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Abstract

In this work we consider the problem of achieving information-theoretic security with practical

coding complexity. Specifically, we consider a transmitter, a receiver, and an eavesdropper where

the communication channels between the transmitter and the receiver and between the transmitter

and the eavesdropper are both binary erasure channels. The objective is the development of a

practical coding scheme that attains maximum transmission rate between the transmitter and the

receiver and, simultaneously, complete protection of the transmitted data from the eavesdropper.

We utilize polar codes which are known to achieve the capacity of any symmetric binary-input

discrete memoryless channel. We focus on the binary erasure channel and present the pertinent

polar encoding and decoding algorithms. Finally, we show how polar coding can be used for the

wire-tap binary erasure channel, achieving maximum transmission rate and complete protection.
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1 Introduction

Rapid advances in wireless technology are quickly taken as towards a pervasively connected word

in which a vast array of wireless devices, from iPhones to biosensors, seamlessly communicate with

each other. Fostered by the rapid proliferation of wireless communication devices, technologies, and

applications, the need for reliable and secure data communication over wireless networks is more

important than ever before. Due to its broadcast nature, wireless communication is particularly

susceptible to eavesdropping.

Physical-layer security techniques have a rather long history. The notion of information theoretic

security was introduced by Shannon [1], and later extended by Wyner to noisy channels [2]. Shannon

provided the first truly scientific treatment of secrecy in [1], in which a secret key is considered to

protect confidential messages. Wyner proposed an alternative approach to secure communication

schemes in his paper [2], where he introduced the so-called wiretap channel model.

In this setting, Alice wishes to send messages to Bob through a communication channel C1, called

the main channel, but her transmissions also reach an adversary Eve through another channel C2,

called the wiretap channel. This is illustrated in Fig. 1, wherein Uk denotes a k-bit message that Alice

wishes to communicate to Bob. We think of Uk as a data sequence which consists of independent

copies of the binary random variable U , where Pr{U = 0} = Pr{U = 1} = 1
2 . The encoder maps Uk

into a sequence Xn of n channel symbols. This sequence is transmitted across the main channel and

the wiretap channel resulting in the corresponding channel outputs Yn and Zn. Finally the decoder

maps Yn into an estimate Ûk of the original message.

The goal is to design a coding scheme − namely, an encoding algorithm and an decoding algorithm

− that makes it possible to communicate both reliably and securely, as the message length k becomes

large. Reliability is measured in terms of the probability of error in recovering the message. Specifically,

the objective is to satisfy the following:

Reliability Condition: lim
k→∞

Pr{Ûk 6= Uk} = 0. (1)

where the probability is over all the relevant coin tosses in the system: in the generation of Uk, in the

encoder, and in the main channel. Security is usually measured in terms of the normalized mutual
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Figure 1: Wiretap channel model.

information between the message Uk and Eve’s observations Zn. Specifically, we are interested in

encoding algorithms that satisfy the following:

Security Condition: lim
k→∞

I(Uk;Zn)

k
= 0. (2)

Note that I(Uk;Zn) is equal to the difference between the a priori entropy H(Uk) and the conditional

entropy H(Uk | Zn). Intuitively, (2) means that observing Zn does not provide any information about

Uk beyond what is available a priori, as compared to the message length k.

Wyner demonstrated that secure communication is possible without sharing a secret key and

showed that, although a wire-tapper may know the encoding scheme used at the transmitter and the

decoding scheme used by the legitimate receiver, he can be kept ignorant solely by the greater noise

present in his received signal. He measured confidentiality by equivocation (i.e. the level of ignorance

of the eavesdropper with respect to the confidential message) and determined the rate-equivocation

region. He considered a special case of the system in Fig. 1 where both C1 and C2 are discrete

memoryless channels (DMCs) and, moreover, C2 is degraded with respect to C1 and determined the

secrecy capacity for a wiretap channel, which has the following meaning. For all ε > 0, there exist

coding schemes of information rate R ≥ Cs − ε that satisfy (1) and (2); conversely, it is not possible

to satisfy both (1) and (2) at rates greater than Cs.

Construction of explicit and practical secure encoders and decoders whose performance is as good

as promised by Wyner is still an unsolved problem in the general case. More recently, low-density

parity-check (LDPC) based coding design has been studied for binary erasure wiretap channels in [3]
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and [4] and type II wiretap channels in [5]. In [7] and [8], it is shown that polar codes, introduced

by Arikan [6], can be constructed to achieve the secrecy capacity for the binary-input memoryless

degraded wiretap channel when both the main and eavesdropper channels are arbitrary symmetric

channels and the marginal channel to the eavesdropper is physically degraded with respect to the

marginal channel to the legitimate user. Similar works using polar codes for the wiretap channel are

provided in [9], [10].

In this work, we focus on secure coding for a class of wiretap channels, in which the main channel

and the wiretap channel are binary erasure channels (BECs). We use the polar coding technique of

Arikan [6] to achieve the secrecy capacity over this channel with O(n log n) encoding and decoding

complexity, where n is the code length.
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2 Secrecy Capacity

2.1 The Wiretap Communication Model

We consider the conventional wiretap channel illustrated in Fig. 1, where the transmitter sends a

confidential message to a legitimate receiver via the main channel in the presence of an eavesdropper,

who listens to the message through its own channel.

The message Uk is chosen uniformly from a set of size k. Next, the message is encoded to a

codeword Xn with a blocklength n over an alphabet X . Our study specializes of the binary alphabet

(X .
= {0, 1}). The ratio k

n is the rate of the code.

The main channel is a discrete memoryless channel with finite input alphabet X , finite output

alphabet Y, and transition probability P (y | x), x ∈ X , y ∈ Y. Since the channel is memoryless, the

transition probability for a sequence of transmitted symbols x = [x1, x2, · · · , xn] and received symbols

y = [y1, y2, · · · , yn] is

P (y | x) =

n∏
i=1

P (yi | xi). (3)

The wiretap channel is also a discrete memoryless channel with input alphabet Y, finite output alpha-

bet Z and and transition probability P (z | x), y ∈ Y, z ∈ Z.

Given a channel C1 = WM (y | x), we say that another channel C2 = WMW (z | x) is degraded with

respect to C1 if there exist a third channel C3 = WW (z | y) such that C2 is the cascade of C1 and

C3. The cascade of the main channel and the wiretap channel is another memoryless channel with

transition probability

WMW (z | x) =
∑
y∈Y

WW (z | y)WM (y | x). (4)

The decoder is a mapping

fD : Yn → Uk. (5)

2.2 Binary-input symmetric-output memoryless channels

A DMC with a transition probability p, binary input alphabet X , and output alphabet Y is said to

be symmetric if there exists a permutation π over Y such that
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1)The inverse permutation π−1 is equal to π, i.e.,

π−1(y) = π(y)

for all y ∈ Y.

2)The transition probability p satisfies

p(y | 0) = p(π(y) | 1)

for all y ∈ Y.

The capacity of a symmetric channel is given by

C(W ) = H(X)−H(X|Y ) = log2 |X| −H(X|Y ). (6)

where the random variable X at the input of the channel is uniform over X , and Y is the corresponding

random variable at the channel output.

Gallager proved that the channel capacity of a symmetric channel can be achieved using equi-

probable inputs. Therefore, the capacity-achieving input distribution of a binary-input output-symmetric

channel is uniform.

Two examples of binary-input symmetric-output memoryless channels are the binary symmetric

channel (BSC) and the binary erasure channel (BEC).

2.2.1 Binary Symmetric Channel (BSC)

The binary symmetric channel, shown in Fig. 2, transmits one of two symbols, the binary digits

X ∈ {0, 1}, and returns one of two symbols Y ∈ {0, 1}. The channel flips a transmitted bit with

probability ε and with probability 1− ε the symbol Y is the symbol that was sent. The parameter ε

is called the crossover probability of the channel.

As stated previously, a binary input channel is symmetric if both input symbols are corrupted

equally by the channel. The BSC channel is symmetric since P (Y = 0|X = 1) = P (Y = 1|X = 0)

and P (Y = 0|X = 0) = P (Y = 1|X = 1).
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Figure 2: BSC(ε).

It can be proved that the capacity of BSC is:

C(ε) = 1− h2(ε), (7)

where h2(ε) = −ε log2(ε)− (1− ε) log2(1− ε) is the binary entropy function.

Note that, whenever ε2 ≥ ε1, the channel C2 = BSC(ε2) is degraded with respect to C1 = BSC(ε1).

2.2.2 Binary Erasure Channel (BEC)

The binary erasure channel, shown in Fig. 3, transmits one of two symbols, usually the binary digits

X ∈ {0, 1}. Once a bit is transmitted, the receiver will obtain either the bit correctly or a symbol that

does not contain any information. In other words, BEC does not introduce incorrect information. We

observe that the BEC is symmetric and erases a bit with erasure probability ε.

It can be proved that the capacity of BEC is:

C(ε) = 1− ε. (8)

This is a convenient form and linear to the channel’s only parameter.
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2.3 The Secrecy Capacity of the Wiretap Channel

The secrecy capacity of the wiretap-channel system in Fig. 1 is defined as follows. First, we assume

that the message is uniformly random over {0, 1}k. Then Cs is the supremum over all rates R = k
n (in

bits per channel use) such that there exist coding schemes of rate R satisfying conditions (1) and (2).

For the general case where C1 and C2 are arbitrary DMCs, computing the secrecy capacity is a difficult

problem. Let X denote the single-letter input to C1 and C2, and Y and Z denote the corresponding

single-letter outputs. The best known expression for the secrecy capacity Cs, given by Csiszár and

Körner in [11], is

Cs = max
U

(
I(U ;Y )− I(U ;Z)

)
, (9)

where the maximum is taken over all random variables U such that U → X → (Y,Z) is a Markov

chain. The problem is that this maximization is often difficult to evaluate and there is no simpler

expression for the secrecy capacity even when C1 and C2 are both strongly symmetric, unless additional

constraints are satisfied.

However, when C1 and C2 are symmetric and C2 is degraded with respect to C1, a simple expression

for Cs was given by Leung-Yan-Cheong in [12]. It is shown that in this case

Cs = C1 − C2 = H(X | Z)−H(X | Y ) (10)

where X is uniform over X . In particular, if the main channel is BSC(ε1) while the wiretap channel is

BSC(ε2), with ε2 ≥ ε1, then the secrecy capacity is given by h2(ε2)− h2(ε1), where h2(·) is the binary

14



entropy function. Similarly, if the main channel is BEC(ε1) while the wiretap channel is BEC(ε2),

with ε2 ≥ ε1, then the secrecy capacity is given by ε2 − ε1.
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3 Polar Codes

3.1 Symmetric Capacity

We consider a discrete memoryless channel with input alphabet X = {0, 1} and output alphabet Y.

Then, channel polarization is a strategy to achieve the symmetric capacity of the channel, defined as

I(W )
.
=
∑
y∈Y

∑
x∈X

W (y|x) log2
W (y|x)

1
2W (y|0) + 1

2W (y|1)
(11)

where W denotes a B-DMC. The symmetric capacity of the channel is equal to the Shannon capacity

(i.e., the maximum achievable rate subject to arbitrarily low bit detection error probability) if we

enforce the input distribution to be uniform (P(X = 0) = P(X = 1) = 1
2 where X is the random

variable modeling channel input). Therefore, if the channel is symmetric, then polar codes achieve

Shannon capacity.

3.2 Bhattacharyya Parameter

In addition to symmetric capacity which is a measure of the maximum possible reliable transmission

rate through channel with uniform input, we also introduce the Bhattacharyya parameter of a B-DMC

W which is defined as

Z(W )
.
=
∑
y∈Y

√
W (y|0)W (y|1), (12)

measures the reliability of the channel, equals the sum over all output combinations of those geometric

means, and constitutes an upper bound on the error probability of an uncoded bit transmission.

Symmetric capacity and Bhattacharyya parameter are related by the formulas

I(W ) ≥ log2
2

1 + Z(W )
, (13)

I(W ) ≤
√

1− Z(W )2. (14)

Proposition 1: The first corollary that can be driven by (13) and (14) is that for any W with

I(W ) = 1 or 0 we have that Z(W ) = 0 or 1, respectively, and vice versa.

16



3.3 Channel Polarization

Given N independent copies of one B-DMC W , the idea behind channel polarization is to synthesize

a new set of B-DMC’s {W (i)
N : 1 ≤ i ≤ N} where some of them have absolute reliability.

From the implementation’s point of view the channel polarization process consists of many levels.

The root of this multilevel recursive operation is realized by the following simple scheme. We set x1

(the bit transmitted through the top copy of W ) to be a function of both u1 and u2 (sum mod-2 a.k.a.

XOR) while x2 equals u2. By combining a pair of copies of W, we construct a new composite channel

denoted as W2 with two bits as input and two bits as output, as shown in Fig. 4.

At the random ith level of polarization we combine two channels WN
2

, as it is illustrated by Fig. 5.

For an array of inputs {ui}Ni=1 we obtain a new one ({υi}Ni=1) by replacing the odd indexed u’s with

the XOR of consecutive pairs. That is, the odd indexed υ2i−1 will be equal to ui ⊕ ui+1 for each

i = 1, . . . , N2 . The rest u’s (that are even indexed) are passed to the reverse shuffle operator as

they are. Reverse shuffling distincts the odd and even indexed elements and passes them to separate

channels WN
2

; one channel for the odd indexed u’s (top) and one for the even indexed u’s (bottom).

Regarding the reverse shuffle, it is interesting to note that grouping the odd and the even indexed

inputs is a permutation that can be further comprehended as re-ordering the tuple of bits that is

associated with each input. This tuple is the binary expression of i− 1. For instance, the first input

(υ1) is associated with the all-zero tuple of length n = log2N , that is υ1 → υ00...0. Accordingly,

the last input is associated with the all-one tuple, that is υN → υ11...1. In general, υb1b2...bn ← υi

where i = 1 +
∑n

j=1 bj2
n−j . Hence, reverse shuffle changes the order of this bit string as follows:

υb1b2...bn = υb2b3...bnb1 . In other words, RN cyclically right-shifts by one the bit-indices of the elements

of a left operand uN1 .

The essential transformation after log2(N) levels is linear. By this, we mean that before transmit-

ting the information word uN1 we first apply a linear transformation by multiplying it (from the right)

with a matrix denoted as GN . Each entry of the resulting codeword xN1 = uN1 GN is then transmitted

independently though each copy of W. As we can see, transmitting a word uN1 through the composite

channel WN is equivalent to transmitting xN1 through N independent copies of channel W. An analysis

via linear algebra results in GN = BNF
⊗n where BN is a permutation matrix and

17
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The permutation matrix BN inverts the bits of the tuple that each input is associated with.

Specifically, if pN1 = qN1 BN , then pb1b2...bn = qbnbn−1...b1 where n = log2N .

The transition probabilities of the two channels WN and WN are related by

WN (yN1 |uN1 ) = WN (yN1 |uN1 GN ) (15)

Having synthesized the vector channel WN out of WN , the next step of channel polarization is to

split WN back into a set of N binary-input coordinate channels W
(i)
N : X → YN × X i−1, 1 ≤ i ≤ N ,

defined by the transition probabilities

W
(i)
N (yN1 , u

i−1
1 |ui)

.
=

∑
uN
i+1∈XN−1

1

2N−1
WN (yN1 |uN1 ) (16)

where (yN1 , u
i−1
1 ) donates the output of W

(i)
N and ui its input, as shown in Fig. 6. Intuitively, if one

considers a genie-aided decoder in which the ith decision element estimates ui after observing yN1 and

the past channel inputs ui−11 , then (if uN1 is a priori uniform) W
(i)
N is the effective channel seen by the

ith decision element.

The encoder is implemented as shown in Fig. 5. The complexity is derived with the help of Master

18
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Theorem

T (N) =
N

2
+ Θ(N) + 2T

(
N

2

)
⇒

T (N) = Θ(N log2N).

(17)

3.4 Code Construction

The theorem which the entire study is based on is the following: For any B-DMC W, the channels

{W (i)
N } polarize in the sense that, for any fixed δ ∈ (0, 1), as N goes to infinity through powers of two,

the fraction of indices i ∈ {1 . . . , N} for which I(W
(i)
N ) ∈ (1 − δ, 1] goes to I(W) and the fraction for

which I(W
(i)
N ) ∈ [0, δ) goes to 1− I(W ).
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The problem that we face as code designers is to determine N (the block length), A(the set of

the indices to the good channels), K (the number of the good channels), and uAc (the value of the

frozen bits - Ac is the compliment of A over {1, . . . , N}). Regarding to what values frozen bits take,

the resulting codeword will be a coset of uAGN (A) : xN1 = uAGN (A)⊕ uAcGN (Ac) - where by GN (A)

and GN (Ac) we denote the matrices consisting only of the rows of GN with index in the set A or Ac,

respectively, e.g. by GN ({4, 6, 7, 8}) we refer to the fourth, sixth, seventh, and eighth rows of GN .

The answers to the previous questions (N?, A?, K?, uAc?) are: the larger N is the better in

terms of convergence. This is based on the fact that the fraction of channels that have not yet

polarized is vanishing as N grows to infinity. Hence, it is more likely that we choose channels with

symmetric information close to one. K is a function of N and the rate that we choose to transmit,

namely K = bRNc. The information set A is chosen as the K-element subset of {1, . . . , N} such that

Z(W
(i)
N ) ≤ Z(W

(j)
N ) for all i ∈ A, j ∈ Ac (this metric will prove to be capacity achieving). Finally, uAc

can be chosen arbitrarily. We have this degree of freedom due to the fact that all the distances are

preserved for any coset code. That makes those coset codes equivalent to the original (uAc = 0N−K).

Notice that the receiver must have knowledge of uAc in order to decode appropriately.

3.5 Successive Cancellation Decoding

The decoder proposed in [6] is called successive cancellation (SC) decoder and its role is to decide

with the rule of closest neighbor on ith bit (1 ≤ i ≤ N) that transmitted over W
(i)
N . A SC decoder

generates its decision ûN1 by computing

ûi ,


ui , if i ∈ Ac

hi(y
N
1 , û

i−1
1 ) , if i ∈ A

(18)

in the order i from 1 to N , where hi : YN ×X i−1 → X , i ∈ A, are decision functions defined as

hi(y
N
1 , û

i−1
1 ) ,


0 , if WN (yN1 , u

i−1
1 |0) ≥WN (yN1 |ui−11 |1)

1 , otherwise

(19)

for all yN1 ∈ YN , ûi−11 ∈ X i−1.
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In this work we focus on the special case of BEC. For the case that W is a BEC with an erasure

probability ε, the Bhattacharyya parameters Z(W
(i)
N ) needed for the construction of the sets A and

Ac can be computed efficiently through the recursion

Z(W
(2j−1)
N ) = 2Z(W

(j)
N/2)− Z

(
W

(j)
N/2

)2
Z(W

(2j)
N ) = Z

(
W

(j)
N/2

)2 (20)

with Z(W
(1)
1 ).

Moreover, we can calculate the transition probabilities at (19) by the efficient recursive formulas

(21) and (22) and an implementation that reduces the asymptotic complexity to O(N logN) for both

time and space.

W
(2i−1)
2N (y2N1 , u2i−21 | u2i−1) =∑

u2i

1

2
W

(i)
N (yN1 , u

2i−2
1,o ⊕ u2i−21,e | u2i−1 ⊕ u2i) ·W (i)

N (y2NN+1, u
2i−2
1,e | u2i) (21)

W
(2i)
2N (y2N1 , u2i−11 | u2i) =

1

2
W

(i)
N (yN1 , u

2i−2
1,o ⊕ u2i−21,e | u2i−1 ⊕ u2i) ·W (i)

N (y2NN+1, u
2i−2
1,e | u2i) (22)

We may visualize the decoder as consisting of N decision elements (DEs), for each source element

ui. O(N logN) space is required to store the values that can be reused (in fact, every value will be
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reused). To see where the computational saving will come from, we inspect (21) and (22) and note

that each value in the pair

(
W

(2i−1)
2N (y2N1 , u2i−21 | u2i−1) ,W (2i)

2N (y2N1 , u2i−11 | u2i)
)

is assembled from the same pair of values

(
W

(i)
N (yN1 , u

2i−2
1,o ⊕ u2i−21,e | u2i−1 ⊕ u2i) ,W

(i)
N (y2NN+1, u

2i−2
1,e | u2i)

)

The size of the matrices in which these values will be stored is N × (log2N + 1). The number of the

elements are exactly as many as the distinct W
(i)
N that will be eventually calculated. Each cell is filled

after Θ(1) calculations which implies that the complexity to decode each word is O(N logN).

For the general case of a B-DMC W, we can calculate the likelihood ratios (LRs)

L
(i)
N (yN1 , u

i−1
1 )

.
=
WN (yN1 , u

i−1
1 |0)

WN (yN1 |ui−11 |1)
(23)

A straightforward calculation using the recursive formulas (21) and (22) gives

L
(2i−1)
N (y2N1 , u2i−21 ) =

L
(i)
N
2

(y
N
2
1 , u

2i−2
1,o ⊕ u2i−21,e ) · L(i)

N
2

(yNN
2
+1
, u2i−21,e ) + 1

L
(i)
N
2

(y
N
2
1 , u

2i−2
1,o ⊕ u2i−21,e ) + L

(i)
N
2

(yNN
2
+1
, u2i−21,e )

(24)

L
(2i)
N (yN1 , u

2i−1
1 ) =

[
L
(i)
N
2

(y
N
2
1 , u

2i−2
1,o ⊕ u2i−21,e )

]1−2û2i−1

· L(i)
N
2

(yNN
2
+1
, u2i−21,e ) (25)

Thus, the calculation of an LR at length N is reduced to the calculation of two LRs at length N/2.

This recursion can be computed down to block length 1, at which point the LRs have the form

L
(1)
1 (yi) = W (yi|0)

/
W (yi|1) and can be computed directly.

At this point it is interesting to show how the capacity of different binary erasure channels changes

regarding to their erasure probability. In Fig. 8 the horizontal axis is marked with the code rate and

the vertical axis is marked with the magnitude of the probability of block error between transmitter

and receiver. The capacity of BEC is C(ε) = (1 − ε) and we note that reliable communication (zero

probability of bit error) is accomplished with capacity-achieving rates.
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In Fig. 9 we plot the bit error rate (Pe) as a function of the indices of the channels W
(i)
N normalized

to 1, for different code rates. We observe that as the code rate R grows, the fraction of indices

i ∈ {1 . . . , N} for which the probability of error is 0.5, hence they are totally useless, grows too.
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Figure 8: Rate vs BER for the BEC.
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4 Polar Codes for Secrecy

The intuition behind the presented secrecy coding scheme is that we take advantage of the fact that

the wiretap channel C2 is degraded with respect to C1, hence the capacity of C1 is greater than the

capacity of C2. This is illustrated in Fig. 10.
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Figure 10: Rate vs reliability.

We consider a special case of the wiretap-channel system of Fig. 1, wherein the main channel

C1 = W ∗(y|x) and Eves wiretap channel C2 = W (z|x) are BECs, and C2 is degraded with respect to

C1. Note that the scenario result is satisfied immaterial of whether the eavesdropper adheres successive

decoding. In fact, we consider that the eavesdropper knows everything that the legitimate receiver is

aware of. As shown in Fig. 11, this secrecy polar scheme is based on transmitting the secret message

only over those bit-channels W
(i)
N that are bad for Eve, while flooding the bit-channels that are good

for Eve with random bits.

For a given block length n = 2i, i ∈ N, let [n] = {1, 2, . . . , n} and let as define three subsets of [n]

as follows:

R .
= A(W ) (26)

S .
= A(W ∗) \A(W ) (27)
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B .
= Ac(W ∗). (28)

A is the set of the indices to the good channels defined in section 3.4, A(W ) refers to the information

set of channel W , and Ac is the compliment of A over [n]. Note that the sets R,S,B are disjoint and

R∪ S ∪ B = [n]. Let |R| = r and |S| = k.

4.1 The Encoding and Decoding Algorithms

The encoder is a function E : {0, 1}k × {0, 1}r → {0, 1}n. It accepts as input a message u ∈ {0, 1}k

and a vector e ∈ {0, 1}r. We assume that e is selected by Alice uniformly at random from {0, 1}r.

The encoder first constructs the vector υ ∈ {0, 1}n, by setting υR = e, υS = υ, and uB = 0 and then

outputs E(u, e) := υGN as shown in section 3.3.

The decoder is a function D : Yn → {0, 1}k. It accepts as input a vector y ∈ Yn at the output

of the main channel . It then invokes successive cancellation decoding for the polar code Cn(S ∪ R),

used over W ∗, to produce the vector υ̂ ∈ {0, 1}n. The decoder outputs D(y) := υ̂S .

The sets R,S,B, the polar generator matrix GN , and the value of the frozen bits, are all known

to both the legitimate user and the eavesdropper.

bit-channels good for 
    both Bob and Eve

bit-channels good for 
  Bob but bad for Eve

bit-channels bad for 
  both Bob and Eve

row-permuted version of GN

information 
        bits

frozen 
  bits

random
   bits

 

W

W

W

X1

X2

XN YN

Y1

Y2

Figure 11: Secrecy structure.
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4.2 Secrecy achieving properties

The information bits Uk reach Bob via good (almost noiseless) bit-channels. Thus, Bob should be

able to reconstruct them with very high probability. On the other hand, these same bits pass through

bad (almost useless) bit-channels on their way to Eve. Thus, Eve should not be able to deduce much

information about Uk from her observations Un, and H(Uk | Zn) should be close to H(Uk). However,

this simple intuition is misleading, because it does not show how the random bits in Fig. 11 help keep

Eve ignorant. It may appear that this randomness is not really needed. For example, what would

happen if the vector that serves as the second input to our encoder is not chosen at random from

{0, 1}r but rather set to an a priori fixed value? Since the channels are symmetric, any fixed value is

as good as any other, so we may as well assume e = 0. This does not seem to affect the argument in

the foregoing paragraph and, according to this argument, H(Uk | Zn) would still be close to H(Uk).

In fact, this is not true. The reason is that channels seen by individual input bits as they undergo

the encoding transformation depend on the distribution of other input bits. Specifically, if e = 0 or e

is fixed, the resulting encoder will not be secure. To prove that we need the following simple lemma

[7].

Lemma 1: Let F be an arbitrary subset of [n] of size k, and suppose that the polar code Cn(F) is

used to communicate over a BSM channel W. Further, assume that the message Uk at the input to

the encoder for Cn(F) is uniformly random over {0, 1}k, and let Zn denote the random vector at the

channel output. Then I(Uk;Zn) ≥ kC(W ).

Proof: Let V be the random vector obtained by setting VF = U and VFc = 0. Then the codeword

transmitted over the channel is

X = VGN = UM (29)

where M is a k × n row submatrix of GN . Since GN is nonsingular, rank(M) = k and there exists a

subset T of [n] of size k such that the corresponding k columns of M are linearly independent. This

implies that there is a one-to-one correspondence between U and XT . Hence, I(Uk;Zn) = I(Xk
T ;Zn).

Furthermore, since the random vector U is uniform over {0, 1}k, so is the vector XT . Equivalently,

its components {Xi : i ∈ T } are i.i.d. random variables Ber(1/2), and we can conclude that

I(Xk
T ;Zn) ≥ I(Xk

T ;Zn
T ) =

∑
i∈T

I(Xi;Zi) = kC(W ) (30)
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where the last two equalities follow from the fact that the channel W is memoryless and symmetric.

�

Now suppose that the input to our encoder E(·, ·) is a message chosen uniformly at random from

{0, 1}k along with e = 0. This is a special case of the situation considered in Lemma 1, with the

set F given by (27). Hence, I(Uk;Zn) ≥ kC(W ), and security condition (2) cannot be satisfied: a

significant fraction of message bits, at least C(W ), is potentially exposed.

This polar coding scheme satisfies the reliability and security conditions (1) and (2) while its rate

approaches the secrecy capacity. For the wiretap-channel system considered in this work, the secrecy

capacity is Cs = C1 − C2 (see (10)). Let Rs = k/n donate the rate of our coding scheme.

Proposition 1:

lim
n→∞

Rs = C(W ∗)− C(W )

Proof: Observe that

Rs =
|S|
n

=
|A(W ∗)|

n
− |A(W )|

n
(31)

where we have used the definition of S in (27) and the fact that A(W ) is a subset of A(W ∗). �

4.3 Performance Results

To illustrate the performance of this secrecy scheme, the following three figures are chosen as the most

representative of the performance of polar codes for the wiretap communication model. We consider

the wiretap-channel system of Fig. 1, wherein the main channel is a BEC with erasure probability

ε1 = 0.4 and the wiretap channel is also a BEC. The horizontal axis is marked with the indices of the

channels W
(i)
N normalized to 1 and the vertical axis is marked with the probability of bit error (Pe).

The first one shows the BER at the legitimate receiver and the eavesdropper for various block

lengths 2n. The wiretap channel here is a BEC with erasure probability ε2 = 0.5. As we expect, the

fraction of the bit-channels that are totally useless approaches better the secrecy capacity as the block

length grows.

Next we have the performance of polar codes for three cases of the wiretap channel (i.e., for

BEC(0.5),BEC(0.6) and BEC(0.8)), hence three values of the secrecy capacity Cs and we confirm that
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our coding scheme corresponds correctly to the changes of the wiretap channel.

And finally, in Fig. 14 for the wiretap channel with erasure probability ε2 = 0.5, we consider two

different code rates and we observe that a larger rate performs better according to the fraction of the

channels W
(i)
N that can be used for secrecy but inserts error at the legitimate receiver’s transmission.
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Figure 12: Normalized channel indices vs Pe for the wiretap channel (different block lengths).
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Figure 13: Normalized channel indices vs Pe for the wiretap channel (different secrecy capacities).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
e

Channel id/#channels

Block−length = 216 

 

 
R=0.55
R=0.5

Figure 14: Normalized channel indices vs Pe for the wiretap channel (different code rates).

29



References

[1] C.E. Shannon, “Communication theory of secrecy systems,” Bell Syst. Tech.J., vol. 28, pp. 656-

715, 1949.

[2] A.D. Wyner, “The wire-tap channel,” Bell Syst. Tech.J., vol. 54, no. 8, pp. 1355-1387, Oct 1975.

[3] A. Thangaraj, S. Dihidar, A. R. Calderbank, S. McLaughlin, and J.-M. Merolla, “Applications

of LDPC codes to the wiretap channel,” IEEE Trans. Inf. Theory, vol. 53, no. 8, pp. 2933-2945,

Aug. 2007.

[4] A. Suresh, A. Subramanian, A. Thangaraj, M. Bloch, and S. W. McLaughlin, “Strong secrecy

for erasure wiretap channels, in Proc. IEEE Information Theory Workshop, Dublin, Ireland, Sep.

2010.

[5] R. Liu, Y. Liang, H. V. Poor, and P. Spasojevic, “Secure nested codes for type II wiretap chan-

nels,” in Proc. IEEE Information Theory Workshop (ITW), Lake Tahoe, CA, September 2-6,

2007, pp. 337-342.

[6] E. Arikan, “Channel polarization: A method for constructing capacity-achieving codes for sym-

metric binary-input memoryless channels, IEEE Trans. Inf. Theory, vol. 55, no. 7, pp. 30513073,

Jul. 2009.

[7] H. Mahdavifar and A. Vardy, “Achieving the secrecy capacity of wiretap channels using polar

codes,” IEEE Trans. Inform. Theory, vol. 57, no. 10, pp. 64286443, October 2011.

[8] E. Hof and S. Shamai, “Secrecy-achieving polar-coding, in Proc. IEEE Information Theory Work-

shop, Dublin, Ireland, Aug.-Sep. 2010, pp. 15.

[9] O. O. Koyluoglu and H. El-Gamal, “Polar Coding for Secure Transmission and Key Agreement,”

IEEE Trans. on Information Forensics and Security, vol. 7, no. 5, Oct. 2012

[10] M. Andersson, V. Rathi, R. Thobaben, J. Kliewer and M. Skoglund, “Nested Polar Codes for

Wiretap and Relay Channels, IEEE Communications Letters, vol. 14, no. 8, Aug. 2010.

[11] I. Csiszár and J. Körner, “Broadcast channels with confidential messages, IEEE Trans. Inf. Theory,

vol. IT-24, no. 3, pp. 339348, May 1978.

30



[12] S. Leung-Yan-Cheong, “On a special class of wire-tap channels, IEEE Trans. Inf. Theory, vol.

IT-23, no. 5, pp. 625627, Sep. 1977.

31


	Introduction
	Secrecy Capacity
	The Wiretap Communication Model
	Binary-input symmetric-output memoryless channels
	Binary Symmetric Channel (BSC)
	Binary Erasure Channel (BEC)

	The Secrecy Capacity of the Wiretap Channel

	Polar Codes
	Symmetric Capacity
	Bhattacharyya Parameter
	Channel Polarization
	Code Construction
	Successive Cancellation Decoding

	Polar Codes for Secrecy
	The Encoding and Decoding Algorithms
	Secrecy achieving properties
	Performance Results


