

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΟΡΥΚΤΩΝ ΠΟΡΩΝ ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΓΕΩΦΥΣΙΚΗΣ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΓΕΩΤΕΧΝΙΚΟΣ ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΤΟΥ ΥΠΕΔΑΦΟΥΣ ΜΕ ΒΑΣΗ ΓΕΩΤΡΗΤΙΚΑ ΚΑΙ ΓΕΩΦΥΣΙΚΑ ΣΤΟΙΧΕΙΑ. ΜΕΛΕΤΗ ΓΙΑ ΤΟ ΣΧΕΔΙΑΣΜΟ ΥΒΡΙΔΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΠΑΡΑΓΩΓΗΣ ΕΝΕΡΓΕΙΑΣ ΣΤΑ ΜΑΛΙΑ ΗΡΑΚΛΕΙΟΥ

ΔΗΜΗΤΡΗΣ ΧΑΤΖΗΠΕΤΡΟΥ

ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ: ΒΑΦΕΙΔΗΣ ΑΝΤΩΝΙΟΣ, ΚΑΘΗΓΗΤΗΣ (ΕΠΙΒΛΕΠΩΝ) ΜΑΝΟΥΤΣΟΓΛΟΥ ΕΜΜΑΝΟΥΗΛ, ΚΑΘΗΓΗΤΗΣ ΣΤΕΙΑΚΑΚΗΣ ΕΜΜΑΝΟΥΗΛ, ΕΠ. ΚΑΘΗΓΗΤΗΣ

XANIA

ΜΑΡΤΗΣ 2015

Αφιερώνεται Στους γονείς μου, Παναγιώτη και Κωνσταντίνα Στην αδελφή μου Άνθη Στα αγαπημένα μου πρόσωπα Στους φίλους για την υπομονή και επίμονη τους, για την στήριξη και αγάπη τους.

ΠΡΟΛΟΓΟΣ

Ιδιαίτερες ευχαριστίες οφείλω στον κ. Αντώνιο Βαφείδη Καθηγητή της Σχολής Μηχανικών Ορυκτών Πόρων του Πολυτεχνείου Κρήτης, τόσο για την ανάθεση του θέματος, όσο και για την άψογη συνεργασία και πολύτιμη καθοδήγηση που μου προσέφερε κατά τη διάρκεια εκπόνησης της διπλωματικής μου εργασίας.

Έπίσης ευχαριστώ τον Καθηγητή κ. Εμμανουήλ Μανούτσογλου και τον Επίκουρο Καθηγητή κ. Εμμανουήλ Στειακάκη για την συμμετοχή τους στην εξεταστική επιτροπή καθώς και τον τελικό έλεγχο και τις σημαντικές παρατηρήσεις που έκαναν επί της εργασίας.

Τέλος πρέπει να ευχαριστήσω ιδιαίτερα τον διδάκτορα Εμμανουήλ Βαρουχάκη για την βοήθειά του στον συσχετισμό των αποτελεσμάτων και τον διδάκτορα Γεώργιο Κρητικάκη του εργαστηρίου Εφαρμοσμένης Γεωφυσικής, Μηχανικός Ορυκτών Πόρων, για την βοήθεια που μου προσέφερε κατά τη διάρκεια της επεξεργασίας των μετρήσεων καθώς και τις υποδείξεις του κατά τη διάρκεια συγγραφής της διπλωματικής εργασίας.

ΠΕΡΙΛΗΨΗ

Η παρούσα διπλωματική εργασία πραγματεύεται μια λεπτομερή γεωφυσική έρευνα που πραγματοποιήθηκε στην περιοχή των Μαλιών Ηρακλείου σε θέση όπου είχε σχεδιαστεί η κατασκευή λιμνοδεξαμενής στα πλαίσια υβριδικού συστήματος παραγωγής ηλεκτρικής ενέργειας. Ο στόχος της διπλωματικής αυτής είναι ο προσδιορισμός του πάχους των εδαφικών στρωμάτων της λιμνοδεξαμενής που θα κατασκευαστεί στην Θέση Μ, η ταξινόμηση σε κατηγορίες των γεωφυσικών και γεωτεχνικών χαρακτηριστικών των ανθρακικών πετρωμάτων από τα δεδομένα των θέσεων των γεωτρήσεων και η τρισδιάστατη απεικόνιση των ποιο πάνω κατηγοριών.

Για το σκοπό αυτόν πραγματοποιήθηκαν έντεκα γραμμές σεισμικής διάθλασης και δέκα γραμμές ηλεκτρικής τομογραφίας. Μετά το πρώτο αυτό στάδιο της έρευνας αποφασίστηκε η ανόρυξη (σε συγκεκριμένες θέσεις που είχαν προταθεί) έξι (6) δειγματοληπτικών γεωτρήσεων, στα δείγματα των οποίων πραγματοποιήθηκε και επί τόπου γεωτεχνικός χαρακτηρισμός (RQD, πυκνότητα ασυνεχειών, γεωτεχνικός χαρακτηρισμός κ.λ.π.).

Στα πλαίσια της παρούσας διπλωματικής εργασίας, πραγματοποιήθηκε επεξεργασία και ερμηνεία των σεισμικών και γεωηλεκτρικών δεδομένων στις 2 διαστάσεις (χρησιμοποιώντας τα λογισμικά πακέτα SeisImager, Res2Dinv και EarthImager2D), καθώς επίσης και επεξεργασία των γεωηλεκτρικών δεδομένων στις 3 διαστάσεις (3D) με τη χρήση του λογισμικού πακέτου EarthImager3D. Η τελική απεικόνιση του τρισδιάστατου γεωηλεκτρικού μοντέλου πραγματοποιήθηκε με τη βοήθεια του λογισμικού πακέτου T3D.

Στη συνέχεια, πραγματοποιήθηκε σύγκριση των γεωηλεκτρικών μοντέλων που προέκυψαν από τα διάφορα λογισμικά πακέτα, ενώ έγινε αντιπαραβολή των αποτελεσμάτων της γεωφυσικής διασκόπησης με τα αντίστοιχα στοιχεία των γεωτρήσεων και πραγματοποιήθηκε προσπάθεια συσχέτισης των γεωτρητικών και των γεωφυσικών δεδομένων. Ο απώτερος στόχος ήταν να προκύψουν στατιστικώς παραδεκτά αποτελέσματα για την κατανομή των γεωτεχνικών χαρακτηριστικών των πετρωμάτων (RQD και πυκνότητα ασυνεχειών) που προέρχονται από τις γεωτρήσεις σε όλη την έκταση της γεωφυσικής διασκόπησης.

Από τη σύγκριση των δισδιάστατων γεωηλεκτρικών μοντέλων που προέκυψαν από τα διάφορα λογισμικά πακέτα προέκυψε ότι τα αποτελέσματα πολλές φορές δεν συσχετίζονται. Αυτό ενδεχομένως οφείλεται εν μέρει και στο γεγονός ότι τα συγκρινόμενα στοιχεία δεν αντιστοιχούν ακριβώς στα ίδια βάθη.

Κατά την προσπάθεια της τρισδιάστατης αντιστροφής των γεωηλεκτρικών δεδομένων αντιμετωπίστηκαν σημαντικά λειτουργικά προβλήματα που οφείλονται κυρίως στο γεγονός της ακανόνιστης κατανομής των γεωηλεκτρικών γραμμών μελέτης στο χώρο. Αυτό είχε και ως συνέπεια την υποβάθμιση των τελικών αποτελεσμάτων, κυρίως στις θέσεις όπου δεν υπήρχε ικανοποιητική κάλυψη από δεδομένα. Από την προκαταρκτική συσχέτιση των γεωτρητικών και των γεωφυσικών δεδομένων προέκυψε ότι οι σεισμική ταχύτητα των Ρ-κυμάτων δεν φαίνεται να σχετίζεται με τοπικές μεταβολές στην ποιότητα των ανθρακικών πετρωμάτων ενώ αντίθετα, η ειδική ηλεκτρική αντίσταση φαίνεται να επηρεάζεται από την ύπαρξη μεγάλων τιμών της απόστασης των ασυνεχειών, όχι όμως και από τον δείκτη RQD.

Ο προσδιορισμός της κατανομής των γεωτεχνικών χαρακτηριστικών των πετρωμάτων που προέρχονται από τις γεωτρήσεις σε όλη την έκταση της γεωφυσικής διασκόπησης είναι δυνατόν να επιτευχθεί υπό την προϋπόθεση ότι έχει υλοποιηθεί μια αξιόπιστη ταξινόμηση και έχει γίνει εις βάθος στατιστική μελέτη. Θα πρέπει να σημειωθεί ότι στην παρούσα διπλωματική έχει πραγματοποιηθεί μια προσεγγιστική στατιστική ανάλυση μεταξύ των γεωφυσικών και γεωτεχνικών δεδομένων και όχι μια ενδελεχής μελέτη συσχέτισης των παραμέτρων αυτών.

Με βάση τα αποτελέσματα της παρούσας διπλωματικής προτείνεται ότι για να είναι εφικτή αλλά και αξιόπιστη η τρισδιάστατη αντιστροφή με το λογισμικό πακέτο EarthImager3D θα πρέπει τα γεωηλεκτρικά δεδομένα να δειγματοληπτούνται σε κανονικό κάναβο. Επιπρόσθετα, για τον προσδιορισμό της κατανομής των γεωτεχνικών χαρακτηριστικών των πετρωμάτων που προέρχονται από τις γεωτρήσεις σε όλη την έκταση της γεωφυσικής διασκόπησης θα πρέπει να υλοποιηθεί μια λεπτομερής στατιστική συσχέτιση των δεδομένων αυτών έτσι ώστε τα αποτελέσματα να είναι αξιόπιστα και αξιοποιήσιμα.

<u>HEPIEXOMENA</u>

Αφιέρωση	i
Πρόλογος	ii
Περίληψη	iii
ΚΕΦΑΛΑΙΟ 1	1
ΕΙΣΑΓΩΓΗ	1
1.1 Υβριδικά Συστήματα Παραγωγής Ενέργειας	2
1.1.1 Ιστορικά Στοιχεία για Ανανεώσιμες Πηγές Ενέργειας	2
1.1.2 Υβριδικά Συστήματα Ενέργειας	2
1.1.3 Αιολική Ενέργεια	
1.1.4 Ηλιακή Ενέργεια	
1.1.5 Υδροηλεκτρική Ενέργεια	4
1.2 Περιοχή Μελέτης	5
1.2.1 Γεωλογικά Στοιχεία της Περιοχής Μελέτης	7
1.3 Σχεδιασμός Λιμνοδεξαμενών και Γεωφυσικές Μεθόδοι	
ΚΕΦΑΛΑΙΟ 2	11
ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΓΕΩΦΥΣΙΚΩΝ ΜΕΘΟΔΩΝ	11
2.1 Βασικές Αρχές της Σεισμικής Τομογραφίας	11
2.2 Βασικές Αρχές της Ηλεκτρικής Τομογραφίας	
2.3 Δισδιάστατη Ηλεκτρική Τομογραφίας	
2.4 Τρισδιάστατη Ηλεκτρική Τομογραφίας	17
2.5 Συλλογή των Γεωφυσικών Δεδομένων	19
2.6 Γεωφυσικά Δεδομένα	
2.6.1 Σεισμική Έρευνα	
2.6.2 Ηλεκτρική Τομογραφία	
ΚΕΦΑΛΑΙΟ 3	25
3.1 Γεωτρητικά Δεδομένα	25
3.2 Επεξεργασία Σεισμικών Δεδομένων	27
3.2.1 Μεθόδοι Επεξεργασίας	

3.2.2 Αποτελέσματα Επεξεργασίας	
3.3 Επεξεργασία Μετρήσεων Ηλεκτρικής Τομογραφίας	
3.3.1 Δισδιάστατη Επεξεργασία με το Λογισμικό Res2dinv	
3.3.1.1 Μέθοδος Επεξεργασίας	
3.3.1.2 Αποτελέσματα Επεξεργασίας	
3.3.2 Δισδιάστατη Επεξεργασία με το Λογισμικό EarthImager2D	40
3.3.2.1 Μέθοδος Επεξεργασίας	40
3.3.2.2 Αποτελέσματα Επεξεργασίας	41
3.4 Σύγκριση Αποτελεσμάτων από τα Λογισμικά Res2dinv και EarthImager2D	44
3.5 EarthImager3D	50
ΚΕΦΑΛΑΙΟ 4	63
4.1 Περιγραφή Μεθοδολογίας Συσχέτισης των Γεωτεχνικών Χαρακτηριστικά Πετρωμάτων με τις Τιμές της Ειδικής Ηλεκτρικής Αντίστασης	ών των 63
4.2 Τρισδιάστατη Απεικόνιση των Δεδομένων με Βάση την Ταξινόμηση με το Λο EarthImager3D	γισμικό 67
4.3 Τρισδιάστατη Απεικόνιση των Δεδομένων με Βάση την Ταξινόμηση με το Λο	γισμικό
T3D	70
ТЗD КЕФАЛАЮ 5	70 74
Τ3D ΚΕΦΑΛΑΙΟ 5 ΣΥΜΠΕΡΑΣΜΑΤΑ - ΠΡΟΤΑΣΕΙΣ	70 74 74
Τ3D ΚΕΦΑΛΑΙΟ 5 ΣΥΜΠΕΡΑΣΜΑΤΑ - ΠΡΟΤΑΣΕΙΣ ΒΙΒΛΙΟΓΡΑΦΙΑ	70 74 74 75
Τ3D ΚΕΦΑΛΑΙΟ 5 ΣΥΜΠΕΡΑΣΜΑΤΑ - ΠΡΟΤΑΣΕΙΣ ΒΙΒΛΙΟΓΡΑΦΙΑ ΕΛΛΗΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ	70 74 74 75 75
Τ3D ΚΕΦΑΛΑΙΟ 5 ΣΥΜΠΕΡΑΣΜΑΤΑ - ΠΡΟΤΑΣΕΙΣ ΒΙΒΛΙΟΓΡΑΦΙΑ ΕΛΛΗΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ ΔΙΕΘΝΗΣ ΒΙΒΛΙΟΓΡΑΦΙΑ	70 74 74 75 75 76
Τ3D ΚΕΦΑΛΑΙΟ 5 ΣΥΜΠΕΡΑΣΜΑΤΑ - ΠΡΟΤΑΣΕΙΣ ΒΙΒΛΙΟΓΡΑΦΙΑ ΕΛΛΗΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ ΔΙΕΘΝΗΣ ΒΙΒΛΙΟΓΡΑΦΙΑ ΙΣΤΙΟΣΕΛΙΔΕΣ	70 74 74 75 75 76 77
Τ3D ΚΕΦΑΛΑΙΟ 5 ΣΥΜΠΕΡΑΣΜΑΤΑ - ΠΡΟΤΑΣΕΙΣ ΒΙΒΛΙΟΓΡΑΦΙΑ ΕΛΛΗΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ ΔΙΕΘΝΗΣ ΒΙΒΛΙΟΓΡΑΦΙΑ ΙΣΤΙΟΣΕΛΙΔΕΣ ΠΑΡΑΡΤΗΜΑΤΑ.	70 74 74 75 75 76 77 78
Τ3D ΚΕΦΑΛΑΙΟ 5 ΣΥΜΠΕΡΑΣΜΑΤΑ - ΠΡΟΤΑΣΕΙΣ ΒΙΒΛΙΟΓΡΑΦΙΑ ΕΛΛΗΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ ΔΙΕΘΝΗΣ ΒΙΒΛΙΟΓΡΑΦΙΑ ΙΣΤΙΟΣΕΛΙΔΕΣ ΠΑΡΑΡΤΗΜΑΤΑ ΠΑΡΑΡΤΗΜΑ Α	70 74 74 75 75 76 76 77 78 79
ТЗD КЕФАЛАЮ 5 БУМПЕРАΣМАТА - ПРОТАΣЕІΣ ВІВЛЮГРАФІА ЕЛЛНΝІКН ВІВЛЮГРАФІА ΔΙΕΘΝΗΣ ΒΙΒΛΙΟΓΡΑΦΙΑ ΙΣΤΙΟΣΕΛΙΔΕΣ ΠΑΡΑΡΤΗΜΑΤΑ ΠΑΡΑΡΤΗΜΑ Β	70 74 74 75 75 76 76 77 78 79 79
ТЗD КЕФАЛАЮ 5 БУМПЕРАΣМАТА - ПРОТАΣЕІΣ ВІВЛЮГРАФІА ЕЛАНΝІКН ВІВЛЮГРАФІА ΔΙΕΘΝΗΣ ΒΙΒΛΙΟΓΡΑΦΙΑ ΙΣΤΙΟΣΕΛΙΔΕΣ ΠΑΡΑΡΤΗΜΑΤΑ ΠΑΡΑΡΤΗΜΑ Α ΠΑΡΑΡΤΗΜΑ Β ΠΑΡΑΡΤΗΜΑ Γ	70 74 74 75 75 76 76 77 78 79 79 91 91
ТЗD КЕФАЛАЮ 5 БУМПЕРАΣМАТА - ПРОТАΣЕІΣ ВІВЛЮГРАФІА ЕЛЛНΝІКН ВІВЛЮГРАФІА ΔΙΕΘΝΗΣ ΒΙΒЛЮГРАФІА ΙΣΤΙΟΣΕΛΙΔΕΣ ПАРАРТНМАТА ПАРАРТНМА А ПАРАРТНМА В ПАРАРТНМА Δ	70 74 74 75 75 75 76 77 78 79 79 91 109 114
Т3D ΚΕΦΑΛΑΙΟ 5 ΣΥΜΠΕΡΑΣΜΑΤΑ - ΠΡΟΤΑΣΕΙΣ ΒΙΒΛΙΟΓΡΑΦΙΑ ΕΛΛΗΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ ΕΛΛΗΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ ΕΛΗΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ ΕΥΙΟΣΕΛΙΔΕΣ ΠΑΡΑΡΤΗΜΑΤΑ ΠΑΡΑΡΤΗΜΑ Β ΠΑΡΑΡΤΗΜΑ Γ ΠΑΡΑΡΤΗΜΑ Ε ΠΑΡΑΡΤΗΜΑ Ε	70 74 74 75 75 76 76 77 78 79 79 91 109 114 119

Οι απόψεις και τα συμπεράσματα που περιέχονται σ' αυτό το έγγραφο εκφράζουν τον συγγραφέα και δεν πρέπει να ερμηνευτεί ότι αντιπροσωπεύουν τις επίσημες θέσεις των εξεταστών.

<u>ΚΕΦΑΛΑΙΟ 1</u>

ΕΙΣΑΓΩΓΗ

Η παρούσα διπλωματική εργασία πραγματεύεται την εφαρμογή των γεωφυσικών μεθόδων της ηλεκτρικής και σεισμικής τομογραφίας, για το σχεδιασμό λιμνοδεξαμενής και τον γεωτεχνικό χαρακτηρισμό του υπεδάφους στα Μάλια Ηρακλείου με βάση γεωτρητικά και γεωφυσικά στοιχεία.

Η εργασία αυτή αποτελείται από πέντε κεφάλαια. Τα περιεχόμενα του κάθε κεφαλαίου, περιγράφονται συνοπτικά ως εξής:

Στο πρώτο κεφάλαιο γίνεται αναφορά στα υβριδικά συστήματα παραγωγής ηλεκτρικής ενέργειας καθώς επίσης και στις γεωφυσικές μεθόδους που έχουν χρησιμοποιηθεί για τον σχεδιασμό λιμνοδεξαμενών ή για τον γεωτεχνικό χαρακτηρισμό βραχωδών σχηματισμών. Κατόπιν γίνεται περιγραφή των γεωλογικών σχηματισμών που εμφανίζονται στην περιοχή μελέτης και στις στρωματογραφικές και τεκτονικές ενότητες που αποτελούν την γεωλογική δομή της περιοχής των Μαλίων Ηρακλείου.

Στο δεύτερο κεφάλαιο περιγράφεται η μέθοδος της σεισμικής διάθλασης και της ηλεκτρικής τομογραφίας. Στην αρχή του κεφαλαίου πραγματοποιείται αναφορά στα είδη των σεισμικών κυμάτων και τις αρχές διάδοσης τους. Στη συνέχεια αναλύεται εκτενέστερα η μέθοδος σεισμική διάθλαση και η συνδρομή της στην εκτίμηση του πάχους και της σεισμικής ταχύτητας των γεωλογικών σχηματισμών. Επίσης, περιγράφεται η διαδικασία επεξεργασίας των μετρήσεων αυτής.

Ακολούθως, αναλύονται οι διάφορες ηλεκτρικές μέθοδοι που χρησιμοποιούνται για τον προσδιορισμό των ηλεκτρικών ιδιοτήτων των επιφανειακών στρωμάτων του φλοιού της Γης, όπου περιγράφεται αναλυτικά η μέθοδος της ειδικής ηλεκτρικής αντίστασης. Τέλος, γίνεται εκτενέστερη αναφορά στη μέθοδο της ηλεκτρικής τομογραφίας και της διαδικασίας επεξεργασίας των μετρήσεων αυτής. Στο ίδιο κεφάλαιο, περιγράφεται ο τρόπος διεξαγωγής των γεωφυσικών μετρήσεων και ο εξοπλισμός που χρησιμοποιήθηκε.

Το τρίτο κεφαλαίο γίνεται αναφορά στον χαρακτηρισμό των ανθρακικών πετρωμάτων όπως προέκυψε από τα γεωτρητικά στοιχεία καθώς και στα αποτελέσματα της επεξεργασίας των γεωφυσικών δεδομένων ενώ πραγματοποιείται και η σύγκριση των αποτελεσμάτων της δισδιάστατης ηλεκτρικής τομογραφίας που προέκυψαν από δύο διαφορετικά λογισμικά πακέτα (Res2DinvTM και EarthImager2DTM). Τέλος, παρατίθεται το γεωηλεκτρικό μοντέλο της μελέτης περιοχής στις τρεις διαστάσεις, όπως προέκυψε από την τρισδιάστατη αντιστροφή των δεδομένων της ηλεκτρικής τομογραφίας με το λογισμικό EarthImager3DTM. Στο τέταρτο κεφαλαίο οι τιμές της ειδικής ηλεκτρικής αντίστασης και της ταχύτητας διάδοσης των σεισμικών κυμάτων ταξινομούνται σε κατηγορίες και εξετάζεται η συσχέτιση των κατηγοριών αυτών με τον δείκτη RQD και την απόσταση των ασυνεχειών στις θέσεις των γεωτρήσεων. Ακολούθως, με βάση τη συσχέτιση των γεωφυσικών και των γεωτρητικών δεδομένων επιχειρείται η τρισδιάστατη απεικόνιση των ειδικών ηλεκτρικών αντιστάσεων που αντιστοιχούν σε συγκεκριμένα γεωτεχνικά χαρακτηριστικά των πετρωμάτων (απόστασης ασυνεχειών) σε όλη την έκταση της γεωφυσικής διασκόπησης.

Τέλος, στο πέμπτο κεφάλαιο, αναφέρονται τα συμπεράσματα που προέκυψαν από την παρούσα εργασία και πραγματοποιούνται προτάσεις για την αντιμετώπιση προβλημάτων που απαντήθηκαν κατά την εκπόνηση της διπλωματικής αυτής εργασίας.

1.1 ΥΒΡΙΔΙΚΑ ΣΥΣΤΗΜΑΤΑ ΠΑΡΑΓΩΓΗΣ ΕΝΕΡΓΕΙΑΣ

1.1.1 ΙΣΤΟΡΙΚΑ ΣΤΟΙΧΕΙΑ ΓΙΑ ΑΝΑΝΕΩΣΙΜΕΣ ΠΗΓΕΣ ΕΝΕΡΓΙΑΣ

Ο άνθρωπος από τα παλιά χρόνια προσπάθησε να εκμεταλλευτεί διάφορα στοιχεία της φύσης έτσι ώστε να τα χρησιμοποιήσει προς όφελος του κυρίως για τις ανάγκες του, όπου αυτές ήταν μεγάλες. Εκμεταλλεύτηκε την παρουσία του ανέμου και του ήλιου προτού ανακαλύψει τις αιτίες που τα δημιουργούν και προτού κατανοήσει την έννοια της ενέργεια όπως την ξέρουμε σήμερα (Καρταλίδης, 2011).

Δημιουργήθηκαν πολλές κατασκευές ή ακόμα και συστήματα κατασκευών για να εκτελούν εργασίες που ήταν σκληρές για τα ζώα και τον άνθρωπο. Τα πρώτα στοιχεία που εκμεταλλεύτηκε ο άνθρωπος ήταν ο άνεμος και ο ήλιος. Κατασκεύασε πανιά στα καράβια του για θαλάσσιες μεταφορές, για παραγωγή αλευριού στους ανεμόμυλους και εκμεταλλεύτηκε την θερμότητα του ήλιου για ξήρανση.

1.1.2 ΥΒΡΙΔΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΝΕΡΓΕΙΑΣ

Ως Υβριδικό Σύστημα Ενέργειας ορίζεται οποιοδήποτε αυτόνομο σύστημα ηλεκτροπαραγωγής, στο οποίο ενσωματώνονται περισσότερες από μία πηγές ενέργειας που λειτουργούν μαζί με τον απαραίτητο υποστηρικτικό εξοπλισμό, συμπεριλαμβανομένης της αποθήκευσης της ενέργειας, με στόχο την παροχή ηλεκτρικής ενέργειας στο δίκτυο ή στο σημείο εγκατάστασής του (Αντωνακόπουλος, 2010).

Τα βασικά μέρη που συνιστούν ένα Υβριδικό Σύστημα Ενέργειας είναι:

- α) οι μονάδες παραγωγής της ενέργειας
- β) η μονάδα αποθήκευσης ενέργειας
- γ) η μονάδα ελέγχου της παραγόμενης ηλεκτρικής ενέργειας

Οι ανανεώσιμες μορφές ενέργειας που θα μπορούσαν να χρησιμοποιηθούν σε ένα υβριδικό σύστημα είναι η Ηλιακή, Αιολική και Υδροηλεκτρική Ενέργεια.

1.1.3 ΑΙΟΛΙΚΗ ΕΝΕΡΓΕΙΑ

Η αιολική ενέργεια είναι η ενέργεια που φέρει ο άνεμος και μπορεί γενικά να υποστεί εκμετάλλευση από τον άνθρωπο με την χρήση διαφόρων τεχνολογιών. Πρωταρχική πηγή της αιολικής ενέργειας είναι η θέρμανση της ατμόσφαιρας από τις ακτίνες του ήλιου, αφού θερμαίνοντας τις αέριες μάζες στην επιφάνεια της γης, αυτές μετακινούνται λόγω διαφοράς πίεσης που οφείλεται σε ανομοιόμορφη θέρμανση.

Η εκμετάλλευση της αιολικής ενέργειας γίνεται με ειδικές μηχανές που ονομάζονται ανεμογεννήτριες και μετατρέπουν την ενέργεια του ανέμου κατευθείαν σε ηλεκτρισμό (Σχήμα 1.1).

Οι ανεμογεννήτριες μετατρέπουν την κινητική ενέργεια που υπάρχει στον άνεμο σε περιστροφική ενέργεια και μετά με την βοήθεια γεννήτριας σε συνεχές ή εναλλασσόμενο ηλεκτρικό ρεύμα.

Σχήμα 1.1: Σύστημα ανεμογεννητριών που θα αποτελεί ένα από τα τμήματα του υβριδικού συστήματος ενέργειας του έργου. (http://el.wikipedia.org)

1.1.4 ΗΛΙΑΚΗ ΕΝΕΡΓΕΙΑ

Ηλιακή ενέργεια ονομάζεται η ενέργεια που παίρνουμε από τον Ήλιο μέσω της ακτινοβολίας του. Η ενέργεια αυτή είναι προϊόν των αντιδράσεων πυρηνικής σύντηξης που συμβαίνουν στο εσωτερικό του Ήλιου. Η εκμετάλλευση της ηλιακής ενέργειας γίνεται με την μετατροπή της ηλιακής ακτινοβολίας απευθείας σε ηλεκτρικό ρεύμα με την χρήση φωτοβολταϊκών στοιχείων μέσω του φωτοβολταϊκού φαινομένου.

Τα φωτοβολταϊκά συστήματα μετατρέπουν την προσπίπτουσα ηλιακή ακτινοβολία σε συνεχές ηλεκτρικό ρεύμα με την βοήθεια του φωτοβολταϊκού πάνελ.

1.1.5 ΥΔΡΟΗΛΕΚΤΡΙΚΗ ΕΝΕΡΓΕΙΑ

Η Υδροηλεκτρική Ενέργεια είναι η ενέργεια η οποία στηρίζεται στην εκμετάλλευση της μηχανικής ενέργειας του νερού. Το νερό ρέει κατηφορικά σε ρυάκια, χείμαρρους και ποτάμια μέχρι να φτάσει στη θάλασσα. Όσο μεγαλύτερος είναι ο όγκος του αποθηκευμένου νερού και όσο ψηλότερα βρίσκεται, τόσο περισσότερη είναι η ενέργεια που περιέχει.

Η υδροηλεκτρική ενέργεια προέρχεται από τη μετατροπή της δυναμικής ενέργειας του νερού σε κινητική μέσω του υδροστροβίλου και στη συνέχεια σε ηλεκτρική μέσω της γεννήτριας (Σχήμα 1.2).

Το έργο όπου έχει σχεδιαστεί στα Μάλια Ηρακλείου έχει ως σκοπό την συλλογή υδάτινων πόρων και την εκμετάλλευση τους για την παραγωγή ενέργειας σε ετήσια βάση. Το έργο περιλαμβάνει 2 λιμνοδεξαμενές που έχουν διαφορά ύψους περίπου 630m και ένα υβριδικό σύστημα με αιολικό πάρκο και υδροστρόβιλους. Το όλο έργο θα δουλεύει σε ετήσια βάση αφού το χειμώνα από τις βροχοπτώσεις οι λιμνοδεξαμενές θα γεμίσουν και με την δυναμική ενέργεια του νερού που θα αφήνεται από την πάνω λιμνοδεξαμενή θα παράγεται ενέργεια που θα παράγει το αιολικό πάρκο και με την βοήθεια αντλιών το νερό θα φτάνει στην πάνω λιμνοδεξαμενή.

1.2 ΠΕΡΙΟΧΗ ΜΕΛΕΤΗΣ

Η περιοχή έρευνας βρίσκεται νοτιοανατολικά των Μαλίων, στο Ηράκλειο Κρήτης (Σχήμα 1.3) και αποτελείται από δύο διαφορετικές τοποθεσίες, όπου δυο λιμνοδεξαμενές προγραμματίζεται να κατασκευαστούν. Τόσο η δεξαμενή στη θέση Μ και όσο και η δεξαμενή Κ βρίσκονται νοτιοανατολικά των Μαλίων. Το μέσο υψομέτρου στη θέση Μ είναι περίπου +270 m, ενώ στη θέση Κ είναι περίπου +900 m. Η οριζόντια απόσταση τους είναι περίπου 2,8 km. Στο Σχήμα 1.4 απεικονίζεται ο τοπογραφικός χάρτης και τα όρια της λιμνοδεξαμενής στη θέση Μ, συμπεριλαμβανομένων των γραμμών μελέτης και των θέσεων των γεωτρήσεων που πραγματοποιήθηκαν. Στην παρούσα εργασία, πραγματοποιείται μελέτη των γεωλογικών σχηματισμών μόνο για την λιμνοδεξαμενή που βρίσκεται στην θέση Μ.

Σχήμα 1.3: Δορυφορική εικόνα της περιοχής Μάλια, Ηράκλειο, Κρήτης όπου απεικονίζονται οι δυο λιμνοδεξαμενές (Site M – Site K).

Σχήμα 1.4: Τοπογραφικός χάρτης της περιοχής μελέτης Μ. Απεικονίζονται επίσης οι θέσεις των γραμμών μελέτης, το περίγραμμα της λιμνοδεξαμενής καθώς και οι θέσεις των προτεινόμενων και των διατρηθέντων γεωτρήσεων.

1.2.1 ΓΕΩΛΟΓΙΚΑ ΣΤΟΙΧΕΙΑ ΤΗΣ ΠΕΡΙΟΧΗΣ ΜΕΛΕΤΗΣ

Η γεωφυσική έρευνα πραγματοποιήθηκε σε δύο τοποθεσίες που υποδεικνύονται με κόκκινους κύκλους στο γεωλογικό χάρτη (Σχήμα 1.5). Η θέση Μ αποτελείται κυρίως από ανθρακικά πετρώματα του Κρητιδικού που ανήκουν στη ζώνη Τρίπολης, ενώ η θέση Κ αποτελείται από ανθρακικά του Ανώτερου Τριαδικού της ζώνης Τρίπολης.

Η περιοχή του έργου βρίσκεται σε δολομιτικούς και ασβεστολιθικούς σχηματισμούς, όπου καρστικά χαρακτηριστικά είναι παρόντα. Ειδικότερα, η χαμηλότερη δεξαμενή (θέση M) έχει προγραμματιστεί να κατασκευαστεί σε μια στενή κοιλάδα που διαμορφώνεται από Νοτιοδυτικά με κατεύθυνση Βορειοανατολικά με μήκος περίπου 500 m.

Το υψόμετρο της περιοχής κυμαίνεται από +220 m έως +280 m. Οι γεωμορφολογικές μορφές αναγνωρίζονται κατά μήκος των πλαγιών της κοιλάδας που πιστοποιούν την ύπαρξη ρηγμάτων κυρίως από Νοτιοδυτική προς Βορειοανατολική διεύθυνση, καθώς και στη Νοτιοανατολική προς Βορειοδυτική διεύθυνση. Τα ρήγματα αυτά, θεωρείται ότι έχουν υποβαθμίσει το υπόβαθρο κατά μήκος του άξονα της λεκάνης. Επιπλέον, οι τεκτονικές μεταβολές έχουν μειώσει τις μηχανικές ιδιότητες της βραχομάζας.

Εκτός από την λεκάνη απορροής οι σχηματισμοί των παρακείμενων παρειών έχουν εξασθενήσει εξαιτίας της τεκτονικής δράσης. Το αποσαθρωμένο αυτό υλικό μέσω του μηχανισμού της διάβρωσης έχει πληρώσει την περιοχή της λεκάνης που σχηματίζεται μια ευρύτερη ημιεπίπεδη επιφάνεια. Οι μικρές τοιχοποιίες (ξερολιθιές) που χρησιμοποιούνται για την καλλιέργεια βοήθησαν ώστε τα ιζήματα αυτά να μην απομακρυνθούν μέσω της δράσης του νερού. Το πάχος των ιζημάτων αυτών, σύμφωνα με τα γεωτρητικά στοιχεία, δεν υπερβαίνει τα 3 - 4 m.

Σχήμα 1.5: Γεωλογικός χάρτης της περιοχής Μάλια, Ηρακλείου, Κρήτης (Vafidis et al., 2012).

1.3 ΣΧΕΔΙΑΣΜΟΣ ΛΙΜΝΟΔΕΞΑΜΕΝΩΝ ΚΑΙ ΓΕΩΦΥΣΙΚΕΣ ΜΕΘΟΔΟΙ

Οι λιμνοδεξαμενές είναι μικροί ταμιευτήρες επιφανειακών υδάτων, που χωρίζονται σε 2 κατηγορίες: (Καπλανίδης κ.ά, 2003).

- Επιποτάμιες Λιμνοδεξαμενές: οι οποίες δημιουργούνται με την κατασκευή αναχώματος στην κοίτη κάποιου υδρορεύματος, οπότε το ανάχωμα λειτουργεί σαν κλασικό φράγμα
- Εξωποτάμιες Λιμνοδεξαμενές: οι οποίες είναι φυσικές λεκάνες κατάκλυσης που προσφέρονται για αποθήκευση νερού χωρίς απαραίτητα να εξετάζεται αν το έδαφος είναι διαπερατό ή όχι. Επίσης οι εξωποτάμιες λιμνοδεξαμενές μπορούν να δημιουργηθούν με διαμόρφωση από εκσκαφές οπού φράσσονται με ανάχωμα, το οποίο κατασκευάζεται σε επιλεγμένη περιοχή με κατάλληλα μορφολογικά χαρακτηριστικά συνήθως αμφιθεατρικής μορφής.

Πρόκειται για σύνθετα έργα αποτελούμενα από τρία τεχνικά έργα:

- Τον χώρο του ταμιευτήρα που διαμορφώνεται τεχνητά, όπως προαναφέρθηκε.
- Το φράγμα εκτροπής στο χείμαρρο του οποίου θα αξιοποιηθούν οι απορροές.
- Τον αγωγό μεταφοράς του νερού από το φράγμα εκτροπής έως τον ταμιευτήρα.

Η φυσική κοιλότητα που επιλέγεται για την κατασκευή της λιμνοδεξαμενής φράσσεται στα τμήματα όπου το φυσικό ανάγλυφο είναι χαμηλότερα από τη στέψη της δεξαμενής, με αναχώματα που κατασκευάζονται από τα υλικά των εκσκαφών διαμόρφωσης της λεκάνης κατάκλισης.

Ο τρόπος κατασκευής του αναχώματος είναι παρόμοιος με αυτόν των χωμάτινων ή λιθόρριπτων φραγμάτων και ακολουθούνται οι ίδιες προδιαγραφές συμπύκνωσης, στράγγισης και σεισμικής απόκρισης και ελέγχεται με επιτόπου και εργαστηριακές δοκιμές εδαφομηχανικής. Οι τυχόν εκσκαφές γίνονται για την οριζοντίωση του πυθμένα, αλλά και για τη διαμόρφωση επίπεδων επιφανειών στα πρανή της δεξαμενής ώστε να αυξηθεί η χωρητικότητα της και να είναι στη συνέχεια εύκολη, εφόσον χρειάζεται, η κάλυψή τους με αδιαπέρατη μεμβράνη από πλαστικό (γεωμεμβράνη).

Η γεωμεμβράνη χρησιμοποιείται για την κάλυψη τόσο του πυθμένα όσο και των πρανών. Κατά κανόνα τοποθετείται πάνω σε ένα στρώμα γαιωδών προϊόντων της εκσκαφής, κατάλληλης κοκκομετρικής σύνθεσης και στη συνέχεια επικαλύπτεται με ένα στρώμα από τα 3 ίδια υλικά ή αφήνεται ακάλυπτη, αφού αγκυρωθεί με βάρη για την προστασία από τον άνεμο και τον κυματισμό. Έτσι πλέον, η στεγανότητα δεν αποτελεί κυρίαρχο κριτήριο επιλογής μιας θέσης, λόγω ευρείας χρήσης των μεμβρανών.

Το υλικό κατασκευής της μπορεί να είναι πολυμερισμένο πλαστικό όπως το ειδικά επεξεργασμένο PVC (χλωριούχο πολυβινύλιο), ή το πολυαιθυλένιο υψηλής πυκνότητας (HDPE) απλού τύπου ή ενισχυμένου με γεώπλεγμα (διπλή μεμβράνη- COEX).

Λόγω της απλότητας της κατασκευής της η εξωποτάμια λιμνοδεξαμενή είναι οικονομικά συμφέρουσα για εφαρμογή σε μικρής έκτασης αρδευτικά δίκτυα. Από γεωτεχνικής πλευράς η λύση της λιμνοδεξαμενής προσφέρεται για εφαρμογές σε ποικίλες γεωλογικές συνθήκες, ενώ περιβαλλοντικά είναι αποδεκτή λόγω της περιορισμένης ανάγκης εκχέρσωσης περιοχών δανειοθαλάμων και της ασήμαντης επίδρασης στα οικοσυστήματα που υπάρχουν κατά μήκος των ποταμών καθώς και στις κατάντη περιοχές που τυχόν τροφοδοτούνται από τις απορροές του χειμάρρου.

Στις περιοχές που κατασκευάστηκαν λιμνοδεξαμενές άρχισαν να αντιμετωπίζονται με αποτελεσματικό τρόπο οι επικρατούσες συνθήκες απερήμωσης και έκτοτε επικρατεί ένα καθεστώς αναπτυξιακής πνοής. Παράλληλα αναπτύχθηκαν αξιόλογα οικοσυστήματα χλωρίδας και πανίδας στο νέο περιβάλλον, που δημιούργησε η παρουσία του νερού. Έτσι αναβαθμίστηκε και η οικολογική αξία των περιοχών.

Οι "τεχνητές λίμνες" που δημιουργήθηκαν μπορούν να αποτελέσουν πόλο έλξης για αναψυχή του ανθρώπινου δυναμικού που διαβιώνει στην ευρύτερη ζώνη, αλλά και για τις επενδύσεις αγροτουριστικών μονάδων κλπ.

Έτσι, στις περιοχές αυτές, παρατηρείται σήμερα μια αξιοσημείωτη αναζωογόνηση του κοινωνικού ιστού και αρχίζουν αναπτυξιακές προσπάθειες με νέες δυναμικές. Ήδη διαφαίνεται ότι τα έργα αυτά επιδρούν θετικά σε μια νέα "τουριστική κατάσταση" που τείνει να διαμορφωθεί όσον αναφορά στη φυσιολατρία (Καπλανίδης κ.ά, 2003).

Το Εργαστήριο Εφαρμοσμένης Γεωφυσικής του Πολυτεχνείου Κρήτης χρησιμοποίησε τη Σεισμική και Ηλεκτρική Τομογραφία για τον σχεδιασμό λιμνοδεξαμενής στο οροπέδιο Ομαλού Χανίων το 2010 (Σκούρας, 2010), καθώς και στο σχεδιασμό λιμνοδεξαμενής στην Κουντούρα Χανίων (Γιαμαλάς, 2005).

Ειδικότερα, στο οροπέδιο Ομαλού Χανίων έγινε εφαρμογή των γεωφυσικών μεθόδων της ηλεκτρικής και σεισμικής τομογραφίας για τη χαρτογράφηση του ανθρακικού υπόβαθρου και τον εντοπισμό καρστικών δομών.

Στην Κουντούρα Χανίων, έγινε εφαρμογή των μεθόδων σεισμικής διάθλασης και ηλεκτρικής τομογραφίας, για την χαρτογράφηση των επιφανειακών μαργαϊκών σχηματισμών και τυχόν ρηγμάτων στην περιοχή μελέτης.

Γεωφυσικές μελέτες έχουν εφαρμοστεί επίσης για τον γεωτεχνικό χαρακτηρισμό βραχωδών σχηματισμών. Ειδικότερα, στην Δυτική Νορβηγία χρησιμοποιήθηκε υπόγεια και εναέρια ηλεκτρομαγνητική χαρτογράφηση για την εύρεση αδύναμων ζωνών και καθιζόμενων εδαφικών στρωμάτων στο κρυσταλλικό υπόβαθρο με παρουσία υπόγειου νερού. Η περιοχή μελέτης είχε φυλλίτες, άργιλο και μεταμορφωμένα πετρώματα (Pfaffhuber and Bazin, 2011).

Στο Wadi Mujib της Ιορδανίας χρησιμοποιήθηκε η σεισμική τομογραφία σε συνδυασμό με την ποιότητα των πετρωμάτων και την ρηγμάτωση τους για την μελέτη της γεωμηχανικής συμπεριφοράς της βραχομάζας. Η περιοχή μελέτης αποτελείται από ασβεστόλιθους, πηλίτες, μάργες και σχιστόλιθους (El-Naqa, 1996).

Στην Μαλαισία χρησιμοποιήθηκε η σεισμική τομογραφία (Ρ-κυμάτων) με συνδυασμό γεωτρήσεων για την μελέτη των φυσικών παραμέτρων και χαρακτηριστικών των πετρωμάτων του υπεδάφους που αποτελούνταν από ψαμμίτες, άργιλους (Bery and Saad, 2012).

Τέλος. στην περιοχή του Μοχού Ηρακλείου χρησιμοποιήθηκε η σεισμική τομογραφία (Ρ-κυμάτων) για τον ποσοτικό (σε ποσοστό) προσδιορισμό της ασβεστολιθικής βραχομάζας που απαντάται έως τα 2 m βάθος, στο πλαίσιο σχεδιασμού και κατασκευής του αποχετευτικού δικτύου της περιοχής (Παπαθανασίου, 2007).

<u>ΚΕΦΑΛΑΙΟ 2</u>

ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΓΕΩΦΥΣΙΚΩΝ ΜΕΘΟΔΩΝ

2.1 ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΤΗΣ ΣΕΙΣΜΙΚΗΣ ΤΟΜΟΓΡΑΦΙΑΣ

Τα σεισμικά κύματα διακρίνονται σε διαφορετικά είδη ανάλογα με τα χαρακτηριστικά διάδοσης τους. Διακρίνονται σε δυο μεγάλες κατηγόριες στην πρώτη ανήκουν τα κύματα χώρου και στην δεύτερη τα επιφανειακά κύματα.

Τα κύματα χώρου διαδίδονται προς όλες τις κατευθύνσεις στο εσωτερικό των γεωλογικών σχηματισμών και διακρίνονται σε δύο τύπους κυμάτων, τα διαμήκη και τα εγκάρσια κύματα, ανάλογα με το είδος της διαταραχής που προκαλούν στην ύλη.

<u>Τα διαμήκη κύματα (P)</u> είναι τα ταχύτερα κύματα, καταγράφονται πρώτα στα σεισμογράμματα, διαδίδονται ακτινικά προκαλώντας πυκνώματα και αραιώματα της ύλης κατά μήκος της διεύθυνσης διάδοσης (Σχήμα 2.1a).

<u>Τα εγκάρσια κύματα (S)</u>, εμφανίζονται στο σεισμόγραμμα μετά τα P και χαρακτηρίζονται από την ταλάντωση, εγκάρσια στη διεύθυνση διάδοσής τους, προκαλώντας διατμητική κίνηση στη δομή του υλικού (Σχήμα 3.1b). Η ταχύτητες των κυμάτων αυτών κυμαίνονται από μερικές δεκάδες m/s για τα χαλαρά και μικρής ακαμψίας εδάφη, ενώ η ταχύτητά τους αυξάνει σε χιλιάδες m/s για το αποσαθρωμένο ή υγιές βραχώδες υπόβαθρο. Στο νερό το μέτρο διάτμησης είναι μηδενικό, με αποτέλεσμα τα κύματα αυτά να μην διαδίδονται (Ραπτάκης, 1995).

Σχήμα 2.1: Εδαφική κίνηση κατά τη διάδοση των κυμάτων χώρου. (a) Ρ-κύματα, (b) S-κύματα (Sheriff and Geldart, 1995).

Τα επιφανειακά κύματα μελετήθηκαν για πρώτη φορά από τον Rayleigh, ως κυματικό φαινόμενο (κύματα Rayleigh) στην ελεύθερη επιφάνεια ομογενούς ελαστικού ημιχώρου. Στη συνέχεια ο Love μελέτησε τα SH επιφάνειας (κύματα Love) σε ομογενές στρώμα υπερκείμενο σε ομογενή ημιχώρο, ενώ ο Stoneley μελέτησε τα ομώνυμα κύματα Stoneley επιφάνειας που διαδίδονται μεταξύ υδάτινου και εδαφικού στρώματος ή στη διαχωριστική επιφάνεια δυο εδαφικών ημιχώρων, όταν όμως ισχύει β₁ ≈ β₂ και οι λόγοι ρ₁/ρ₂ και μ₁/μ₂ να κυμαίνονται περίπου στη μονάδα (Sheriff and Geldart, 1995).

Σχήμα 2.2: Σχηματικός τρόπος διάδοσης των σεισμικών (a) Rayleigh και (b) Love επιφανειακών κυμάτων (Ραπτάκης, 1995).

Όπως και στα ηλεκτρομαγνητικά κύματα έτσι και κατά τη διάδοση των ελαστικών κυμάτων ισχύουν δυο βασικές αρχές. Αυτές είναι, η αρχή του Huygens και η αρχή του Fermat. Αυτές θεωρούνται βασικές αρχές, γιατί απ' αυτές προκύπτουν εύκολα άλλες αρχές άμεσα εφαρμόσιμες (νόμος διάθλασης, ανάκλασης, περίθλασης).

Αρχή του Huygens

Η αρχή του Huygens ορίζει ότι (Παπαζάχος, 1986) : «Κάθε σημείο ενός μετώπου κύματος μπορεί να θεωρηθεί ότι αποτελεί πηγή ενός νέου (δευτερογενούς) κύματος».

Με βάση την αρχή αυτή ορίζονται οι μελλοντικές θέσεις του μετώπου κύματος, όταν είναι γνωστή η θέση του σ' ορισμένη χρονική στιγμή (Σχήμα 2.3).

Αρχή του Fermat

Σύμφωνα με την αρχή αυτή (Παπαζάχος, 1986): «Το κύμα το οποίο φτάνει σε ορισμένο σημείο από ορισμένη πηγή ακολουθεί το συντομότερο δρόμο από όλους τους δρόμους που είναι δυνατόν να ακολουθήσει, δηλαδή, ακολουθεί αυτόν που απαιτεί τον ελάχιστο χρόνο».

Αν για ένα ελαστικό μέσο δοθεί η κατανομή της ταχύτητας διάδοσης των ελαστικών κυμάτων, με βάση την αρχή του Fermat, χαράσσονται οι σεισμικές ακτίνες των κυμάτων.

Συνέπεια της αρχής αυτής αποτελεί το γεγονός ότι οι σεισμικές ακτίνες των κυμάτων τα οποία διαδίδονται μέσα σε ομογενές μέσο είναι ευθείες γραμμές. Αποδεικνύεται επίσης ότι οι νόμοι της ανάκλασης (Βαφείδης, 1993) και διάθλασης των ελαστικών κυμάτων μπορούν να προκύψουν από την εφαρμογή της αρχής αυτής.

Η μέθοδος της σεισμικής διάθλασης στηρίζεται στον πειραματικό προσδιορισμό των χρόνων διαδρομής των απευθείας κυμάτων και των μετωπικών κυμάτων και στη χρησιμοποίηση εν τέλει, των καμπύλων των χρόνων διαδρομής των κυμάτων αυτών, για τον καθορισμό των ταχυτήτων των κυμάτων στα επιφανειακά στρώματα με θεωρητικές σχέσεις.

Τα σεισμικά κύματα υφίστανται διαδοχικές διαθλάσεις στις διαχωριστικές επιφάνειες ή σε μέσο όπου η ταχύτητα μεταβάλλεται με το βάθος, με αποτέλεσμα την αλλαγή της πορείας της σεισμικής ακτίνας. Η γωνία πρόσπτωσης i_0 , η γωνία διάθλασης i_2 , και οι ταχύτητες a_1 και a_2 στα δύο επιφανειακά στρώματα συνδέονται μέσω του νόμου του Snell (Βαφείδης 1993):

$$p = \frac{\sin(i_0)}{\alpha_1} = \frac{\sin(i_2)}{\alpha_2}$$
(2.1)

όπου p είναι η παράμετρος της σεισμικής ακτίνας.

Η σεισμική ακτίνα προσπίπτει στην διαχωριστική επιφάνεια υπό ορική γωνία, όταν η διαθλώμενη ακτίνα έχει διεύθυνση παράλληλη προς τη διαχωριστική επιφάνεια (Σχήμα 2.4b). Σε μια τέτοια περίπτωση ο νόμος του Snell τροποποιείται ως εξής :

$$\sin(i_c) = \frac{\alpha_1}{\alpha_2} \tag{2.2}$$

Σχήμα 2.4: Σχηματική παράσταση των τριών περιπτώσεων πρόσπτωσης μιας σεισμικής ακτίνας σε μια διεπιφάνεια. Κατά την πρόσπτωση υπό γωνία a) μικρότερη της ορικής δημιουργούνται ανακλώμενα και διαθλώμενα κύματα, b) ίση με την ορική γωνία δημιουργούνται ανακλώμενα και μετωπικά κύματα και c) με γωνία μεγαλύτερη της ορικής παρατηρείται ολική ανάκλαση.

Έστω σεισμική ακτίνα η οποία προσπίπτει σε διαχωριστική επιφάνεια υπό ορική γωνία. Τότε το διαθλώμενο κύμα διαδίδεται στο δεύτερο στρώμα παράλληλα προς τη διαχωριστική επιφάνεια (Σχήμα 2.4b). Σύμφωνα με την αρχή του Huygens, κάθε σημείο του διαθλώμενου μετώπου κύματος αποτελεί δευτερεύουσα πηγή σεισμικών κυμάτων. Ενδιαφέρον παρουσιάζουν τα σεισμικά κύματα τα οποία προέρχονται από τις δευτερεύουσες αυτές πηγές και αναδύονται προς την επιφάνεια (Σχήμα 2.5).

Σχήμα 2.5: Σχηματική παράσταση της δημιουργίας των μετωπικών κυμάτων (Reynolds, 1997).

Η γωνία των αναδυόμενων προς την επιφάνεια σεισμικών ακτίνων με την κάθετο στην διαχωριστική επιφάνεια είναι ίση με την ορική γωνία. Αυτά τα αναδυόμενα σεισμικά κύματα ονομάζονται μετωπικά κύματα. Τα σεισμικά κύματα που καταγράφονται πρώτα (πρώτες αφίξεις) στις θέσεις των γεωφώνων είναι τα απευθείας και τα μετωπικά κύματα. Τα απευθείας κύματα καταγράφονται πρώτα στα γεώφωνα, που βρίσκονται μέχρι ορισμένη απόσταση από το σημείο δημιουργίας της σεισμικής δόνησης, ενώ τα μετωπικά κύματα καταγράφονται ως πρώτες αφίξεις στα μακρύτερα από την πηγή γεώφωνα. Μελετώντας τις πρώτες αφίξεις (απευθείας και μετωπικά) είναι δυνατόν να προκύψουν συμπεράσματα με το πάχος των σχηματισμών του υπεδάφους και την ταχύτητα διάδοσης των σεισμικών κυμάτων σε αυτούς (Βαφείδης, 1993).

2.2 ΒΑΣΙΚΕΣ ΑΡΧΕΣ ΤΗΣ ΗΛΕΚΤΡΙΚΗΣ ΤΟΜΟΓΡΑΦΙΑΣ

Οι ηλεκτρικές μέθοδοι γεωφυσικής διασκόπησης άρχισαν να εφαρμόζονται στη μελέτη του υπεδάφους με την αρχή του εικοστού αιώνα. Πρωτοπόροι στην έρευνα υπήρξαν ο Wenner και ιδιαίτερα ο Schlumberger που το βιβλίο του «Etude sur la Prospection Electrique du Sous-Sol» (Σούρλας, 2000) συνέβαλε σημαντικά στη διάδοση των ηλεκτρικών μεθόδων. Η συστηματική όμως εφαρμογή των ηλεκτρικών διασκοπήσεων άρχισε μετά το 1970 εκμεταλλευόμενη την ανάπτυξη των ηλεκτρονικών υπολογιστών που πρόσφεραν σημαντική βοήθεια τόσο στη συλλογή όσο και στην επεξεργασία των μετρήσεων.

Η μέθοδος της ειδικής ηλεκτρικής αντίστασης είναι μια από τις πιο σημαντικές μεθόδους της γεωφυσικής διασκόπησης. Με τη μέθοδο της ειδικής ηλεκτρικής αντίστασης δημιουργείται στο έδαφος τεχνητό ηλεκτρικό πεδίο. Οι ιδιότητες του πεδίου διαμορφώνονται από τη δομή του υπεδάφους. Συνεπώς ο καθορισμός των ιδιοτήτων του πεδίου οδηγεί στον καθορισμό της δομής του υπεδάφους. Η ποσότητα που μετριέται είναι η ηλεκτρική τάση και τελικός σκοπός είναι ο εντοπισμός δομών, οι οποίες παρουσιάζουν διαφορετική ειδική ηλεκτρική αντίσταση από τα περιβάλλοντα πετρώματα.

2.3 ΔΙΣΔΙΑΣΤΑΤΗ ΗΛΕΚΤΡΙΚΗ ΤΟΜΟΓΡΑΦΙΑ

Για την υλοποίηση της δισδιάστατης ηλεκτρικής τομογραφίας υπάρχουν διάφορες μεθόδοι που διαφέρουν ανάλογα με την διάταξη των ηλεκτροδίων τους:

<u>Διάταξη Wenner:</u>

Στη διάταξη Wenner τα ηλεκτρόδια διατάσσονται σε ίσες μεταξύ τους αποστάσεις, δηλαδή, $AM = MN = NB = \alpha$, όπως φαίνεται στο σχήμα 2.11, έτσι η φαινόμενη ειδική ηλεκτρική αντίσταση ρ_{α} θα υπολογίζεται από την σχέση:

$$Pa = 2\pi \frac{V_{\rm MN}}{I} \left(\frac{1}{\alpha} - \frac{1}{2\alpha} - \frac{1}{2\alpha} + \frac{1}{\alpha}\right)^{-1} = 2\pi \alpha \frac{V_{\rm MN}}{I}$$
(2.11)

• <u>Διάταξη Schlumberger:</u>

Στη διάταξη Schlumberger, τα ηλεκτρόδια ρεύματος A και B βρίσκονται σε απόσταση L και σε συμμετρικές θέσεις ως προς το κέντρο της διάταξης. Τα ηλεκτρόδια του δυναμικού M και N είναι ανάμεσα στα A και B και σε απόσταση b από το κέντρο της διάταξης. Έτσι είναι AB = 2L και MN = 2b (Σχήμα 2.11), η απόσταση 2b μεταξύ των ηλεκτροδίων δυναμικού είναι πολύ μικρότερη από την απόσταση 2L μεταξύ των ηλεκτροδίων ρεύματος. φαινόμενη ειδική ηλεκτρική αντίσταση υπολογίζεται από την σχέση:

Σχήμα 2.11: Διάταξη Wenner(α), Schlumberger(β), διπόλου-διπόλου (γ) (Παπαζάχος, 1986).

Διάταξη Διπόλου-Διπόλου

Από τις παραπάνω διατάξεις, η πιο σημαντική είναι αυτή του διπόλου–διπόλου, όπου η απόσταση ανάμεσα στα ηλεκτρόδια του ρεύματος είναι ίση με α. Ομοίως α είναι και το διάστημα μεταξύ των ηλεκτροδίων δυναμικού. Η απόσταση μεταξύ των ζευγαριών των ηλεκτροδίων είναι μεγάλη και ίση με πα (n>>1), όπως φαίνεται στο σχήμα 2.11.

η φαινόμενη ειδική αντίσταση από την σχέση:

$$\rho_a = \pi n\alpha (n+1)(n+2) \frac{\Delta V}{i}$$
(2.16)

Το μεγαλύτερο πλεονέκτημα της διάταξης αποτελεί η απόσταση 2na, ανάμεσα στα δίπολα ρεύματος και δυναμικού, που μπορεί να αυξηθεί αρκετά χωρίς να χρειάζονται μεγάλα μήκη καλωδίων. Η διάταξη περιορίζεται μόνο από τη δυνατότητα των καταγραφικών οργάνων και από τον εδαφικό θόρυβο.

Στην ηλεκτρική τομογραφία, η περιγραφή της γεωλογικής δομής βασίζεται στη μελέτη των μεταβολών της ειδικής ηλεκτρικής αντίστασης κατά την οριζόντια και την κατακόρυφη διεύθυνση, εντοπίζοντας έτσι ασυνέχειες κατά την οριζόντια ανάπτυξη των σχηματισμών, όπως ρήγματα (Γιαλαμάς, 2005).

Στην τομογραφία τα αποτελέσματα δίνονται με τη μορφή μιας ψευδοτομής (pseudosection). Στην ψευδοτομή οι φαινόμενες ειδικές ηλεκτρικές αντιστάσεις σχεδιασμένες σε μια τομή, με τέτοιο τρόπο, όπως οι πραγματικές ειδικές ηλεκτρικές αντιστάσεις σε σημεία ακριβώς κάτω από το κέντρο της διάταξης των ηλεκτροδίων και σε βάθος που εξαρτάται από τη συγκεκριμένη διάταξη (Σχήμα 2.12).

Σχήμα 2.12: Διάταξη των δεδομένων στην ψευδοτομή του υπεδάφους (Σούρλας, 2000).

2.4 ΤΡΙΣΔΙΑΣΤΑΤΗ ΗΛΕΚΤΡΙΚΗ ΤΟΜΟΓΡΑΦΙΑ

Η τρισδιάστατη ηλεκτρική τομογραφία για να υλοποιηθεί πρέπει να δημιουργηθεί ένας κάναβος της περιοχής μελέτης και να γίνουν διάφοροι συνδυασμοί των καλωδίων δυναμικού και ρεύματος σε διάφορα σημεία του κανάβου έτσι ώστε να καλυφτεί ο κάναβος πλήρως.

Οι συνδυασμοί των καλωδίων ρεύματος και δυναμικού είναι άπειροι έτσι εναπόκεινται στο καθένα πως θα τους πραγματοποίηση για την κάλυψη του κανάβου.

Για παράδειγμα κρατάμε τα καλώδια δυναμικού (M,N) σταθερά στην μια γωνιά του κανάβου και τα καλώδια ρεύματος (A,B) να μετακινούνται προς όλες τις κατευθύνσεις. Όταν καλύψουμε τον κάναβο μετακινούμε τα καλώδια δυναμικού πιο πέρα και ούτω καθεξής (Σχήμα 2.13).

Εναλλακτικά κρατάμε τα καλώδια δυναμικού (M,N) σταθερά στην μια γωνιά του κανάβου και τα καλώδια ρεύματος (A,B) τοποθετούνται στις δυο απέναντι γωνίες του κανάβου καλύπτοντας στην συνέχεια όλο τον κάναβο (Σχήμα 2.14).

Σχήμα 2.13: Κάναβος με τα καλώδια ρεύματος και δυναμικού.

Σχήμα 2.14: Κάναβος με τα καλώδια ρεύματος και δυναμικού.

Για τον προσδιορισμό της κατανομής της ειδικής ηλεκτρικής αντίστασης χρησιμοποιούνται μοντέλα μιας δυο ή τριών διαστάσεων. Στην πρώτη περίπτωση το μοντέλο αποτελείται από οριζόντια στρώματα στη δεύτερη η γεωηλεκτρική δομή είναι δυο διαστάσεων και τέλος στην τρίτη διαφοροποιείται στις 3 διαστάσεις η ειδική ηλεκτρική αντίσταση (Σχήμα 2.15).

Σχήμα 2.15: Τα τρία διαφορετικά πρότυπα που χρησιμοποιούνται στην ερμηνεία των μετρήσεων ειδικής αντίστασης (Παγκράτης, 2012).

Δεδομένου ότι όλες οι γεωλογικές δομές είναι τρισδιάστατες, μια πλήρως τρισδιάστατη έρευνα πρέπει θεωρητικά να δώσει τα ακριβέστερα αποτελέσματα. Οι τρισδιάστατες έρευνες αποτελούν ένα αντικείμενο εξέλιξης. Εντούτοις, δεν έχει φθάσει στο επίπεδο ώστε να χρησιμοποιείται συνήθως όπως η δισδιάστατη έρευνα. Ο κύριος λόγος είναι ότι το κόστος ερευνών είναι συγκριτικά πολύ υψηλότερο για μια τρισδιάστατη έρευνα.

Ωστόσο, για την υλοποίηση της τρισδιάστατης διασκόπησης κρατώντας το κόστος χαμηλό, συνήθως πραγματοποιούνται πολλές οριζόντιες και κάθετες δισδιάστατες διασκοπήσεις στην περιοχή μελέτης δημιουργώντας ένα πλέγμα. Με την ταυτόχρονη επεξεργασία (αντιστροφή) των μετρήσεων της δισδιάστατης γεωηλεκτρικής διασκόπησης προκύπτει μια τρισδιάστατη απεικόνιση του γεωηλεκτρικού μοντέλου του υπεδάφους, με υποδεέστερη ωστόσο ποιότητα σε σχέση με μια πλήρως τρισδιάστατη διασκόπηση.

Η ανάπτυξη των πολυδιαυλικών μετρητών ειδικής αντίστασης που επιτρέπει περισσότερους από μια αναγνώσεις ευνοούν την πιο συχνή χρήση της τρισδιάστατης έρευνας (Παγκράτης, 2012). Η τρισδιάστατη αντιστροφή μπορεί να γίνει χρησιμοποιώντας διάφορα μοντέλα όπως: α) μοντέλο όπου τα άκρα των ορθογωνίων παραλληλεπιπέδων συμπίπτουν με τις αποστάσεις ηλεκτροδίων στην x και y διάσταση, β) μοντέλο στο οποίο τα πρώτα στρώματα είναι υποδιαιρεμένα στο μισό σε κατακόρυφη και οριζόντια διεύθυνση, γ) μοντέλο στο οποίο τα πρώτα στρώματα είναι υποδιαιρεμένα στο μισό σε οριζόντια διεύθυνση (Σχήμα 2.16).

Το υπέδαφος διαιρείται σε στρώματα και κάθε στρώμα υποδιαιρείται περαιτέρω σε ορθογώνια παραλληλεπίπεδα. Το τρισδιάστατο πρόγραμμα αντιστροφής ειδικής αντίστασης Earthimager 3D χρησιμοποιείται για να αντιστρέψει τα δεδομένα στις τρισδιάστατες έρευνες. Αυτό το πρόγραμμα προσπαθεί να καθορίσει την ειδική αντίσταση των κελιών στο πρότυπο της αντιστροφής ώστε να αναπαράγει όσο αξιόπιστα γίνεται τις μετρημένες τιμές της φαινόμενης ειδικής αντίστασης.

Σχήμα 2.16: Τα μοντέλα που χρησιμοποιούνται στην τρισδιάστατη αντιστροφή. α)μοντέλο όπου τα άκρα των ορθογωνίων παραλληλεπιπέδων συμπίπτουν με τις αποστάσεις ηλεκτροδίων στην x και y διάσταση, β)μοντέλο στο οποίο τα πρώτα στρώματα είναι υποδιαιρεμένα στο μισό σε κατακόρυφη και οριζόντια διεύθυνση, γ)μοντέλο στο οποίο τα πρώτα στρώματα είναι υποδιαιρεμένα στο μισό σε οριζόντια διεύθυνση (Παγκράτης, 2012).

2.5 ΣΥΛΛΟΓΗ ΤΩΝ ΓΕΩΦΥΣΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

Για την σεισμική έρευνα χρησιμοποιήθηκε η μέθοδος της σεισμικής τομογραφίας. Από τις πρώτες αφίξεις των διαμηκών κυμάτων προέκυψαν οι αντίστοιχες σεισμικές τομές. Για τις 2 θέσεις των λιμνοδεξαμενών (Μ και Κ), ερευνήθηκαν είκοσι (20) σεισμικές γραμμές, συνολικού μήκους 2925 m. Το μήκος κάθε σεισμικής γραμμής ήταν 55 m, 115 m ή 230 m και το διάστημα των γεωφώνων μεταξύ τους ήταν 5 m και 10 m. Για την σεισμική διέγερση χρησιμοποιήθηκαν εκρηκτικά και βαριοπούλα. Για κάθε σεισμική γραμμή έγιναν πέντε (5) ή επτά (7) χτυπήματα συνήθως, όπου αυτό ήταν δυνατό. Από τα αρχεία των σεισμικών καταγραφών, μόνο οι πρώτες αφίξεις χρησιμοποιήθηκαν στην σεισμική τομογραφία. Το μέγιστο βάθος της έρευνας είχε αρχικά προγραμματιστεί για 25 m. Ωστόσο, η σεισμική έρευνα σε ορισμένες περιπτώσεις υπερέβει τα 25 m.

Για την ηλεκτρική τομογραφία, χρησιμοποιήθηκαν συνολικά δεκαεπτά (17) ηλεκτρικές γραμμές που καλύπτουν 3840 m με τη χρήση των διατάξεων διπόλου-διπόλου και Wenner-Schlumberger. Το μήκος κάθε γραμμής κυμαινόταν από 80 m έως 320 m, και η απόσταση των ηλεκτροδίων από 2 m έως 8 m. Για την συλλογή δεδομένων τις φαινόμενης ειδικής ηλεκτρικής αντίστασης χρησιμοποιήθηκε το σύστημα Sting R1/Swift της AGI σε 21 επίπεδα βάθους ανά γραμμή. Οι καταγεγραμμένες αντιστάσεις στη συνέχεια αντιστράφηκαν με τη χρήση των λογισμικών Res2Dinv και EarthImager.

Το βάθος της έρευνας ορίστηκε αρχικά σε 20 m, αλλά το μήκος των γραμμών της ηλεκτρικής τομογραφίας επέτρεπε μια διεξοδική έρευνα σε βάθος που έφτανε τα 50 m. Στο πλαίσιο της γεωηλεκτρικής διασκόπησης πραγματοποιήθηκαν επίσης και 8 ηλεκτρικές βυθοσκοπήσεις (VES), τα αποτελέσματα των οποίων όμως δεν παρουσιάζονται στην παρούσα εργασία.

Από την προκαταρκτική αξιολόγηση των γεωφυσικών δεδομένων, 16 γεωτρήσεις προτάθηκαν σε επιλεγμένα σημεία του συνολικού μήκους 552 m. Το γεώτρητικό πρόγραμμα που ακολούθησε, διενεργήθηκε από την ΙΣΤΡΙΑ General Consulting Ltd, και περιελάμβανε 13 γεωτρήσεις συνολικού μήκους 457.6 m. Οι γεωτρήσεις αυτές χρησιμοποιήθηκαν για τη βαθμονόμηση και την ερμηνεία των γεωφυσικών δεδομένων. Η χωροθέτηση και η αποτύπωση των γεωφυσικών γραμμών και των γεωτρήσεων είχε ανατεθεί σε τοπογράφο.

2.6 ΓΕΩΦΥΣΙΚΑ ΔΕΔΟΜΕΝΑ

Ακολούθως, περιγράφεται η διαδικασία και τα χαρακτηριστικά της σεισμικής και της γεωηλεκτρικής έρευνας που πραγματοποιήθηκε στην περιοχή μελέτης της παρούσας διπλωματικής, δηλαδή της βορειότερης λιμνοδεξαμενής στη θέση Μ.

2.6.1 ΣΕΙΣΜΙΚΗ ΕΡΕΥΝΑ

Στην περιοχή μελέτης (θέση M) διασκοπήθηκαν 11 γραμμές σεισμικής τομογραφίας με συνολικό μήκος 1895 m.

Ο εξοπλισμός που χρησιμοποιήθηκε για τα πειράματα της σεισμικής τομογραφίας αποτελούνταν από:

- Σεισμογράφος 12 καναλιών Geode EG&G GEOMETRICS ©.
- 24 γεώφωνα κατακόρυφης συνιστώσα 14 Hz MARK PRODUCTS ©.
- Μπαταρία 12 Volt DC.
- Ένα καλώδιο τροφοδοσίας.
- Δύο (2) καλώδια γεωφώνων 12 καναλιών.
- Για σεισμική πηγή χρησιμοποιήθηκε βαριοπούλα 8 kg ή αεροβόλο όπλο (betsygun).
- Ένα (1) γεώφωνο για την ενεργοποίηση της καταγραφής (trigger).
- Ένα καλώδιο πηγής για την ενεργοποίηση της καταγραφής.
- Ένα φορητό υπολογιστή για τον έλεγχο και την αποθήκευση των αρχείων.

Η εφαρμογή της σεισμικής έρευνας εκτελέστηκε με την ακόλουθη διαδικασία:

 Επιλέχθηκε η θέση της κάθε σεισμικής γραμμής. Η κάθε γραμμή χωροθετήθηκε (και στην συνέχεια αποτυπώθηκε) με τη βοήθηεια γεωδαιτικού εξοπλισμού. Οι συντεταγμένες (στο Ελληνικό Γεωδαιτικό Σύστημα Αναφοράς '87 - ΕΓΣΑ'87) παρατίθενται στο Παράρτημα Ζ.

2) 24 (ή 12) γεώφωνα τοποθετήθηκαν κατά μήκος της σεισμικής γραμμή με διάστημα μεταξύ των γεωφώνων 5 m ή 10 m και συνδέθηκαν με τα καλώδια γεωφώνων (2 ή 1 καλώδια-ο από 12 υποδοχές το καθένα).

3) Ο σεισμογράφος τοποθετήθηκε μεταξύ του 12ου και 13ου γεωφώνου.

4) Τα γεώφωνα 1-12 συνδέθηκαν αρχικά με το σεισμογράφο.

5) Το καλώδιο της πηγής συνδέθηκε με το σεισμογράφο. Το γεώφωνο που χρησιμοποιήθηκε για την ενεργοποίηση της πηγής (trigger) τοποθετήθηκε σε προκαθορισμένη θέση κατά μήκος της γραμμής μελέτης.

6) Η σεισμική πηγή ενεργοποιήθηκε με μια συγκεκριμένη θέση κατά μήκος της γραμμής και ο σεισμογράφος άρχισε να καταγράφει αυτόματα με τη χρήση του γεωφώνου ενεργοποίησης (trigger). Το διάστημα δειγματοληψίας και η διάρκεια καταγραφής ορίστηκε στα 0.125 ms και 500 ms, αντίστοιχα.

 Αποθήκευση του αρχείου στο δίσκο του φορητού υπολογιστή που συνδέθηκε με το σεισμογράφο.

8) Τα γεώφωνα 13-24 συνδέθηκαν με το σεισμογράφο. Στη συνέχεια επαναλήφτηκαν τα βήματα 6 και 7 με τη θέση της πηγής να ενεργοποιείται στην ίδια θέση στην οποία καταγράφηκαν σεισμικά δεδομένα στα γεώφωνα 1-12. Με αυτό τον τρόπο, ενώνοντας τις δύο καταγραφές (1-12 & 13-24 γεώφωνα) προέκυπτε κάθε φορά (όπου ήταν απαραίτητο) καταγραφή συνολικά 24 καναλιών.

9) Τα βήματα 5 έως 8 επαναλήφθηκαν για όλα τις θέσεις πηγής κατά μήκος της γραμμής μελέτης.

Στον Πίνακα 2.1 περιγράφονται οι παραμέτροι απόκτησης των σεισμικών καταγραφών. Στις γραμμές ML3 και ML4 χρησιμοποιήθηκε βαριοπούλα και Betsy seisgun για να συγκριθούν τα αρχεία και να επιδεχθεί η πιο κατάλληλη πηγή. Εν τέλη επιλέχθηκε η βαριοπούλα τελικά για την θέση M.

Γραμμή	Μήκος (m)	Διάστημα Γεωφώνων (m)	Χτυπήματα ανά Γραμμή	Θέση χτυπημάτων Γραμμής (m)	Είδος Πηγής
ML1	230	10	8	-40, -3.5, 45.8, 115, 171.5, 235, 254, 270	Βαριοπούλα
ML2	230	10	9	-40, -20, -5, 53, 115, 174.6, 235, 253, 266	Βαριοπούλα
ML3	230	10	8	-40, -20, -5, 56, 115, 177.2, 235, 270	Βαριοπούλα και Betsy seisgun
ML4	230	10	7	-40, -5, 54.3, 114.2, 175.2, 235, 270	Βαριοπούλα και Betsy seisgun
ML5	230	10	8	-40, -5, 53.3, 115, 174.5, 235, 256, 270	Βαριοπούλα
ML6	230	10	8	-40, -22, -5, 58, 115, 176, 235, 250	Βαριοπούλα
ML7	115	5	5	-37, -5, 58.1, 121, 155	Βαριοπούλα
MT1	115	5	5	-40.3, -5, 58, 125, 155,	Βαριοπούλα
MT2	115	5	5	-35, -5, 57, 120, 155	Βαριοπούλα
MT3	115	5	5	-25, -5, 59.3, 120, 156.2	Βαριοπούλα
MT5 - DAM	55	5	3	-7.3, 27.15, 58.8	Βαριοπούλα

Πίνακας 2.1: Παραμέτροι απόκτησης των σεισμικών καταγραφών.

2.6.2 ΗΛΕΚΤΡΙΚΗ ΤΟΜΟΓΡΑΦΙΑ

Στην περιοχή μελέτης πραγματοποιήθηκαν 10 γραμμές ηλεκτρικής τομογραφίας (ERT) των οποίων το συνολικό μήκος είναι 2720 m

Ο εξοπλισμός που χρησιμοποιήθηκε για την έρευνα της ηλεκτρικής τομογραφίας αποτελούνταν από:

- Σύστημα μέτρησης της ηλεκτρικής αντίστασης Sting R1 / Swift της AGI Inc.
- 41 ηλεκτρόδια από ανοξείδωτο χάλυβα, 45 εκατοστά σε μήκος και 9,5 mm σε διάμετρο.
- Μια μπαταρία 12 V για το Sting R1.
- Ένα καλώδιο σύνδεσης Sting R1 με την μπαταρία.
- Τρία πολύκλωνα καλώδια 14 καναλιών.
- Σύστημα αυτόματης εναλλαγής των ηλεκτροδίων (Swift AGI Inc και Switch AGI Inc).
- Καλώδια σύνδεσης του Sting R1 με το σύστημα αυτόματης εναλλαγής των ηλεκτροδίων.

• Σφυριά και μετροταινία για την τοποθέτηση των ηλεκτροδίων.

Η υλοποίηση της ηλεκτρικής τομογραφίας έγινε με βάση την ακόλουθη διαδικασία:

 Επιλέχθηκε η θέση της κάθε γραμμής ηλεκτρικής τομογραφίας. Η κάθε γραμμή χωροθετήθηκε (και στην συνέχεια αποτυπώθηκε) με τη βοήθεια γεωδαιτικού εξοπλισμού. Οι συντεταγμένες (στο Ελληνικό Γεωδαιτικό Σύστημα Αναφοράς '87 - ΕΓΣΑ'87) παρατίθενται στο Παράρτημα Ζ. Κατά κανόνα, οι γεωηλεκτρικές γραμμές συμπίπτουν με τις αντίστοιχες σεισμικές γραμμές μελέτης.

 41 ηλεκτρόδια καρφώθηκαν στο έδαφος κατά μήκος της γραμμής μελέτης σε ισαποστάσεις μεταξύ τους.

3) Τα ηλεκτρόδια συνδέονται με το πολύκλωνα καλώδια στις κατάλληλες απολήξεις.

4) Το πολύκλωνο καλώδιο συνδέεται με τον μετρητή αντίστασης Sting R1 μέσω του συστήματος αυτόματης εναλλαγής των ηλεκτροδίων.

5) Πραγματοποιείται δοκιμή επικοινωνίας πριν από την απόκτηση δεδομένων για να διασφαλιστεί ότι όλα τα ηλεκτρόδια είναι συνδεδεμένα σωστά και η αντίσταση επαφής είναι λογικά χαμηλή. Χρησιμοποιήθηκε θαλασσινό νερό για να βελτιώσει την αντίσταση επαφής, όπου χρειαζόταν.

6) Τέλος, η διαδικασία μέτρησης ξεκινά. Οι μετρήσεις αντίστασης διεξήχθηκαν με διοχέτευση ηλεκτρικού ρεύματος στο έδαφος μέσω δύο ηλεκτροδίων και μετρώντας την προκύπτουσα διαφορά δυναμικού σε δύο άλλα ηλεκτρόδια.

7) Η επιλογή των ηλεκτροδίων ρεύματος και δυναμικού σε κάθε μέτρηση γίνεται αυτόματα από σύστημα αυτόματης επιλογής των ηλεκτροδίων με βάση την επιθυμητή διάταξη ηλεκτροδίων, το μέγιστο βάθος διασκόπησης και τα επίπεδα βάθους.

Η επίτευξη της βέλτιστης ποιότητας των δεδομένων αποτελούσε προτεραιότητα ακολουθώντας ορισμένα κριτήρια που προτείνονται στη βιβλιογραφία και από τον κατασκευαστή του οργάνου. Τα βασικά κριτήρια που υλοποιήθηκαν κατά τη διάρκεια της έρευνας είναι:

- Γεωφυσικοί στόχοι που παρουσίαζαν τιμές αντίστασης που μπορεί να διακριθούν από τις τιμές θορύβου.
- Η εγκατάσταση των ηλεκτροδίων με υψηλή ακρίβεια ως προς τη θέση.
- Η μέτρηση των αντιστάσεων επαφής εκτελέστηκε πριν από την απόκτηση δεδομένων για να εξασφαλιστεί ότι όλα τα ηλεκτρόδια είναι σωστά συνδεδεμένα και η αντίσταση επαφής είναι λογικά χαμηλή.
- Σε κάθε μέτρηση, τουλάχιστον οι δύο τιμές της αντίστασης λαμβάνονται και η μέση τιμή τους υπολογιζόταν. Η καταγραφή και η τυπική απόκλιση για όλες τις τιμές αποθηκεύεται.
- Έμπειρος γεωφυσικός έλεγχε κατά διαστήματα τα δεδομένα και βεβαιωνόταν ότι οι αντιστάσεις βρίσκονται μέσα σε λογικές τιμές.

 Όλες οι απαραίτητες πληροφορίες σχετικά με την επιφάνεια και το υπέδαφος καταγράφονταν και να χρησιμοποιούνταν κατά το στάδιο της επεξεργασίας και της ερμηνείας.

Ο πίνακας που ακολουθεί (Πίνακας 2.2) περιγράφει τις παραμέτρους διασκόπησης της ηλεκτρικής τομογραφίας.

<u>Πίνακας 2.2</u>: Παράμετροι διασκόπησης των γραμμών της ηλεκτρικής τομογραφίας στη θέση Μ. Χρησιμοποιήθηκαν οι διατάξεις ηλεκτροδίων διπόλου-διπόλου (DD) και Wenner-Schlumberger (WS).

Γραμμές	Μήκος Γραμμών (m)	Διάστημα ηλεκτροδίων (m)	Μέγιστο βάθος (m)	Διάταξη ηλεκτροδίων	Επίπεδα βάθους
ML1	320	8	70	DD	21
ML2	320	8	70	DD	21
ML3	320	8	70	DD & WS	21
ML4	320	8	70	DD	21
ML5	320	8	70	DD	21
ML6	320	8	70	DD & WS	21
ML7	200	5	40	DD & WS	21
MT1	200	5	40	DD	21
MT2	200	5	40	DD & WS	21
MT3	200	5	40	DD	21

<u>ΚΕΦΑΛΑΙΟ 3</u>

3.1 ΓΕΩΤΡΗΤΙΚΑ ΔΕΔΟΜΕΝΑ

Τα γεωτρητικά δεδομένα αποκτήθηκαν από γεωτρήσεις που πραγματοποιήθηκαν επί των γεωηλεκτρικών και σεισμικών τομών (Σχήμα 1.4). Στο πλαίσιο των παραδοτέων της γεωφυσικής έρευνας, πραγματοποιήθηκε πρωτογενώς, από το προσωπικό του Εργαστηρίου Εφαρμοσμένης Γεωφυσικής του Πολυτεχνείου Κρήτης, μια ποιοτική κατάταξη των διαρτηθέντων πετρωμάτων (προβολή της γεωτρητικής στήλης στις γεωηλεκτρικές και σεισμικές τομές) σε διάφορες κατηγορίες, σύμφωνα με α) την καθημερινή έκθεση (the daily report) και τη λεπτομερή περιγραφή των γεωτρήσεων, β) την ηλεκτρική αντίσταση και γ) τις τιμές της σεισμικής ταχύτητας. Η βαθμονόμηση των γεωφυσικών δεδομένων παρουσιάζεται στις επόμενες παραγράφους.

Ο πλήρως διερρηγμένος ή/και αποσαθρωμένος ή/και με ασυνέχειες πληρωμένες με εδαφικό υλικό ασβεστόλιθος (CFW) βρέθηκε να αντιστοιχεί σε τιμές της ηλεκτρικής αντίστασης 100-600 (Ohm.m), σεισμικής ταχύτητας μικρότερη των 2800 m/s (σε γενικές γραμμές) και οι τιμές RQD από 0-25 στην γεώτρηση MCD-1 από τα 8,8 έως 34.1m βάθος. Επίσης διατρήθηκαν διάκενα σε αυτό το βάθος. Η ίδια κατηγορία (CFW) είναι επίσης παρούσα στη γεώτρηση MCD-2 από τα 12.1 έως 17.0 m και από τα 20.4 έως 25 m βάθος, όπου και πάλι η ειδική αντίσταση (ML7) και η σεισμική ταχύτητα είναι πολύ χαμηλή (100-600 Ohm.m και <2800 m/s, αντίστοιχα), ενώ οι τιμές του RQD είναι λιγότερο από 25. Στην γεώτρηση MCD-4 διατρήθηκε CFW στα βάθη των 2,2 – 7.1 m, 8.8 – 24.5m, 37.8 - 40.4m και 45.6 – 51.1m, η οποία είναι καλή σε σχέση με την ηλεκτρική τομογραφία (πολύ χαμηλές τιμές αντίστασης) και στη σεισμική τομογραφία(ταχύτητα σε γενικές γραμμές <2800 m / s) (ML2).

Πλήρως διερρηγμένος ή/και αποσαθρωμένος ασβεστόλιθος με ασυνέχειες πληρωμένες με εδαφικό υλικό (CFW-FW) είναι μια κατηγορία πετρωμάτων μεταξύ της CFW και της FW (πληρωμένος με εδαφικό υλικό) κατηγορίας. Χαρακτηρίζεται από χαμηλές τιμές αντίστασης (450-1100 Ohm.m), και σεισμικής ταχύτητας (γενικά <2800 m/s) και οι τιμές του RQD είναι 15-35.

Διερρηγμένος ασβεστόλιθος με ασυνέχειες πληρωμένες με εδαφικό υλικό (FW) υπάρχει στη γεώτρηση MCD-5 σε βάθος 1.3 - 6.2 m, 8.1 - 10.1 m, 15.5 – 23.1 m και 25.2 έως 30.3 m, όπου οι τιμές αντίστασης (ML4) κυμαίνονται από 800 έως 2000 Ohm.m και η σεισμική ταχύτητα είναι (γενικά) λιγότερο από 2800 m/s. και οι τιμές RQD κυμαίνονται από 25 έως 50.

Ελαφρώς διερρηγμένος ασβεστόλιθος (FW-F) και ελαφρώς υγιής ασβεστόλιθος (FH) είναι αναμεμιγμένα. Χαρακτηρίζονται από μεσαίες (1500 - 3650 Ohm.m) προς υψηλές (2700-6700 Ohm.m) τιμές αντίστασης, ενώ το RQD κυμαίνεται από 40 έως 60 και από 50 έως 75, αντίστοιχα. Αυτές οι κατηγορίες των πετρωμάτων είναι παρούσες στις γεωτρήσεις MCD-4 και MDC-1 στα βάθη 24.5 έως 35.5 m και 4.0 έως 8.8 m, αντίστοιχα, και συμφωνούν με την ηλεκτρική τομογραφία των γραμμών ML2 και MT1, αντίστοιχα.

Υγιής ασβεστόλιθος χαρακτηρίζεται από πολύ υψηλές (> 6700 Ohm.m) τιμές αντίστασης, ενώ το RQD είναι μεγαλύτερο από 75. Αυτή η κατηγορία πετρωμάτων έχει περιορισμένη παρουσία στις γεωτρήσεις. Ωστόσο, διαπιστώθηκε στις γεωτρήσεις MCD-1 (3.0 έως 4.0 m) και MCD-6 (7.4 - 11.9 m) και συμφωνούν με την ηλεκτρική τομογραφίας των γραμμών MT1 και ML5 αντίστοιχα.

Στον Πίνακα 3.1 περιγράφονται συνοπτικά οι διάφορες κατηγορίες των πετρωμάτων, ενώ στο Σχήμα 3.1 απεικονίζονται οι τομές των γεωτρήσεων μετά από την κατηγοριοποίηση των διατρηθέντων πετρωμάτων (Vafidis et al., 2012). Στο Παράρτημα Α παρατίθενται οι αρχικές τομές των γεωτρήσεων.

Κατηγορίες	Συμβολισμός	Ειδική Ηλεκτρική Αντίσταση (Ohm.m)	Σεισμική Ταχύτητα (m/s)	RQD
Πλήρως Διερρηγμένος ή/και Αποσαθρωμένος ή/και με ασυνέχειες πληρωμένες με Εδαφικό Υλικό Ασβεστόλιθος (Completely Fractured and/or Weathered limestone)	CFW	100-600	<2800	0-25
ΠλήρωςΔιερρηγμένοςή/καιΠληρωμένοςμεΕδαφικόYλικό(CompletelyFracturedWeatheredlimestonetoImestonefilled	CFW-FW	450-1100	<2800	15-35
Διερρηγμένος Ασβεστόλιθος Πληρωμένος με Εδαφικό Υλικό (Fractured limestone filled With soil)	FW	800-2000	<2800	25-50
Ελαφρώς Διερρηγμένος ή/και Υγιής Ασβεστόλιθος (Fractured limestone filled With soil to Fractured limestone)	FW-F	1500-3650	-	40-60
Δ ιερρηγμένος προς Υγιής Ασβεστόλιθος (Fractured to Healthy limestone)	F-H	2700-6700	-	50-75
Υγιής Ασβεστόλιθος (Healthy limestone)	Н	>6700	-	>75

Πίνακας 3.1: Κατηγορίες πετρωμάτων από της γεωτρήσεις στη θέση M (Vafidis et al., 2012).

Σχήμα 3.1: Κατηγορίες πετρωμάτων που διατρήθηκαν στις γεωτρήσεις της θέσης M (Vafidis et al., 2012).

3.2 ΕΠΕΞΕΡΓΑΣΙΑ ΣΕΙΣΜΙΚΩΝ ΔΕΔΟΜΕΝΩΝ

3.2.1 ΜΕΘΟΔΟΛΟΓΙΑ ΕΠΕΞΕΡΓΑΣΙΑΣ

Για την επεξεργασία των δεδομένων της σεισμικής διάθλασης χρησιμοποιήθηκαν τα προγράμματα του λογισμικού πακέτου Seisimager, Pickwin και Plotrefa.Πιο συγκεκριμένα, η επεξεργασία των σεισμικών δεδομένων διάθλασης πραγματοποιείται σε 2 στάδια.Στο πρώτο στάδιο χρησιμοποιείται το πρόγραμμα Pickwin με το οποίο πραγματοποιείται η επιλογή και η αποθήκευση των πρώτων αφίξεων των σεισμικών καταγραφών. Η διαδικασία που ακολουθείται, περιλαμβάνει τα παρακάτω στάδια:

- Εισαγωγή των δεδομένων της σεισμικής διάθλασης.
- Επιλογή των πρώτων αφίξεων των σεισμικών κυμάτων (picking) και αποθήκευση αυτών.

Στο δεύτερο στάδιο χρησιμοποιείται το πρόγραμμα Plotrefa με το οποίο πραγματοποιείται ανάγνωση, ανάλυση και επεξεργασία των αποθηκευμένων πρώτων αφίξεων καθώς και υπολογισμός των σεισμικών ταχυτήτων και του μοντέλου βάθους.

Η διαδικασία που ακολουθείται, περιλαμβάνει τα παρακάτω στάδια:

- Επεξεργασία των πρώτων αφίξεων.
- Δημιουργία δρομοχρονικών διαγραμμάτων.
- Αντιστροφή.
- Προσδιορισμός των σεισμικών ταχυτήτων και του μοντέλου βάθους .

Τα δεδομένα εισάγονται στο πρόγραμμα επεξεργασίας (PickWin), σε μορφή *.dat. Μετά την εισαγωγή των δεδομένων, ο χρήστης μπορεί να επέμβει και να διορθώσει τη γεωμετρία του πειράματος, αν είναι απαραίτητο (θέση πηγής, ισαπόσταση γεωφώνων, διαμόρφωση αξόνων, μονάδες μέτρησης κ.τ.λ.).

Το πρόγραμμα αρχικά επιλέγει αυτόματα κάποιες θέσεις τις οποίες θεωρεί ως πρώτες αφίξεις των σεισμικών κυμάτων, ενώ παρέχει δυνατότητα ελεύθερης επιλογής στον χρήστη. Πάντα θα πρέπει να γίνεται έλεγχος της αυτόματης επιλογής πρώτων αφίξεων από τον χρήστη (Σχήμα 3.2).

Ως πρώτη άφιξη, θεωρούμε τη στιγμή που ένας γεωφώνου αρχίζει να ταλαντώνεται (Σχήμα 3.2), δηλαδή ο χρόνος που η ταχύτερη σεισμικό κύμα φτάνει αυτό γεωφώνου.

Σχήμα 3.2: Γραμμή μελέτης ML7. Καταγραφή κοινής πηγής με τη θέση της πηγής στα 58.1 m. Απεικόνιση επιλογής των πρώτων αφίξεων (ροζ γραμμή) καθώς και από τις υπόλοιπες πηγές της γραμμής μελέτης (πράσινες γραμμές) με το πρόγραμμα PickWin.
Η διαδικασία της εισαγωγής και επιλογής των πρώτων αφίξεων, ολοκληρώνεται όταν χρησιμοποιηθούν όλα τα αρχεία που αντιστοιχούν στην ίδια γραμμή μελέτης. Ακολουθεί η αποθήκευση του αρχείου σε αρχείο (*.vs), το οποίο συμπεριλαμβάνει τις πρώτες αφίξεις από όλες τις θέσεις των σεισμικών πηγών.

Με το κύριο πρόγραμμα ανάλυσης και ερμηνείας (Plotrefa) πραγματοποιείται η αντιστροφή των πρώτων αφίξεων με τη μέθοδο της σεισμικής τομογραφίας. Το πρόγραμμα λαμβάνει ως αρχείο εισόδου, το αρχείο εξόδου του προγράμματος Pickwin (αρχεία *.vs) και παρέχει τη δυνατότητα της κοινής επεξεργασίας περισσότερων του ενός αναπτύγματος γεωφώνων (spreads), που οριοθετούν μια γραμμή μελέτης. Μετά την εισαγωγή των δεδομένων, δημιουργείται το δρομοχρονικό διάγραμμα (διάγραμμα χρόνου διαδρομής συναρτήσει της οριζόντιας απόστασης πηγής - γεωφώνου).

Ο χρήστης μπορεί να κάνει διορθώσεις, να διαγράψει δεδομένα και να μεταβάλει την κλίμακα. Ως αρχικό μοντέλο ορίζεται ένα οριζόντια στρωματομένο μέσο (με στρώματα παράλληλα στο ανάγλυφο, αν υπάρχει) σε περίπτωση όπου δεν γνωρίζει τις παραμέτρους του μοντέλου (μέγιστο βάθος, ταχύτητες διάδοσης των σεισμικών κυμάτων). Επίσης έχει την δυνατότητα προεπεξεργασίας με την μέθοδο Time - Term για τον υπολογισμό ενός αρχικού μοντέλου με διακριτά ομοιογενή στρώματα (SeisImager2D Manual, 2005).

Σχήμα 3.3: Γραμμή μελέτης ML7. Αρχικό μοντέλο ταχυτήτων με το ανάγλυφου του εδάφους. Η χρωματική κλίμακα αντιστοιχεί στη ταχύτητα διάδοσης των σεισμικών κυμάτων

Η μέθοδος της Σεισμικής Τομογραφίας βασίζεται στην σύγκριση των πειραματικών χρόνων πρώτων αφίξεων (που προέκυψαν από τις καταγραφές) και των θεωρητικά υπολογισμένων χρόνων πρώτων αφίξεων που προκύπτουν από ένα αρχικό δισδιάστατο μοντέλο ταχυτήτων (Σχήμα 3.3). Τροποποιώντας επαναληπτικά το αρχικό μοντέλο ταχυτήτων, πραγματοποιείται η ταύτιση (στα όρια κάποιου αποδεκτού σφάλματος) των συγκρινόμενων χρόνων πρώτων αφίξεων (δρομοχρονικά διαγράμματα). Το τελικό μοντέλο ταχυτήτων που προκύπτει (δισδιάστατη κατανομή της σεισμικής ταχύτητας στο υπέδαφος), θεωρείται ότι απεικονίζει την πραγματική κατανομή της σεισμικής ταχύτητας στο υπέδαφος, κάτω από την σεισμική γραμμή μελέτης.

Σχήμα 3.4: Γραμμή μελέτης ML7. Απεικόνιση των σεισμικών ακτινών στο εξομαλυμένο τελικό μοντέλο ταχυτήτων. Η χρωματική κλίμακα αντιστοιχεί στην ταχύτητα διάδοσης των σεισμικών κυμάτων.

Έτσι, απαραίτητη προϋπόθεση για την λειτουργία της μεθόδου είναι η εισαγωγή από τον χρήστη ενός αρχικού μοντέλου βάθους και των αντίστοιχων σεισμικών ταχυτήτων των στρωμάτων.

Στην παρούσα διπλωματική, κατά την επεξεργασία των πρώτων αφίξεων με την μέθοδο της σεισμικής τομογραφίας, χρησιμοποιήθηκε ως αρχικό μοντέλο ένα οριζόντια στρωματομένο μέσο.

3.2.2 ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΠΕΞΕΡΓΑΣΙΑΣ

Η επεξεργασία με τη μέθοδο Σεισμικής Τομογραφίας υλοποιήθηκε χρησιμοποιώντας το λογισμικό SeisImager.

Παρακάτω παρατίθενται τα αποτελέσματα της σεισμικής τομογραφίας όπου απεικονίζουν τις σεισμικές ακτίνες στο εξομαλυμένο μοντέλο ταχυτήτων. Η χρωματική κλίμακα αντιστοιχεί στην ταχύτητα διάδοσης των σεισμικών κυμάτων (Σχήμα 3.5 - 3.15). Οι πλήρεις τομές όπως πρόεκυψαν από το λογισμικό παρατίθενται στο Παράρτημα Β.

<u>Γραμμή ML1</u>

Σχήμα 3.5: Γραμμή μελέτης ML1. Διακρίνονται δυο στρώματα όπου το 1ο η ταχύτητα του κυμαίνεται από 900-1300 m/s με πάχος 4-8m και το 2ο η ταχύτητα του κυμαίνεται από 1500-1900 m/s με πάχος 25m. Η γραμμή διευθύνεται από Νοτιοδυτικά προς Βορειοανατολικά.

<u>Γραμμή ML2</u>

Σχήμα 3.6: Γραμμή μελέτης ML2. Διακρίνονται δυο στρώματα όπου το 1ο η ταχύτητα του κυμαίνεται από 900-1500 m/s με πάχος 6-7m και το 2ο η ταχύτητα του κυμαίνεται από 1900-2700 m/s με πάχος 35m. Η γραμμή διευθύνεται από Νοτιοδυτικά προς Βορειοανατολικά.

<u>Γραμμή ML3</u>

Σχήμα 3.7: Γραμμή μελέτης ML3. Διακρίνονται δυο στρώματα όπου το 1ο η ταχύτητα του κυμαίνεται από 500-1500 m/s με πάχος 8-12m και το 2ο η ταχύτητα του κυμαίνεται από 1700-2900 m/s με πάχος 30m. Η γραμμή διευθύνεται από Νοτιοδυτικά προς Βορειοανατολικά.

<u>Γραμμή ML4</u>

Σχήμα 3.8: Γραμμή μελέτης ML4. Διακρίνονται δυο στρώματα όπου το 1ο η ταχύτητα του κυμαίνεται από 500-1300 m/s με πάχος 7-13m και το 2ο η ταχύτητα του κυμαίνεται από 1500-2700 m/s με πάχος 22m. Η γραμμή διευθύνεται από Νοτιοδυτικά προς Βορειοανατολικά.

<u>Γραμμή ML5</u>

Σχήμα 3.9: Γραμμή μελέτης ML5. Διακρίνονται δυο στρώματα όπου το 1ο η ταχύτητα του κυμαίνεται από 500-1500 m/s με πάχος 8-10m και το 20 η ταχύτητα του κυμαίνεται από 1700-2500 m/s με πάχος 20m. Η γραμμή διευθύνεται από Νοτιοδυτικά προς Βορειοανατολικά.

Σχήμα 3.10: Γραμμή μελέτης ML6. Διακρίνονται δυο στρώματα όπου το 1ο η ταχύτητα του

κυμαίνεται από 500-1500 m/s με πάχος 8-15m και το 20 η ταχύτητα του κυμαίνεται από 1700-2500 m/s με πάχος 30m. Η γραμμή διευθύνεται από Νοτιοδυτικά προς Βορειοανατολικά.

Γραμμή ML6

Σχήμα 3.11: Γραμμή μελέτης ML7. Διακρίνονται δυο στρώματα όπου το 1ο η ταχύτητα του κυμαίνεται από 900-1500 m/s με πάχος 5-7m και το 2ο η ταχύτητα του κυμαίνεται από 1700-2100 m/s με πάχος 30m. Η γραμμή διευθύνεται από Νοτιοδυτικά προς Βορειοανατολικά.

<u>Γραμμή MT1</u>

Σχήμα 3.12: Γραμμή μελέτης MT1. Διακρίνονται δυο στρώματα όπου το 1ο η ταχύτητα του κυμαίνεται από 300-1100 m/s με πάχος 6-8m και το 2ο η ταχύτητα του κυμαίνεται από 1300-1700 m/s με πάχος 30m. Η γραμμή διευθύνεται από Βορρά προς Νότο.

<u>Γραμμή MT2</u>

Σχήμα 3.13: Γραμμή μελέτης MT2. Διακρίνονται δυο στρώματα όπου το 1ο η ταχύτητα του κυμαίνεται από 500-1500 m/s με πάχος 8-12m και το 2ο η ταχύτητα του κυμαίνεται από 1700-2300 m/s με πάχος 30m. Η γραμμή διευθύνεται από Βορρά προς Νότο.

Σχήμα 3.14: Γραμμή μελέτης ΜΤ3. Διακρίνονται δυο στρώματα όπου το 1ο η ταχύτητα του κυμαίνεται από 500-1500 m/s με πάχος 10-15m και το 2ο η ταχύτητα του κυμαίνεται από 1700-2900 m/s με πάχος 35m. Η γραμμή διευθύνεται από Βορρά προς Νότο.

<u>Γραμμή MT3</u>

<u>Γραμμή MT5</u>

Σχήμα 3.15: Γραμμή μελέτης MT5. Διακρίνονται δυο στρώματα όπου το 1ο η ταχύτητα του κυμαίνεται από 500-1300 m/s με πάχος 4-6m και το 2ο η ταχύτητα του κυμαίνεται από 1500-2100 m/s με πάχος 15m. Η γραμμή διευθύνεται από Νοτιοδυτικά προς Βορειοανατολικά.

3.3 ΕΠΕΞΕΡΓΑΣΙΑ ΜΕΤΡΗΣΕΩΝ ΗΛΕΚΤΡΙΚΗΣ ΤΟΜΟΓΡΑΦΙΑΣ

3.3.1 ΔΙΣΔΙΑΣΤΑΤΗ ΕΠΕΞΕΡΓΑΣΙΑ ΜΕ ΤΟ ΛΟΓΙΣΜΙΚΟ Res2dinv

3.3.1.1 ΜΕΘΟΔΟΣ ΕΠΕΞΕΡΓΑΣΙΑΣ

Ο υπολογισμός της πραγματικής ηλεκτρικής αντίστασης ρ επιτυγχάνεται με την χρήση του λογισμικού πακέτου Res2dinv. Το Res2dinv καθορίζει αυτόματα δισδιάστατο (2-D) μοντέλο ειδικής ηλεκτρικής αντίστασης από τα δεδομένα της ηλεκτρικής τομογραφίας (Griffiths and Barker 1993). Αυτό το πρόγραμμα αντιστρέφει δεδομένα τα οποία συλλέχθηκαν με τη χρήση μεγάλου αριθμού ηλεκτροδίων.

Χρησιμοποιείται μη γραμμική τεχνική ελαχίστων τετραγώνων για την αντιστροφή των δεδομένων (deGroot-Hedlin and Constable, 1990, Loke and Barker, 1996) τα οποία συλλέχθηκαν με οποιαδήποτε από τις παρακάτω διατάξεις: Wenner, πόλου-πόλου, διπόλου διπόλου, πόλου - δίπολου, Schlumberger, Wenner - Schlumberger.

Ο χρήστης μπορεί να επεξεργαστεί ψευδοτομές με έως και 650 ηλεκτρόδια και 6500 σημεία δεδομένων (Σχήμα 3.16).

Σύμφωνα με το πρόγραμμα, εισάγονται τα δεδομένα από το αρχείο dat. Αφού πραγματοποιηθεί η αντιστροφή των δεδομένων παρουσιάζονται στην οθόνη τρεις τομές. Υπάρχει η δυνατότητα να μην ληφθούν υπόψη μετρήσεις οι οποίες έχουν μεγάλο σφάλμα.

Επίσης παρέχεται η δυνατότητα ρύθμισης του αριθμού των επαναλήψεων της διαδικασίας της αντιστροφής. Ακόμα, στα αποτελέσματα του προγράμματος συγκαταλέγεται και το μέσο τετραγωνικό σφάλμα RMS μεταξύ μετρούμενων και υπολογιζόμενων τιμών της φαινόμενης ειδικής ηλεκτρικής αντίστασης (Βλαχοδημητρόπουλος και Παρασχούδης, 2010).

Σχήμα 3.16: Ηλεκτρική τομογραφία για την γραμμή μελέτης MT1. Η πρώτη τομή αντιστοιχεί στην ψευδοτομή των μετρούμενων τιμών της φαινόμενης ειδικής ηλεκτρικής αντίστασης (ρ_{α}), η δεύτερη τομή αντιστοιχεί στην ψευδοτομή των υπολογισμένων τιμών της φαινόμενης ειδικής ηλεκτρικής αντίστασης (ρ_{α}), και η τρίτη είναι η γεωηλεκρική τομή των πραγματικών ειδικών ηλεκτρικών αντιστάσεων που προκύπτει από την αντιστροφή. Η χρωματική κλίμακα αντιστοιχεί στην ειδική ηλεκτρική αντίσταση των σχηματισμών, το μέσο τετραγωνικό σφάλμα (RMS) μεταξύ μετρούμενων υπολογιζόμενων τιμών της ρ_{α} είναι 7.3%.

3.3.1.2 ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΠΕΞΕΡΓΑΣΙΑΣ

Η ερμηνεία των αποτελεσμάτων του λογισμικού Res2dinv είναι παρόμοια με της έρευνας που έγινε για το συγκεκριμένο ερευνητικό έργο (Vafidis et al., 2012). Έτσι υιοθετήθηκαν οι κατηγορίες αυτές και προσαρμόστηκαν στα αποτελέσματα της παρούσας εργασίας για είναι δυνατή η συσχέτιση της ειδικής ηλεκτρικής αντίστασης με τον δείκτη ποιότητας των πετρωμάτων (RQD) ή/και την πυκνότητα ασυνεχειών.

Πίνακας 3.2: Πινάκας κατηγοριών και ειδικών ηλεκτρικών αντιστάσεων από τις γεωτρήσεις στη θέση Μ.

#	Κατηγορίες	Ειδική Ηλεκτρική Αντίσταση
		(Ohm.m)
1	Πλήρως διερρηγμένος ή/και αποσαθρωμένος ή/και με ασυνέχειες πληρωμένες με εδαφικό υλικό ασβεστόλιθος	100 - 600
2	Πλήρως διερρηγμένος ή/και με ασυνέχειες πληρωμένες με εδαφικό υλικό ασβεστόλιθος	600 - 1100
3	Διερρηγμένος ασβεστόλιθος με ασυνέχειες πληρωμένες με εδαφικό υλικό	1100 - 2000
4	Διερρηγμένος ή/και υγιής ασβεστόλιθος	>2000

Πιο κάτω παρατίθενται τα αποτελέσματα της ηλεκτρικής τομογραφίας όπου απεικονίζουν τη γεωηλεκρική τομή που προκύπτει από την αντιστροφή της φαινόμενης ειδικής ηλεκτρικής αντίστασης. Η χρωματική κλίμακα αντιστοιχεί στην ειδική ηλεκτρική αντίσταση των σχηματισμών καθώς αναγράφεται και το μέσο τετραγωνικό σφάλμα RMS (Σχήμα 3.17 - 3.26). Οι πλήρης τομές όπως πρόεκυψαν από το λογισμικό Res2Dinv παρατίθενται στο Παράρτημα Γ.

Σχήμα 3.17: Γεωηλεκρική τομή για τη γραμμή μελέτης ML1. Η χρωματική κλίμακα αντιστοιχεί στην ειδική ηλεκτρική αντίσταση των σχηματισμών. Το μέσο τετραγωνικό σφάλμα RMS είναι 15.9%. Η γεωηλεκτρική αυτή τομή δεν αξιολογήθηκε λόγω μη αξιόπιστων αποτελεσμάτων (κορεσμός στις υψηλές αντιστάσεις).

Σχήμα 3.18: Γεωηλεκρική τομή για τη γραμμή μελέτης ML2. Η χρωματική κλίμακα αντιστοιχεί στην ειδική ηλεκτρική αντίσταση των σχηματισμών. Παρατηρούνται 5 θέσεις χαμηλών αντιστάσεων 100-600, 600-1100 (Ohm.m) και 4 θέσεις αντιστάσεων >2000 (Ohm.m). Το μέσο τετραγωνικό σφάλμα RMS είναι 12,6%.

Σχήμα 3.19: Γεωηλεκρική τομή για τη γραμμή μελέτης ML3. Η χρωματική κλίμακα αντιστοιχεί στην ειδική ηλεκτρική αντίσταση των σχηματισμών. Παρατηρούνται 1 θέση χαμηλών αντιστάσεων 100-600, 600-1100 (Ohm.m) και 2 θέσεις αντιστάσεων >2000 (Ohm.m). Το μέσο τετραγωνικό σφάλμα RMS είναι 15.2%.

Σχήμα 3.20: Γεωηλεκρική τομή για τη γραμμή μελέτης ML4. Η χρωματική κλίμακα αντιστοιχεί στην ειδική ηλεκτρική αντίσταση των σχηματισμών. Παρατηρούνται 3 θέσεις χαμηλών αντιστάσεων 100-600, 600-1100 (Ohm.m) και 2 θέσεις αντιστάσεων >2000 (Ohm.m). Το μέσο τετραγωνικό σφάλμα RMS είναι 6.3%.

Σχήμα 3.21: Γεωηλεκρική τομή για τη γραμμή μελέτης ML5. Η χρωματική κλίμακα αντιστοιχεί στην ειδική ηλεκτρική αντίσταση των σχηματισμών. Παρατηρούνται 4 θέσεις χαμηλών αντιστάσεων 100-600, 600-1100 (Ohm.m) και 2 θέσεις αντιστάσεων >2000 (Ohm.m). Το μέσο τετραγωνικό σφάλμα RMS είναι 10.6%.

Σχήμα 3.22: Γεωηλεκρική τομή για τη γραμμή μελέτης ML6. Η χρωματική κλίμακα αντιστοιχεί στην ειδική ηλεκτρική αντίσταση των σχηματισμών. Παρατηρούνται 3 θέσεις χαμηλών αντιστάσεων 100-600, 600-1100 (Ohm.m) και 3 θέσεις αντιστάσεων >2000 (Ohm.m). Το μέσο τετραγωνικό σφάλμα RMS είναι 6.9%.

Σχήμα 3.23: Γεωηλεκρική τομή για τη γραμμή μελέτης ML7. Η χρωματική κλίμακα αντιστοιχεί στην ειδική ηλεκτρική αντίσταση των σχηματισμών. Παρατηρούνται 2 θέσεις χαμηλών αντιστάσεων 100-600, 600-1100 (Ohm.m) και 3 θέσεις αντιστάσεων >2000 (Ohm.m). Το μέσο τετραγωνικό σφάλμα RMS είναι 8.6%.

Σχήμα 3.24: Γεωηλεκρική τομή για τη γραμμή μελέτης MT1. Η χρωματική κλίμακα αντιστοιχεί στην ειδική ηλεκτρική αντίσταση των σχηματισμών. Παρατηρούνται 4 θέσεις χαμηλών αντιστάσεων 100-600, 600-1100 (Ohm.m) και 2 θέσεις αντιστάσεων >2000 (Ohm.m). Το μέσο τετραγωνικό σφάλμα RMS είναι 7.3%.

Σχήμα 3.25: Γεωηλεκρική τομή για τη γραμμή μελέτης MT2. Η χρωματική κλίμακα αντιστοιχεί στην ειδική ηλεκτρική αντίσταση των σχηματισμών. Παρατηρούνται 3 θέσεις χαμηλών αντιστάσεων 100-600, 600-1100 (Ohm.m) και 3 θέσεις αντιστάσεων >2000 (Ohm.m). Το μέσο τετραγωνικό σφάλμα RMS είναι 12.5%.

Σχήμα 3.26: Γεωηλεκρική τομή για τη γραμμή μελέτης MT3. Η χρωματική κλίμακα αντιστοιχεί στην ειδική ηλεκτρική αντίσταση των σχηματισμών. Παρατηρούνται 2 θέσεις χαμηλών αντιστάσεων 100-600, 600-1100 (Ohm.m) και 4 θέσεις αντιστάσεων >2000 (Ohm.m). Το μέσο τετραγωνικό σφάλμα RMS είναι 8.3%.

3.3.2 ΕΠΕΞΕΡΓΑΣΙΑ ΜΕ ΤΟ ΛΟΓΙΣΜΙΚΟ EarthImager2D

3.3.2.1 ΜΕΘΟΔΟΛΟΓΙΑ ΕΠΕΞΕΡΓΑΣΙΑΣ

Το EarthImager2D χρησιμοποιείται για να ερμηνεύσει 2D προφίλ αντίστασης που δημιουργούνται με κάθε συστοιχία ηλεκτροδίων τοποθετημένα σε ένα επίπεδο, δηλαδή α) κατά μήκος μιας γραμμής στην επιφάνεια του εδάφους, β) ανάμεσα σε δύο ή περισσότερες παράλληλες γεωτρήσεις, γ) μεταξύ μιας γεώτρησης και της επιφάνειας. Κάθε συστοιχία ή διάφορα δεδομένα από Wenner, πόλου-πόλου, διπόλου-διπόλου, πόλου-διπόλου και Schlumberger είναι δυνατόν να αντιστραφούν.

Το εν λόγω λογισμικό μπορεί να χρησιμοποιηθεί για να αντιστρέψει δεδομένα με μεγάλο αριθμό θέσεων ηλεκτροδίων, όπως θαλάσσιες έρευνες. Επιτρέπει στο χρήστη να εισάγει ένα γεωηλεκτρικό μοντέλο να εκτελεί μια εικονική έρευνα και στη συνέχεια να αντιστρέψει τα συνθετικά δεδομένα για να διερευνήσει αν ο στόχος της έρευνας του μπορεί να επιτευχθεί.

Σύμφωνα με το πρόγραμμα, εισάγονται τα δεδομένα από το αρχείο *.stg. Αφού πραγματοποιηθεί η αντιστροφή των δεδομένων παρουσιάζονται στην οθόνη τρεις τομές. Υπάρχει η δυνατότητα να μην ληφθούν υπόψη μετρήσεις οι οποίες έχουν μεγάλο σφάλμα.

Επίσης παρέχεται η δυνατότητα ρύθμισης του αριθμού των επαναλήψεων της διαδικασίας της αντιστροφής. Ακόμα, στα αποτελέσματα του προγράμματος συγκαταλέγεται και το μέσο τετραγωνικό σφάλμα RMS και η απόσταση μεταξύ των ηλεκτροδίων (https://www.agiusa.com/agi2dimg.shtml).

Σχήμα 3.27: Ηλεκτρική τομογραφία για την γραμμή μελέτης MT1. Η πρώτη τομή αντιστοιχεί στην ψευδοτομή των μετρούμενων τιμών της φαινόμενης ειδικής ηλεκτρικής αντίστασης (ρ_{α}), η δεύτερη τομή αντιστοιχεί στην ψευδοτομή των υπολογισμένων τιμών της φαινόμενης ειδικής ηλεκτρικής αντίστασης (ρ_{α}), ενώ η τρίτη είναι η γεωηλεκρική τομή που προκύπτει από την αντιστροφή. Η χρωματική κλίμακα αντιστοιχεί στην ειδική ηλεκτρική αντίσταση των σχηματισμών, το μέσο τετραγωνικό σφάλμα (RMS) μεταξύ μετρούμενων υπολογιζόμενων τιμών της ρ_{α} είναι 6.2%.

3.3.2.2 ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΠΕΞΕΡΓΑΣΙΑΣ

Παρακάτω παρατίθενται τα αποτελέσματα της ηλεκτρικής τομογραφίας όπου απεικονίζουν τη γεωηλεκρική τομή που προκύπτει από την αντιστροφή της φαινόμενης ειδικής ηλεκτρικής αντίστασης. Η χρωματική κλίμακα αντιστοιχεί στην ειδική ηλεκτρική αντίσταση των σχηματισμών καθώς αναγράφεται και το μέσο τετραγωνικό σφάλμα RMS (Σχήμα 3.28 – 3.37). Όλες οι ψευδοτομές όπως πρόεκυψαν από το λογισμικό EarthImager παρατίθενται στο Παράρτημα Γ.

Σχήμα 3.28: Γεωηλεκρική τομή για τη γραμμή μελέτης ML1. Η χρωματική κλίμακα αντιστοιχεί στην ειδική ηλεκτρική αντίσταση των σχηματισμών. Το μέσο τετραγωνικό σφάλμα RMS είναι 13.45%. Η γεωηλεκτρική αυτή τομή δεν αξιολογήθηκε λόγω μη αξιόπιστων αποτελεσμάτων (κορεσμός στις υψηλές αντιστάσεις).

Σχήμα 3.29: Γεωηλεκρική τομή για τη γραμμή μελέτης ML2. Η χρωματική κλίμακα αντιστοιχεί στην ειδική ηλεκτρική αντίσταση των σχηματισμών. Παρατηρούνται 5 θέσεις χαμηλών αντιστάσεων 100-600, 600-1100 (Ohm.m) και 3 θέσεις αντιστάσεων >2000 (Ohm.m). Το μέσο τετραγωνικό σφάλμα RMS είναι 9.43%.

Σχήμα 3.30: Γεωηλεκρική τομή για τη γραμμή μελέτης ML3. Η χρωματική κλίμακα αντιστοιχεί στην ειδική ηλεκτρική αντίσταση των σχηματισμών. Παρατηρούνται 3 θέσεις χαμηλών αντιστάσεων 100-600, 600-1100 (Ohm.m) και 3 θέσεις αντιστάσεων >2000 (Ohm.m).Το μέσο τετραγωνικό σφάλμα RMS είναι 12.80%.

Σχήμα 3.31: Γεωηλεκρική τομή για τη γραμμή μελέτης ML4. Η χρωματική κλίμακα αντιστοιχεί στην ειδική ηλεκτρική αντίσταση των σχηματισμών. Παρατηρούνται 4 θέσεις χαμηλών αντιστάσεων 100-600, 600-1100 (Ohm.m) και 4 θέσεις αντιστάσεων >2000 (Ohm.m). Το μέσο τετραγωνικό σφάλμα RMS είναι 5.12%.

Σχήμα 3.32: Γεωηλεκρική τομή για τη γραμμή μελέτης ML5. Η χρωματική κλίμακα αντιστοιχεί στην ειδική ηλεκτρική αντίσταση των σχηματισμών. Παρατηρούνται χαμηλές αντιστάσεις 100-600, 600-1100 (Ohm.m) και 3 θέσεις αντιστάσεων >2000 (Ohm.m). Το μέσο τετραγωνικό σφάλμα RMS είναι 9.01%.

Σχήμα 3.33: Γεωηλεκρική τομή για τη γραμμή μελέτης ML6. Η χρωματική κλίμακα αντιστοιχεί στην ειδική ηλεκτρική αντίσταση των σχηματισμών. Παρατηρούνται 4 θέσεις χαμηλών αντιστάσεων 100-600, 600-1100 (Ohm.m) και 4 θέσεις αντιστάσεων >2000 (Ohm.m). Το μέσο τετραγωνικό σφάλμα RMS είναι 6.21%.

Σχήμα 3.34: Γεωηλεκρική τομή για τη γραμμή μελέτης ML7. Η χρωματική κλίμακα αντιστοιχεί στην ειδική ηλεκτρική αντίσταση των σχηματισμών. Παρατηρούνται 3 θέσεις χαμηλών αντιστάσεων 100-600, 600-1100 (Ohm.m) και 2 θέσεις αντιστάσεων >2000 (Ohm.m). Το μέσο τετραγωνικό σφάλμα RMS είναι 6.26%.

Σχήμα 3.35: Γεωηλεκρική τομή για τη γραμμή μελέτης MT1. Η χρωματική κλίμακα αντιστοιχεί στην ειδική ηλεκτρική αντίσταση των σχηματισμών. Παρατηρούνται 3 θέσεις χαμηλών αντιστάσεων 100-600, 600-1100 (Ohm.m) και 3 θέσεις αντιστάσεων >2000 (Ohm.m). Το μέσο τετραγωνικό σφάλμα RMS είναι 6.25%.

Σχήμα 3.36: Γεωηλεκρική τομή για τη γραμμή μελέτης MT2. Η χρωματική κλίμακα αντιστοιχεί στην ειδική ηλεκτρική αντίσταση των σχηματισμών. Παρατηρούνται 3 θέσεις χαμηλών αντιστάσεων 100-600, 600-1100 (Ohm.m) και 4 θέσεις αντιστάσεων >2000 (Ohm.m). Το μέσο τετραγωνικό σφάλμα RMS είναι 9.18%.

Σχήμα 3.37: Γεωηλεκρική τομή για τη γραμμή μελέτης MT3. Η χρωματική κλίμακα αντιστοιχεί στην ειδική ηλεκτρική αντίσταση των σχηματισμών. Παρατηρούνται 3 θέσεις χαμηλών αντιστάσεων 100-600, 600-1100 (Ohm.m) και 3 θέσεις αντιστάσεων >2000 (Ohm.m). Το μέσο τετραγωνικό σφάλμα RMS είναι 6.81%.

3.4 ΣΥΓΚΡΙΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΑΠΟ ΤΑ ΛΟΓΙΣΜΙΚΑ Res2dinv KAI EarthImager2D

Στην παρούσα διπλωματική χρησιμοποιήθηκαν δυο λογισμικά πακέτα (Res2dinv και EarthImager2D) για την επεξεργασία των γεωηλεκτρικών δεδομένων στις 2 διαστάσεις.

Παρατηρήθηκε ότι στο λογισμικό πακέτο EarthImager2D υπήρχε χαμηλότερο μέσο τετραγωνικό σφάλμα (RMS), αλλά υψηλότερες ειδικές ηλεκτρικές αντιστάσεις κατά την αντιστροφή καθώς και χαμηλότερης ποιότητας.

Για τις θέσεις των γεωτρήσεων, πραγματοποιήθηκε προσπάθεια συσχέτισης των τιμών της ειδικής ηλεκτρικής αντίστασης από τα δύο λογισμικά. Βέβαια, θα πρέπει να σημειωθεί ότι τα συγκρινόμενα στοιχεία δεν αντιστοιχούν ακριβώς στα ίδια βάθη. Έτσι, λήφθηκαν υπόψη τα βάθη από τις γεωηλεκτρικές τομές του Res2Dinv και οι αντιστάσεις συσχετίστηκαν με τις αντιστάσεις του EarthImager που αντιστοιχούσαν στα πιο κοντινά βάθη.

Πιο κάτω παρατίθενται οι τιμές της ειδικής ηλεκτρικής αντίστασης που προέκυψαν από τα δυο λογισμικά στις θέσεις των γεωτρήσεων καθώς και τα διαγράμματα συσχέτισής τους. Το βάθος που αναγράφεται σε κάθε γεώτρηση είναι από τα αποτελέσματα του λογισμικού Res2dinv και προσαρμόστηκαν τα βάθη για το λογισμικό EarthImager2D. Καλύτερη συσχέτιση παρουσιάζει η γεώτρηση MCD6 με 0.9373 και χειρότερη η γεώτρηση MCD4 με 0.3945.

Πίνακας 3.3: Τιμές της ειδικής ηλεκτρικής αντίστασης που προέκυψαν από τα 2 λογισμικά επεξεργασίας (Res2Dinv & EarthImager2D) στη θέση της γεώτρησης MCD1. Με κόκκινο χρώμα είναι η μέτρηση που δεν συμπεριλήφθηκε στην συσχέτιση λόγω μεγάλης απόκλισης της τιμής της αντίστασης που προέκυψε από το EarthImager σε σχέση με τις γειτονικές της (outlier).

MCD1				
	Resistivity	Resistivity		
BAΘOΣ (m)	Res2dinv	Earthimager2D		
	(Ohm.m)	(Ohm.m)		
0,9	1268	2680		
2,7	3380	1223		
4,8	2970	2037		
7,4	1140	8730		
10,7	449	278		
14,8	227	220		
20,0	220	275		
26.5	416	173		

Σχήμα 3.38: Διάγραμμα συσχέτισης των τιμών της ειδικής ηλεκτρικής αντίστασης από τα 2 λογισμικά στην γεώτρηση MCD1. Η συσχέτιση τους είναι 0.616.

MCD2					
ΒΑΘΟΣ (m)	Resistivity Res2dinv (Ohm.m)	Resistivity Earthimager2D (Ohm.m)			
0,51	625	949			
1,59	598	702			
2,86	395	392			
4,44	277	374			
6,43	274	475			
8,91	334	539			
15,88	165	182			

Πίνακας 3.4: Τιμές της ειδικής ηλεκτρικής αντίστασης που προέκυψαν από τα 2 λογισμικά επεξεργασίας (Res2Dinv & EarthImager2D) στη θέση της γεώτρησης MCD2.

Σχήμα 3.39: Διάγραμμα συσχέτισης των τιμών της ειδικής ηλεκτρικής αντίστασης από τα 2 λογισμικά στην γεώτρηση MCD2. Η συσχέτιση τους είναι 0.9125.

MCD3				
ΒΑΘΟΣ (m)	Resistivity Res2dinv (Ohm.m)	Resistivity Earthimager2D (Ohm.m)		
0,85	3418	2128		
2,65	962	1610		
4,76	807	1057		
7,41	1664	826		
10,71	2894	4130		
14,84	2327	3753		
20,01	1045	2195		

Πίνακας 3.5: Τιμές της ειδικής ηλεκτρικής αντίστασης που προέκυψαν από τα 2 λογισμικά επεξεργασίας (Res2Dinv & EarthImager2D) στη θέση της γεώτρησης MCD3.

Σχήμα 3.40: Διάγραμμα συσχέτισης των τιμών της ειδικής ηλεκτρικής αντίστασης από τα 2 λογισμικά στην γεώτρηση MCD3. Η συσχέτιση τους είναι 0.5893.

Πίνακας 3.6: Τιμές της ειδικής ηλεκτρικής αντίστασης που προέκυψαν από τα 2 λογισμικά επεξεργασίας (Res2Dinv & EarthImager2D) στη θέση της γεώτρησης MCD4. Με κόκκινο χρώμα είναι η μέτρηση που δεν συμπεριλήφθηκε στην συσχέτιση λόγω μεγάλης απόκλισης της τιμής της αντίστασης που προέκυψε από το Res2Dinv σε σχέση με τις γειτονικές της (outlier).

MCD4				
BAΘΟΣ (m)	Resistivity Res2dinv (Ohm.m)	Resistivity Earthimager2D (Ohm.m)		
1,37	720	2402		
4,24	2317	1136		
7,62	2371	2129		
11,85	1519	1721		
17,14	1071	1433		
23,75	573	1951		
32,01	296	185		
42,34	400	85		
55,24	1340	83		

Σχήμα 3.41: Διάγραμμα συσχέτισης των τιμών της ειδικής ηλεκτρικής αντίστασης από τα 2 λογισμικά στην γεώτρηση MCD4. Η συσχέτιση τους είναι 0.3945.

MCD5				
ΒΑΘΟΣ (m)	Resistivity Res2dinv (Ohm.m)	Resistivity Earthimager2D (Ohm.m)		
1,37	3890	2215		
4,24	1080	1040		
7,62	1735	1010		
11,85	1844	1962		
17,14	1150	1799		
23,75	890	762		
32,01	849	1563		
42,34	895	1581		
55,24	1236	705		

Πίνακας 3.7: Τιμές της ειδικής ηλεκτρικής αντίστασης που προέκυψαν από τα 2 λογισμικά επεξεργασίας (Res2Dinv & EarthImager2D) στη θέση της γεώτρησης MCD5.

Σχήμα 3.42: Διάγραμμα συσχέτισης των τιμών της ειδικής ηλεκτρικής αντίστασης από τα 2 λογισμικά στην γεώτρηση MCD5. Η συσχέτιση τους είναι 0.5767.

	MCD6	
ΒΑΘΟΣ (m)	Resistivity Res2dinv (Ohm.m)	Resistivity Earthimager2D (Ohm.m)
1,37	499	727
4,24	842	703
7,62	1745	1179
11,85	2893	2136
23,75	3711	3935
32,01	3646	3461
42,34	3386	4232

Πίνακας 3.8: Τιμές της ειδικής ηλεκτρικής αντίστασης που προέκυψαν από τα 2 λογισμικά επεξεργασίας (Res2Dinv & EarthImager2D) στη θέση της γεώτρησης MCD6.

Σχήμα 3.43: Διάγραμμα συσχέτισης των τιμών της ειδικής ηλεκτρικής αντίστασης από τα 2 λογισμικά στην γεώτρηση MCD5. Η συσχέτιση τους είναι 0.9373.

3.5 EarthImager3D

Το EarthImager 3D είναι ένα λογισμικό όπου μπορεί να προσδιορίσει αυτόματα ένα τρισδιάστατο μοντέλο αντίστασης για το υπέδαφος χρησιμοποιώντας τα δεδομένα που λαμβάνονται από μια τρισδιάστατη ή μια ψεύδοτρισδιάστατη (όπου οι μετρήσεις λαμβάνονται κατά μήκος γραμμών) γεωηλεκτρική έρευνα.

Με την προηγμένη τεχνική απόδοση όγκου, ο χρήστης μπορεί να τον περιστρέψει σε οποιαδήποτε κατεύθυνση, να τον μεγεθύνει μέσα και έξω έτσι ώστε να παρατηρήσει και να μελετήσει τον όγκο λεπτομερώς (<u>https://www.agiusa.com/earthimager3d.shtml</u>).

Το λογισμικό αυτό έχει απλό λειτουργικό περιβάλλον όπου δεν χρειάζεται να έχεις ιδιαίτερες γνώσεις για να το χειριστείς (Παράρτημα Ε). Για την ανάγνωση των δεδομένων χρειάζεται μια προεργασία αφού το πρόγραμμα δέχεται συγκεκριμένους τύπους αρχείων *.stg και *.url (Σχήμα 3.44, τύπου ascii προκαθορισμένης δομής) για τα γεωηλεκτρικά δεδομένα και αρχεία *.trn (τύπου ascii προκαθορισμένης δομής) για το ανάγλυφο της περιοχής.

> Unit: meters :Geometry ;ID, X, Y, Z 1, 0.00, 0.00, 0.00 2, 0.00, 1.00, 0.00 3, 0.00, 2.00, 0.00 4, 0.00, 3.00, 0.00 5, 0.00, 4.00, 0.00 6, 0.00, 5.00, 0.00 7 1 00 5 00 0 00 8, 1.00, 4.00, 0.00 9, 1.00, 3.00, 0.00 10, 1.00, 2.00, 0.00 11, 1.00, 1.00, 0.00 12, 1.00, 0.00, 0.00 :Measurements ;A, B, M, N, V/I(ohm), I(mA), Error(%), Chargeability(mV/V) 1. 2. 3. 4. -1.0e-01 1. 2. 4. 5. -9.0e-02 1, 2, 5, 6, -7.5e-02 1, 2, 7, 8, 8.0e-02 1, 2, 8, 9, 7.0e-02

Σχήμα 3.44: Παράδειγμα αρχείου *.url, εισαγωγής στο λογισμικό EarthImager3D (Manual EarthImager 3D Version 1.5.3,2008).

Για την μετατροπή των αρχείων που καταγράφηκαν κατά τη διάρκεια της γεωηλεκτρικής διασκόπησης σε διδιάστατο αρχείο *.stg σε αρχείο ανάγνωσης τρισδιάστατων δεδομένων (*.url), δημιουργήθηκε κατάλληλος αλγόριθμος σε γλώσσα Matlab. Στον αλγόριθμο αυτό, ο χρήστης εισάγει πολλαπλά αρχεία *.stg ισάριθμων διδιάστατων διασκοπήσεων, τις συντεταγμένες και τα υψόμετρα των ηλεκτροδίων των διασκοπήσεων αυτών, ενώ ο αλγόριθμος επιστρέφει το ενοποιημένο στις τρείς διαστάσεις αρχείο *.url και το αρχείο αναγλύφου *.trn. Ο αλγόριθμος αυτός παρατίθεται στο Παράρτημα Ε.

Για την εισαγωγή των δεδομένων στο λογισμικό, φορτώνονται τα αρχεία πηγαίνοντας στην εντολή File/Read Data, όπου βγαίνει ένα παράθυρο επιλογής ανάγνωσης αρχείου και διαβάζονται τα δεδομένα των γραμμών μελέτης *.url. Έπειτα διαβάζονται τα αρχεία με το ανάγλυφο της περιοχής μελέτης πηγαίνοντας στην εντολή Read Terrain File, όπου βγαίνει ένα παράθυρο επιλογής αρχείου ανάγνωσης και διαβάζονται τα δεδομένα του ανάγλυφου τη περιοχής μελέτης *.trn (Σχήμα 3.45).

Σχήμα 3.45: Ανάγνωσης αρχείου δεδομένων των γραμμών μελέτης *.url και *.trn.

Μπορούν να αφαιρεθούν δεδομένα από την ανάγνωση των δεδομένων που πιστεύεται ότι έχουν μεγάλο σφάλμα (ακραίων τιμών) καθώς και να αλλαχτούν οι παράμετροι της αντιστροφής των δεδομένων με την εντολή Settings/Initial Settings (Σχήμα 3.46). Μετά και την αφαίρεση ακραίων τιμών από τα δεδομένα εκτελείται η έναρξη της αντιστροφής της φαινόμενης ειδικής ηλεκτρικής αντίστασης (Σχήμα 3.47).

Σχήμα 3.46: Παράθυρο αλλαγής των παραμέτρων της αντιστροφής.

File Edit Settings	Inversion View	Tools Language Help
Previous Settings	- 🗗 🕑	
0 🗧 🌈 🎽 4		Arial - M - Start Inversion

Σχήμα 3.47: Κουμπί εκτέλεσης της αντιστροφής της φαινόμενης ειδικής ηλεκτρικής αντίστασης.

Όταν τελειώσει η αντιστροφή των δεδομένων το λογισμικό δίνεται η δυνατότητα στο χρήστη να απεικονίσει την τρισδιάστατη αντιστροφή των δεδομένων με μια σειρά τρόπων απεικόνισης ανάλογα με το επιθυμεί να απεικονίσει. Υπάρχει η απεικόνιση Measured Apparent Resistivity (Σχήμα 3.48) όπου απεικονίζει το μέσο τετραγωνικό σφάλμα (RMS) των μετρούμενων και των υπολογισμένων φαινόμενων ειδικών αντιστάσεων και τις πραγματικές ειδικές ηλεκτρικές αντιστάσεις στο χώρο με διαφορετικά χρώματα, την απεικόνιση Inverted Resistivity Model (Σχήμα 3.49) όπου χρωματίζει τον όγκο της περιοχής μελέτης με τις πραγματικές ειδικές ηλεκτρικές αντιστάσεις.

Σχήμα 3.48: Απεικόνιση του μέσου τετραγωνικού σφάλματος (RMS) και η χρωματική απεικόνιση των αντιστραμμένων αντιστάσεων αναγράφοντας και τον όγκο της περιοχής μελέτης.

Σχήμα 3.49: Χρωματική απεικόνιση των αντιστραμμένων αντιστάσεων αναγράφοντας και τον όγκο της περιοχής μελέτης (Inverted Resistivity Model).

Επίσης υπάρχει η απεικόνιση Static Slices of Resistivity Model (Σχήμα 3.50), το 3D Countours of Resistivity (Σχήμα 3.51), καθώς και η απεικόνιση Resistivity Misfit Histogram (Παράρτημα Ε).

Σχήμα 3.50: Χρωματική απεικόνιση των αντιστραμμένων αντιστάσεων σε διάφορες τομές της περιοχής μελέτης (Static Slices of Resistivity Model).

Σχήμα 3.51: Τρισδιάστατη χρωματική απεικόνιση ισότιμων ειδικών ηλεκτρικών αντιστάσεων (3D Countours of Resistivity).

Στην προσπάθεια να αντιστραφούν τρισδιάστατα οι μετρούμενες φαινόμενες ειδικές ηλεκτρικές αντιστάσεις προέκυψαν κάποια προβλήματα που εν τέλει αντιμετωπίστηκαν. Τα προβλήματα ήταν:

 Οι γραμμές μελέτης στο σύστημα συντεταγμένων (Παράρτημα Ζ) ήταν υπό γωνία (Σχήμα 3.52) και το λογισμικό EarthImager3D δεν ήταν να δυνατό να κάνει την αντιστροφή. Έτσι αντιμετωπίστηκε το πρόβλημα με τον μετασχηματισμό των συντεταγμένων κατά γωνία 51.38° (0.89675 rad), (Σχήμα 3.53). Οι τύποι που χρησιμοποιήθηκαν ήταν οι εξής (Αγιουτάντης, 2002):

$$X' = x\cos\theta + y\sin\theta \tag{3.1}$$

$$Y' = y\cos\theta - x\sin\theta \tag{3.2}$$

Σχήμα 3.52: Αρχικές συντεταγμένες των γραμμών μελέτης (ΕΓΣΑ '87).

Σχήμα 3.53: Απεικόνιση των γραμμών μελέτης μετά από στροφή των συντεταγμένων υπό γωνιά 51.38° (0.89675 rad)

2) Λόγω του μεγάλου αριθμού των ψηφίων (7 ψηφία) που απαρτίζουν τις συντεταγμένες (μετά από στροφή) της περιοχής μελέτης έκανε αδύνατη την εκτέλεση της διαδικασίας της τρισδιάστατης αντιστροφής με αποτέλεσμα να γίνει αναγκαστική αφαίρεση των σταθερών ψηφίων (τα πρώτα ψηφία που δεν αλλάζουν). Τα σταθερά ψηφία που αποκόπηκαν ήταν από τον X:344 και από τον Y:1939.

3) Για να απεικονιστεί με ακρίβεια το γεωηλεκτρικό μοντέλο έγινε προσπάθεια να εισαχθούν οι άξονες X,Y,Z με ακρίβεια 2 δεκαδικών, πράγμα όμως που κατέστη αδύνατο από το λογισμικό EarthImager3D. Τελικά η τρισδιάστατη αντιστροφή πραγματοποιήθηκε με ακρίβεια στους X, Y άξονες σε ακέραιο αριθμό (μετά από στρογγυλοποίηση) και ο άξονας Z με ένα δεκαδικό.

Πιο κάτω παρατίθενται τα αποτελέσματα της τρισδιάστατης αντιστροφής της φαινόμενης ειδικής ηλεκτρικής αντίστασης από το λογισμικό EarthImage3D.

Apparent Resistivity Crossplot

Iteration No. 5. RMS = 7.4%. L2 = 2.2

Σχήμα 3.55: Τρισδιάστατη γεωηλεκτρικό μοντέλο όλης της περιοχής μελέτης και η χρωματική κλίμακα που αντιστοιχεί στην ειδική ηλεκτρική αντίσταση των σχηματισμών.

Z Slices of Inverted Resistivity

<u>Σχήμα 3.56:</u> Οριζόντια Τομή από τον άξονα Z στα -50m.

<u>Σχήμα 3.57:</u> Οριζόντια Τομή από τον άξονα Z στα -80m.

Y Slices of Inverted Resistivity

Σχήμα 3.58: Κάθετη Τομή από τον άξονα Υ στα 2m.

<u>Σχήμα 3.59:</u> Κάθετη Τομή από τον άξονα Y στα 70m.

X Slices of Inverted Resistivity

Σχήμα 3.60: Κάθετη Τομή από τον άξονα Χ στα 350m.

Σχήμα 3.61: Τρισδιάστατη γεωηλεκτρική απεικόνιση ισοεπιφανειών για τις αντιστάσεις 132.5 Ohm.m, 308.1 Ohm.m, 716.7 Ohm.m, 3876.6 Ohm.m, 9016 Ohm.m.

Σχήμα 3.62: Τρισδιάστατη γεωηλεκτρική απεικόνιση ισοεπιφανειών για τις αντιστάσεις 132.5 Ohm.m, 308.1 Ohm.m, 716.7 Ohm.m, 3876.6 Ohm.m, 9016 Ohm.m.

<u>ΚΕΦΑΛΑΙΟ 4</u>

4.1 ΠΕΡΙΓΡΑΦΗ ΜΕΘΟΔΟΛΟΓΙΑΣ ΣΥΣΧΕΤΙΣΗΣ ΤΩΝ ΓΕΩΤΕΧΝΙΚΩΝ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΤΩΝ ΠΕΤΡΩΜΑΤΩΝ ΜΕ ΤΙΣ ΤΙΜΕΣ ΤΗΣ ΕΙΔΙΚΗΣ ΗΛΕΚΤΡΙΚΗΣ ΑΝΤΙΣΤΑΣΗΣ

Για την ταξινόμηση των πετρωμάτων σε κατηγορίες χρησιμοποιήθηκαν τα δεδομένα των γεωτρήσεων. Η συσχέτιση των γεωτεχνικών χαρακτηριστικών των πετρωμάτων (RQD, πυκνότητα ασυνεχειών) με τις τιμές της ειδικής ηλεκτρικής αντίστασης στις αντίστοιχες θέσεις είναι προσεγγιστική αφού δεν έγινε αναλυτική/λεπτομερής στατιστική επεξεργασία και αξιολόγηση των δεδομένων.

Αρχικά, πραγματοποιήθηκε ταξινόμηση των γεωτεχνικών παραμέτρων (RQD και πυκνότητα ασυνεχειών (D/m)) και των γεωφυσικών αποτελεσμάτων (ειδική ηλεκτρική αντίσταση (RES) και σεισμική ταχύτητα (Vp)) σε 4 κατηγορίες (Πίνακα 4.1). Ακολούθως, προσδιορίστηκαν οι τιμές της ταχύτητας των Ρ-κυμάτων από την σεισμική τομογραφία και των ειδικών ηλεκτρικών αντιστάσεων από το λογισμικό EarthImager3D στις θέσεις των γεωτρήσεων. Στη συνέχεια έγινε διακριτοποίηση ανά 10m και ταξινόμηση στις διάφορες κατηγορίες Τέλος προσδιορίστηκαν τα πλήθη και τα ποσοστά ανά ζεύγος παραμέτρων (ΠΥΚΝΟΤΗΤΑ ΑΣΥΝΕΧΕΙΩΝ -RQD), (RES- ΠΥΚΝΟΤΗΤΑ ΑΣΥΝΕΧΕΙΩΝ).

Κατηγορία	Κατηγορία Κατηγορία 0		Κατηγορία 2	Κατηγορία 3
Ειδ. Ηλεκτρική αντίσταση 100-600 (RES) (Ωm)		601-1100	1101-2000 >2001	
Ταχύτητα Ρ- κυμάτων (Vp) (m/s)	<2800	>2800		
RQD (%)	0-40	41-100		
ΠΥΚΝΟΤΗΤΑ ΑΣΥΝΕΧΕΙΩΝ (D/m) >15		10-14	5-9 0-4	

Πίνακας 4.1: Ταξινόμηση των γεωτεχνικών και των γεωφυσικών αποτελεσμάτων σε 4 κατηγορίες

Η προσεγγιστική συσχέτιση των παραμέτρων μεταξύ τους παρατίθενται πιο κάτω.

<u>Πίνακας 4.2:</u> Πίνακας σύγκρισης της πυκνότητας ασυνεχειών (D/m) με την ποιότητα των πετρωμάτων (RQD).

	RQD 0	RQD 1		RQD 0	RQD 1
				(%)	(%)
ΠΥΚΝΟΤΗΤΑ	390	26	ΠΥΚΝΟΤΗΤΑ	20,1	1,3
ΑΣΥΝΕΧΕΙΩΝ			ΑΣΥΝΕΧΕΙΩΝ		
0			0		
ΠΥΚΝΟΤΗΤΑ	330	13	ΠΥΚΝΟΤΗΤΑ	17	0,7
ΑΣΥΝΕΧΕΙΩΝ			ΑΣΥΝΕΧΕΙΩΝ		
1			1		
ΠΥΚΝΟΤΗΤΑ	552	97	ΠΥΚΝΟΤΗΤΑ	28,4	5
ΑΣΥΝΕΧΕΙΩΝ			ΑΣΥΝΕΧΕΙΩΝ		
2			2		
ΠΥΚΝΟΤΗΤΑ	269	264	ΠΥΚΝΟΤΗΤΑ	13,9	13,6
ΑΣΥΝΕΧΕΙΩΝ			ΑΣΥΝΕΧΕΙΩΝ		
3			3		

<u>Σχήμα 4.1:</u> Διάγραμμα σύγκρισης της πυκνότητας ασυνεχειών (D/m) με την ποιότητα των πετρωμάτων (RQD).

Σχήμα 4.2: Ποσοστιαίο διάγραμμα της πυκνότητας ασυνεχειών (D/m) με την ποιότητα των πετρωμάτων (RQD). Στο διάγραμμα αυτό φαίνεται ότι στο ΠΥΚΝΟΤΗΤΑ ΑΣΥΝΕΧΕΙΩΝ 3 (λίγες ασυνέχειες) η ποιότητα των πετρωμάτων είναι καλύτερη από ότι στο ΠΥΚΝΟΤΗΤΑ ΑΣΥΝΕΧΕΙΩΝ 0, ΠΥΚΝΟΤΗΤΑ ΑΣΥΝΕΧΕΙΩΝ 1, ΠΥΚΝΟΤΗΤΑ ΑΣΥΝΕΧΕΙΩΝ 2 που οι ασυνέχειες είναι περισσότερες.

Πίνακας 4.3: Πίνακας σύγκρισης της ποιότητας των πετρωμάτων (RQD) με την ταχύτητα των P κυμάτων (Vp).

	RQD 0	RQD 1		RQD 0	RQD 1
				(%)	(%)
Vp 0	1288	282	Vp 0	66,4	14,5
Vp 1	253	118	Vp 1	13	6,1

Σχήμα 4.3: Διάγραμμα σύγκρισης της ποιότητας των πετρωμάτων (RQD) με την ταχύτητα των P κυμάτων (Vp).

Σχήμα 4.4: Ποσοστιαίο διάγραμμα της ποιότητας των πετρωμάτων (RQD) με την ταχύτητα των P κυμάτων (Vp). Στο διάγραμμα αυτό παρατηρείται ότι υπάρχει μεγάλο πλήθος τιμών των χαμηλών ταχυτήτων των P-κυμάτων (Vp 0) όταν η ποιότητα των πετρωμάτων είναι χαμηλή (RQD 0).

Πίνακας 4.4: Πίνακας σύγκρισης της ηλεκτρικής αντίστασης (RES) με την πυκνότητα ασυνεχειών (D/m).

	ΠΥΚΝΟΤΗΤΑ	ΠΥΚΝΟΤΗΤΑ	ΠΥΚΝΟΤΗΤΑ	ΠΥΚΝΟΤΗΤΑ
	ΑΣΥΝΕΧΕΙΩΝ	ΑΣΥΝΕΧΕΙΩΝ	ΑΣΥΝΕΧΕΙΩΝ	ΑΣΥΝΕΧΕΙΩΝ
	0	1	2	3
RES 0	202	179	170	69
RES 1	37	54	95	127
RES 2	89	42	178	53
RES 3	7	24	119	157

Σχήμα 4.5: Διάγραμμα σύγκρισης της ηλεκτρικής αντίστασης (RES) με την πυκνότητα ασυνεχειών (D/m). Στο διάγραμμα αυτό φαίνεται ότι οι ηλεκτρικές αντιστάσεις από 100-600 Ohm.m (RES 0) και 1100-2000 Ohm.m (RES2) έχουν μια τάση το πλήθος τιμών τους να μικραίνει όσο μικραίνουν οι ασυνέχειες ενώ αντιθέτως οι ηλεκτρικές αντιστάσεις από 600-1100 Ohm.m (RES 1) και >2000 Ohm.m (RES4) έχουν μια τάση το πλήθος τιμών τους να μεγαλώνει όσο μικραίνουν οι ασυνέχειες.

Πίνακας 4.5: Ποσοστιαίος πίνακας της ηλεκτρικής αντίστασης (RES) με την απόστασης ασυνεχειών (MAX).

	ΠΥΚΝΟΤΗΤΑ	ΠΥΚΝΟΤΗΤΑ	ΠΥΚΝΟΤΗΤΑ	ΠΥΚΝΟΤΗΤΑ
	ΑΣΥΝΕΧΕΙΩΝ	ΑΣΥΝΕΧΕΙΩΝ	ΑΣΥΝΕΧΕΙΩΝ	ΑΣΥΝΕΧΕΙΩΝ
	0	1	2	3
RES 0 (%)	12,6	11,2	10,6	4,3
RES 1 (%)	2,3	3,4	5,9	7,9
RES 2 (%)	5,5	2,6	11,1	3,3
RES 3 (%)	0,4	1,5	7,4	9,8

<u>Σχήμα 4.6:</u> Ποσοστιαίο διάγραμμα της ηλεκτρικής αντίστασης (RES) με την πυκνότητα ασυνεχειών (D/m). Στο διάγραμμα αυτό φαίνεται ότι οι ηλεκτρικές αντιστάσεις από 100-600 Ohm.m (RES 0) και 1100-2000 Ohm.m (RES2) μικραίνει το πλήθος τιμών τους όσο μικραίνουν οι ασυνέχειες ενώ αντιθέτως οι ηλεκτρικές αντιστάσεις από 600-1100 Ohm.m (RES 1) και >2000 Ohm.m (RES4) μεγαλώνει το πλήθος τιμών τους όσο μικραίνουν οι ασυνέχειες.

Από την σύγκριση των γεωτεχνικών παραμέτρων μεταξύ τους προέκυψε ότι οι παράμετροι που σχετίζονται μεταξύ τους καλύτερα είναι η ηλεκτρική αντίσταση (RES) και οι πυκνότητες ασυνεχειών (D/m). Οι ηλεκτρικές αντιστάσεις από 100-600 Ohm.m (RES 0) και 1100-2000 Ohm.m (RES2) έχουν μια τάση το πλήθος τιμών τους να μικραίνει όσο μικραίνουν οι πυκνότητες ασυνεχειών ενώ αντιθέτως οι ηλεκτρικές αντιστάσεις από 600-1100 Ohm.m (RES 1) και >2000 Ohm.m (RES4) έχουν μια τάση το πλήθος τιμών τους να μεγαλώνει όσο μικραίνουν οι πυκνότητες ασυνεχειών.

4.2 ΤΡΙΣΔΙΑΣΤΑΤΗ ΑΠΕΙΚΟΝΙΣΗ ΤΩΝ ΔΕΔΟΜΕΝΩΝ ΜΕ ΒΑΣΗ ΤΗΝ ΤΑΞΙΝΟΜΗΣΗ ΜΕ ΤΟ ΛΟΓΙΣΜΙΚΟ EarthImager3D

Με βάση την ταξινόμηση που πραγματοποιήθηκε στο Κεφάλαιο 4.1 και με βάση τις όποιες συσχετίσεις έχουν γίνει ή όχι (μεταξύ των τιμών της ειδικής ηλεκτρικής αντίστασης και των γεωτεχνικών παραμέτρων) προέκυψαν τα Σχήματα 4.7 έως 4.11. Στα σχήματα αυτά απεικονίζονται οι ισοεπιφάνειες των τιμών της ειδικής ηλεκτρικής αντίστασης που σύμφωνα με τα πιο πάνω θεωρήθηκε ότι υπάρχει πιθανότητα να βρίσκονται ασυνέχιες ανάλογα με την κατηγορία στην οποία βρίσκονται (Σχήμα 4.6).

Σχήμα 4.7: Τρισδιάστατη απεικόνιση των ισοεπιφανειών από 132 Ohm.m – 540 Ohm.m

Σχήμα 4.8: Τρισδιάστατη απεικόνιση των ισοεπιφανειών από 132 Ohm.m – 540 Ohm.m

Σχήμα 4.9: Τρισδιάστατη απεικόνιση των ισοεπιφανειών από 717 Ohm.m – 1258 Ohm.m

Σχήμα 4.10: Τρισδιάστατη απεικόνιση των ισοεπιφανειών από 1666 Ohm.m – 2208 Ohm.m

Σχήμα 4.11: Τρισδιάστατη απεικόνιση των ισοεπιφανειών από 2900 Ohm.m – 9000 Ohm.m

4.3 ΤΡΙΣΔΙΑΣΤΑΤΗ ΑΠΕΙΚΟΝΙΣΗ ΤΩΝ ΔΕΔΟΜΕΝΩΝ ΜΕ ΒΑΣΗ ΤΗΝ ΤΑΞΙΝΟΜΗΣΗ ΜΕ ΤΟ ΛΟΓΙΣΜΙΚΟ Τ3D

Το λογισμικό T3D επιτρέπει στο χρήστη μια γρήγορη και αποτελεσματική προβολή τρισδιάστατων δεδομένων με πολλούς διαφορετικούς τρόπους, συμπεριλαμβανομένης της δυνατότητας δημιουργίας τομών στην τρισδιάστατη απεικόνιση. Χρησιμοποιήθηκε το συγκεκριμένο λογισμικό για την παρουσίαση των τρισδιάστατων αποτελεσμάτων του λογισμικού EarthImager3D για τους εξής λόγους:

- Έχει την δυνατότητα να αφαιρεί τμήματα του όγκου όπου δεν υπάρχουν χρήσιμα δεδομένα ή δεδομένα που δεν είναι επιθυμητό να φαίνονται στην τρισδιάστατη προβολή.
- Έχει την δυνατότητα να εισαχθούν οι κατηγορίες πετρωμάτων που αναφέρθηκαν στα πιο πάνω κεφάλαια στην τρισδιάστατη απεικόνιση ανάλογα με της ηλεκτρικές αντιστάσεις της κάθε κατηγορίας.

Πιο κάτω παρατίθενται οι τρισδιάστατες απεικονίσεις από το λογισμικό T3D:

Σχήμα 4.12: Τρισδιάστατη απεικόνιση του όγκου των τιμών της ηλεκτρικής αντίστασης από 100 Ohm.m μέχρι 10000 Ohm.m.

Σχήμα 4.13: Τρισδιάστατη απεικόνιση του όγκου των τιμών της ηλεκτρικής αντίστασης από 603 Ohm.m μέχρι 10000 Ohm.m δηλαδή τις κατηγορίες 1 έως 4.

Σχήμα 4.14: Τρισδιάστατη απεικόνιση του όγκου των τιμών της ηλεκτρικής αντίστασης από 1100 Ohm.m μέχρι 10000 Ohm.m δηλαδή τις κατηγορίες 2 έως 4.

Σχήμα 4.15: Τρισδιάστατη απεικόνιση του όγκου των τιμών της ηλεκτρικής αντίστασης από 1995 Ohm.m μέχρι 10000 Ohm.m δηλαδή την κατηγορία 4.

Σχήμα 4.16: Τομές (Z=68m, Y=97.5m) της τρισδιάστατη απεικόνιση των τιμών της ηλεκτρικής αντίστασης από 100 Ohm.m μέχρι 10000 Ohm.m.

<u>ΚΕΦΑΛΑΙΟ 5</u>

ΣΥΜΠΕΡΑΣΜΑΤΑ - ΠΡΟΤΑΣΕΙΣ

Η σύγκριση των αποτελεσμάτων των δισδιάστατων γεωηλεκτρικών μοντέλων από τα λογισμικά Res2dinv και EarthImager2D δεν είχε την αναμενόμενη συσχέτιση που ενδεχομένως να είχαν τα δυο λογισμικά αν αντιστοιχούσαν ακριβώς στα ίδια βάθη στις γεωτρήσεις. Αυτό είναι ένα συνήθες φαινόμενο όταν γίνεται σύγκριση δυο γεωηλεκτρικών μοντέλων λόγω του ότι επεξεργάζεται διαφορετικά τα δεδομένα το κάθε λογισμικό.

Στην προκαταρτική συσχέτιση των γεωφυσικών δεδομένων με τα γεωτρητικά δεδομένα προέκυψε ότι οι σεισμική ταχύτητα των Ρ-κυμάτων δεν φαίνεται να σχετίζεται με τοπικές μεταβολές στην ποιότητα των ανθρακικών πετρωμάτων ενώ αντίθετα, η ειδική ηλεκτρική αντίσταση φαίνεται να επηρεάζεται από την ύπαρξη μεγάλων τιμών της πυκνότητας ασυνεχειών. Δηλαδή όσο πιο αποσαθρωμένος/κατακερματισμένος/με ασυνέχειες πληρωμένες με εδαφικό υλικό, είναι το πέτρωμα τόσο περισσότερο παρουσιάζει χαμηλές τιμές της ειδικής ηλεκτρικής αντίστασης και όσο πιο συμπαγές είναι το πέτρωμα, τόσο περισσότερο υψηλές τιμές της ειδικής ηλεκτρικής αντίστασης κανίστασης παρουσιάζει.

Η μεθοδολογία που ακολουθήθηκε για την επεξεργασία των τρισδιάστατων γεωηλεκτρικών δεδομένων αντιμετωπίστηκαν σημαντικά λειτουργικά προβλήματα που οφείλονται κυρίως στο γεγονός της ακανόνιστης κατανομής των γεωηλεκτρικών γραμμών μελέτης στο χώρο. Αυτό είχε και ως συνέπεια την υποβάθμιση των τελικών αποτελεσμάτων, κυρίως στις θέσεις όπου δεν υπήρχε ικανοποιητική κάλυψη από δεδομένα. Θα πρέπει να σημειωθεί ότι στην παρούσα διπλωματική έχει πραγματοποιηθεί μια προσεγγιστική στατιστική ανάλυση μεταξύ των γεωφυσικών και γεωτεχνικών δεδομένων και όχι μια ενδελεχής μελέτη συσχέτισης των παραμέτρων αυτών. Ο σκοπός της μεθοδολογίας αυτής ήταν η κατηγοριοποίηση σε κατηγορίες πετρωμάτων, τα ποσοτικοποιημένα δεδομένα της ηλεκτρικής αντίστασης. Η μεθοδολογία αυτή θα είχε πιο αξιόπιστα αποτελέσματα αν είχε γίνει μια πιο εις βάθος, ολοκληρωμένη στατιστική μελέτη και η ταξινόμηση των πετρωμάτων πιο αξιόπιστη.

Τέλος από την όλη μελέτη και επεξεργασία των δεδομένων και των λογισμικών που εφαρμόστηκαν στην παρούσα διπλωματική προτείνεται ότι για να είναι εφικτή αλλά και αξιόπιστη η τρισδιάστατη αντιστροφή με το λογισμικό πακέτο EarthImager3D θα πρέπει τα γεωηλεκτρικά δεδομένα να δειγματοληπτούνται σε κανονικό κάναβο. Επιπρόσθετα, για τον προσδιορισμό της κατανομής των γεωτεχνικών χαρακτηριστικών των πετρωμάτων που προέρχονται από τις γεωτρήσεις σε όλη την έκταση της γεωφυσικής διασκόπησης θα πρέπει να υλοποιηθεί μια λεπτομερής στατιστική συσχέτιση των δεδομένων αυτών έτσι ώστε τα αποτελέσματα να είναι αξιόπιστα και αξιοποιήσιμα.

<u>ΒΙΒΛΙΟΓΡΑΦΙΑ</u>

<u>ΕΛΛΗΝΙΚΗ ΒΙΒΛΙΟΓΡΑΦΙΑ</u>

- 1. Αγιουτάντης, Γ. Ζ., 2002, «Στοιχεία Γεωμηχανικής Μηχανική Πετρωμάτων», Εκδόσεις Ίων, Αθήνα, ISBN: 960-411-213-9.
- Αντωνακόπουλος, Μ., (2010), «Ανάλυση Υβριδικού Συστήματος Παραγωγής Ηλεκτρικής Ενέργειας που συνδυάζει ΑΠΕ και Τεχνολογίες Υδρογόνου», Διπλωματική Εργασία, Εθνικό Μετσόβιο Πολυτεχνείο, Αθήνα.
- 3. **Βαφείδης, Α., (1993),** «Εφαρμοσμένη Γεωφυσική Ι», Πανεπιστημιακές Παραδόσεις, Πολυτεχνείο Κρήτης, Χανιά.
- 4. **Βαφείδης, Α., (2001),** «Εφαρμοσμένη Γεωφυσική ΙΙ», Πανεπιστημιακές Παραδόσεις, Πολυτεχνείο Κρήτης, Χανιά.
- 5. **Βλαχοδημητρόπουλος, Α., Παρασχούδης, Π., (2010),** «Σεισμική και ηλεκτρική τομογραφία στο όρος Κλόκοβα Αιτωλοακαρνανίας», Διπλωματική Εργασία, Πολυτεχνείο Κρήτης, Χανιά.
- 6. Γιαλαμάς, Ε., (2005), «Συμβολή των Γεωφυσικώς Μεθόδων Σεισμικής Διάθλασης και Ηλεκτρικής Τομογραφίας στην Ολοκλήρωση της Μελέτης Κατασκευής της Λιμνοδεξαμενής Κουντούρας Χανίων», Διπλωματική Εργασία, Πολυτεχνείο Κρήτης, Χανιά.
- 7. **Γκανιάτσος, Ι., (2000),** «Γεωηλεκτρική Τομογραφία σε τρεις Διαστάσεις», Μεταπτυχιακή Διατριβή, Πολυτεχνείο Κρήτης, Χανιά.
- Καπλανίδης, Α., Μορφόπουλος, Ζ., Παπαγιάννη, Ν., Περγαλιώτης, Π., Σώκος, Ε., Χασιώτης Θ., (2003), «Τα φράγματα και οι Λιμνοδεξαμενές Του Υπουργείου Γεωργίας».
- Καρταλίδης, Α., (2011), «Σχεδιασμός Υβριδικού Συστήματος Παραγωγής Ενέργειας από ΑΠΕ για την Κάλυψη Αναγκών Ηλεκτρικής Ενέργειας και Νερού με Αφαλάτωση», Διπλωματική Εργασία, Εθνικό Μετσόβιο Πολυτεχνείο – Πανεπιστήμιο Πειραιά, Αθήνα.
- Παγκράτης, Π., (2012), «Συμβολή της Τρισδιάστατης Ηλεκτρικής Τομογραφίας και της Ανάλυσης των Επιφανειακών Κυμάτων στον Σχεδιασμό Λιμνοδεξαμενής στο Οροπέδιο του Ομαλού Χανίων», Διπλωματική Εργασία, Πολυτεχνείο Κρήτης, Χανιά.
- 11. **Παπαζάχος, Β., (1986),** «Εισαγωγή στην Εφαρμοσμένη Γεωφυσική», Εκδόσεις «Ζήτη», Θεσσαλονίκη.

- 12. Παπαθανασίου, Χ., (2007), «Γεωφυσική Έρευνα με τη Μέθοδο της Σεισμικής Τομογραφίας στο Μόχο Ηρακλείου», Διπλωματική Εργασία, Πολυτεχνείο Κρήτης, Χανιά.
- 13. Ραπτάκης, Δ., (1995), «Συμβολή στον Προσδιορισμό της Γεωμετρίας και των Δυναμικών Ιδιοτήτων των Εδαφικών Σχηματισμών και στη Σεισμική Απόκριση τους», Διδακτορική διατριβή, Αριστοτέλειο Πανεπιστήμιο, Θεσσαλονίκη.
- 14. Σκούρας, Γ., (2010), «Συμβολή της Σεισμικής και Ηλεκτρικής Τομογραφίας στον Σχεδιασμό Λιμνοδεξαμενής στο Οροπέδιο του Ομαλού Χανίων», Διπλωματική Εργασία, Πολυτεχνείο Κρήτης, Χανιά.
- 15. **Σούρλας, Γ., (2000),** «Συμβολή της Γεωφυσικής Διασκόπησης στην Αναζήτηση Θαμμένων Αρχαιοτήτων στην Ιτανο, Λασιθίου», Μεταπτυχιακή Διατριβή, Πολυτεχνείο Κρήτης, Χανιά.

ΔΙΕΘΝΗΣ ΒΙΒΛΙΟΓΡΑΦΙΑ

- 16. Andreas A Pfaffhuber*, Sara Bazin, Ulrik Domaas, Eystein Grimstad (NGI), (2011), « Electrical Resistivity Tomography to follow up an airborne EM rock slide mapping survey – Linking rock quality with resistivity.»
- 17. A. El-Naqa, (1996), «Assessment of geomechanical characterization of a rock mass using a seismic geophysical technique»
- 18. Andy A. Bery, Rosli Saad, (2012), «Correlation of Seismic P-Wave Velocities with Engineering Parameters (N Value and Rock Quality) for Tropical Environmental Study»
- 19. deGroot-Hedlin, C. and Constable, S., (1990), «Occam's inversion to generate smooth, twodimensional models form magnetotelluric data. Geophysics», 55, 1613-1624.
- 20. Griffiths D.H. and Barker R.D.,(1993), «Two-dimensional resistivity imaging and modelling in areas of complex geology», Journal of Applied Geophysics, 29, 211-226.
- 21. Loke M.H. and Barker R.D.,(1996), Rapid least-squares inversion of apparent resistivity pseudosections using a quasi-Newton method. Geophysical Prospecting, 44, 131-152.
- 22. Manual EarthImager 3D Version 1.5.3,2008
- 23. **Reynolds, M. J., (1997)**, «An Introduction To Applied And Environmental Geophysics», John Wiley & Sons Ltd, Chichester, ISBN 0-471-95555-8.

- 24. Robinson, E. S. & Coruh, C., (1988), «Basic Exploration Geophysics», New York: John Wiley.Sheriff, R. E., Geldart, L. P., (1995), «Exploration Seismology», 2nd Edition, Cambridge University Press, ISBN 0-521-46282-7.
- 25. SeisImager2D[™] Manual Version 3.1, (2005)
- 26. Vafidis et al., 2012 Technical Univercity of Crete, Department of Mineral Resources Engineering, Laboratory of Applied Geophysics, (2012) «Geophysical Survey at, Crete, Greece for the Foundation of Two Water Reservoirs », Technical Report
- 27. Vafidis A., Andronikidis N., Hamdan H., Kritikakis G., Economou N., Panagopoulos G., Zanettidis S., Merziotis D., Pateras S., Nikoforakis E. and Blais J.P., (2013), « Rock Characterization for the Foundation of Two Water Reservoirs Using Geophysical and Borehole Data »

ΙΣΤΙΟΣΕΛΙΔΕΣ

- 28. https://www.agiusa.com/agi2dimg.shtml
- 29. https://www.agiusa.com/earthimager3d.shtml

ΠΑΡΑΡΤΗΜΑΤΑ

ПАРАРТНМА А

ΕΠΙΤΟΠΟΥ ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΓΕΩΤΡΗΣΕΩΝ

MCD1

PROJECT : EPFO : CONTRACTO ANAAOXOX	MALIA HY					ΓΕΩΤΙ ΘΕΣΗ ΥΨΟΝ ΗΜ. Ε ΗΜ. Λ	EXTIMEN (SIGENOLE) : MOLO I ΘΕΧΗ ή Χ.Θ. (LOCATX.U.): MALIA ΨΨΟΜΕΤΡΟ (ALTTUDE) : ΗΜ. ΕΝΑΡΞΗΣ (START. DATE): OT(O3/49 ΗΜ. ΛΗΞΗΣ (END. DATE) :477/03/11					12
BABOZ - DEPTH (m) AEITMA - SAMPLE	ΠΕΡΙΓΡΑΦΗ ΔΕΙΓΜΑΤΟΣ - Β	DETAILED DESCRIPTION	SPT (Kpoiessc/15cm) SPT (Blows/15cm)	Türreç - Tiga	Value (gorwaynewether book figerwaynewether book	Maniarrust Englands	Andermont (1-5) & D/M	vetraitori C. Solosi C. S	ATTOEADPOSH	R.Q.D. (%)	010 TEM'R TROCA	EAGOX - DEFTH (m)
$\begin{array}{c cccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 10 & 11 & 12 & 13 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 10 & 11 & 12 & 13 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 10 & 11 & 12 & 13 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 10 & 11 & 12 & 13 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 10 & 11 & 12 & 13 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 10 & 11 & 12 & 13 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 10 & 11 & 12 & 13 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 3400 & $	CLANEY SAND, dark brain sond, C. M. Gravels, C. P. on of elinectone consistency. MAND Light brain costaur privately of cirr. sand, m. LIALESTONS, light to Gat places) complete medium to complete medium to complete Joints, planar to r medium rough to ray closely spaced, modera The formation as zones, which are describ at 9,40-2,70 the format converted to sand, light At 9,40-2,70 the format converted to sand, light At 9,40-2,70 the format converted to sand fight At 1,40-1,700 the format converted to residual At 1,40-1,60 the format and complete to residual At 1,20-1,200 the format and the sand fight brave sand relight brave complete angular of limestone com At 12,40-13,50 the format angular of limestone com At 12,40-13,50 the form sand fight brave com At 12,40-13,50 the form angular of limestone com At 12,40-13,60 the form angular of limestone com At 12,40-13,60 the form angular of limestone com At 12,60-31,90, the form to sand, c-0, light for angular of limestone com At 19,70-10,00, it is come at 19,50-30,10, it is come and presence of clay with to so-30,00-30,10, it is com breacher come to sand complexity with the sand anonone population of the to sand complexity with the ti analy complexity with the to sand complexity with the sand anonone to be and as the the sand anonone to be and as the the analy combine to sand code and anonone to be and as the the sand anonone to be and as the form the sand anonone to be and as the format the sand anone to be and as the form the sand anono	and at the depths: and at the depths: guar to subargular, guar to subargular, group colour, fresh ^{2,10} ely usathered, ilou- ely fractured. (at places) stepped, in, medium to ately wide to narrow please abration ed thoroughly bellow: ion (linestone) is brann colour, c.m. d to sand with clay colour and gravels, of emerical to colour and gravels, of emerical to colour and gravels, of emerical to soil. attan is converted to c.f. is converted to colour, m-f. metion is converted to and colour, m-f. metion is converted to and colour, m-f. metion is converted to and colour, m-f. metion is converted. and at the depths: a sand at the		T T T T T T T T T T T T T T T T T T T	The	AEAE AE AE AE A	6-71-4 300 9-3-1-1 4-12-01 12-	BAGE SEE ST D B B C B B B B B B B B B B B B B B B B		15 75 58 96 54 0 13 0 0 12 0 10 10 10 10 10 10 10 10 10 10 10 10 1		
ADOKTAZES AXTHEORICI Specing of jot	1. Πολύ μεγάλη - Veryn Jie > 2.0 m 2. Μεγάλη - wide 0.8 m - 2.0 m 3. Μάοι - Medium 0.2 m - 0.0 m 4. Μαρή - Close 0.08 m - 0.2 m 6. Πολύ μερή - Veryclosa < 0.08 m	00-11m.) (1-5/m.)- (6-18/m.) (6-18/m.) (6-18/m.) (6-18/m.)	KATALTAL EITIOANSIC Jointa Surfa	C: D: F: G:	Λεία κομη Στιλβιλμέ Τροχειά, ι Λεία επίπ Στιλβιωμό	លេងសូមទីហា ហ្មា, អាយុមា នៅកានចិត្ នៅក្នុង Sim ហ្មា នាក់ពន	i - Smooli ukoµtvi - Rough, p iooth, Plai õg - Strip	standular Söcken stanar nar ensilded	sig sided, ur planer	dulating		

Επιτόπου χαρακτηρισμός γεώτρησης MCD1 – Α.

PROJECT : EPFO :	MALIA HYBRID SYSTEM			ГЕОТРНИН (BOREHCLE) : MCD-4 0622H () X.O. (LOCATX.U.): MALIA YWOMETPO (ALTITUDE) : HM ENADEHS (CTART. DATE): OF KO3 H 9.							
ANALOXO	OR: ENGLANCE SUPERIAL CONSTRUCTION Loss			HM. ENAPEHΣ (ST/ HM. AHEHΣ (END.	RT. DATE):07103119 DATE) :14103119						
EABOE - DEPTH (m) AETMA - SAMPLE	ΠΕΡΙΓΡΑΦΗ ΔΕΙΓΜΑΤΟΣ - DETAILED DESCRIPTION	SPT (Kpolvenc/15cm) SPT (Klows/15cm)	AEYN Jacurd Sharongon and A	Partial actions of the second strategy of the	ATRATAGEN WEATHERING R.Q.D. (%) TULGUITROOSI VXO- FUMLUNIL (m) RAOOZ - DEFTH (m)						
21 ▲ 22 ▲ 23 24,40 24 24,40 25 ▲ 26 ▲ 27 ▲ 28 24,40 29 ▲ 30,960 ▲ 31 30,900 32 ▲ 33 ▲ 34 34,400 35 ▲ 36 35,50 38 39	LIMESTONE, Light gray colour, frest to (at philes) completely wathered, law-medium to completely fractured, as above. The formation is completely fractured at the depths; 530-5.60/4240 13,40/4800-19:70/20,50-21,40/92,10-22,604 Presence of karstic voids at the depths: 24,10-94,50/25,40-28,20/ 28,80-29,30 M. Diagenetic - limestone appears at the depths: 4,10-5,50/12,80-13,10/20,60-24,20/ 22,30-29,60/93,70-24,20/23,00-32,10 m. The formation (limestone) appears Varstification at the depth 34,90-35,20 m. Saso ENO OF BOREHOLE AT 35,50M.			$E \xrightarrow{6^{-1}}_{12340} \xrightarrow{6^{\circ}}_{12340} \xrightarrow{6^{\circ}}_{12340} \xrightarrow{6^{\circ}}_{12340} \xrightarrow{6^{\circ}}_{12340} \xrightarrow{6^{\circ}}_{12340} \xrightarrow{6^{\circ}}_{12340} \xrightarrow{6^{\circ}}_{12340} \xrightarrow{6^{\circ}}_{12340} \xrightarrow{6^{\circ}}_{12340} \xrightarrow{7^{\circ}}_{12340} \xrightarrow$	6 21 19 22 19 22 23 24 24 25 26 27 26 27 26 27 28 27 28 27 28 27 28 30 11 29 30 17 80 67 29 30 33 17 80 33 19 17 33 35 35 35 39 39						
40	ΥΠΟΜΝΗΜΑ ΑΣΥΝΕΧΕΙΩΝ - LEGER	D OF JO	INTS		40						
YARKO TAHPOZHIZ Piliting material	Threas - Nothing II: Applies Advante, development - Clay nested, swelling 5 Zokaping, Tokac, - Claste, Tate Appending - Catala X Sologing - Catala I: Xologing - Catala I: Applies and an application of the second sweeth, material I: Octors - Codes I: Octors - Oxides Mutareling - Medicine	TYDOE ACT/NEDCEION Type of joints	 В: Στριώση J: -Διάρρη Φιάκλια δ: Σχιστότι δ: Σχιστότι δ: Ρήγμα - Ο: Άλλιος - 	η - Layudag Iğη - Wide opu - Disclasis opu - Schhlosify - Fosit Other							
ATTOCTATED ACTINECEDN Specing of Joints 9 A to to a to	Note uprizin - Very wide > 2.0 m (Dim.) Negriting - Wide 0.6 m - 2.0 m (Dim.) Mice, Neticitim 0.2 m - 0.6 m (1-6 m.) (1-6 m.) Mice, Neticitim 0.2 m - 0.8 m (1-6 m.) (1-6 m.) Mice, Neticitim 0.4 m - 0.2 m (1-6 m.) (1-6 m.) Mice, Neticitim 0.4 m - 0.2 m (1-6 m.) (1-6 m.) Mice, Neticitim 0.4 m - 0.0 m (1-6 m.) (1-6 m.)	KATAETA2H EITIPANEON Jointa Surface	 Ατυκού Βι Τραχρά C: Λεία και D: Στιβραμ Ε: Τραχρά F: Λεία επί G: Στιβραμ 	ής - (Xiscontinuou) 1 ή απόφαλη εεμπινίοψηνη - R μπελομίνη - Simooth undulati δίνη, εεμπινίομίνη - Sitclems 4, επίπεδη - Rough, planar Intőη - Simooth, Flanar ulan, amineðη - Sincemiédad p	ough or iragular ag Hed, undukting lanar						

Επιτόπου χαρακτηρισμός γεώτρησης MCD1 - B.

MCD2

PROJECT : EPFO : CONTRACT ANAAOXOE	DR:]		ΓΕΩΤ ΘΕΣΗ ΥΨΟΜ ΗΜ. Ε ΗΜ. Λ	Phyth (1 x.g. 1etpo (Napeh) Henx (BOREH (LOCAT ALTITL (STAF END, D	ole) IX.U. JDE) RT. DAT ATE)	: Mc : H : : : : : : : : : : : : : : : : : :	CD-2 (ALIA 1102/12 12/03/12				
OX - DEPTH (m)	ΠΕΡΙΓΡΑΦΗ ΔΕΙΓΜΑΤΟΣ - DETAILED DESCRIPTION	(Kpolone/15cm) T (Blows/15cm)	Türse,- Type	AZYNEX Ulicang/scond.ye	Surface Surface	JOIN (J-8) 4 (Sim	rs unsaturi - C ta	APPERTING	R.Q.D. (%)	TENAL U.W.L. (m)	(m) HLL430 - 3000			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	SAUDY CLAY, dark brown to red brown colour and GRANELS. CLAY, plastic, very stiff to hard. SHAVELS, E-f, angular, of limestone consister LIMESTONE, light gray colour, fresh to slightly weathered, slightly to highly fractured. Joints, planar to undulating at places, medium rough to rough, medium to very close, open to narrow, with an inclination of 0°-10°, 70°, 90° and 20°. Presence of warshic voids at the depths: 800-8,60m and 13,00-17,40m. Presence of clay red-brown colour with sand at the depths: 7,90-800/ 860-8,80/9,10-9,40/12,40-12,80/44,90-151 16,70-17,00/18,70-19,00 and 20,40-29,90 The formation is completely fracture at: 2,40-44,10/15,90-16,60/24,10-24,130/ 23,60-23,70 and 24,10-25,00m. Diagenetic limestone appears at the depths: 400-460/51,80-760/18,00-18,20 and 24,40-23,70m.	и <u>В</u> ,20,324 <u>В</u> ,20,324 (1) (1) (1) (1) (1) (1) (1) (1)	2 2 2 2 2 2 2		B BUB E E A E B E E A	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	は、3 部 え、ま 8 の際の時間 0、 9、 9、 8008 23 55 45 30	W1 - W2	0 41 62 36 50 56 8 46 92 10 56 31 40		2 2 3 4 5 7 8 9 10 11 12 13 14 15 16 17 18 19 20			
YAKO TANPUDIK Filing material	 Timore - Notking Hill: Novikor, Abpentic, Janveskoupu, - Clay neutral, swelling Washer, Takay, - Conte, Take Xashering, - Casta <	TYTIOE AZTNESCEDN Type of joins	盤 上 む ま た の	Στρώση Δτόρρηξ Δτόκλοστ Σχιστότη Ράγμα - Τλλίος - Ο	- Leyerin In - Wilde In - Diacis Int - Schi Fault Other	9 sola stocky								
ADOETASEIS ALYNEDGEDN Sposing of joints	1. Thokb usyddan - Very wideo > 2.0 m 2. Micyddan - wide 0.08 m - 2.0 m 3. Micyddan - wide 0.08 m - 2.0 m 3. Micyddan - Wery and 0.2 m - 0.8 m 4. Micydan - (160a 0.008 m - 0.2 m) 5. Thokb usyrigh - Very close < 0.08 m	KATAETAEH EFIII¢ANEION Joint's Surface	ABCDEFG:	Λσυντχή Τραχειά Λτία καμ Στάβουμί Τραχειά, Λιία επίτ Στιάβουμί	rg - Diaco n oval po mukopitv tvn, kopi antračn ančoj - St tvn anim	ηστουs λη χημπυ η - Βποο πυλομένη - Rough, reath, Pic tãn - Sốn	Acyalong - In undule - Silcker planor planor planor planor planor	Rough o ding saided, u planar	r imeguto ndulating	r -				

Επιτόπου χαρακτηρισμός γεώτρησης MCD2 – Α.

EPF CON	VTRACT	MALIA HYBRID SYSTEM OEEH & X.O. (LOCATX.U.): MALVA YWOMETPO (ALTITUDE) : YWOMETPO (ALTITUDE) : TOR: HM. ENAPEHE (START. DATE): 2410-219. X: MALIA HYBRID SYSTEM MALIA HYBRID SYSTEM HM. ENAPEHE (START. DATE): 2410-219. MALIA HYBRID SYSTEM HM. AMEHE (END. DATE) : 0910319.								GEEH ή X.O. (LOCATX.U.): ΜΑLΛ ΥΨΟΜΕΤΡΟ (ALTITUDE) : ΗΜ. ΕΝΑΡΞΗΣ (START, DATE): 2/10/2 ΗΜ. ΑΜΕΗΣ (END. DATE) : 0/2101				
(m) HT4302-308AR	AEC'NA - SAMPLE	ΠΕΡΙΓΡΑΦΗ ΔΕΙΓΜΑΤΟΧ - DETAILED DESCRIPTION	SPT (Kpolorus/15cm) SPT (Rlous/15cm)	Tatage - Type	Vanh rhipuangohrnogi Fittug materia	Vinteration (International International Int	Andersons (1-6) 4 Dim Spooling (D/m)	TS NOTIFIER - C. LANK	MIDIMOPOIN	R.Q.D. (%)	- GA'A INIGHT TRAILI			
21 22 23 24 25 26 27 28 29 30 31 32 33 33 34 35 35 36 37 33 38 39	20,50 21,40 23,40 23,60 23,60 23,60	LINESTONE, as above. (RSC END OF BOREHOLE AT 25,00m	ka),	5 5	II M	E A B E	20,000 715/4 9552 12-45 2292 715/4 9560	55 94 94 74 74 74 74 74 74 74 74 74 74 74 74 74	5M1 - 1M1	018011	24. (C203(2012)			
40 SHADGHYD OWNA	Filing matorial	YITOMNHMA AXYNEXEIGN - LEGE It Timoro - Nothing It Timoro - Nothing It Timoro - Nothing It Timoro - Nothing Moderning - Caloto - Telk Yit Anderning - Caloto Wit Anderning - Caloto Wit: Optime - Caloto Wit: Optime - Caloto Wit: Optime - Caloto	ND OF JO NOTED CHARLEN	INTS a: A b: b: F: o: A:	Στρώση - Διάρηξι Διάκλοια Σχιστιάτη Ρήγμα - Β Ρύλλος - Ο Ασυγκεί	- Layeria; g - Wilde 1 - Diaclar ra - Schle Fault Scher c - Discost	sla slasity tivulous							
ADOTTATED	AEYNEXCENN Spacing of joints	1. Dold µay@da - Vary mbbs > 2.0 m (Dim.) 2. MiryDa - votire 0.0 m - 2.0 m 3. Miryn - Mediam 0.2 m - 0.8 m 3. Miryn - Mediam 0.2 m - 0.8 m 4. Mayda - Close 0.00 m - 0.2 m 5. Dold µarph - Very close < 0.00 m	KATALTAZH EIBDANEKON Jointe Sufidee	8: C: D: E: F: G:	Τροχειά ε Λεία επμη Στυβιομέ Τροχειά, Λεία επίπ Στυβιομέ	ή αντόμειλ πολομένη νη, καμπ εκήπεδη είδη - Βιτ νη ειτίπε	n kopmul - Smool wkoptvn - Rough, p oeth, Pla dig - Silno	kojutwa - J h undulat - Slicken planer nar ansided	Rosph or Ing sidod, un planer	iregula dulating	r			

Επιτόπου χαρακτηρισμός γεώτρησης MCD2 – B.

MCD3

PROJECT : EPFO : CONTRACT	OR:				ГЕОТИЧИ (BOREHOLE) : МСЦЭ-З ВЕЗИ (J.X.G. (LOCATX.U.): МАЦ-)А УЧОМЕТРО (ALTITUDE) : НМ. ЕМАРЕНК (START. DATE): 02/03/19. НМ. АНЕНХ (END. DATE) : 06/03/19.						
ANAQOXO2	n the start ware but might - the start of th				DNL D	in the fit					
BAGOX - DEPTH (m) AEDTHA - SAMPLE	ΠΕΡΙΓΡΑΦΗ ΔΕΙΓΜΑΤΟΣ - DETAILED DESCRIPTION	SPT (Kpoietre/15cm) SPT (Hows/15cm)	Tunes - Type	View history for the first	Nationan Disporting Series	Anderson (1-6) fi D/m (mp) gradeg	Rolan (1) - Indiration	ADOEA0PSIEH WEATHERING	R.Q.D. (%)	FIMML LUNLL (m)	EABOX - DEPTH (m)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	SANDY CLAY, dark brown to red-brawn blave and GRANELS. CLAY, plastic. GRAVELS, E-f. angular to subangular, of limestome consistency. LIMESTONE, light gray colleur. Fresh to residual soil, medium to completely tractured. Joints, planax to undulating at places, medium rough to rough, medium to very closed spoced, wide to nakraw, with an inclination of 02109, 30° and 70°. The formation appears abration zones, which are at the following depths: 7, 50-8,80/9,30-41,90/13,20-44,80 15,30-15,70/16,10-18,30/18,80-19,10/ 19,410-20,00/20,30-24,70/25,40-25,60m. More detailed, the formation is converted to sand, light gray to light brown, c-m, at the following depth 7,50-8,80/9,30-41,90/13,20-44,40/15,30- 15,70/17,40-18,30/19,40-20,00/25,40-25,60m. The formation Climestone) appears highly to completely weathered at the following depths: 14,10-14,40/16,10-17,40/ 18,60-19,10/20,30-24,70m. These obstation zones are formed due to water flowing.	51		THE BEAR BEAR	E B E E B B	3-4/m 220 7-6/m 255/m 4-5/m 9-30 7-8/m 13-20 3-4/m 16-00 2-3/m	0 90 90 91 91 91 91 91 91 91 91 91 91 91 91 91	Win Sold State of the set of the	0 55 0 0 0 0 0 15 9 B 17 B 13		1 2 3 4 5 5 6 7 7 8 8 9 9 10 11 11 12 13 14 14 15 16 17 18 19 19 20
Piling material	YIIOMNHMA ASYNEXEION - LEGE I: Tissere - Noffing I:B: Zeyskog Afgewije, dirtyssikoum - Clay neutral, ewelling IV: Xupping, Téhwag - Clorite, Tell V: Anglening - Calella V: Explore on emercelloguythy outwel - Sand & weath, meterial VIII: Ogdition - Oxfolio VIII: Ogdition - Oxfolio	TYTHOIL ALTYNEDGINN ALTYNEDGINN ALTYNEDGINN	0113 01: 01: 01: 01:	Σηρώση Διάρρηξ Διάκλαοι Σχιοτότη Ρίγγια - Άλλος - Ο	- Layerin y - Wide y - Diada pa - Schil Fault Diher	9 sla slosity		4000			
ADOETAJEIS ASTNEGEICN Spacing of joints	Instantic Operation Operation 1. Πολύ μεγάλη - Vary wåle > 2.0 m (Dim.) 2. Νάχεξα, wåle > 0.6 m - 2.0 m (D-1/m.) 3. Νάξοη - Meetkam 0.2 m - 0.2 m (1-6/m.) 4. Νάχεή - Close 0.0 0 m - 0.2 m (3-16/m.) 5. Πολύ μεγή - Very close < 0.08 m	KATAETAEH ETINANDECH Jointo Surisco	A: 8: 0: 5: F: G:	 Tpogred, divulgadaj separatukojatvaj -Rough en Inregular Artis etajmulojetvaj - Smooth undukting Englogutajne, nojmulogutajn - Stekansteisel, undukting Tpogred, crimtofaj - Rough, planar Acta crimtofaj - Smooth, Planar Indiputaja crimtofaj - Simoensided planar 							

Επιτόπου χαρακτηρισμός γεώτρησης MCD3 – Α.

PROJECT : EPFO : CONTRACT ANALOXOJ	MALIA HYBRID SYSTEM FEQTPHIAN (BOREHOLE) : MICD - 3 MALIA HYBRID SYSTEM GEEH 1 X.0. (LOCATX.U.): MIAL-IA VEX. YVEOMETPO (ALTITUDE) : HM. ENAPSHE (START. DATE): 02/03/12 HM. MERSELSENNINGT: SUMM PROPRIMENTS											
BABOE - DEPTH (m) ALEITMA - SAMPLE	ПЕРІГРАФН ΔΕΙΓΜΑΤΟΣ - D	DETAILED DESCRIPTION	SPT (Kpowerc/15cm) SPT (Blows/15cm)	Taroc - Type	Yaad nifguurgitangi Filing material	Manuary manager	Areberracer (24-5) & Daim Speedres (24-m)	Indiration - Contraction	ATIOTAGPOCH	R.Q.D. (14)	(W) TWO THES	RABOE - DEPTH (m)
20,30 21 △ 22 pt-90 23 △ 23 △ 24 △ 25 pt-90 23 △ 25 pt-90 24 △ 25 pt-90 26 △ 27 △ 28 ∞ 29 △ 30 90,90 31 31,00 32 △ 33 △ 34 34,40 35 △ 36 △ 37 35,60 37 35,60 39 ∞ 40 40,00 39 ∞ 40 40,00 30 90 0 30 90 0 31 31,000 32 35,600 33 35,600 33 35,600 33 35,600 33 35,600 39 ∞ 40 40,000 39 ∞ 40 40,000 40 40,000 40 × ××××××××××××××××××××××××××××××××××	LUMESTONE, light frosh to residual to completely frac Presence of Kar the depths: 28,80-25 31,20-31,5041, Diagenetic limest the depths: 28,30-26 the depths: 18 the depths: 28,30-26 the depths: 18 the depths: 28,30-26 the depths: 18 the depths: 18 the depths: 28,30-26 the depths: 18 the depths: 18 the depths: 18 the depths: 18 the depths: 28 the depths: 28 the depths: 18 the depths: 18 the depths: 28 the depths: 28 th	t gray colour, soil, medium tured, as above, stured, as above, gros/29,30-29,55/ one appears at 3,50/34,70-36,30m. MNHMA AZYNEXEIAN - LEGER 1, envites			「 1 26 22 2 28 日 29 日日 20 日 20 日 20 日 20 日 20 日 20 日 2	E E E E E E E E E E E E E E E E E E E	25/4 25/4 25/4 25/4 25/4 25/4 25/4 25/4	हैं 0 द है है दि दे दे दे है है दि है है है है है है	Why and a second	0 0 43 92 45 69 40 81 45 97 0	844, (06 103/2012)	21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
Anotrazes Azveodion Spacing of joint	1. Reid pay dig - Very wide > 2.0 m 2. Verdin - vide 0.8 m - 2.0 m 3. Wion - Mediam 0.2 m - 0.8 m 4. Very 6. Close 0.0.8 m - 0.2 m 8. Reid payof - Very close < 0.05 m	(0/m.) (0-1/m.) (1-6/ta.) (1-6/ta.) (1-6/ta.) (1-6/ta.) (1-6/ta.) (1-6/ta.)	KATAZTAZH EriteANECN Joint's Surface	B: C: D: E: F: G:	Τροχικά ή Ακία καμπ Επλβωφέν Τροχειά, ο Ακία επίπε Επλβωμέν	ονώμού υλομένη η, κομπι η τητεδη - δη - Snik η επήτεδ	g kopmuk - Smooth Alopityg - Rough, p soth, Plan Ig - Since	oµêvq -F undivîetê Silokenê Isnar ar nelded p	tough ar ing sided, un xianar	kregular dulating		

Επιτόπου χαρακτηρισμός γεώτρησης MCD3 – Β.

MCD4

PROJECT : EPFO : CONTRACTO ANAΔΟΧΟΣ	MALIA HYBRID SYSTEM]	TEATPHEN (BOREHOLE) : MCLS-2 OEEN AX.9. (LOCAT-X.U.): MALIA YWOMETPO (AL'ITITUDE) : HM. ENAPEHE (START. DATE): 23/03/4 HM. AHEHE (END, DATE) : 30/03/4					4 3 5/42 5/42		
RABOE - DEPTH (m) AEITMA - SAMME	ΠΕΡΙΓΡΑΦΗ ΔΕΙΓΜΑΤΟΣ - DETAILED DESCRIPTION	'SPT (Kpoirosc/15cm) SPT (Rlows/15cm)	Tanu, Tipe	ZYNEX tam stores frame tam interest	Kendorrom Umpekation Surface	Ambritom (1-5) /L D/m Specing (D/m)	Nutrat (*) - Indiration	ADDEAOPO2H WRATHERIDGE	R.Q.D. (%)	TEMBO STADONE Y.Y.O -	EADOL - DEFTH (m)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<pre>start red theory colour and starting currents to an interface start red to an interface of the start of the start of the start and the tensilies consistent in the start of the start and the tensilies of starting colour and starts. Sand, me tensilies a consistent of the start of the start and the start of the start of the start of the start construction of the start of the start of the start tensilies and the social of the start of the start of the start tensilies and the social of the start of the start of the start tensilies and the social of the start of the start of the start tensilies and the social of the start of the start of the start tensilies and the social of the start of the start to cate places) completely weathered, medium to very highly tractured, to closely spaced, moderately narrow to narrow, with the main inclinations to be i 0°-10°, 70°, 80°-90°. The formation appears abration 2005; which all described thoroughly bellow: At 920-9,400, timestone is slightly to mederately weathered, "At 9,400-3,000, timestone is mederately to highly trans colour, to, climestone is highly to completely weathered and there is presence of sand, light trans colour, to climestone is highly to completely weathered and there is presence of sand, light trans colour, to climestone is highly to completely weathered and there is presence of sand, light to completely weathered is onwerted to sand light gray colour and grawds, Presence of sand, light trans colour, the dop trans of sand annexied to sand, light trans colour, to climestone is moderately to colour, the dop trans of sand annexied to sand, light trans colour, to climestone is moderately to colour, the dop trans of sand annexied of sand, light trans colour, to the sand annexied of sand, light trans colour, to the sand annexied of sand, light trans colour, to the sand annexied of sand, light the spate chemine the sand annexied of sand, light the spate chemine the sand annexied of sand, light the spate chemine to sand an enteries the colour of an clime to the s</pre>				CCCCAACACCC	3-4	50 40 0 40 40 40 40 40 40 40 40 40 40 40	200 2122 Wars of 40 Wars Wars of 40 Wars war	18 0 41 95 0 7 0 13 0 17 International Internatione Internatione International International International Interna		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Επιτόπου χαρακτηρισμός γεώτρησης MCD4 – Α.

PROJECT : EPFO : CONTRACT	MALIA HYBRID SYSTEM		-		feΩt Gexh Ywoi Hm. B	рнхн (1 х.ө. 4етро (2004-рен	BOREH (LOCA ALTITI (STA)	IOLE) TX.U. JDE) RT. DA	: //): // : TE): 2	20- AL) 30-	-4 A 5/12
ΑΝΑΔΟΧΟΣ	Fight State State State Str. Still Advertisit State St				HM. /	NHEHΣ (END, D	ATE)	:3	010:	5/48
(m) HT43d - 200AB	ΠΕΡΙΓΡΑΦΗ ΔΕΙΓΜΑΤΟΣ - DETAILED DESCRIPTION	SPT (Kpokorac/15cm) SPT (Blows/15cm)	Tünoç-Teo	Area of teaching week	Kenternary Insportsion	Andormum (12-5) & 12(m) Spacing (12/11)	TS uspected - Cultures	ALIOEAGHOTH	R.Q.D. (%)	TENDOR TTARMN V.Y.D FERAL UNIT. (m)	EAGOT - DEPTH (m)
21 22 22 23 24 25 26 26 26 26 26 26 26 26 26 26	LIMESTONE, Light gray above, fresh to Cat places completely weathered, medium to Very highly fractured, as above. The abration somes are: At 12, BO-13:30, linestone is slightly to maderately weathered. At 13:30-11440, linestone is highly to completely weathered and converted to sand, light gray colour, At 90:00-11,00, linestone is highly to completely weathered and converted to sand, light gray colour, At 90:00-11,00, linestone is malerately to highly weathered and converted to sand, light gray colour, At 90:00-11,00, linestone is malerately to highly weathered and converted to sand, light gray colour. At 91:30-28,00, linestone is malerately to highly weathered and converted to sand, light gray colour with gravels, f. At 37:30-38,00, linestone is malerately to highly weathered and converted to sand, light gray colour with gravels, f. At 36:30-40,10, dimestone is malerately to highly weathered and converted to gravels, c-f, and sand, light gray colour, fresence of sand, light brown colour. At 36:30-40,10, dimestone is malerately to highly weathered and converted to gravels, c-f, and sand, light gray colour, f. At 45:0-49,30, dimestone is malerately to highly weathered and converted to sand, light gray colour, f, and gravels c-f. At 47:60-49:70, dimestone is malerately to markered and converted to sand, light gray colour, At 47:00-50:70, linestone is malerately to mighty weathered and converted to sand, light gray colour, f. At 49:30-50:70, linestone is malerately to mighty weathered and converted to sand, light from colour, f. At 49:30-50:70, linestone is malerately to mighty weathered and converted to sand, light from sand, light brown abour, f. At 49:30-50:70, linestone is malerately to sand, light brown abour, f. At 49:30-50:70, linestone is malerately to sand, light brown abour, f. and gravels c-f. Mighty colour, f. and gravels c-f.				CE C CACACAC C	14-13, 23-10 3-10/2 5-7/m 5-7/m 5-7/m 8-10/2 8-10/2 8-10/2 8-10/2 1-2/m 3-10/m 3-2/m 5-7/m 1-2/m 1-2/m	1000 50 1150 100 100 100 100 100 100 100	W1-12 21-52 W1-12 W1-12	6 0 28 29 30 39 41 58 69 48 0 0		21 22 23 24 25 26 27 28 29 30 31 32 33 33 34 35 35 37 38 39 40 40
Anotraz Azvurote Spading of je	2. Mitydža, -vide 0.6 m - 2.0 m 3. Miton - Modium 0.2 m - 0.8 m 4. Mitoph - Close 0.06 m 0.2 m 5. Field μπρή - Very close < 0.06 m	KATAZTA Enidomen Joints Surf	C: D: E: F: G:	Λεία καμπ Στιγβωριίτ Τροχειά, α Λεία επίπτ Στιλβωμέτ	ឃុំសង្គទំរក្ស លូ, នេះប្រកា លាកទទំកុំ - ស្រីក្នុ - San ហ្មូ នភាពទៅ	- Smooth utoµdvŋ - Rough, p octh. Plan ăŋ - Stinor	evidulală Silokonis Ioniar Ioni Ioniar Ioniar Ioniar	ng ided, uni ianar	ndialing		

Επιτόπου χαρακτηρισμός γεώτρησης MCD4 – Β.

.

PROJECT : EPI'O :	MALIA HYBR	MALIA HYBRID SYSTEM DEEH (X.O. (LOCATX.U.): YPPOMETPO (ALTITUDE) : HIN, ENAPERE (START, DATE):								: 44): 44	460-4 MALIA 93034			
CONTRACT ANALOXO	CR: Constant General Constant Σι Subscreen Annor: Many	DASULTING LES Istria Parta de recer				HM. P	NAPER HEHX (END. (ATE)	:3	00	5/42		
BADOC - DEPTH (m) AETTMA - SAMPLE	ПЕРІГРАФН <u>Д</u> ЕІГМАТОХ – І	DETAILED DESCRIPTION	SPT (Kpairau/15cm) SPT (Blows/15cm)	Türreç - Tipa	AXYNEX Vacue/Standyrs gavy	Kantonon, Engenciar	Andonam (2-5) f april Specing (247) april	Niter, C) - Indiration	ARIOZAGPOZH WEATHERDAG	R.Q.D. (%)	- ULA HARRY TANKA - ULA HARRY TANKA	EAGOE - DEPTH (m)		
$\begin{array}{c} 41\\ 40,3\\ 41\\ 41\\ 42\\ 4480\\ 43\\ 43\\ 44\\ 45\\ 45\\ 45\\ 45\\ 45\\ 45\\ 45\\ 45\\ 45$	LINESTONE, Light (at places) completely to very highly fractur The formation (l Karstificated at the o 28,60-37,30/41,70- Diagenetic linest depths: 17,70-18,00/2 30,50 and 29,40-39, Karstic void app depth: 37,30-37,800	gray colair, frech to acethered, medium ured, as above, imestone) is slightly (pUhs: 6:90-En10/ sti 60 m. one appears at the 15:90-26:90/30;30- 80m. ears at the 1, 		5 5 5 5		E A E E E E A E	715000000000000000000000000000000000000	5 44 5 70 0 70 45 5 5 4 8 5 4 8 5 5 5 5 5 5 5 5 5 5 5	War	25 56 91 26 8 000 19 19 36	201 (50/05/2012)	41 42 43 44 45 46 47 48 49 50 51 51 52 53 53 54 55 55 56 57 58 59		
ANKO TAHPOSING PUTRY muterial	Yffic 1: Timora - Nothing 1:48: Acrywie, Alspawie, Amysoborum - Clay neutra 1:49: Xawaina, Teiway - Clasite, Teik V. Achtoring - Consta Vie Xaho()mc - Causta Vie Xaho()mc - Colora Vie Xaho()mc - Colora Xaho()mc - Colora Xaho()mc - Notenile	MNHMA AZYNEXETCIN - LEGEN I, ownling nath. maledat	TYDOX ACTINECISION Type of Johns	NTS B: J: D: 5: P: 0: A:	Στρώση - Διάρρηξη Διάκλαση Σχατότητι Ρήγμα - Ρι Άλλος - Οι Αστυτχής	Layering - Wide - Disclet a - Solds aut hor - Discon	da iosity Unicous					60		
ADOETAZEIZ AZYNIDQIIQN Spacing of jeru	1. Πολύ μεγάλη - Very tokle > 2.0 m 2. Μεγάλη - wide 0.0 m - 2.0 m 3. Μίοη - Μεσίλαι 0.2 m - 0.0 m 4. Μαχή - Close 0.06 m - 0.2 m 5. Πολύ μερή - Very close < 0.00 m	0/m) 10-1/m) (1-5m) (1-5m) (5-16m) (5-16m) (5-16m)	KATAJTAJA ETIIDANEION Joints Surface	8: C: D: E: F: G:	Τραχικά ή Αεία κομπ Στιλβκομέν Τραχειά, ε Λεία επίπε Στιλβιωμίν	លុកវិទុកវិទ សេចដល់ក្ សូ សេទុកភា សំពុ - សំភា សំពុ - សំភា សំពុ - សំភា	η καματιώ - Senooth Woμένη - Rough, p soth, Plan kg - Slince	opfwg-R undulati Sickens lana: lana: lana: lana: lana: lana:	lough or log Aded, unit Aded, unit	inegular Sulsling				

Επιτόπου χαρακτηρισμός γεώτρησης MCD4 – Γ.

MCD5

PROJECT : MALIA HYBRID SYSTEM		1			TEGTPHEH (BOREHOLE) : MCO-5 0E2H () X.O. (LOCAT, -XU.): MALIA YHOMETPO (ALTITUDE) : HM. ENAPEHE (START, DATE): 2.01314						5 A 12	
ΑΝΑΔΟΧΟΣ	A season of the	Istrice				ΗМ, Λ	<u>ΗΞΗΣ (</u>)	END. D	ATE)	:2	3131	19
8 4			Îĩ	A	SYNEX	XEIEX - JOINTS			~		ė.	E
BABOX - DEPTH (ΠΕΡΙΓΡΑΦΗ ΔΕΙΓΜΑΤΟΣ - D	ETAILED DESCRIPTION	SPT (Kpoùorac/15 SPT (Blows/15c	nteoc - Type	Youd nid purch prively Filing motents	Kartionool Diapavadiv Surface	Andernery (2-5) & D/m Spacing (0,1m)	Islitry (*) - Indrastion	ADOTAOPOIL	(%) .a.g.a	A HEADALT HORAT	BAGOE - DEPTH
0,50	FRANCES and SAND with CL subanaulay of limestone const	AY. Gravels, e. C, angular to istorey. Sand, c.m. L.			[1
1 1,00	SAND SOLA PROVI CONTRACT OF	AVELS Shindi, M- Y, Grausse, c. 2,	Į	L						0		
2 4.50	LIMESTONE, light g	ray colour, fresh to		1	VE	E	2.3/	50°,	W.	36		2
3 8,90	completely weathered, r	nedium to highly		15		r	. ,,	0°-10°.	Wg.			3
4 A	Toints playor to lat	places)undulating			T	e	3,40	8.00	W3-4 4,30	51		4
54.50	medium rough to roug	ph, medium to		7	4,50 VIII	E	B-10/	93-89	WA-	-		5
	narray, with an inclin	vation of 0°-10°,		12	TI	B	5.82	0-18.	142	0		6
6,10	80°-goo and 50°						756		6.90 WS-6	0		7
1,60	The formation appe	vars abration zones,						50	W1-9	-		8
HA	At 3110-4,30, limesto			TI	B	8,40	87,50 840	8,40	97			
9 9.00	colour, C-M.		3	-	ĕ	450	0.60	W4.			9	
10 🛆	sand, light brown to subwhite colour, m-f.							0-10	45.40	13		10
. 11 40.70	At 7,40-8,10, limeston	ne is moderately to ownerted to sand.		4		Ê		\$\$~S	W3-H			11
12 A	light brown colour, m.	E.		1	1640	B	8-9/4		Wings High	19		12
13 (2,30	to highly weathered an	d converted to sand,			TI.			369	19,00 W1-2	q	2	13
	light gray colour, c-m-	4. Presence of a little			T	E			Wh-5		22	14
141440	At 11, BO- 12, SD, the form	mation (-limestone) is			-		4430 2-111-	8° L,	See.	30	R	15
15	moderately to highly use	to gray colocur, c.m.f.		2	4500	B	45 10 215/4	60	秋日		0	
16 1	At 13,00.14,00, lineston	ve is highly to		17	ZIIL	E	100	0-18	10.00	14	(C)	16
17 16,90	At 14,30-14,40, limests	one is completely			T	D	Bulchy		Wı.	-	0	17
18 🛆	At 15,10-15,50, limector	ne is modercollely to			201	e	48.40	හිත්	14.14	28	Ś	18
19 16.50	highly weathered and a	onverted to sond,		5	ZUL	В	12-13/11 112-13/11	1120	WL	10	19,10	19
20 4	At 23,10-25,20, limeston	e is completely weather led to sand, brain about	ær ¢, c.m.∮.		妅	E	5-71m	93 F.		17		20
6	I: Tirrora - Nothing	MNHMA AZYNEXEI <u>ON - LEGE</u>	ID OF JOI	INTS	Franker	Imme		19/10	-		_	
IAHPOSH material	141: Peyvkog Aðpavrig, Aseyeskoura - Clay neutral, awetling M: Xkeeting, Tólang - Clavito, Talk V: Anteoning - Clavito		NEXECTION NEXECTION of of joints	10: 10: 10: 10:	Zipoon Aidepriß Aidekson Zytoróm	η - Wilde η - Diacla η - Diacla	sis vicsity					
a coava	VII: Xestoc Kol amoosõpupévo uksó - Saad & w VII: Ofolina - Oxdes IX: Mukeving - Milonite	/b: Xa/a@hgc - Querk: /li: Xausoc xni amoodiseuptvo ukwó - Sand & weath, material /lii: Ofatha - Oxidea // Matucering - Myonita			Pilypa-i Akhoç-(Asynteti	Feult When c - Olson	เรื่ามออร		-		_	
ASJECT CENCIN of Joints	 Πολύ μεγάλη - Very white > 2.0 m Μαγάλη - white 0.8 m - 2.0 m 	(0im) (014n.)	NEXH NEXN	Bi	Tpexed if avoigely separately a -Rough or inegular Ada separately in - Smooth underwing							
ALTYNEX ALTYNES Spacing o	3. http://www.com/actionary.co	(1-6/n)- (8-15/n) (5/15/n)	KATA3 EnioA1 Joints 3	E:F:	Στυρωμί Τροχειά, Λεία επία Στυλβωμί	entresq roõq - Sa w <u>q ent</u> re	- Rough, nooth, Pla 5q - Sfinc	plannr nər xənsided	planar			

Επιτόπου χαρακτηρισμός γεώτρησης MCD5 – Α.

PROJECT : EPFO : CONTRACT	OR: INTERNAL COLLEGE SCHOOL	STEM				ΓΕΩΤΗ ΘΕΣΗ ΥΨΟΝ ΗΜ. Ε	ЧЮН (1 Х.Θ. IETPO (NAPEH) HEHΣ ()	BOREH (LOCA ALTIT ALTIT E (STA END. D	HOLE) TX.U. UDE) RT. DA DATE)	: M): M : : : : : : : : : : : : : :	60- ALII 0131	5 A 12
ZADOE - DEPTH (m) DEITHA - SAMPLE		ED DESCRIPTION	(UDEr /duome) 1.4c	A addit - Type	Mund rakipumup/wmup/ Pilling motion/si	Karitenan Engorativ	101N (Included) (Included)	retention - C uniter	AILOEAGPIZZH WEATHERZING	R.Q.D. (%)	(W) "TW'R TRULA - O'A'A HNOREIZ HOLIVEL	GAGOE - DEPTH (m)
21 △ 22 ^{21,6} 0 23 ^{23,20} 24 ^{24,00} 25 △ 25 △ 27 ^{27,10} 28 △ 29 ^{25,60} 29 ^{25,60} 30 ^{30,30} 31 ^{30,30} 30 ³	Completely weathered, medium Practicely as above. At 23,10.25,20, presence of octure. Diagenetic limestone app depths: 1.30-3,20/12,50-12,4 17:70-19:90/20:40-21:20/22 27:10-27:70-1. Presence of Kaxstic void END OF BOREHOLE	4 clay, red brawn ears at the 10/9,60-990/ 20-22,30 and at 29,30-29,70% 30,30 AT 30,30M		5		E E E E E E E E	3-4/m2 7-8/m 2268/m 2268/m 2268/m 256/m 256/m 256/m 2820 283/m 283/m 283/m 283/m	50 40 40 40 40 40 40 40 40 40 40 40 40 40	W4- W2 W5- W6- W2-	68 92 0 13 17 23 41		21 22 23 24 25 26 27 28 29 30 31 30 31 32 33 34 35 36 37 38 39 40
YAKO IIAHPOZHE FELng mutotal	E Throna - Notiting Title: Xeyvhor, Aboverk, Janyoskorum - Clay newtal, exercise Y: Xelvaning, - Tables, Clotte, Tab. Y: Xelvaning, - Castle Y: Xelvaning, - Castle Mit: Paywor, soil encostiguativo uked - Send & seets, mate Mit: Quides, - Castles Mit: Matasetting, - Material.	45 TYROC AATWRDCA	B; J; D; S; F) O;	2 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	τρώση - Διάρρηξη μάκλοση χροτότησ γίημα - Ρι λλος - Οί	Loyering - Wide - Diaclas 2 - Schisl au't her	ils tosity					
AITOTTAZEE AITVNEXTION Spacing of joints	1. /Tok/u μογάλη - Veny wide > 2.0 m 2. Μεγάλη - wide 0.8 m - 2.0 m 3. Μέτη - Modium 0.2 m - 0.8 m 4. Μιτρή - Ciole 0.08 m - 0.2 m 6. Πελ/d μακρή - Vary close < 0.06 m	(mil) (mil)(A B C D E F G		συνεχής pagaă ĝ εία κομπ 'πλβκομίν pagaŭ, c εία επίπε πλβκομέν	- Լոեզո օսնյան գերլու դ. չերլու ուրենդ - օդ - Տու դ. գոլուծ	ensola - Smooth «Asμένη - Rough, p soth, Plar Iq - Siface	opévn - F undulat Stokon tonar tar ar	Rough or ing Scied, us pissar	irrogular dufniing		

Επιτόπου χαρακτηρισμός γεώτρησης MCD5 – Β.

MCD6

MALIA HYBRID SYSTEM				CEST PITATI (BOREHOLE) : A OEEH ή Χ.Θ. (LOCATX.U.): A YΨΟΜΕΤΡΟ (ALTITUDE) : HM, ENAPEHE (START, DATE):							MALIA		
NA	ΔΟΧΟΣ	X : Street and Street Street	istria Pasta Pieres				HM, A	ΗΞΗΣ (END, D	ATE)	:20	1/03	11
BABOX - DEPTH (m)	AEITNA - SAMPLE	ΠΕΡΙΓΡΑΦΗ ΔΕΙΓΜΑΤΟΣ -	DETAILED DESCRIPTION	SPT (Kpedomc/15cm) SPT (Blows/15cm)	Türeç - Tipe	Yandi shipaorg/surrayi	Kerters Sufers Sufers	Join (1-5) / gin (1-1) understand	understand - C) (mail)	ALIOEAGPOSH WEATHORKING	R.Q.D. (%)	TENDOR LENDOR TO AND - ON YOU	RAMOY - DEDTH (
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 4 10 11 12 13 14 15 16 17 10 11 12 13 14 15 10 10 10 10 10 10 10 10 10 10	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	SAND, eight braun 2000 Sand, c.m. P. Grauls, e. of linectone consistency. SNND with CLAY red COOLY and GRIVERS. Sand Manne, of Ensistence consist LIMESTONE, eight g Completely weathered Practured. Soints, planar to medium vough to ray closely spaced, modex with an inclination of The formation (-line abration 'sones, which ar bellow: At 4.90-7,400m sand eight gray to w at places the limestone completely weathered. A the formation is convi and graveds, while at completely weathered. A the formation is convi and graveds, while at completely weathered. A the formation is convi and graveds, while at completely weathered. A the formation is mod weathered and there is red-brown colour and At 14.90-15,00m, the 1 to residual soil and sand, eight brown colour Diageretic limeston depths: 2,40-3,40/8,00-6 9,90-10,20m. Limestone is slight the depth 19,00-00,601	in and GRAVELS. (1.00) The subaryular to angular, (1.00) The subaryular to angular may colour, fresh to 1, methium to highly (ad places) undulating, gh, widely to adely wide to narrew 0°-10°, 80°-90° and 30° estore), appears. e described thoroughly, limestone is converter hite colour, m-g and t 11,90-13,10m, orted to sand c-m-f places, limestone is At 13,50-14,90m, is researce of clay, sand, subwhite colour limestone is presence of the orted to highly is presence of clay, sand, subwhite colour limestone is presence of un f with day. e appears at the 3,60/9,00-9,400 and ly varstificated at 7. E AT 20,60M.		5.5 7. 5	THE FASS A STANE	AUBE EEBEBUBUBU	9-3/m 2-50 8-9/w 1-9/w (1-9/w (1-9/w (1-9/w (1-9/w) (1-9/w) (1-9/w (1-9/w) (1-	5 40 40 40 40 40 40 40 40 40 40 40 40 40	WAY	36 18 6 26 91 76 14 0 28 0 6 6 28	84 (20/03/2012)	
YAKO DAHPOEHE	Plang matorix	Timora - NetWay The Apploc Adjust/Lagrange - Clay neutral, eventing With Apploc Adjust/Lagrange - Clay neutral, eventing With Apploc Adjust/Lagrange - Claim Vith: Augo and a vests. rectoriel Vith: Augo and amount - Claim		TYNOI AZYNEXCIICH Type of jehts	81 2: 0: 7: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0:	LOUG Enplicit Δistoping Louisolating Exponéngin Physics - Ο Millog - Ο	Layering - Wida - Disclas a - Schiel au't ther	is totally		MERCY I			
ADOLTAZED ALYNEXERON	Spacing of joints	1. Πολύ μεγάλη - Vory vida > 2.0 m 2. Μαρίλη - vida 0.6 m - 2.0 m 3. Μάριλη - Vida - 0.6 m 0.6 m - 0.2 m 4. Μαρίλη - Vida - 0.66 m - 0.2 m [1-50m] 6. Πολύ μερή - Vigy close < 0.06 m			A: // 8: 1 D: 1 E: 1 F: //	λουνεχής Γροχειά ή Δεία κομπ Επάβωμέν Γροχειά, ε Vela ενέπι Γιλθουιδι	 Discorri ανείψαία υλομένη η, καμπυ πίπεδη - ιδη - Smi η, τηίπεδη 	Insous) soprow - Smaoth Aoptivy - Rough, pl soth, Plan a - Stoce	ajul vrg R undulari Slicitens lanar ar asidad n	ough or ng Med, uni	loeguíar duisting		

Επιτόπου χαρακτηρισμός γεώτρησης MCD6.

<u>ПАРАРТНМА В</u>

ΣΕΙΣΜΙΚΗ ΤΟΜΟΓΡΑΦΙΑ ΜΕ ΤΟ ΛΟΓΙΣΜΙΚΟ SeisImager2D

ML1

Καταγραφή πρώτων αφίξεων στη γραμμή μελέτης ML1.

Δρομοχρονικό διάγραμμα της γραμμής μελέτης ML1.

Μοντέλο Βάθους με εξομάλυνση και Ισότιμων καμπύλων ταχύτητας της γραμμής μελέτης ML1.

Σεισμικές ακτίνες στο εξομαλυσμένο μοντέλο βάθους της γραμμής μελέτης ML1.

Καταγραφή πρώτων αφίξεων στη γραμμή μελέτης ML2.

ML2

Δρομοχρονικό διάγραμμα της γραμμής μελέτης ML2.

Μοντέλο Βάθους με εξομάλυνση και Ισότιμων καμπύλων ταχύτητας της γραμμής μελέτης ML2.

Σεισμικές ακτίνες στο εξομαλυσμένο μοντέλο βάθους της γραμμής μελέτης ML2.

ML3

Καταγραφή πρώτων αφίξεων στη γραμμή μελέτης ML3.

Δρομοχρονικό διάγραμμα της γραμμής μελέτης ML3.

Μοντέλο Βάθους με εξομάλυνση και Ισότιμων καμπύλων ταχύτητας της γραμμής μελέτης ML3.

Σεισμικές ακτίνες στο εξομαλυσμένο μοντέλο βάθους της γραμμής μελέτης ML3.

Καταγραφή πρώτων αφίξεων στη γραμμή μελέτης ML4.

Δρομοχρονικό διάγραμμα της γραμμής μελέτης ML4.

Μοντέλο Βάθους με εξομάλυνση και Ισότιμων καμπύλων ταχύτητας της γραμμής μελέτης ML4.

Δρομοχρονικό διάγραμμα της γραμμής μελέτης ML5.

Καταγραφή πρώτων αφίξεων στη γραμμή μελέτης ML5.

Σεισμικές ακτίνες στο εξομαλυσμένο μοντέλο βάθους της γραμμής μελέτης ML4.

97

ML5

Μοντέλο Βάθους με εξομάλυνση και Ισότιμων καμπύλων ταχύτητας της γραμμής μελέτης ML5

Σεισμικές ακτίνες στο εξομαλυσμένο μοντέλο βάθους της γραμμής μελέτης ML5

ML6

Καταγραφή πρώτων αφίξεων στη γραμμή μελέτης ML6.

Δρομοχρονικό διάγραμμα της γραμμής μελέτης ML6.

Σεισμικές ακτίνες στο εξομαλυσμένο μοντέλο βάθους της γραμμής μελέτης ML6.

Καταγραφή πρώτων αφίξεων στη γραμμή μελέτης ML7.

Δρομοχρονικό διάγραμμα της γραμμής μελέτης ML7.

Μοντέλο Βάθους με εξομάλυνση και Ισότιμων καμπύλων ταχύτητας της γραμμής μελέτης ML7

Σεισμικές ακτίνες στο εξομαλυσμένο μοντέλο βάθους της γραμμής μελέτης ML7.

Καταγραφή πρώτων αφίξεων στη γραμμή μελέτης MT1.

Δρομοχρονικό διάγραμμα της γραμμής μελέτης ΜΤ1.

Μοντέλο Βάθους με εξομάλυνση και Ισότιμων καμπύλων ταχύτητας της γραμμής μελέτης MT1

Σεισμικές ακτίνες στο εξομαλυσμένο μοντέλο βάθους της γραμμής μελέτης MT1.

Καταγραφή πρώτων αφίξεων στη γραμμή μελέτης ΜΤ2.

Δρομοχρονικό διάγραμμα της γραμμής μελέτης MT2.

Μοντέλο Βάθους με εξομάλυνση και Ισότιμων καμπύλων ταχύτητας της γραμμής μελέτης ΜΤ2.

Σεισμικές ακτίνες στο εξομαλυσμένο μοντέλο βάθους της γραμμής μελέτης MT2.

Καταγραφή πρώτων αφίξεων στη γραμμή μελέτης ΜΤ3.

Δρομοχρονικό διάγραμμα της γραμμής μελέτης ΜΤ3.

Μοντέλο Βάθους με εξομάλυνση και Ισότιμων καμπύλων ταχύτητας της γραμμής μελέτης ΜΤ3.

Σεισμικές ακτίνες στο εξομαλυσμένο μοντέλο βάθους της γραμμής μελέτης ΜΤ3.

Καταγραφή πρώτων αφίξεων στη γραμμή μελέτης MT5.

Status : No editing

Δρομοχρονικό διάγραμμα της γραμμής μελέτης ΜΤ5.

Μοντέλο Βάθους με εξομάλυνση και Ισότιμων καμπύλων ταχύτητας της γραμμής μελέτης ΜΤ5.

Σεισμικές ακτίνες στο εξομαλυσμένο μοντέλο βάθους της γραμμής μελέτης MT5.

ΠΑΡΑΡΤΗΜΑ Γ

ΗΛΕΚΤΡΙΚΗ ΤΟΜΟΓΡΑΦΙΑ ΜΕ ΤΟ ΛΟΓΙΣΜΙΚΟ Res2dinv

ML1

Ηλεκτρική τομογραφία του λογισμικού Res2dinv για την γραμμή μελέτης ML1.

ML2

Ηλεκτρική τομογραφία του λογισμικού Res2dinv για την γραμμή μελέτης ML2.

Ηλεκτρική τομογραφία του λογισμικού Res2dinv για την γραμμή μελέτης ML3.

ML4

Ηλεκτρική τομογραφία του λογισμικού Res2dinv για την γραμμή μελέτης ML4.

Ηλεκτρική τομογραφία του λογισμικού Res2dinv για την γραμμή μελέτης ML5.

Ηλεκτρική τομογραφία του λογισμικού Res2dinv για την γραμμή μελέτης ML6.

ML6

Ηλεκτρική τομογραφία του λογισμικού Res2dinv για την γραμμή μελέτης ML7.

MT1

Ηλεκτρική τομογραφία του λογισμικού Res2dinv για την γραμμή μελέτης MT1.

MT3

Ηλεκτρική τομογραφία του λογισμικού Res2dinv για την γραμμή μελέτης MT2.

$\underline{\textbf{\textsf{MAPAPTHMA}}}$

ΗΛΕΚΤΡΙΚΗ ΤΟΜΟΓΡΑΦΙΑ ΜΕ ΤΟ ΛΟΓΙΣΜΙΚΟ EarthImager2D

ML1

Ηλεκτρική τομογραφία του λογισμικού EarthImager2D για την γραμμή μελέτης ML1.

ML2

Ηλεκτρική τομογραφία του λογισμικού EarthImager2D για την γραμμή μελέτης ML2.

ML3

Ηλεκτρική τομογραφία του λογισμικού EarthImager2D για την γραμμή μελέτης ML3.

ML4

Ηλεκτρική τομογραφία του λογισμικού EarthImager2D για την γραμμή μελέτης ML4.

ML5

Ηλεκτρική τομογραφία του λογισμικού EarthImager2D για την γραμμή μελέτης ML5.

ML6

Ηλεκτρική τομογραφία του λογισμικού EarthImager2D για την γραμμή μελέτης ML6.

ML7

Ηλεκτρική τομογραφία του λογισμικού EarthImager2D για την γραμμή μελέτης ML7.

MT1

Ηλεκτρική τομογραφία του λογισμικού EarthImager2D για την γραμμή μελέτης MT1.

MT2

Ηλεκτρική τομογραφία του λογισμικού EarthImager2D για την γραμμή μελέτης MT2.

MT3

Ηλεκτρική τομογραφία του λογισμικού EarthImager2D για την γραμμή μελέτης MT3.

<u>ПАРАРТНМА E</u>

ΚΩΔΙΚΑΣ MATLAB ΚΑΙ ΛΟΓΙΣΜΙΚΟ ΠΑΚΕΤΟ EarthImager3D

1	<pre>s runction [Geom, geog, rw, Hin]=Sidzokr (kiks, negrads, misdata);</pre>	
2	* This function reads many gtg files with their corresponding coordinate files and convert them to one *.URF file	
3		
4	* IN	
5	% :neg2abs : takes value 1 for turning negative V/I values to positive, 0 otherwise	
6	% :misdata : takes value 1 to keep all measurements and to interpolate mising coordinates	
7	5 or 0 to remute measurements made using electrodes missing from coordinate * TVT file	
9	3 - STG files promoted by user	
0	 SIGNATION STREAM AND AND AND AND AND AND AND AND AND AND	
	·	
10	tab of space definited *.ixi fire with the coordinates of all electrodes of the style:	
11	8 MLI EKI Line Coordinates	
12	e Elec X Y Z	
13	\$ 1 636044.69 3903116.08 282.47	
14	\$ 2 636049.68 3903122.34 281.82	
15	% 3 636054.67 3903128.59 281.07	
16	8	
17	\$ OUT	
18	S Geom :Geometry of all electrodes (ID X Y Z)	
19	STOCAL CAL ATTAC With the columns of STG file	
20	S EN I Filmman of the output # HDF film	
21		
21	· Fin . Facility in the output	
22	s :Saves the ".OKF File	
23	Saves the ".JIM (terrain) file deduced from coordinates	
24		
25	% CALLS : [FN, FTH]=WriteURF(FN, Geom, Meas) the internal function (subrutime) to save the FN.URF file	
26		
27	<pre>function [Geom,STGcell,FN,PTH]=STG2URF_08(neg2abs,misdata);</pre>	
28		
29	FNo=0; %set flag to count atg files	
30	measNo=0; %set flag to count measurements	
31	TNoE=0; %Total number of electrodes	
32		
33	<pre>[FileName, pth]=uigetfile('*.stg','READ MULTIPLE STG FILES','Multiselect','on');</pre>	
34		
35	☐ if ~iscell(FileName)%check if only one file is read	
36	<pre>FN(1)=FileName;</pre>	
37	FileName=FN;	
38	end	
39	for k=1:size(FileName,2)%itereate for all stg files read	
40	<pre>disp(['FileName(k)]);</pre>	
41	FNo=FNo+1; %count gtg files	
42	<pre>FILES(FNo)=FileName(k); %Save the read FileNames to write them to the title of URF</pre>	
43	cd(pth) %go to the selected folder	
44	<pre>fid = fopen(FileName{k},'r','n'); %open file to read</pre>	
45	<pre>%Count measurements in this gtg file</pre>	
46		
47		
48	STGcell = textscan(fid, '%f %s %f %s %f	E');
49	<pre>mcount=length(STGcell(1));</pre>	
50	fprintf('Measurements read: %d\n',mcount)%display the number of measurements in this stg file	
51	fclose (fid) ;	
52		
53	STG(:,1) = STGcell(5):	
54	STG(+2) = STGe11(6):	
55	STG(7,2) STGen1(7)	
55	ST((,,))= ST(col1(1)); ST((,))= ST(col1(1));	
50	JIG(,,)- JIG(ELT[10],	
50	TI Islan() Ideal (2.5 (2.5 (2.5 (2.5 (2.5 (2.5 (2.5 (2.5	
50	510(;;)= 5100211(2);	
59	Sig(;, b) = Sigcell [14];	
60	$Sig(t, t) = Sig(t) \{10\}$	
61	eise the file is written from SOPEK SilNs KE instrument	
62	SIG(:,5) = SIGCEII(13);	
63	STG(:, 6) = STGCEI1(16);	
64	STG(:,7) = STGcell(19);	
65	end	
66		
67	Skind the total Number of Flagtrodes used and give them TDs (1.2	
60	wine out to the function of Effective decument of the second	
00	mincoord-main (min (31c(:,::/))); sminimum & electrode coordinate	
69	maxcoord=max(max(SIG(:, 4:7))); %maximum X electrode coordinate	
70	DIFC=diff(STG(:,4:7),1,2); % find the differences on coordinates along columns	
71	ElSp=min(min(abs(DIFC))); %the minimum difference must be the Electrode spacing	
72	NoE=1+(maxCoord-minCoord)/ElSp;%No of Electrodes	
73	fprintf('No of Electrodes used: %d\n',NOE);%display the number of electrodes in this stg file	
74	fprintf('Electrode Spacing: %f\n',ElSp);%display the electrode spacing in this stg file	
7.5		
76	STG(:,4;7)=STG(:,4;7)-minCoord;	
77	STC(: 4:1)=1+STC(: 4:1)/FISD: %transform coordinates to electrode TDe	
70	Section and the sector of the	
10		
19	r = [r] = (r)	
80	If exist(FN,'file') ~= 2 %Check if no coordinates file co-exist with the stg file	
81	<pre>errordlg('Coordinates File not found','File Error');</pre>	
82	if FNo == 1 %this means that only one gtg files is read yet	
83	Geom=[]; %return empty output	
84	Meas=[];	
85	FN=[];	
86	PTH=();	
87	return % and terminate function	
88	else %this means that stg files have already been read	
89	[FN. PTH]=WriteHEF(FILES.Geom Meas): \$ Call function WriteHEF to write the # HEF file	
90	The second secon	
0.2	and	
92		
92		
93	<pre>coora= ropen(rw,'r','n');</pre>	
14.62	Iseex(Coord, v, Coor);	

eocf=ftell(Coord); fseek(Coord,0,'bog'); fgetl(Coord);%Skip first line fgetl(Coord);%Skip second line 95 96 97 98 99 99 100 101 102 103 104 105 107 110 111 112 113 114 115 116 117 115 116 117 118 119 122 123 124 . IT MUST BE FROGRAMED TO CALCULATE (INTERPOLATION AND/OR EXTRAPOLATION) THE COORDINATES OF ALL ELECTRODES %IF FEWER COORDINATES ARE GIVEN %-----cfl=1; cll=1; i=0; while cll=1; i=i+1; CRD(1,1)-fscanf(Coord,'%d',1); % read ID of Electrode fseek(Coord,1,'000('); CRD(1,3)-fscanf(Coord,'%t',1); %X-coordinate fseek(Coord,1,'000('); CRD(1,4)-fscanf(Coord,'%t',1); %Y-coordinate fseek(Coord,1,'000('); CRD(1,4)-fscanf(Coord,'%t',1); %Z-coordinate if ecof-ftell(Coord,'%t',1); %Z end fclose(Coord); Warn if eleva: fclose(Cood); Warn if elevation differences are greater than electrode spacing if mag(abs(diff(CRD(:,4))))>ElSp warning('Elevation difference greater than electrode spacing was detected. This may cause problem!!!') 9 9 9 end if size(CRD,1)<NoE;% electrode(s) is(are) missing
 if misdata==0 ;%remove missing electrodes also from measurements</pre> data== ; rermove missing electro ElVe=1:1:NoE; NoE=size(CRD,1); msE=setdiff(ElVe,CRD(:,1)); for i=1:length(msE); for j=4:7 stgL=1:size(STG,1); 123 126 127 128 129 130 131 Ki = find (msE(i)==STG(:,j)); Ki=setdiff(stgL,Ki); STG=STG(Ki,:); 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 end end fprintf('Electrode removed: %d\n',msE);%display the removed electrodes
fprintf('Remaining measurements : %d\n',size(STG,1));%display the remaining measurements from this STG file else %interpolate missing electrode coordinates (to be programmed) end end for i=1:NoE
Geom(i+TNOE,i)=TNOE+i; %CRD(i,1)+; % Store coordinates of Electrodes
Geom(i+TNOE,2:4)=CRD(i,2:4); % Store coordinates of Electrodes end Meas(l+measNo:measNo+size(STG,1),1:4)=STG(:,4:7)+TNoE;%Store electrode positions (A B M N)
if neg2abs=1; %replace all negative values with the positive ones
Meas(l+measNo:measNo+size(STG,1),5)=abs(STG(:,1));%Store abs(V/I)
else Meas(1+measNo:measNo+size(STG,1),5)=STG(:,1);%Store V/I
end 156 157 158 159 160 161 162 163 164 165 166 167 168 170 171 172 173 174 175 176 177 178 179 end Meas(1+measNo:measNo+size(STG,1),6)=STG(:,3);%Store I Meas(1+measNo:measNo+size(STG,1),7)=STG(:,2);%Store Error in % TNoE=TNoE+NoE; measNo=measNo+size(STG,1); clear STG; end %end of reading gtg files fprintf('Total No of Measurements : %d\n',measNo);%display the remaining measurements from this STG file [FN, PIH]=WriteURF(FILES, Geom, Meas); %Call the following function WriteURF to write the *.URF file fclose('all');
%Display some statistical informations %Display negative and <u>Dossitive</u> values
figure;bar([-1 +1],[length(find(Meas(:,5)<0)) length(find(Meas(:,5)>=0))]);title('Fositive and Negative measurements');xlabel('Negative - Fositive');ylabel('No of samples'); %display Voltage distribution minV=Meas(:,5) * Meas(:,6); xx=(0:1 0.2 0.3 0.5 0.7 1 2 3 5 7 10]; figure:nm=hist (abs (minV)(=10))), xx); hist (abs (minV)(find (abs (minV)<=10))), xx); hold on pnn(i)=n(i); for i=2:length(nn); pnn(i)=pnn(i-1)+nn(i); end i = 100, i=10, i=10 plot(xx,pnn,'-xx'):hold off
title('Voltage below 10 mV distribution');xlabel('Voltage (mV)');ylabel('No of samples'); clear pnn %display abs(V/I) distribution
xx=[0.0001 0.0002 0.0003 0.0005 0.0007 0.001];

Κώδικας Matlab για μετατροπή πολλαπλών αρχείων δισδιάστατης Ηλεκτρικής Τομογραφίας (*.stg), σε ένα αρχείο τρισδιάστατης Ηλεκτρικής Τομογραφίας (*.url) όπου περιέχει όλα δεδομένα της γεωηλεκτρικής διασκόπησης μαζί και ένα αρχείο αναγλύφου (*.trn) όπου περιέχει πληροφορίες για το ανάγλυφο της περιοχής μελέτης.

Λειτουργικό περιβάλλον λογισμικού πακέτου EarthImager3D.

Παράθυρο αφαίρεσης μετρήσεων με υψηλό σφάλμα (Resistivity Misfit Histogram)

<u>ПАРАРТНМА</u> Z

ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΤΩΝ ΓΡΑΜΜΩΝ ΜΕΛΕΤΗΣ (ΣΕΙΣΜΙΚΑ)

	ML1	Seismic Line	Coordinates			ML2 Seismic Line Coordinates						
	X			_			X			_		
Geoph.	Loc	X	Y	Z		Geoph.	Loc	X	Y	Z		
1	0	636064,699	3903141,116	279,365	ļ	1	0	636067,602	3903176,964	268,464		
2	10	636070,957	3903148,916	278,857		2	10	636073,879	3903184,748	267,007		
3	20	636077,214	3903156,717	278,327		3	20	636080,151	3903192,537	266,643		
4	30	636083,297	3903164,654	275,395		4	30	636086,422	3903200,326	266,293		
5	40	636089,385	3903172,586	272,568		5	40	636092,664	3903208,139	264,334		
6	50	636095,563	3903180,450	271,476		6	50	636098,905	3903215,952	262,353		
7	60	636101,741	3903188,313	270,352		7	60	636105,153	3903223,760	260,819		
8	70	636107,940	3903196,160	268,670		8	70	636111,401	3903231,568	259,289		
9	80	636114,159	3903203,991	267,007		9	80	636117,627	3903239,393	258,117		
10	90	636120,649	3903211,599	265,605		10	90	636123,853	3903247,219	256,949		
11	100	636127,119	3903219,222	264,205		11	100	636130,072	3903255,050	255,756		
12	110	636133,253	3903227,120	262,838		12	110	636136,291	3903262,881	254,562		
13	120	636139,389	3903235,016	261,473		13	120	636142,535	3903270,692	253,415		
14	130	636145,677	3903242,792	260,345		14	130	636148,779	3903278,503	252,267		
15	140	636151,964	3903250,568	259,217		15	140	636154,984	3903286,345	251,151		
16	150	636158,209	3903258,379	258,503		16	150	636161,189	3903294,187	250,036		
17	160	636164,454	3903266,189	257,787	1	17	160	636167,689	3903301,787	248,937		
18	170	636170,860	3903273,868	256,406		18	170	636174,191	3903309,384	247,839		
19	180	636177,261	3903281,551	255,103		19	180	636179,782	3903317,670	247,535		
20	190	636183,603	3903289,282	254,917	1	20	190	636185,316	3903325,999	247,280		
21	200	636189,946	3903297,013	254,731		21	200	636191,952	3903333,473	246,308		
22	210	636195,729	3903305,172	254,232	1	22	210	636198,644	3903340,905	245,300		
23	220	636201,511	3903313,330	253,732		23	220	636204,848	3903348,747	244,975		
24	230	636207,828	3903321,082	252,555]	24	230	636211,047	3903356,594	244,658		

	ML3	Seismic Line	Coordinates			ML4 Seismic Line Coordinates					
	X			_		. .	X			_	
Geoph.	Loc	X	Y	Z		Geoph.	Loc	X	Y	Z	
1	0	636033,290	3903166,095	272,795		1	0	636017,247	3903178,481	270,828	
2	10	636039,498	3903173,935	271,594		2	10	636023,464	3903186,313	269,188	
3	20	636045,706	3903181,775	270,393		3	20	636029,683	3903194,145	267,549	
4	30	636052,030	3903189,520	268,950	268,950	4	30	636036,022	3903201,879	266,029	
5	40	636058,355	3903197,266	267,508		5	40	636042,341	3903209,628	264,542	
6	50	636064,576	3903205,096	265,768		6	50	636048,476	3903217,526	263,373	
7	60	636070,797	3903212,925	264,028		7	60	636054,611	3903225,423	262,205	
8	70	636077,041	3903220,737	262,655		8	70	636060,929	3903233,174	261,018	
9	80	636083,284	3903228,548	261,285		9	80	636067,247	3903240,925	259,833	
10	90	636089,546	3903236,345	259,953		10	90	636073,416	3903248,796	258,845	
11	100	636095,806	3903244,143	258,621		11	100	636079,584	3903256,667	257,857	
12	110	636101,990	3903252,002	257,316		12	110	636086,235	3903264,134	256,308	
13	120	636108,173	3903259,861	256,010		13	120	636092,867	3903271,616	254,762	
14	130	636114,392	3903267,692	254,538		14	130	636098,729	3903279,717	253,702	
15	140	636120,610	3903275,524	253,066		15	140	636104,591	3903287,819	252,643	
16	150	636126,858	3903283,332	251,593		16	150	636110,787	3903295,668	251,517	
17	160	636133,106	3903291,140	250,121		17	160	636116,983	3903303,517	250,390	
18	170	636139,383	3903298,924	249,147		18	170	636123,225	3903311,329	249,465	
19	180	636145,660	3903306,709	248,170		19	180	636129,468	3903319,141	248,543	
20	190	636151,886	3903314,534	246,988		20	190	636135,758	3903326,916	246,997	
21	200	636158,111	3903322,360	245,806		21	200	636142,048	3903334,690	245,443	
22	210	636164,335	3903330,187	244,957		22	210	636148,404	3903342,410	244,085	
23	220	636170,558	3903338,015	244,105		23	220	636154,761	3903350,129	242,730	
24	230	636176,795	3903345,832	242,883		24	230	636161,037	3903357,914	241,859	

	ML5	Seismic Line	Coordinates	
Geoph.	X Loc	x	Y	z
1	0	636050,815	3903252,810	260,037
2	10	636056,886	3903260,756	258,929
3	20	636063,190	3903268,519	257,309
4	30	636069,495	3903276,281	255,690
5	40	636075,847	3903284,004	254,573
6	50	636082,201	3903291,726	253,463
7	60	636088,501	3903299,492	253,210
8	70	636094,797	3903307,261	253,017
9	80	636101,059	3903315,058	251,144
10	90	636107,319	3903322,856	249,183
11	100	636113,451	3903330,756	247,966
12	110	636119,576	3903338,660	246,786
13	120	636125,834	3903346,460	245,705
14	130	636132,092	3903354,259	244,623
15	140	636138,298	3903362,101	243,536
16	150	636144,502	3903369,944	242,447
17	160	636150,851	3903377,669	241,068
18	170	636157,206	3903385,391	239,680
19	180	636162,730	3903393,727	237,896
20	190	636168,252	3903402,064	236,112
21	200	636174,761	3903409,649	235,355
22	210	636181,333	3903417,187	234,657
23	220	636187,957	3903424,678	233,963
24	230	636194,581	3903432,169	233,268

	ML6	Seismic Line	Coordinates	
	Х			
Geoph.	Loc	X	Y	Z
1	0	636091,536	3903326,132	249,674
2	10	636097,289	3903334,326	248,592
3	20	636103,506	3903342,158	247,420
4	30	636109,724	3903349,990	246,274
5	40	636115,699	3903358,022	245,323
6	50	636122,196	3903365,624	244,344
7	60	636129,045	3903372,941	243,179
8	70	636135,112	3903380,891	242,086
9	80	636141,212	3903388,815	241,306
10	90	636147,243	3903396,792	240,573
11	100	636152,928	3903405,044	240,253
12	110	636159,342	3903412,715	239,806
13	120	636165,922	3903420,252	238,213
14	130	636172,152	3903428,074	236,539
15	140	636178,202	3903436,044	234,202
16	150	636184,636	3903443,699	232,079
17	160	636191,345	3903451,132	231,569
18	170	636197,468	3903459,039	231,082
19	180	636203,651	3903466,899	230,766
20	190	636209,707	3903474,856	230,815
21	200	636215,536	3903482,993	234,119
22	210	636222,021	3903490,610	236,997
23	220	636228,249	3903498,434	236,951
24	230	636234,478	3903506,257	236,680

	MT1	Seismic Line	Coordinates			MT2	Seismic Line	Coordinates	
Geoph.	X Loc	x	Y	Z	Geoph.	X Loc	x	Y	Z
1	0	636210,157	3903491,098	228,218	1	0	636161,532	3903406,251	236,996
2	5	636209,970	3903486,101	229,029	2	5	636161,245	3903401,260	237,736
3	10	636209,783	3903481,105	229,839	3	10	636160,958	3903396,268	238,477
4	15	636209,596	3903476,108	230,650	4	15	636160,671	3903391,276	239,217
5	20	636209,281	3903471,120	231,341	5	20	636160,400	3903386,284	239,519
6	25	636208,824	3903466,141	231,903	6	25	636160,128	3903381,291	239,820
7	30	636208,367	3903461,162	232,464	7	30	636159,857	3903376,298	240,121
8	35	636207,911	3903456,183	233,025	8	35	636159,586	3903371,306	240,422
9	40	636207,511	3903451,199	233,558	9	40	636159,250	3903366,317	240,917
10	45	636207,165	3903446,211	234,064	10	45	636158,914	3903361,328	241,417
11	50	636206,819	3903441,223	234,571	11	50	636158,577	3903356,340	241,916
12	55	636206,473	3903436,235	235,077	12	55	636158,240	3903351,351	242,416
13	60	636206,157	3903431,245	235,695	13	60	636157,887	3903346,363	243,055
14	65	636205,870	3903426,253	236,424	14	65	636157,534	3903341,376	243,693
15	70	636205,584	3903421,262	237,154	15	70	636157,181	3903336,388	244,332
16	75	636205,297	3903416,270	237,884	16	75	636156,828	3903331,401	244,971
17	80	636204,998	3903411,279	238,405	17	80	636156,534	3903326,410	245,544
18	85	636204,685	3903406,289	238,720	18	85	636156,240	3903321,418	246,116
19	90	636204,372	3903401,298	239,036	19	90	636155,947	3903316,427	246,689
20	95	636204,059	3903396,308	239,351	20	95	636155,654	3903311,435	247,262
21	100	636203,752	3903391,318	239,586	21	100	636155,375	3903306,443	248,036
22	105	636203,450	3903386,327	239,733	22	105	636155,096	3903301,451	248,811
23	110	636203,148	3903381,336	239,880	23	110	636154,816	3903296,459	249,585
24	115	636202,847	3903376,345	240,028	24	115	636154,537	3903291,467	250,362

	МТЗ	Seismic Line	Coordinates	
Gooph	X	v	v	7
		^	2002227 045	246.066
1	0	030114,220	3903337,045	240,900
2	5	636113,979	3903332,051	247,499
3	10	636113,737	3903327,057	248,033
4	15	636113,496	3903322,062	248,566
5	20	636113,255	3903317,068	249,100
6	25	636112,836	3903312,088	249,679
7	30	636112,321	3903307,114	250,284
8	35	636111,805	3903302,141	250,888
9	40	636111,290	3903297,168	251,493
10	45	636111,069	3903292,173	251,935
11	50	636110,866	3903287,177	252,368
12	55	636110,664	3903282,181	252,800
13	60	636110,459	3903277,185	253,238
14	65	636110,139	3903272,196	253,901
15	70	636109,818	3903267,206	254,563
16	75	636109,498	3903262,216	255,226
17	80	636109,177	3903257,227	255,889
18	85	636108,882	3903252,235	256,615
19	90	636108,587	3903247,244	257,341
20	95	636108,293	3903242,253	258,068
21	100	636107,998	3903237,261	258,795
22	105	636107,687	3903232,271	259,697
23	110	636107,376	3903227,281	260,599
24	115	636107,066	3903222,290	261,501

	ML7	' Seismic Line	Coordinates	
	X			_
Geoph.	Loc	X	Y	Z
1	0	636191,542	3903513,919	229,701
2	5	636194,928	3903517,598	228,553
3	10	636198,314	3903521,277	227,405
4	15	636201,700	3903524,956	226,258
5	20	636205,087	3903528,634	225,110
6	25	636208,473	3903532,313	223,962
7	30	636211,949	3903535,901	223,155
8	35	636215,654	3903539,259	223,202
9	40	636219,358	3903542,618	223,249
10	45	636223,062	3903545,976	223,295
11	50	636226,705	3903549,398	223,178
12	55	636230,190	3903552,983	222,636
13	60	636233,676	3903556,568	222,093
14	65	636237,161	3903560,153	221,551
15	70	636239,884	3903564,305	221,328
16	75	636242,312	3903568,676	221,227
17	80	636244,741	3903573,046	221,127
18	85	636247,170	3903577,417	221,026
19	90	636250,179	3903581,310	220,496
20	95	636253,996	3903584,540	219,367
21	100	636257,813	3903587,769	218,239
22	105	636261,630	3903590,999	217,110
23	110	636265,447	3903594,229	215,981
24	115	636269,264	3903597,458	214,852

	MT5 Seismic Line Coordinates										
Geoph.	X Loc	x	Y	z							
1	0	636227,480	3903478,753	237,488							
2	5	636222,548	3903479,575	234,529							
3	10	636217,737	3903480,849	232,208							
4	15	636213,055	3903482,604	230,569							
5	20	636208,219	3903483,840	229,948							
6	25	636203,338	3903484,925	229,623							
7	30	636198,457	3903486,010	229,650							
8	35	636193,569	3903487,054	229,781							
9	40	636188,608	3903487,674	230,711							
10	45	636183,750	3903488,750	231,650							
11	50	636179,006	3903490,331	232,599							
12	55	636174,263	3903491,912	233,547							

ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΤΩΝ ΓΡΑΜΜΩΝ ΜΕΛΕΤΗΣ (ΗΛΕΚΤΡΙΚΑ)

		ML1 ERT Line	Coordinates			ML2 ERT Line Coordinates					
No	XLoc	x	v	7		No	X	x	v	7	
1	0	636044.693	3903116.081	282.466		1	0	636024 043	3903122 179	279 707	
2	8	636049.678	3903122.339	281.821		2	8	636029.029	3903128,435	278,756	
3	16	636054,670	3903128,590	281,073		3	16	636034.014	3903134.692	277.805	
4	24	636059.670	3903134.835	280.221		4	24	636038 984	3903140 961	276 756	
5	32	636064.670	3903141.080	279.370		5	32	636043,939	3903147.242	275.614	
6	40	636069.677	3903147.320	278.961		6	40	636048.894	3903153.523	274.472	
7	48	636074.683	3903153.559	278.554		7	48	636053,867	3903159,789	272.677	
8	56	636079,619	3903159,855	277,167		8	56	636058.842	3903166.054	270.835	
9	64	636084,486	3903166,204	274,822		9	64	636063.841	3903172.300	269.338	
10	72	636089,357	3903172,550	272,573		10	72	636068.863	3903178.527	268.172	
11	80	636094,299	3903178,841	271,699		11	80	636073.885	3903184.755	267.006	
12	88	636099,241	3903185,132	270,825		12	88	636078,902	3903190,986	266,713	
13	96	636104,192	3903191,416	269,687		13	96	636083.919	3903197.217	266.432	
14	104	636109,151	3903197,693	268,341		14	104	636088,924	3903203,458	265,520	
15	112	636114,129	3903203,956	267,013		15	112	636093.917	3903209.708	263.936	
16	120	636119,321	3903210,042	265,892		16	120	636098,911	3903215,959	262,352	
17	128	636124,513	3903216,128	264,770		17	128	636103,909	3903222,205	261,123	
18	136	636129,545	3903222,345	263,664		18	136	636108,907	3903228,452	259,899	
19	144	636134,452	3903228,663	262,570		19	144	636113,897	3903234,705	258,817	
20	152	636139,360	3903234,981	261,479		20	152	636118,878	3903240,965	257,883	
21	160	636144,390	3903241,201	260,576		21	160	636123,859	3903247,225	256,948	
22	168	636149,420	3903247,422	259,674		22	168	636128,834	3903253,490	255,994	
23	176	636154,434	3903253,656	258,935		23	176	636133,809	3903259,755	255,039	
24	184	636159,429	3903259,905	258,364		24	184	636138,794	3903266,012	254,102	
25	192	636164,425	3903266,153	257,793		25	192	636143,789	3903272,261	253,184	
26	200	636169,549	3903272,297	256,689		26	200	636148,785	3903278,509	252,266	
27	208	636174,673	3903278,441	255,584		27	208	636153,749	3903284,783	251,373	
28	216	636179,768	3903284,608	255,029		28	216	636158,712	3903291,057	250,481	
29	224	636184,843	3903290,793	254,881		29	224	636163,793	3903297,235	249,596	
30	232	636189,917	3903296,978	254,732		30	232	636168,995	3903303,313	248,717	
31	240	636194,546	3903303,502	254,334		31	240	636174,196	3903309,390	247,838	
32	248	636199,172	3903310,029	253,934		32	248	636178,680	3903316,011	247,586	
33	256	636204,000	3903316,402	253,277		33	256	636183,107	3903322,675	247,382	
34	264	636209,065	3903322,594	252,322		34	264	636187,943	3903329,021	246,912	
35	272	636214,130	3903328,787	251,374		35	272	636193,296	3903334,966	246,105	
36	280	636219,204	3903334,972	250,753		36	280	636198,649	3903340,911	245,299	
37	288	636224,278	3903341,157	250,132		37	288	636203,614	3903347,184	245,038	
38	296	636229,265	3903347,412	249,963		38	296	636208,573	3903353,462	244,784	
39	304	636234,166	3903353,734	250,234		39	304	636213,542	3903359,731	244,767	
40	312	636239,068	3903360,056	250,505	4	40	312	636218,524	3903365,990	245,038	
41	320	636243,970	3903366,379	250,776	4	41	320	636223,506	3903372,250	245,308	

		ML3 ERT Line	Coordinates			ML4 ERT Line Coordinates				
No	X Loc	x	Y	Z	No	X Loc	x	Y	Z	
1	0	636018,466	3903147,170	275,701	1	0	636002,402	3903159,643	273,591	
2	8	636023,443	3903153,433	274,654	2	8	636007,325	3903165,949	272,597	
3	16	636028,354	3903159,748	273,727	3	16	636012,291	3903172,221	271,711	
4	24	636033,265	3903166,063	272,800	4	24	636017,257	3903178,493	270,825	
5	32	636038,231	3903172,335	271,839	5	32	636022,231	3903184,759	269,513	
6	40	636043,197	3903178,607	270,879	6	40	636027,204	3903191,025	268,201	
7	48	636048,210	3903184,842	269,822	7	48	636032,228	3903197,251	266,938	
8	56	636053,270	3903191,038	268,668	8	56	636037,299	3903203,438	265,723	
9	64	636058,330	3903197,235	267,514	9	64	636042,351	3903209,641	264,540	
10	72	636063,307	3903203,498	266,123	10	72	636047,259	3903215,959	263,605	
11	80	636068,284	3903209,761	264,731	11	80	636052,167	3903222,277	262,670	
12	88	636073,269	3903216,018	263,484	12	88	636057,148	3903228,536	261,728	
13	96	636078,264	3903222,267	262,387	13	96	636062,203	3903234,736	260,779	
14	104	636083,259	3903228,516	261,291	14	104	636067,257	3903240,938	259,831	
15	112	636088,268	3903234,754	260,225	15	112	636072,192	3903247,234	259,041	
16	120	636093,278	3903240,991	259,159	16	120	636077,127	3903253,531	258,251	
17	128	636098,255	3903247,254	258,104	17	128	636082,247	3903259,672	257,245	
18	136	636103,201	3903253,542	257,060	18	136	636087,578	3903265,637	255,992	
19	144	636108,148	3903259,829	256,016	19	144	636092,876	3903271,628	254,760	
20	152	636113,123	3903266,094	254,838	20	152	636097,566	3903278,110	253,912	
21	160	636118,097	3903272,359	253,661	21	160	636102,255	3903284,591	253,065	
22	168	636123,084	3903278,615	252,483	22	168	636107,078	3903290,972	252,191	
23	176	636128,082	3903284,862	251,305	23	176	636112,036	3903297,250	251,289	
24	184	636133,080	3903291,108	250,127	24	184	636116,993	3903303,529	250,388	
25	192	636138,102	3903297,335	249,345	25	192	636121,987	3903309,779	249,647	
26	200	636143,124	3903303,563	248,567	26	200	636126,981	3903316,029	248,910	
27	208	636148,125	3903309,807	247,702	27	208	636131,994	3903322,264	247,928	
28	216	636153,105	3903316,068	246,757	28	216	636137,026	3903328,483	246,684	
29	224	636158,086	3903322,328	245,811	29	224	636142,058	3903334,702	245,440	
30	232	636163,065	3903328,590	245,130	30	232	636147,143	3903340,878	244,354	
31	240	636168,043	3903334,852	244,451	31	240	636152,228	3903347,054	243,270	
32	248	636173,027	3903341,110	243,621	32	248	636157,284	3903353,253	242,365	
33	256	636178,017	3903347,364	242,644	33	256	636162,302	3903359,484	241,688	
34	264	636183,005	3903353,617	241,670	34	264	636167,319	3903365,715	241,011	
35	272	636187,974	3903359,887	241,120	35	272	636172,268	3903372,001	240,104	
36	280	636192,942	3903366,158	240,569	36	280	636177,214	3903378,289	239,187	
37	288	636197,935	3903372,408	240,415	37	288	636182,157	3903384,579	238,358	
38	296	636202,951	3903378,640	240,633	38	296	636187,095	3903390,873	237,625	
39	304	636207,968	3903384,872	240,851	39	304	636192,033	3903397,167	236,891	
40	312	636212,984	3903391,104	241,068	40	312	636196,972	3903403,461	236,158	
41	320	636218,000	3903397,337	241,286	41	320	636201,910	3903409,755	235,424	

		ML5 ERT Line	Coordinates				ML6 ERT Line	Coordinates	
No	X Loc	x	Y	Z	No	X Loc	x	Y	Z
1	0	636007,741	3903198,046	270,719	1	0	636059,240	3903286,622	256,321
2	8	636012,437	3903204,522	270,668	2	8	636064,201	3903292,898	255,204
3	16	636017,134	3903210,999	270,616	3	16	636069,163	3903299,174	254,086
4	24	636022,111	3903217,255	269,489	4	24	636074,141	3903305,435	252,993
5	32	636027,288	3903223,354	267,598	5	32	636079,135	3903311,685	251,920
6	40	636032,465	3903229,453	265,709	6	40	636084,132	3903317,933	250,852
7	48	636037,444	3903235,715	263,861	7	48	636089,271	3903324,064	249,998
8	56	636042,434	3903241,968	262,012	8	56	636094,410	3903330,195	249,143
9	64	636047,353	3903248,276	260,666	9	64	636099,391	3903336,453	248,244
10	72	636052,208	3903254,635	259,784	10	72	636104,236	3903342,819	247,307
11	80	636057,063	3903260,993	258,881	11	80	636109,083	3903349,183	246,372
12	88	636062,116	3903267,196	257,585	12	88	636114,057	3903355,449	245,611
13	96	636067,159	3903273,406	256,290	13	96	636119,031	3903361,714	244,850
14	104	636072,223	3903279,599	255,206	14	104	636124,126	3903367,881	243,998
15	112	636077,306	3903285,777	254,318	15	112	636129,324	3903373,962	243,067
16	120	636082,388	3903291,955	253,430	16	120	636134,487	3903380,071	242,166
17	128	636087,427	3903298,168	253,243	17	128	636139,340	3903386,431	241,542
18	136	636092,464	3903304,384	253,088	18	136	636144,194	3903392,790	240,918
19	144	636097,488	3903310,610	252,262	19	144	636149,033	3903399,161	240,478
20	152	636102,496	3903316,848	250,693	20	152	636153,858	3903405,542	240,222
21	160	636107,504	3903323,087	249,125	21	160	636158,682	3903411,923	239,966
22	168	636112,407	3903329,408	248,167	22	168	636163,813	3903418,062	238,695
23	176	636117,307	3903335,732	247,223	23	176	636168,945	3903424,199	237,421
24	184	636122,264	3903342,010	246,322	24	184	636174,002	3903430,397	235,845
25	192	636127,271	3903348,250	245,457	25	192	636178,986	3903436,655	233,975
26	200	636132,278	3903354,490	244,591	26	200	636183,973	3903442,910	232,132
27	208	636137,240	3903360,765	243,721	27	208	636189,120	3903449,034	231,724
28	216	636142,204	3903367,039	242,851	28	216	636194,267	3903455,159	231,316
29	224	636147,227	3903373,265	241,860	29	224	636199,286	3903461,386	230,988
30	232	636152,310	3903379,442	240,749	30	232	636204,185	3903467,711	230,736
31	240	636157,393	3903385,619	239,628	31	240	636209,083	3903474,036	230,484
32	248	636161,789	3903392,306	238,200	32	248	636213,928	3903480,402	233,118
33	256	636166,206	3903398,975	236,773	33	256	636218,773	3903486,768	235,761
34	264	636171,015	3903405,347	235,753	34	264	636223,729	3903493,047	236,983
35	272	636176,268	3903411,381	235,195	35	272	636228,782	3903499,249	236,947
36	280	636181,521	3903417,415	234,636	36	280	636233,836	3903505,451	236,906
37	288	636186,828	3903423,401	234,081	37	288	636238,818	3903511,709	235,154
38	296	636192,128	3903429,394	233,526	38	296	636243,801	3903517,968	233,401
39	304	636197,339	3903435,463	233,331	39	304	636248,799	3903524,215	232,595
40	312	636202,459	3903441,609	233,509	40	312	636253,812	3903530,449	232,698
41	320	636207,579	3903447,756	233,686	41	320	636258,825	3903536,684	232,802

	MT1 ERT Line Coordinates					MT2 ERT Line Coordinates				
No	X Loc	x	Y	Z	No	X Loc	x	Y	Z	
1	0	636213,721	3903553,560	223,222	1	0	636164,415	3903451,192	233,959	
2	5	636213,471	3903548,566	223,219	2	5	636164,079	3903446,203	234,280	
3	10	636213,221	3903543,573	223,216	3	10	636163,742	3903441,215	234,602	
4	15	636212,970	3903538,579	223,212	4	15	636163,406	3903436,226	234,923	
5	20	636212,720	3903533,585	223,209	5	20	636163,070	3903431,237	235,244	
6	25	636212,399	3903528,595	223,752	6	25	636162,757	3903426,247	235,484	
7	30	636212,077	3903523,606	224,297	7	30	636162,444	3903421,257	235,723	
8	35	636211,755	3903518,616	224,841	8	35	636162,131	3903416,267	235,963	
9	40	636211,434	3903513,626	225,386	9	40	636161,820	3903411,276	236,250	
10	45	636211,138	3903508,635	225,989	10	45	636161,533	3903406,285	236,991	
11	50	636210,843	3903503,644	226,594	11	50	636161,246	3903401,293	237,731	
12	55	636210,548	3903498,653	227,198	12	55	636160,960	3903396,301	238,472	
13	60	636210,253	3903493,661	227,803	13	60	636160,673	3903391,309	239,212	
14	65	636210,066	3903488,665	228,613	14	65	636160,401	3903386,317	239,517	
15	70	636209,879	3903483,668	229,423	15	70	636160,130	3903381,324	239,818	
16	75	636209,692	3903478,672	230,234	16	75	636159,859	3903376,331	240,119	
17	80	636209,505	3903473,675	231,044	17	80	636159,588	3903371,339	240,420	
18	85	636209,058	3903468,696	231,615	18	85	636159,253	3903366,350	240,914	
19	90	636208,602	3903463,717	232,176	19	90	636158,916	3903361,361	241,414	
20	95	636208,145	3903458,737	232,737	20	95	636158,579	3903356,373	241,913	
21	100	636207,688	3903453,758	233,298	21	100	636158,242	3903351,384	242,413	
22	105	636207,342	3903448,770	233,805	22	105	636157,889	3903346,397	243,050	
23	110	636206,996	3903443,782	234,311	23	110	636157,536	3903341,409	243,689	
24	115	636206,650	3903438,794	234,817	24	115	636157,183	3903336,422	244,328	
25	120	636206,305	3903433,806	235,323	25	120	636156,830	3903331,434	244,966	
26	125	636206,017	3903428,815	236,050	26	125	636156,536	3903326,443	245,540	
27	130	636205,731	3903423,823	236,780	27	130	636156,242	3903321,451	246,113	
28	135	636205,444	3903418,831	237,509	28	135	636155,949	3903316,460	246,685	
29	140	636205,158	3903413,839	238,239	29	140	636155,656	3903311,469	247,258	
30	145	636204,845	3903408,849	238,558	30	145	636155,377	3903306,476	248,031	
31	150	636204,532	3903403,859	238,874	31	150	636155,097	3903301,484	248,806	
32	155	636204,220	3903398,869	239,190	32	155	636154,818	3903296,492	249,580	
33	160	636203,907	3903393,878	239,505	33	160	636154,539	3903291,500	250,356	
34	165	636203,605	3903388,887	239,657	34	165	636154,203	3903286,511	251,289	
35	170	636203,303	3903383,897	239,805	35	170	636153,867	3903281,522	252,222	
36	175	636203,001	3903378,906	239,952	36	175	636153,531	3903276,534	253,155	
37	180	636202,700	3903373,915	240,100	37	180	636153,195	3903271,545	254,090	
38	185	636202,392	3903368,924	240,979	38	185	636152,870	3903266,556	255,309	
39	190	636202,084	3903363,934	241,860	39	190	636152,544	3903261,566	256,527	
40	195	636201,776	3903358,943	242,741	40	195	636152,219	3903256,577	257,746	
41	200	636201,468	3903353,953	243,622	41	200	636151,893	3903251,587	258,964	

	MT3 ERT Line Coordinates					ML7 ERT Line Coordinates				
No	X Loc	x	Y	Z	No	X Loc	x	Y	Z	
1	0	636116,676	3903376,874	245,057	1	0	636193,565	3903516,116	229,015	
2	5	636116,350	3903371,885	245,049	2	3	636195,596	3903518,324	228,327	
3	10	636116,024	3903366,895	245,040	3	6	636197,628	3903520,531	227,638	
4	15	636115,698	3903361,906	245,032	4	9	636199,660	3903522,738	226,949	
5	20	636115,372	3903356,917	245,023	5	12	636201,691	3903524,946	226,261	
6	25	636115,082	3903351,925	245,500	6	15	636203,723	3903527,153	225,572	
7	30	636114,793	3903346,933	245,992	7	18	636205,755	3903529,360	224,884	
8	35	636114,504	3903341,942	246,484	8	21	636207,786	3903531,568	224,195	
9	40	636114,215	3903336,950	246,976	9	24	636209,818	3903533,775	223,506	
10	45	636113,974	3903331,956	247,510	10	27	636211,939	3903535,892	223,155	
11	50	636113,733	3903326,962	248,043	11	30	636214,162	3903537,907	223,183	
12	55	636113,491	3903321,968	248,576	12	33	636216,384	3903539,922	223,211	
13	60	636113,250	3903316,973	249,110	13	36	636218,607	3903541,937	223,239	
14	65	636112,827	3903311,993	249,691	14	39	636220,829	3903543,952	223,267	
15	70	636112,311	3903307,020	250,295	15	42	636223,052	3903545,967	223,295	
16	75	636111,795	3903302,046	250,900	16	45	636225,274	3903547,982	223,323	
17	80	636111,280	3903297,073	251,505	17	48	636227,393	3903550,105	223,071	
18	85	636111,065	3903292,078	251,944	18	51	636229,484	3903552,256	222,746	
19	90	636110,863	3903287,082	252,376	19	54	636231,575	3903554,407	222,420	
20	95	636110,660	3903282,086	252,808	20	57	636233,666	3903556,558	222,095	
21	100	636110,453	3903277,091	253,250	21	60	636235,757	3903558,709	221,769	
22	105	636110,132	3903272,101	253,913	22	63	636237,849	3903560,861	221,444	
23	110	636109,812	3903267,111	254,576	23	66	636239,391	3903563,419	221,348	
24	115	636109,492	3903262,121	255,239	24	69	636240,849	3903566,042	221,288	
25	120	636109,171	3903257,132	255,902	25	72	636242,306	3903568,664	221,227	
26	125	636108,877	3903252,140	256,629	26	75	636243,763	3903571,286	221,167	
27	130	636108,582	3903247,149	257,355	27	78	636245,220	3903573,908	221,107	
28	135	636108,287	3903242,158	258,082	28	81	636246,677	3903576,531	221,047	
29	140	636107,992	3903237,166	258,813	29	84	636248,135	3903579,153	220,987	
30	145	636107,681	3903232,176	259,715	30	87	636250,168	3903581,302	220,499	
31	150	636107,371	3903227,186	260,616	31	90	636252,459	3903583,239	219,822	
32	155	636107,060	3903222,195	261,518	32	93	636254,749	3903585,177	219,145	
33	160	636106,749	3903217,205	262,420	33	96	636257,039	3903587,115	218,467	
34	165	636106,400	3903212,217	263,874	34	99	636259,329	3903589,053	217,790	
35	170	636106,050	3903207,230	265,329	35	102	636261,619	3903590,990	217,113	
36	175	636105,700	3903202,242	266,783	36	105	636263,910	3903592,928	216,436	
37	180	636105,351	3903197,254	268,234	37	108	636266,200	3903594,866	215,758	
38	185	636105,027	3903192,265	269,475	38	111	636268,490	3903596,804	215,081	
39	190	636104,703	3903187,275	270,717	39	114	636270,780	3903598,742	214,404	
40	195	636104,378	3903182,286	271,959	40	117	636273,070	3903600,679	213,726	
41	200	636104,054	3903177,296	273,201	41	120	636275,361	3903602,617	213,049	