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Abstract
ADMM (Alternating Direction Method of Multipliers) is a technique for the solution of optimiza-
tion problems. It was developed and initially studied during the 1970’s, but recently has attracted
significant interest, mainly because it can be used to solve problems that handle large datasets in
a distributed manner.

In this thesis, we describe the ADMM algorithm and some applications of it in machine learning
and signal processing problems. We also give a distributed implementation of ADMM for a big
least squares problem using MPI (Message Passing Interface).
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Chapter 1

Introduction

Many problems in engineering, especially in the fields of machine learning and signal processing
can be posed as convex optimization problems. These problems often deal with datasets that
are extremely large, so it would be useful to develop algorithms that solve these problems in a
distributed manner. In this thesis, we describe the ADMM algorithm [1], which is the basic tool
we used to solve these problems in both serial and distributed manner.

In Chapter 2, we describe the ADMM algorithm, which derived in the 1970’s as a combination
of dual decomposition method and the method of multipliers.

In Chapter 3, we refer to some of the basic patterns we used to derive the algorithms for solving
the problems with ADMM.

In Chapter 4, we develop an algorithm for solving quadratic problems.
In Chapter 5, we use ADMM to solve some machine learning and signal processing prob-

lems.These problems involve linear regression (Least squares, Lasso, Group Lasso), classification
(logistic regression), compressed sensing and denoising (total variation denoising, trend filtering).

In Chapter 6, consensus and sharing techniques are introduced and are used to develop dis-
tributed algorithms for the problems described in the previous chapter.

In Chapter 7, we describe an implementation of a distributed ADMM algorithm for a big
least squares problem on the grid computing system of Technical University of Crete, using MPI
(Message Passing Interface) framework.

The proofs for the derivation of algorithms in chapter 5 can be found in part A of the appendix.
In part B of the appendix, we describe how the basic functions of MPI work and we include the
code for the distributed implementation.
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Chapter 2

ADMM Description

2.1 Dual Ascent and Dual Decomposition

2.1.1 Dual Ascent Algorithm
Let us consider the following convex optimization problem

minimize f(x)

s.t. Ax = b,
(2.1)

with x ∈ <n, A ∈ <m×n and f : <n → < a convex function. Lagrangian for problem (2.1) is

L(x, y) = f(x) + yT (Ax− b). (2.2)

and the dual function is

g(y) = inf
x
L(x, y) = −f∗

(
−AT y

)
− bT y. (2.3)

The dual problem is defined as

maximize g(y), y ∈ <m. (2.4)

Assuming strong duality holds, then optimal values of primal and dual problems are the same.
We can recover a primal optimal point x∗ from a dual optimal y∗ as

x∗ = argmin
x

L(x, y∗).

In dual ascent we try to solve dual problem, using a gradient ascent method. ∇g(y) denotes
the direction of movement with the largest increase of function g(y), so we try to maximize g(y)
moving towards that direction. If the gradient exists

∇yg(y) = ∇y
(

inf
x
L(x, y)

)
= ∇y

(
L(x∗, y)

)
= ∇yf(x∗) +∇yyT (Ax− b) = Ax− b.

The dual ascent algorithm consists of the following steps

xk+1 = argmin
x

L
(
x, yk

)
yk+1 = yk + ak

(
Axk+1 − b

)
,

(2.5)

where ak is a scalar stepsize and k is the iteration counter. The first step of (2.5) is a x-minimization
step and the second is a dual variable update. The dual ascent generally converges for a well-
chosen ak and under strict assumptions. We will see later how we can make this method more
robust.
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2.1.2 Dual Decomposition
The major benefit of dual ascent method is that it can lead to a decentralized implementation at
some cases. Suppose cost function is separable

f(x) =

N∑
i=1

fi(xi),

where x has been split into subvectors, x = [x1, ..., xN ], where variables xi ∈ <ni . Matrix A can
be also decomposed as

A = [A1 · · ·AN ].

So Lagrangian can be written as

L(x, y) =

N∑
i=1

Li(xi, y) =

N∑
i=1

(
fi(xi) + yTAixi −

1

N
yT b

)
.

This shows that Lagrangian function is also separable in x. This means that the x-minimization
step of (2.5) can be split into N subproblems that can be solved in parallel. This leads to the
equations below

xk+1
i = argmin

xi

Li
(
xi, y

k
)

yk+1 = yk + ak
(
Axk+1 − b

) (2.6)

So the dual-variable update step is the same as in dual ascent, but x minimization problem
splits into N subproblems that can be solved independently. The algorithm above is called dual
decomposition. So in the first step each processor solves 1 of the N subproblems and calculates
the corresponding subvector xk+1

i of xk+1. Then each processor broadcasts each subvector xk+1
1 to

every other node. So every processor gathers the vector xk+1 and uses it to calculate yk+1 using
the second step of (2.6). A different approach would be to assign to a single master processor to
compute y at each step. So the master processor gathers local xi from the other nodes and uses
them to compute y and then broadcasts its value to every other node, in order to compute their
local xis.

2.2 Method of Multipliers and ADMM

2.2.1 Method of Multipliers
In this subsection we will describe a method that was developed to robustify dual ascent. Let us
start by defining the Augmented Lagrangian function

Lρ(x, y) = f(x) + yT (Ax− b) +
ρ

2
‖Ax− b‖22, (2.7)

where ρ is called the penalty parameter. Lρ is the Lagrangian function of the following problem

minimize f(x) +
ρ

2
‖Ax− b‖22

s.t. Ax = b,
(2.8)

This problem is equivalent to the initial problem described in (2.1), since the quadratic penalty
term is 0, ∀x that is in the feasible set of the problem. Applying dual ascent to the modified
problem we get

xk+1 = argmin
x

Lρ
(
x, yk

)
yk+1 = yk + ρ

(
Axk+1 − b

)
.

(2.9)
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This is called the method of multipliers. We use the penalty parameter ρ as scalar stepsize for
dual variable update. By adding the quadratic penalty term the algorithm converges under far
more relaxed conditions, compared to these of dual ascent. The main drawback of this method
is that by introducing the quadratic penalty term we destroy the splitting of Lagrangian function
and therefore we can’t apply decomposition. In next subsection we will see how we can overcome
this barrier, using ADMM.

2.2.2 ADMM
ADMM (Alternating Direction of Multipliers) is an algorithm that is intended to blend the decom-
posability of dual ascent with the superior convergence properties of the method of multipliers.
This algorithm solves problems in the form

minimize f(x) + g(z)

subject to Ax+Bz = c,
(2.10)

with variables x ∈ <n and z ∈ <m, where A ∈ <p×n, B ∈ <p×m, and c ∈ <p. The basic difference
between the above problem and the initial problem (2.1) is that variable called x there is split
into 2 parts (x and z), with the objective function seperable across this splitting. We form the
augmented Lagrangian function of this problem as

Lρ(x, y, z) = f(x) + g(z) + yT (Ax+Bz − c) +
ρ

2
‖Ax+Bz − c‖22.

ADMM consists of the iterations below

xk+1 = argmin
x

Lρ
(
x, zk, yk

)
zk+1 = argmin

z
Lρ
(
xk+1, z, yk

)
yk+1 = yk + ρ

(
Axk+1 +Bzk+1 − c

) (2.11)

ADMM is pretty similar in fashion to dual ascent. It consists of a x-minimization step, a z-
minimization step and a dual variable update step. Step-size of dual variable update step is equal
to augmented Lagrangian parameter ρ. Minimizing augmented Lagrangian function jointly over
variables x and z and ADMM becomes the method of multipliers. Separating minimization over
x and z into 2 steps is what allows decomposition, when f or g are separable.

2.2.3 Scaled Form of ADMM
We will now describe an alternating form of ADMM, which is often more convenient to use. Define

r = Ax+Bz − c and u =
1

ρ
y. Augmented Lagrangian now becomes

Lρ(x, y, z) = f(x) + g(z) +
ρ

2
‖r‖22 + yT r = f(x) + g(z) +

ρ

2
‖r‖22 + ρuT r. (1)

ρ

2
‖u+ r‖22 =

ρ

2
(u+ r)T (u+ r) =

ρ

2

(
‖u‖22 + 2uT r + ‖r‖22

)
=
ρ

2
‖u‖22 + ρuT r +

ρ

2
‖r‖22.

So
ρ

2
‖u+ r‖22 −

ρ

2
‖u‖22 = ρuT r +

ρ

2
‖r‖22. (2)

Using (1) and (2), we have

Lρ(x, y, z) = f(x) + g(z) +
ρ

2
‖u+ r‖22 −

ρ

2
‖u‖22.
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So ADMM equations become

xk+1 = argmin
x

(
f(x) +

ρ

2
‖Ax+Bzk − c+ uk‖22

)
zk+1 = argmin

z

(
g(z) +

ρ

2
‖Axk+1 +Bz − c+ uk‖22

)
uk+1 = uk +Axk+1 +Bzk+1 − c.

(2.12)

This is called the scaled form of ADMM, since it is expressed in terms of a scaled version of
dual variable. It is usually preferred over the unscaled form of ADMM, since it produces shorter
formulas.
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Chapter 3

General Patterns in ADMM

Structure in f , g, A and B can be exploited to carry out x and z- updates more efficiently. The
following analysis will be written for x- update. We express x- update as

x+ = argmin
x

(
f(x) +

ρ

2
‖Ax− v‖22

)
, (3.1)

where v = −Bz + c− u is a known constant vector for purposes of x- update.

3.1 Proximity Operator

Consider the case where A = I which appears very frequently in practice. Then (3.1) is written

x+ = argmin
x

(
f(x) +

ρ

2
‖x− v‖22

)
. (3.2)

As a function of v, the right-hand side is denoted as proxf,ρ(v) and is called proximity operator
of f with penalty ρ. If f is simple enough, the x- update can be evaluated analytically. If f is the
indicator function of a closed non-empty convex set C, then the x- update is

x+ = argmin
x

(
f(x) +

ρ

2
‖x− v‖22

)
= ΠC(v),

where ΠC is the projection operator onto set C.

3.1.1 Soft thresholding

Let f(x) = λ‖x‖1 and A = I. The minimization step of xi-update becomes

x∗i = argmin
xi

(
λ|xi|+

ρ

2
(xi − vi)2

)
.

The term ‖x‖1 is not differentiable at 0. However a closed-form solution to the problem can be
found, using subgradients. Solution is

x∗i = Sλ
ρ

(vi),

where the thresholding operator is defined as

Sk(a) =


a− k a > k

0 |a| ≤ k
a+ k a < −k.

(3.3)
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Soft thresholding operator is the proximity operator for l1-norm.

3.1.2 Block soft thresholding
Let f(x) = λ‖x‖2 and A = I. The minimization step of xi-update becomes

x∗ = argmin
x

(
λ||x||2 +

ρ

2
||x− v||22

)
.

A closed-form solution can be found for this problem, and is called block soft thresholding operator.

x∗ = (1− (λ/ρ)/||v||2)+v. (3.4)

3.1.3 Singular value thresholding
Consider the singular value decomposition (SVD) of a matrix X of rank r.

X = UΣV T , Σ = diag({σi}1≤i≤r)

For each τ > 0, we introduce the singular value thresholding operator defined as follows

Dτ (X) = UDτ (Σ)V T , Dτ (Σ) = diag({σi − τ}+).

This operator simply applies a soft thresholding rule to the singular values of X, effectively shrink-
ing them towards zero. For each τ > 0 and Y ∈ <m×n, singular value thresholding operator obeys.

Dτ (Y ) = argmin
X

(
1

2
||X − Y ||2F + τ ||X||∗

)
, (3.5)

where || · ||∗ is the nuclear norm, and || · ||F is the Frobenius norm

3.2 Matrix inversion Lemma

A very useful matrix identity that we will use widely in this thesis is the matrix inversion lemma
(or Sherman-Morrison-Woodbury formula),

(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1. (3.6)

A proof of this expression can be found in the appendix.
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Chapter 4

ADMM for solving quadratic and
linear programs

4.1 Using ADMM to solve QPs and LPs

The standard form of quadratic program is

minimize (1/2)xTPx+ qTx (4.1)
subject to Ax = b, x ≥ 0,

where x ∈ <n and P is positive definite. If P = 0, then the problem becomes a standard form
linear program. ADMM form for this problem is

minimize f(x) + g(z) (4.2)
subject to x− z = 0,

with f(x) =
1

2
xTPx+qTx and g(z) is the indicator function of the non-negative orthant <n+. The

scaled form ADMM for this problem is

xk+1 = argmin
x

(
f(x) +

ρ

2
‖x− zk + uk‖22

)
zk+1 =

(
xk+1 + uk

)
+

uk+1 = uk + xk+1 − zk+1.

(4.3)

The x-minimization step is a problem with optimality conditions[
P + ρI AT

A 0

] [
x

v

]
=

[
−q + ρ(z − v)

b

]
.

An efficient computation of xk+1 can be achieved by calculating the factorization of ρI + P at
first iteration and then using it on following iterations.
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Chapter 5

Solving l1 problems with ADMM

ADMM explicitly targets problems that split into two parts, f and g. So it is a natural fit for
applications in signal processing and machine learning, where a lot of problems involve minimizing
a cost function together with a regularization term. In this section, we will see a variety of problems
that involve l1 norms, which are very important across statistics, signal processing, and machine
learning.

5.1 Least absolute deviations

In data fitting applications, when the data contains large outliers, instead of least squares fitting
is used a technique that is called Least Absolute Deviations, which provides a more robust fit. We
want to minimize ‖Ax− b‖1 instead of ‖Ax− b‖22. This problem is written in ADMM form as

minimize ‖z‖1 (5.1)
subject to Ax− z = b,

so f = 0 and g = ‖ · ‖1. Assuming ATA is invertible, the scaled form ADMM is

xk+1 =
(
ATA

)−1
AT
(
b+ zk − uk

)
zk+1 = S 1

ρ

(
Axk+1 − b+ uk

)
uk+1 = uk +Axk+1 − zk+1 − b.

(5.2)

5.2 Huber fitting
Another way of attaining a more robust fit in a data fitting application, is called Huber function
fitting,

minimize ghub(Ax− b), (5.3)

where Huber penalty function ghub is given by

ghub(a) =

{
a2/2 |a| < 1

|a| − (1/2) |a| ≥ 1,
(5.4)
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where a ∈ <. Huber penalty function can be extended to vector arguments as the sum of the
Huber function of the components. So Huber function is quadratic for small arguments and linear
for bigger ones. So it is more robust compared to ordinary least squares (that assign quadratic
penalty to big residuals), by giving much less weight to big residuals. Huber fitting can be put in
ADMM form as

minimize f(x) + g(z) (5.5)
subject to Ax− z = b,

where f(x) = 0, and g(z) =
∑m
i=1 g

hub(zi). X and u updates of ADMM for this problem will be
the same as in the LAD problem. Let w = Ax+ u− b, then z update for this problem will be

zk+1
i =


wi −

1

ρ
, if wi >

(1+ρ)
ρ

ρ
wi

(1 + ρ)
, if |wi| ≤ (1+ρ)

ρ

wi +
1

ρ
, if wi < − (1+ρ)

ρ .

(5.6)

5.2.1 Numerical Example. Fitting data with outliers
Now we consider the case of fitting a model to data that contains outliers. We compare the
performance of Ordinary Least Squares (OLS) estimator with that of Huber Fitting(HF) and
Least Absolute Deviations estimator (LAD). This example will show how important is to use
robust fitting in order to handle cases like this one. Let y = ax + b the equation of a line in <2.
Now we generate 20 samples that lie on this line and we add white gaussian noise to them. In 2 of
them we add relatively large noise(outliers). Then we will fit the noisy data to a line, using OLS,
HF, and LAD estimator. The two figures below show the results we get from this experiment.

Figure 5.1: Least absolute deviations estimator versus least squares estimator in model fitting
with outliers problem.
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Figure 5.2: Huber Fitting estimator versus least squares estimator in model fitting with outliers
problem.
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In figure 5.1, we see that the line fitted by least squares estimator is rotated away from the
main locus of points, but line from LAD estimator is close to the true line model. In figure 5.2,
we see that the line fitted by Huber Fitting estimator is also close to the true line model.

5.3 Basis Pursuit
A very important problem that arises in signal processing, and specifically in applications like
compressed sensing [2], is called Basis Pursuit. It is the optimization problem of the form

minimize ‖x‖1 (5.7)
subject to Ax = b,

where x ∈ <n, data A ∈ <m×n, b ∈ <m, with m < n. It is the most basic technique that is used
to find a sparse solution of an underdetermined system of linear equations. Since it minimizes the
l1 norm of x, it usually finds solutions that are sparse. The ADMM form of this problem is

minimize f(x) + ‖z‖1 (5.8)
subject to x− z = 0,

where f(x) is an indicator function of {x ∈ <n|Ax = b}. ADMM algorithm is then

xk+1 = Π
(
zk − uk

)
zk+1 = S 1

ρ

(
xk+1 + uk

)
uk+1 = uk + xk+1 − zk+1,

(5.9)

where Π is the projection onto {x ∈ <n|Ax = b}. Projection of the vector (z − u) onto an affine
set Ax = b is given by

Π(z − u) =
(
I −AT

(
AAT

)−1
A
)
(z − u) +AT

(
AAT

)−1
b. (5.10)
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5.3.1 Numerical example. Compressed sensing using Basis Pursuit
Let z ∈ <n be an unknown signal. Suppose we now have m linear measurements of signal z.

bi = aTi z + vi, i = 1, . . . ,m,

where v ∈ <m is the noise, and ai ∈ <n known signals. Standard reconstruction methods require
at least n samples. But if we have prior information about z, such as sparsity of the signal, we
can reconstruct it using fewer than n measurements. In this case, we can use Basis Pursuit as a
heuristic method to solve this problem, finding a sparse solution to an under-determined system

minimize ||z||1 s.t. Az = b,

where A ∈ <mxn is the compressed sensing matrix. As an example, we consider a sparse signal
reconstruction problem with a signal, x ∈ <3000 which consists of 120 spikes with amplitude ±1.
We then generate the compressed sensing matrix A ∈ <1024×3000. So we have

b = Ax+ v,

where v is drawn according to the Gaussian distribution N(0, 0.012I). We reconstructed the signal
using Basis Pursuit, and Least Norm solution and we compare the results.
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Figure 5.3: Original Signal
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Figure 5.4: Reconstructed signal using Basis Pursuit
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Figure 5.5: Reconstructed Signal using l2 least norm solution

We clearly see that Basis pursuit (5.4) returns a sparse reconstructed signal that is pretty
similar with the original. The l2-least norm solution (5.5) on the other hand is not sparse and the
spikes are far attenuated, and it is very difficult to detect the original signal. So we see that basis
pursuit is very efficient for compressed sensing problems.
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5.4 Lasso

Least squares is the basic tool for linear regression. In practice it is often used a technique called
regularization, either because observation matrix can be ill-conditioned (i.e. very high correlation
between features), or to impose constraints that come out from prior knowledge about parameter
vector (i.e. sparsity). Regularization improves the conditioning of the problem. The most common
regularizers used are the squared l2 norm (Tikhonov regularization), and the l1 norm. If the
regularizer is l1 norm, then the problem is called Lasso Regression.

minimize
1

2
‖Ax− b‖22 + λ‖x‖1, (5.11)

where λ is a scalar regularization parameter. In ADMM form, the Lasso can be written as

minimize f(x) + g(z) (5.12)
subject to x− z = 0,

where f(x) =
1

2
‖Ax− b‖22 and g(z) = λ‖z‖1. ADMM algorithm for Lasso is

xk+1 =
(
ATA+ ρI

)−1(
AT b+ ρ(zk − uk)

)
zk+1 = Sλ

ρ

(
xk+1 + uk

)
uk+1 = uk + xk+1 − zk+1.

(5.13)

ATA+ρI is always invertible since ρ > 0, and by the addittion of the term ρI the problem is more
well-conditioned than the unregularized least squares problem. Also, ||x||1 term leads parameter
vector to be sparse, so the algorithm also does feature selection. We can compute at the first
iteration a factorization of ATA+ ρI and use it in the following iterations.

5.4.1 Numerical example. Tikhonov regularization for solving ill-conditioned
linear systems

Let matrix A ∈ <m×n a known matrix and y ∈ <m a known vector. We want to estimate a
vector x ∈ <n, where y = Ax + v, with v white gaussian noise. Matrix A is constructed to
be ill-conditioned. We will reconstruct vector x using ordinary least-squares, and then Tikhonov
regularized Least Squares, with regularization parameter λ = 10−3. In our simulations we will use
noise with variance 10−2.
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Figure 5.6: Ill-conditioned system solution
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(b) Reconstructed signal Ordinary Least squares
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(c) Reconstructed Signal using Tikhonov regularized least squares
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As we can see in the figure 5.6b , reconstructed x with no regularization is nowhere near the
original x, even if noise has very low density. On the other hand, in 5.6c we see that by adding
the regularization term, and thus improving the conditioning of the problem, the reconstructed x
is pretty close to the original.

5.4.2 Numerical example. Feature selection using Lasso.
As we said above, LASSO returns a sparse feature vector. The bigger the value of λ is, the more
sparse feature vector will be. So we can use LASSO to select a subset of the features, in order
to make the model simpler and more interpretable. In our experiment, we used the diabetes
dataset (see [3] for more details). It describes a dependent variable as a linear function of 10
independent regressors. In the figure below we show the regularization path (as λ increases the
value of regressors goes towards zero) for this dataset.

Figure 5.7: Regularization path for diabetes dataset.

0 10 20 30 40 50 60 70 80 90 100
−800

−600

−400

−200

0

200

400

600

800

 

 

AGE

SEX

BMI

BP

S1

S2

S3

S4

S5

S6

We see in figure 5.7 that, as λ increases, regressors’ values shrink towards zero. If we would
like to select only 3 features to make this model simpler, we would choose (BMI, S5, BP).

5.5 Generalized Lasso

Lasso problem can be generalized to

minimize
1

2
‖Ax− b‖22 + λ‖Fx‖1, (5.14)

where F is an arbitary linear transformation. We will consider two special cases of this problem
with applications in signal processing.
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• Let A = I, and F ∈ <(n−1)×n the first order difference matrix.

Fij =


1, j = i+ 1,
−1, j = i,

0, otherwise.
(5.15)

This problem is called total variation denoising, and is used to remove noise from time
series. Notice that term ||Fx||1 leads the first derivative of the signal to be sparse, so the
reconstructed signal will generally be piece-wise constant.

• Let A = I, and F ∈ <(n−2)×n the second order difference matrix.

Fij =


1, j = i+ 1,
−2, j = i,

1, j = i− 1,
0, otherwise.

(5.16)

This problem is called trend filtering, and is used to recover underlying trends from noisy
time series. Notice that term ||Fx||1 leads the second derivative of the signal to be sparse,
so the reconstructed signal will generally be piece-wise linear.

In ADMM form, problem (5.14) can be written as

minimize f(x) + g(z) (5.17)
subject to x− z = 0,

So the corresponding scaled ADMM algorithm will be

xk+1 =
(
I + ρFTF

)−1(
b+ ρFT (zk − uk)

)
zk+1 = Sλ

ρ

(
Fxk+1 + uk

)
uk+1 = uk + Fxk+1 − zk+1.

(5.18)

5.5.1 Numerical example. Total variation denoising
Let x ∈ <n a signal, where coefficients xi correspond to the value of some function of time, sampled
at evenly spaced points. We assume that signal does not vary to rapidly, so xt ∼ xt+1. The signal
is corrupted by additive noise v, so we obtain the signal

xcor = x+ v.

We choose to model noise as a small and rapidly varying signal. Our goal now is to reconstruct
original signal from the noisy samples. This problem is often called de-noising, or smoothing. This
problem can be formulated as

minimize ||x̂− xcor||22 + φ(x̂),

where x is the variable and function φ is called smoothing objective. It is used to measure lack of
smoothness of the signal. So we try to find a signal that is both close to xcor and also smooth.
Now, let matrix D ∈ <(n−1)×n, be the first order difference matrix (5.15). The simplest de-noising
method uses quadratic smoothing function

φquad(x̂) =

n−1∑
i=1

(x̂i+1 − x̂i)2 = ||Dx̂||22.
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This method smooths the signal putting penalty in the variations of signal. It puts big penalties
on big variations and small penalties on small ones. So any big variation (i.e. edge) in the signal
will be greatly attenuated too. The problem has closed form solution. Now let us consider the
smoothing function

φtvd(x̂) =

n−1∑
i=1

|x̂i+1 − x̂i| = ||Dx̂||1.

This method performs smoothing, putting far less weight on big variations in signal, compared
to quadratic smoother. So it can be used as an edge-preserving reconstruction method. Also it
assigns bigger penalties on small variations pushing them to zero. So reconstructed signal x will
generally have sparse first order derivative, and it will be piece-wise constant. This technique is
called total variation de-noising. In our experiment we created a piece-wise constant signal (with
2 amplitudes ±2 ) and we added noise v, which was drawn from distribution N(0, 0.52I). We used
both Quadratic Smoothing, and Total Variation Denoising to smooth the time series.
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Figure 5.8: Original Signal
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Figure 5.9: Signal corrupted with noise
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Figure 5.10: Reconstructed Signal using TVD
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Figure 5.11: Reconstructed Signal using QS

We observe that quadratic smoothing 5.10 de-noises the signal pretty efficiently, but it also
smooths out the edges of the signal. On the other hand, the edges of the signal are less attenuated
with total variation denoising 5.11, and also the reconstructed signal is piece-wise constant

5.5.2 Numerical example. Trend Filtering
Now let us again consider the signal de-noising problem. Now we will try to smooth out the signal,
putting penalties on the variations of signal’s gradient (so we actually put penalty on the second
order derivative of the signal). Now let matrix D ∈ <(n−2)×n be the second order difference matrix
(5.16). The simplest filter we can design for this purpose is called Hodrick-Prescott filtering, that
is chosen to minimize the objective

(1/2)||y − x||22 + λ||Dx||22.

This technique smooths signal putting very big penalties on big variations of signal’s gradient.
This problem has closed form solution. Now let us consider a technique called trend filtering that
minimizes the objective

(1/2)||y − x||22 + λ||Dx||1.

This method puts much less weight compared to Hodrick-Prescott filter on big variations of signal’s
gradient. However, it puts more weight on small variations pushing them near zero. So the
reconstructed signal will generally have sparse second order derivative, and it will be piece-wise
linear. So l1 trend filter is a technique well-suited to analyzing time-series with an underlying
piece-wise linear trend. In our experiment we used S&P500 index for the period of March 25,
1999, to March 9, 2007 (see [4] for more details). We tried both Hodrick-Precott Filtering and l1
Trend-Filtering, in order to find piece-wise linear trends in the time-series.
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Figure 5.12: Trend Filtering
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From figure 5.12b we observe that l1 Trend Filter gives a piece-wise linear reconstruction of the
signal. On the other hand, Hodrick-Prescott Filtering 5.12c smooths the signal, but reconstruction
is not piece-wise linear.

5.6 Group Lasso

Now, let us consider the case when the ||x||1 regularizer is replaced by
∑N
i=1 ||xi||2, where x =

(x1, . . . , xN ), where xi ∈ <ni . The regularizer here is seperable w.r.t. the partition x1, . . . , xN ,
but not fully seperable. Group Lasso arises in applications (i.e. bioinformatics), where correlated
features can be put into groups. Group lasso, instead of feature selection, performs group selection,
shrinking all the features in a group towards 0.

ADMM for this problem is the same as in Lasso, with the z-update replaced with block soft
thresholding

zk+1
i = S λ

ρ
(xk+1
i + uki ), i = 1, . . . , N. (5.19)

5.6.1 Numerical example. Group Lasso
For our experiment we have created a feature matrix of size 500× 1000. The features are divided
into 50 groups, and each group is chosen to be sparse with probability p = 0.9. The first figure
shows the actual value of the features and the second one the value of the features after applying
group lasso algorithm.
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Figure 5.13: Group Lasso application
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Chapter 6

Distributed ADMM and applications

In this chapter we will explain the problems of consensus and sharing, using ADMM and we ’ll
see expansions of them and applications to machine learning and signal processing.

6.1 Global variable Consensus
Let us first consider the case, where we have a single global variable with the objective split into
N parts

minimize f(x) =

N∑
i=1

fi(x),

where x ∈ <n and fi : <n → <. We refer to fi as the ith term in the objective. The goal is to
solve this problem in such way that each element can be handled by its own processing element.
This problem can be rewritten with local variables xi ∈ <n and a common global variable z

minimize
N∑
i=1

f(xi)

subject to xi − z = 0, i = 1, . . . , N.

(6.1)

This is called as the variable consensus problem, since constraints are that all local variables
should be equal. Consensus can be seen as a technique for splitting objectives

∑N
i=1 fi(xi), which

do not split, due to the variable being shared across terms, into separable objectives
∑N
i=1 fi(xi),

which split easily. Now we will show how to derive ADMM algorithm for this problem. At first,
we form the Augmented Lagrangian for this problem.

Lρ(x1, . . . , xN , z, y) =

N∑
i=1

(
fi(xi) + yTi (xi − z) + (ρ/2)||xi − z||22

)
.

We can see that Lagrangian function is separable along each xi. So ADMM update for xi will be

xk+1
i = argmin

xi

(
fi(xi) + ykTi (xi − zk) + (ρ/2)||xi − zk||22

)
.

Now we will find the solution for z-update.

zk+1 = argmin
z

(
−

N∑
i=1

ykTi z + (ρ/2)

N∑
i=1

||xk+1
i − z||22

)
.
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Using first optimality condition

−
N∑
i=1

∇zykTi z + (ρ/2)

N∑
i=1

∇z||xk+1
i − z||22 = 0

−
N∑
i=1

ykTi + ρ

N∑
i=1

(−xk+1
i + zk+1) = 0

Let us define ᾱ = (1/N)
∑N
i=1 αi. So the equation becomes

−Nȳk − ρNx̄k+1 + ρNzk+1 = 0

zk+1 = (1/ρ)ȳk + x̄k+1. (6.2)

y- update will be given by

yk+1
i = yki + ρ(xk+1

i − zk+1).

Averaging over y-update we get

ȳk+1 = ȳk + ρx̄k+1 − z̄k+1

Using (6.2), we have

ȳk+1 = ȳk + ρx̄k+1 − ȳk − ρx̄k+1

ȳk+1 = 0.

This means that from (6.2)

zk+1 = x̄k+1.

Finally, ADMM algorithm for consensus problem will be

xk+1
i = argmin(fi(xi)) + ykTi (xi − x̄) + (ρ/2)||xi − x̄k||22)

yk+1
i = yki + ρ(xk+1

i − x̄k+1).
(6.3)

Looking at the first part of (6.3), we can see that at each step of the algorithm each node
minimizes its local cost function fi, plus 2 terms that try to pull xi towards x̄, and so drive the
local variables into consensus.

6.1.1 Global variable consensus with regularization
In a simple variation on the global variable consensus problem an objective term g is added, which
usually represents regularization.

N∑
i=1

fi(xi) + g(z) s.t. xi − z = 0, i = 1, . . . , N.

The resulting ADMM algorithm is

xk+1
i = argmin

xi

(
fi(xi) + ykTi (xi − zk) + (ρ/2)||xi − zk||22

)
zk+1 = argmin

z

(
g(z) +

N∑
i=1

(−ykTi z + (ρ/2)||xk+1
i − z||22)

)
yk+1
i = yki + ρ(xk+1

i − zk+1).

(6.4)
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z- update can be put in simpler form as follows

zk+1 = argmin
z

(
g(z)−

N∑
i=1

(ykTi z) + (ρ/2)

N∑
i=1

(xk+1
i )T (xk+1

i )− ρ
N∑
i=1

(xk+1
i )T z + (ρ/2)

N∑
i=1

zT z

)

= argmin
z

(
g(z)−

N∑
i=1

(ykTi )z − ρ
N∑
i=1

(xk+1
i )T z +N(ρ/2)zT z

)
= argmin

z

(
g(z)−N(ȳk)T z −Nρ(x̄k+1)T z +N(ρ/2)zT z

)
= argmin

z

(
g(z) + (Nρ/2)

(
(−2/ρ)(ȳk)T z − 2(x̄k+1)T z + (ρ/2)NzT z

))
= argmin

z

(
g(z) + (Nρ/2)

(
ȳkT ȳk

ρ2
+ zT z + (x̄k+1)T (x̄k+1)− 2(x̄k+1)T z + 2(x̄k+1)T yk − 2

ρ
ȳkT z

))
= argmin

z

(
g(z) + (Nρ/2)||z − x̄k+1 − ȳk/ρ||22

)
.

In the fifth equation we have added some additional terms to bring this problem in the final form.
These terms do not contain z, so they do not affect the solution of the optimization problem at
all. Now let us consider xi update

xk+1
i = argmin

xi

(
fi(xi) + ykTi (xi − z̄k) + (ρ/2)||xi − zk||22

)
= argmin

xi

(
fi(xi) + (ρ/2)

(
2ykTi xi
ρ

− 2ykTi z̄k

ρ
+ xTi xi − 2xTi z

k + zkT z + ykTi yki

))
= argmin

xi

(
fi(xi) + (ρ/2)||xi − zk + yk/ρ||22

)
.

In the second equation we added term ykTi yki . Since it does not contain x, it does not affect the
optimization problem. Now let us define scaled dual variable u = (1/ρ)y. Scaled ADMM for the
global variable consensus with regularization problem will be

xk+1
i = argmin

xi

(
fi(xi) + (ρ/2)||xi − zk + uki ||22

)
zk+1 = argmin

z

(
g(z) + (Nρ/2)||z − x̄k+1 − ūk+1||22)

)
uk+1
i = uki + xk+1

i − zk+1.

(6.5)

6.2 Sharing Problem
Another problem with many applications is the sharing problem

minimize
N∑
i=1

fi(xi) + g

( N∑
i=1

xi

)
, (6.6)

with variables xi ∈ <n, i = 1, . . . , N, where fi is a local cost function for subsystem i, and g is
the shared objective, which takes as argument the sum of the variables. Sharing can be written
in ADMM form as

minimize
N∑
i=1

fi(xi) + g

( N∑
i=1

zi

)
subject to xi − zi = 0, i = 1, . . . , N,

(6.7)
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with variables xi, zi ∈ <n, i = 1, . . . , N . The scaled form of ADMM for sharing is

xk+1
i = argmin

xi

(
fi(xi) + (ρ/2)||xi − zki + uki ||22

)
zk+1
i = argmin

z

(
g(

N∑
i=1

zi) + (ρ/2)

N∑
i=1

||zi − uk+1
i + xk+1

i ||22
)

uk+1
i = uki + xk+1

i − zk+1
i .

(6.8)

z- update requires solving a problem in Nn variables, but we will show that it is possible to carry
it out by solving a problem in just n variables. Let αi = uki +xk+1

i . Then z-update can be written
as

minimize g(Nz̄) + (ρ/2)

N∑
i=1

||zi − αi||22

subject to z̄ = (1/N)

N∑
i=1

zi,

with additional variable z̄ ∈ <n. We will try to solve the problem above minimizing over z1, . . . , zN
with z̄ fixed. This has solution

zi = αi + z̄ − ᾱ, (6.9)

so the z- update can be computed by solving the unconstrained problem

minimize g(Nz̄) + (ρ/2)

N∑
i=1

||z̄ − ᾱ||22

for z̄ ∈ <n and then applying (6.9). Substituting (6.9) for zk+1
i in the u-update gives

uk+1
i = ūk + x̄k+1 − z̄k+1,

which shows that the variables uki are all equal and can be replaced with a dual variable u ∈ <m.
Substituting in the expression for zki in the x-update, the final algorithm becomes

xk+1
i = argmin

xi

(
fi(xi) + (ρ/2)||xi − xki + x̄k − z̄k + uk||22

)
z̄k+1 = argmin

z̄

(
g(Nz̄) + (Nρ/2)

N∑
i=1

||z̄ − uk − x̄k+1||22
)

uk+1
i = uki + xk+1

i − zk+1
i .

(6.10)

A more detailed proof for the derivation of ADMM algorithm for sharing problem can be found
in the appendix.

6.2.1 Optimal Exchange
Here we describe a special case of sharing problem, which is called optimal exchange.

minimize
N∑
i=1

fi(xi)

subject to
N∑
i=1

xi = 0,

(6.11)
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with variables xi ∈ <n, i = 1, . . . , N , where fi represents the cost function for subsystem i. This
is a sharing problem where the shared objective g is the indicator function of the set {0}. ADMM
algorithm for the exchange problem will be

xk+1
i = argmin

xi

(
fi(xi) + (ρ/2)||xi − xki + x̄k + uk||22

)
uk+1 = uk + x̄k+1.

(6.12)

A more detailed proof on the derivation of this algorithm can be found on the appendix.

6.3 Applications on machine learning and signal processing
Now we will see how we can use the consensus and sharing techniques to solve large scale problems
arising in model fitting (regression, classification) and signal processing (compressed sensing). Let
us now make an introduction to model fitting A general convex model fitting can be written in
form

minimize l(Ax− b) + r(x), (6.13)

with parameters x ∈ <n, where A ∈ <m×n is the feature matrix, b ∈ <m is the output vector,
l : <m → < is a convex loss function, and r is a convex regularization function. We assume that l
is additive, so

l(Ax− b) =

m∑
i=1

li(ai
Tx− bi),

where li : < → < is the loss function for the ith training example, ai ∈ <n is the feature vector for
example i, and bi is the response for example i. We also assume the regularization function r is
seperable. The most common examples are r(x) = λ||x||22 (called ridge penalty), and r(x) = λ||x||1
(called lasso penalty).

6.3.1 Regression
A special case of model fitting is Regression. Consider a linear model fitting problem, with
measurements of the form

bi = aTi x+ vi,

where ai is the ith feature vector, b ∈ <, and independent measurement noisesui. r term is used
for regularization, or to impose constraints, coming from our prior knowledge about x. Our goal
is to estimate the parameters of the model x (based on measurements and prior knowledge about
x).

6.3.2 Classification
Many classification problems can also be put in form of the general model fitting problem (6.13),
with A, b, l, and r appropriately chosen. Let pi ∈ <n−1, denote the feature vector of the ith
example and let qi ∈ {−1, 1} denote the binary outcome or class label, for i = 1, . . . ,m. The goal
is to find a weight vector v<n−1 and offset v ∈ <, such that

sign(pTi w + v) = qi

holds for many examples. Expression pTi w + v is called the discriminant function. Expression
µi = qi(p

T
i w + v) is called the margin of the ith training example. Loss functions in the context

of classification are written as functions of margin , so the loss for the ith training example is

li(µi) = li
(
qi(p

T
i w + v)

)
.
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A classification error is made if and only if the margin is negative, so li should be positive and
decreasing for negative arguments and zero or small for positive arguments. To find the parameters
w and v, we minimize the average loss plus a regularization term on weights. Some common loss
functions are hinge loss (1− µi)+, exponential loss exp(−µi), and logistic loss log(1 + exp(−µi)).

6.4 Splitting across examples
Now we will discuss how to solve model fitting problem (6.13) with a very large number of training
examples and a modest number of features. Our goal is to solve the problem, such that a processor
only handles a subset of the training data. This technique is useful, either when are too many
training examples and it is inconvenient to process them on a single machine or when the data is
collected or stored in a distributed fashion. First, we partition A and b by rows,

A =

A1

...
AN

 , b =

 b1...
bN

 ,

with Ai ∈ <mi×n and bi ∈ <mi , where
∑N
i=1mi = m. Thus, Ai and bi represent the ith block

of data and will be handled by the ith processor. We first put the model fitting problem in the
consensus form

minimize
N∑
i=1

li(Aixi − bi) + r(z)

subject to xi − z = 0, i = 1, . . . , N,

(6.14)

where variables xi ∈ <n, and z ∈ <n. Here, li refers to the loss function for the ith block of
data. The problem can now be solved by applying the global variable consensus ADMM with
regularization algorithm

xk+1
i = argmin

xi

(
fi(xi) + (ρ/2)||xi − zk + uki ||22

)
zk+1 = argmin

z

(
r(z) + (Nρ/2)||z − ūk − x̄k+1||22

)
uk+1
i = uki + xk+1

i − zk+1.

(6.15)

The first step, is a l2 regularized model fitting problem, can be carried out in parallel for each data
block. The second step requires gathering variables to compute the average and then perform the
minimization step. Now let us consider some applications of it.

6.4.1 Least squares regression
Let us consider a "tall" ordinary least squares problem (m � n). It can be split in the way we
describe in the beginning of this section.

xk+1
i = argmin

xi

(
(1/2)||Aix− bi||22 + ykTi (xi − x̄k) + (ρ/2)||xi − x̄k||22

)
yk+1
i = yki + ρ(xk+1

i − x̄k+1).

(6.16)

Solving minimization problem for xi, ADMM algorithm becomes

xk+1
i = (ATi Ai + ρI)−1(ATi bi − yi + ρx̄)

yk+1
i = yki + ρ(xk+1

i − x̄k+1).
(6.17)
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6.4.2 Numerical example. Consensus Least squares
For our experiment we have created a tall feature matrix of size 10000×50, and we have distributed
the matrix into 20 blocks. We use consensus least squares algorithm to train our model and we
calculate the residual (difference between actual and fitted model parameters).

Figure 6.1: Consensus Least Regression.
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In figure we observe that the algorithm converges very fast in the first two iterations, but then
the algorithm converges very slow.

6.4.3 Lasso
Now let us consider a "tall" lasso problem. Consensus ADMM algorithm for this problem comes
straight from (6.15)

xk+1
i = argmin

xi

(
||Aixi − bi||22 + (ρ/2)||xi − zk + uki ||22

)
zk+1 = argmin

z

(
λ||z||1 + (Nρ/2)||z − ūk − x̄k+1||22

)
uk+1
i = uki + xk+1

i − zk+1.

(6.18)

xi update takes the form of a Tikhonov-regularized least squares problem, with solution

xk+1
i = (ATi Ai + ρI)−1(ATi bi + ρ(zk − uki )).

z update will be given by the soft thresholding operator as

zk+1 = Sλ/ρN (x̄k+1 + ūk).
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6.4.4 Sparse Logistic Regression
The next problem to solve will be the classification problem, described in , using logistic loss
function li and l1 regularization. ADMM algorithm for this problem will be

xk+1
i = argmin

xi

(
||li(Aixi)− bi||22 + (ρ/2)||xi − zk + uki ||22

)
zk+1 = Sλ/ρN (x̄k+1 + ūk)

uk+1
i = uki + xk+1

i − zk+1.

(6.19)

This is identical to distributed lasso, except for xi update, which here involves a l2 regularized
logistic regression problem that can be efficiently solved by Newton algorithm [5].

6.5 Splitting along features
Now we consider the model fitting problem with a modest number of examples and a large number
of features. Problems like these arise in areas like natural language processing, where the obser-
vations might be a corpus of documents, and features could include all the words that appear in
each document. The goal is to solve these problems, by letting each processor to handle only a
subset of the features. In this section we will show how this can be done by formulating it as
a sharing problem. We partition parameter vector x as x = (x1, . . . , xN ), with xi ∈ <ni , where∑N
i=1 ni = n. Matrix A can be partitioned as A =

[
A1 . . . AN

]
, with Ai ∈ <m×ni , and the

regularization function as r(x) =
∑N
i=1 ri(xi). Model fitting problem becomes

minimize l
( N∑
i=1

Axi − b
)

+

N∑
i=1

ri(xi).

We can put this problem in sharing ADMM form as follows

minimize l
( N∑
i=1

zi − b
)

+

N∑
i=1

ri(xi)

subject to Aixi − zi = 0, i = 1, . . . , N,

(6.20)

Scaled ADMM algorithm for this problem is

xk+1
i = argmin

xi

(
ri(xi) + (ρ/2)||Aixi − zki + uki ||22

)
zk+1 = argmin

z

(
l

( N∑
i=1

zi − b
)

+

N∑
i=1

(ρ/2)||Aixi − zki + uki ||22
)

uk+1
i = uki +Aix

k+1
i − zk+1,

(6.21)

where zi ∈ <m, and z ∈ <mN .

6.5.1 Lasso
Let us consider now the algorithm above for the Lasso problem

xk+1
i = argmin

xi

(
ri(xi) + (ρ/2)||Aixi −Aixki − z̄k +Ax

k
+ uk||22 + λ||x||1

)
z̄k+1 =

1

N + ρ

(
b+ ρAx

k+1
+ ρuk

)
uk+1 = uk +Ax

k+1 − z̄k+1.

(6.22)

Each xi-update is a lasso problem with ni variables, which can be solved by a serial lasso solver(i.e.
CVX) .
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6.5.2 Group Lasso
Let us now consider the group lasso with the feature groups coinciding with the blocks of features,
and l2 (not squared) regularization

minimize (1/2)||Ax− b||22 − λ
N∑
i=1

||xi||2.

The z-update and u-update are the same as in Lasso case but xi- update is different

xk+1
i = argmin

xi

(
(ρ/2)||Aixi −Aixki − z̄k +Ax

k
+ uk||22 + λ||xi||2

)
.

Set v = Aix
k
i + z̄k −Axk − uk. So xi update involves minimizing function

(ρ/2)||Aixi − v||22 + λ||xi||2.

Solution for this problem is, xi = 0, if and only if ||ATi v||2 ≤ λ/ρ. Otherwise, solution will be

xi = (ATi Ai + wI)−1ATi v,

for the value of v > 0 that gives v||xi||2 = λ/ρ. This value can be found using one parameter
search (using bisection for example) over v.
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Chapter 7

Implementation of distributed
ADMM using MPI

7.1 MPI
We have implemented the ADMM algorithm for consensus least squares problem and test it
on GRID computing system of Technical University of Crete [6]. We used the MPI (Message
Passing Interface) framework of MATLAB and the programming was in SPMD [7] (single program,
multiple data) style. Every node of the distributed computing system runs the same code, but
has its own set of local variables. There can be communication between the processors, using the
functions of MPI framework. In the next section we give a description of the algorithm we have
implemented.

7.2 Algorithm Description
At first, we distribute the feature matrix along the processors, as well as the observation vector,
so each node has only to handle its own part of the data.Then at each iteration of the algorithm
we follow the steps below

1. Each processor computes its own x according to the first part of equation (6.16) and sends
that value to the central collector node.

2. Central collector then computes mean value x̄ using the variables that received in the previous
step and broadcasts it to every other processor.

3. Finally, each node update its local dual variable using the second part of equation (6.16).
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Appendix A

ADMM

A.1 Soft thresholding

We want to find

x+
i = argmin

xi

(
λ|xi|+ ρ/2(xi − ui)

)2
.

Function |x| is not differentiable at 0. However we can compute the subgradient of this function.
Subderivative of this function is the interval [−1, 1] at x = 0, 1 for x > 0 and −1 for x < 0. To
minimize the function λ|xi| + ρ/2(xi − ui) , we have to set the gradient (or subgradient) of the
function equal to 0. So:

0 = ∇xi
(
λ|x+

i |+ (ρ/2)(x+
i −ui)

2
)

= λ∇xi |x+
i |+ (ρ/2)∇xi(x+

i −ui)
2 = λ∇xi |x+

i |+ρ(x+
i −ui).

We divide both sides by ρ. This leads to:

λ

ρ
∇xi |x+

i |+ x+
i = ui

We have 3 cases:

1. x+
i > 0,

λ

ρ
+ x+

i = ui. So xi+ = ui −
λ

ρ
. Since x+

i > 0: ui >
λ

ρ

2. x+
i < 0, −λ

ρ
+ x+

i = ui. So xi+ = ui +
λ

ρ
. Since x+

i < 0: ui < −
λ

ρ

3. x+
i = 0,

[
− λ

ρ
,
λ

ρ

]
= ui ⇒ |ui| <

λ

ρ

Following the above results, we define as soft thresholding, or shrinkage operator the below:

Sλ
ρ

(ui) =



ui −
λ

ρ
, ui >

λ

ρ

0, |ui| ≤
λ

ρ

ui +
λ

ρ
, ui < −

λ

ρ
.

(A.1)
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A.2 Quadratic function with equality constraints
We will show analytically here how we computed the optimality conditions for the problem of min-
imizing a quadratic function (1/2)xTPx+ qTx over an affine set {x|Ax = b} The x-minimization
step of ADMM algorithm for this problem is

xk+1 = argmin
x

(
1

2
xTPx+ qTx+

ρ

2
‖x− zk + uk‖22

)
Primal optimality condition: Ax = b. The dual optimality condition for this problem will be

0 = ∇x
(

1

2
xTPx+qTx+

ρ

2
(x−zk+uk)T

(
x−zk+uk

)
+vT (Ax−b)

)
= Px+q+ρx−ρz+ρuk+AT v

This leads to

(P + ρI)x+AT v = −q + ρ(z − u). (A.2)

The solution of the problem is given by the system of linear equations below[
ρI + P AT

A 0

] [
x

v

]
=

[
−q + ρ(z − u)

b

]
.

A.3 Least Absolute Deviations
We will show analytically here how we derived the xk+1 and zk+1 for ADMM algorithm for Least
Absolute Deviations.

xk+1 = argmin
x

(
ρ

2
‖Axk − zk − b+ uk‖22

)
.

This is a Least-Squares problem. So:

xk+1 =
(
ATA

)−1
AT
(
b+ z − uk

)
. (A.3)

According to Scaled ADMM algorithm zk+1 for least absolute deviations will be:

zk+1 = argmin
z

(
‖z‖1 +

ρ

2
‖Axk+1 − z − b+ uk‖22

)
We have that

0 = ∇z(‖z‖1 +
ρ

2
(Axk+1 − z − b+ uk)′(Axk+1 − z − b+ uk))

= ∇z(‖z‖1) +
ρ

2
∇z
(
2xTk+1AT z + zT z + 2bT z − 2uTkz

)
= ∇z(‖z‖1)− ρAxk+1 + ρz + ρb− ρuk = ∇z(‖z‖1)− ρAxk+1 + ρz + ρb− ρuk.

This leads to

∇z(‖z‖1) + ρz = ρAxk+1 − ρb+ ρuk

1

ρ
∇z(‖z‖1) + z = Axk+1 − b+ uk.

We need to consider the following 3 cases:
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1. If zi > 0, zi = (Axk+1)i − bi + uki −
1

ρ
. So (Axk+1)i − bi + uki >

1

ρ

2. If zi < 0, zi = (Axk+1)i − bi + uki +
1

ρ
. So (Axk+1)i − bi + uki < −

1

ρ

3. If zi = 0, [− 1
ρ ,

1
ρ ] = (Axk+1)i − bi + uki . So |(Axk+1)i − bi + uki | <

1

ρ

Following the above results we have

zk+1 = S 1
ρ
(Axk+1 − b+ uk). (A.4)

A.4 Huber Fitting
Now we will give a proof for z-update in ADMM in Huber Fitting problem. z-update is given by

zk+1 = argmin

( m∑
i=1

ghub(zi) +
ρ

2
||z − w||22

)
, where, w = Axk+1 + uk − b.

This minimization can be split at component level and be performed individually for each zi, i =
1, . . . ,m. We have to consider the 3 following cases

1. Suppose |zi| ≤ 1. Then ghub(zi) = z2
i /2.

zk+1
i = argmin

zi

(z2
i /2 + (ρ/2)(zi − wi)2)

zk+1
i = argmin

zi

(z2
i /2 + (ρ/2)z2

i + (ρ/2)w2
i − ρwizi).

To derive the solution, we have to find where the gradient becomes zero.

∇(z2
i /2 + (ρ/2)z2

i + (ρ/2)w2
i − ρziwi) = 0.

This leads to

0 = zk+1
i + ρzi − ρwi

zk+1
i = ρ

wi
(1 + ρ)

.

Since we assumed |zi| ≤ 1, then |wi| ≤
1 + ρ

ρ
.

2. Now let zi > 1 . Then ghub(zi) = |zi| = zi This means that

(zk+1)i = argmin
zi

(zi + (ρ/2)z2
i + (ρ/2)w2

i − 2ρwizi).

Setting gradient to 0, we get

0 = 1 + ρzk+1
i − ρwi. Finally, zk+1

i = wi −
1

ρ
.

Since we assumed |zi| > 1, then

wi −
1

ρ
> 0, and wi >

1 + ρ

ρ
.
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3. Now we assume zi < 1. So ghub(zi) = −zi. Setting gradient to 0, we get

0 = −1 + ρzk+1
i − ρwi. Finally, zk+1

i = wi +
1

ρ
.

Since we assumed |zi| < 1, then

wi +
1

ρ
< 0, and wi < −

1 + ρ

ρ
.

So z-update is

zk+1
i =



wi −
1

ρ
, wi >

1 + ρ

ρ
,

ρ
wi

1 + ρ
, |wi| ≤

1 + ρ

ρ
,

wi +
1

ρ
, wi < −

1 + ρ

ρ
.

(A.5)

A.5 Basis Pursuit
We will show how we derived zk+1 of ADMM algorithm for Basis Pursuit problem.

zk+1 = argmin
z

(
‖z‖1 +

ρ

2
‖xk+1 − z + uk‖22

)
.

We have that:

0 = ∇z‖z‖1 +
ρ

2
∇z(xk+1 − z + uk)T (xk+1 − z + uk)

= ∇z‖z‖1 +
ρ

2
∇z(−2u(k+1)T z − 2x(k+1)T z + zT z)

= ∇z‖z‖1 − ρxk+1 − ρuk + ρz.

This leads to

1

ρ
∇z‖z‖1 + z = xk+1 + uk.

We have the 3 following cases

1. If zi > 0, zi = xk+1
i + uki − 1

ρ . So x
k+1
i + uki >

1
ρ

2. If zi < 0, zi = xk+1
i + uki + 1

ρ . So x
k+1
i + uki < − 1

ρ

3. If zi = 0, [− 1
ρ ,

1
ρ ] = xk+1

i + uki . So |x
k+1
i + uki | < 1

ρ

Following the above results

zk+1 = S 1
ρ
(xk+1 + uk). (A.6)
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A.6 Lasso

In this section we will show analytically how we derived the xk+1, and the zk+1 step of the ADMM
algorithm for Lasso(l1-regularized least-squares) problem.

xk+1 = argmin
x

(
1

2
‖Ax− b‖22 +

ρ

2
‖x− zk + uk‖22

)
We have that

0 =
1

2
∇x(Ax− b)T (Ax− b) +

ρ

2
∇x(x− zk + uk)T (x− zk + uk)

=
1

2
∇x(xTATAx− 2xTAT b) +

ρ

2
∇x(xTx− 2zkTx+ 2ukTx)

= ATAx−AT b+ ρx− ρzk + ρuk.

This leads to

(ATA+ ρI)x = AT b+ ρ(zk − uk),

which is the solution of a linear system Mx = c, with M = ATA+ ρI, and c = AT b+ ρ(zk −uk).

xk+1 = (ATA+ ρI)−1(AT b+ ρ(zk − uk)). (A.7)

For zk+1 step we have

zk+1 = argmin
z

(λ‖z‖1 +
ρ

2
‖xk+1 − z + uk‖22)

We have that

0 = λ∇z‖zk‖1 +
ρ

2
∇z(xk+1 − z + uk)T (xk+1 − z + uk)

= λ∇z‖z‖1 +
ρ

2
∇z(zT z − 2x(k+1)T z − 2ukT z)

= λ∇z‖z‖1 − ρxk+1 + ρz − ρuk

= λ∇z‖z‖1 − ρxk+1 + ρz − ρuk,

We divide by ρ each side to get

λ

ρ
∇z‖z‖1 + z = xk+1 + uk

We have the 3 following cases

1. If zi > 0, zi = xk+1
i + uki − λ

ρ . So x
k+1
i + uki >

λ
ρ

2. If zi < 0, zi = xk+1
i + uki + λ

ρ . So x
k+1
i + uki < −λρ

3. If zi = 0, [−λρ ,
λ
ρ ] = xk+1

i + uki . So |x
k+1
i + uki | < λ

ρ

Following the above results

zk+1 = Sλ
ρ

(xk+1 + uk). (A.8)
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A.7 Generalized Lasso

In this section we will show analytically how we derived the xk+1, and the zk+1 step of the ADMM
algorithm for generalized lasso problem.

xk+1 = argmin
x

(
1

2
‖x− b‖22 +

ρ

2
‖Fx− zk + uk‖22

)
We have that

0 =
1

2
∇x(x− b)T (x− b) +

ρ

2
∇x(Fx− zk + uk)T (Fx− zk + uk)

=
1

2
∇x(xTx− 2xT b) +

ρ

2
∇x(xTFTFx− 2zkTFx+ 2ukTFx)

= x− b+ ρFTFx− ρFT zk + ρFTuk.

This leads to

(I + ρFTF )x = b+ ρFT (zk − uk),

which is the solution of a linear system Mx = c, with M = I + ρFTF , and c = b+ ρFT (zk−uk).

xk+1 = (I + ρFTF )−1(b+ ρ(zk − uk)). (A.9)

For zk+1 step we have:

zk+1 = argmin
z

(λ‖z‖1 +
ρ

2
‖Fxk+1 − z + uk‖22)

We have that

0 = λ∇z‖zk‖1 +
ρ

2
∇z(Fxk+1 − z + uk)T (Fxk+1 − z + uk)

= λ∇z‖z‖1 +
ρ

2
∇z(zT z − 2x(k+1)TFT z − 2ukT z)

= λ∇z‖z‖1 − ρFxk+1 + ρz − ρuk.

Dividing 2 sides of the equation by ρ

λ

ρ
∇z‖z‖1 + z = Fxk+1 + uk.

We have the 3 following cases

1. If z > 0, z = Fxk+1 + uk − λ
ρ . So Fx

k+1 + uk > λ
ρ

2. If z < 0, z = Fxk+1 + uk + λ
ρ . So Fx

k+1 + uk < −λρ

3. If z = 0, [−λρ ,
λ
ρ ] = Fxk+1 + uk. So |Fxk+1 + uk| < λ

ρ

Following the above results

zk+1 = Sλ
ρ

(Fxk+1 + uk). (A.10)
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Appendix B

MPI

We will now describe the most basic functions of MPI in Matlab and their functionality.

• labSend: A node calls this function to send data to another node. It’s a non-blocking
function, which means that a processor after sending data can continue executing commands,
even if the receiving lab hasn’t received the data.

• labReceive: A node calls this function to receive data sent by another node (using labsend
function). It is a blocking function, which means that a processor cannot continue executing
commands until reception of the data is complete.

• labBroadcast: The labBroadcast() function is used to send data from one node to all other
nodes. Each processor is blocked until it receives the data.

• labBarrier: This function that can be used to block execution of each node until all nodes
reach the labBarrier() statement. It can be used for synchronization, but it is not often
necessary (because as we said before labReceive and labBroadcast are blocking functions).

• labindex: Each node is assigned a unique ID number(from 1 to the total number of nodes).
labindex() returns this number. It can be used to assign specific commands to a node.

• numlabs: This function returns the total number of nodes.

For source code examples and tutorial of how to run these examples on a distributed computing
system a useful link is [8]

Here is the code for consensus LS-ADMM
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%%%%%%%% M− f i l e f o r p a r a l l e l ADMM LASSO CONSENSUS problem . %%%%%%%

func t i on e_time = p_ADMM(M, sparse_x )

p = 100 ;
rho = 1 ; % Penalty f a c t o r
n = 50 ; % Dimension o f minimizat ion va r i ab l e x
N = M∗p ; % Number o f equat ions o f l e a s t squares problem
%l = 1 ; % Regu la r i z a t i on parameter
A = randn (N/numlabs , n ) ; % Di s t r ibu t ed matrix A

%tmp_x = 5 ∗ randn (n , 1 ) ; pos_x = [ abs (tmp_x) > 6 ] ;
%sparse_x = tmp_x .∗ pos_x ; % spar s e parameter vec to r

w = 2 ∗ randn (N/numlabs , 1 ) ;
b = A ∗ sparse_x + w;

f o r i i =1:M/numlabs
invA ( : , : , i i ) = ( A( ( i i − 1)∗p + 1 : ( i i − 1)∗p + p , : ) ' ∗ A(( i i − 1)∗p + 1 : ( i i − 1)∗p + p , : ) + rho ∗ eye (n) )^(−1);
Ab( : , i i ) = invA ( : , : , i i ) ∗ A(( i i − 1)∗p + 1 : ( i i − 1)∗p + p , : ) ' ∗ b ( ( i i − 1)∗p + 1 : ( i i − 1)∗p + p ) ;

end

i t e r s = 1000 ;
x_bar = ze ro s (n , 1 ) ; %I n i t i a l x_bar
y = rand (n ,M/numlabs ) ; %I n i t i a l vec to r y
x = ze ro s (n ,M/numlabs ) ;

t i c ;
l abBa r r i e r ( ) ; %Block u n t i l l a l l l ab s reach that po int . Synchron izat ion po int #1.

i t e r = 1 ;
whi l e (1 )

i t e r = i t e r + 1 ;

f o r i i =1:M/numlabs
x ( : , i i ) = Ab( : , i i ) + rho∗ invA ( : , : , i i ) ∗( x_bar − y ( : , i i ) ) ; %Update l o c a l x

end

l abBa r r i e r ( ) ; %Block u n t i l l a l l l ab s reach that po int . Synchron izat ion po int #2.

i f ( l ab index ~= 1) %This b lock o f code i s executed by the nodes who update the l o c a l va lue o f x .

labSend (x , 1 ) ; %Send value o f x from each l o c a l node to node with index 1

x_bar = labBroadcast ( 1 ) ; %Receive g l oba l v a r i a b l e x_bar

e l s e %This b lock o f code i s executed by the node who computes the g l oba l va lue o f x_bar .
n l sp =M/numlabs ;
x_b ( : , 1 : n l sp ) = x ;

f o r i i = 2 : numlabs
x_b ( : , ( i i −1)∗ nl sp + 1 : i i ∗ nl sp ) = labRece ive ( i i ) ; %Receive va lue o f x from each l o c a l node

end

x_bar = mean(x_b ' ) ' ; %Compute g l oba l v a r i a b l e x_bar
x_bar = labBroadcast (1 , x_bar ) ; %Broadcast g l oba l v a r i ab l e x_bar

end

f o r i i =1:M/numlabs
y ( : , i i ) = y ( : , i i ) + rho ∗( x ( : , i i ) − x_bar ) ; %Update l o c a l va lue o f y .

end

l abBa r r i e r ( ) ; %Block u n t i l l a l l l ab s reach that po int . Synchron izat ion po int #3.
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i f ( i t e r == i t e r s )
break ;
end

end

e_time = toc ;
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