Processing Array.

Figure 4.4 presents EAPA the architecture. Commands are queued in a FIFO
and then sent to the Memory Controller Management Unit (MCMU). MCMU is
essentially a DMA unit, which undertakes the communication with the mem-
ory port and manages four streams to send or receive data from the Attribute
Processing Array. Attribute Processing Array or simply APA manipulates the at-
tribute statistic and returns the best suggestions to apply a split. Convey system

26

requires an idle signal to work. Idle Detection unit holds bookkeeping informa-
tion to generate this signal.

Attribute Processing Array and its sub-modules are very carefully designed
with many generic parameters. Memory Controller Management Unit is also
carefully designed, but it does not have that level of flexibility from generic
parameters.

4.4.2 Memory Controller Management Unit

Memory Controller Management Unit (MCMU) communicates with the mem-
ory controller through the provided by Convey, memory controller port inter-
face. As figure 4.5 shows, it contains four distinct DMA engines, that handle
the data streams to and from the memory controller. These are Leaf Fetch,
Instance Fetch, Leaf Store, and BSS Store modules. Memory requests are multi-

MC Management Unit

RSP
FIFO

Req
Mux

Leaf Fetch

Leaf Store

Instance Fetch

BSS Store

MC Port

Attributes

Instances

Figure 4.5: The architecture of Memory Controller Management Unit.

plexed by the Request Multiplexer and sent to the memory controller through a
memory controller port. Request Multiplexer internally use a round robin arbiter
to select who will transmit in the next clock period. However, the arbiter will
not grant the MC Port to a module that is not ready to immediately send data.
The responses from read requests are queued to the Response FIFO and wait
to get accepted from the corresponding modules. All four DMA engines are
designed to use 8-byte bursts when it is possible to exploit the Convey Copro-
cessor memory subsystem. Furthermore, the MCMU is designed to keep busy
the a memory controller port that runs at the same frequency with it.

27

4.4.3 Attribute Processing Array

The Attribute Processing Array or APA is shown in figure 4.6. The DMA modules
feed APA with attributes and instances. Dispensers are responsible for deliver-
ing the data to the Attribute Processors. APA receives the attributes one by

Attribute Processing Array

Instance
Dispenser

Attribute
Dispenser

Instance
Address

Translator

AP

Store
Attribute

Mux

Store
Suggestion

Mux

Sign
Attribute

Index

Selection
Unit

AP

AP

AP

Updated
Attributes

BSS

Instances

Attributes

Figure 4.6: The architecture of Attribute Processing Array.

one. Similarly, it receives instance packets for the corresponding attributes one
by one. Dispensers and Multiplexers work in a round robin manner and together
control the execution order. Essentially, APA processes attributes in order, but
hides any visible processing time behind IO operations. We need only a few
of APs because APs also hide processing time in IO operations with pipelining.
The number of APs can be changed through a generic parameter. Instances
packets are <class index, value index> vectors dedicated to one attribute.
Each vector derived from one instance. Multiple instances can be combined
to generate instance packets. Instance Address Translator is needed to trans-
form a vector to an address inside the BRAM that resides in Update Cache and
holds the attribute statistics. Sign Attribute Index module signs the attribute in-
dex so that the Selection Unit could find which index generated the best split
suggestion (BSS). Selection Unit compares the Split Suggestions and selects the
BSS and the second best split suggestion. Updated attributes and the BSS are
sent to the corresponding DMA modules dedicated for store operations.

4.4.4 Attribute Processor

This is the core of the system. It is responsible for updating attributes and com-
puting the best attribute split suggestions. For clarity, with “best attribute split
suggestions” we mean that every time it will process an attribute it will com-
pute the best suggestion for this attribute. Figure 4.7 presents the architec-
ture of an Attribute Processor. Update Cache is responsible for updating the
attribute. The stream of the updated attributes is cloned into two streams,

28

Update Cache ABS Cache

Dedicated Arithmetic
Unit

Result
Clone

Result
Merge

Distribution

BSS

BSS

Index

Compute Best Split Suggestions

Attribute
Processor

Updated
Attributes

Attributes

Instances

BSS
Packet

Distribution of BSS

Figure 4.7: The architecture of Attribute Processor.

where one goes out to be stored in the main memory, while the other goes to
the ABS Cache (Attribute Best Suggestion Cache). ABS Cache together with
Dedicated Arithmetic Unit (DAU), Result Clone and Result Merge, cooperate to
compute and return the best attribute split suggestion. ABS Cache holds the
statistics to evaluate the split suggestions, but also transforms them in the cor-
rect form to be processed from the DAU. DAU computes the best attribute split
suggestion from the provided statistics. Result Clone sends the index of this sug-
gestion to ABS Cache. Then, ABS Cache will respond with the corresponding
distribution. Result Merge will append the distribution to the suggestion packet.
The best attribute split suggestion is sent out for further processing.

4.4.5 Update Cache

Update Cache is responsible for updating attribute statistics with instances. As
it was mentioned in previous chapters, instances contain values for a number
of attributes and may also have class labels. Training instances always con-
tain a class. We can view them as a set of <attribute, value, class> vectors,
where each vector refers to a different attribute. When having more than one
instances that sort to the same leaf, we can combine these vectors. This results
in having multiple vectors per attribute. We can partition these vectors on the
attributes and thus sort packets of <value, class> vectors to each attribute of
the leaf. Three facts make this the best choice for us:

• We can update attributes one by one before sending them to another
module to check for split suggestions, all in an attribute-oriented pipeline.

29

• We need to design simple hardware. We could have an external pipe
that updates the leaf when a new instance arrive. It seems appealing
because each training instance alters only a few of the leaf statistics (just
one value per attribute). Nevertheless, this will result in addressing very
complex problems in areas such us memory coherence, task scheduling
and communication.

• We are able to expose attribute locality by gathering multiple instances
that sort to a leaf and applying all the updates for each attribute at the
same time without a penalty.

Update Cache is attribute oriented, as it loads one attribute from the input
stream interface, it updates it in the aforementioned manner and then stores
the updated attribute to the output stream interface. Then it can proceed to
the next attribute. Figure 4.8 presents the architecture. It contains a BRAM-

Update Cache

Updated
Attributes

Pipelined Adder

BRAM

Address
Generator

Mux Logic

Control

Load Update Store

RDADDR RDDATA WRDATAWRADDRADDRAttributes

rd port wr port

Instances

RDADDR RDDATA WRADDR WRDATA

rd port wr port

Figure 4.8: The abstracted architecture of Update Cache.

based memory, a pipelined adder, an address counter, the multiplexing logic,
and the control. Control mainly comprises of an FSM. The interface of the mod-
ule is composed of three streams, two input streams that deliver newly loaded
attributes and instance packets, and one output stream, the stream of the up-
dated attributes. The multiplexing logic is used to manage the accesses to
the BRAM-based memory. The adder accepts instance packets and updates
the correct memory entries. The address generator generates addresses to
write or read from BRAM memory, when loading or storing attributes respec-
tively. Notice, Update Cache does not accept commands to operate, but

30

it contains some generic parameters (parameters that used to generate the
module) and also contain some extra signals to get the size of attributes from
the corresponding global register. However, these register must not change
while Update Cache is not idle.

4.4.6 Compute Best Split Suggestions

As shown in figure 4.7, four modules cooperate to compute the best attribute
split suggestion. Actually, ABS Cache and DAU make the computations while
the other two modules just help to embed the distribution inside the packet
with the best attribute split suggestion. Note that some implementations may
omit the distribution. We currently use it only for debugging reasons.

Theory and Optimizations

Entropy (in bit units) of a discrete random variable X is defined as:

H(X) = −
∑
x∈X

p(x) log2 p(x). (4.1)

The conditional entropy of a random variable Y given the occurrence of the
value x on an another random variable X is defined as:

H(Y | X = x) = −
∑
y∈Y

p(y|x) log2 p(y|x).

The conditional entropy of a random variable Y given a random variable X is:

H(Y | X) =
∑
x∈X

p(x)H(Y | X = x).

Finally, information gain is defined as:

IG(Y | X) = H(Y)−H(Y | X).

There are currently two types of splits in the literature for nominal attributes:

• Binary splits. Each split node contain a marked attribute and a value for
it. When an instance reaches a split node, in order to select the correct
branch, we have to compare the instance’s value of the market attribute
to the value stored at the split node. The instance will proceed to one of
the branches depending on whether the corresponding attribute has a
value equal or not equal with the stored value.

• Multiway splits, where one branch exists for each possible outcome of the
marked attribute.

31

We consider only binary splits.
Essentially, every attribute, including class attributes, is a random variable.

We are interested in having a tree structure that is able to predict the class of
a testing instance with high accuracy. Thus, it is meaningful to use information
gain on class attributes to evaluate the candidates for splitting a leaf. The basic
concept behind applying information gain, is the question “What would be the
information gain from applying the split?”. Let IGi(Y | X) the information gain
of the candidate suggestion i.

The following transformation is useful as it results in simpler hardware and
software.

Optimization 1. We do not have to compute information gain to decide if it is
beneficial to apply the best split suggestion.

Proof.

IGi(Y | X)− IGj(Y | X) > ε

(H(Y)−Hi(Y | X))− (H(Y)−Hj(Y | X)) > ε

H(Y)−Hi(Y | X)−H(Y) +Hj(Y | X) > ε

−Hi(Y | X) +Hj(Y | X) > ε �

The following optimization is very important when evaluating the split sug-
gestions.

Optimization 2. The solution with that provides the best information gain is the
one with the smallest conditional entropy.

Proof. Assume that we compare two candidates for splitting a leaf, and thus
i 6= j.

IGi(Y | X) > IGj(Y | X)

H(Y)−Hi(Y | X) > H(Y)−Hj(Y | X)

−Hi(Y | X) > −Hj(Y | X)

Hi(Y | X) < Hj(Y | X) �

This optimization is far more important that optimization 1. It facilitates the se-
lection of the best split suggestions from hardware modules. To select the best
suggestions, we just have to find the ones that provide the smallest conditional
entropy.

Let us examine the conditional entropy for binary splits. As shown in fig-
ure 4.9, we have two branches, the “equal” and the “not equal”. Note that X
is now defined as a random variable with two outcomes one for each branch,
because an instance sorted to this subtree will follow one these after the split.
We denote the two outcomes with x1, x2. Y has one outcome for each class.
We have:

H(Y | X) =
∑
x∈X

p(x)H(Y | X = x)

32

Attributei = valuej else

Figure 4.9: Binary split.

= −
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log2 p(y|x).

As the attribute statistics are counts of occurrences of <class, value> vectors,
we do not really have the probabilities available. We denote these counts with
the letter C with a proper index. We have:

p(y|x) =
p(y, x)

p(x)

=
Cy,x(y,x)

C
Cx(x)
C

=
Cy,x(y, x)

Cx(x)
.

Cx(x) denotes the weight that the branch x would observe if we had applied
this split suggestion. Cy(y) denotes the weight observed for the class y. Cy,x(y, x)
denotes the weight that the branch x would observe for the class y if we had
applied this split suggestion. Obviously:

Cx(x) =
∑
y

Cy,x(y, x) (4.2)

and
Cy(y) =

∑
x

Cy,x(y, x). (4.3)

For a binary split suggestion where we have two branches, Cy,x(y, x) is a 2D
matrix, as shown in figure 4.10. However, the statistics for each attribute form a
matrix that is different from this one. Figure 4.11 presents the attribute statistics
as a matrix. We denote this matrix as Cy,z(y, z), where y and z are the class and
value indices respectively.

But how to compute the Cy,x(y, x) matrix of each suggestion from Cy,z(y, z)
matrix? The answer depends from the split suggestions that we want to evalu-
ate. For splits, such as the split presented in figure 4.9, for the “equal” branch
we have

Cy,x1(y, x1) = Cy,z(y, v),

33

Classes

x0 x1

Figure 4.10: The statistics needed to evaluate a binary split suggestion. We
have to compute this matrix from the attribute statistics.

Values

Classes

Figure 4.11: The statistics for a nominal attribute as a matrix.

and for the “not equal” branch

Cy,x0(y, x0) =
∑
z 6=v

Cy,z(y, z)

where v is the value that determines the split suggestion. So

Cy,x(y, x) =

{∑
z 6=v Cy,z(y, z) if x = x0

Cy,z(y, v) if x = x1

Now we are ready to reexamine the conditional entropy, as we have a way
to compute the needed probabilities, and so:

H(Y | X) = −
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log2 p(y|x)

34

= −
∑
x∈X

Cx

C

∑
y∈Y

Cy,x

Cx

log2

Cy,x

Cx

= − 1

C

∑
x∈X

Cx

Cx

∑
y∈Y

Cy,x (log2Cy,x − log2Cx)

= − 1

C

∑
x∈X

∑
y∈Y

(Cy,x log2Cy,x − Cy,x log2Cx)

= − 1

C

∑
x∈X

(∑
y∈Y

Cy,x log2Cy,x −
∑
y∈Y

Cy,x log2Cx

)

= − 1

C

∑
x∈X

(∑
y∈Y

Cy,x log2Cy,x −

(∑
y∈Y

Cy,x

)
log2Cx

)

= − 1

C

∑
x∈X

(∑
y∈Y

Cy,x log2Cy,x − Cx log2Cx

)

=
1

C

∑
x∈X

(
Cx log2Cx −

∑
y∈Y

Cy,x log2Cy,x

)

=
1

C

∑
x∈X

(
Cx log2Cx −

∑
y∈Y

Cy,x log2Cy,x

)
(4.4)

The complexity to compute Cy,x together with Cx is O(cv), where c is the num-
ber of classes and v the number of values. Having Cy,x available, the cost to
compute H(Y | X) for one binary split suggestion is O(c). The total complexity
is O(c + cv) = O(cv). Nevertheless, we have one split suggestion for each at-
tribute value. Thus, we have O(cv2) to compute the best attribute binary split
suggestion for one attribute.

Optimization 3. The complexity to evaluate all eqv/neqv1 binary split sugges-
tions for one attribute can drop from O(cv2) to O(cv), by using row sums.2

Proof. With Cy available, we have:

Cy,x(y, x) =

{∑
z 6=v Cy,z(y, z) if x = x0

Cy,z(y, v) if x = x1

=

{∑
z 6=v Cy,z(y, z) + Cy,z(y, v)− Cy,z(y, v) if x = x0

Cy,z(y, v) if x = x1

=

{∑
z Cy,z(y, z)− Cy,z(y, v) if x = x0

Cy,z(y, v) if x = x1

=

{∑
z Cy,z(y, z)− Cy,z(y, v) if x = x0

Cy,z(y, v) if x = x1

1One branch for equal, one for not equal like figure 4.9.
2It is notable that MOA framework does not use this optimization. The other two optimizations

are not that important for software but this one seems very gainful.

35

=

{
Cy(y)− Cy,z(y, v) if x = x0

Cy,z(y, v) if x = x1
(4.5)

From equation (4.2) we have:

Cx(x) =
∑
y∈Y

Cy,x(y, x)

=

{∑
y (Cy(y)− Cy,z(y, v)) if x = x0∑
y Cy,z(y, v) if x = x1

=

{∑
y Cy(y)−

∑
y Cy,z(y, v) if x = x0∑

y Cy,z(y, v) if x = x1

=

{
C − Cz(v) if x = x0

Cz(v) if x = x1
(4.6)

So we can compute Cy, Cz, and C, once per attribute, all together in O(cv).
Then for each value compute Cy,x(y, x) in O(c), and Cx(x) from C and Cz(v) in
O(1). Now, to compute H(Y | X) for this attribute we need O(c). Hence the
total cost to compute H(Y | X) for all attributes is now O(cv), because we need
O(cv) to compute Cy, Cz, and C once in the beginning and O(cv) to compute
H(Y | X) for each suggestion. �

Optimization 4. We do not need to divide with C until the very end, when ap-
plying the Hoeffding inequality. Then again, we could avoid it by comparing
their difference with the result of the multiplication Cε.

Proof. It is obvious when looking at equation (4.4) because C remains the same
for all attributes. �

Note that most optimizations presented here may have implications with
missing values. Nevertheless, a possible solution for nominal attributes is to just
define a new value to denote them, and handle them as values. Furthermore,
we have one more optimization for multiway splits presented in appendix B, but
we do not use it as we consider only binary splits.

Architecture Review

Now we can review “Compute Best Split Suggestions” logic in figure 4.7. ABS
Cache will load one attribute and will compute Cx, Cy and C. Then it will feed
the Dedicated Arithmetic Unit with statistics in the appropriate format. DAU
evaluates them with the aid of equation 4.4.

4.4.7 ABS Cache

Figure 4.12 shows the architecture of ABS Cache. This module is responsible
for preparing the statistics to be sent to Dedicated Arithmetic Unit. Control

36

ABS Cache

Control

Address
Translator

Fetcher
Extended

Cache

Output
Preparation

Unit

BSS Index

Attributes

BSS Distribution
(to ResultMerge)

Distributions
(to DAU)

Figure 4.12: The architecture of ABS Cache.

Control
FSM Load

Compute
BSS

Wait
BSS
Index

Read
BSS
Dist

Figure 4.13: The FSM inside Control sub-module.

generates commands that pass all other sub-modules in a pipelined manner. It
contains the FSM that is shown in figure 4.13. Four main FSM states are defined:

• In “Load” state it generates commands to load a new attribute.

• In “Compute BSS” state the commands will lead into sending data to the
Dedicate Arithmetic Unit.

• In “Wait BSS Index” state the control waits to receive the resulting index of
the best attribute split suggestion.

• In “Read BSS Dist” state the control will create the commands needed to
emit the distribution of bss.

The generated commands hold the class and value indices, generated with
the help of a counter. Commands also contain some bits that describe them.

37

The indices have to be translated into BRAM addresses. Address Translator al-
ways translate the indices to BRAM addresses. Fetcher will recognize load oper-
ations and will embed one data word from the input data stream in each load
command. Eventually, commands arrive to Extended Cache, which holds and
manages the attribute data. Moreover, it is responsible for computing Cz, Cy,
and C. Output Preparation Unit is a very simple module that makes some cus-
tomization to any output data according to their destination.

4.4.8 Extended Cache

Extended Cache is the core module of ABS Cache. Figure 4.14 presents its
architecture. It is comprised of four main parts:

Row
Sum

i

Row
Sums
RAM

Accumulator

C(i, j)BRAM

Total Sum
Register

Accumulator
Total
Sum

Init/Add/Fetch

Column Sums
BRAM

Column
Sum

j

addr(i, j)

din

i

j

Figure 4.14: The architecture of Extended Cache.

• The BRAM that holds the attribute counts.

• The Accumulator which computes the row sums (Cy) and the RAM that
stores them.

38

• The Accumulator that computes the total sum (C) and the register that
holds it.

• An module to initialize, update, and fetch the column sums (Cz) from a
dedicated BRAM that holds them.

Extended Cache accepts and serves write and read requests. On write re-
quests, the destination address will be overwritten with the new data. Write
requests must be sent ordered row by row. The accumulator that is responsible
for computing the row sums will store the row sum on the appropriate position
at the end of the row. The accumulator that computes the total sum gener-
ates and stores it in the appropriate register at the end of the load procedure.
Logic that is responsible for computing the column sums is essentially a BRAM
with an adder.

4.4.9 Dedicated Arithmetic Unit

Figure 4.15 abstracts the architecture of a Dedicated Arithmetic Unit (DAU).
DAU evaluates all split suggestions one by one and returns the conditional en-

Dedicated Arithmetic Unit

log2

Log ROM

log2

Multiply
Accumulator

Multiply
Accumulator

+

-

Min
Unit

Cy or C

Best
Attribute

Split
Suggestion

Cyz or Cz

Figure 4.15: T he architecture of a Dedicated Arithmetic Unit.

tropy and the value index of the best attribute split suggestion. As can see from
figure 4.15 the module is symmetric. The upper part computes the part of the
sum in equation (4.4) where x = x1. The bottom part computes the part of the
same sum x = x0. At this point we should clarify that ABS Cache sends a stream
of two data words. First, it will send Cz(v) and C. Then it will send Cy,z and Cy(y)
for every y ∈ Y . The subtractor is used to compute Cx(x) and Cy,x(y, x0) from
the input stream using equations (4.6) and (4.5) respectively. The two units that
compute the logarithms internally use a custom floating point format and a
port of the Log ROM to compute the logarithms of the corresponding streams.
Multiply accumulators compute all multiplications and summations inside the

39

parenthesis in equation (4.4). The adder computes the outer sum in equa-
tion (4.4) by adding the outputs from the multiply accumulators. Finally, the
Min Unit selects the minimum entropy and computes its value index.

40

Chapter 5

Verification and Evaluation

5.1 Introduction

In the previous chapter we described a general system architecture and a
hardware module dedicated to fully exploit one single memory controller port.
In this chapter we verify and evaluate our architecture. Although we did not
implement a system that employs more memory ports, our system is designed
to be generalized in this manner. However, not only we do not need to use
more than one modules to verify and evaluate our architecture, but it is also a
good design strategy even if we plan to evaluate in multi-memory-port archi-
tecture.

5.2 Convey HC-1 and HC-2ex

It is not in our intentions to describe here neither HC-1 nor HC-2ex in detail, but
we need to provide some very general information to clarify the evaluation
environment. More information for them can be found in [22, 27, 28, 29, 30].

Convey uses a NUMA memory architecture. Host and coprocessor can ac-
cess all of the available memory (HCGSM - Hybrid-Core Globally Shared Mem-
ory), but each one can access faster its own part of the memory. Figure 5.1
presents the abstracted architecture of a Convey coprocessor with its memory
subsystem. Coprocessor is mainly comprised of Application Engine Hub (AEH),
Application Engines (AE) and the Memory Subsystem. AEH embeds an imple-
mentation of a scalar processor. In AEs the designer implements the custom
logic needed to accelerate an application. The custom logic is called person-
ality and the corresponding HDL file is called cae_pers.

Figure 5.2 presents another view of Convey’s architecture. When a thread
that runs on the host calls a function that was designed to run on coprocessor,
Convey will do whatever is needed to prepare the execution of this code in
AEH and then the AEH will begin to run the corresponding code. The coproces-
sor program for a custom architecture usually has to include simple assembly
code to interface with Application Engines (AE) FPGAs.

41

Memory
Controller

TLB

DIMM

DIMM

Memory
Controller

TLB

DIMM

DIMM

Memory
Controller

TLB

DIMM

DIMM

Memory
Controller

TLB

DIMM

DIMM

Memory
Controller

TLB

DIMM

DIMM

Memory
Controller

TLB

DIMM

DIMM

Memory
Controller

TLB

DIMM

DIMM

Memory
Controller

TLB

DIMM

DIMM

H
os

t I
nt

er
fa

ce

In
st

ru
ct

io
n

Fe
tc

h/
D

ec
od

e

Sc
al

ar
Pr

oc
es

si
ng

Xilinx®

VIRTEX
FPGA

Xilinx®

VIRTEX
FPGA

Xilinx®

VIRTEX
FPGA

Xilinx®

VIRTEX
FPGA

Instructions/Data

Application Engines (AEs)

Application Engine Hub (AEH)

HCMI

Direct
Data
Port

16 channel
word-addressable

SG-DIMMS

8 x 2.5 GB/s

20 GB/s 20 GB/s 20 GB/s 20 GB/s

8 x 2.5 GB/s 8 x 2.5 GB/s 8 x 2.5 GB/s

Memory Subsystem and
Crossbar (MCs)

3

Figure 5.1: The abstracted memory architecture of a Convey Computer
(source: [27]).

5.3 System Architecture for Evaluation

Figure 5.3 shows our cae_pers module for testing, verification and evaluation.
It is a modified version of the corresponding module of an example distributed
together with Convey software and manuals. As we evaluate only one EAPA
module alone, we needed only one memory port and we left all other memory
ports unconnected. EAPA was designed to be connected directly to the pro-
vided memory port interface, so we did not implement any additional logic to
connect it. Nevertheless, we needed some very small logic to interface it with
the dispatch interface. This extra logic was, more or less, part of the aforemen-
tioned Convey’s example.

5.4 Resource Analysis

This system was designed primarily for HC-2ex. In HC-2ex we have four Virtex 6
LX760 [31] available. However, we also prepared a bitfile for HC-1. HC-1 has
four Virtex 5 LX330 [32] available instead. To generate the resource reports
presented here we run a synthesis under Xilinx ISE 14.7 with the default settings
for each device. Tables 5.1 and 5.2 show the reports for a Virtex 6 LX760 and a
Virtex 5 LX330 respectively. Available resources in each device were retrieved
from the xst reports but were also checked with the descriptions from [31] and
[32]. The needed resources are very close for the two devices, but the Virtex 6
has a lot of more available. Each APA (Attribute Processing Array) contains by

42

Host Coprocessor

x64 Code
C/C++/Fortran

+
Assembly

AEH

User
Logic

AE

Figure 5.2: The abstracted software architecture in a Convey Computer.

 cae_pers (Virtex 6 LX760)

MC Port I/F

Small
Control

Logic
Dispatch I/F

EAPA

Figure 5.3: Evaluation personality architecture.

default four AP (Attribute Processors), unless the corresponding generic value
is set to a different value.

5.5 Clock Results

User logic currently runs at 150 MHz but all modules where designed to run at
300+ MHz. The main reason for using a 150 MHz clock is that we do not need
more than 150 MHz to handle one MC port. Nonetheless, a higher clock using
the same FPGA resources may mean a better hardware utilization, as soon as
the used resources remain the same.

5.6 Software

We needed a set of software tools to be able to debug, verify, and evaluate
our architecture. For this reason, we wrote two MOA plugins, two C-based pro-

43

Type EAPA APA AP Available

Slice Registers 11720 9697 1816 948480
Slice LUTs 9739 7554 1782 474240
RAMB36E1s 33 24 5 720
DSP48E1s 17 16 1 864

Table 5.1: Utilization Report for Virtex 6 LX760.

Type EAPA APA AP Available

Slice Registers 11700 9699 1847 207360
Slice LUTs 9619 7592 1725 207360
RAMB36s 35 24 6 288
DSP48Es 17 16 4 192

Table 5.2: Utilization Report for Virtex 5 LX330.

grams, and one program for Convey together with some Perl and Bash scripts.

5.6.1 Test Data Generator

To generate test cases for verification or evaluation we implemented a MOA
plugin, named “Test Data Generator”. This plugin accepts some configuration
arguments and generates the corresponding files for measurements or verifica-
tion.

We have leaves and commands. Commands are packets of instances with
a leaf index and an indicator to know if the leaf has been initialized. We have
packets of instances and not single instances because our modules allow to
update a leaf with multiple instances together before computing the best split
suggestions. Each command references to a different leaf, so that we could
easily verify any implemented system that would use parallelism between dif-
ferent leaves. All data are generated with a simple random number generator.
This is not a problem because the amount of computational work that has to
be done is irrelevant with the selected numbers. The most important input argu-
ments are the number of leaves to generate, the number of attributes per leaf,
the number of classes, the number of values per attribute, and the number of
instances per command. The generated date are stored in four files:

1. One file contain the leaves.

2. Another file holds the commands. In the end-system these will be the only
data that the host will send to the coprocessor.

3. A file to has the leaves after altering them with the corresponding com-
mands.

44

4. Finally, we have a file to store the return structures. In the end-system these
will be the only data that would return to the host.

The generator in a loop will populate a new leaf with random data and will
append it in the leaves-before-update file. Then it will create a command with
the corresponding instances and will store it to the commands file. Afterwards,
it will update the leaf with the command and will save the updated leaf into
the leaves-after-update file. Finally, it will compute the best split suggestions
and will store the return data to the return-data file.

5.6.2 MOA Benchmark

MOA Benchmark is another plugin for MOA that we designed to measure the
processing time of the leaves. It will first load the leaves-before-update and the
commands files and then it will measure the needed time to process them all.

5.6.3 Convey Software Core Structure

Our main software was divided into two parts, a very small assembly part that
runs in the coprocessor and a C part that runs in the host. The assembly part
is just three small wrapper functions that interface the software with our hard-
ware modules. The two functions are there to interface our two instructions
(create-update-check and update-check). The other is to configure any reg-
isters that our modules needs, but they remain fixed during an experiment. The
C is responsible:

1. To load leaves from a file.

2. Copy them to coprocessor.

3. Load instructions (packets of instances together with a leaf ID and if the
referenced leaf will be treated as initialized so we will run create-update-
check and not update-check).

4. Initialize the coprocessor. Then set the needed registers by instructing con-
vey to call the adequate initialization method that we implemented in
assembly.

5. Begin measuring the time.

6. Dispatch each instruction separately within a loop by coping the packet
of instances to the coprocessor memory and ordering convey to call the
adequate assembly function.

7. Instruct Convey to execute a fence on the coprocessor outside the loop.
This fence does not needed because we use the simple synchronous dis-
patches to the coprocessor and Convey inserts automatically a fence
before returning from the coprocessor.

45

8. Stop measuring the time.

9. Copy the leaves and the return structures from the coprocessor to the
host.

10. If needed execute verification by comparing the results with the expected
ones.

Note that, firstly, we have to copy our leaf data into coprocessor as Convey
has a NUMA memory architecture and leaves would normally reside in the co-
processor. Secondly, although our architecture is designed to handle different
leaves without needing a fence, we measure an automatically inserted fence
for each dispatch together with one not needed fence outside the loop.

5.6.4 C

Because MOA is written in Java and has a lot of abstraction layers, we also
implemented a very “unofficial”, simple C, x86-64 version of the benchmark, to
catch any cases where the overheads in Java where too high. It is basically
the same software like section 5.6.3, but it executes completely in the CPU and
it does not use optimization 3. It differs remotely from MOA mainly in that it uses
optimizations 1, 2, and 4. Furthermore, MOA when examines an attribute, it will
compute the distributions for all of its split suggestions and it will evaluate them
to select the one with the best information gain. Our C implementation com-
pute the distribution for one split suggestion and will evaluate it by comparing it
to the previous best one. To differentiate from software in section 5.6.3 we used
the C preprocessor in the same source files.

5.6.5 C-Opt

While we were debugging our architecture using the software presented in
sections 5.6.1, 5.6.2, 5.6.3, and 5.6.4, we noticed an impressive speedup of two
orders of magnitude for our hardware architecture. Knowing that the optimiza-
tion 3 could help CPU implementations in cases where we have many values
per attribute we implemented a C version of the algorithm like section 5.6.4,
but in this case we included optimization 3. Again, to differentiate from soft-
ware in section 5.6.3 and 5.6.4 we used the C preprocessor in the same source
files.

5.6.6 Scripts

For verification, debugging and early evaluation we wrote a Perl script that ex-
ecutes the aforementioned software. Later to be able to exhaustively measure
the system with a single command, we wrote two Bash scripts. These scripts also
use the software presented in sections 5.6.1, 5.6.2, 5.6.3, 5.6.4, and 5.6.5.

46

5.7 System Level Verification

Despite that we ran multiple simulation tests for each module at the design
process, some final system-level verification steps were required to fix any prob-
lems left in the design and verify the correctness of the results. The simulation
ran with the aid of Perl scripts and the provided by Convey workbench to sim-
ulate the whole system using behavioral models. Nonetheless, to fix an issue
with code that did not translate well in FPGA resources, we also had to run
post translate simulation. Finally, we ran and verified our implementation in HC-
2ex. The system was verified that produces correct results in both system level
simulation and real hardware.

5.8 Evaluation

Although our architecture is pointing to increase the throughput of leaf pro-
cessing, a fence is automatically inserted between the processing of different
leaves, so this figure presents latency not throughput. The corresponding mea-
surements are in a table format in Appendix C.

0

500

1000

1500

2000

2500

2 4 8 16 32 64 128 256 512 1024

Ti
m

e
 (

se
c)

Leaves

MOA C C-Opt Convey

Figure 5.4: Time to process multiple leaves (1 instance per leaf, 1024 attributes,
8 classes, 256 values per attribute.

47

0

20

40

60

80

100

120

140

160

180

2 4 8 16 32 64 128 256 512 1024

Sp
e

e
d

u
p

Leaves

C C-Opt Convey

Figure 5.5: Speedup against MOA when processing multiple leaves (1 instance
per leaf, 1024 attributes, 8 classes, 256 values per attribute.

0

500

1000

1500

2000

2500

2 4 8 16 32 64 128 256 512 1024

Ti
m

e
 (

se
c)

Attributes

MOA C C-Opt Convey

Figure 5.6: Time to process multiple leaves for different number of attributes (1
instance per leaf, 1024 leaves, 8 classes, 256 values per attribute).

48

0

20

40

60

80

100

120

140

160

180

2 4 8 16 32 64 128 256 512 1024

Sp
e

e
d

u
p

Attributes

C C-Opt Convey

Figure 5.7: Speedup against MOA when processing multiple leaves for different
number of attributes (1 instance per leaf, 1024 leaves, 8 classes, 256 values per
attribute).

0

500

1000

1500

2000

2500

2 3 4 5 6 7 8

Ti
m

e
 (

se
c)

Classes

MOA C C-Opt Convey

Figure 5.8: Time to process multiple leaves for different number of classes (1
instance per leaf, 1024 leaves, 1024 attributes, 256 values per attribute).

49

0

20

40

60

80

100

120

140

160

180

2 3 4 5 6 7 8

Sp
e

e
d

u
p

Classes

C C-Opt Convey

Figure 5.9: Speedup against MOA when processing multiple leaves for different
number of classes (1 instance per leaf, 1024 leaves, 1024 attributes, 256 values
per attribute).

0

500

1000

1500

2000

2500

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

Ti
m

e
 (

se
c)

Values

MOA C C-Opt Convey

Figure 5.10: Time to process multiple leaves for different number of values per
attribute (1 instance per leaf, 1024 leaves, 1024 attributes, 8 classes).

50

0

20

40

60

80

100

120

140

160

180

200

16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

Sp
e

e
d

u
p

Values

C C-Opt Convey

Figure 5.11: Speedup against MOA when processing multiple leaves for dif-
ferent number of values per attribute (1 instance per leaf, 1024 leaves, 1024
attributes, 8 classes).

0

500

1000

1500

2000

2500

3000

1 2 4 8 16 32 64 128 256 512 1024

Ti
m

e
 (

se
c)

Values

MOA C C-Opt Convey

Figure 5.12: Time to process multiple leaves and instances. The number of in-
stances defines the size of the instance packets (1024 leaves, 1024 attributes, 8
classes, 256 values per attribute).

51

0

20

40

60

80

100

120

140

160

180

1 2 4 8 16 32 64 128 256 512 1024

Sp
e

e
d

u
p

Values

C C-Opt Convey

Figure 5.13: Speedup against MOA when processing multiple leaves and in-
stances. The number of instances defines the size of the instance packets (1024
leaves, 1024 attributes, 8 classes, 256 values per attribute).

52

Chapter 6

Conclusion and Future Work

6.1 Conclusion

We examined a data stream mining algorithm, the Hoeffding tree, and found,
that firstly, there is a lot of parallelism underneath, and secondly, operations
that execute on leaf statistics are the most time consuming. The updating of
the leaf statistics and the evaluation of the split suggestions for a leaf are good
candidates for FPGA implementations. In our case, we found that evaluation,
aided by information gain, maps well on FPGA resources.

Convey HC-2ex was found to be an outstanding platform for hardware de-
sign and implementation. Although to fully utilize such a system you need to
have knowledge in a vast number of areas, it is very flexible with a unique
memory organization. At the same time the hardware interfaces are kept clear
and simple. Furthermore, HC-2ex is able to provide speedups or throughput in-
creases of two or three orders of magnitude against C-based single threaded
implementations. In many cases, it scores even better against implementa-
tions that are build upon software frameworks and try to maintain a high level
of abstraction.

The paradigm, where an ensemble of modules cooperate in a pipelined
manner to process a continuous stream of data, is the best for cases such
ours. We implemented many utility modules (accumulators, multiplexers, de-
coders, multiply-accumulators etc.) for “fine-grained” data streams (streams of
independent numbers), and many modules pointing in more “coarse-grained”
(packet oriented) streams (streams of attributes). The benefits from a stream-
based processing are mainly the partitioned design (modules can be designed
independently), the structured, hierarchical result design (the final design will
be well structured with a clear hierarchy) and the performance of the final
implementation. Moreover, a stream-based pipeline is able to spare FPGA re-
sources, as the designer have the ability to select where in the pipeline is the
bottleneck and must provide more resources. Finally, we have a better utiliza-
tion of the memory subsystem.

53

6.2 Future Work

Ideas for future work include:

• A full implementation of the algorithm in Convey. We currently imple-
mented only the hardware modules, but it would be interesting to how
it performs in together with a software implementation of the tree struc-
ture in the host.

• Build a new architecture layer upon the currently implemented modules
where all memory controller ports in all four FPGAs available will be used.
Convey has 16 ports available in each FPGA, and has four FPGAs, giving
a total of 64 ports. We currently use only one. The way to easy succeed
this, we could exploit the available coarse grained parallelism.

• Try to use the same modules for batch algorithms such as C4.5.

• Convey-based implementation of Hoeffding tree ensembles.

• Implement algorithms that address concept drift.

• Extend the hardware modules to implement more functionality (e.g. mul-
tiway splits).

• Provide a full embedded system.

54

Appendix A

Theoretical Bounds

A.1 About Theoretical Bounds

Theoretical bounds help us to make good split decisions fast and save com-
putational resources. Moreover, we will select the two attributes that currently
provide the split suggestions with the highest score. Then, we will apply a the-
oretical bound to the difference of the two scores (the highest score minus the
second highest) to find if it is guaranteed with high probability that it will con-
tinue to have a higher score than the second one. Usually, this also guarantees
that the attribute with the highest score will continue to have the highest score
among all attributes.

A.2 Reviewing Hoeffding Bound

Let X1, X2, . . . Xn independent random variables,

S = X1 +X2 + · · ·+Xn,

X̄ =
S

n
,

µ = E[X̄] =
E[S]

n
,

and
ai ≤ Xi ≤ bi(i = 1, 2, . . . , n).

Hoeffding[8] states that

Pr{X̄ − µ ≥ t} ≤ e−2n
2t2/

∑
(bi−ai)2 , (A.1)

with ∑
(bi − ai)2 =

n∑
i=1

(bi − ai)2 .

We need
Pr{X̄ − µ ≥ t} ≤ δ, (A.2)

55

so

e−2n
2t2/

∑
(bi−ai)2 = δ

−2n2t2/
∑

(bi − ai)2 = ln δ

−2n2t2 = ln δ
∑

(bi − ai)2

2n2t2 = − ln δ
∑

(bi − ai)2

2n2t2 = ln (1/δ)
∑

(bi − ai)2

t2 =
ln (1/δ)

∑
(bi − ai)2

2n2

t =

√
ln (1/δ)

∑
(bi − ai)2

2n2
(A.3)

If all random variables Xi have the same range R then

∑
(bi − ai)2 =

n∑
i=1

(bi − ai)2 = nR

and equation A.3 becomes

t =

√
R2 ln (1/δ)

2n
. (A.4)

Equation A.2 equivalently says that with probability greater than 1− δ,

X̄ − µ ≤ t.

ε =

√
R2 ln (1/δ)

2n

56

Appendix B

Multiway Splits

B.1 Introduction

Multiway splits break the leaf into several new ones. One leaf is created for
each attribute value. Although equal/not-equal binary splits could reach the
same result through multiple splits on the not-equal branch, most implementa-
tions support, and sometimes prefer, multiway splits.

B.2 Observing the Conditional Entropy

Once again, let us reexamine the conditional entropy (equation (4.4)):

H(Y | X) =
1

C

∑
x∈X

(
Cx log2Cx −

∑
y∈Y

Cy,x log2Cy,x

)

When computing the conditional entropy to evaluate the binary split for one
value indexed with v of the attribute we need to compute:

Hv(Y | X)C =
∑
x∈X

(
Cx log2Cx −

∑
y∈Y

Cy,x log2Cy,x

)

=

(
Cx(x0) log2Cx(x0)−

∑
y∈Y

Cy,x(y, x0) log2Cy,x(y, x0)

)
︸ ︷︷ ︸

Av

+

(
Cx(x1) log2Cx(x1)−

∑
y∈Y

Cy,x(y, x1) log2Cy,x(y, x1)

)
︸ ︷︷ ︸

Bv

= Av +Bv, (B.1)

where
Bv = Cx(x1) log2Cx(x1)−

∑
y∈Y

Cy,x(y, x1) log2Cy,x(y, x1). (B.2)

57

We are interested for the second part of the equation, aliased to Bv, where
x = x1. From equations (4.2) and (4.5) we have:

Cx(x1) =
∑
y

Cy,x(y, x1)

=
∑
y

Cy,z(y, v)

= Cz(v). (B.3)

So from equations (B.2), (B.3) and (4.5) we have:

Bv = Cx(x1) log2Cx(x1)−
∑
y∈Y

Cy,x(y, x1) log2Cy,x(y, x1)

= Cz(v) log2Cz(v)−
∑
y∈Y

Cy,z(y, v) log2Cy,z(y, v) (B.4)

In multiway splits, where we have one branch for each value of the attribute,
we have one outcome xi for each value. Cy,x is not like the figure 4.10, but
instead it is equal with the attribute statistics Cy,z. As a consequence, we have
an bijective relation between x and z and we can safely define xi = vi. Thus,
Cy,x(y, x) = Cy,z(y, x) = Cy,z(y, v). We have:

Cx(x) =
∑
y

Cy,x(y, x)

=
∑
y

Cy,z(y, x)

=
∑
y

Cy,z(y, v)

= Cz(v) (B.5)

When evaluating multiway split suggestions we have:

H(Y | X)C =
∑
x∈X

(
Cx log2Cx −

∑
y∈Y

Cy,x log2Cy,x

)
︸ ︷︷ ︸

Sx

=
∑
x∈X

Sx, (B.6)

where:

Sx = Cx log2Cx −
∑
y∈Y

Cy,x log2Cy,x. (B.7)

Optimization 5. We can extend the evaluation of the binary split suggestions to
include the multiway split suggestion with the extra cost of a sum.

58

Proof. From equation (B.7), with the aid of equations (B.5) and (B.4):

Sx = Cx log2Cx −
∑
y∈Y

Cy,x log2Cy,x

= Cz(v) log2Cz(v)−
∑
y∈Y

Cy,z(y, v) log2Cy,z(y, v)

= Bv �

As consequence, for hardware implementations we need an extra accu-
mulator to compute and store the sum

∑
x∈X Sx =

∑
v Bv and some logic to

multiplex the result with the binary split suggestions before sending them to the
comparator to find the best suggestion.

59

60

Appendix C

Measurements in Detail

C.1 Time Tables

Leaves MOA C C-Opt Convey

2 4.67690 3.23600 0.27100 0.02800
4 9.27975 6.46700 0.53300 0.05600
8 18.46013 12.90000 1.05000 0.11200

16 36.93447 25.78700 2.08100 0.22300
32 73.98996 51.69500 4.29900 0.44700
64 147.68943 103.40600 8.52400 0.89400
128 295.26865 206.51401 16.80500 1.78800
256 591.77270 413.08301 33.90300 3.57700
512 1183.74864 826.54401 68.11500 7.15500

1024 2363.25353 1652.02295 135.41400 14.30900

Table C.1: Time to process multiple leaves (1 instance per leaf, 1024 attributes,
8 classes, 256 values per attribute).

61

Attributes MOA C C-Opt Convey

2 4.66855 3.22900 0.26800 0.09000
4 9.30391 6.45700 0.53400 0.11700
8 18.54020 12.92100 1.06600 0.16900

16 36.98053 25.82500 2.12800 0.28600
32 73.84332 51.64100 4.23900 0.51000
64 147.89303 103.34700 8.46700 0.95700
128 295.54468 206.54900 16.93200 1.85400
256 590.95062 413.15701 33.96800 3.62500
512 1182.54776 825.97699 67.68700 7.19100

1024 2363.10960 1651.90503 135.50400 14.31000

Table C.2: Time to process multiple leaves for different number of attributes (1
instance per leaf, 1024 leaves, 8 classes, 256 values per attribute).

Classes MOA C C-Opt Convey

2 638.11318 429.28201 53.49800 3.61200
3 924.74295 633.24597 67.87500 5.39800
4 1211.45568 838.03302 81.75000 7.17500
5 1494.96879 1040.40100 95.39100 8.96100
6 1785.15165 1244.40796 108.91500 10.74600
7 2074.16439 1449.35706 122.52200 12.52800
8 2361.91050 1652.38098 135.75200 14.30900

Table C.3: Time to process multiple leaves for different number of classes (1
instance per leaf, 1024 leaves, 1024 attributes, 256 values per attribute).

62

Values MOA C C-Opt Convey

16 29.79839 12.50300 9.29700 0.92500
32 79.02875 35.76600 18.29100 1.82700
48 141.89211 68.87300 27.07700 2.71800
64 219.62047 116.20600 35.85400 3.60800
80 309.18411 175.78799 44.37000 4.50000
96 415.64881 247.99100 53.12200 5.39400
112 536.78852 332.24600 61.34700 6.28600
128 673.72857 429.12601 69.75800 7.17400
144 824.15234 538.36200 78.13000 8.06900
160 1556.51527 660.13800 86.41400 8.96000
176 1854.79646 794.24103 95.00300 9.85100
192 1400.65963 940.59100 105.87900 10.74300
208 1615.52049 1099.98303 111.10000 11.63500
224 1848.98722 1271.00903 119.29900 12.53100
240 2096.33919 1454.57605 127.13000 13.41900
256 2361.44315 1653.39795 135.54500 14.31000

Table C.4: Time to process multiple leaves for different number of values per
attribute (1 instance per leaf, 1024 leaves, 1024 attributes, 8 classes).

Instances MOA C C-Opt Convey

1 2362.97992 1652.68298 135.69400 14.31000
2 2370.68491 1653.52600 135.45900 14.31200
4 2378.03762 1652.03296 135.41499 14.32700
8 2397.51143 1653.33398 135.67400 14.33200

16 2419.31607 1652.64404 135.70900 14.35700
32 2426.74096 1653.70703 135.81799 14.38800
64 2426.58614 1654.75501 136.52200 14.47400
128 2432.93303 1654.81897 137.89700 14.61900
256 2442.50410 1652.75903 136.03200 14.93800
512 2452.99948 1652.89099 135.08600 15.60200

1024 2521.25308 1653.19898 135.25301 17.06400

Table C.5: Time to process multiple leaves and instances. The number of in-
stances defines the size of the instance packets (1024 leaves, 1024 attributes, 8
classes, 256 values per attribute).

63

C.2 Speedup Tables

C.3 Time Tables

Leaves C C-Opt Convey

2 1.45 17.26 167.03
4 1.43 17.41 165.71
8 1.43 17.58 164.82
16 1.43 17.75 165.63
32 1.43 17.21 165.53
64 1.43 17.33 165.20

128 1.43 17.57 165.14
256 1.43 17.45 165.44
512 1.43 17.38 165.44

1024 1.43 17.45 165.16

Table C.6: Speedup against MOA when processing multiple leaves (1 instance
per leaf, 1024 attributes, 8 classes, 256 values per attribute.

Attributes C C-Opt Convey

2 1.45 17.42 51.87
4 1.44 17.42 79.52
8 1.43 17.39 109.71
16 1.43 17.38 129.30
32 1.43 17.42 144.79
64 1.43 17.47 154.54

128 1.43 17.45 159.41
256 1.43 17.40 163.02
512 1.43 17.47 164.45

1024 1.43 17.44 165.14

Table C.7: Speedup against MOA when processing multiple leaves for different
number of attributes (1 instance per leaf, 1024 leaves, 8 classes, 256 values per
attribute).

64

Classes C C-Opt Convey

2 1.49 11.93 176.66
3 1.46 13.62 171.31
4 1.45 14.82 168.84
5 1.44 15.67 166.83
6 1.43 16.39 166.12
7 1.43 16.93 165.56
8 1.43 17.40 165.06

Table C.8: Speedup against MOA when processing multiple leaves for different
number of classes (1 instance per leaf, 1024 leaves, 1024 attributes, 256 values
per attribute).

Values C C-Opt Convey

16 2.38 3.21 32.21
32 2.21 4.32 43.26
48 2.06 5.24 52.20
64 1.89 6.13 60.87
80 1.76 6.97 68.71
96 1.68 7.82 77.06

112 1.62 8.75 85.39
128 1.57 9.66 93.91
144 1.53 10.55 102.14
160 2.36 18.01 173.72
176 2.34 19.52 188.29
192 1.49 13.23 130.38
208 1.47 14.54 138.85
224 1.45 15.50 147.55
240 1.44 16.49 156.22
256 1.43 17.42 165.02

Table C.9: Speedup against MOA when processing multiple leaves for different
number of values per attribute (1 instance per leaf, 1024 leaves, 1024 attributes,
8 classes).

65

Instances C C-Opt Convey

1 1.43 17.41 165.13
2 1.43 17.50 165.64
4 1.44 17.56 165.98
8 1.45 17.67 167.28
16 1.46 17.83 168.51
32 1.47 17.87 168.66
64 1.47 17.77 167.65

128 1.47 17.64 166.42
256 1.48 17.96 163.51
512 1.48 18.16 157.22

1024 1.53 18.64 147.75

Table C.10: Speedup against MOA when processing multiple leaves and in-
stances. The number of instances defines the size of the instance packets (1024
leaves, 1024 attributes, 8 classes, 256 values per attribute).

66

Bibliography

[1] P. Domingos and G. Hulten, “Mining high-speed data streams,” in Proceed-
ings of the sixth ACM SIGKDD international conference on Knowledge dis-
covery and data mining, ser. KDD ’00. New York, NY, USA: ACM, 2000, pp.
71–80.

[2] R. Kirkby, “Improving hoeffding trees,” Ph.D. dissertation, University of
Waikato, 2007.

[3] A. Bifet, G. Holmes, R. Kirby, and B. Pfahringer, “Data stream mining: A
practical approach,” May 2011, university of Waikato.

[4] J. R. Quinlan, C4.5: Programs for Machine Learning. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 1993.

[5] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, CART: Classifi-
cation and Regression Trees. Belmont, California: Wadsworth Publishing
Company, 1983.

[6] M. Mehta, R. Agrawal, and J. Rissanen, “SLIQ: A fast scalable classifier for
data mining,” in Proceedings of the 5th International Conference on Ex-
tending Database Technology: Advances in Database Technology, ser.
EDBT ’96. London, UK, UK: Springer-Verlag, 1996, pp. 18–32.

[7] J. C. Shafer, R. Agrawal, and M. Mehta, “SPRINT: A scalable parallel classi-
fier for data mining,” in Proceedings of the 22th International Conference
on Very Large Data Bases, ser. VLDB ’96. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1996, pp. 544–555.

[8] W. Hoeffding, “Probability inequalities for sums of bounded random vari-
ables,” Journal of the American Statistical Association, vol. 58, pp. 13–30,
Mar. 1963.

[9] L. Rutkowski, L. Pietruczuk, P. Duda, and M. Jaworski, “Decision trees for min-
ing data streams based on the mcdiarmid’s bound,” IEEE Trans. on Knowl.
and Data Eng., vol. 25, no. 6, pp. 1272–1279, Jun. 2013.

[10] L. Rutkowski, M. Jaworski, L. Pietruczuk, and P. Duda, “Decision trees for
mining data streams based on the gaussian approximation,” IEEE Trans. on
Knowl. and Data Eng., vol. 26, no. 1, pp. 108–119, Jan. 2014.

67

[11] ——, “The cart decision tree for mining data streams,” Information Sci-
ences, vol. 266, pp. 1–15, May 2014.

[12] G. Hulten and P. Domingos, “VFML – a toolkit for mining high-
speed time-changing data streams,” 2003. [Online]. Available: http:
//www.cs.washington.edu/dm/vfml/

[13] A. Bifet, G. Holmes, B. Pfahringer, P. Kranen, H. Kremer, T. Jansen, and
T. Seidl, “MOA: Massive online analysis, a framework for stream classifi-
cation and clustering,” in Journal of Machine Learning Research (JMLR)
Workshop and Conference Proceedings, vol. 11. JMLR.org, 2010, pp. 44–
50.

[14] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Wit-
ten, “The weka data mining software: An update,” SIGKDD Explor. Newsl.,
vol. 11, no. 1, pp. 10–18, Nov. 2009.

[15] G. De Francisci Morales, “Samoa: A platform for mining big data streams,”
in Proceedings of the 22Nd International Conference on World Wide
Web Companion, ser. WWW ’13 Companion. Republic and Canton of
Geneva, Switzerland: International World Wide Web Conferences Steering
Committee, 2013, pp. 777–778.

[16] A. Murdopo, A. Severien, G. De Francisci Morales, and A. Bifet, SAMOA
Developer’s Guide, Yahoo Labs Barcelona.

[17] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Distributed stream
computing platform,” in Proceedings of the 2010 IEEE International Con-
ference on Data Mining Workshops, ser. ICDMW ’10. Washington, DC,
USA: IEEE Computer Society, 2010, pp. 170–177.

[18] “Storm: Distributed and fault-tolerant realtime computation system.”
[Online]. Available: https://storm.incubator.apache.org/

[19] A. Srivastava, E.-H. Han, V. Singh, and V. Kumar, “Parallel formulations of
decision-tree classification algorithms,” in Parallel Processing, 1998. Pro-
ceedings. 1998 International Conference on, Aug 1998, pp. 237–244.

[20] N. Amado, J. Gama, and F. M. A. Silva, “Parallel implementation of deci-
sion tree learning algorithms,” in Proceedings of the10th Portuguese Con-
ference on Artificial Intelligence on Progress in Artificial Intelligence, Knowl-
edge Extraction, Multi-agent Systems, Logic Programming and Constraint
Solving, ser. EPIA ’01. London, UK, UK: Springer-Verlag, 2001, pp. 6–13.

[21] G. Chrysos, P. Dagritzikos, I. Papaefstathiou, and A. Dollas, “HC-CART: A
parallel system implementation of data mining Classification and Regres-
sion Tree (CART) algorithm on a multi-fpga system,” ACM Trans. Archit.
Code Optim., vol. 9, no. 4, pp. 47:1–47:25, Jan. 2013.

68

http://www.cs.washington.edu/dm/vfml/
http://www.cs.washington.edu/dm/vfml/
https://storm.incubator.apache.org/

[22] Convey Computer Corporation. [Online]. Available: http://www.
conveycomputer.com/

[23] “The r project for statistical computing.” [Online]. Available: http:
//www.r-project.org/

[24] R. Narayanan, D. Honbo, G. Memik, A. Choudhary, and J. Zambreno, “In-
teractive presentation: An fpga implementation of decision tree classi-
fication,” in Proceedings of the Conference on Design, Automation and
Test in Europe, ser. DATE ’07. San Jose, CA, USA: EDA Consortium, 2007,
pp. 189–194.

[25] D. Tong, L. Sun, K. Matam, and V. Prasanna, “High throughput and
programmable online traffic classifier on fpga,” in Proceedings of the
ACM/SIGDA International Symposium on Field Programmable Gate Arrays,
ser. FPGA ’13. New York, NY, USA: ACM, 2013, pp. 255–264.

[26] S. Kestur, D. Dantara, and V. Narayanan, “Sharc: A streaming model for
fpga accelerators and its application to saliency,” in Design, Automation
Test in Europe Conference Exhibition (DATE), 2011, March 2011, pp. 1–6.

[27] Convey Computer Corporation, “Convey hc-2 computer - architectural
overview,” 2012. [Online]. Available: http://www.conveycomputer.com/
index.php/download_file/view/143/142/

[28] ——, “Convey reference manual (version 1.1),” May 2012.

[29] ——, “Convey personality development kit - reference manual (version
5.2),” Apr. 2012.

[30] ——, “Convey programmers guide (version 2.0),” Jun. 2012.

[31] Xilinx Inc., “Virtex-6 family overview (v2.4),” Jan. 2012. [Online]. Available:
http://www.xilinx.com/support/documentation/data_sheets/ds150.pdf

[32] ——, “Virtex-5 family overview (v5.0),” Feb. 2009. [Online]. Available:
http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf

69

http://www.conveycomputer.com/
http://www.conveycomputer.com/
http://www.r-project.org/
http://www.r-project.org/
http://www.conveycomputer.com/index.php/download_file/view/143/142/
http://www.conveycomputer.com/index.php/download_file/view/143/142/
http://www.xilinx.com/support/documentation/data_sheets/ds150.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf

	Introduction
	The Classification Problem
	Decision Trees
	Market Analysis
	Embedded Systems
	High Performance Computing

	Motivation
	Contribution
	Thesis Structure

	Literature Review
	Introduction
	Hoeffding Trees
	Selecting a Different Bound
	VFDT
	Available Frameworks

	Coarse-Grained Parallelism
	Parallel Software Implementations
	Vertical Hoeffding Tree

	Related Hardware Implementations
	HC-CART

	Other Work

	Understanding Hoeffding Trees
	Introduction
	Chapter Structure

	Simplified Algorithm View
	Train on Instance
	Test on Instance
	Leaves

	Profiling
	Available Parallelism
	Traversing the Tree
	Parallel Leaf Processing
	Update Statistics
	Compute Best Split Suggestions

	System Architecture
	Introduction
	Hardware - Software Partitioning
	Instruction Set Architecture
	Hardware Modules
	Extended Attribute Processing Array
	Memory Controller Management Unit
	Attribute Processing Array
	Attribute Processor
	Update Cache
	Compute Best Split Suggestions
	ABS Cache
	Extended Cache
	Dedicated Arithmetic Unit

	Verification and Evaluation
	Introduction
	Convey HC-1 and HC-2ex
	System Architecture for Evaluation
	Resource Analysis
	Clock Results
	Software
	Test Data Generator
	MOA Benchmark
	Convey Software Core Structure
	C
	C-Opt
	Scripts

	System Level Verification
	Evaluation

	Conclusion and Future Work
	Conclusion
	Future Work

	Theoretical Bounds
	About Theoretical Bounds
	Reviewing Hoeffding Bound

	Multiway Splits
	Introduction
	Observing the Conditional Entropy

	Measurements in Detail
	Time Tables
	Speedup Tables
	Time Tables

