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Abstract. A relaxation-type approximation of second-order non-equilibrium traffic models, written in conservation or bal-
ance law form, is considered. Using the relaxation approximation, the nonlinear equations are transformed to a semi-linear
diagonilizable problem with linear characteristic variables and stiff source terms with the attractive feature that neither Rie-
mann solvers nor characteristic decompositions are in need. In particular, it is only necessary to provide the flux and source
term functions and an estimate of the characteristic speeds. To discretize the resulting relaxation system, high-resolution recon-
structions in space are considered. Emphasis is given on a fifth-order WENO scheme and its performance. The computations
reported demonstrate the simplicity and versatility of relaxation schemes as numerical solvers.
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INTRODUCTION
Over the past years several approaches have been followed to model the dynamics of traffic flow, the most suc-

cessful being microscopic car-following models, gas-kinetic models, and macroscopic traffic models. Comprehensive
descriptions of such models can be found, for example, in [1, 2, 3]. Macroscopic models consider the traffic as an
anisotropic continuum, where vehicle dynamics are described in terms of spatial vehicle density and average velocity,
as functions of location and time.

The main motivation behind the present work is the development of a common numerical framework for the
macroscopic simulation of traffic flow, transparent to the traffic flow model used by considering second-order non-
equilibrium traffic flow models. The requirement for the use of different macroscopic models (existing or new devel-
opments) under the same computational environment imposes the avoidance of developing new complex numerical
solvers. The approach followed here includes the adoption of the relaxation approach proposed in [4] along with finite
volume discretizations of a linearized system of differential equations, which renders the methodology independent of
the use of Riemann solvers. Within this approach, the differences between the various traffic flow models are taken into
account through the corresponding flux and source term functions, plus their different parameters and upper bounds of
the corresponding eigenvalues of the flux’s Jacobian. Spatial discretizations of different order of accuracy are incor-
porated; a first-order upwind scheme, a second-order MUSCL and a fifth-order weighted essentially non-oscillatory
(WENO) scheme are introduced. Implicit-explicit (IMEX) Runge-Kutta (RK) schemes are also introduced for time
discretization. The relaxation approach of [4], has found wide application in fluid dynamics problems, we refer, for
example, to [5, 6, 7], among others. The main advantage of such schemes is that neither Riemann solvers, nor the
explicit computation of eigenvalues are needed, which renders this methodology ideal for problems where an analytic
expression for the eigenvalues of the systems’ Jacobian matrix may not be possible or is computationally tedious to
obtain, or the Riemann problems are difficult to approximate [7]. However, the work on relaxation schemes for traffic
flow problems includes, thus far, few works on second- or higher-order schemes for the Lighthill-Whitham-Richards
(LWR) model and its multi-lane variants, and low-order schemes on standard second-order traffic flow models such as
the Aw and Rascle [8] see, for example, [7, 9, 10, 11, 12].

The proposed computational framework is formulated as to have a generalized description of variables and fluxes
and to deal with different traffic flow models and future modifications. Thus, we depart by considering the general
formulation of two-equation traffic flow models, with a possible source term present, all written as nonlinear systems
of conservation laws with initial data, as

∂tu+∂xf(u) = s(u),
u(x,0) = u0(x),

(1)



where the functions u, f(u) and s(u) ∈ R2. When the source term s(u) is present system (1) is called a balance
law. In what follows, we will denote, as functions in space x and time t, ρ(x, t) the car or traffic density, u(x, t)
the average speed and q = ρu the traffic flow rate. Systems in the form of (1) can be rewritten in quasi-linear form
∂tu + J(u)∂xu = s(u), where J(u) = ∂ f/∂u is the Jacobian matrix of the system. Solving for the eigenvalues, from
det[J(u)−λ I] = 0, certain realistic features of the traffic models can be verified or not, e.g. the anisotropic nature of
traffic flow. Real and distinct eigenvalues, λ1,2, guarantee hyperbolicity. The solutions related to the k−th eigenvalue
are called k−family wave solutions. These elementary wave solutions are constituted by shock waves, rarefaction
waves and contact discontinuities. The correct numerical representation of these elementary solutions is a requirement
by any numerical scheme approximating (1).

TRAFFIC FLOW MODELS AND THE RELAXATION MODEL
The Aw-Rascle (AR) model. Aw and Rascle [8] proposed a two-equation traffic flow model which in conservation

law form for u = [ρ, ρ(u+P(ρ))]T reads as{
∂tρ +∂x(ρu) = 0;
∂t (ρ(u+P(ρ)))+∂x (ρu(u+P(ρ)) = 0,

(2)

where P(ρ) is an increasing function of density, so as to insure that the model caries the anisotropic property, given as
P(ρ) = C2

0ργ , γ > 0. Solving for the eigenvalues two distinct, except for ρ = 0, i.e. at vacuum, and real ones can be
found namely, λ1 = u−ρP′(ρ) and λ2 = u. In this work, we use the values C0 = 1 and γ = 2.

The non-local Gas-Kinetic based traffic model. In [13] (see also [3]) a macroscopic gas-kinetic-based traffic flow
model (GKT model) was proposed which, in balance law form for u = [ρ, ρu]T, reads as∂tρ +∂x(ρu) = 0;

∂t (ρu)+∂x
(
ρu2 +Θρ

)
= ρ

(
V e(ρ)−u

τ

)
,

(3)

where Θ = A(ρ)u2, with A(ρ) being a density dependent variance factor with A(ρ) = A0 +δA
[
1+ tanh

(
ρ−ρcr

δρ

)]
in

which ρcr is the critical density and A0,δA and δρ are constant values given in [13, 3, 14] along with other typical
values for this model. V e(ρ,u,ρa,ua) denotes the (non-local and dynamic) equilibrium speed, which depends not only
on the local density ρ and mean speed u but also on the non-local density ρa and mean speed ua. Model (3) has two
distinct eigenvalues λ1,2 = u±C, with C =

√
∂Θ/∂ρ , which indicate that the model is also strictly hyperbolic.

The relaxation model. The class of relaxation models introduced in [4] is obtained by introducing the artificial
variable v (relaxation variable) and the corresponding to (1) (now linear) relaxation system is given as

∂tu+∂xv = s(u),

∂tv+C2
∂xu =−1

ε
(v− f(u)) ,

(4)

with initial data u(x,0) = u0(x) and v(x,0) = v0(x) = f(u0(x)), where the parameter ε is the relaxation rate (0 < ε� 1)
and C2 = diag{c2

1,c
2
2} matrix to be chosen. For small ε , applying the Chapman-Enskog expansion in system (4), see

for example [4], we can derive the following approximation for u

∂tu+∂xf(u) = s(u)+ ε∂x [J(u)s(u)]+ ε∂x
[(

C2−J2)
∂xu
]
+O(ε2). (5)

Equation (5) governs the first-order behavior of (4), with the third term on the right-hand side being an O(ε) dominant
dissipation term in the model and

(
C2−J2

)
being the diffusion coefficient matrix. Model (4) is well-posed only

if
(
C2−J2

)
is positive semi-definite for all u. This requirement on the diffusion matrix is the well-known sub-

characteristic condition, [4], which ensures the dissipative nature of (5) and in 1D it is equivalent to

λ
2 ≤ c2, where λ = max

1≤i≤2
|λi| and c = min

1≤i≤2
|ci|. (6)

It is important that this condition is satisfied also at the discrete level presented next.



NUMERICAL SCHEMES AND TEST RESULTS
To discretize system (4), let xi = i∆x, xi± 1

2
= (i± 1

2 )∆x, where, for simplicity, we assume that ∆x is a uniform
spatial step. The approximate cell average of the variable u in the cell Ii = [xi− 1

2
,xi+ 1

2
] at time t is denoted as ui(t),

i.e., ui(t) = 1
∆x
∫

Ii u(x, t)dx and the approximate value of u at (xi+ 1
2
, t) by ui+ 1

2
(t). Integrating (4) the semi-discrete

relaxation system can be reformulated as a system of autonomous ordinary differential equations as

dY

dt
= F (Y )− 1

ε
G (Y ), (7)

with the time-dependent vector functions given as

Y =
(

ui
vi

)
, F (Y ) =

(
s(u)i−Dxvi
−C2Dxui

)
and G (Y ) =

(
0

vi− f(u)i

)
,

with

Dxvi =
vi+ 1

2
−vi− 1

2

∆x
and Dxui =

ui+ 1
2
−ui− 1

2

∆x
and s(u)i and f(u)i are space averages of the source term and flux function, respectively. To complete the spatial
discretization, it is necessary to evaluate the flux values ui± 1

2
and vi± 1

2
. To this end three spatial discretizations of

different order have been applied, a first-order upwind one, a second order MUSCL [15] and a fifth-order WENO [16].
The time marching scheme is based on implicit-explicit (IMEX) Runge-Kutta (RK) splitting. The non-stiff stage of

the splitting in F (Y ) in treated by an explicit RK scheme, while the stiff stage for G (Y ) by diagonally implicit RK
(DIRK) schemes, we refer to [17, 10, 14] for more details. By denoting with ∆tn the current time step and Y n the
approximate solution at time t = tn, high-order relaxation schemes are under the usual CFL condition,

CFL = max
(

(max
i,k

cn
k)

∆tn

∆x
,

∆tn

∆x

)
≤ 1/2,

where the values of ck,k = 1,2 are adjusted according to the solutions behavior by considering a global selection on
every time step ∆tn. Based on the global maximum of each eigenvalue of the system’s Jacobian matrices over the grid
cells Ii, their choice is made as cn

k = maxi |λ n
k |+e, k = 1,2 where e is a small correction parameter of O(10−2), added

to avoid the characteristic speeds from vanishing. In the numerical results presented next, the relaxation rate ε was set
to 10−8 and the CFL value used was set to 0.4.

For the AR model we consider the situation of faster vehicles downstream followed by slower ones from behind.
The initial condition for this problem is [ρ(x,0), u(x,0)] = [0.4, 0.1] for x ≤ 8 and [ρ(x,0), u(x,0)] = [0.1, 0.9] for
x > 8. The exact solution of this problem is given by a rarefaction wave connected to a vacuum state, which is followed
by a contact discontinuity going downstream. This is a demanding test case due to the appearance of the vacuum and
it is a challenge for any numerical scheme to correctly resolve the transition wave that connects the rarefaction wave
to the vacuum state. To this end a relatively fine grid has to be used with ∆x = 0.02. Results are presented in Fig. 1 for
the MUSCL and WENO schemes. The WENO scheme almost perfectly predicts the appearance of the vacuum and
the transition wave that connects the rarefaction with the vacuum state.

FIGURE 1. AR model: Vacuum solution for ρ (left), u (middle) and spatio-temporal evolution of the flow rate q (right) computed
with the WENO scheme

Next, and for the GKT model, the development of traffic instabilities, starting with almost homogeneous initial
traffic, is considered. Following [13, 14], we consider a dipole-like initial variation of the average density ρ̄ . For



ρ̄ = 37 a cascade of traffic jams emerges, i.e. stop-and-go traffic. This is a case which can be difficult to resolve with
a low-order scheme. Referring to Fig. 2, the first-order relaxation scheme fails to reproduce all the stop-and-go waves
when 400 grid points were used. When massively increasing the npts to 4000 all emerging waves can be captured by
this scheme but, obviously, with a high computational cost. Applying the WENO scheme, the correct wave structured
is computed only with 400 grid points. This shows the significant advantage that can be gained when one implements
a high-resolution scheme in the simulation. Finally, in Fig. 3, numerical results obtained with the WENO scheme for

FIGURE 2. GKT model: Localized Perturbation and stop and go waves for ρ̄ = 37s

ρ̄ = 26 are shown. In this scenario a single density cluster is formed.

FIGURE 3. GKT model: Localized Perturbations ρ̄ = 25, periodic boundary conditions
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