

Technical University of Crete

 Electronics & Computer Engineering

Department

 Microprocessor & Hardware Laboratory

Diploma Thesis

Wireless Communication & Applications of

BlueTooth, based on Microcontrollers

Politarhos Elias

Supervising Professor: Professor A. Dollas

Committee: Professor A. Dollas

 Professor K. Kalaitzakis

 Assoc. Professor D. Pnevmatikatos

June 2004

Chania

Microprocessor & Hardware Laboratory

1

“Be careful what you pretend to

be because you are what you

pretend to be.”
Kurt Vonnegut Jr - Mother Night

 Dedicated to my family

Microprocessor & Hardware Laboratory

2

Contents

Contents.. 2

1. Introduction .. 5

1.1. The BlueTooth® System .. 5

1.2. Thesis Stimulus, Scope & Results ... 7

1.3. Thesis organization .. 8

2. Relative Research ... 10

2.1. BlueTooth in our life.. 10

2.2. BlueTooth Products .. 12

2.2.1. Devices that support multiple connections.. 12

2.2.2. Simple devices for serial communication.. 13

2.3. Other wireless technologies ... 14

2.3.1. RF wireless communication .. 14

2.3.2. IR wireless communication ... 17

3. Existent & New Architecture .. 19

3.1. The BlueTooth protocol .. 19

3.1.1. BlueTooth Radio.. 21

3.1.2. Baseband .. 22

3.1.2.1. BlueTooth topology .. 22

3.1.2.2. Master-slave roles.. 23

3.1.2.3. Time Division Duplex in BlueTooth.. 24

3.1.2.4. BlueTooth connections .. 24

3.1.2.5. Packet types... 25

3.1.3. Link Manager Protocol .. 26

3.1.3.1. Sniff mode .. 27

3.1.3.2. Hold mode.. 28

3.1.3.3. Park state ... 28

Microprocessor & Hardware Laboratory

3

3.1.4. Host Controller Interface ... 28

3.2. The existing system (BlueApplE-BlueBridge) .. 32

3.2.1. Hardware... 33

3.2.2. Software .. 34

3.2.2.1. BlueApplE software architecture.. 34

3.2.2.2. BlueBridge software architecture... 38

3.3. The new system: BluMiU architecture overview .. 41

4. System organization .. 44

4.1. BluMiU data transfer protocol... 45

4.1.1. The BlueTooth protocol approach... 45

4.1.2. The bluMiU protocol approach.. 46

4.2. BluMiU hardware .. 48

4.2.1. HOST... 48

4.2.2. BT module ... 50

4.2.3. HCI & COM ... 51

4.2.4. INPUT.. 51

4.2.5. LEDs.. 52

4.2.6. EXT DEV ... 52

4.2.7. BluMiU hardware components’ cost ... 52

4.3. BluMiU software ... 53

4.3.1. UART control modules .. 54

4.3.1.1. UART reception decoders.. 55

4.3.1.2. UART receiver (from the BT module) [U0RX] 57

4.3.1.3. UART receiver (from the EXT DEV) [U1RX] 59

4.3.1.4. UART transmitter control ... 61

4.3.2. Command sending (to the BT module) ... 63

4.3.3. INPUT control software ... 65

5. Testing & Validation... 67

5.1. BT module validation.. 67

5.2. Software validation ... 69

5.2.1. UART transmitter validation .. 70

5.2.2. INPUT decoder validation ... 70

5.2.3. UART decoder validation .. 71

Microprocessor & Hardware Laboratory

4

5.3. BluMiU validation.. 72

5.3.1. BluMiU pre-connection setup.. 73

5.3.2. Discovery of BlueTooth devices by the client ... 74

5.3.3. Establishment of BlueTooth connections.. 75

5.3.4. Data exchange .. 76

5.3.4.1. The ability to exchange data.. 76

5.3.4.2. Efficiency.. 78

5.3.4.3. Possible improvements for higher data rates 79

6. Applications.. 81

6.1. File transfer... 81

6.2. FPGA programming..Error! Bookmark not defined.
7. Conclusions and Future Work ... 85

7.1. Conclusions .. 85

7.2. Future work... 86

Appendix A.. 89

ATmega161 AVR... 89

Appendix B.. 92

The BT module .. 92

Acronym List ... 94

References.. 99

Literature ... 99

Internet Resources .. 99

Microprocessor & Hardware Laboratory

5

1. Introduction

1.1. The BlueTooth® System
Wireless connectivity is a very desirable feature of nowadays’ electronic devices. Radio

was the first wireless technology and still is the fundamental element of virtually all

modern wireless technologies. Lately, wireless communications between handheld,

battery-operated devices and/or computers are thriving, since they contribute to reduce

the amount of cables in the personal area. Though, the most important factor in wireless

communications’ popularity increase is probably the significant decrease in the cost of

developing and obtaining devices that contain these technologies. Wireless personal

communication adopts technologies that use the radio and the non visible light areas of

the electromagnetic spectrum. One of the most recently developed personal networking

technologies, which became quickly very popular, is BlueTooth technology. It initially

began as a project to study the feasibility of a low-power and low-cost radio interface by

Ericsson in 1994. [1]

In early 1998, the BlueTooth Special Interest Group (SIG) was formed by Ericsson, IBM,

Intel, Nokia and Toshiba. [1] Now (June 2004) BlueTooth SIG is formed by 3com,

Agere, Ericsson, IBM, Intel, Microsoft, Motorola, Nokia and Toshiba, which are

BlueTooth SIG promoter members, and a total of 3357 member companies [2]

(promoters, associates1 & adopters2). BlueTooth SIG developed BlueTooth wireless

technology, which is a short range wireless communication system, intended to replace

cables in the personal area. It has a maximum range of 100m and creates a small

wireless network connecting portable and/or fixed BlueTooth enabled devices that exist

in this range (Personal Area Network, PAN). Key features of BlueTooth are robustness,

low cost, low power and small size. [3]

1 Associate members have the opportunity to work with other Associate and Promoter companies on

enhancements to the BlueTooth specification
2 Adopter members just make use of BlueTooth technology

Microprocessor & Hardware Laboratory

6

Today, 6 years later, BlueTooth system is one of the most popular systems for voice

and/or data in every application where short range communication is needed (there is,

however, a bandwidth limitation, 720Κbps). Widespread acceptance of the technology

was helped by the truly open specification of BlueTooth (BTspec), which has been a

fundamental objective of the BlueTooth SIG since its formation, and is promoted

through the BlueTooth Specification Book (First stable version: 1.0b, latest: 1.2). That

way every part of a BlueTooth enabled device should be qualified with the BlueTooth

Specification; its hardware, the way it functions, its software and the way this device

communicates with other BlueTooth enabled devices. When a device is BTspec

qualified, it will be able to exchange data and/or voice worldwide with every other

BlueTooth enabled device.

Concisely, BTspec defines a short (10m) or, optionally, medium (100m) range radio link

capable for a data and/or voice communication. Its maximum data rate is defined to

720kbps1 (kilobits per second), while every voice channel has a 64kbps data rate. The

Bluetooth RF (physical layer) operates in the unlicensed ISM band, which is reserved

for Industrial, Scientific & Medical purposes, at 2.4GHz. The system employs a

transceiver with the following characteristics:

• Spread spectrum (2.402 to 2.48GHz)

• Full duplex transmission effect is provided through the use of a Time-Division

Duplex (TDD) scheme

• Frequency hopping in a rate of 1600 hops per second

Connected BlueTooth devices in a BlueTooth network, which is called a piconet, use a

specific frequency hopping pattern, which is algorithmically determined by

characteristics of a Bluetooth device that acts as the Master of the piconet. The basic

hopping pattern is a pseudo-random ordering of the 79 frequencies in the ISM band.

The adaptive hopping technique improves Bluetooth co-existence with static (non-

1 With the addition of the new EDR (Enhanced Data Rate) technology, Bluetooth transfer

rates will reach a maximum of 2.1Mbps, three times the current rate. EDR is expected to

become a mainstream standard by mid 2005

Microprocessor & Hardware Laboratory

7

hopping) ISM systems when they are co-located. The output power of the BlueTooth

device is 0dBm (1mW) for communication up to 10m (class 2 device) and +20dBm

(100mW) for communication up to 100m (class 1 device). [4]

1.2. Thesis Stimulus, Scope & Results
One of the most important and interesting capabilities of BlueTooth, which makes it

stand out from other communication technologies in the PAN area, is that it enables

multiple devices to connect simultaneously1. This fact, in conjunction with the kind

donation by Ericsson Hellas to the Microprocessor & Hardware Laboratory (MHL) of the

two BlueTooth modules that were used in this thesis and the development of an

embedded applications platform of BlueTooth in the MHL, in the context of a previous

diploma thesis by Christos Strydis [5], gave the inspiration for this thesis. In this thesis a

second generation embedded application platform (bluMiU) has been developed. This

platform provides data communication between a server and one or more clients and

also a simple packet exchanging protocol suitable for very low processing power

microcontrollers (microcontroller used: Atmel AVR ATmega161). The ultimate goal of

this thesis is to wirelessly program an FPGA through this platform, but the specific

design can be used wherever wireless transfer of data is needed and resources are

truly limited.

Particularly, in the context of this thesis, the BlueTooth applications platform of the

previous thesis (BlueApplE) was redesigned from scratch so that it would provide an

efficient and fully capable wireless data exchanging design.

The following modules were replaced:

i) the data sending mechanism to the BlueTooth module (BT module),

ii) the command sending mechanism to the BT module,

iii) the decoding of the incoming event and data packets from the BT module

mechanism and

1 7 active slaves & 255 parked slaves are supported by BTspec 1.2 and all versions of BTspec before it

Microprocessor & Hardware Laboratory

8

iv) the mechanism of data exchange between a device connected to the platform

and the platform itself

The following elements were added:

i) support for multiple device connections

ii) interrupt based multiprogramming

iii) a client-server architecture has been adopted

iv) the host can be fully controlled from the device connected to the platform

v) the device connected to the platform can give commands to the BT module

vi) the platform reports the connected device of the addresses, the handles and

the user friendly names of connected and inquired devices

vii) the platform notifies the connected device whenever a disconnection occurs

viii) a packet sending mechanism has been adopted for data transfers

ix) connectionless data exchanging between connected clients and the server

x) payload of data packets has been significantly increased. Now it is only limited

by the buffer of the BT module or 65536bytes (216)

1.3. Thesis organization
The rest of this thesis is structured as follows:

Chapter 2: The BlueTooth market, its inclinations and its future are presented in this

chapter. Products that target in a more specialized audience are presented. Also, a

comparison with “competing” technologies is made.

Chapter 3: Describes the lower levels of the BlueTooth protocol and the architecture of

the existing design. It also reviews the existing design pros and cons and gives an

overview of the new architecture.

Chapter 4: In this chapter the system designed is described in detail; the system’s

architecture, its hardware and software are analyzed.

Microprocessor & Hardware Laboratory

9

Chapter 5: The test procedures of the components of the system and the validation of

the overall system are presented. A discussion commenting system efficiency and ways

to improve the system ends the chapter.

Chapter 6: This chapter describes the applications that were developed to demonstrate

the functionality of the system and propose future uses of it.

Chapter 7: In this final chapter the conclusions that can be extracted from this thesis are

covered. The thesis ends with possible improvements on the system developed and

proposes applications where it can be useful.

Microprocessor & Hardware Laboratory

10

2. Relative Research

2.1. BlueTooth in our life
Although Bluetooth-enabled devices haven’t quite entered the true mainstream yet, they

are poised to take that next step. With Mobile phones, Personal Digital Assistants

(PDAs), and headsets making significant strides over the last year, the automotive

market beginning to make an impact, and Personal Mobile Gateway1 products expected

to emerge, shipments of Bluetooth-enabled manufactured equipment will experience a

60% CAGR (Compound Annual Growth Rate, The year over year growth rate of an

investment over a specified period of time) between 2003 and 2008. [6] (Figure 2-1)

Figure 2-1 BlueTooth chipset forecast (Units in millions) (In-Stat/MDR, 4/04, [6])

1 Personal Mobile Gateway: It is the point of connection between the wireless network and the new

category of affordable and best-of-breed mobile devices (e.g. watches, pens, phones, messaging

terminals, gaming devices, cameras) (http://www.ixi.com/)

Microprocessor & Hardware Laboratory

11

While much of the focus of BlueTooth wireless communication is on the specification of

the technology, the specification is actually rooted in a set of usage models. The

specification itself was preceded by a marketing requirements document, which

included usage scenarios that were an integral part of the objectives that the initial

specification was to address. [1] These usage models are formally specified in the

BlueTooth Profiles Book and help BlueTooth become a success in the mainstream

market.

There is an unlimited number of BlueTooth enabled devices and BlueTooth

applications, which intend to cover the communication needs of people around the

globe. Every company targeting to the mainstream market and wanting to be in the

cutting edge of technology, as far as communications are concerned, has gotten its

hands dirty with BlueTooth technology, because they know that BlueTooth is very

popular these days, thanks to the hard work of the BlueTooth SIG on marketing. It is

essential for products targeting to a mainstream market to be easy to use and to have a

user friendly interface. Therefore, these products tend to waste resources on various

services that the BlueTooth protocol offers.

Figure 2-2 The importance of Serial Port Profile (BTspec 1.2 [3])

Microprocessor & Hardware Laboratory

12

The most important and fundamental profile that the BlueTooth protocol offers is

definitely the Serial Port Profile (SPP), that provides serial transfer of data between two

BlueTooth enabled devices. This is the profile on which almost every other service

provided by the BlueTooth protocol is based. [7] (Figure 2-2)

The main effort of this thesis is centered on the BlueTooth Serial Port Profile, because

every other service can be developed in a layer above this thesis’ platform, where

limitations in resources might not exist.

2.2. BlueTooth Products
It is out of the scope of this thesis to present BlueTooth devices that exist in the

mainstream market. They offer a huge amount of services, but -in general- waste

resources, something that in many cases is not acceptable, especially when a large

amount of services means more expensive equipment. There are, however, devices

that provide valuable services, (even though their hardware resources are very low)

which are targeted for the industrial market. Few of them even provide multiple serial

port connections, which is exactly the purpose of this thesis. Some devices of

stimulating interest will be presented next. They work under limited resources, in a

hardware and software level, and provide serial connections to one or more devices.

2.2.1. Devices that support multiple connections

Only a few devices that provide multiple connections have been discovered, since most

BlueTooth enabled devices are designed for the mainstream market, where multiple

connections would just be something really complicated for the users. Some of the next

devices can function as a network bridge between various kinds of networks. (LAN

Access Profile) Their characteristics are presented below:

Manufacturer
Device

Bluenext

PROMI-MSP
connectBlue

SPA12i
Stollmann

BlueRS+E

Connections 1 to 7 or 1 to 351 1 to 3 1 to 3

1 Depends on the model of the PROMI-MSP

Microprocessor & Hardware Laboratory

13

Data Rate 723Kbps 300-921.6Kbps 2.4-230.4Kbps

Profiles SPP, LAP, DUN SPP, LAP, DUN GAP, SDP, SPP

Range 10m~100m (w/ antenna) 10m 15m

Others 4USB ports, Networking

support

- Server mode,

controllable by AT

commands

2.2.2. Simple devices for serial communication

Some simple devices that provide serial connection to a BlueTooth enabled device

without installing any additional software are presented next. They provide maximum

security and are the optimal solution for serial cable replacement. Multiple-UART

communication can be implemented in higher levels, as with normal serial cables.

Manufacturer
Device

Connection Data Rate Profiles Range

AIRcable

Serial-to-Serial
2 predefined

devices

4.8-115.2Kbps SPP, LAP, DUN 10m

Socket Com

Serial Adapter
1 BT device,

Accepts AT

commands

9.6-230Kbps GAP, SDP, SPP 10m

Wireless Futures

BlueWave

2 predefined

devices

2.4-115.2Kbps SPP 100m

Brainboxes

RS232 BT

1 BT device,

Accepts AT

commands

2.4-115.2Kbps SPP, DUN, FTP,

OPP, FAX, LAN

100m

TDK

blu2i RS232

1 BT device,

Accepts AT

commands

2.4-230Kbps SPP, SDP 10m

The profiles mentioned are the following:

 GAP: Generic Access Profile

 SDP: Service Discovery Profile

 SPP: Serial Port Profile

 LAP: LAN Access Profile

Microprocessor & Hardware Laboratory

14

 DUN: Dial-Up Networking profile

 FTP: File Transfer Profile

 OPP: Object Push Profile

 FAX: FAX profile

2.3. Other wireless technologies
BlueTooth was not the first attempt to develop a wireless technology for the personal

area. There are some other technologies, which have the same scope with BlueTooth

and are, until now, equally -and in some cases even more- popular. These technologies

are communication through electromagnetic waves in the infrared light (IR) and radio

frequency (RF) areas --RF is the technology that BlueTooth uses. A brief overview of

these two technologies will be presented in the following sections, along with a

comparison to BlueTooth, where applicable.

2.3.1. RF wireless communication

Technologies using Radio waves employ transceivers that can transmit and receive

radio waves of a specific radio frequency. For communication in personal areas, low

power transceivers are used so that they can only cover a distance of few meters; this

means that they can cover as much space as it is needed for a PAN.

Due to the fact that the radio waves spectrum is limited and that most of the existing

wireless technologies use them to function, governments around the world have

legislated limitations and regulations to the use of the RF spectrum1 and a license is

needed for a technology to use a band of the RF spectrum. These limitations also

define the power of the signal that this technology will use. All PAN networking

technologies use bands of the RF spectrum that is agreed for them -in a worldwide

basis- that their use will not require license, as long as these technologies’

specifications cover some limitations, especially for the power of the signal they use. [1]

For instance, in Europe and in the United States the 900MHz, 2.4GHz (ISM) and 5GHz

1 NTIA Manual of Regulations & Procedures for Federal Radio Frequency Management:

http://www.ntia.doc.gov/osmhome/redbook/redbook.html

Microprocessor & Hardware Laboratory

15

bands do not require license for a technology to use them and, thus, it can be easily

presumed that all RF technologies for PANs use one of these bands to function (the

5GHz band has been proposed for the Institute of Electrical & Electronics Engineers

(IEEE) HIPERPAN standard [8]). The unlicensed bands mentioned above are:

 The 5GHz band is divided in band A, which covers the area between 5.15 and

5.35GHz, and band B, which is between 5.47 and 5.725GHz

 The 2.4GHz band: 2.4 - 2.48GHz (Until 2004, France and Spain were an exception

in Europe, because they had narrower bands in the 2.4GHz band) and

 The 900MHz band: 902 - 928MHz

These bands are used by cordless telephones, microwave ovens, some remote controls

and some wireless human interface devices for computers.

The 2.4GHz band is used by the really popular IEEE Wireless Local Area Network

(WLAN) protocols: IEEE 802.11, 802.11b and 802.11g (a.k.a. WiFi). [9] BlueTooth also

uses this RF band. Because the 2.4GHz RF band is really overcrowded by wireless

protocols, some limitations for its use have been set, so that collisions between the

signals of these protocols would be avoided and secure communication could be

achieved. BlueTooth responded to these limitations by using a frequency hopping

spread spectrum (FHSS) signal1. The rapid change in the transmit frequency reduces

the chance of BlueTooth signals interfering with each other or with signals from other

wireless networks. If a BlueTooth signal collides, the next time it will be transmitted it will

be in a different frequency, so the probability to collide again is very small. Security is

also enhanced by the frequency hopping because, if the BlueTooth transmission is

intercepted, the next frequency that the BlueTooth system will use won’t be known,

thing that will probably confuse the interceptor.

BlueTooth and WiFi are two very well documented and specified protocols that have

many similarities. Although, they have basic differences that will allow neither of them to

replace the other, as happened with WiFi, which prevailed over HomeRF (a WLAN

targeted home environments and users) in the beginnings of 2003:

1 BlueTooth FHSS is explained in chapter 3.1.1 (page 21)

Microprocessor & Hardware Laboratory

16

• BlueTooth has low power transmitters because it was designed for small battery

operated devices like cell phones, PDAs, headsets and so on, that communicate

in a radius of few meters. WiFi, on the other hand, was designed for computer

networking in a maximum distance of 45m (802.11a) or 90m (802.11b and g).

So, it does need stronger and bigger transmitters than BlueTooth to meet these

requirements.

• WiFi is far more complex than BlueTooth. WiFi is designed to hook up an entire

network, while BlueTooth is a cable replacement technology. This makes service

discovery a simple task for BlueTooth, while WiFi requires the same degree of

network management as any comparable wired network. It is this complexity of

the protocol that makes WiFi unsuitable for use in devices like these that

BlueTooth was designed for, that were mentioned earlier.

• BlueTooth is much slower than WiFi. BlueTooth has a maximum speed of

720Kbps, while WiFi can reach 100Mbps in 802.11g. This does not allow the use

of BlueTooth as a LAN. [10]

BlueTooth (as IEEE 802.15.1™) was approved [11] in 15 April 2002 from Institute of

Electrical & Electronic Engineers Standards Association (IEEE-SA) as a standard and it

became an IEEE working group for wireless personal area networks (WPANs).

Figure 2-3 IEEE wireless networking standards

According to IEEE wireless networking standards, the following status quo has been

established: 802.16 is the standard for Metropolitan Area networks (WMANs), 802.11

Microprocessor & Hardware Laboratory

17

for Local Area Networks (WLANs) and 802.15 (BlueTooth) for Personal Area Networks.

(Figure 2-3)

2.3.2. IR wireless communication

Short range wireless communication through infrared technology is probably the most

common wireless technology for use in the personal space, since the vast majority of

the remote controls used for home appliances, such as TVs, videos, air conditioners

and HiFi systems -appliances that are somewhat essential in modern life-, use infrared

technology. But infrared technology is also very popular in computers, computer

peripherals, mobile phones and PDAs which use it for data exchange, in a way very

similar to BlueTooth. Communication between these devices is specified by the Infrared

Data Association (IrDA)1, which defines the hardware and software protocols for

wireless communication intended to promote interoperable applications [1], just like the

BlueTooth SIG.

BlueTooth and IrDA are very similar, since they were developed with the same scope,

that is a short range, low power, low cost and unlicensed wireless communication, and

are specified by very well documented standards that have a worldwide acceptance.

Most manufacturers provide both of them with their products, allowing the costumer to

select the technology that fits his needs. The two technologies have their pros and cons,

which help the costumer to choose one of them:

• BlueTooth uses radio waves, while IrDA infrared light

• IrDA (16Mbps) is faster than BlueTooth (720Kbps)

• BlueTooth allows connections in a range of 100m in Class 1 BlueTooth devices,

which is bigger than the range of IrDA (about 1m)

• IrDA is cheaper (1$) than BlueTooth (estimated to reach 5$)

• BlueTooth supports point to point and point to multipoint connections, while IrDA

supports only point to point

• IrDA needs the two transceivers to be aligned and be in the other’s line of sight,

while BlueTooth can penetrate objects and doesn’t need alignment [12]

1 http://www.irda.org

Microprocessor & Hardware Laboratory

18

Figure 2-4 IrDA OBEX how it is reused in BlueTooth (BTspec 1.2 [3])

IrDA and BlueTooth wireless applications share similar application domains, even

though the underlying technology used to achieve usage scenarios is inherently

different. Feature differences may cause one technology to be preferred over the other

in certain environments and applications, although both have merit and both are likely to

be deployed in pervasive computing devices. Thus the IrDA interoperability provisions

of the BlueTooth specification can help to enable the best use of either or both

technologies. The reuse of IrDA protocols1 and specifically the infrared Object

Exchange Protocol (OBEX) was identified as the design direction of the BlueTooth SIG

early in the specification’s development. [1] The purpose of the OBEX protocol is to

enable the exchange of data objects and files. (Figure 2-4)

1 IrDA had been already developed when BlueTooth research started

Microprocessor & Hardware Laboratory

19

3. Existent & New Architecture

In chapter 1.2 (page 7), it was mentioned that the incentive for this thesis was the

existence of a previous one. This was Christos Strydis’ diploma thesis, developed in the

Microprocessor and Hardware Laboratory of the Technical University of Crete (2003) [5]

and focused on BlueTooth. That thesis gave a big thrust to the continuance of the

research on the BlueTooth protocol. The structure of the embedded system that has

been developed in the present thesis (Bluetooth Multi-UART, BluMiU) is based on the

initial foundation that was set by the architecture of the previous application platform

and application that was then developed (BlueApplE-BlueBridge), but its architecture

has evolved into an entirely different than that of BlueApplE-BlueBridge. The

applications platform (BlueApplE) has been redesigned from scratch, so that it will have

improved performance and support more BlueTooth services, and the data bridge

(BlueBridge) can be now considered as a fully featured data exchange mechanism

which offers full duplex transfer, high data rates, client-server architecture with many

clients and a simple but very effective protocol for controlling and manipulating the

exchange of data. In the following sections the BlueTooth protocols and services that

have been embedded in the BT module used will be presented, the architecture of the

BlueApplE-BlueBridge application environment and application will be described, its

pros and cons will be shown and the architecture of bluMiU will be described. BluMiU

will be specified in detail in chapter 4 (page 44).

3.1. The BlueTooth protocol
The BT module that was used in the context of bluMiU and BlueApplE-BlueBridge can

be considered as a black box that executes instructions given to it from an external

device through an interface, connects to other BlueTooth enabled devices and then can

exchange data with them. However, if the parts of the BlueTooth protocol that are

embedded in the BT module were known, understanding the functions of the software

and hardware parts of this thesis would be rather easier and a wider knowledge on the

thesis’ matter would be gained. The explanation of the BlueTooth protocols is based on

Microprocessor & Hardware Laboratory

20

BTspec 1.2. The BT module used is qualified for a different version of BTspec, but

during the development of this thesis it worked perfectly, even though bluMiU is based

on BTspec 1.2.

Figure 3-1 BlueTooth Protocol Stack version 1.2 (BT spec 1.2 [3])

The BT module is a BlueTooth Controller, BTspec 1.0b compliant, which specifies the

protocol stack illustrated in Figure 3-1 (the same protocol stack is specified by BTspec

1.2). The module’s characteristics are examined thoroughly in Appendix B (page 92).

The layers of the BlueTooth protocol stack that are embedded in the BT module that is

used are:

 The Radio, where the physical channel resides and data is transmitted between

BlueTooth devices

 The Baseband, a link controller which carries out the baseband protocols and other

low-level link routines [3]

 The Link Manager Protocol (LMP), which is used for link set-up and control [3] and

Microprocessor & Hardware Laboratory

21

 The Host Controller Interface (HCI), which provides a command interface to the

baseband controller and link manager, and access to configuration parameters [3]

BlueTooth protocol stack layers above HCI are embedded in the microcontroller used.

In the following sections the layers that are embedded in the BT module will be

described.

3.1.1. BlueTooth Radio

It is known back from chapter 2.3.1 (page 14) that BlueTooth operates in the 2.4GHz

ISM band in the radio spectrum and makes use of a frequency hopping spread

spectrum (FHSS) transceiver. The 2.4GHz frequency band is 2.4-2.4835GHz and RF

channels are spaced 1MHz and are ordered in channel number k [3] as shown in the

following formula: [Frequency (MHz)] = 2402+k, where k = {0, 1 …, m-1} and m=79

(until 2004 Spain, France and Japan had m=23, because their ISM band was narrower).

BT spec defines a frequency hopping rate of 1600 changes per second. A new

frequency is selected by the baseband in a pseudo-random manner every 625µs and it

is used until a next frequency is selected. The time of 625µs between the change is

called a time-slot. By the use of frequency hopping BlueTooth ensures that interference

from other devices and protocols will be kept to a minimum because the signals spread

in the ISM band and it is very unlikely for two devices to interfere again after they have

interfered once in a time-slot, because they probably won’t jump to the same frequency

during the next hop. The receiver sensitivity must be below or equal to –70dBm. The

minimum output power of the BlueTooth transmitter is defined to 0dBm (1mW) for

communication in a range of 10m (class 3 devices), while the maximum is between -30

and +20dBm (100mW) for 100m (class 1 devices). [3]

Symbol rate is 1Mbps with the use of a GFSK1 modulator. The maximum data rate that

can be achieved though is lower, because of the overhead of different protocol layers

over the radio. This is 723.2Kbps for transmission, when reception is 57.6Kbps, while

for a symmetric transmission-reception the maximum data rate is defined to 433.9Kbps.

1 The signal passes through a Gaussian filter and then goes through an FSK modulator (Frequency-Shift

Keying)

Microprocessor & Hardware Laboratory

22

For full duplex transmission, a Time Division Duplex (TDD) is used. TDD is the

application of Time Division Multiple Access, where the communication channel is

divided into numbered time-slots and signals can only be received or transmitted in

certain time-slots.[4] TDD is explained in more detail in section 3.1.2.3 (page 24).

3.1.2. Baseband

3.1.2.1. BlueTooth topology

The BlueTooth system supports point to point connections or point to multipoint. In a

point to point connection the communication channel is separated through the TDD

between two BlueTooth devices. In a point to multipoint connection the same

communication channel is separated through the TDD between many devices. Two or

more devices that share the same communication channel form a piconet. Only one

device can be the Master of a piconet, while all the other devices that are in the same

piconet are the Master’s slaves. (Figure 3-2) The maximum number of devices that can

be active in a piconet is 7. [3] More than 7 devices can exist in a piconet in various

sleep modes, mostly for power saving purposes. They are not active, but remain

synchronized with the piconet hoping scheme and can become active without restarting

the connection process. The access of the active devices in a piconet is determined

only by the Master.

Figure 3-2 Point to point and point to multipoint connections

Microprocessor & Hardware Laboratory

23

Figure 3-3 Scatternet

Piconets that have common devices are called a scatternet. (Figure 3-3) Each piconet

has only one Master; however, slaves can participate in different piconets on a time-

division basis, but the Bluetooth core protocols do not, and are not intended to offer

such functionality, which is the responsibility of higher level protocols. [3] In addition, a

Master in one piconet can be a slave in other piconets. Piconets in a scatternet are not

frequency synchronized and each piconet has its own hopping sequence.

3.1.2.2. Master-slave roles

As seen in the previous section, in a piconet one and only one device is the Master and

the rest of them are slaves. The basic piconet physical channel is defined by the Master

of the piconet and the Master is the device that initiates a connection by paging. The

frequency hopping in the piconet physical channel is determined by the Master’s clock

and BD ADDR1. When the piconet is established, the Master clock is communicated to

the slaves. Then each slave adds an offset to its native clock to synchronize with the

Master clock. Since the clocks are independent, the offsets must be updated regularly.

All devices participating in the piconet are time-synchronized and hop-synchronized to

1 Each Bluetooth device is characterized by this unique 48-bit device address, which is like the IP address

or the MAC address, and has a 28bit clock

Microprocessor & Hardware Laboratory

24

the channel. Once a piconet has been established, Master-slave roles may be

exchanged. [3]

3.1.2.3. Time Division Duplex in BlueTooth

The Master controls the traffic on the piconet physical channel by a polling scheme. The

basic piconet physical channel is characterized by a pseudo-random hopping through

all 79 RF channels. The basic piconet physical channel is divided into time slots, each

625 µs in length. The time slots are numbered according to the most significant 27 bits

of the clock CLK28-1 of the piconet Master. The slot numbering ranges from 0 to 227-1

and is cyclic with a cycle length of 227. The time slot number is denoted as k. The TDD

scheme is used where master and slave alternatively transmit, as seen in Figure 3-4

below. The packet start shall be aligned with the slot start and one can extend over up

to five time slots. [3]

Figure 3-4 TDD in BlueTooth

3.1.2.4. BlueTooth connections

For a piconet (or a scatternet) to be formed, a device (each piconet’s Master) must

connect to the devices that will form it. A BlueTooth device has the following operational

modes (states): standby, inquiry, page and connected, according to Figure 3-5. More

specifically, the modes are:

• Standby is the default operational mode of a BlueTooth device. When a device is

in this operational mode, it typically idles with only its native clock operating in a

low-power mode. [1] From the Standby state the device can move to Page or

Inquiry state.

Microprocessor & Hardware Laboratory

25

Figure 3-5 BlueTooth operational modes (states)

• Inquiry is the operational mode where the device that it is in this mode learns

about the identity of other devices in its vicinity; these other devices must be in

an inquiry scan state to listen for and subsequently respond to inquiries. [1]

• Page is the operational mode where a BlueTooth device (1) explicitly invites

another BlueTooth device (2) to join the piconet whose master is (1); device (2)

must be in the page scan state to listen for and subsequently respond to pages.

[1] As Figure 3-5 shows, an inquiry by a device is not explicitly needed by a

device to page another, because the identity of the device to be paged can be

known to the paging device.

• Connected is the operational mode where a BlueTooth device is a member or the

Master of a piconet. In this operational mode the device can exchange data (or

voice) with the devices connected to it, disconnect with any one of them (if no

devices are left connected to it, it returns to the standby operational mode) or

perform inquiries and pages for additional devices to join this or some other

piconet. In the latter case, a scatternet eventually would probably be created.

3.1.2.5. Packet types

The general packet type is shown in Figure 3-6. Each packet consists of 3 entities: the

access code, the header and the payload. In the figure, the number of bits per entity is

indicated.

Microprocessor & Hardware Laboratory

26

Figure 3-6 BlueTooth baseband generic packet (BTspec 1.2 [3])

 Different packet types have been defined. Thus, a packet may consist of the following

elements:

• A shortened (68 instead of 72 bits) access code only

• The access code and the packet header (72 and 54 bits. 126bits totally)

• The access code, the packet header and the payload (minimum

72+54+1=127bits, maximum 72+54+2745=2871bits)

The first two types are reserved for common packets, which are control packets

essential for the BlueTooth protocol to function. Analysis of these packets is out of the

scope of this thesis. The latter packet type includes the Asynchronous Connection-less

(ACL) packets and the Synchronous Connection-oriented (SCO) packets.

The SCO packets are typically used for 64kbps speech transmission and this thesis

does not deal with them.

The ACL packets are used for asynchronous logical transport and the payload can be

user or control data. [3] They can cover from 1, 3 or 5 time slots and they provide a

16bit Cyclic Redundancy Check (CRC) code. There are Data - Medium Rate (DM) and

Data - High Rate (DH) ACL packets. Thus, there are DM1, DH1, DM3, DH3, DM5 and

DH5 packets, with the number denoting how many time slots they occupy. The only

difference between them DM and DH is that DM ACL packets provide the information

plus the CRC code coded with a rate 2/3 Forward Error Correction (FEC).

3.1.3. Link Manager Protocol

The Link Manager Protocol (LMP) is used to control and negotiate all aspects of the

operation of the Bluetooth connection between two devices. This includes the set-up

and control of logical transports and logical links, and the control of physical links. [3] It

is used to communicate between the Link Managers (LM) on two devices which are

connected for ACL logical transport. The LM provides

1. Security Management, which provides device authentication and encryption

2. Power Management, which regulates the device’s association with the piconet

it’s connected, so that it would preserve power. [1] There are three modes that

Microprocessor & Hardware Laboratory

27

can be used to reduce power consumption: sniff, hold and park (examined

below)

3. QoS Management, which regulates the bandwidth used in connections

4. Connection Management, which manages the paging parameters, the Master-

slave roles, the clock of the BlueTooth devices and the connection establishment

and link detachment

These services are provided by the LM by the use of LMP, which exchanges LMP

messages on connected BlueTooth devices. All LMP messages apply solely to the

physical link and associated logical links and logical transports between the sending

and receiving devices. The protocol is made up of a series of messages which are

transferred over the ACL-C logical link, which is a control link used by the LM, resides

on the default ACL logical transport between two devices, uses DM1 packets and has a

higher priority than other traffic. [3] LMP messages are interpreted and acted-upon by

the LM and are not directly propagated to higher protocol layers.

The most common and flexible methods for reducing power consumption are the use of

sniff and park. Hold can also be used by repeated negotiation of hold periods. [3]

3.1.3.1. Sniff mode

In sniff mode, the duty cycle of the slave’s activity in the piconet may be reduced. If a

slave is in active mode on an ACL logical transport, it must listen in every ACL slot to

the Master traffic, unless that link is being treated as a scatternet link or is absent due to

hold mode (explained below). With sniff mode, the time slots when a slave is listening

are reduced, so the Master only transmits to a slave in specified time slots. The slave

listens in Master-to-slave transmission slots starting at the sniff anchor point. The sniff

anchor points are spaced regularly with an interval of Tsniff. (Figure 3-7) To enter sniff

mode, the Master or slave issue a sniff command via the LM protocol. This message

includes the sniff interval Tsniff. [3]

Microprocessor & Hardware Laboratory

28

Figure 3-7 Sniff Anchor Points (BTspec 1.2[3])

3.1.3.2. Hold mode

During the connection state, the ACL logical transport to a slave can be put in a hold

mode. In hold mode the slave temporarily doesn’t accept ACL packets on the channel.

With the hold mode, the device is free to do other things like scanning, paging, inquiring,

attending another piconet, or entering a low-power sleep mode. Prior to entering hold

mode, Master and slave agree on the time duration the slave remains in hold mode.

After the end of the agreed time, the slave wakes up, synchronizes to the traffic on the

channel and waits for further Master transmissions.

3.1.3.3. Park state

When a slave does not need to participate on the piconet channel, but still needs to

remain synchronized to the channel, it can enter park state. Park state is a state with

very little activity in the slave. All messages sent to the parked slaves are carried by

broadcast packets (packets broadcasted to multiple devices). The parked slave wakes

up at regular intervals to listen to the channel in order to re-synchronize and to check for

broadcast messages. With this method, the maximum reduction in the device’s power-

consumption can be achieved.

3.1.4. Host Controller Interface

A BlueTooth Controller contains the BlueTooth Radio, the Baseband, the LM, a

resource controller and a device manager. These parts of the BlueTooth protocol are

used by a BlueTooth Host which executes other higher level protocols. The BlueTooth

Controller and the BlueTooth Host communicate through the Host Controller Interface

(HCI), which is defined by the BlueTooth SIG as the physical interface along with a

transaction-style communication protocol to carry information between the Host and the

Controller. (Figure 3-8) The main goal of this transport layer is transparency. The Host

Microprocessor & Hardware Laboratory

29

Controller driver (which interfaces with the Controller) is independent of the underlying

transport technology. This allows the HCI to be upgraded without affecting the transport

layer.

Figure 3-8 The HCI transport layer (BTspec 1.2 [3])

The traffic crossing the HCI is: the command packets, the event packets and the data

packets.

The Host issues the HCI commands and can access through them all functions of the

BlueTooth Controller such as setting operational parameters, configuring the module’s

operational status, reading and writing specific low-level registers. The format of HCI

commands is shown in Figure 3-9. The HCI portion of the BT spec is the largest one,

since only by the use of HCI commands a device can communicate with the lower

layers of the BlueTooth protocol in the BlueTooth Controller. Each command is

Microprocessor & Hardware Laboratory

30

assigned a 2 byte Opcode used to uniquely identify different types of commands. The

Opcode parameter is divided into two fields, called the Opcode Group Field (OGF) and

Opcode Command Field (OCF). The OGF occupies the upper 6 bits of the Opcode,

while the OCF occupies the remaining 10 bits. [3] Then a byte indicating the length of

the parameters that will follow, as well as their number, must exist since every

parameter is one byte long and after that all the parameters follow.

Figure 3-9 HCI command format

The Controller notifies the BlueTooth Host of the outcome of a command or of an event

that took place in a device connected to the Controller with an HCI event. The format of

the HCI event packets is shown in Figure 3-10. Each event is assigned a one byte

event code used to uniquely identify different types of events. Then parameters follow in

the same way as in HCI commands.

Data between BlueTooth devices is exchanged through the HCI layer by the use of ACL

data packets. Their format is shown in Figure 3-11. In the beginning of the ACL packet,

there are 12bits for the connection handle of the device to which the data will be sent to.

The two bits that follow indicate if this packet is the first packet of a higher layer

message (0b10) or a continuing fragment packet of a higher level message (0b01).

Then two more bits are next that indicate if the packet is a point-to-point packet (0b00),

a packet that will be sent or was sent to all the slaves (0b01) or a packet that will be

sent or was sent to all the slaves that are in the park, sniff or hold mode (0b10). Then 2

Microprocessor & Hardware Laboratory

31

bytes indicating the length of the data that is contained in this ACL packet will follow

and, finally, the data itself.

Figure 3-10 HCI event format

Figure 3-11 ACL data packet format

The Host transmits to the BlueTooth Controller an ACL data packet through the HCI and

then the Controller wirelessly transmits the ACL packet to the target BlueTooth

Controller. Then by the reverse course the ACL packet arrives to the other end’s Host.

The supported by BT spec 1.2 HCI transports are 3-wire, SD-transport (Secure Digital),

UART and USB. In this thesis the UART transport is used for communication with the

BlueTooth Host, which in this case is the microcontroller. In the Host that was designed,

the Bluetooth Logical Link Control and Adaptation Protocol (L2CAP) is implemented and

Microprocessor & Hardware Laboratory

32

higher level protocol multiplexing, packet segmentation and reassembly is supported

through the very effective Serial Port Profile1 (SPP) that was designed.

In the sections below an overview of the existing system architecture will be presented.

Figure 3-12 BlueApplE - BlueBridge

3.2. The existing system (BlueApplE-BlueBridge)
BlueApplE-BlueBridge is an applications environment, developed at the Microprocessor

and Hardware Laboratory (MHL), as part of the diploma thesis by Christos Strydis [5], of

BlueTooth (BlueApplE) (which was designed to fully control and exploit the capabilities

of a BlueTooth module) that can setup and run a wireless transparent UART bridge

(BlueBridge) [5] application for transferring data between two BlueApplE-BlueBridge

devices and in extent to any two devices that have been connected to each one of the

BlueApplE-BlueBridge devices. The most important component of this system is a

1 The SPP that was designed is compatible with BlueTooth devices supporting this specific SPP and not

the BlueTooth SIG SPP, because it demands memory and processing resources not available in a

microcontroller like that used

Microprocessor & Hardware Laboratory

33

microcontroller (HOST) that is used to control all the other components that BlueApplE-

BlueBridge consists of. These components are the user input (INPUT), the

communication (HCI) with the BT module, the communication (UART) with the external

devices (EXT DEV) and the output led matrix (LEDs). (Figure 3-12) Through the

BlueApplE-BlueBridge description its advantages and disadvantages will be stressed

out.

3.2.1. Hardware

The components that BlueApplE-BlueBridge consists of, which were mentioned

previously, are the following:

I. BlueTooth module (BT module): The same module that is used in bluMiU is used,

that is described in more detail in Appendix B (page 92). It is a BTspec 1.0b qualified

BlueTooth Controller and embeds the following layers of the BlueTooth protocol

stack that were described in the previous sections: the BlueTooth Radio, the

Baseband, the Link Manager, a UART and a USB HCI. It also has a short range and

low-power internal antenna. In the BlueApplE (as well as the bluMiU) UART is used

for the communication of the BT module and the Host; UART is also used for the

communication of the Host and the external device.

II. Host: Since the BT module used did not have the amount of necessary CPU power

to embed the entire BlueTooth protocol, a device with an efficient amount of

processing power was needed to execute the upper BlueTooth protocol layers. For

this purpose the Atmel AVR AT90S8515 microcontroller was used. The use of the

specific microcontroller was not a random choice. The following reasons made this

microcontroller a good choice at that time:

 Availability
 Reliability

 Low cost
 Easy to use and program

These advantages, in conjunction with the fact that it seemed to cover the BT

module in processing power, gave the AVR AT90S8515 the privileged Host position,

while certain disadvantages this microcontroller had were overlooked at that time.

Microprocessor & Hardware Laboratory

34

III. Input & LEDs: The input system consists of 8 push-buttons that their signals are

encoded from 8 signals to 3 through a 74F148 priority encoder. These 3 signals end

up to the Host. The 8 push-buttons control all the functions of the Host and the BT

module. For the display of the various Host-BT module functions, as well as the BT

module outputs, a matrix of 16 LEDs, separated in two groups with 8 LEDs each, is

used. The first group of LEDs displays the selected command or device, depending

on the selected mode, and displays error messages on the reception or transmission

of packets. The second group displays error messages or the status of the system.

IV. External UART: The BlueApplE-BlueBridge design needed an extra UART, in

addition to the one the microcontroller (mC) had that was used for the HCI transport

between the Host and the BT module, for the BlueBridge application. For this

purpose, instead of selecting another mC with two UARTs, something that would

mean virtually that BlueApplE-BlueBridge development should be started over from

the beginning, the design adopted an external UART solution provided by MAXIM,

the MAX3110E. This solution, though, needs software resources from the mC, which

are limited, and, thus, the MAX3110E can’t achieve the data rates it supports. This,

in addition to the fact that no data buffering mechanism has been implemented,

doesn’t allow the BlueApplE-BlueBridge system to reach acceptable data rates.

3.2.2. Software

BlueApplE-BlueBridge software architecture was divided in two parts. The BlueApplE

which, as seen previously, is a BlueTooth application environment, that controls the BT

module’s functions through the UART HCI layer, and the BlueBridge which is an

application for the BlueApplE that provides wireless UART communication. The main

task of the BlueApplE-BlueBridge design is to issue BlueTooth HCI commands to the

BT module and correctly decode the events they return after they have been executed

by the module.

3.2.2.1. BlueApplE software architecture

A generalized flow chart of BlueApplE’s software architecture and operation can be

seen in Figure 3-13 and an explanation of its functions follows.

Microprocessor & Hardware Laboratory

35

Figure 3-13 BlueApplE operation flow chart

The idle process puts the mC in a power saving mode until an interrupt is triggered.

When the software detects a supported interrupt, it leads the mC to execute the

appropriate module. After the end of each of the modules’ jobs, the mC returns to the

idle process. Interrupts originate from the input, from internal UART or from the external

UART. The modules dedicated to every one are:

 The input decoder takes actions depending on the button pushed. A flow chart of the

input decoder and the command sending module is depicted in Figure 3-14. There

are 3 kinds of input interrupts:

1. Making a selection. They change various pointers of the system, which

point on certain locations of the mC’s RAM. These pointers either select a

command that the user will later transmit to the BT module, or a remote

device that the selected command will be targeted to. The selections are

shown on the LEDs, following a binary count.

2. Commanding the mC to transmit a command to the BT module. In this

case, the number of the command and all the selections made are

forwarded to the command sending process.

3. Running the BlueBridge application. The appropriate module, specified in

the following section, is executed. This allows data transfers between 2

connected BlueBridge devices.

Microprocessor & Hardware Laboratory

36

 The tasks of the command sending process (Figure 3-14) are to transmit HCI

commands or ACL packets to the BT module and to properly prepare the event

decoder for accepting incoming event packets from the BT module. When it is

executed, it reads from the memory the byte stream of the selected command and

the characteristics of the selected device (if they are needed) and then uses the

mC’s internal UART to transmit the bytes read. After commands are executed by the

BT module, a BlueTooth event is usually returned to the mC. Depending on the

command sent, the command sending module notifies the event decoder of the byte

sequence of the expected event and, thus, prepares the event decoder so that it will

function correctly.

Figure 3-14 BlueApplE input decoding module & command sending module

 The previously mentioned event decoder idles until a byte is received from the mC’s

UART. The data flow chart of the decoder is depicted in Figure 3-15. When a byte

arrives:

1. If flags have been set the byte is compared with the expected bytes generated by

the command sending module in the decoding preparation module. More flags

Microprocessor & Hardware Laboratory

37

are set, LEDs are lit and data is written to the memory. Then the decoder waits

for more bytes to arrive from the UART until the packet has been fully decoded.

2. If flags have not been set and the decoder is prepared to receive an event, the

header of the packet being received is checked if it matches the expected event.

If it is the one expected, the appropriate flags are set and more bytes received

are decoded normally according to scheme (1). If it is not the expected event the

decoder checks if it matches one of the known remotely triggered events (data

packets, create connection request packets, disconnection packets). In case the

packet being received is a known packet, its byte stream will be compared

according to scheme (1) with a template of this packet stored in the memory.

3. If the header cannot be recognized to be a known packet and nothing is being

expected, the received packet is ignored.

Figure 3-15 BlueApplE event decoding module

BlueTooth commands implemented in BlueApplE are stored in the mC’s memory in two

copies: one in the RAM of the mC and one in the non-volatile flash memory (FLASH) it

has for storing the program code. When the mC is powered up, the commands stored in

Microprocessor & Hardware Laboratory

38

the FLASH are transferred to the RAM. This method cannot be, by any means,

characterized as memory efficient, since the mC used has only 512Bytes of memory.

As a conclusion, the BlueApplE has some disadvantages, which were quite serious:

• No buffering mechanism was implemented

• The command sending module was not memory efficient

• The event decoding module was not memory efficient, and depended on the last

command that was sent by the BlueApplE

• The decoding preparation module would be useless, if a better event decoding

module was implemented

3.2.2.2. BlueBridge software architecture

The BlueBridge application provides a way for two devices connected to the external

UARTs of two BlueApplE-BlueBridge platforms to exchange data. This application uses

the command sending and event decoding modules of the BlueApplE to function. It

keeps in the mC’s memory the byte sequence of a data packet’s template.

For the BlueBridge to work both ends of two connected BlueApplE devices must start

the BlueBridge application. The handshaking process used is depicted in Figure 3-16.

Through the input the user requests a data bridge to be initiated. If another bridge is

running, it is stopped. If a bridge is not running and a connection is present, the

BlueBridge application sends a control signal to the remote device, informing it that it

will start a data bridge with it. If the remote device accepts, data received from the

external UART of the BlueApplE will be encapsulated to data packets and transmitted to

the remote device. Of course data packets received by that device will be decoded, the

data they contain will be de-capsulated and then transmitted via the external UART.

Only the two devices that started the BlueBridge can exchange data after the

handshaking that has been committed by the initiation of the application, making

BlueBridge a connection-oriented service. Connection-oriented services are used for

complex systems which require control messages to be exchanged, in order to prepare

for an onslaught of packets, and may demand reliable data transfer (through an

unreliable communication channel) and/or flow and congestion control. [13] Reliable

Microprocessor & Hardware Laboratory

39

data transfer is when the application can rely on the connection to deliver all its data

without error and in the proper order. Flow control makes sure neither side of a

connection overwhelms the other side by sending too many packets too fast, while

congestion control helps preventing the network from entering a state of gridlock, which

causes loss of packets. [13] Though, the mechanism for data transfers provided by the

BlueTooth protocol (ACL) is reliable, simple and targets point-to-point (or multipoint)

transfers. There is no need to design a connection-oriented service when dealing with a

simple cable replacement protocol, such as BlueTooth.

Figure 3-16 BlueBridge Initiation

The decoding of data packets is done using the same mechanism that BlueApplE uses

to decode events. (Figure 3-17) The expected byte stream will be a data packet

template. After the expected bytes are checked for validity, the payload byte is

forwarded to the higher level application through the external UART. This means that

Microprocessor & Hardware Laboratory

40

the header bytes (9 bytes) are practically ignored1 and the payload byte is forwarded to

a higher level application through the external UART. If a data bridge is active, every

byte received from the external UART will be forwarded to the command sending

module that will encapsulate it into a data packet (by adding to it the 9 byte header) and

then transmit it to the BT module.

Figure 3-17 BlueBridge data exchange through the BlueApplE

As seen, in every 10 bytes sent over the air by the BlueBridge application, only one is

useful. This automatically reduces the effective data rate from 57.6kbps2 to 5760bps, a

significant reduction in the bandwidth that is further reduced by the fact that the UART is

external. Concluding the description of the existing system’s architecture and

functionality, the BlueBridge application also has certain disadvantages, in addition to

those of BlueApplE:

1 They are not completely ignored; the header is checked to determine if the source BlueTooth device is

the one with which the BlueBridge application has started, if the all its elements are correct and if the

payload byte is only one
2 The default data rate of the BT module

Microprocessor & Hardware Laboratory

41

• Too low data rate (1200bps)

• Connection oriented operation, when it’s not needed

• Only one byte data payload in every 10 bytes transmitted over the air

• Supports only one ACL connection

3.3. The new system: BluMiU architecture overview
BlueTooth Multi-UART (bluMiU), developed at the Microprocessor and Hardware

Laboratory and designed in this thesis, had some basic goals to achieve. These were:

 To improve the performance of BlueBridge,

 Overcome its disadvantages (noted in the previous section) and

 Transform it to a reliable and robust data exchange BlueTooth enabled system

Once these requirements were met, new services would be added. These

requirements, as was found in a project to study BlueBridge and improve its data

transfer rate, could only be achieved by:

 Changing the mC that was used, so that it could cover the requirements. The

AT80S8515 was changed by the ATmega161 AVR. The reasons that led to this

change are discussed in the next chapter.

 Implementing a buffering mechanism in its UARTs, so that efficient data exchange

and multiprogramming could be achieved.

 Replacing every software module that was embedded in the AVR, because more

efficient modules were needed.

 Adopting a client - server architecture, so that true point-to-multipoint connections

could be achieved.

Multiple data connections are supported by the server and a simple, yet very effective,

protocol for data communication with every connected device is provided. The only

module that was changed (a.k.a. not replaced completely) was the input module that

controls the decoding of the push-buttons’ signals. A brief list of the differences between

BlueApplE-BlueBridge and bluMiU and the new services the latter introduced was seen

at the chapter 1.2 (page 7).

Microprocessor & Hardware Laboratory

42

BlueApplE didn’t have an exact focus. It was more like an attempt to discover the

capabilities of the BlueTooth protocol and the BT modules by issuing to it simple

commands and correctly decoding their replies, so that further research could be

conducted later on. From the beginning of bluMiU development, the primary focus of the

work was given on data transfers between bluMiU devices. So, mC specific functions

and/or BlueTooth services that could enhance data transfers were exploited. This fact

implied that the implemented BlueTooth commands and BlueTooth services contained

in the BlueApplE had to be reviewed (and new should be found) so that only the

necessary elements for achieving data transfers between BlueTooth devices would

remain in bluMiU. The implemented BlueTooth commands were reduced from 27 to 9 in

the server; 11 in the client. The commands necessary for the discovery, the

identification, the connection and disconnection of BlueTooth enabled devices in the

vicinity of the BT module were the commands that remained in the bluMiU. The data

transfers were mainly helped by:

1. The implementation of a buffering mechanism in the data transports. This gave

the major boost in the evolution of bluMiU; relatively large amounts of data could

be stacked in the buffer, waiting to be transmitted, allowing the bluMiU control

unit to attend to other tasks.

2. The differentiated decoding of incoming events. BlueApplE loaded the pattern of

the expected packet to be received into the memory and then waited until this

packet was received. BluMiU decodes whatever, whenever it is being received

without unnecessary memory transfers, since all the possible packets that can be

received have been included in the event decoder’s piece of code. This is a fair

solution since the mC doesn’t have a quantity of RAM available to be wasted for

the decoding of events and it is generally faster to read directly from the program

code than from the RAM.

3. The design of a packet exchange mechanism. In BlueBridge every byte received

was transmitted to the remote device. This, as seen, limits the effective data rate

to the 1/10 of the available. The bluMiU design provides data packets of variable

payloads that contain (except from the data payload) information for the source

remote device of the packet, in order to support multiple connections. The

Microprocessor & Hardware Laboratory

43

payload of data is limited only by the BT modules used, the BlueTooth protocol

itself and the number 65536.

Having in mind the limitations in resources and the complexity of the work that the mC

would have in dealing with so many things simultaneously, even in trivial tasks, great

attention was given to the software parts of the system. Every module of the system

was written in AVR assembly. Software architecture is based on interrupts that, when

triggered, cause the appropriate Interrupt Service Routines (ISRs) to be executed. In

these ISRs the modules of the system have been built. Whenever the mC is executing

an ISR and a subsequent interrupt is triggered, data vital for the ISR running is stored in

the mC’s RAM, so that the mC can execute the ISR for the new interrupt and when it

ends the first ISR will be resumed. This fact allows the mC to execute all the interrupts

that occur, internal and external, without losing any data or missing any interrupts and,

thus, decreasing the HOST’s reliability to the external device.

Microprocessor & Hardware Laboratory

44

4. System organization

In the previous chapters, an overview of the lower levels of the BlueTooth stack and the

existing BlueTooth enabled system developed in MHL in the context of Chrystos Strydis’

thesis (BlueApplE-BlueBridge) [5] was presented. We explored some of the

disadvantages the BlueApplE-BlueBridge system possessed and saw what needed to

be improved. The new system (bluMiU) reduces and in some cases it even eliminates

the flaws of the existing system.

BluMiU offers the following characteristics that make it better than the existing one:

1. packet sending mechanism

2. client-server architecture

3. support for multiple device connections

4. connectionless data exchanging between connected clients and the server

5. payload of data packets has been significantly increased, limited by the buffer of

the BT module or 65536bytes (216)

6. interrupt based multiprogramming

7. the host can be fully controlled from the device connected to the platform

8. the device connected to the platform can give commands to the BT module

9. improved data and command sending mechanism to the BT module,

10. improved decoding of incoming event and data packets from the BT module

mechanism

11. improved mechanism of data exchange between a device connected to the

platform and the platform itself

12. the platform reports the connected device of the addresses, the handles and the

user friendly names of connected and inquired devices and

13. the platform notifies the connected device whenever a disconnection occurs

In this chapter, we will present the bluMiU hardware and software design, which was

developed in this thesis and which features:

Microprocessor & Hardware Laboratory

45

 The hardware that is used to control the BT module, communicate with it and provide

BlueTooth connectivity to an external device

 The whole software design that contains the upper layers of the BlueTooth protocol

stack and the data exchange protocol

In the thesis’ context, two bluMiU platforms have been implemented; one server and

one client. The hardware and software of the bluMiU system will be described in the

following sections. At first the data communication protocol that is used in bluMiU will be

examined.

4.1. BluMiU data transfer protocol
Having two (or more) BlueTooth enabled systems that can’t exchange data at all, or

even exchange without an acceptable data rate, is like not having them. The exact

protocol, which enables bluMiU systems to exchange data between each other, will be

specified in the following sections. The next section explains why the specified by the

BlueTooth SIG Serial Port Profile (SPP) was not implemented.

4.1.1. The BlueTooth protocol approach

As seen in previous chapters, the BlueTooth SIG has specified a standard for the serial

data transfers between BlueTooth enabled devices, the SPP (Serial Port Profile). This

profile covers the scenario of setting up virtual serial ports (or equivalent) on two

devices (e.g. PCs) and connecting these with Bluetooth, to emulate a serial cable

between the two devices.

Any application may be run on either device, using the virtual serial port as if there was

a real serial cable connecting the two devices (with RS232 control signaling). The profile

assumes that the applications on both sides are typically legacy applications, able and

wanting to communicate over a serial cable (which in this case is emulated). But typical

applications cannot know about Bluetooth procedures for setting up emulated serial

cables, which is why they need help from some sort of Bluetooth-aware helper

application on both sides. Of course, according to the BlueTooth Profiles Book version

1.1, only one connection at a time is dealt within this profile. [7] Consequently, only

point-to-point configurations are considered.

Microprocessor & Hardware Laboratory

46

As with all the BlueTooth profiles, service discovery procedures and other complicated

link and setup (of the virtual serial port) procedures have to be performed to set up an

emulated serial cable connection. This approach is optimized so that a device, which

fully supports the SPP, to cover all the interoperability requirements of all BlueTooth

protocol stack layers that get involved with SPP.

4.1.2. The bluMiU protocol approach

The bluMiU system doesn’t have the hardware and software resources to support the

SPP that BlueTooth SIG has specified. So, a different protocol had to be implemented

that would be suitable for the requirements of bluMiU. The bluMiU protocol that was

implemented needs the external devices connected to the bluMiU to know that it needs

packets to be sent to the bluMiU device that include a special header and a data

payload. This header has an one byte packet indicator (0x01) that identifies the packet

transmitted would be a data one, 2 bytes with the handle of the target device (the

handles of the devices wirelessly connected to bluMiU are reported to the external

device) and 2 bytes indicating the length of the payload that will follow (referred to as

the initial length below), in a little endian byte order. After the header the data shall

follow. BluMiU supports payloads between 1 and 65536 bytes (this number is further

reduced by the capabilities of the BT module used). The packet format is depicted at

Figure 4-1.

Figure 4-1 BluMiU packet

A decoder will check to see if the header is valid (the validity of the handle will be

checked by the BT module). If the header is valid, the decoder will transcribe the packet

received to an ACL data packet (its format is depicted in Figure 4-2, which is the format

of the ACL packet that the BT module uses). The ACL packet that this BT module uses

has the following fields in its header:

1. The ACL data packet indicator. [1 byte] This is a byte with the hexadecimal value

0x02.

2. Handle. [2 bytes] This is the handle indicating the device to which the data

packet will be sent to. The two last bits of the handle (15 and 16) determine

Microprocessor & Hardware Laboratory

47

whether that packet will be broadcast1 to all the active and/or parked slaves, or

was broadcasted by the Master to all its active and/or parked slaves.

3. Total Length (L2CAP length). [2 bytes] It is the Logical Link Control & Adaptation

Protocol (L2CAP) specific length, which includes the data payload length and

some other L2CAP header fields’ length. The BT module used does not

implement the L2CAP layer (which is an upper level BlueTooth protocol stack

layer), but it uses its headers to promote interoperability. The total length is found

by adding 4 to the initial length.

4. Length. [2 bytes] This is the initial length of the data included in the packet.

5. Channel ID (CID). [2 bytes] The CID identifies the destination channel endpoint

of the packet. Different applications use different CIDs to retrieve data from the

BlueTooth device. CIDs are something like the port numbers in the TCP/IP. In

the bluMiU the CID 0x0040 is used, which is not reserved for any BlueTooth

profile.

Figure 4-2 BT module acceptable ACL packet used by bluMiU

Every number used in the header is in a little endian byte order. After the bluMiU data

packet has started to be transcribed into an ACL packet, the BT module will send it to

the device indicated by the handle in it, if that device is connected to the BT module.

If the server wirelessly transmits an ACL packet to a client, the client’s BT module

receives the packet and forwards it to the host. The client shall then de-capsulate the

information included in the packet and forward the data without a packet format to the

external device connected to it. Though, the external device must form a bluMiU data

packet in order to send data to the server.

When the client sends an ACL packet to the server, the BT module, the same way as

before, forwards the packet to the host. Then the server shall transcribe the ACL packet

1 This feature is not supported by the used BT module

Microprocessor & Hardware Laboratory

48

received to a bluMiU data packet (the packet’s format is shown in Figure 4-1) and

transmit it to the external device.

Figure 4-3 BluMiU multiple client architecture

By using this protocol, many clients can be served without any handshaking or setup of

data links. The server will be able to recognize the source of the data packet and send

data to every of its clients. (Figure 4-3) It could also broadcast data packets to all of its

slaves, if that feature, along with point to multipoint connections, were supported by the

BT module. The hardware design that gives the ability to the system to support the

bluMiU protocol and provide an external device connected to the bluMiU system with

BlueTooth connectivity will be described in the next section.

4.2. BluMiU hardware
BluMiU hardware architecture follows the previous separation in terms of its external

interfaces. (Figure 4-4) However, the new and improved features that it added to the

existing system, required substantial changes in the hardware components of the

system. The hardware components will be described in the next sections.

4.2.1. HOST

The HOST, as seen in chapter 3.2.1 (33) offers the processing power needed to

execute the upper BlueTooth protocol layers and is the most important component of

the system.

Microprocessor & Hardware Laboratory

49

Figure 4-4 bluMiU hardware architecture

The tasks it must be able to successfully accomplish every time it is asked include

1. to communicate with the BT module via UART

2. to communicate with an external device via UART

3. to execute the commands given to it from a button input

4. to discover BlueTooth enabled devices in its vicinity, [client only]

5. to connect to them, [client only]

6. to disconnect from them,

7. to exchange data packets with any one of them,

8. to manage the data flow between the BT module and the external device

connected to it (EXT DEV),

9. to correctly decode the incoming control and/or data packets, either they are

being received from the BT module or the EXT DEV,

10. to act as a bridge, transforming the bluMiU specific data packets received from

the EXT DEV to ACL data packets, compatible with the BlueTooth protocol, and

vice versa and

11. to give commands to the BT module through the push-button input or through the

push-button emulation from the EXT DEV and display their success or failed

status on the LEDs

Microprocessor & Hardware Laboratory

50

 The characteristics that the bluMiU design has (mentioned above and in the

introduction of this chapter) could not be supported by the previous microcontroller (mC)

used (AT90S8515), so another one would have to be used. The selected mC was the

ATmega161. An overview of the new AVR’s characteristics and how it is used in the

design are presented in Appendix A (page 89). The following reasons made the AVR

selected a good choice:

 Availability
 Reliability

 Low cost
 Pin compatible with AT90S8515
 Fulfills the hardware requirements set by the bluMiU design, which are

presented on Table 4-1.

Table 4-1 Old vs new microcontroller

Microcontroller Needed AT80S8515 ATmega161

SRAM 700bytes1 512bytes 1024bytes

UARTs 2 1 2

Program memory 12Kbytes 8Kbytes 16Kbytes

Multiplier 1 0 1

I/O lines 28 32 35

Registers 32 32 32

External interrupts 1 2 3

16 bit timers 1 1 2

4.2.2. BT module

The other essential component of the bluMiU system couldn’t be other than the one that

provides the system with BlueTooth connectivity, which is the BT module. The BT

modules that were donated to the MHL by Ericsson Hellas were used both in bluMiU

and in the BlueApplE-BlueBridge. They are the hardware part of the Bluetooth

1 At least 2x256bytes for UART buffers, 10x10bytes for inquiries, 7x8bytes for connections

Microprocessor & Hardware Laboratory

51

Application Tool Kit, LZT 108 4123 R2A, developed by Teleca Comtec and are

described in detail in Appendix B (page 92). As seen in the previous chapter, they

embed the BlueTooth Radio, the Baseband, the Link Manager, a UART and a USB HCI.

This means that the BT modules used accept BlueTooth commands, execute them and

return their outcome. The UART interface is used as the Host Controller Interface.

4.2.3. HCI & COM

The mC makes use of the HCI and COM interfaces to communicate with the BT module

and the EXT DEV. The internal UARTs of the ATmega161 are used to communicate

with both of them. A default baud rate of 57.6Kbps is used and 256byte buffers are

associated with the mC’s UARTs, implemented in software.

Figure 4-5 BluMiU input interface

4.2.4. INPUT

The INPUT system used in bluMiU is almost the same as that of BlueApplE-BlueBridge.

It consists of 8 push-buttons. This was a choice made in the BlueApplE design; it

needed 5 of these 8 buttons and more buttons would supposedly help future work. The

signals of these 8 buttons are driven to an 8-in-3 encoder so that fewer input lines of the

Microprocessor & Hardware Laboratory

52

mC would be used (3 instead of 8). The encoder provides a signal that indicates that a

button has been pushed. This is connected to an external interrupt line of the AVR, so,

when it is triggered, the mC samples the 3 signals from the encoder and determines

which button was that so that the appropriate action will be taken. (Figure 4-5)

4.2.5. LEDs

During the development of bluMiU, the improvement of the BlueApplE-BlueBridge

interface with the most important hardware components of the design (the BT module

and the external device) and the speed-up of its data transfer rate to these were in the

center of attention. A display that would simply show the success or failure of

commands issued to the BT module should be enough. Having that in mind, the

BlueApplE-BlueBridge display and push button systems were used almost without any

change in bluMiU. Thus, the display consists of two groups of 8 LEDs. The one group is

used to count selections, in a binary scale, while the other is used for command and

status messages.

4.2.6. EXT DEV

A device can be connected on the HOST, so that it can either acquire BlueTooth

connectivity, or control the HOST so that it will issue BlueTooth commands to the BT

module implemented in the HOST, or use the provided by bluMiU data transfer protocol

so that it can exchange data with other devices that support the bluMiU data transfer

protocol. This connection is achieved through the COM interface, which practically is the

UART1 of the mC.

4.2.7. An estimation of the bluMiU hardware components’ cost

The following hardware components were used for the development of each one of the

bluMiU kits (client or server):

• 1x Atmel AVR ATmega161 microcontroller ($7)

• 1x BlueTooth Application Tool Kit LZT 108 4123 R2A ($60)

• 1x 74F148 8-Line to 3-Line Priority Encoder ($0.25)

• 1x DM74LS14 Hex Inverter with Schmitt Trigger Inputs ($0.25)

• 1x ADM202EAN RS-232 Line Drivers/Receivers ($1.46)

Microprocessor & Hardware Laboratory

53

• Various connectors, capacitors, push buttons and LEDs ($1.5)

• PCB construction ($20)

By using these components the cost of the platform’s hardware would be at least $90.

Since a low-cost BlueTooth design is a primary objective of this thesis, the cost could be

further reduced by replacing the application tool kit by a BlueTooth RF IC and a

BlueTooth Baseband controller. The BlueTooth RF and the BlueTooth baseband

controller would have to be connected to each other though, so that a BlueTooth

module would be constructed, that would offer the same services as the ready made

one. The minimum cost for a BlueTooth Baseband controller was found to be $0.87 for

the Xemics SA XE1402 BlueTooth baseband Controller, while the minimum cost for a

BlueTooth RF IC is $0.5 for the Skyworks Solutions Inc.1 SKY73001 BlueTooth RF

Transceiver. The XE1402 is a BlueTooth baseband controller that supports only data

transfers (not voice) and is BT spec 1.2 compliant, while the SKY73001 is a full featured

BlueTooth RF IC. Both ICs are targeted for low cost, low power and small size designs.

Using these, instead of a BlueTooth evaluation kit, would make the hardware

components of the design cost more than $50 less.

A protocol definition and some hardware components would never be enough for a

complete system to be constructed. The software enables the protocol to run on the

hardware components, making it a very important element of the system. The following

sections specify the software architecture of the bluMiU system.

4.3. BluMiU software
The development of the software that was embedded in the bluMiU host was the most

complicated and time consuming task throughout this thesis’ development. Meeting the

initial requirements that were set in the beginning of the development needed very

sophisticated software architecture with very carefully written source code that would be

able to deal with multiple events (interrupts) almost simultaneously and serve all of them

1 Skyworks Solutions Inc. was created by Conexant Systems Inc. in a merger with Alpha Industries Inc

as a wireless semiconductor company [http://www.conexant.com]

Microprocessor & Hardware Laboratory

54

in real time. The software architecture of the client and the server is shown in Figure

4-6.

The idle process makes the mC to enter a power saving mode until an interrupt is

triggered. When that happens, the mC will execute the appropriate software module.

After each of the modules completes its jobs, the control is returned to the idle state,

where it waits for other interrupts. In the following sections each software module will be

thoroughly described and all its exact characteristics will be presented. The most

important software modules that enable the bluMiU protocol to function are the UART

control modules (UART0 and UART1). They will be specified in the following section.

Figure 4-6 bluMiU software architecture

4.3.1. UART control modules

The UART control modules undertake the most important task in the bluMiU design;

they must receive, decode and transmit packets to the BT module or the EXT DEV.

Infallible function of these modules is necessary because the design’s credibility relies

almost solely to these. The system has 2 UARTs, one dedicated to the communication

between the mC and the BT module and the other between the mC and an external

device. Every UART can receive and transmit bytes. Four software modules, one

module for each of the two receivers (UxRX) and two transmitters (UxTX), have been

implemented. (Figure 4-7)

Microprocessor & Hardware Laboratory

55

Figure 4-7 UART software modules

The two UART reception decoders will be described in the next sections. At first their

common elements will be examined, and then their functionality will be specified.

4.3.1.1. UART reception decoders

The UART reception decoders (U0RX, U1RX) are the highest level software modules

included in the bluMiU system. They run all the BlueTooth protocol layers that are

embedded in the system, give BlueTooth functionality to the system and enable data

exchange between remote bluMiU devices.

All the UART decoders implemented in the bluMiU design have the same binary tree

with states structure. The decoders implemented are:

 The U0RX: It decodes packets being received from the BT module

 The U1RX: It decodes packets being received from the EXT DEV.

Their states are held until the whole packet has been received. Every received byte that

belongs to a packet changes the state of the decoder. Registers are used to hold the

decoding states. They count the number of bytes that have been received (COUNTER),

the number of bytes remaining to complete the packet (LENGTH) and hold flags. A

generalized state diagram of the decoders is depicted in Figure 4-8.

Microprocessor & Hardware Laboratory

56

Figure 4-8 UART decoder state diagram

I. The decoder starts in an idle state, where no flags are set, LENGTH and

COUNTER are zero. When a byte is received it is checked whether it is the packet

indicator of a known packet.

II. If the byte is a known packet indicator, a special flag is set and the COUNTER is

increased so that the decoder will decode the next byte correctly, since it will know

that it will be the 2nd byte of this specific packet type.

III. If the byte cannot be recognized as a valid indicator, nothing happens and the

decoder returns to the idle state.

IV. As bytes arrive, the COUNTER is further increased and the LENGTH is decreased.

This phase of the decoding is the most important one, since it is the one where

received data is analyzed and appropriate actions are taken (e.g. data essential for

the connection creation is written in the SRAM or packets are transcribed between

the BlueTooth and bluMiU formats). These actions depend on the byte received

and the flags set.

V. When LENGTH reaches 0 the packet reception has completed, so the COUNTER

is set to 0 too, all the flags are cleared and the decoder returns to the idle state.

Bytes received after the decoder finishes decoding of a whole packet and has

returned to the idle state, will be considered as the packet indicator of a new

packet and will be checked appropriately.

Microprocessor & Hardware Laboratory

57

Of course, the structure of the decoders is far more complicated than that depicted in

Figure 4-8. In the following sections we will see the tasks that each of the UART

decoders undertake.

4.3.1.2. UART receiver (from the BT module) [U0RX]

One of the most important tasks that bluMiU undertakes is the reception of packets from

the BT module and its capability to decode the bytes forming them, since BlueTooth

connections can only be established by correctly decoding the appropriate BlueTooth

packets.

The purpose of the U0RX is twofold:

1. It decodes the incoming events that the BT module transmits to the Host

2. It transcribes the ACL data packets, which are targeted for the EXT DEV, to the

bluMiU specific format and retransmits them (through the other UART) to the

EXT DEV

Event decoding
By decoding the events, U0RX collects and stores to the RAM the information about the

devices in the BT module’s vicinity and the connected to it devices. It also notifies the

EXT DEV for the disconnections, as they happen. Furthermore, U0RX uses the display

system to output the success or not of a command issued to the BT module.

All the events supported in bluMiU are implemented according to the BT spec 1.2.

The U0RX decoder supports the following events:

Event Event code (hex) Length (bytes) Parameters

Inquiry complete1 0x01 4 Status

Inquiry result1 0x02 18 # of Responses, BD ADDR,

Page Scan Repetition Mode,

Page Scan Period Mode,

Reserved, Class of Device,

1 Only the client supports this event

Microprocessor & Hardware Laboratory

58

Clock Offset

Remote name

request complete1

0x07 258 Status, BD ADDR,

Remote Name

Connection

complete

0x03 14 Status, Connection Handle,

BD ADDR, Link Type,

Encryption Mode

Disconnection

complete

0x05 7 Status, Connection Handle, Reason

Command complete 0x0e 6+n # of HCI Command Packets,

Command Opcode, n bytes of

Return Parameters

Command status 0x0f 7 Status, # of HCI Command

Packets, Command Opcode

of Completed

Packets

0x13 8 # of Handles, Connection Handle,

HC # Of Completed Packets

For each event decoded, the U0RX takes different actions. Usually, when an event is

decoded, the U0RX indicates, on the LEDs of the display system, the event’s status

(where applicable) and the event that has happened. The one group of 8 LEDs that are

driven by the mC are used. The upper 4 LEDs indicate the event’s identity and the lower

4 show the event’s status or other significant event parameters.

The following output actions are taken for every event supported:

Event Output (Upper 4) Output (Lower 4)

Inquiry complete 2nd LED # of devices

Inquiry result 2nd LED # of devices

Connection complete 3rd LED 2nd LED

Disconnection complete 3rd LED 1st & 2nd LED

Remote name request complete 3rd LED 1st LED

Command complete 1st LED Status byte

Command status 3rd LED Status byte

of Completed Packets Nothing Nothing

Microprocessor & Hardware Laboratory

59

Connection related information retrieved from the events supported is stored in the

memory (or removed from the memory in the case of a disconnection). The stored in the

memory connection related information is accessible to the EXT DEV.

Data packets
The U0RX decoder is the software module that undertakes the task to transcribe the

BlueTooth data (ACL) packets received from the BT module and to retransmit them to

the EXT DEV.

In the client the data included in the ACL packets is de-capsulated from the ACL packet

and is transmitted to the EXT DEV. The host only checks if the identity of the ACL

packet is the expected one. If it isn’t, the incoming ACL packet is ignored.

In the server the ACL packet is transcribed to a bluMiU packet and transmitted this way

to the EXT DEV. This way, the client that sends the data will be known to the EXT DEV,

as well as the amount of data the client transmitted to the server. The identity is again

checked for validity; if it is not the expected, the ACL packet is ignored.

4.3.1.3. UART receiver (from the EXT DEV) [U1RX]

Another very important software module of bluMiU is the decoder of the packets coming

from the EXT DEV (U1RX). It can receive the following types of bluMiU packets:

 Data packets to transmit them wirelessly to a bluMiU device

 Manual BlueTooth commands from the EXT DEV to the BT module

 Packets indicating an BlueTooth command implemented in the mC to be issued to

the BT module (button emulation)

The communication is carried out in 57.6Kbps by default, as also happens with the BT

module.

Data packets
Data packets that are transmitted to the bluMiU by the EXT DEV must have the format

described in section 4.1.2 (page 46). After the U1RX detects that a data packet is being

received, it will transcribe the packet to a BlueTooth protocol compatible ACL data

packet (by adding to it the ACL header and removing the bluMiU packet indicator) and

Microprocessor & Hardware Laboratory

60

transmit it through the UART0 to the BT module, so that it will wirelessly transmit it to

the target bluMiU device (if it exists). The validity of the handle that has been received,

which indicates the target bluMiU device, will be checked by the BT module. The

received packet’s header is just checked for its compliance with the format of the

header specified by bluMiU.

Manual BlueTooth commands
BluMiU also accepts packets including BlueTooth commands, so that it can retransmit

them to the BT module. These packets have the format of Figure 4-9. After the U1RX

detects the Manual BlueTooth packet, it forwards the command contained in the packet

to the BT module without checking the command itself. By using this service, the EXT

DEV can issue to the BT module virtually every command specified in the BlueTooth

protocol, allowing the EXT DEV to gain almost full control of the BT module.

Figure 4-9 Manual BlueTooth command format

Button emulation
The EXT DEV can use the services, normally provided by bluMiU by the use of push-

buttons, by bypassing the button system -as well as the need for a human hand- and

sending to bluMiU a 3 or 4 byte packet for the server and client respectively. This

packet’s format is depicted in Figure 4-10. It consists of a packet indicator and 2 or 3

more bytes, the latter for the client and the first for the server bluMiU module.

Figure 4-10 Button emulation packet format

These bytes have the following function:

 The inq# and conn# fields select a remote device that has been found in the vicinity

(or is connected) to the system.

 The comm# field selects a command implemented in bluMiU to be executed by it.

Microprocessor & Hardware Laboratory

61

The previously described packet format (push-button emulation) has been designed to

act as an addition to the existing push-button control software so that it would help

bluMiU to be able to function without the explicit need for a human user. The push

button emulation uses the same mechanism as the control for the actual buttons.

4.3.1.4. UART transmitter control

The BT module communicates with the mC through the UART. The EXT DEV also uses

this way to exchange data with the mC and/or control it. Since the beginning of bluMiU

development it was realized that without a good “driver” for the mC’s UARTs,

improvement in the BlueApplE-BlueBridge performance would never be achieved and

new services could not be added, making the UART mechanism the most important

software module of bluMiU. A buffering mechanism in both of the UARTs transmitters

was implemented. Two 256byte buffers are allocated in the mC’s RAM, one for every

UART.

Figure 4-11 BluMiU buffering mechanism (UxTX)

By using the buffering mechanism depicted in Figure 4-11, when an application

requests to transmit a byte from a UART, the mechanism first checks to see if this

UART is in the process of transmitting another byte.

 If the UART is not transmitting, the byte is given to the transmitter, so that it will be

transmitted at once. It takes some time for the transmitter to transmit a byte, so it is

Microprocessor & Hardware Laboratory

62

very probable that another request to transmit a byte will be made while the

transmitter is working.

 If the UART is currently in the process of transmitting another byte, the new byte

cannot be transmitted immediately and shall be handled according to the buffer’s

state.

o If the buffer is not full, the new byte is stored in the buffer so that the UART will

transmit it when it has finished transmitting all the bytes that are stored in the

buffer before that byte.

o If the buffer is full, the UART mechanism will be stalled until a byte from the

buffer has been transmitted. Until then, the new byte is stored in the mC’s

memory along with other data essential to the UART mechanism. When a byte

has been transmitted, the new byte will be written in the buffer and the

mechanism will resume its normal function.

At the time the UART finishes transmitting a byte, a UART transmit complete interrupt is

triggered (TX). In the TX interrupt service routine (ISR), the UART mechanism checks if

the buffer is empty.

 If it is not empty, the oldest byte stored in the buffer is transmitted.

 If the buffer is empty, the UART mechanism stops the transmitter. The next byte that

will arrive to the UART will be transmitted at once.

We saw that buffering a buffering mechanism has been implemented only for the

transmitters of bluMiU. Buffering did not need to be implemented in the receivers

because the mC is fast enough so that it can process a received byte completely before

the next byte arrives in the UART receiver, even if the system is manipulating byte

streams belonging to two different packets at the same time (one from the EXT DEV

and one from the BT module). The maximum CPU time for a decoder to fully decode a

byte that has just been received is 23.6usec1 (the last byte of the header of an incoming

bluMiU data packet from the EXT DEV, which needs to be transcribed to a BlueTooth

1 Most of the commands implemented in the AVR need a single clock cycle to execute [14] (even for

SRAM transfers) and an 11.0592MHz clock is used, so the AVR’s throughput is approximately one

command every 9nsec

Microprocessor & Hardware Laboratory

63

ACL data packet, so that it will be transmitted by the BT module to a connected device).

Multiple interrupts can be processed by the mC, while the decoders process a byte.

Though, all the ISRs implemented in bluMiU complete in a maximum time of 23.6usec

and a nominal time of 4usec. Two consecutive bytes are received from the mC’s UART

in 0.13msec (with a data rate of 57600Kbps), making the existence of a buffering

mechanism in the receiver meaningless, since, even with a maximum system load, the

decoders are faster than the UART. The mC, either way, can wait with one byte in its

data reception register for some usec, until the decoders end their jobs.

The UART0 and UART1 control mechanisms have been described. They cover the

largest part of the bluMiU source code. In the next sections the rest of the software

modules are described. They are the command send module and the input control

module.

4.3.2. Command sending (to the BT module)

A BlueTooth device must be able to connect to other BlueTooth devices and use their

services, by using the means provided by the BTspec. In the previous chapters we saw

that BlueTooth commands can be issued to the BT module through the bluMiU system

from an external device. Though, some commands crucial for locating, connecting and

identifying remote devices have been included in the software so that control from an

external device would not be necessary.

The implemented in bluMiU BlueTooth commands are selected through indexing. The

commands’ byte sequences have been included in the bluMiU program code, which is

stored in the mC’s non-volatile flash memory, leaving the SRAM available for the UART

buffering and the connection data.

A very large number of BlueTooth commands has been specified in the BT spec.

Though, the microcontroller used has memory limitations that wouldn’t allow many of

them to be implemented. In order to reduce the memory used for storing them, only the

commands that are essential for the tasks of discovering BlueTooth devices, connecting

to them and exchanging data with them were included in the bluMiU design. Commands

are implemented according to BT spec 1.2. The supported commands in the server are:

Microprocessor & Hardware Laboratory

64

HCI command Details

Disconnect
Terminates an existing ACL connection based on the connected device’s

Connection Handle

Reset
Resets the Host Controller (HC) & the LM. The local BlueTooth device

enters stand-by mode

Set Event Filter Specifies different event filters (the Host receives only events that interest it)

Change Local Name Gives a user-friendly name to the local Bluetooth device

Read Local Name Reads the user-friendly name of the local Bluetooth device

Write Scan Enable
Writes the parameter deciding whether a device will perform periodic inquiry

and/or page scans so as to be visible by remote devices, or not

Read Buffer Size
Reads the max size of the ACL & SCO packet payload that the HC can

receive from the host

Read BD ADDR Reads the BD ADDR of the local device

Ericsson Set UART BR Changes the baud rate of the UART (HCI transport). Default value: 57.6Kbps

The supported commands in the client are:
HCI command Details

Inquiry
Searches for active Bluetooth devices in the vicinity and returns relative

information

Create Connection

Attempts to establish an ACL connection to another device based on the

remote device’s BD ADDR (other information found by an inquiry command

are helpful). On success, a Connection Handle is assigned to the ACL link

Disconnect
Terminates an existing ACL connection based on the connected device’s

Connection Handle

Remote Name Request Obtains the user-friendly name of a remote device based on its BD_ADDR

Reset Resets the HC & the LM. The local BlueTooth device enters stand-by mode

Set Event Filter Specifies different event filters (the Host receives only events that interest it)

Change Local Name Gives a user-friendly name to the local Bluetooth device

Read Local Name Reads the user-friendly name of the local Bluetooth device

Read Buffer Size
Reads the max size of the ACL & SCO packet payload that the HC can

receive from the HOST

Read BD ADDR Reads the BD ADDR of the local device

Ericsson Set UART BR Changes the baud rate of the UART (HCI transport). Default value: 57.6Kbps

Microprocessor & Hardware Laboratory

65

After the issue of every one of the commands implemented into the HOST1, the BT

module returns to it an event appropriate for the specific command. All the events that

can be returned by the supported by bluMiU BlueTooth commands have been

implemented in bluMiU. They are described in a previous section of this chapter (4.3.1.2

on page 57).

A means for issuing the implemented BlueTooth commands to the BT module has been

seen in section 4.3.1.3 (page 59), as the button emulation. The actual buttons (which

control the bluMiU and command it to issue commands to the BT module) are controlled

by the input control software that will be described bellow.

4.3.3. INPUT control software

The push buttons are the most common user interface of an embedded system. In the

system developed in this thesis, the existent input system has been retained, as it was

seen in section 4.2.4 (page 51). When a button has been pushed an external interrupt

of the mC is triggered. Then, the ISR of this interrupt is executed (INT0) and it finds

which of the 8 buttons has been pushed.

In bluMiU, only 4 of the 8 buttons are used. The 4 buttons that are not used have been

retained in the bluMiU design, but removing them is a trivial task. The function of each

of the 4 buttons is:

Button 1: Selects a BlueTooth command, an inquired device, or a connected device

depending on the mode, which is selected by Button 3. Button 1 increases by one the

selection. The selection is shown on the port A LEDs.

Button 2: Same as Button 1, except that it decreases by one the selection.

Button 3: Selects an operation mode for the rest of the Buttons.

1 The only exception is the Ericsson Set UART BR command; this isn’t a BT spec specified HCI

command.

Microprocessor & Hardware Laboratory

66

 For the client there are 3 different modes:

 Mode 0: HCI command operation mode. Buttons 1 and 2 select the HCI

command, while Button 4 transmits it to the BT module.

 Mode 1: Inquired device operation mode. Buttons 1 and 2 select an inquired

device, while Button 4 transmits its BD ADDR to the EXT DEV.

 Mode 2: Connected device operation mode. Buttons 1 and 2 select a

connected device, while Button 4 transmits its connection handle and its BD

ADDR to the EXT DEV.

 For the server there are 2 different modes:

 Mode 0: HCI command operation mode. Buttons 1 and 2 select the HCI

command, while Button 4 transmits it to the BT module.

 Mode 1: Connected device operation mode. Buttons 1 and 2 select a

connected device, while Button 4 transmits its connection handle and its BD

ADDR to the EXT DEV.

Button 4: Action button. The action that is described by Button 3 is taken.

Having examined the hardware and software parts of bluMiU in detail, the testing

procedures used to validate the bluMiU hardware and software design can be seen.

Microprocessor & Hardware Laboratory

67

5. Testing & Validation

When the construction of a system has been completed, it is imperative that a well

defined set of tasks is used to validate the system and demonstrate that the system

works. Also, during the construction of a complex system, such as bluMiU, after the

completion of every subsystem’s design and implementation, tests are also necessary

because:

 The majority of its bugs must be found before including it in the system

 Its correct cooperation with other subsystems of the system must be thoroughly

tested

 Verification of the whole design must take place after the subsystem’s

implementation is completed, if that is possible.

The system constructed in the present thesis is formed by a number of hardware and

software subsystems, which were specified in detail in the previous chapter. Their test

and validation procedures during the implementation of bluMiU, as well as the validation

of the whole system will be presented in this chapter.

Testing procedures that took place before the total design was constructed were the

most important tests of the system. Making extended tests to each subsystem during

the implementation provided the designer of the bluMiU system the ability to use each

subsystem as a component, without any doubts if its function was correct or not.

5.1. BT module validation
Most of the components forming the hardware around the HOST (the BT module, the

INPUT system and the HCI interface) were inherited from the BlueApplE system and,

thus, did not need extensive tests, except a simple verification that they do function as

expected.

Though, the BT module and its HCI interface were fundamental for the correct operation

of the system. In order to reassure their correct operation and make sure that the

Microprocessor & Hardware Laboratory

68

requirements of bluMiU by them would be fulfilled, they were exhaustively tested before

starting the implementation of the system. The tests for the BT module were necessary

because it was the only component that could provide BlueTooth connectivity and

doubts whether its operation was infallible had emerged during the BlueApplE

development. Another issue that was also tested was if it could offer the services

introduced by bluMiU, during the development of the latter.

The BT module, as well as its UART interface to the HOST (HCI), was put under trial in

the context of the following test procedures:

 By connecting a computer and the BT module through the UART (HCI) interface,

simple HCI commands (these were the Reset, Read BD ADDR, Read Local Name,

Write Scan Enable, Read Scan Enable, Read Local Supported Features and Read

Buffer Size HCI commands) were transmitted to it from the computer, by a terminal

application, and the module’s replies (HCI events) were checked for validity,

according to the BT spec 1.2.

 Using the same computer-BT module connection as before, the module’s ability to

locate other BlueTooth devices and connect to them was tested, by using the

following HCI commands:

1. Set Event Filter

2. Write Scan Enable

3. Inquiry

4. Create Connection

5. Disconnect

These commands were used to establish a connection with a BlueTooth enabled

mobile phone (Ericsson T39). The module’s ability to request a BlueTooth

connection from the mobile phone and accept a connection request made by the

mobile phone, were validated.

 The speed of 460kbps data rate that the BT module specifications claim to support

was validated using its USB interface. The BT module was connected via a USB

cable with a computer. Then the module exchanged large files with another USB

BlueTooth module provided by CSR. Drivers provided with the Ericsson Application

& Training Toolkit were used for the BT module.

Microprocessor & Hardware Laboratory

69

These preliminary tests on the BT module certified that it could be used in the bluMiU

design.

After the implementation of the first versions of the software of the system that could

transmit data through the UART, the BT module-HOST communication was tested. This

test was accomplished by connecting a serial cable’s RX and GND signals to the RXD0

and GND line of the HOST. The other end of the serial cable was connected to a

computer running a terminal application that could display the received by the UART

bytes in a hexadecimal format. This way, the events that the module would transmit to

the HOST in reply to the HCI commands it sent, were checked for correctness and

compliance with BT spec 1.2. (Figure 5-1)

Figure 5-1 BT module-HOST communication monitoring

Every one of the subsystems had to be tested exhaustively so that the correct

cooperation with the rest and the final flawless function of bluMiU would be guarantied.

5.2. Software validation
The software design of the bluMiU system is modular. That way, every module could be

tested independently from the others before being used in the system. The test and

validation procedures followed a hierarchical manner. The simpler and more

Microprocessor & Hardware Laboratory

70

fundamental software modules were tested first. Thus, the first modules under trial were

the UART transmitters, because every other module uses that.

5.2.1. UART transmitter validation

As it was stated in chapter 4.3.1.4 (page 61) the efficient transmission of data was a

primary requirement for the bluMiU. The buffering mechanism that was implemented

underwent many changes and needed constant debugging throughout this thesis’

implementation.

In order to debug the UART mechanism a UART connection between the HOST and a

computer was used. The HOST transmitted HCI commands to the computer through a

serial cable. The data arriving to the computer (in a terminal application, same as

before) should be the same as that supposedly transmitted from the HOST.

Later in the development, tests for the correct transmission of data from the HOST to

the BT module, through the UART mechanism were needed. To accomplish that, a

serial cable’s RX and GND signals were connected to the TXD0 and GND line of the

HOST, in the same way as in the BT module monitoring that was described above and

depicted in Figure 5-1, except that the TXD0 line of the HOST is connected with the

computer, not the RXD0. In this way, the packets sent by the HOST to the BT module

could be monitored.

UART1 (that transmits data to the EXT DEV) has an identical mechanism with UART0,

so monitoring on it was not explicitly needed. After the UART transmitters’ operation

was verified, the next most frequently module used was the input decoder module.

5.2.2. INPUT decoder validation

Since the beginning of the bluMiU design, the INPUT subsystem should work infallibly

without even a minor bug, because this was the only subsystem that could control the

system in the early stages of bluMiU implementation.

Microprocessor & Hardware Laboratory

71

The test of the decoder of the INPUT subsystem was accomplished, by the use of the

LED system, the UART connection to the EXT DEV and the monitoring of the UART

connection to the BT module.

 The primary test of the hardware part of the INPUT subsystem was merely the

lighting of specific LEDs when the appropriate button was pushed

 The selection function of the buttons was tested by transmitting the selection’s data

through the EXT DEV UART connection

 The command send function of the buttons was tested by validating that the correct

HCI command was transmitted to the BT module through the UART monitoring

After the verification of the input decoder the UART reception decoders should be

verified, so that the validation and testing procedures of the system’s components would

be completed.

5.2.3. UART decoder validation

The incoming packets from the BT module and the EXT DEV are decoded by U0RX

and U1RX decoders respectively. The tests to validate the correct function of these

decoders used the LEDs and the UART connection to the EXT DEV to report the results

of the decoding procedures, along with the monitoring of the incoming packets to the

decoders.

This test procedure can be better explained through an example: The BT module’s

replies are monitored by the system of Figure 5-1 and a Connection Complete event is

being transmitted to the HOST, either after accepting a Connection Request from a

remote BlueTooth device or after a remote BlueTooth device accepted a Connection

Request by the local HOST. The Connection Complete event indicates to both of the

Hosts forming the connection that a new connection has been established. This event

also indicates to the Host, which issued the Create Connection, or Accept Connection

Request or Reject Connection Request command and then received a Command

Status event, if the issued command failed or was successful. [3] The Connection

Complete event format that is expected by bluMiU (according to BT spec 1.2) is

depicted in Figure 5-2. After verifying that the Connection Complete event has been

transmitted by the BT module to the HOST, the correct decoding by the U0RX decoder

Microprocessor & Hardware Laboratory

72

in the HOST should be verified. This is accomplished by lighting various LEDs indicating

that fields received had the expected values and by transmitting to the computer

connected to the EXT DEV bluMiU port the Connection Handle and the BD ADDR of the

device connected to the bluMiU.

Figure 5-2 Connection Complete Event

The same test procedure was used for the U1RX and the U0RX decoders implemented

in bluMiU. Of course, the ultimate test for the transmitters and the decoders would be

the successful data exchange between two connected bluMiU devices. This would also

be the validation of the whole bluMiU protocol and system that was designed. The test

methods that were used to validate the bluMiU protocol were based on the test

procedures mentioned in the previous sections and will be presented in the next

section.

5.3. BluMiU validation
Through validating the subsystems composing bluMiU, the system itself was tested.

The validation procedure of the integral bluMiU system and protocol was far more

complicated than the validation of each of the subsystems (though, the same

mechanisms as in the subsystems’ tests were used) and consisted of testing all the

functions supported by bluMiU. This final test procedure emulated a real-life application

of the bluMiU system and protocol. More specifically the following capabilities of the

system were validated:

1. The pre-connection setup of the bluMiU client and server

2. The discovery of various BlueTooth devices by the client and the identification of

the server using the reports to the EXT DEV

3. The establishment of a BlueTooth connection between the client and the server

4. The exchange of data between bluMiU devices using the bluMiU protocol. Here

an evaluation of its efficiency and comments on possible improvements on the

protocol itself were made

Microprocessor & Hardware Laboratory

73

5. The efficient annulment of BlueTooth connections involving bluMiU devices

The test procedure of each of the mentioned tests will be presented in the following

sections.

5.3.1. BluMiU pre-connection setup

Before establishing a connection between a client and the server, certain actions should

be taken for both of the sides involving in the connection.

The power-up of the bluMiU server and client platform should be followed by no other

events than the lighting of the HOST’s idle LED and the one indicating that the first

implemented command will be executed when commanded to. When these LEDs are lit,

the HOST will be ready to receive commands from the INPUT or the EXT DEV (Manual

HCI and Button emulation). The BT module is powered up along with the HOST, since it

is powered by the bluMiU platform, and according to its datasheet there is no need for a

power up sequence. [16] After the power up of the bluMiU platform, configuring of the

BT module should take place.

 A user friendly name can be given to the modules by executing the appropriate

command implemented in the HOST (the names are: MiU-000 to the server and

MiU-001 to the client)

 The server should be visible in an inquiry scan. This is done by executing the Write

Scan Enable command implemented in the server

 The server should set the auto-accept connection parameter of the BT module for

every device, so that it would be able to connect with a client or another BlueTooth

device automatically. This is accomplished by executing the Set Event Filter

command implemented in the server

The commands used above should be able to be replaced (another name can be given,

the client too can be scanned in an inquiry and different event filters can be set for both

the client and the server1) and/or other (not implemented in the HOST) HCI commands

1 For information on the functions of the Write Scan Enable and Set Event Filter HCI commands, refer to

the BT spec 1.2. [3]

Microprocessor & Hardware Laboratory

74

can be issued to the BT module by using the Manual HCI command mode from the EXT

DEV. Finally, the HOST shouldn’t get confused by the event of Number of Completed

Packets that the BT module sends to the HOST every time the BT module receives

successfully 5 packets.

The design in the pre-connection setup would be validated if the bluMiU server could be

scanned in an inquiry scan, its name could be seen correctly and if it could accept the

connection request from a BlueTooth enabled device. This was accomplished using

some BlueTooth enabled mobile phones (Nokia 6230 and Ericsson T39).

Validation of the Manual HCI command and Button emulation modes was achieved by

enabling the client to be scanned in an inquiry (the Write Scan Enable command is not

implemented in the client), by executing the commands through the Button emulation

and by executing the Read Supported Features and Read Buffer Size commands to the

server. These commands’ successful execution was validated through the UART

monitoring of the Command Complete events that were returned for each one of them.

5.3.2. Discovery of BlueTooth devices by the client

After correctly starting-up the bluMiU system, the client should be able to search its

vicinity for BlueTooth devices, identify and connect to them.

By issuing the Inquiry command to the BT module, the BT module will report the

BlueTooth devices it found to the HOST with an Inquiry Result event for every device1 it

found. The client HOST should decode every Inquiry Result event correctly and store

the required for establishing a data connection fields to its SRAM. After at least one

Inquiry Result has been received, each discovered device’s characteristics can be

requested through the Buttons or the Button emulation, after having selected the device.

The HOST should be then able to report that inquired device’s BD ADDR to the EXT

DEV through the UART. The user friendly name of an inquired device would be

1 BT spec 1.2 specifies that multiple devices can be reported in a single Inquiry Result event, but in the

specific BT module only one device per Inquiry Result is reported.

Microprocessor & Hardware Laboratory

75

requested by issuing a Remote Name Request to that device. The Remote Name

Request Complete event should return the target inquired device’s name and the HOST

should transmit the name to the EXT DEV.

The bluMiU client’s ability to locate BlueTooth devices and identify them was validated

by finding the server and reporting its characteristics through the EXT DEV. The client’s

ability to support many inquired devices and report the selected device characteristics

was validated by locating the server and the mobile phones that were mentioned

previously and retrieving their BD ADDR, as well as reporting their user friendly names

when they are requested for each device.

5.3.3. Establishment of BlueTooth connections

After the client locates the BlueTooth devices in its vicinity and identifies them it should

be able to connect with any one of them. The same should happen for the server,

though the server can’t be able to request a connection from a BlueTooth device, only

accept connection requests.

By issuing the Create Connection command to the BT module the client should be able

to establish a BlueTooth connection with any inquired device selected (by the Buttons or

the Button emulation). After the connection has been completed, the BT module will

return a Connection Complete event (Figure 5-2). The HOST should be able to decode

that event correctly, store the connected device’s connection handle and BD ADDR to

the SRAM and report the selected connected device’s characteristics to the EXT DEV.

The server should be able to decode the Connection Complete events and report the

connected device’s characteristics to the EXT DEV as well.

This time, correct function of the bluMiU was validated by establishing a connection

between the client and the server, as well as the client and the server with other

BlueTooth devices, and reporting the correct characteristics of the device to the EXT

DEV. Point-to-multipoint connections could not be achieved, due to the lack of their

support from the BT module. [16]

Microprocessor & Hardware Laboratory

76

5.3.4. Data exchange

Since the client and the server could be connected at will, the following data exchange

matters could be tested and evaluated:

 The ability of the bluMiU platforms to actually exchange data

 The efficiency of the protocol used

 The virtue of any possible improvements in the bluMiU protocol, so that higher data

rates would be achieved

5.3.4.1. The ability to exchange data

In the requirements set for the bluMiU, the system should be able to accept data from

an external device and transmit it wirelessly to another external device connected to it.

The bluMiU client or server should have the ability, after they connect to each other, to

exchange data that is received from the external device in a full duplex manner. The

data must be encapsulated in special packets with variable payloads. The way data

transfers are done is described in detail in chapter 4.1.2 (page 46).

During the test processes in this stage, packets were formed and transmitted to the

bluMiU server or client by the EXT DEV. The payloads of the packets ranged from 1 to

796 bytes, which is the maximum payload that an ACL packet can support. Validation of

the bluMiU in this point meant that the bluMiU data packets would be transcribed

correctly to ACL data packets, then they would be delivered correctly to the target

bluMiU device (if the device was not valid they would not be delivered at all) and the

decoding of data packets in the other end should transcribe the received ACL packets

to bluMiU ones and transmit them correctly to the EXT DEV (in the client data is

transmitted to the EXT DEV without a packet format).

The same methods of testing and validating all the subsystems that were seen in the

previous sections were used here as well. The LEDs and UART monitoring were used

to validate that the bluMiU packets are transcribed correctly to ACL ones and that the

other end received the (correct) packets. In the place of EXT DEV were computers

which were running a terminal application and through that the transcription of ACL

packets to bluMiU packets was validated.

Microprocessor & Hardware Laboratory

77

In the screenshot below (Figure 5-3) 12 packets that were transmitted by the bluMiU

server are shown, after they had been received by the client. The packets transmitted

were written in a file after the handle of the client was found. They had variable

payloads ranging from 1 to 796 bytes (1, 2, 4, 8, 16, 32, 64, 128, 255, 256, 512 and

796). The packets were transmitted through COM 4 of the computer to the server

bluMiU device and received by COM 1 of the same computer, using two instances of a

terminal application that monitor the ports used. The packets were checked if the input

from the file was the same with the output. By transmitting and receiving these packets

correctly, the bluMiU server’s data packet transmission mechanism and the bluMiU

client’s data packet reception mechanism were validated.

Figure 5-3 Data packet exchanging in bluMiU, using the bluMiU protocol (server to client)

In the screenshot of Figure 5-4 12 packets that have been transmitted by the bluMiU

client are shown, after they have been received by the server. The same packets and

the same debugging mechanism as before (in the server to client test) were used. The

server, in contrast with the client, transmits bluMiU data packets to the EXT DEV, thing

that can be seen on the screenshot, where the headers can be seen as boxes [the

payloads are either non printable characters for small (0x01, 0x02…) and bigger than

255 payloads (0x100, 0x200…) or printable characters for payloads that correspond

with them in the normal or extended ASCII table (@ for 0x40 (64), € for 0x80 (128) and ‘

for 0x55 (255)]. This way the client’s data packet transmission mechanism and the

server’s reception one were validated.

Microprocessor & Hardware Laboratory

78

Figure 5-4 Data packet exchanging in bluMiU, using the bluMiU protocol (client to server)

After validating the functionality of the whole mechanism and protocol that has been

designed and implemented, its efficiency should be reviewed and possible

improvements of it should be commented.

5.3.4.2. Efficiency

Since the bluMiU platform was able to exchange data between the server and the client,

the efficiency of the protocol used to transfer data should be tested.

The data transfer mechanism efficiency is determined mainly by the data rate that it can

achieve in both directions. BluMiU supports speeds of up to 115.2kbps. The default data

rate of 57.6kbps can be considered good for a serial transfer, since the maximum

available data rate that mainstream computers support for their COM ports is 128kbps

and 56kbps is the most common one for dial-up modems.

The bluMiU protocol uses data packets with a 5byte header. In spite that it seems to

achieve data rates of 57.24kbps with a 57.6kbps connection and 796bytes of data

payload in the packet, it doesn’t. This is because the BlueTooth protocol, which is

involved in the bluMiU data transferring process, needs a 9byte overhead for every data

packet. With a speed of 57.6kbps (7200bytes/sec) it achieves a data rate of 56.95kbps

(7118.75bytes/sec) for BlueTooth ACL data packets with payloads of 796bytes. Thus,

Microprocessor & Hardware Laboratory

79

since the slower part of the protocol defines its speed, the data rate that bluMiU can

achieve is 56.95kbps.

Another point that is vital for the efficiency of the protocol used is the ease of use it

offers. BluMiU needs the external devices connected to the server and the client to be

aware that it needs packets to exchange data successfully. If the external device

connected to the client does not need to exchange data with the device connected to

the server, but only receives data from it, the client’s side does not need to know that a

BlueTooth connection is employed. The server transmits to the external device

connected to it bluMiU specific packets; it could provide the data only, in the same way

as the client. If this case was concerned, the server would be stripped of its server

duties, because the external device connected to the server couldn’t be able to

distinguish the client device where the data was coming from and, thus, multiple

connections couldn’t be supported. This is why the specified by BlueTooth SIG SPP

states that only point to point connections are concerned. Point to multipoint

connections are supported by other profiles (e.g. LAN Access Profile), which are too

complicated and need a lot of hardware and software resources to be supported

properly, thing that makes them unsuitable to be implemented in a weak microcontroller,

such as that one used in this thesis’ context.

5.3.4.3. Possible improvements for higher data rates

BluMiU, as seen in the previous section, has a maximum packet payload of 796 bytes,

which allows it to become very efficient, according to the speed it in can achieve.

The most evident improvement in bluMiU is to increase the data rates it can achieve by

increasing the baud rates of the communication between the hardware elements of

bluMiU (BT module to HOST and HOST to EXT DEV). The maximum baud rate it can

be achieved this way is 230kbps, due to the limitation in the baud rate that the RS232

Line Drivers/Receivers used have. If bluMiU works in 230kbps a data rate of 227.4kbps

can be reached. If a faster RS232 chip is used, baud rates of up to 460kbps could be

reached, which is the maximum for the BT module. In this case data rates of up to

454.85kbps could be reached. Of course UART communication with a mainstream

computer would not be possible in baud rates above 128kbps.

Microprocessor & Hardware Laboratory

80

BluMiU can also be enhanced by increasing the maximum data payload it can accept in

a data packet. For a data payload of 1KB with a 57.6kbps baud rate, bluMiU would

achieve 57.1kbps. For a data payload of 2KB in the same baud rate as before, the

system’s data rate would reach 57.35kbps. The differences between the data rate that

has been achieved (56.95kbps) and the data rates when bigger packets are utilized are

not big, making the increase of the bluMiU baud rate the most important factor for

achieving higher data rates.

In this chapter, all the tests that bluMiU was put through so that it would be validated as

a reliable wireless data exchange mechanism were reviewed and some thoughts on its

efficiency and how it can be improved were presented. In the next chapter, applications

that were designed to discern the potential of bluMiU are described.

Microprocessor & Hardware Laboratory

81

6. Applications

The validation of bluMiU meant that the requirements that were set at the beginning of

the development were met. After that, applications where bluMiU would be useful were

considered. BluMiU can be practically used wherever short-range wireless data

exchange is needed, as long as really high bandwidth is not a perquisite.

Since most of the BlueTooth services offer their services through the SPP, they could

also be implemented using the bluMiU; it offers the same functionality. Time constraints

didn’t allow for the implementation of many applications and services that would display

the full potential of the system. Though, file transferring through the bluMiU has been a

primary target -for the designer-, since the development for bluMiU had started. So, the

application that was used to demonstrate the functionality of the system was the

wireless transfer of files between the client and the server.

6.1. File transfer
To achieve file transfer through the bluMiU an application has been implemented in C.

This application contains two programs. The one is used to transmit a file to a remote

device through the bluMiU and the other to receive and reconstruct the file in the remote

device.

The first one (SPLITTER) splits a file to bluMiU packets and then transmits them to a

remote device:

1. Takes a file (original) in its input and generates bluMiU packets, which carry the

data contained in it

2. Creates a message, which signals file transfer initialization. This contains an

indicator (0x01), the name of the original file and its size. It is encapsulated in an

ordinary bluMiU packet

3. Generates data packets with a payload of 255bytes. The only exception is the

last packet, which includes a number of data bytes equal to the remaining

number of data bytes of the original file size modulo 255

Microprocessor & Hardware Laboratory

82

4. Finally, it transmits all packets to the selected COM port of the computer where a

bluMiU device is connected

The bluMiU device then transmits them wirelessly to the device indicated by each

packet, if that device exists of course. The interface of the SPLITTER application is

depicted in the screenshot below. (Figure 6-1)

Figure 6-1 BluMiU splitter interface

The splitter takes two arguments; one is the filename to be transmitted, the other is the

output filename; after the application finishes its job, that file will contain the bluMiU

packets that have been generated by the application. The packets generated will be

transmitted afterwards through the port selected to the bluMiU device that should be

connected on that port.

The second program (JOINER) receives files from a client remote device:

1. It waits until a message indicating that a file transfer will start has been received,

by waiting for the indicator 0x01

2. Receives the name of the file and creates it

3. Waits for the 4bytes of the long integer that will provide the size of the file (and,

thus, the amount of bytes that the application will receive)

4. Finally, every byte that would be received next, until all the file’s bytes have been

received, is stored into the file created

The JOINER interface (client) follows. (Figure 6-2)

Microprocessor & Hardware Laboratory

83

Figure 6-2 BluMiU JOINER interface (client side)

The client’s JOINER doesn’t need any arguments to function correctly. It idles until a

byte has been received from the port monitored. If the byte is 0x01 it is probably the

beginning of a message that indicates that a file transfer will start. After that the name

and the size of the file will be received and after that the file. Since this instance is

targeted for a client bluMiU device, it will just receive from the port as many bytes as

those defined in the message.

There is a different JOINER for the files being received from the server remote device:

1. This one waits for bluMiU packets to be received, that contain the message

indicating the name and the size of the file that is going to be received

2. It creates the file and then waits for more bluMiU packets to be received

3. When the size of the bluMiU packet has been received, the data bytes contained

in the packet are written to the file created

4. When enough bluMiU packets have been received, so that the size of the file has

covered, the receiving of the file ends successfully

The JOINER (server) is shown in the following screenshot. (Figure 6-3)

Figure 6-3 BluMiU JOINER interface (server side)

Microprocessor & Hardware Laboratory

84

The server’s JOINER works exactly like the client one, except that after a message from

a client (that signals the initiation of a file transfer) has been received, the server waits

for bluMiU packets from the same source to be received. Multiple files from different

clients can be served simultaneously, since packets that indicate their source are

utilized.

Through the pair of the SPLITTER-JOINER programs (one instance of each one must

be running in two different computers) files between a bluMiU server and client can be

exchanged, if these two are connected to each other. The correct transfer of several

files of various sizes from the server to the client and vice versa validated the correct

implementation of the application and made sure that the bluMiU system could support

large file transfers. By being successful in the task of transferring large files, it became

obvious that the system could support every kind of data streams.

The JOINER program can function as a file server. It just waits for files to be transmitted

to it. It is not a fully functional file server and cannot replace the File Transfer Profile

specified by the BTspec, since it is only able to accept files and does not offer browsing,

downloading or manipulating files and folders capabilities. [7] Through the bluMiU

protocol, these services can be provided in the same abstraction level as the JOINER

and the SPLITTER.

Microprocessor & Hardware Laboratory

85

7. Conclusions and Future Work

7.1. Conclusions
A system capable of reliable wireless data transfers, which supports high baud rates

and utilizes the BlueTooth technology to achieve data exchange was designed and built

in this thesis. The whole design has been embedded in a low-cost and low-power

microcontroller that lacked large memory (1KB of RAM) and rich hardware resources.

BlueTooth technology has been explored in the areas where data transfer was

concerned and, since the Serial Port Profile (SPP) that has been specified by the

BlueTooth Special Interest Group (SIG) in the BlueTooth specification (BT spec) 1.2

proved to be resource demanding and couldn’t cover the requirements of the system, a

differentiated protocol that supports point-to-multipoint connections has been designed,

implemented and tested. The protocol that was designed proved through the tests to be

highly efficient, in spite the memory limitations of the system. The whole design was

based on BT spec 1.2 and can support every BlueTooth module that complies with that

BT spec1.

A BlueTooth device is usually able to find devices and accept connection requests from

remote devices. The system implemented in this thesis adopted a client-server

architecture. The server device retained the BlueTooth functions that enable it to be

found, respond correctly to connection requests from multiple BlueTooth devices and

exchange data with every one of them. Correspondingly, the client device retained the

BlueTooth functions that enable it to find and identify BlueTooth devices. It also has the

capability to establish a connection with one of the devices it found and finally exchange

1 Since bluMiU was designed to work with a BT spec 1.0b qualified BlueTooth module, it should work with

every BlueTooth module available.

Microprocessor & Hardware Laboratory

86

data with it. By sharing the BlueTooth characteristics, the microcontrollers used were

relieved from about half the load in hardware resources they had.

The applications that were developed showed the potential of bluMiU as a full featured

wireless data transferring system capable of high baud rates.

7.2. Future work
BluMiU is a complete data exchange system. The improvements that could be made to

the design deal with increasing its speed and adding services in a higher level, since the

system works infallibly. Some improvements to the existing design and some new

applications that this design would be useful would be the following:

I. The most obvious improvement in the design would be to improve its data rate,

as discussed in chapter 5.3.4.3 (page 79). The BT module and the

microcontroller used both support high baud rates. The highest possible the

specific BT module can achieve is 460.8kbps, while the microcontroller can

achieve 912.6kbps. In such high speeds the BT module’s UART buffers might fill

before the packets in them will be sent over the air, so flow and congestion

control must also be implemented. It is possible that data rates above 128kbps

may need another interface protocol (than UART) for the connection between

computers and bluMiU, because computers do not easily support higher UART

speeds. The implementation of a USB core seems to be a viable solution.

II. Most BlueTooth profiles can be implemented through the bluMiU data exchange

protocol. Profiles than can be implemented are:

1. LAN Access (LAP)

2. Generic Object Exchange (GOEP)

3. Object Push (OPP)

4. Synchronization (SP)

5. File Transfer (FTP)

A demonstration application that resembles the File Transfer Profile has been

developed in the context of this thesis.

III. The computer-bluMiU interface can be improved to enable the fully automatic

function of the bluMiU by developing a special driver for it and adding to the

Microprocessor & Hardware Laboratory

87

bluMiU design more reports of its status to the computer or the external device

connected to it.

IV. Another BT module can be utilized. More connections can be supported and

higher data rates can be achieved. The various sleep modes that the BT spec

1.2 defines can be used in order to support more than 7 connected devices. The

Enhanced Data Rate that is about to appear in the market will enable even

higher data rates and broadcasting (sleeping devices also accept broadcast

messages) can be also used in order to achieve better results in multiple

connections.

V. Another microcontroller or an FPGA can be used to replace or work along the

one used. This would eliminate the need for a computer and/or a human

presence and will provide more memory. This way the development of a new

generation of bluMiU could be initiated, were the server and the client will be

merged into one device, allowing bluMiU devices to form a chain of connected

devices that will be able to function as a network. Larger memory can help to the

development of BlueTooth network routers that will contain routing tables and

thus implement routing algorithms. This can help to expand the range of the

BlueTooth network to more than 10m by having BlueTooth routers every 10m

that will forward the data packets to the correct path.

VI. A larger memory would help bluMiU to become completely transparent to the top-

level applications that will be able to see it as a simple UART cable, instead of a

packet exchange mechanism, as long as multiple connections are not

concerned.

VII. The bluMiU can also be used for FPGA programming by combining it with the

Hardware Programmer & Tester (HPT). HPT is a generic FPGA programmer

board (using a UART I/F) that has been developed by Dionysios Efstathiou in the

MHL, ECED, TUC [14], which utilizes the ReRun instruction set and Application

Program Interface (API) created by Thomas Kyriakidis in MHL, ECED, TUC [15].

The bluMiU interface can be used to program many generic autonomous FPGA-

BlueTooth systems (robots) that belong to a community and collaborate through

their communication with a server. The server will control, synchronize and re-

program the robots’ FPGAs so that they would be able to accomplish different

tasks. The tasks would depend on the information it collects from them and their

Microprocessor & Hardware Laboratory

88

neighbors. When all the tasks are completed, the system would have

accomplished a complicated assignment.

Microprocessor & Hardware Laboratory

89

Appendix A

ATmega161 AVR
The microcontroller (mC) used as the HOST (controls all the hardware components and

synchronizes their operation) in bluMiU is the ATmega161 AVR by Atmel.

Figure 0-1 ATmega161 PIN configuration and architecture

The mC used in bluMiU is an Atmel ATmega161 AVR. The ATmega161 is pin

compatible with AT90S8515, which was used in the BlueApplE architecture, thing that

helped the transition from that architecture to bluMiU by making the latter a direct

evolution of BlueApplE. The ATmega161 pin configuration and architecture are depicted

in Figure 0-1. The ATmega161 is a low-power CMOS 8-bit microcontroller based on the

AVR RISC architecture. By executing instructions in a single clock cycle, the

ATmega161 achieves throughputs approaching 1 MIPS per MHz. The AVR core

combines an instruction set, which contains 130 instructions, with 32 general purpose

working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit

(ALU), allowing two independent registers to be accessed in one single instruction

executed in one clock cycle. The proposed frequency of operation for the mC is 8MHz.

Microprocessor & Hardware Laboratory

90

Although an XTAL with a frequency of 11.0592MHz is used in bluMiU. This frequency

has certain advantages over all the others: (1) It is the highest permitted by the mC’s

datasheet (providing a higher performance) and (2) by using that frequency a 0% error

rate can be achieved with the mC’s UART. [14] The ATmega161 provides the following

features:

 16K bytes of In-System or Self-programmable Flash

 512 bytes EEPROM

 1K byte of SRAM

 35 general purpose I/O lines (4x8bit and 1x3bit)

 32 general purpose working registers

 Real-time Counter

 3 flexible Timer/Counters with Compare modes (2x8bit and 1x16bit)

 18 internal and 3 external interrupts

 2 programmable serial UARTs

 programmable Watchdog Timer with internal Oscillator

 1 SPI serial port

 1 2-cycle multiplier

 3 software-selectable power saving modes:

I. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI

port and interrupt system to continue functioning

II. The Power-down mode saves the register and SRAM contents but freezes the

Oscillator, disabling all other chip functions until the next External Interrupt or

Hardware Reset

III. In Power-save mode, the timer Oscillator continues to run, allowing the user to

maintain a timer base while the rest of the device is sleeping

The On-chip Flash Program memory can be reprogrammed using the self-programming

capability through the Boot Block and an ISP through the SPI port, or by using a

conventional non-volatile Memory programmer. [14]

Microprocessor & Hardware Laboratory

91

Microcontroller resources used by bluMiU1:

 11.6KB and 8.97KB of the 16KB Flash for the client and server modules

respectively

 (671+n*10)Bytes and (571+n*10)Bytes of the 1KB SRAM for the client and

server respectively (n*10Bytes are stored in the RAM for n interrupts triggering

one after the other because every interrupt needs 10Bytes to be stacked in the

RAM, so that a previous interrupt can be resumed)

 28 of the 35 I/O lines. 22 are used for output and 6 for input

 All the general purpose registers of the mC for the client, while 30 of the 32

general purpose registers for the server

 1 of the 2 16bit timers

 1 of the 3 external interrupts

 Both UARTs

 Idle power saving mode is used

1 BluMiU client & server version used: 0715

Microprocessor & Hardware Laboratory

92

Appendix B

The BT module
The BT modules used are the hardware part of the Bluetooth Application Tool Kit, LZT

108 4123 R2A, developed by Teleca Comtec. The hardware consists of a two-layer

printed circuit board equipped with a UART buffer, a voltage regulator, a USB

connector, an inverted-F antenna, a few other passive components and the Bluetooth

ROK101 008 module of Ericsson (Figure 0-1). This BT Module includes the Ericsson

Baseband device, a Flash Memory and the Ericsson Radio Module device. Qualification

for the Tool Kit is based upon a declaration of compliance with the Bluetooth

Specification 1.0b plus critical errata. [15]

The BT module in the BlueApplE design had as a power source a USB cable that

connected it with a computer. Using up a USB port just to provide power is clearly a

waste of resources. In the bluMiU design the board that includes the HOST and all the

hardware components is the one that provides power to the module. The USB power

supply can be changed by a power source that is connected to the jumper area of the

board (Figure 0-1) in connectors 1(Vin 5V nominal) and 10(GND) that fulfills the

following requirements:

 Supply voltage: min +4.4 V, max +5.25 V connected to Jumper area pin 1 (relative

GND pin 10)

 Minimum supply current: 100 mA [15]

A description of the ROK 101 008 and its functions will follow.

Figure 0-1 LZT 108 4123 R2A

Microprocessor & Hardware Laboratory

93

ROK 101 008 is a short-range module for implementing BlueTooth functionality into

various electronic devices. It is compliant with BT spec 1.1, is a Class 2 BlueTooth

Module (0 dBm) and is type-approved. The module consists of three major parts; a

baseband controller, a flash memory, and a radio that operates in the globally available

2.4–2.5 GHz free ISM band. The baseband controller is an ARM7-Thumb based chip

that controls the operation of the radio transceiver via the UART interface. The module’s

flash memory includes firmware for the HCI and the LM, which were discussed in

chapter 3.1 (page 19). Both data and voice transmission is supported by the module.

Communication between the module and the Host is carried out via UART and/or PCM

interface. The UART implemented on the module is an industry standard 16C450 and

supports the following baud rates: 300, 600, 900, 1200, 1800, 2400, 4800, 9600, 19200,

38400, 57600, 115200, 230400 and 460800 bits/s. 128 byte FIFOs are associated with

the UART. [16] The default setting for the UART speed is 57.6Kbps and can be

changed by sending to it an Ericsson specific HCI command. HCI command packets

sent to it should have 0x01 as packet indicator (a byte that must be transmitted

immediately before any HCI packet), events transmitted by it have 0x04 as packet

indicator and HCI ACL packets are interchanged with the packet indicator 0x02. It

supports only a point-to-point connection, and thus disallowing the bluMiU design to

support point-to-multipoint connections. Newer versions of this same module offer point-

to-multipoint connections, without the slightest change in their architecture or the way

they communicate with the HOST, which is exactly the reason why bluMiU is said to

support point-to-multipoint connections too. [17]

Microprocessor & Hardware Laboratory

94

Acronym List

A
ACL: Asynchronous Connection-Less

ACL-C: ACL-Control

ALU: Arithmetic Logic Unit

API: Application Program(ming) Interface

B
BD ADDR: BlueTooth Device Address

BlueApplE: BlueTooth Applications Environment

BlueBridge: BlueTooth Data Bridge
BluMiU: Bluetooth Multi-UART

BT module: BlueTooth module
BTspec: BlueTooth specification

BufLen: Buffer Length (bluMiU flag indicating the number of stored bytes in the buffer)

BUFOVF: Buffer Overflow (bluMiU flag indicating that the buffer is full)

C
CAGR: Compound Annual Growth Rate

CID: Channel Identity

CLK: Clock
CMOS: Complementary Metal Oxide Semiconductor

COM: Communication

CPU: Central Processing Unit

CRC: Cyclic Redundancy Check

D
DH: Data - High Rate

Microprocessor & Hardware Laboratory

95

DM: Data - Medium Rate

E
ECED: Electronics & Computer Engineering Department

EDR: Enhanced Data Rate

EEPROM: Electrically Erasable Programmable Read-Only Memory

EI: Enable Input

EXT DEV: External Device

F
FEC: Forward Error Correction

FHSS: Frequency Hopping Spread Spectrum

FIFO: First In, First Out

FLAGREG: Flag Register (bluMiU register containing various flags)

FPGA: Field-Programmable Gate Array

FTP: File Transfer Profile

G
GFSK: Gaussian Frequency-Shift Keying

GND: Ground

GOEP: Generic Object Exchange Profile

GS: Group Signal

H
HCI: Host Controller Interface

HPT: Hardware Programmer & Tester

I
I/F: Interface

I/O: Input/Output

IC: Intergraded Circuit

Microprocessor & Hardware Laboratory

96

IEEE: Institute of Electrical & Electronic Engineers

IEEE-SA: IEEE - Standards Association

INT: Interrupt

IP: Internet Protocol

IR: InfraRed

IrDA: Infrared Data Association

ISM: Industrial, Scientific & Medical

ISR: Interrupt Service Routine

L
L2CAP: Logical Link Control & Adaptation Protocol

LAN: Local Area Network

LAP: LAN Access Profile

LED: Light Emitting Diode

LM: Link Manager

LMP: Link Manager Protocol

M
MAC: Media Access Control

mC: microcontroller

MHL: Microprocessor & Hardware Laboratory

O
OBEX: Object Exchange Protocol

OCF: Opcode Command Field

OGF: Opcode Group Field

Opcode: Operation code
OPP: Object Push Profile

P
PAN: Personal Area Network

Microprocessor & Hardware Laboratory

97

PCM: Pulse Code Modulation

PDA: Personal Digital Assistant

Q
QoS: Quality of Service

R
RAM: Random Access Memory

RdBuf: Read Buffer (bluMiU flag indicating where the next byte will be read from)

RF: Radio Frequency

RISC: Reduced Instruction Set Computer

RS232: Recommended Standard 232
RX: Receive

RXD: Received Data

S
SCO: Synchronous Connection-Oriented

SD: Secure Digital

SIG: Special Interest Group

SP: Synchronization Profile

SPI: Serial Peripheral Interface

SPP: Serial Port Profile

SRAM: Static RAM

T
TDD: Time Division Duplex

TTL: Transistor-Transistor Logic

TUC: Technical University of Crete

TX: Transmit

TXD: Transmit Data

Microprocessor & Hardware Laboratory

98

U
UART: Universal Asynchronous Receiver-Transmitter (also serves as a bluMiU flag

indicating that the UART is not in the process of sending a byte)

UCR: UART Control Register

USB: Universal Serial Bus

USR: UART Status Register

UxRX: UART x (x can be 0 or 1) Receive Complete ISRs (bluMiU)

UxTX: UART x (x can be 0 or 1) Transmit Complete ISRs (bluMiU)

W
WiFi: Wireless Fidelity

WLAN: Wireless LAN
WMAN: Wireless Metropolitan Area Network

WrBuf: Write Buffer (bluMiU flag indicating the buffer location to store the next byte)

X
XTAL: Crystal

Microprocessor & Hardware Laboratory

99

References

Literature
[1] Brent A. Miller - Chatschik Bisdikian, BlueTooth Revealed: The insider’s guide to an open specification

for global wireless Communications, Prentice Hall PTR, 2001

[3] Specification of the BlueTooth System, Covered Core Package version 1.2

[4] Ericsson Technology Licensing AB, Bluetooth Beginner’s Guide

[5] Christos Strydis, Diploma Thesis: Interface and Wireless Embedded Applications οf Bluetooth, based

on Microcontrollers, Technical University of Crete, Electronics & Computer Engineering Department,

Microprocessor & Hardware Laboratory, 2003
[7] Specification of the BlueTooth System, Profile Book version 1.1

[13] James F. Kurose - Keith W. Ross, Computer Networking: A Top-Down Approach Featuring the

Internet, 2nd edition, Pearson Education-Addison Weslay, 2003

[14] Dionysios Efstathiou, Diploma Thesis: Design and Implementation of a Vendor-Independent

Universal Programmer for FPGA Technology, Technical University of Crete, Electronics & Computer

Engineering Department, Microprocessor & Hardware Laboratory, 2002

[15] Thomas Kyriakidis, Diploma Thesis: Development of a language and Universal Run-Time

Environment for FPGA programming, Technical University of Crete, Electronics & Computer Engineering

Department, Microprocessor & Hardware Laboratory, 2002

[16] Atmel ATmega161(L) AVR datasheet, Rev. 1228C-AVR-08/02, 2002 Atmel Corporation

[17] Getting Started - Bluetooth Application and Training Tool Kit, Ericsson Technology Licensing AB,

2001

[18] Ericsson ROK 101 008 Bluetooth PtP Module datasheet

Internet Resources
[2] The Official BlueTooth Membership Site (https://www.bluetooth.org/)

[6] Bluetooth 2004: Poised for the Mainstream (#IN0401211MI), In-Stat/MDR, 2004

[8] Marc de Courville, HIPERPAN: an OFDM solution granting compatibility between next G of high rate

WPANs and WLANs, Proposal to the IEEE P802.15 Working Group, 2000

[9] Institute of Electrical & Electronics Engineers website (http://www.ieee.org)

[10] David Coursey, Bluetooth vs. WiFi: Why it's NOT a death match, http://reviews-zdnet.com.com, 2002

[11] IEEE announcement for the approval of IEEE 802.15.1 Standard for Wireless Personal Area

Networks Adapted from the BlueTooth Specification:

http://standards.ieee.org/announcements/802151app.html

[12] Dave Suvak, IrDA & Bluetooth: A Complementary Comparison, http://www.dpi.net.ir, 2003

[19] Teleca Comtec AB Site (http://www.comtec.teleca.se)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

