
Fair Resource Allocation in P2P Systems: Theoretical
and Experimental Results

by

Paraskevi Raftopoulou

A thesis submitted in fulfillment of the
requirements for the degree of

Master of Computer Engineering

Technical University of Crete

Department of Electronic and Computer Engineering

Intelligent Systems Laboratory

June 2003

1

Abstract

We study the problem of fair allocation of resources among agents with a special
emphasis to the case of peer-to-peer systems. At first, we study three measures
of fairness for resource allocation (the fairness index, majorization and max-min
fairness) and analyze their relationship. Then, we consider a very simple model
of resource allocation where we have a single resource that comes in indivisible
quantities represented by integers, and needs to be allocated fairly among n
agents. We adopt the fairness index as our measure of fairness for this problem,
and study centralized algorithms for its solution. It turns out that our problem
is very close to number partitioning, one of the six basic NP-complete problems
in the standard book by Garey and Johnson. We discuss the relationship of these
two problems and devise a greedy algorithm that runs in polynomial time and a
complete anytime algorithm that runs in exponential time. We study the phase
transition behaviour of these algorithms and demonstrate that the greedy one
actually performs very well and returns almost perfectly fair allocations.

Finally, we consider the hierarchical P2P content-sharing system CLUSTER
and revisit its resource allocation algorithms in the light of the above results.
We show how to devise a centralized complete anytime algorithm for a more
complicated resource allocation problem in CLUSTER: fair allocation of load.
We study the phase transition behaviour of this algorithm and compare it with
the greedy algorithm MaxFair, proposed by the inventors of CLUSTER.

2

Acknowledgements

I would like to thank my supervisor Manolis Koubarakis for his guidance and
precious advice. Manolis introduced me to new research areas and being always
there helped me to broaden my knowledge boundaries. His comments and cor-
rections were always up to the point showing me the way. His belief in me was a
continuous motivation for improvement.

I would also like to thank Richard Korf for sending me his C code on 2-way
and 3-way number partitioning. I thank Ian Gent and Toby Walsh for sending
their Lisp code and being always available to answer my questions regarding
number partitioning phase transitions.

I would also like to acknowledge the financial support received from project
DIET in the context of which this work was carried out.

I am grateful to the rest of my fellow students in the group, Theodoros Koutris,
Christos Tryfonopoulos, Anni Xiruhaki, Georgia Adamopoulou, Stamatis Andri-
anakis and Matoula Magiridou, for always making the hours at the office so pleas-
ant. Their encouragement was precious to me. Special thanks to Thodoros and
Christos for their collaboration and valuable comments, and especially Matoula
for her contribution in Chapter 3.

My soundly thanks go to my family for their endless love and encouragement
throughout this long but rewarding journey. I own them my existence, my way
of thinking and my will for continuous progress. I dedicate to them all my
achievements and I hope they are proud of me.

I want to profoundly thank a special person. Nothing would be the same if
Christos was missing out of my life. He was always there lightening my days,
giving breath to my moments... I thank him for offering me so generously his
love.

Finally, my deepest thanks go to Amalia, Costas, Georgia, Maria, Basiliki,
Nikos, Sotiris, Petros and Stamatis. They offered me ungrudgingly their friend-
ship. I thank them all for being there to all my joys and anxieties.

3

This dissertation is dedicated to my mother Aggeliki,
my father Costas and my sister Katerina.

4

Contents

1 Introduction 9

1.1 Economics-Inspired Resource Allocation in P2P Networks 11
1.2 Contributions . 12
1.3 Organization . 13

2 Related Work 14

2.1 P2P Computing . 14
2.1.1 Three Influential P2P Systems: Napster, Gnutella and Freenet 15
2.1.2 Distributed Hash-Tables 19

2.2 Modelling and Measuring: Uncovering the “Laws” of P2P networks 23
2.2.1 Measurements and Graph Models for the Web 24
2.2.2 Measurement Studies for P2P Networks 26

2.3 Economic Ideas in P2P Systems 30
2.4 Conclusions . 32

3 Measures of Fairness in Resource Allocation 33

3.1 Fairness Index . 33
3.2 The Relation of Fairness Index to Other Statistical Measures . . . 36
3.3 Max-Min Fairness . 37
3.4 Majorization . 38
3.5 Conclusions . 42

4 Fair Allocation of Load in P2P Systems 43

4.1 The Fair Load Allocation Problem 43
4.2 The Number Partitioning Problem 44

4.2.1 A Greedy Algorithm for NUMP 45
4.2.2 The Set-Differencing Algorithm for NUMP 46
4.2.3 A Pseudo-Polynomial Algorithm Based on Dynamic Pro-

gramming . 47
4.2.4 Complete Algorithms for NUMP 48

4.3 A Greedy Algorithm for FLA . 49
4.4 A Complete Algorithm for FLA 49
4.5 Experimental Results . 51

5

4.5.1 Phase Transitions . 51
4.5.2 Varying the Number of Documents 56
4.5.3 How Fair is GFLA and CGFLA? 57
4.5.4 Varying the Number of Peers 58
4.5.5 Using Zipf Distributions 60

4.6 Conclusions . 61

5 More Sophisticated Models of Resources 63

5.1 CLUSTER: A Hierarchical P2P Content Sharing System 64
5.1.1 Inter-cluster Load Balancing: Formal Problem Formulation 65

5.2 Accounting for Heterogeneous Peers in CLUSTER 66
5.2.1 Peers with Identical Capabilities Contributing Documents

of a Single Category Each 66
5.2.2 Peers with Different Processing Capacity 67
5.2.3 Peers that Contribute Documents Belonging to Multiple

Categories . 67
5.2.4 Peers with Different Storage Capacities 68

5.3 Algorithms for ICLB . 69
5.3.1 A Greedy Algorithm for ICLB 69
5.3.2 A Complete Algorithm for ICLB 71
5.3.3 Further Discussion . 72

5.4 Experimental Results . 72
5.4.1 Framework . 72
5.4.2 Phase Transitions . 73
5.4.3 Effect of Number of Documents and Peers 75
5.4.4 Varying the Number of Categories 76
5.4.5 Varying the Number of Clusters 76
5.4.6 How Fair is MaxFair and CICLB? 77

5.5 Conclusions . 80

6 Concluding Remarks 81

6.1 Future Work . 82

A Appendix 92

6

List of Figures

2.1 An overview of Napster’s architecture 16
2.2 A high level view of Gnutella’s architecture 17
2.3 The Web’s bow-tie structure from [KRRT02] 25

3.1 A bell-shaped fairness index curve 36
3.2 A data network . 37
3.3 Lorenz curves . 39

4.1 Complete algorithm based on the greedy heuristic for FLA 51
4.2 Complete algorithm for FLA based on the greedy heuristic 52
4.3 Average nodes searched by CGFLA against κ 54
4.4 Average nodes searched by CGFLA against γ 55
4.5 Average nodes generated by CGFLA against n 56
4.6 Percentage of pruned nodes against κ 57
4.7 Average fairness index achieved against log2(l) 58
4.8 Difference in the fairness index achieved against κ 59
4.9 Average nodes searched by CGFLA against κ 60
4.10 Average nodes searched against κ 61

5.1 A greedy algorithm for ICLB . 70
5.2 Average nodes searched by CICLB against κ 75
5.3 Average nodes searched by CICLB against λ for different number

of documents . 76
5.4 Average nodes searched by CICLB against m 77
5.5 Difference in the fairness index between the greedy and the optimal

solution . 78
5.6 Optimal fairness index . 79

7

List of Tables

5.1 CLUSTER model parameters . 65
5.2 Baseline values for the parameters used in the experiments 73

8

Chapter 1

Introduction

The problem of resource allocation in peer-to-peer (P2P) systems is a difficult
and important one. If we take a macroscopic view of P2P networks, it is not
difficult to appreciate the degree of complexity involved in the organization and
management of their resources and the services they provide. There is a huge
number of autonomous peers making up the network. The network is open and
peers can connect and disconnect from it at any point in time. Peers are very
heterogeneous as witnessed by a recent study of Napster and Gnutella [SGG02]
and belong to users with possibly conflicting interests. P2P network users are self-
interested and should not be expected to be cooperative. They will act in order
to satisfy their own goals and these goals might conflict with various notions
of “common good”. P2P users might collude to take advantage of the system
resources; they might even be malicious and try to attack the system by exploiting
its vulnerabilities.

Some of these observations have been made in the nineties for other complex
distributed systems and networks and various algorithms for resource allocation
have been proposed. Existing approaches to resource allocation in distributed
systems and networks can be usefully classified into various dimensions by asking
the following questions:

• What are the goals of resource allocation?

• What are the technical characteristics of the solution proposed?

Typically, work on resource allocation has several goals including:

• Fair access to system resources.

• Scalable access to resources by users and applications.

• High quality of service as given by parameters such as average response
time, throughput, etc.

9

• Efficient, scalable, robust and fault-tolerant approaches for performing the
resource allocation itself.

Regarding the technical details, one can distinguish between centralized and
decentralized approaches to resource allocation. In the former case researchers
usually assume that complete information about the system is available and pro-
pose an optimization algorithm for the task at hand. Such algorithms are usually
based on mathematical models and techniques from theoretical computer science
and/or operations research and, in a real system, they will be run by a centralized
dedicated server. Relying on a single dedicated server introduces a single point of
failure into the system and does not scale well. Then, in the typical distributed
systems solution to this problem, one introduces a cluster of servers organized in
a hierarchical or P2P fashion. Various sophisticated protocols facilitate commu-
nication between cluster members and ensure that the whole system appears to
its users as a single server but at the same time offers scalability and performance
guarantees.

In the decentralized approach to resource allocation, researchers recognize
that resources in a distributed system are owned by autonomous nodes that
make local decisions under limited information, thus a decentralized solution
that takes this autonomy of nodes explicitly into account is preferable. From
a researcher’s point of view it is usually a good strategy to investigate both
centralized and decentralized approaches so that “perfect” centralized solutions
offer a good benchmark against which “imperfect” decentralized solutions can be
measured.

Distributed algorithms for resource allocation problems can further be dis-
tinguished into the ones based on consensus [Lyn96] and the ones based on mi-
croeconomics or game theory [FNSY95]. Consensus-based algorithm (e.g., for
a replicated file system) essentially concentrate on protocols and algorithms for
reaching agreement among processes (e.g., storage nodes) in the presence of fail-
ures. There has been considerable work in this area which is nicely surveyed in
Lynch’s standard textbook [Lyn96].

Microeconomic algorithms for resource allocation exploit the fundamental
similarities between distributed computer systems and human economies. In
both cases, we have producer agents, consumer agents and resources to be allo-
cated. Agents are autonomous and they base their decisions on local information
only. Resources are scarce and need to be allocated to these agents that value
them most. There has been much interesting research on microeconomic al-
gorithms for resource allocation in distributed systems and networks since the
eighties by researchers in distributed systems and networks [FNSY95] and dis-
tributed AI [SK97]. These algorithms can be categorized along various dimen-
sions: co-operative vs. competitive, game-theoretic vs. based on prices (market
mechanisms) and so on. The interested reader can consult [FNSY95] for a nice
survey. The trend to use ideas from economics in the study of resource allocation

10

in distributed systems and networks has continued until recently. See for exam-
ple the paper [GCL02] where ideas from game theory are used to cope with the
problem of job allocation among heterogeneous computer systems, or the paper
[CDS01] where bandwidth over paths in a network is sold to interested parties
using auctions.

In the last few years there has also been a lot of interest in exploring the
boundaries of computer science, game theory and economics by researchers with
backgrounds in theoretical computer science, artificial intelligence and distributed
systems [NR99, Pap01, San02]. This interest has been largely generated due to
the importance of the Internet, the Web and E-commerce. In this context the
notion of algorithmic mechanism design [NR99] is particularly important and
provides a new foundation for resource allocation algorithms in distributed com-
puter systems. The proponents of this approach suggest that in the Internet era
computers should be modelled as non-cooperative selfish agents expected to ma-
nipulate network protocols and algorithms for their owner’s benefit. To account
for this non-cooperative selfish behaviour, Nisan and Ronen propose to redefine
traditional optimization problems for resource allocation to include an explicit
notion of payments that acts as an incentive for agents to behave cooperatively
[NR99].

1.1 Economics-Inspired Resource Allocation in

P2P Networks

The approaches to resource allocation in distributed systems and networks sketched
above can be used as a basis for developing similar techniques in P2P networks.
This could actually be seen as a re-birth of distributed systems and networks
research: P2P interaction was the original main idea of distributed systems and
networks that somehow got lost with the emphasis on client-server architectures.

In this dissertation we would like to advocate the use of ideas from human
economies as a useful metaphor for studying resource allocation in P2P systems.
Our arguments are exactly the same as the ones used by proponents of these
ideas in distributed systems and networks e.g., [Fer89, FNSY95]. Reiterating
what we said above P2P networks consist of a huge number of autonomous peers
at the “edges of the Internet”. All the resources of interest to the network are
made available by the peers: storage space, bandwidth, computing cycles, human
presence, etc. Peers are very heterogeneous in their capabilities and belong to
users with possibly conflicting interests. Peers are self-interested and should not
be expected to be cooperative. They will act in order to satisfy their own goals
and these goals might conflict with various notions of “common good”. Peers
might collude to take advantage of the system resources; they might even be
malicious and try to attack the system by exploiting its vulnerabilities.

11

The following open research questions remain to be tackled in this area:

• What mathematical models are appropriate for characterizing formally re-
sources and their use in P2P networks?

• What fundamental concepts of micro-economics and game theory are ap-
propriate for modelling resource allocation problems in P2P networks?

• What algorithms for resource allocation are appropriate in these contexts?
What is the computational complexity of these algorithms? How do these
algorithms perform on real or simulated data? What phase transition be-
havior do they exhibit?

• How can these algorithms be implemented efficiently in various architectural
alternatives for P2P systems? How can these algorithms be implemented
efficiently in nature-inspired environments for developing P2P systems (e.g.,
the DIET core [HWBM02] or Anthill [BMM02])?

• How does trust and reputation information affect the behavior of a selfish
peer regarding the sharing of its resources? For example, should information
about trust and reputation be used to price peer resources or to determine
the amount of resources a peer makes available to another peer? What are
the dynamics of the resulting system? Will co-operative “communities of
trust” emerge?

Some of these questions are studied in this thesis.

1.2 Contributions

The contributions of this dissertation are the following:

• We survey recent related work in the area of P2P systems. This allows
the reader of this thesis to see our work in an appropriate context. In
our survey, we pay particular attention to measurement studies that reveal
interesting characteristics of existing P2P systems, work on load balancing
for P2P networks, and the use of ideas from economics to solve resource
allocation problems in P2P networks.

• We study three measures of fairness for resource allocation in a general
context where we have agents and resources to be allocated among them.
The measures we consider are the following: the fairness index [JCH84],
majorization [MO79] and max-min fairness [BG87]. We give detailed pre-
sentations of these measures and comment on their relationships.

12

• We consider a very simple model of resource allocation where we have a
single resource that comes in indivisible quantities represented by integers,
and needs to be allocated fairly among n agents. We adopt the fairness
index as our measure of fairness for this problem, and study centralized
algorithms for its solution. It turns out that our problem is very close
to number partitioning, one of the six basic NP-complete problems in the
standard book by Garey and Johnson [GJ79]. We discuss the relationship of
these two problems and devise a greedy algorithm that runs in polynomial
time and a complete anytime algorithm that runs in exponential time. Both
algorithms are based on number partitioning algorithms originally proposed
by Karmakar and Karp [KK82] (greedy) and Korf [Kor98] (complete). We
study the phase transition behaviour of these algorithms and demonstrate
that the greedy one actually performs very well and returns almost perfectly
fair allocations.

• We consider the hierarchical P2P content-sharing system CLUSTER pro-
posed in [TXK02] and revisit its resource allocation algorithms in the light
of the above results. We show how to devise a centralized complete anytime
algorithm for a more complicated resource allocation problem in CLUS-
TER: fair allocation of load. We study the phase transition behaviour of
this algorithm and compare it with the greedy algorithm MaxFair presented
in [TXKN03].

1.3 Organization

The organization of the thesis is as follows. The next section surveys related
work. Section 3 presents three measures of fairness. Section 4 discusses algo-
rithms for a simple fair resource allocation problem. Then, Section 5 builds on
the developments of Section 4 and studies fair allocation of load in the P2P sys-
tem CLUSTER. Finally, Section 6 presents our conclusions and discusses future
research.

13

Chapter 2

Related Work

In this section we survey work carried out in the area of P2P systems that is
mainly connected to the topic of this dissertation. We start with a quick intro-
duction to P2P computing by discussing the first three influential P2P file sharing
systems (Napster, Gnutella, and Freenet) together with more recent attempts to
build P2P system infrastructure based on distributed hash-tables.

We also survey measurement studies of existing P2P systems to understand
the “laws” that govern their structure and dynamics, the patterns of user-system
intersections, the characteristics of participating hosts etc. The results of these
studies are taken into account in Chapter 5, where detailed simulations of a
particular P2P system design are conducted.

Finally, we survey recent economics-inspired research addressing various open
issued in P2P networks. This thesis should be seen to fall most closely into this
area of related research.

2.1 P2P Computing

In P2P systems a very large number of autonomous computing nodes (the peers)
pool together their resources and rely on each other for data and services. P2P
systems are application level virtual or overlay networks that have emerged as a
natural way to share data and resources. Popular P2P systems such as Napster1

(now in a transition state), Gnutella2, Freenet3, Kazaa4, Morpheus5 and others
have made this model of interaction popular. Ideas from P2P computing can also
be applied to other areas beyond data sharing such as Grid computation (e.g.,

1http://www.napster.com
2http://gnutella.wego.com
3http://freenet.sourceforge.net
4http://www.kazaa.com
5http://www.musiccity.com

14

SETI@Home6 or DataSynapse7), collaboration networks (e.g., Groove8) and even
new ways to design Internet infrastructure that supports sophisticated patterns
of communication and mobility [SAR+02].

The wealth of business opportunities promised by P2P networks has gener-
ated much industrial interest, and has resulted in the creation of various research
and industrial projects9, startup companies, and special interest groups10. Re-
searchers from distributed computing, networks, multi-agent systems and databases
have also become excited with the P2P vision, and papers tackling open prob-
lems in this area have started appearing in high-quality venues (such as ICDCS,
SIGCOMM, INFOCOM, CIDR, SIGMOD, VLDB, etc.). Indicatory of the recent
interest in P2P computing are specialised conferences and workshops collocated
with major conferences from different areas11.

2.1.1 Three Influential P2P Systems: Napster, Gnutella

and Freenet

In this section we discuss the first three systems that popularized the P2P
paradigm: Napster, Gnutella and Freenet. These three systems have a very
similar goal: to facilitate the discovery and sharing of files (e.g., images, audio
and video) among a large set of peers (user computers) located at the “edge of
the Internet”. The files to be shared are stored at the peers, and after being
discovered by an interested party, they are downloaded using a protocol similar
to HTTP. But beyond this basic goal, there are important differences among the
three systems regarding the metadata kept at each network node, the topology
of the P2P network, the placement of the shared files, the routing algorithms for
queries and replies, and the degree of privacy offered to its users.

Napster

Napster was the first of the big three P2P systems to be released and is now in
a transition state due to legal problems. In Napster, a large cluster of dedicated
servers owned by the respective company maintain a metadata index that keeps

6http://www.setiathome.ssl.berkeley.edu
7http://www.datasynapse.com
8http://www.groove.net
9See the European projects DIET (http://www.dfki.de/diet) , BISON (http://

www.cs.unibo.it/bison/), MMAPPS (http://www.mmapps.org), SWAP (http://swap.
semanticweb.org/) and the recent US project IRIS (http://iris.lcs.mit.edu/).

10For example, see the activities of the P2P working group of the Global Grid forum at
http://www.gridforum.org.

11For example, see the 1st and 2nd IEEE International Conference on P2P Computing (http:
//www.ida.liu.se/conferences/p2p/p2p2002), the International Workshop on Agents and
P2P Computing (http://p2p.ingce.unibo.it), the 1st and 2nd International Workshop on
Peer-to-Peer Systems (http://iptps03.cs.berkeley.edu) and so on.

15

song request

file transfer

Napster Central
Metadata Server

Napster
client

Napster
client

Napster
client

Napster
client

Napster
client

Figure 2.1: An overview of Napster’s architecture

track of active peers, descriptions of the files they are willing to share, and certain
quality of service parameters such as bandwidth and duration of the connection.
Peers (clients!) connect to the system by connecting to one of these dedicated
servers and publishing a description of the files they want to share with other
peers. Peer queries are sent to their selected server which returns a list of match-
ing files, the address of the peer that each file is stored to, and other important
information known about the peer (e.g., bandwidth as reported by the peer).
Peers can then directly download selected files from the peer of their choice.

The Napster architecture is thus partially centralized (see Figure 2.1 for a
high level view of Napster’s architecture). The network of Napster servers acts as
a single point for all user queries; it points users to the peers who have the files
they want. Once the files are downloaded into the requesters machine, they are
automatically shared, making them more available to the overall user community.

Gnutella

On the opposite end of the spectrum of decentralization, Gnutella has no central-
ized servers. Each node in a Gnutella network is a peer that can act as a client
and as a server at the same time (see Figure 2.2). Gnutella peers form an overlay
network by setting up connections to peers of their choice. Addresses for con-
necting to the Gnutella network initially can be found by the interested user e.g.,
by consulting web pages such as gnutellahosts.com or router.limewire.com).
Gnutella offers primitives ping and pong for discovering parts of the network and

16

Figure 2.2: A high level view of Gnutella’s architecture

facilitate its maintenance while peers enter and leave the system.
To discover a file, a Gnutella source node issues a query such as “I am inter-

ested in MPEGs with video-clips of Jennifer Lopez” to its neighbors with whom it
has open connections. The query is accompanied by a time-to-live (TTL) counter
that specifies how many hops this query is allowed to travel in the Gnutella net-
work. Each node that receives this request processes it using its local file collection
and returns URLs pointing to matching files to the requesting node. Then this
node decrements the TTL counter of the request by one. If the value of the TTL
counter is more than 0, then this node forwards the query to its neighbours. This
process repeats itself and eventually more pointers to matching files are returned
to the source of the request. Thus, Gnutella uses the classical flooding technique
known from Computer Networks [BG87] for routing queries. Replies reach the
source node by travelling along the reverse path followed by the query because a
node in a Gnutella network does not know the identity of the source node issuing
a request that it might process. However, the privacy of information requesters
and providers is not really protected in any serious way (e.g., Gnutella messages
contain IP addresses, and URLs are returned to information requesters so that
they can retrieve the files they desire). Since its original proposal, the ineffi-
ciencies of this basic Gnutella protocol have carefully being studied and many
proposals for more efficient search in P2P networks are now in the literature (see
[DGMY03] for a survey).

17

Freenet

Freenet12 is a P2P network of nodes connected to each other for the purpose of
sharing information in the form of data files [CHM+02]. Like Gnutella, Freenet
keeps a completely decentralised architecture which ensures scalability, robustness
and fault-tolerance. At the same time, Freenet goes a long way in ensuring the
survivability of published information, the adaptability to usage patterns and
the protection of the anonymity of information providers and consumers and
holders (these features are what distinguish Freenet very much from Napster and
Gnutella).

Every Freenet user runs a node that provides the network with some storage
space. To add a file, a user sends the network a message containing the file
and an assigned location-independent globally unique identifier (GUID) which is
computed using a SHA-1 secure hashing function. Each GUID consists of two
parts: a content-hash key which is obtained by hashing the contents of the file
and it is used for low-level data storage, and a signed-subspace key intended for
higher-level human use like traditional filenames.

To retrieve data, a user of Freenet sends to the network a request message
and the GUID of the file. Whenever a node receives a request, checks its local
data-store first. If the file is found, the node returns it to the requester together
with a tag identifying itself as the holder. If the file is not found, the routing
table is consulted, one of the neighbour nodes with the closest matching key
is chosen, and the request is forwarded to it. This is a basic difference with
the Gnutella algorithm which does not perform local search and would send the
query to all neighbour nodes. When the data file is finally found, it is returned
to the requester via the same path. Additionally, intermediate nodes save an
entry in their routing table associating the requested key with the data source.
Depending on their distance from the holder, each node might also cache a local
copy of the data file.

The anonymity of a file producer is ensured by having intermediate nodes
occasionally altering the holder tags to point to themselves as data holders. This
does not compromise discovery of the file later because the identity of the true
data holder is kept at the node’s routing table and routing tables are never
revealed. The anonymity of an initiator of a query is also ensured since a node
cannot know whether its neighbour node is the one interested in the results of
the query or is simply forwarding a message.

Each data request in Freenet is given a TTL count (like in Gnutella), which is
decremented at each node the request goes through successfully in order to reduce
message traffic. To prevent requests from going into an infinite loop, Freenet
assigns a unique identifier to each request so that a node will never forward a
request that goes through it for a second time.

Insert messages follow the same procedure that a request message for that file

12http://freenet.sourceforge.net

18

would take thus routing tables are updated in the same way and files are stored
in exactly the nodes where queries will go looking for them [CHM+02].

2.1.2 Distributed Hash-Tables

A fundamental problem that is confronted to all P2P systems is the efficient
location of a data item. Locating the nodes that stores the video clip of my
favourite singer, seems to be a core operation in all file-sharing P2P systems.
Several solutions were proposed by the designers of these systems, including a
centralised location mechanism for the case of Napster and a flooding approach
for the decentralised Gnutella. It is clear that neither of these techniques scales
well to face the problem created from the hard task to locate the owner of a file.
With this in mind, two systems that claim to solve this location problem were
proposed. Both systems use distributed hash tables to create a scalable indexing
mechanism that supports one basic operation: map a given key to a node in the
P2P system.

In this section we will discuss CAN and Chord, two representative examples
of DHTs, and look into the details that are directly connected to the interests of
this dissertation.

CAN

CAN (Content-Addressable Network) uses a virtual d-dimensional Cartesian co-
ordinate space on a d-torus for some fixed d. This virtual coordinate space is
dynamically partitioned among all nodes in an overlay network that are used to
store data items of the form (key, value). To store a pair (key, value), key is
deterministically mapped onto a point p in the coordinate space using a uniform
hash function. Then (key, value) is stored at the node that owns the zone within
which point p lies.

Each node in CAN holds a routing table that gives the IP address and virtual
coordinate zone of each of its neighbors (neighborhoods are defined appropriately
in a geometric fashion). When a CAN node receives a request for a particular
data item that it doesn’t have, it greedily forwards this request towards any
node whose zone coordinates are closest to this item. Thus, each peer in CAN
maintains O(d) states, and the lookup cost is O(dn1/d) for d dimensions and n
nodes.

If a new node A wants to join CAN, it must first find the IP address of any
node B currently in the system (e.g., as in YOID [Fra00]). Then, it randomly
chooses a point p in the coordinate space and sends a JOIN request destined for
point p through B (and CAN’s routing machinery). When the JOIN message
reaches the node C responsible for the zone in which p lies, C splits its zone in
half and assigns one half to node A. The exact way to achieve this splitting is

19

discussed in [RFH+01]. Finally, routing tables in the network are updated to
take account of the new node A for a cost of O(d).

Beyond the basic functionality discussed above, [RFH+01] presents mecha-
nisms for dealing with node departure and recovery under certain failure sce-
narios. Since the above complexity bounds refer to hops in the CAN overlay
network and not to IP-level hops, [RFH+01] discusses some techniques for mini-
mizing lookup latency with the goal to make it comparable to the underlying IP
path latencies.

Regarding this thesis, we are particularly interested in the contribution of
CAN and other DHT proposals discussed below to load balancing. In Chap-
ters 4 and 5 we discuss load balancing in P2P systems as an application of our
metrics and algorithms for fair resource allocation. [RFH+01] briefly discusses
some very simple load balancing mechanisms e.g., more uniform partitioning of
the coordinate space by splitting the node with the maximum volume among p
and its neighbors when a new node joins (see the discussion on joins above). To
deal with the added complexity of differing popularities of data items, [RFH+01]
proposes standard caching and replication techniques as studied for the case of
Web “hotspots” [RS02].

Chord

Chord [SMK+01, SMLN+03] is a scalable P2P lookup service that tries to simplify
the design of content sharing systems. Similarly to CAN, data items in Chord
are represented by a key-value pair, using a hash function to map the key of an
item to a peer. Thus, when a user is interested for a data item, Chord provides
a lookup mechanism that retrieves the peer that is responsible for this item. In
contrast to CAN, the information is maintained by a Chord peer and the lookup
mechanism depends only on the number of peers in the system.

To map data items to network peers, Chord assigns each node and key an m-
bit identifier using a base hash function such as SHA-1 [KLL+97, Lew98] (node
hashes are generated using their IP address). The parameter m must be large
enough to make the probability of two nodes or keys hashing to the same identifier
negligible. This type of hashing is specified as consistent hashing within Chord.
Consistent hashing works as follows. Identifiers are ordered in an identifier circle
modulo 2m. A data item with key k is then assigned to the first node whose
identifier is equal to or follows k in the identifier space. Nodes are connected
to their neighbors in the identifier circle and searching for a key amounts to
traversing this circle. In Chord, faster searches are enabled through additional
edges in the identifier circle. This is implemented by having each node maintain
a small amount of such routing information in a so-called “finger table”. If there
are n nodes in the network, each one of them holds information about O(log n)
other nodes in its finger table. This enables lookup operations to require only
O(log n) messages. Additionally, the Chord network can be efficiently adjusted

20

while nodes join or leave the system: only an O(1/n) fraction of items are moved
to different nodes and O(log2 n) messages are required to update routing tables.

Similarly to CAN, Chord makes only a limited effort to address the load
balancing problem. Consistent hashing in its simplest form might spread data
items unevenly over the network nodes [SMK+01, SMLN+03]. The inventors
of consistent hashing [KLL+97] and the Chord authors [SMK+01, SMLN+03]
propose the use of virtual nodes to eliminate this problem. Using this technique
each node is assumed to run a number of virtual nodes and keys are mapped to
virtual nodes by the hash function. [KLL+97] show that having O(log n) virtual
nodes per real node results in almost perfect load balance. But since it is hard
to know the value of n beforehand, [SMK+01, SMLN+03] propose to assume
an a-priori bound on the number of nodes of the system. The experiments in
[SMK+01, SMLN+03] show that good load balancing is achieved with the use
of virtual servers but the problem of differing popularities of data items is not
considered.

Load Balancing efforts in DHTs

[BCM03] suggest the application of the “power of choices” paradigm [MRS01]
to load balancing in DHTs. According to this approach, nodes are mapped to
identifiers in Chord’s identifier circle using a hash function h0. However, data
items are mapped to positions in the circle by considering d choices given by hash
functions h1, . . . , hd. Thus if a node wants to insert a data item x in the network,
it first calculates h1(x), . . . , hd(x). Then, it performs d lookups in parallel to
query the load of nodes responsible for these hash values. Finally, the data item
x is assigned to the node having the smallest load and the rest of the nodes keep
a redirection pointer to this node. If we want to search for an item x, we can
choose a hash function hj, 1 ≤ j ≤ d at random and contact node pj responsible
for the value hj(x). If pj does not have x, the the query is redirected to the
correct node pi using the redirection pointer for x stored at pj.

[BCM03] presents experiments where they compare the load balancing strat-
egy of Chord based on O(log n) virtual nodes or on an unlimited number of virtual
nodes with the load balancing strategy based on the “power of two choices” (i.e.,
d = 2). These experiments show that the two choices scheme presented above
achieves small variations in the load assigned to each node just like the other
two strategies. However, this scheme also achieves lower maximum loads and it
is thus preferable to avoid situations where nodes fail due to excessive load.

[RLS+03] is the most comprehensive attempt to address the load balanc-
ing problem in DHTs adopting the concept of virtual nodes. The main idea in
[RLS+03] is to balance the load by moving virtual nodes from heavy nodes to
light nodes. A node i is called heavy if its load Li is greater than its target load
Ti. Otherwise, it is called light. If a node i has capacity Ci then its target load is

21

set to

Ti = (
Σn

i=1Li

Σn
i=1Li

+ δ)Ci

where δ is a slack variable showing how close to the ideal value

Σn
i=1Li

Σn
i=1Li

Ci

we would like to get. When a virtual node v is moved from a heavy node h to a
light node l, one should be careful to choose v so that the minimum amount of
load is moved that makes h light without turning l into a heavy node.

Under the above assumptions, [RLS+03] discusses the relative merits of three
load balancing schemes:

• One-to-one scheme. In this scheme, a light node chooses a random key and
performs a lookup operation to find the node responsible for that key. If
this node is a heavy node, then a transfer of load takes place among the two
nodes. Light nodes are the only ones that perform this probing operation
periodically; no such operation is expected from heavy nodes.

• One-to-many scheme. In this scheme, a heavy node h actively seeks out
k > 1 light nodes l1, . . . , lk in the network. For each light node li, we
carefully choose a virtual node vi to be exchanged as we discussed above.
Among the nodes v1, . . . , vk chosen, we select the heaviest one to exchange
with one from h.

This scheme is more complex to implement than the one-to-one scheme.
[RLS+03] proposes to introduce d directories (where d << n) that store
load information about the light nodes. Directories are also stored in the
DHT.

• Many-to-many scheme. This scheme consists of three phases. In the unload
phase, each heavy node starts transferring its heavy virtual nodes greedily
into a global pool until it becomes a light node. Then the system enters the
insert phase with all its nodes being light and a global pool of heavy virtual
nodes awaiting to be transferred. In this phase, we first order the heavy
virtual servers in descending order of weight. Then we repeatedly choose
the heaviest virtual node in the pool and transfer it to a light node k chosen
so that Tk−Lk is minimized subject to the condition that Tk−Lk ≥ load(v)
(this is a standard best-fit heuristic). We continue this phase until the pool
becomes empty or no more nodes can be transferred. In the former case the
algorithm terminates while in the latter the algorithm enters the dislodge
phase. In the dislodge phase we take the heaviest virtual node v in the pool
and try to find a node with a virtual node v′ of a light node i such that

load(v′) < load(v) and Li + load(v) − load(v′) ≤ Ti.

22

If no such node can be found the algorithm terminates, otherwise it returns
to the insert phase (hoping that insert will work for the next node in the
pool which is lighter than the one just swapped).

[RLS+03] propose to use directories to implement this algorithm in a dis-
tributed way.

[RLS+03] compares the above three schemes using simulations under Gaussian
and Pareto distributions of load. The experiments presented concentrate on
measuring the total load that needs to be reallocated to reach a balanced state
and the number of rounds needed to converge to a state where all nodes are
light. The results show that the total load moved does not depend on the scheme
used, but rather on the distribution of the load, with all schemes performing
worse under the Pareto distribution. The many-to-many scheme is shown to be
superior to the other two, converging to a successful state within approximately
50 rounds in as many as 94% of the cases tried.

Before we closing this section, let us point out that the above study of the
three pioneer systems Napster, Gnutella and Freenet and of the DHT proposals
CAN and Chord, hardly represents a good survey of the area of P2P networks.
We have not discussed the well-known popular super-peer networks [YGM03],
other hierarchical designs such as [TXK02, TXKN03], how to implement more
complex services such as multicast on top of lookup mechanisms such as the ones
provided by CAN and CHORD [RHKS01] etc. For more detailed surveys the
reader should consult [MKL+01, DGMY03].

2.2 Modelling and Measuring: Uncovering the

“Laws” of P2P networks

Recently, researchers from computer science and physics have tried to under-
stand the “laws” governing the current state of information networks such as
the Internet and the Web, and compare them with social networks studied by
psychologists and social scientists [FFF99, BA99, Kle00, KRRT02]. This flurry
of research activity has resulted in various useful characterizations of the Web
starting from the basic modelling assumption that the Web is a directed graph
with pages representing nodes and links among pages representing edges. The
results of these studies are currently actively exploited for the design of better
crawlers, search engines and portals, and for understanding the emergence of new
social phenomena in the Web. We believe that similar large-scale modelling and
measurement exercises must be undertaken for P2P networks. With P2P traffic
accounting for around 30% of the total Internet traffic according to recent stud-
ies13, these exercises are timely and can result in a better understanding of these

13http://wwwstats.net.wisc.edu

23

popular information technologies and their role in our society. They can also fa-
cilitate new advances in algorithms, architectures and implementations that will
lead to a new generation of P2P systems.

2.2.1 Measurements and Graph Models for the Web

Barabasi and Albert have studied a 325 thousand page subset of the Web and
discovered that the distribution of degrees of nodes (especially in-degrees, the
number of links pointed to a certain page) follows a power-law: the probability
that a node has in-degree i is directly proportional to 1/ik where k > 1. In fact k
is approximately 2.1 according to [BA99] and [BKM+00]. In other words, there
is an abundance of nodes with only a few links, and a small - but significant -
minority that have a very large number of links [BA99]. This means that the
traditional random graph model of Erdos and Renyi [Bol85] where nodes with
very high connectivity are very rare is not appropriate for characterizing the
Web. Motivated by this observation, Barabasi and Albert developed a stochastic
model that captures the experimental data better than the random graph model
[BA99] by incorporating two observations: (i) the Web is constantly growing, and
(ii) the rate of acquisition of new links is proportional to the links that a page
already has. Adamic and Huberman [AH99] later on pointed out that the second
observation of [BA99] is correct provided that the connectivity growth rate is
allowed to vary for each Web page to capture differences in popularity. They
also suggested that the stochastic model of [HA99] (which demonstrates that the
number of pages a Web site has follows a power-law) could also be used for the
connectivity problem.

Identical power-law distributions for the degree of nodes in the Web graph
have been observed independently by Kumar et. al. who studied a 40 million
page data set [KRRT99], and more importantly by Broder et. al. [BKM+00]
who used a much larger crawl with approximately 200 million pages and 1.5
billion links (this crawl comes from the search engine AltaVista). Similar power-
law distributions have also been observed in other man-made networks e.g., the
Internet [FFF99] or the citation graph of the Research Index Computer Science
literature database [AJM01].

The analysis of Broder et. al. [BKM+00] is very significant because it has
also revealed a very interesting picture of the Web’s macroscopic structure. Over
90% of the approximately 200 million nodes considered form a single connected
component if links are treated as undirected edges. This connected graph consists
of four subgraphs reminiscent of a bow-tie (see Figure 2.3). The first subgraph is
a strongly connected component comprising about 56 million pages (it is labelled
with SCC in Figure 2.3). This component represents probably the most valuable
part of the web and includes most portals, universities and corporations. The
second and third pieces are labelled IN and OUT in Figure 2.3. IN is composed
by pages that can reach the SCC, but cannot be reached from it (e.g, these can

24

Strongly connected
component (SCC)
56 million nodes

IN

44 million
nodes

OUT

44 million
nodes

TENDRILS
44 million nodes

Disconnected components

Tube

Figure 2.3: The Web’s bow-tie structure from [KRRT02]

be new sites that people have not yet discovered and created links to). OUT is
composed by pages that are accessible from the SCC but do not link back to it
(e.g., these can be corporate websites that do not point to outside pages). Finally,
the part labelled TENDRILS in Figure 2.3 contain pages that cannot reach the
SCC, and cannot be reached from the SCC. The parts IN, OUT and TENDRILS
contain about 44 million pages i.e., all four subgraphs have roughly the same size.

Broder et. al. have also showed that the diameter of SCC is at least 28, and
that the diameter of the graph as a whole is over 500 [BKM+00]. They have also
shown that for randomly chosen source and destination pages, the probability
that any path exists from the source to the destination is only 24%. Under some
simplifications a small-world phenomenon [Mil67, WS98, Wat99] also manifests
itself: if a directed path exists, its average length is about 16. Similarly, if an
undirected path exists, its average length is about 6. This particular experimental
result is very close to previous predictions by Barabasi and Albert [BA99].

Researchers have also been interested in discovering web communities i.e.,
collections of web pages that deal with a common topic. Under various graph-
theoretic definitions of what a community is and with the utilization of appro-
priate graph-theoretic techniques on small parts of the web, papers [KRRT99,
FLGC02] have shown that despite its decentralized, unorganized and heteroge-
neous nature, the web self-organizes so that one can discover communities based
purely on link structure and connectivity of the web graph.

Recent work has also addressed the question of self-similarity of the Web i.e.,
does the Web consist of subgraphs that are “mini Webs”? In other words, is the
Web a fractal? With this question in mind Dill et. al. have studied a large Web
crawl and have concluded that self-similarity in the web is pervasive and robust

25

[DKM+02]. It is pervasive in the sense that “meaningful” subsets of the Web
(e.g., a corporate intranet or pages about a topic) are themselves “mini Webs”
and their graph-theoretic properties are the same with the entire web. This result
holds regardless of the particular way these “meaningful” subsets of the web are
defined. Additionally, self-similarity is robust in the sense that the parameters
corresponding to the graph-theoretic properties do not change significantly for
these subsets (e.g., for many “mini Webs” the power-law exponent is approxi-
mately 2.1). Finally, if the web is decomposed into these “meaningful” subsets
(under a variety of definitions for “meaningful”), there is a navigational backbone
that makes these subsets strongly connected. Users can then navigate from one
“mini Web” to another following this navigational backbone. The web therefore,
according to [DKM+02], is the product of essentially independent stochastic pro-
cesses that evolve at various scales all roughly following the model of [KRR+00].

The results of the above studies can be very useful in the following situations
as summarized nicely in [BKM+00, FLGC02, DKM+02]:

• Analyzing and improving search algorithms that make use of link informa-
tion e.g., Google’s PageRank algorithm [BP98] or Kleinberg’s HITS algo-
rithm [Kle00].

• Designing better web crawlers, and better browsing and information forag-
ing strategies.

• Designing vertical (theme-based) portals, information dissemination and e-
commerce services automatically by relying on discovered web communities.
These developments will take us well beyond current technology such as
static taxonomies of portals like Yahoo.

• Understanding the social phenomena underlying content creation on the
web and predicting the emergence of important new phenomena in the web.
For example, a great number of links between web pages of various scientists
can indicate emerging connections between their respective disciplines.

Previous results, similar concepts and well-understood formal tools of various
disciplines (mathematics, computer science, physics, social science and biology)
have been very useful in the above studies. For example, researchers have utilized
insights from small-world networks as they appear in social or biological contexts
[Mil67, WS98] in the study of small-world phenomena in the web, or borrowed
ideas from applied mathematics to predict accurately the structure of networks
by looking only at a finite sample [BA99]. For classification purposes one might
also want to distinguish efforts in this area between more theoretical ones that
use stochastic models to explain the graph structure of the web [BA99, KRR+00]
and more experimental ones that are used to validate and refine proposed models
[BKM+00, KRRT99, FLGC02, DKM+02].

26

2.2.2 Measurement Studies for P2P Networks

More recently similar measurement efforts in the area of P2P systems have
been carried out concentrating mostly on Napster [SGG02] and Gnutella [Mar02,
SGG02, AH00, ABJ01, Jov01, RFI02].

Adar and Huberman [AH00] were the first to study the number of files shared
and downloaded by Gnutella peers by sampling messages for a 24-hour period
in the life of a Gnutella network. [AH00] discovered that 66% of all Gnutella
peers shared no files (i.e., they were free riders) and that only 1% of the peers
served 37% of the files shared. Additionally, 67% of the peers did not answer
any queries presumably because they had no files somebody else was interested
in. Free riders were found to be distributed evenly among Internet domains.
Furthermore, [AH00] found that there is no correlation between the quantity of
files a peer has and their quality (i.e., whether they can be used to answer user
queries). Gnutella queries seem to concentrate on popular topics and at the same
time there are peers, possibly with few files, that specialize on these topics. As a
result, these peers are able to respond to many queries.

The study of [AH00] is very interesting and it poses some interesting questions.
How detrimental is the (negative) effect of free-riding to the performance of a
Gnutella network? How can we eliminate free-riding to end up with a co-operative
community of file sharing peers? Is there a danger of legal consequences for
Gnutella users sharing copyrighted material? The results of [AH00] show that
the Gnutella network does not really offer the promised anonymity and privacy
benefits to participating peers because it is easy for an interested party to detect
the peers that champion piracy by serving most of the shared files.

Jovanovic has studied the Gnutella topology by implementing a distributed
network crawler that enabled measurements between the months of May and De-
cember of 2000 [Jov01]. His analysis reveals the presence of small-world proper-
ties and power-law distributions the Gnutella network. Specifically, [Jov01] points
out that the Gnutella network exhibits the typical small diameter and clustering
properties characteristic of small-world networks and compares the obtained val-
ues for those parameters with respective values in other small-word models (e.g.,
the model of Watts and Strogatz [WS98] and the model of Barabasi and Albert
[BA99]) and the random graph model of Erdos and Renyi [Bol85]. Additionally,
[Jov01] gives out that Jovanovic also demonstrated that the Gnutella network
obeys the four power laws originally discovered in the context of the Internet by
[FFF99].

More recently, [SGG02] carried out the most detailed study of Napster and
Gnutella networks currently available. They traced four days of activity in the
Napster network and eight days of activity in a Gnutella network capturing var-
ious characteristics of 500 thousand peers for the former system and 1.2 million
peers for the latter. [SGG02] reports that the set of peers participating in Napster
and Gnutella is very heterogeneous with respect to many characteristics: Internet

27

connection speeds, latencies, availability and quantity of shared files. In many
cases, the difference in these characteristics is three to five orders of magnitude
across the peers in the whole system. For example, only about 25% of the users in
Napster and 30% of the users in Gnutella have Internet connections with band-
width 3Mbps or more. The most popular form of access in these systems are
cable modems and DSLs. Thus, although Gnutella fans stress the fact that every
peer in Gnutella is capable of being both a client and a server, reality shows that
some peers are simply incapable of playing their server role effectively. Thus, fu-
ture P2P systems should take into account capabilities of peers when delegating
authority or responsibility. In this way, [SGG02] have in some sense prophesied
the coming of deployed super-peer networks such as Morpheus and Kazaa, and
related academic proposals such as [TXKN03, YGM03].

Additionally [SGG02] confirms the rampant free-riding originally pointed out
by [AH00] and they also point out that many peers (with moderate bandwidth
connections) purposefully lie about their bandwidth to avoid becoming the target
of a high number of downloads. Thus, future P2P systems should either offer
incentives to its participants to encourage co-operation, or have a way to directly
measure and verify any peer data needed.

Moreover, [SGG02] points out that because Gnutella networks follow a power-
law with exponent 2.3 (a result that they attribute to a currently unavailable
Web site http://www.clip2.com), they are very robust in the phase of random
removal of nodes (or peer breakdowns) as can be shown by utilizing the models of
Cohen et. al. [CEbAH00]. However, a Gnutella network can become fragmented
in the phase of a carefully orchestrated attack that removes a small percentage
of “strategically placed” (highly connected) nodes.

Markatos has also studied traffic characteristics on a Gnutella network by
installing two peers in Europe (Crete and Norway) and one in the US (Rochester)
and monitoring queries and responses for one hour [Mar02]. His study shows that
traffic in Gnutella due to queries and query responses is very bursty even when
measured at various time scales (similar results have been reported for Internet
and Web traffic in the past). He also observed that queries in Gnutella exhibit
locality properties with 40% of the queries observed having been submitted more
than once. He proposes a caching technique that takes locality into account and
results in a reduction in network traffic.

Ripeanu et. al. have also performed a detailed measurement study of the
topology and dynamics of the Gnutella network observed over the period Novem-
ber 2000 to June 2001 [RFI02]. Their measurements shows the Gnutella network
to grow by about 25 times during the seven months of observation starting from
around 2,000 nodes. They also confirm the belief that network membership is
very dynamic with a great number of nodes staying in the Gnutella network for
very little time (in this study 40% of the nodes stay for less than 4 hours).

[RFI02] have also found found that 95% of all pairs of Gnutella nodes are
connected by shortest paths of length less than 7 hops. Given that the Gnutella

28

protocol limits messages to a TTL=7, one might hasten to conclude that all
broadcasted messages will reach all nodes. However, the very opposite fact may
be true in Gnutella networks operating under TTL bounds and unique mes-
sage identification mechanisms (see Section 2.1.1) as pointed out in [Jov01] and
[ABJ01]. [ABJ01] studies P2P networks where broadcasts are implemented by
flooding governed by TTL bounds and unique message identification mechanisms
(the typical case is Gnutella). [ABJ01] shows that in the presence of heterogeneous
latencies it is possible that a message broadcasted from some node a will never
reach some node b even though the length of the shortest-path connecting a with
b is less than or equal to the TTL bound (they call this effect short-circuiting).
[ABJ01] demonstrated experimentally by using the data collected by Jovanovic
in [Jov01] that short-circuiting can actually decrease the nodes reachable from
another node in a Gnutella network by as much as 50%.

[RFI02] have also observed that most network traffic in Gnutella is due to
query broadcasting and have estimated that the generated traffic corresponds to
a significant percentage of the total Internet traffic in the U.S. (around 1.7%).
Obviously, this presents an important obstacle to the scalability of Gnutella net-
works.

Moreover, [RFI02] have discovered that the Gnutella networks started as a
pure power-law network in November 2000, but moved away from this distribu-
tion in March and May 2001. In their collected data for the latter period, the
pure power-law distribution is only preserved for nodes with more that 100 links,
while nodes with fewer links follow an almost constant distribution. [RFI02] con-
cludes that this multi-modal distribution might have a good impact on network
reliability by limiting the need to depend on highly-connected nodes. However,
[RFI02] does not present any detailed experiments to support this conclusion.

In another part of their study, [RFI02] have sought to investigate how well
the Gnutella overlay network matches the underlying Internet infrastructure. For
the purposes of their study, the Internet is considered to be a collection of inter-
connected autonomous systems i.e., groups of local area networks under shared
technical administration. [RFI02] point out that only 2% to 5% of Gnutella con-
nections link nodes within an autonomous system, while more than 40% of the
traffic among Gnutella nodes crosses autonomous system borders. Because traffic
inside an autonomous system can be handled more easily, the mismatch of the
two networks clearly indicates inefficient use of Internet resources in Gnutella net-
works. Finally, [RFI02] have also performed a detailed clustering experiment and
concluded that Gnutella nodes cluster independently of the Internet structure
imposed by DNS.

The above studies are very useful and clearly point out many interesting av-
enues for future research. The first obvious question is to identify and classify
the various forms of self-organization present in P2P networks (e.g., do we ob-
serve structures very similar to the ones observed in the Web?). To answer this
question, more work needs to be done in the area of measurement and modelling

29

for P2P networks. Regarding the studies already available, we should also point
out that Napster is currently unavailable and Gnutella is not the most popular
P2P network any more (this position is now taken by the super-peer network
Morpheus according to [YGM03]). In addition, a multitude of other P2P sys-
tems have been proposed where the original architectural decisions made by the
designers of Napster and Gnutella have not been followed. Typical examples of
these systems include the ones based on distributed hash-tables such as Chord
[SMK+01] or CAN [RFH+01], super-peer networks [YGM03] and other struc-
tured P2P designs [TXK02, TXKN03]. It would be interesting to study in detail
the different design choices of these more recent architectural alternatives, and
carry out large-scale measurement efforts to uncover the hidden structures that
have evolved as a result of these choices. The results of these measurement and
modelling studies will tell us a lot about the P2P networks of interest:

• They can give valuable insights into the structure and topology of various
types of P2P systems and their local and global properties. This can lead
to better classifications of P2P system architectures than the ones currently
available [MKL+01, DGMY03], and, as a result, improve our understanding
of the functionality of each architecture. It can also influence the develop-
ment of new architectural alternatives that mix features from two or more
types of existing P2P systems in order to get the benefits of all.

• They can be used to evaluate current search and routing algorithms and
influence the design of new ones.

• They can provide explanations for social phenomena that characterize the
evolution of P2P networks or allows us to predict the emergence of new
phenomena.

We also urgently need good mathematical models for performance analysis
of P2P networks, and for modelling their evolution and dynamics. These mod-
els could possibly be more complicated than the ones for the Web or traditional
distributed systems. For some recent work on performance modelling for P2P net-
works the reader should consult the work by Yang and Garcia-Molina [YGM03].
From our point of view, it would also be interesting to see what ideas and mathe-
matical models from various subareas of complex adaptive systems research (e.g.,
biology, social science and economics) could be profitably used in this area.

2.3 Economic Ideas in P2P Systems

Although P2P systems are a prime candidate for the utilization of tools from
microeconomics and game theory, very few researchers have so far taken this
route.

30

Cooper and Garcia-Molina [CGM02a] discuss the case of a P2P network of
cooperating archives that trade space in order to replicate and preserve their
digital collections. For example, an archival site A storing research papers might
contact an archival site B storing software and propose to store its collection of
research papers at B’s servers. In return, B will be allowed to store its software
collection at A’s servers. This allows both sites to replicate their collections and
increases global reliability. Moreover, they define two measures of reliability:
local reliability (the probability that no collection owned by a certain site will
be lost) and global reliability (the probability that no collection owned by any
site will be lost). The goal of the distributed trading algorithms in [CGM02a]
is to maximize global reliability. Thus they introduce introduce the notion of
deed for modelling trades of storage space (in analogy to property deeds). Deeds
keep track of space owed by one site to another (equivalently, the latter’s site
right to use a block of space owned by the former). Finally [CGM02a] discusses
trading whole collections or trading equal blocks of space. Going a step further,
[CGM02b] discusses the issue of having to choose between multiple offers of space
by different peers. For example, site A might need space for its 100GB collection
but site B agrees to store A’s collection only if A stores in return the 150GB
collection of A. In addition, there is a site C which can also store A’s collection
but it needs 120GB of available storage in return. What is an appropriate trade
for site A? To answer this question, [CGM02b] discusses how to use auctions and
bidding to facilitate these trading scenarios.

In other recent work, the problem of trading storage space in P2P networks is
also considered. In [NWD03], each peer brings with it some storage space that is
made available to the network for storing files published by other peers (storage
is the only resource considered). Peers are allowed to consume as much of the
network’s storage space as they provide in their local node. Moreover, [NWD03]
proposes that peers maintain records of their resource usage (e.g., how many GBs
of storage they make available to the community, a list of files stored locally for
other nodes and a list of own files stored at other nodes) and make these records
available for auditing by other peers. Because nodes are expected to behave
selfishly and might not tell the truth about their resource usage, [NWD03] con-
centrates on protocols designed to enforce cooperative behavior by not allowing
nodes to collide with other nodes to take advantage of the system resources in an
unfair way.

Ideas from economics could also be utilized to provide incentives for users and
discourage free-riders in P2P systems as originally suggested in [AH00]. The first
P2P system to provide a solution to this problem is Mojo Nation14. Mojo Nation
provides a digital currency, the “mojo”, used to count resources (disk space,
bandwidth and processing cycles) contributed to or requested by the system.
Each interaction in Mojo Nation involves some exchange of mojos, and peers

14http://www.mojonation.net/

31

perform bookkeeping using a background payment system. There is also a trusted
third party which ensures honest transfers between peers. Mojo Nation could also
monitor content usage and facilitate new business models for P2P networks that
discourage piracy and enable royalties to be paid to the owner of content.

[HPS01] have also proposed to use micro-payments and a trusted third party
(called an escrow server) to encourage P2P network users to join legitimate P2P
networks and play by the rules (e.g., do not create spam, do not serve illegal con-
tent and avoid free-riding). Their work concentrates mostly on the cryptography
issues involved for realizing their proposal.

[GLBM01] is a theoretical paper which also addresses the problem of incen-
tives in P2P networks using a game theoretic analysis. According to this study,
P2P network users can be distinguished in two categories: altruistic users for
whom being altruistic has higher utility than the sum of the costs associated
with sharing files (e.g., bandwidth and storage costs), and non-altruistic users
for whom the opposite holds. Under some reasonable assumptions, [GLBM01]
shows that there is a dominant strategy for altruistic users: share and download
as many files as possible. There is also a dominant strategy for non-altruistic
users: download as many files as possible and share none. These results give a
simple mathematical explanation for the behavior observed by [AH00].

Finally [GLBM01] studies also the question of incentives in centralized sys-
tems (e.g., Napster) so that free-riding behaviour is discouraged. They propose
that central servers keep track of downloads and uploads and charge users a fee for
downloading files while paying them a fee for uploading. Three kinds of payment
schemes are discussed and compared: micropayments, quantized micro-payments
(i.e., micropayments for blocks of files instead of single files), and payments in
terms of some internal currency that can be bought with real money but cannot
be exchanged with real money. Interestingly enough one can now find equilibria
in which it is a dominant strategy for every agent to share files and not be a
free-rider.

2.4 Conclusions

In this chapter we discussed three prominent file sharing P2P systems and also
gave an overview on more recent research aiming the improvement of P2P sys-
tem infrastructure with the use of distributed hash-tables. We also looked into
measurement studies for the Web and put focus on similar studies that reveal in-
teresting characteristics of existing P2P systems. Finally we surveyed economics
inspired research that addresses various open issues in P2P networks.

32

Chapter 3

Measures of Fairness in Resource

Allocation

In this section we study resource allocation in an abstract setting. We deal with
allocations of resources to agents and explore various notions of fair resource
allocation. The concepts that we develop are very general and can possibly be
useful in various contexts where resource allocation is an important topic: (e.g.,
human economies or computer systems and networks). In later chapters of this
report we apply the concepts studied in this chapter to the problem of resource
allocation in P2P systems.

Allocations of resources will be represented as vectors of real numbers. In this
respect the following notation of [MO79] comes very handy so we introduce it
immediately.

Definition 3.1 Let x = (x1, . . . , xk) be a vector of reals. We will denote by x[i]

the i-th element of x, when sorted in descending order. Similarly we will denote
by x(i) the i-th element of x when sorted in ascending order.

In what follows we study three measures of fairness: fairness index[JCH84],
max-min fairness [KRT01] and majorization [MO79]. Initially the fairness mea-
sures are defined formally and then their properties are discussed thoroughly.
Fairness index is related to other statistical measures, and max-min fairness is
correlated to majorization. Finally, we explain the reason why we choose to use
the measure of fairness index for allocating the resources in a P2P system.

3.1 Fairness Index

The first quantitative measure we study is the fairness index as proposed in
[JCH84].

33

Definition 3.2 Let A be a non-negative real number representing an amount of
some given resource R in terms of units of some measure. Let x = (x1, . . . , xk)
be a vector of reals representing an allocation of amount A to k agents such that
agent i is allocated xi units of R and A =

∑k
i=1 xi. Then, the fairness index of

this allocation is given by a function F : Rk
+ → (0, 1] that is defined as follows:

F(x) =
(
∑k

i=1 xi)
2

k
∑k

i=1 x2
i

The fairness index measures “how equal” the amounts xi are in the allocation
x. If all agents get the same amount of resources (i.e., all xi’s are equal) then
the fairness index is 1, implying that the allocation is 100% fair. As the dispar-
ity increases and the vector x becomes more “skewed”, the fairness index value
decreases giving a notion of how far this allocation is from the perfect. It is easy
to see that an allocation is perfect if and only if A is divided evenly by k. For a
non-perfect allocation, there are cases where the fairness index would give us the
fraction of favored agents. The following example from [JCH84] illustrate this
intuitive interpretation.

Example 3.1 Suppose one is asked to distribute 20 Euros among 100 persons.
Let us consider the following two ways to distribute the money:

• First Allocation: Give 20 cents to each of the 100 persons. If this allocation
is represented by x, then

xi = 0.2 for i = 1, 2, . . . , 100.

The fairness index of this allocation is obviously 1, thus x is perfect.

• Second Allocation: Depending upon some criterion, choose 10 persons and
give them 2 Euros each. The other 90 persons get no money. If we represent
this allocation by y, then:

yi = {
2, i=1,2,3,. . . ,10
0, i=11,12,. . . ,100

The fairness index of this allocation is:

F(y) =
[
∑

xi]
2

n
∑

x2
i

= 0.10

This allocation is only 10% fair because only 10% of the agents are treated
equally.

The fairness index has some nice intuitive properties as pointed out in [JCH84].
Some of these properties are summarized below:

34

1. The fairness index is population size independent i.e., it can be applied to
any number of agents.

2. The fairness index is independent of scale and metric i.e., the unit of re-
source measurement does not matter. More formally, the fairness index of
allocation x and cx (where c > 0) is the same.

3. The fairness index is bounded i.e., its values are in the interval (0, 1]. Thus,
fairness can be expressed as a percentage, and this helps in the intuitive
understanding of the differences among allocations.

4. The fairness index is continuous so that any slight change in xi changes the
index.

5. If we take an amount of resource δx > 0 from one agent i with resource xi

and give it to another agent j with resource xj, then the fairness index of
the resulting allocation:

• increases (the new allocation is better) if δx < |xi − xj|.

• decreases (the new allocation is worse) if δx > |xi − xj|.

• remains the same if δx = |xi − xj|.

This property is very intuitive. It is known as the principle of transfers and
it is also discussed in [MO79] and attributed to Dalton [Dal20].

6. Let x = (x1, . . . , xn) be an allocation of some resource to n agents. If each
agent is given the same amount of additional resource c, then F(x + c) ≥
F(x) where x + c denotes the allocation (x1 + c, . . . , xn + c).

7. If only one agent is given additional resources, then the fairness index is
decreased if this agent is a favored one. The fairness index is increased
otherwise.

8. The fairness index has a bell-shaped behavior curve with respect to the
allocation to each individual agent. Thus, the fairness index firstly increases
when an individual’s allocation increases. This behavior happens up to a
critical point. From this point on, any additional increase to the individual
allocation results in a decrease to the fairness index.

Example 3.2 Suppose we want to distribute a single unit of a resource
among two agents. If we assume that the first agent gets a fraction x1 of
the unit, then the other agent gets 1 − x1. Then the allocation vector is
x = (x1, 1 − x1) and the fairness index is

F(x) =
(x1 + 1 − x1)

2

2(x2
1 + (1 − x1)2)

=
1

2(x2
1 + (1 − x1)2)

.

35

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

allocation x1

fa
irn

es
s

in
de

x

Figure 3.1: A bell-shaped fairness index curve

Figure 3.1 presents the fairness index as a function of x1. We observe
the bell-shaped behavior described above. The minimum value of F is 0.5
when one of the agents gets the whole of the unit and the maximum value is
reached when we have a perfect allocation (both agents get 1/2 and F(x) =
1).

9. If there is no limit on allocations, then the worst case of fairness can be
near zero. By putting upper and lower bounds on allocations, the fairness
index can guarantee a minimum level of fairness.

3.2 The Relation of Fairness Index to Other Sta-

tistical Measures

Let us now consider x to give us the values of some random variable X, where
X takes each value xi from x with equal probability. In what follows we will use
x to refer to X so that we do not complicate our notation.

Let µ, V ar and Cov denote the mean, variance and coefficient of variation of
the random variable X. Then

µ =
1

n

n∑

i=1

xi, V ar =
1

n − 1

n∑

i=1

(xi − µ)2 and Cov =
V ariance

Mean
.

We can also use the first two moments of x to get a new expression for the
fairness index. The first and second moment of x are

m1 =
1

n

n∑

i=1

xi and m2 =
1

n

n∑

i=1

x2
i .

36

Session 1 Session 2 Session 3

Session 0

Capacity = 1 Capacity = 1

Node 1

Node 2

Node 3

Link

Figure 3.2: A data network

Thus we can express F(x) as follows:

F(x) =
[
∑

xi]
2

n
∑

x2
i

=
[1
n

∑
xi]

2

1
n

∑
x2

i

=
m2

1

m2

(3.1)

The coefficient of variation can also be expressed in terms of moments as
follows:

Cov =
(m2 − m2

1)
1

2

m1

Now using the expression of fairness index in terms of moments (Equation
3.1), we can relate the fairness index with covariance as follows:

F(x) =
m2

1

m2

=
m2

1

m2
1 + m2 − m2

1

=
1

1 +
m2−m2

1

m2

1

=
1

1 + Cov2
(3.2)

This relationship is important because it shows why the fairness index is a
better measure of fairness than the coefficient of variation. The advantage of the
fairness index is that it is bounded in the interval (0, 1] while the coefficient of
variation is not. This makes fairness index a more intuitive measure of fairness.
Notice also the inverse relation between the fairness index and the coefficient of
variation; when we have a perfect allocation the coefficient of variation is zero. If
we increase unfairness then the coefficient of variation increases and the fairness
index decreases.

3.3 Max-Min Fairness

In the networking community the notion of max-min fairness has been very
popular. Max-min fairness forms the basis for bandwidth allocation in both data
networks and other Internet applications.

37

Figure 3.2 taken from [BG87] shows a data network with 3 nodes and 2 links
and can be used to explain the concept of max-min fairness. In this network
session 0 goes through both links while the others go through only one link each.
We try to maximize the network bandwidth allocated to each session. Thus,
giving sessions 0, 1 and 2 a rate of 1/3 each is the fairest solution given the
capacity of the link from node 1 to node 2. If we also give session 3 a rate
of 1/3, this results in a waste of extra capacity available at the rightmost link.
The solution that takes advantage of the capacity at the rightmost link without
limiting session 0 is to give session 3 a rate of 2/3.

This example motivates us to consider the following approach to fairness.
Initially, give the most poorly treated session as much as possible bandwidth.
Then, ignoring this session, make sure that the next poorest session is given
as much as possible bandwidth, etc. Another way to express the same idea is
the following: taking into account the constraints of the network, maximize the
bandwidth bi given to the session i without decreasing the bandwidth bj allocated
to any other session j such that bj ≤ bi. We also have a very natural definition
of fairest in this case: there is no way to increase the allocation bi to a session i
without decreasing the allocation bj to a session j, such that bj ≤ bi.

Let us now define formally the concept of max-min fairness. We do this
through the definition of an appropriate order relation1.

Definition 3.3 Let x and y be two allocation vectors. Then we will say that x
lexicographically dominates y, denoted by x �l y, if x = y, or there is some index
j for which x(j) > y(j) and x(i) = y(i) for all i < j.

We will say that x and y are equivalent if both x � y and y � x.
The �l defines a total order on the equivalence classes of allocation vectors

[KRT01]. This implies that the fairest allocation according to �l is the one whose
vector is the unique maximal under �.

3.4 Majorization

In 1905 Lorenz proposed a fair allocation policy that simultaneously gives a high
value of resources to every agent, trying to achieve fairness on average as well as
to each individual agent [Lor05, MO79]. Lorenz proposed to plot the points that
represent the amount of resources allocated to the poorest agent, then the sum
of the 2 poorest agents and so on, and consider the curve obtained by connecting
this points. If we have a uniform distribution of resources (perfect allocation)
then this curve is a straight line, otherwise the curve is convex and lies under
the straight line. We can also notice that an allocation whose curve lies over

1The networking literature also gives formal machinery to represent network graphs, capac-
ities, etc. However, we will not need these in our work.

38

0

2

4

6

8

10

12

0 2 4 6 8 10 12

Allocation A Allocation B Allocation C

number of agents

nu
m

be
r

of
 r

es
ou

rc
es

Figure 3.3: Lorenz curves

the curve of another allocation is fairer, i.e., it has a more equal distribution of
resources.

Example 3.3 Suppose we want to distribute 10 Euros among 10 persons. Let
us consider the following three allocation vectors:

• (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

• (0.4, 0.4, 0.5, 0.5, 0.5, 0.7, 2, 2, 2)

• (0, 0.1, 0.1, 0.1, 0.1, 0.1, 0.5, 1, 3, 5)

that represent allocations A, B and C.
Figure 3.3 represents these allocations according to Lorenz’s proposal. A is

a perfect allocation and B is fairer than C according to Lorenz. This is exactly
the result we were intuitively expecting, since in allocation B resources are more
equally distributed than in C.

Later on, Lorenz’s intuitive found its formalization in the the concept of ma-
jorization proposed by Hardy, Littlewood and Polya in the 1920s to study proper-
ties of inequalities [HLP52]. The classic textbook on majorization is now [MO79],
and we follow it closely in this section.

Definition 3.4 Let x = (x1, x2, . . . , xk) and y = (y1, y2, . . . , yk) be two allocation
vectors. Then we will say that x is majorized by y (or y majorizes x or x is less
skewed than y) and denoted by x ≺ y, if:

1.
∑n

i=1 x[i] ≤
∑n

i=1 y[i], for all n = 1, . . . , k − 1.

39

2.
∑k

i=1 x[i] =
∑k

i=1 y[i].

In the study of majorization the following class of functions studied by Schur
is really important [MO79].

Definition 3.5 A real-valued function φ defined on a set A ⊂ Rn is said to be
Schur-increasing on A if

x ≺ y on A ⇒ φ(x) ≤ φ(y). (3.3)

If, in addition, φ(x) < φ(y) whenever x ≺ y but x is not a permutation of y, then
φ is said to be strictly Schur-increasing on A. If A = Rn, then φ is simply said
to be Schur-increasing or strictly Schur-increasing2.
Similarly, φ is said to be Schur-decreasing on A if

x ≺ y on A ⇒ φ(x) ≥ φ(y), (3.4)

and φ is strictly Schur-decreasing on A if the strict inequality φ(x) > φ(y) holds
when x is not a permutation of y.

The following theorem is from [MO79] and it is due to Schur and Ostrowski.

Theorem 3.1 Let I ⊂ R be an open interval and let φ : In → R be continuously
differentiable. Necessary and sufficient conditions for φ to be Schur-increasing
on In are

φ is symmetric on In (3.5)

and
∂φ

∂zi

(z) is decreasing in i = 1, . . . , n for all z ∈ D ∩ In. (3.6)

Alternatively, φ is Schur-increasing on In if and only if (3.5) and for all i 6= j

(zi − zj)[
∂φ

∂zi

(z) −
∂φ

∂zj

(z)] ≥ 0 for all z ∈ In. (3.7)

The above theorem can be reformulated; for Schur-decreasing functions decreasing
is replaced by increasing in (3.6) and inequality (3.7) is reversed.

An equivalent form of the above theorem, with the help of remark A.5 in Page
58 of [MO79], is given by the following corollary:

2In the literature the terms Schur-convex or concave are more often used but we will use
Schur-increasing or decreasing instead because we believe that they are more intuitive. The
textbook [MO79] clearly agrees with us although prefers to follow the literature.

40

Corollary 3.1 Let I ⊂ R be an open interval and let φ : In → R be continuously
differentiable. Then φ is Schur-increasing on In if and only if

φ is symmetric on In (3.8)

and

(z1 − z2)[
∂φ

∂z1

(z) −
∂φ

∂z2

(z)] ≥ 0 for all z ∈ I2. (3.9)

The following result has been first stated in [GMP01].

Proposition 3.1 The fairness index metric F is a Schur-decreasing function.

Proof: The fairness index of allocation x is given by

F(x) =
(
∑k

i=1 xi)
2

k
∑k

i=1 x2
i

.

1. F is continuously differentiable iff F is differentiable and that its first par-
tial derivatives are continuous. This follows easily from the properties of
polynomials and continuity.

2. F is symmetric because:

F(−x) =
(
∑k

i=1 −xi)
2

k
∑k

i=1(−xi)2
=

(−
∑k

i=1 xi)
2

k
∑k

i=1(−xi)2
=

(
∑k

i=1 xi)
2

k
∑k

i=1 x2
i

= F(x).

3. (x1 − x2)[
∂F
∂x1

(x) − ∂F
∂x2

(x)] ≤ 0 for all x ∈ I2.
It is easy to see that:

∂F

∂x1

(x) =
2(2x1 + 2x2)(x

2
1 + x2

2) − 4x1(x
2
1 + x2

2 + 2x1x2)

4(x2
1 + x2

2)
=

4x3
1 + 4x1x

2
2 + 4x2

1x2 + 4x3
2 − 4x3

1 − 4x1x
2
2 − 8x2

1x2

4(x2
1 + x2

2)
=

x3
2 − x2

1x2

x2
1 + x2

2

Similarly:
∂F

∂x2

(x) =
x3

1 − x1x
2
2

x2
1 + x2

2

Thus:

(x1 − x2)[
∂F

∂x1

(x) −
∂F

∂x2

(x)] = (x1 − x2)[
x3

2 − x2
1x2

x2
1 + x2

2

−
x3

1 − x1x
2
2

x2
1 + x2

2

] =

x1x
3
2 − x3

1x2 − x4
1 + x2

1x
2
2 − x4

2 + x2
1x

2
2 + x3

1x2 − x1x
3
2

x2
1 + x2

2

=

2x2
1x

2
2 − x4

1 − x4
2

x2
1 + x2

2

= −
(x2

1 − x2
2)

2

x2
1 + x2

2

≤ 0

41

The above proposition and the definition of Schur-decreasing functions imply
that majorization is stricter than the fairness index. Also, the most majorized
allocation, when it exists, maximizes F (gives the highest possible fairness index
value).

It is straightforward to see that majorization is stricter than max-min fairness
simply by referring to Definitions 3.4 and 3.3. Thus, majorization is the stricter
notion of fairness discussed in this section.

3.5 Conclusions

In this section we studied resource allocation in an abstract setting and presented
in detail three basic and well-known measures of fairness: fairness index, max-
min fairness and majorization. We demonstrated that majorization is the stricter
of the three notions. For the rest of the work in this thesis, we adopt the fairness
index as our measure of fairness. The question of how our results would change
if we used majorization or max-min fairness is left to future work.

42

Chapter 4

Fair Allocation of Load in P2P

Systems

In this chapter, we consider a P2P system and we concentrate on distributing the
load fairly among the peers of the system. Initially, we describe the architecture
of the system and then, we define formally the fair load allocation (FLA) problem.
We use the measure of fairness index presented in Section 3.1 to balance the load
among the peers.

Continuing, the FLA problem is reduced to the k-way number partitioning
(NUMP) problem, and thus, we wonder whether algorithms that have been used
to solve the NUMP problem can also be used to solve the FLA problem. We
present the greedy heuristic, the set differencing heuristic, an algorithm based on
dynamic-programming and complete algorithms for solving the NUMP problem,
and then we propose a greedy (GFLA) and a complete (CGFLA) algorithm for
the FLA problem. Moreover, we study the behavior of CGFLA which exhibits
phase transitions. Finally, we present experimental results for both GFLA and
CGFLA algorithms and we compare them in terms of their solution quality, that
is the number of generated nodes and the fairness index achieved.

The rest of the chapter is organized as follows. In Section 4.1 the FLA problem
is defined formally. In Section 4.2 the FLA problem is related to the k-way
(NUMP) problem and algorithms solving the NUMP are presented. Section 4.3
presents a greedy algorithm for solving FLA, while in Section 4.4 a complete
algorithm is presented. Section 4.5 describes the experiments carried out and
discusses the results that emerged from these experiments.

4.1 The Fair Load Allocation Problem

Let us consider a P2P system that consists of k nodes or peers. We want to
allocate n documents (e.g., text files, pictures, MPEGs etc.) to the peers so
that each document is allocated to only one peer and the load of the system is

43

distributed fairly among the peers. Our problem is a classical resource allocation
problem and we will call it the fair load allocation (FLA) problem.

We measure the load of a peer by the number of file downloads that it serves for
the user community. To model this quantitatively, each document is associated
with a popularity p(d) that measures the probability that this document will be
accessed or the number of hits this document will receive in some given time
period that the P2P system is in operation. In the former case p(d) can be a
real number in the interval [0, 1] while in the latter case p(d) can be a natural
number. The load of a peer i, denoted by load(i), is then equal to the sum of
the popularities of the documents it stores. In this study load will be measured
by a natural number. This representation can be easily transformed into the
probabilistic one by considering the total load of the system and expressing each
natural number as a proportion of the total load.

In Chapter 3 we have already presented some measures of fairness, that have
been used in problems similar to FLA. In this chapter fairness is measured quan-
titatively as a number in the interval (0, 1] using the fairness index presented in
Section 3.1.

Let us now define the FLA problem formally.

Definition 4.1 [The Fair Load Allocation Problem or FLA] Let D be a set of
n documents with popularities given by a function p : D → N. Let k be a set of
peers. We would like to find a partition of D into subsets D1, . . . , Dk so that the
function

F(
∑

d∈D1

p(d), . . . ,
∑

d∈Dk

p(d)) =
(
∑k

i=1

∑

d∈Di
p(d))2

k
∑k

i=1 (
∑

d∈Di
p(d))2

is maximized where F is the fairness index function defined in Definition 3.2.

We now give an example of the FLA problem. Notice that in this example
and subsequent discussion we intentionally blur the difference between the set of
documents D and its image under function P (a set of integers).

Example 4.1 Let us consider an instance of FLA with k = 4 and D = {10, 9, 8, 7, 6, 4, 2}.
The solution for this problem is the partition of D into the following subsets:

D1 = {10}, D2 = {9, 2}, D3 = {8, 4}, D4 = {7, 6}

The resulting fairness index is equal to 0.99064.

4.2 The Number Partitioning Problem

The FLA problem as defined above is very similar to the k-way number parti-
tioning problem (NUMP), one of the six basic NP-complete problems proposed
in [GJ79] and the only one that deals with numbers. NUMP is defined in [KK82]
as follows.

44

Definition 4.2 [The k-way Number Partitioning Problem or NUMP] Given a
finite bag (multi-set) S of real numbers, partition S into k bags A1, . . . , Ak ⊆ S
so as to minimize the following difference:

∆(A1, . . . , Ak) = max
i

∑

x∈Ai

x − min
i

∑

x∈Ai

x

Thus, both FLA and NUMP are combinatorial optimization problems differ-
ing only in their objective functions. The following example demonstrates that
a solution to FLA is always a solution to NUMP but not vice versa. Notice also
that FLA and NUMP are equivalent when k = 2 or k = 3.

Example 4.2 We consider the instance of FLA considered in Example 4.1 as an
instance of NUMP. Now there are two solutions that minimize ∆(A1, . . . , A4):

A1 = {10}, A2 = {9, 2}, A3 = {8, 4}, A4 = {7, 6}

and
A1 = {10}, A2 = {8, 2}, A3 = {9, 4}, A4 = {7, 6}

Notice that only the first solution is a solution to FLA because for the second one
the fairness index is 0.98327.

NUMP has received enough attention in the literature and various heuristics
have been proposed for it. We first describe a simple greedy algorithm presented
by Korf in [Kor95b, Kor95a, Kor98], and then the set-differencing heuristic orig-
inally proposed by Karmarkar and Karp [KK82]. Both of these algorithms run
in polynomial time but are not complete. Finally, we present two polynomial
time algorithms: a pseudo-polynomial algorithm based on dynamic program-
ming first described in [GJ79] and a complete algorithm that runs in exponential
time [Kor95b, Kor95a, Kor98].

4.2.1 A Greedy Algorithm for NUMP

The greedy algorithm for NUMP, let us call it GNUMP, first sorts the numbers
in S in decreasing order, and then places each one of them successively into the
bag with the smallest partial sum. This algorithm is illustrated by the following
example1.

Example 4.3 Suppose we want to partition the bag S = {8, 7, 6, 5, 4} into two
bags. GNUMP would proceed as follows.

1The style of presentation follows [Kor95b].

45

Numbers Remaining Partial Partition ∆
{8, 7, 6, 5, 4} - -
{7, 6, 5, 4} {8}{} 8
{6, 5, 4} {8}{7} 1
{5, 4} {8}{7, 6} 5
{4} {8, 5}{7, 6} 0
- {8, 5, 4}{7, 6} 4

GNUMP takes O(n) time to k-partition a bag of n elements. It also requires
O(nkm) space, where m is the length of the maximum element of S in binary.
Obviously, GNUMP is not complete, as it is shown by the above example (the
minimum possible difference is 0 but GNUMP terminates with a difference of 4).

4.2.2 The Set-Differencing Algorithm for NUMP

Another polynomial-time approximation algorithm is the set-differencing method
of Karmakar and Karp (also known as KK heuristic) presented originally in
[KK82]. We present this algorithm as studied in [KK82, Kor98, Kor95a, Mer98].

Let us call this algorithm KKNUMP following our naming conventions. We
consider the case that we want to partition a bag S in two bags (k = 2). Initially,
the numbers are sorted in decreasing order. Then KKNUMP proceeds as follows.
The largest two numbers are picked and replaced by the absolute value of their
difference. The resulting bag is ordered and the same operation is iterated until
there is only one number left. This number is actually the difference between the
final two bags.

The algorithm is illustrated by the following example2.

Example 4.4 Suppose we want to partition the bag S = {8, 7, 6, 5, 4} in 2 bags.
KKNUMP proceeds as follows.

Bag a b |a − b| Partition
{8, 7, 6, 5, 4} 8 7 1 {7, 5, 4} {8, 6}
{6, 5, 4, 1} 6 5 1 {5, 4} {6, 1}
{4, 1, 1} 4 1 3 {4} {1, 1}
{3, 1} 3 1 2 {3} {1}
{2} {2} {}

We could say that in the first pass, the algorithm works down the table filling in
the first four columns. Then, it proceeds bottom-up to fill in the last two columns
of the table.

Up to now, the way we have presented KKNUMP leads us to the final differ-
ence, but tells nothing about how to compute the elements of the final bags. In

2The style of presentation follows [KK82].

46

Example 4.4 KKNUMP replaces each pair difference by the greatest number of
the pair and puts the other number of the pair in the opposite bag. As pointed out
in [Kor98] the computation of the two bags can also be implemented by building
a graph with nodes corresponding to the given numbers, and links corresponding
to the constraint that two numbers should not be in the same bag. Then, one
can 2-color the given graph to obtain the solution.

The running time of KKNUMP is O(n log n) to k-partition a bag of n ele-
ments. It also requires O(nkm) space, where m is the length of the maximum
element of S in binary. Of course, KKNUMP is not complete, but it performs
much better than GNUMP as shown in [Kor98]. The intuitive reason is that
the continuous differencing operations of KKNUMP results in a much smaller
difference that the difference produced by GNUMP which is in the order of the
smallest given number.

4.2.3 A Pseudo-Polynomial Algorithm Based on Dynamic

Programming

Another algorithm for NUMP is based on dynamic programming.
The algorithm requires an array a[L] where L = Σ

2
+ 1, where Σ is the sum

of the given numbers. The algorithm enumerates all possible subset sums to
determine the achievable subset sum closest to half the total sum. If an entry
a[i] is equal to one, that means that the subset sum i is achievable. We describe
here the algorithm as presented by [Kor98, GW98]. The algorithm starts with
the array initialized to all zeros and sets a[0] = 1. Then for each number x in
the original set, it scans the array, and for each element a[i] equal to one, it sets
a[i + x] equal to one. The algorithm continues until all numbers are exhausted.

After, array a is constructed, the algorithm returns the entry closest to half
the total sum that is equal to one. Thus, the algorithm finally finds the optimal
subset difference it can be achieved because it enumerates all possible subsets.
The algorithm is illustrated by the following example.

Example 4.5 Suppose we want to partition S = {8, 7, 6, 5, 4} in 2 bags. The
algorithm computes the size of the array as the half of the sum of all the numbers
devided by 2 and added one. Thus, the array will be of size L = (8+7+6+5+4)

2
+1 =

16. Then, the algorithm initializes all the entries to 0 and sets a[0] = 1.

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Now the algorithm starts to enumerate all possible subset sums. For number 8
the algorithm sets the element a[0 + 8] = 1.

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

For number 7 the algorithm sets the elements a[0 + 7] = 1 and a[8 + 7] = 1.

47

1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1

Up to now, all the possible subset sums are 7, 8 and 15, meaning that we could
put numbers 7 and 8 either to the same, or to different bags.

Finally, the array will be as follows, indicating all the possible subset sums.

1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

The algorithm described above runs in time polynomial in nL. But notice
that the size of the input is O(n log L) and nL is not bounded by any polynomial
function of this quantity. Thus, this algorithm is only practical for partitioning
bags with a small number of values, or problems where the individual numbers
have limited precision. Additionally, it only returns the optimal subset difference,
but not the subsets themselves.

4.2.4 Complete Algorithms for NUMP

Korf was the first to study in detail complete algorithms for NUMP. A complete
algorithm guarantees to find a solution when there is one. In [Kor95b, Kor95a,
Kor98], Korf presents two complete algorithms for NUMP; one based on GNUMP,
let us call it CGNUMP, and one on KKNUMP, called CKKNUMP. Korf’s algo-
rithms traverse a search-tree corresponding to NUMP. This tree is defined in such
a way that the first solution found by CGNUMP (resp. CKKNUMP) is the one
returned by GNUMP (resp. KKNUMP). This solution is usually non-optimal.
By allowing the algorithms to run for more time, the solution to the problem
can be improved. Eventually, these algorithms always find and verify the opti-
mal solution. Concerning their performance, CKKNUMP dominates CGNUMP
over all cases. Namely, CKKNUMP appears asymptotically more efficient than
CGNUMP when no perfect partition exists, and is orders of magnitude more
efficient when there are perfect partitions. The exact details of these algorithms
are given in [Kor98].

Various local search algorithms for number partitioning are considered in
[JAMS91, RNMS96], while genetic algorithms are studied in [BM99].

In what follows we use greedy and complete algorithms proposed by Korf as a
basis for designing corresponding algorithms for FLA. In Section 4.3 we present
a greedy algorithm. In Section 4.4 we present an complete algorithm based on
GNUMP.

This algorithm we present can also be classified as anytime as Korf has also
suggested in [Kor98]. An anytime algorithm may improve the quality of the solu-
tion returned, if it is allowed to run for enough time (e.g., local search algorithms).
The anytime feature of our algorithm is especially useful in our application do-
main, since a node in a P2P system running the complete algorithm presented
below can always decide whether to run it to completion based on some crite-
rion (e.g., fairness achieved by that time or resources available to the node, etc.).

48

When the algorithm is terminated, the node can perform the required reorgani-
zation of the system based on this possibly imperfect allocation.

4.3 A Greedy Algorithm for FLA

Our greedy algorithm for FLA, let us call it GFLA, corresponds to the greedy
algorithm for NUMP proposed in [Kor98]. We first sort the documents in decreas-
ing order of popularity. Then we always place the next unallocated document to
the peer with the smallest load so far, until all documents have been allocated.

The algorithm always makes the choice that looks best at the moment: when-
ever a new document is processed, the highest increase to fairness index is
achieved if the document is allocated to one of the peers with the smallest load.
This is shown by an easy calculation presented in Proposition A.1 of Appendix
A. Similarly with Korf’s algorithm, GFLA needs O(n) time and O(nkm) space
where m is the length in binary of the maximum document popularity.

4.4 A Complete Algorithm for FLA

To find an optimal solution to FLA one can use the obvious exhaustive algorithm:
consider all possible allocations of the n documents to the k peers and finally
return the allocation that maximizes the fairness index. The running time of
this algorithm is O(kn), with k ≥ 2, since it amounts to searching a tree with
branching factor k and depth n.

The algorithm we present in this section for solving the FLA problem is based
on making the greedy algorithm, GFLA, complete as proposed in [Kor98], and
it is a substantial improvement over the exhaustive algorithm sketched above.
Our algorithm, called CGFLA, works as follows. First, we sort the documents
in decreasing order of popularity, as we have done for GFLA. Then, we consider
each of the n documents in turn and place it in each of the k different peers,
generating a k-ary search tree which is searched depth-first. The search is ordered
and the greedy heuristic is used whenever we expand a node: the leftmost branch
emanating from this node places the next document to the peer with the smallest
current load, the next branch places it to the peer with the next higher load, etc.
Thus, the first solution found is always the solution returned by the GFLA.
Furthermore, the search tree is pruned in the following ways:

1. We never place a document in more than one peer with current load 0.
In this way, we avoid generating allocations that are essentially permuta-
tions of each other. Therefore, we reduce the search space and produce
only O(kn/k!) distinct k-way allocations of the n documents according to
Proposition A.2 of Appendix A. More generally, we never place a document
in more than one peer with the same current load.

49

2. The last document is only allocated to the peer with the smallest current
load, as this is the best we can do.

3. At each node of the serach tree, we use branch-and-bound, and maintain the
greatest fairness index F(y) found so far for a complete allocation y. Given
the peer with the largest current load in a partial allocation, the best we
can do is to bring the load of each of the remaining peers up to the largest
current value. To see if this is possible, we sum the current load of all peers
except the one with the largest load and we add to this number, the sum of
the popularities of the remaining unallocated documents (denoted by r), to
calculate the load that the k − 1 peers have to share. Thus, assuming that
numbers on allocation vector z are in non-increasing order, the quotient

A =

∑k
i=2 xi + r

k − 1

represents the average load that can be allocated to any of the k − 1 peers
except the one with the largest current load.

Formally, let x = (x1, . . . , xk) be the current load allocation to the k peers,
where x1 ≥ x2 ≥ . . . ≥ xk. If x1 − A > 0 then we consider allocation
z = (x1, A, . . . , A), i.e., the first peer is given the largest current load and
the remaining k − 1 peers are given the average load A. The fairness index
for this allocation is the following:

F(z) =
(x1 + (k − 1)A)2

k(x2
1 + (k − 1)A2)

If F(z) is greater than the maximum fairness index value achieved so far (de-
noted by F(y)), then this is the best complete allocation we could achieve.
Of course, there is no guarantee that we could actually achieve this alloca-
tion, since it represents a perfect solution to a k−1-way FLA problem, but
it gives us an upper bound.

Thus, if the fairness index F(z) computed above is smaller than the best
fairness index found so far, we can prune this branch since we cannot im-
prove the existing suballocation.

4. Once an optimal allocation is found, the algorithm is terminated. We com-
pute the optimal solution to the problem as follows. A perfect allocation
has a fairness index value equal to 1 whenever the sum of the popularities
of all the documents is divisible by k. If the sum of the popularities of all
documents is not divisible by the number of peers, we take the integer part
of the division, calling it q, and the remainder, calling it ρ. Then, the high-
est optimal fairness index value we can achieve, according to Proposition

50

{}{}

{8} {}

{8} {7}

{8} {7,6}

{8,5} {7,6}

{8,5,4} {7,6}

{8,6} {7}

{8,7} {}

{8,6} {7,5}

{8,6} {7,5,4}

{8,7} {6}

{8,7} {6,5}

{8,7} {6,5,4}

Figure 4.1: Complete algorithm based on the greedy heuristic for FLA

A.3 of Appendix A, is:

[(k − ρ)q + ρ(q + 1)]2

k[(k − ρ)q2 + ρ(q + 1)2]

In summary, CGFLA searches a tree depth-first, from left to right, requiring
exponential time and O(nkm) space, where m is the length in binary of the
maximum popularity. The first allocation found is the one computed by GFLA,
and the worst case is to generate at most O(kn/k!) allocations (see Proposition
A.2 of Appendix A).

Returning to our example, where the list of documents is (8, 7, 6, 5, 4) and
we have 2 peers, CGFLA would only generate the nodes shown in Figure 4.1.
Dashed lines indicate a pruned part of the tree, in accordance with the heuristics
presented above.

The pseudocode of the algorithm is presented in Figure 4.2.

4.5 Experimental Results

In this section, we present the results of the evaluation carried out for both GFLA
and CGFLA. We, firstly, determine the behavior of CGFLA and following, we
compare the algorithms in terms of their solution quality, that is the number of
generated nodes and the fairness index achieved.

4.5.1 Phase Transitions

While NP-complete decision problems are general understood to be very hard
to solve, it is known that for many of these problems, typical instances are easy
to solve. There is no contradiction here, since computational complexity theory
gives us only a worst case analysis for a whole class of problems. This situation
raises the question what instances of NP-complete decision problems are really
hard.

51

algorithm CGFLA
input P = {p1, p2, . . . , pk} //a set of peers

D = {d1, d2, . . . , dn} //a set of documents
n //the number of documents

sort D in decreasing order
return SEARCH(P , n, D)

function SEARCH (P , n, D)

compute f(b) //the best fairness index we expect to have
allocations = 0 //counts all possible final allocations
Load(p1) = p(d1) //allocate the first document to the first peer
x = {Load(p1), 0, . . . , 0}
currentNode = root //initialize the search using x
BranchFactor(currentNode) = 2
V isitedBranches(currentNode) = 0
if D = ∅ then return x //return the current allocation
while (true) do

pi = {pµ∈[1,k] : min(xµ) ∧ xµ 6= 0 ∧ Load(pµ) = xµ}
while V isitedBranches(currentNode) < BranchFactor(currentNode) do

for each document dj ∈ D do //dj to pi according to the greedy heuristic
if (V isitedBranches(currentNode) = 0) and (∃xµ∈[1,k] = 0) then

pi = {pµ : Load(pµ) = xµ}
Load(pi) = Load(pi) + p(dj)

else

Load(pi) = Load(pi) + p(dj)
pi = {pµ : Load(pµ) = xi−1}
V isitedBranches(currentNode) = V isitedBranches(currentNode) + 1

if ∃F(m) then //a complete allocation already exists

A = (
∑k

i=2 Load(pi) +
∑n

i=j+1 p(di))/(k − 1)

y = {Load(p1), A, . . . , A}
compute f(y)
if f(y)< f(m) then

pi = {pµ : Load(pµ) = xi−1}
V isitedBranches(currentNode) + +

else

sort(x)
currentNode = currentNode.child
if |D| = 1 then BranchFactor(currentNode) = 1
else

if ∃xµ∈[1,k] = 0 then

BranchFactor(currentNode) + +
else BranchFactor(currentNode) = k

allocations = allocations + 1
x = {Load(p1), Load(p2), . . . , Load(pk)}
compute F(x)

if f(x) = F(b) then return x
if @F(m) or F(x) > F(m) then m = x
if (D = ∅) ∧ (allocations 6= kn)then

dj = dj−1

currentNode = currentNode.parent
else return m

Figure 4.2: Complete algorithm for FLA based on the greedy heuristic

52

In papers such as [CKT91, GMPW96, GW98], researchers from theoreti-
cal computer science, Artificial Intelligence, operations research and statistical
physics have given characterizations of hard problems in terms of their con-
strainedness. The state of the art results in this area can now be summarized as
follows. Problems that are over-constrained are insoluble and it is usually easy to
check that this is the case. Problems that are under-constrained are soluble and
a solution can be found easily. A phase transition tends to occur when problems
are critically constrained and it is difficult to determine whether they are soluble
or insoluble [CKT91]. Thus, the phase transitions of some NP-complete decision
problems have been shown to follow easy-hard-easy patterns. Phase transition be-
havior of NP-complete optimization problems e.g., NUMP has also been studied
[GW98] and an easy-hard pattern has been observed.

Let us assume that we have an ensemble of instances of an NP-complete prob-
lem. We assume that each instance has a state space S with |S| elements and a
number Sol of these states are solutions. Points in the space can be represented
by N -bit binary vectors where N = log2 |S|. Let 〈Sol〉 be the expected number
of solutions averaged over the ensemble. In various NP-complete problems (e.g.,
constraint satisfaction problems) the phase transition between insoluble and sol-
uble problems occurs when 〈Sol〉 ≈ 1 [SD96].

In [GMPW96], Gent et. al. have defined the constrainedness, κ, of an ensem-
ble of instances as follows:

κ =def 1 −
log2(〈Sol〉)

n
(4.1)

[GMPW96] demonstrate that in many NP-complete problems a phase transition
will occur when κ ≈ 1. If κ < 1, problems are under-constrained and typically
soluble. When κ > 1, problems are over-constrained and typically insoluble. The
parameter κ is very useful especially because its value at the phase transition
varies very little. Additionally, whatever variation there is can be modelled using
finite size scaling techniques.

In [GW95, GW96, GW98] Gent and Walsh have studied the phase transi-
tion behavior of NUMP in detail concentrating on variations of the algorithms
proposed by Karmakar and Karp [KK82] and Korf [Kor98]. Additionally, they
have shown the way that phase transition behavior can be used to provide precise
and quantitative comparisons between algorithms and heuristics. [Mer98] have
presented a statistical mechanics analysis for studying phase transition behavior
in number partitioning problems. In what follows we are going to illustrate the
phase transition behavior of FLA using the results of [GW98] to guide us. As it
turns out, in many cases we can immediately use their results in our case.

[GW98] first compute the expected number of solutions in an instance of the
decision problem version of NUMP i.e., the expected number of perfect partitions.
If we consider finding a perfect 2-partition for a bag of n numbers drawn uniformly

53

1

10

100

1000

10000

100000

1000000

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
constrainedness parameter �

nu
m

be
r

of
 s

ea
rc

he
d

no
de

s n=24
n=18
n=12
n=6

Figure 4.3: Average nodes searched by CGFLA against κ

and at random from (0, l] then [GW98] show that

〈Sol〉 =
2n

l

Substituting the annealed value of 〈Sol〉 into Equation 4.1 and simplifying it
follows:

κ =
log2(l)

n

The analysis of [GW98] regarding κ for NUMP holds as is for FLA. Thus,
we will use the parameter κ in order to identify whether CGFLA exhibits phase
transition behavior, and if so, to identify the phase transition region. Afterwards,
we are going to use κ, if determined, in order to compare our algorithms.

Phase Transition Experiments

Let us now present the details of our experiments that show the phase transition
behaviour of FLA. We generated n documents and allocate them to k = 2 peers
using CGFLA, with n varying from 6 to 30. The popularities of the documents
are integers distributed uniformly at random in the interval (0, l], for log2 l from
0 to 2n. Were generated 1000 problem instances for each value of l and n.

In Figure 4.3, the average number of nodes searched by CGFLA is plotted
against the constrainedness parameter κ. The y-axis is in logarithmic scale.
The easy-hard phase transition pattern typical of optimization problems is easily
identifiable. At the beginning, where κ is small, problems are in the soluble
phase and are, on average, easy. Problem hardness increases as we approach the
phase boundary. As expected, problems appear to remain uniformly hard in the
insoluble phase away from the phase boundary.

54

1

10

100

1000

10000

100000

1000000

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30

constrainedness parameter �

nu
m

be
r

of
 s

ea
rc

he
d

no
de

s n=24

n=18
n=12

n=6

Figure 4.4: Average nodes searched by CGFLA against γ

Additionally, the transition sharpens as n increases. Thus, when n = 6 the
phase boundary is identifiable with difficulty. As n increases, the transition be-
comes more obvious, and it is finally very steep for n = 24.

Another interesting point arising is the fact that the transition from the easy
to the hard phase does not start at the same value of κ for all values of n. Thus,
for n = 6 the average number of generated nodes starts to increase when κ = 0.7,
while for n = 24 the number of searched nodes is increased noticeably when
κ = 0.5. However, for all values of n, the insoluble phase where CGFLA exhibits
uniform behavior occurs after κ ≈ 1.

In Figure 4.3, it is clear that in the easy phase the nodes generated by CGFLA
are comparable as n increases. For example, when κ < 0.4 CGFLA generates
approximately 7 nodes for allocating 6 documents, while for allocating 24 doc-
uments it generates approximately 30 nodes. However, when κ > 1 CGFLA
generates approximately 10 nodes to allocate 6 documents, and 330000 nodes to
allocate 24 documents.

Let us now consider the finite-size scaling methods of [GW96] to see how the
probability to have a perfect partition in the decision problem version of NUMP
scales with problem size. [GW96] predicted that problems of all sizes will be
indistinguishable around some critical point except for a change of scale given by
a simple power-law. [GW96] suggest that

Prob(perfect partition) = f((
κ − κc

κc

)n1/ν) (4.2)

where f is a fixed function, κc is the critical point, and n1/ν provides the change
of scale. Equation 4.2 has a fixed point where κ equals κc and for all n the
probability is the constant value f(0). [GW96] has estimated κc as 0.96 ± 0.02.
Additionally, ν has been computed as 1± 0.3. Finally, [GW96] defines a rescaled

55

1

10

100

1000

10000

100000

1000000

6 12 18 24
number of documents

nu
m

be
r

of
 s

ea
rc

he
d

no
de

s log2(l)=0
log2(l)=1
log2(l)=n
log2(l)=2n

Figure 4.5: Average nodes generated by CGFLA against n

parameter γ as follows:

γ =def
κ − 0.96

0.96
n

In Figure 4.4, the average number of nodes generated by CGFLA against
parameter γ is plotted. This graph follows by the data in Figure 4.3 and the
definition of γ and it is in correspondence with Figure 3 of [GW96].

Counting the number of generated nodes in a search algorithm is a nice
machine-independent measure of algorithm performance. Let us now give a flavor
of the actual time needed to solve some of the FLA instances generated above.
The algorithms were implemented in C and we run our experiments on a Pen-
tium 4 with CPU at 1.6 GHz and with 1 GByte of main memory running Linux.
GFLA solved all instances of the FLA problem very quickly, in less than 1 msec.
Concerning CGFLA in the easy phase, for example when κ ' 0.3, FLA is solved
in time less than 1 msec for every value of n. In the hard region the time increases
substantially. For example, when κ ' 1.65 CGFLA needs on average less than 1
msec when n = 6, 1 msec when n = 12, 50 msec when n = 18, and 1.6 sec when
n = 24 to find the optimal solution. Thus, the actual time needed for finding the
optimal solution is very small, even if 350000 nodes have to be generated.

4.5.2 Varying the Number of Documents

To compare GFLA and CGFLA regarding their time complexity, we could con-
sider GFLA as equivalent to a search algorithm traversing the search-tree corre-
sponding to FLA and always returning the first solution found. Then, the number
of nodes generated by GFLA is the same with the number of documents, n, being
allocated.

56

82

84

86

88

90

92

94

96

98

100

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
constrainedness parameter �

pr
un

ed
 n

od
es

 %
n=24
n=18
n=12
n=6

Figure 4.6: Percentage of pruned nodes against κ

CGFLA is expected to have a more complicated behavior, as it is affected by
both the number of documents and the size of the popularities of the documents
generated.

In Figure 4.5 we plot the average nodes searched by CGFLA to allocate n
documents to k = 2 peers, with n varying from 6 to 24. The y-axis is in loga-
rithmic scale. It is clear that the number of nodes searched by CGFLA increases
exponentially with n. The experiment was run for some instances from both easy
(log2 l = 0 or 1) and hard phases (log2 l = n or 2n) of our problem. As expected,
CGFLA has a uniform behavior during the easy phase, as all problems there are
under-constrained and they are expected to be easy. The same uniformity occurs
during the hard phase, since the problems there are over-constrained.

Although the number of nodes generated by CGFLA still increases exponen-
tially with n, the heuristics used (see Section 4.4) prune a large part of the search
tree. The percentage of pruned nodes against parameter κ is plotted in Figure
4.6. It is clear that for all values of n only a small number of nodes is generated
relatively to the initial search space. Particularly, in the easy phase of the prob-
lems, where κ is small, around 99% of the nodes are pruned when the number of
documents is more than 12. In the hard phase of the problem, the percentage of
pruned nodes is again very high (95%), despite the fact that the pruned nodes
are less than those in the easy phase. When the number of documents is equal
to 6, the curve of pruned nodes demonstrates similar behavior.

57

0.99

0.991

0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

1 2 3 4 5 6 7 8 9 10 11 12 13
log2(l)

fa
irn

es
s

in
de

x

CGFLA

GFLA

Figure 4.7: Average fairness index achieved against log2(l)

4.5.3 How Fair is GFLA and CGFLA?

Now we study the values of the fairness index achieved by GFLA and CGFLA. In
Figure 4.7, we plot the average fairness index achieved, for n = 6, k = 2 and log2 l
from 0 to 12, while the popularities of the documents are distributed uniformly
in the interval (0, l]. 1000 problem instances were generated for each value of l.
Note that the difference in the fairness index between the allocations returned by
both algorithms is always less than 0.0015, meaning that the solution returned
by GFLA is always very near to the solution returned by CGFLA.

Figure 4.8 gives us another interesting picture. We plot the difference in the
fairness index achieved by GFLA and CGFLA, for n = 6 and log2 l from 0 to 2n,
against the constraindness parameter κ. 1000 problem instances were generated
for each value of l. We observe that the difference is one order of magnitude
less in the soluble phase compared to the difference in the insoluble phase. The
difference between the solutions increases as we approach the phase boundary
and it remains relatively constant (≈ 0.0013) in the insoluble phase. It is again
very easy to see that the difference is very very small.

Another point shown in Figure 4.7 which deserves explanation is the relatively
low fairness index achieved for log2(l) = 1. While the fairness index is higher
than 0.998 for all other values of log2(l), it drops to 0.9938 for log2(l) = 1. When
log2(l) = 1, l = 2 and thus, the popularities of the documents are generated in
the interval (0, 2], meaning that the popularity of each document is either 1, or 2.
In this case, there will be instances where the sum of the documents is divisible
by 2, but the solution to the FLA problem will not be equal to 1. For example,
if we have two peers and a bag of documents {2, 2, 2}, the best that it could be
done is to partition these documents into bags {2, 2} and {2}. Thus, considering

58

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
constrainedness parameter �

di
ffe

re
nc

e
in

 fa
irn

es
s

in
de

x

Figure 4.8: Difference in the fairness index achieved against κ

that this situation will occur in half of the problem instances, it becomes clear
why the fairness index appears relatively decreased when log2(l) = 1.

4.5.4 Varying the Number of Peers

Up to now, all the experiments run were allocating the set D of n documents in
2 peers. Let us now consider the case where the number of peers is k > 2. We
expected the average number of nodes searched by CGFLA to be affected by the
number of peers, as the whole search space is O(kn) (Section 4.4). Additionally,
due to the analogy of the k-way FLA and the NUMP problems, a similar phase
transition behavior was again expected. More specifically, we again expect a
phase transition to occur around κ ≈ 1.

[GW98] defines the constrainedness parameter, κ, for multi-way partitioning
using the same technique presented in Section 4.5.1. The expected number of
perfect partitions in this case is the following:

〈Sol〉 = kn(
1

2
)(k−1) log

2
(l)

Substituting this value into Equation 4.1 gives the following expression:

κ =
(k − 1)logk(l)

n

In Figure 4.9, we plot the average number of nodes searched by CGFLA
against the constrainedness parameter, κ, with the number of peers varying from
2 to 6 and for 12 documents. The y-axis is in logarithmic scale. The popularities
of the documents were distributed again uniformly in the interval (0, l], with
log2(l) from 0 to 2n. 1000 problem instances were generated for each value of l.

59

1

10

100

1000

10000

0 0.5 1 1.5 2 2.5 3 3.5 4
constrainedness parameter �

nu
m

be
r

of
 s

ea
rc

he
d

no
de

s

k = 6
k = 5
k = 4
k = 3
k = 2

Figure 4.9: Average nodes searched by CGFLA against κ

As it was expected, we take a similar behavior for all values of k. The phase
transition is easily identifiable. Problems are in the easy phase when κ is small,
while their hardness increases as we approach the phase boundary. However, the
greater the number of peers is, the earlier the phase transition begins. Thus, for
k = 3 the number of average nodes searched starts to increase when κ ≈ 0.42,
while for k = 4 the increase in the number of nodes starts when κ = 0.375.
Additionally, the transition becomes sharper as the number of peers increases.
As expected, all problems remain uniformly hard in the insoluble phase.

4.5.5 Using Zipf Distributions

In this section we present experiments, where the popularities of the generated
documents follow both Zipf and uniform distributions. As we have said in Chapter
3 the probability of a request for the i-th most popular object on the Web is
proportional to 1/i. The values of the Zipf parameter θ, which have been found
to adequately capture the distributions of accesses for web objects, range between
0.6 and 0.8 [ABCdO96, BCF+99]. Based on these claims we have generated
popularities following the Zipf distribution with θ = 0.8.

In Figure 4.10, we plot the average number of nodes searched by CGFLA
against the constrainedness parameter, κ, when allocating 12 documents to k = 2
peers. The y-axis is in logarithmic scale. The popularities of the documents were
distributed either uniformly, or following the Zipf distribution in the interval
(0, l], with log2(l) from 0 to 2n. 1000 problem instances were generated for each
value of l.

60

1

10

100

1000

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
constrainedness parameter �

nu
m

be
r

of
 s

ea
rc

he
d

no
de

s CGFLA-zipf

CGFLA-uniform
GFLA

Figure 4.10: Average nodes searched against κ

The behavior of the average number of nodes searched by CGFLA in the
case that the generated popularities obey Zipf’s law is very similar to the case
that the popularities are distributed in a uniform way. In Figure 4.10 the search
space displays a phase transition that sharpens around κ ≈ 1. However, the
number of generated nodes is surprisingly less in the case that we used the Zipf
distribution than in the case where the popularities were spread uniformly in the
same interval. Specifically, the average number of nodes generated by CGFLA is
comparable to GFLA when we used the Zipf distribution. This discovery makes
us agree with the claim of [GW98] that instances of NUMP obeying Zipf’s law
are much easier to partition than those drawn uniformly.

Additionally, we expect that the maximum value of the fairness index achieved
is less in the case that the popularities of the documents follow the Zipf distri-
bution than in the case they are uniformly distributed. By definition, using the
Zipf distribution means that there will be some very popular documents, while
the most of them will have a very small probability to be asked. Thus, there
will be generated some great numbers (corresponding to the very popular docu-
ments), whereas the big mass of the generated numbers will be relatively small
(corresponding to the not so popular documents). This kind of unevenness to the
generated popularities results in rather spottiness in the final subsets. The exper-
iments strictly verify our assumptions. However, even with the Zipf distribution
the values of fairness index are still very very high (> 0, 991).

61

4.6 Conclusions

In this chapter we concentrated on distributing the load fairly among the peers
in a P2P system. We described the architecture of our system, defined formally
the FLA problem and finally, proposed two algorithms for solving it: GFLA and
CGFLA. The algorithms were evaluated and compared experimentally in terms
of their solution quality.

Initially, effected by the algorithms in the NUMP paradigm, we tried to de-
tect whether CGFLA presents a phase transition behavior. All our experiments
resulted in the fact that CGFLA moves from an easy to a hard phase depending
on the problem size and on the interval within document popularities lie. Ad-
ditionally, the experimental results comparing GFLA and CGFLA indicate that
although the solution returned by GFLA is not the optimal, it is always very
close to it. Of cource, GFLA is, as expected, quicker than CGFLA no matter the
size of the problem.

62

Chapter 5

More Sophisticated Models of

Resources

In the previous chapter we defined formally the FLA problem and we presented
algorithms and experimental results for solving this problem. Up to now, we
have dealt with very simple models of P2P systems where the only concepts have
been the peers and the documents contributed by them. Each document has been
associated with a popularity that gives us a measure of the load to be suffered
by a peer contributing this document. In this section we will use more realistic
models of P2P system resources proposed originally in the context of the hierar-
chical P2P content sharing system CLUSTER proposed by our research group in
[TXK02, TXKN03, Xir03]. CLUSTER imposes a hierarchical system structure
based on the concept of peer clusters and takes into account the heterogeneity of
peers by using sophisticated models of resources allowing for peers with varying
capabilities. The fact that P2P system nodes consist of very heterogeneous com-
puters was first discussed in [SGG02], but so far very few papers have taken this
into account. In this chapter we will introduce the main concepts of CLUSTER
and its resource models as discussed in [TXK02, TXKN03, Xir03]. Then, we will
utilize algorithms similar to the ones developed in Chapter 4 to study a particular
kind of load balancing problem emphasized in this context.

The rest of the chapter is organized as follows. In Section 5.1 we introduce
CLUSTER and define the load balancing problem to be studied. Section 5.2
presents the resource models of CLUSTER. Section 5.3 presents a greedy and a
complete algorithm for load balancing. In Section 5.4 we present the results of
the experimental evaluation carried out for these algorithms. Finally, Section 5.5
concludes this chapter.

63

5.1 CLUSTER: A Hierarchical P2P Content Shar-

ing System

We now introduce a formal model of CLUSTER as presented in [TXKN03].
CLUSTER can be used to store a set D of n documents with popularities given
by a function p : D → N. The documents are contributed by k peers. Each
peer i may contribute more than one document to the system. The documents
of CLUSTER may belong to a predefined set C of λ semantic categories (e.g.,
topics). This can be captured by a function t : D → C that maps each document
to a semantic category. The popularity of a category c, denoted by p(c), is defined
to be the sum of the popularities of the documents belonging to c i.e.,

p(c) =
∑

d∈c

p(d).

In general, the popularity of a set of documents Di will be denoted by p(Di) and
defined as

p(Di) =
∑

d∈Di

p(d).

Finally, the popularity of a set of categories Si, denoted by p(Si), is defined as

p(Si) =
∑

c∈Si

p(c) =
∑

c∈Si

∑

d∈c

p(d).

Table 5.1 lists our notation for the various parameters of CLUSTER that will
be used in the rest of this chapter.

The basic concept of CLUSTER that makes it different from other P2P con-
tent sharing systems, is that it relies on a two-level hierarchical organization of its
peers. Peers in CLUSTER are logically organized into m clusters with the pos-
sibility of having peers that belong to more than one cluster. In the architecture
proposed in [TXKN03], clusters of nodes form storage collectives/repositories,
and each cluster can store and thus serve requests for documents belonging to
one or more document categories. Each category may belong to only one cluster.
The nodes are assigned to clusters according to the categories of the documents
they contribute. So, depending on how the categories are assigned to clusters, a
peer may belong to more than one cluster if it contributes documents associated
with more than one category.

Given this logical system model, the load balancing task in CLUSTER can be
seen as a two-level problem. Initially, fair load distribution needs to be ensured
among all clusters of the system. [TXKN03] refer to this property as inter-cluster
load balancing. Additionally, fair load distribution must be ensured among all
peers belonging to the same cluster. [TXKN03] refers to this as intra-cluster
load balancing. We have achieved global load balancing, when we have achieved

64

Symbol Meaning

P set of peers
D set of documents
C set of categories
Pi i-th cluster of peers (Pi ⊆ P)
Si set of categories assigned to cluster i
Tj set of categories of documents contributed by peer j
Dj set of documents stored by peer j
Djc set of documents stored by peer j and belonging to category c (Djc ⊆ Dj)
k number of peers
n number of documents
λ number of categories
m number of clusters
ki number of peers in cluster i
uj processing capacity of peer j
Ui processing capacity of cluster i
vjc part of processing capacity of peer j that is carried by category c
vc total processing capacity carried by category c

Table 5.1: CLUSTER model parameters

inter-cluster and intra-cluster load balancing at the same time. In this chapter,
we concentrate on the problem of inter-cluster load balancing. Intra-cluster load
balancing is achieved in CLUSTER using various well-understood replication
techniques that are exploited by the query answering protocols and will not be
considered here. The interested reader should consult [TXKN03] for more details.

5.1.1 Inter-cluster Load Balancing: Formal Problem For-

mulation

The inter-cluster load balancing (ICLB) problem in CLUSTER can be defined
as follows [TXKN03]. We want to partition a set P of k peers into m clusters so
that the following two constraints hold:

1. Documents belonging to the same category are assigned to a single cluster.

2. Load is allocated fairly among clusters.

The first constraint enables us to group together all documents of the same cat-
egory and treat them as a single logical entity. If the first constraint is satisfied
then the second constraint can be taken into account by designing protocols op-
erating at the level of categories (as opposed to the level of documents). Thus, a
rewording of ICLB is: “Partition λ document categories into m clusters achieving
fair allocation of load among clusters”. This statement of ICLB makes it very

65

similar to the FLA problem studied in Chapter 4. If the load of a cluster Pi is
denoted by load(Pi), then formally ICLB can be defined as follows.

Definition 5.1 [ICLB] Let P,D and C be a set of peers, documents and cate-
gories in CLUSTER with the properties and constraints given above. We would
like to find a partition of P into m clusters P1, P2, . . . , Pm so that the function

F(load(P1), load(P2), . . . , load(Pm)) =
(
∑m

i=1 load(Pi))
2

m
∑m

i=1 (load(Pi))2
(5.1)

is maximized, where F is the fairness index function of Definition 3.2.

The next section discusses various ways to define the concept of load for a
cluster of peers (i.e., the quantities load(Pi) in the above formula) culminating in
the most realistic model of Section 5.2.4 where peer heterogeneity is fully taken
into account. Then we will use search algorithms like the ones developed in
Chapter 4 to perform fair load allocation in CLUSTER.

5.2 Accounting for Heterogeneous Peers in CLUS-

TER

In this section we present the detailed models of CLUSTER that allow us to ac-
count for heterogeneous peers. Heterogeneity is captured by modelling explicitly
the different processing power and different storage capacity of peers. Our presen-
tation follows [TXKN03] almost verbatim, but our notation is slightly different
(we believe it is more intuitive; see Table 5.1).

5.2.1 Peers with Identical Capabilities Contributing Doc-

uments of a Single Category Each

For reasons of presentation, let us first make the following restrictive assumptions:

1. Peers in CLUSTER are identical (i.e., they have equal processing and stor-
age capacity).

2. All documents contributed by each peer belong to the same category.

The second constraint in the informal definition of ICLB (Section 5.1.1) now
implies that all documents contributed by a peer will be logically organized into
the same cluster. Therefore no peer will belong to two different clusters.

As in Chapter 4 where we deal with single peers, the load of a cluster will be
determined by the popularity of the documents contributed by its peers. Then, at
a first approximation, the load of a cluster Pi can be the sum of the popularities

66

of the documents belonging to the peers of Pi. This sum is the same with the sum
of the popularities of the set of categories Si of the documents of cluster Pi. In
other words, load(Pi) = p(Si). However, not all clusters are of equal size. Thus,
we choose to normalize the above expression for load(Pi) with respect to the
number of peers ki that are members of Pi and arrive at the following expression:

load(Pi) =
p(Si)

ki

(5.2)

The following subsections relax the above restrictive assumptions one by one,
and generalize the above formula for load of a cluster.

5.2.2 Peers with Different Processing Capacity

In the general case, the peers of a P2P system will not have the same processing
capabilities as shown by the measurement study of [SGG02]. To accommodate
this fact (i.e., relax the first assumption of Section 5.2.1), we model each peer as
having processing capacity uj, which reflects the processing power as well as the
networks capabilities of a peer (bandwidth). We can now define the processing
capacity Ui of cluster i to be the sum of the processing capacities of all the peers
contributing documents to i. Thus

Ui =
∑

j∈Pi

uj

where uj is the processing capacity of peer j and Pi is the i-th cluster.
Now we can refine Equation 5.2 giving the load of a cluster Pi by dividing

p(Si) by Pi’s processing capacity instead of Pi’s number of peers:

load(Pi) =
p(Si)

Ui

(5.3)

5.2.3 Peers that Contribute Documents Belonging to Mul-

tiple Categories

In general, a peer in a content sharing system can contribute a number of docu-
ments, and these documents can belong to different categories. If these categories
are assigned to the same cluster, then there is no need to change Equation 5.3
defining the load of a cluster in Section 5.2.2.

If a peer contributes documents belonging to categories that are assigned to
different clusters, the peer can be modelled as belonging simultaneously to all
these clusters and contributing different parts of its processing capacity to them.
The processing capacity of a peer j that is contributed to a specific cluster i is
analogous to the popularities of the categories stored by j and assigned to cluster
i. Consider, for example, a peer j having processing capacity uj and contributing

67

documents belonging to categories c1 and c2, which are assigned to clusters P1 and
P2 respectively. For the needs of intra-cluster load balancing, [TXKN03] initially
assumes that peers store all documents of the categories assigned to their cluster.
In this case, because i belongs to P1 and P2 it will store all documents in the
categories assigned to P1 (i.e., the categories of set S1 in the notation of Table
5.1) and all documents in the categories assigned to P2 (i.e., the elements of S2

in our notation). Thus, peer j will contribute

uj
p(S1)

p(S1) + p(S2)

of its processing capacity to cluster P1, and

uj
p(S2)

p(S1) + p(S2)

of its processing capacity to cluster P2.
We can now generalize the above discussion. If uj is the processing capacity

of peer j and Tj is the set of categories of documents stored by peer j, then the
load of this cluster can be defined as follows:

load(Pi) =
p(Si)

∑

j∈Pi
uj

p(Si)
p(Tj)

=
1

∑

j∈Pi

uj

p(Tj)

5.2.4 Peers with Different Storage Capacities

In P2P systems, peers (i.e., user computers) may have very different storage
capacities and thus, they may not be able to store (or they may not wish to
store) all documents of the categories to which they contribute. In this case, our
formula for the load of a cluster can be derived as in Section 5.2.3 but now our
analytical models of load have to take into account individual documents and not
refer simply to categories.

As previously, a peer j will belong to a cluster i whenever j contributes doc-
uments to a category assigned to i. We can therefore say that categories carry
peers and their processing capacity to clusters. Peer j will store all the docu-
ments it contributes, and it may also choose to store some additional documents
belonging to categories assigned to the clusters that j belongs to. The storage
capacity of peer j is implicit in this choice of additional documents.

Thus, if we know that a peer j stores the set of documents Djc belonging
to category c1, we can compute the part of the processing capacity of j that is
carried by c as in Section 5.2.3. This processing capacity will be denoted by vjc

1Peer j has to own and contribute some of these documents to the community while the
rest are stored by it for reasons of being cooperative.

68

and is given by the following formula:

vjc =
∑

c∈Tj

uj
p(Djc)

p(Dj)

where Dj is the complete set of documents stored by peer j (see the definitions
of Table 5.1). Similarly, we can define the total processing capacity vc carried by
category c as follows:

vc =
∑

j∈P

vjc =
∑

j∈P

∑

c∈Tj

uj
p(Djc)

p(Dj)

The processing capacity Ui of a cluster Pi can now be defined as the sum of
the processing capacities carried to Pi by all categories assigned to it. In our
notation:

Ui =
∑

c∈Si

vc

Thus, the load of cluster Pi can now be defined as follows:

load(Pi) =
p(Si)

Ui

=
p(Si)

∑

c∈Si
vc

5.3 Algorithms for ICLB

Let us now discuss two algorithms for solving the ICLB problem in CLUSTER
for the most general case of resource models given in Section 5.2.4. To solve
ICLB, [TXKN03] proposes a greedy algorithm, called MaxFair. In what follows
we are going to present MaxFair and also propose a complete algorithm based on
GFLA presented in Section 4.4.

5.3.1 A Greedy Algorithm for ICLB

MaxFair takes as input a set P of peers, a set D of documents contributed
by the peers in P and the number of clusters m in which the peers will be
organized. MaxFair starts by grouping together all documents belonging to the
same category and calculating the popularity for each category and the processing
capacity carried with each category. Then, MaxFair considers each category c
in turn and allocates it to one of the m clusters. This cluster is chosen to be
the one that gives the highest value for the fairness index when the category is
hypothetically allocated to it.

Thus, MaxFair always makes the choice that looks best at the moment: when-
ever a new category is processed, MaxFair computes all m possible values of the
fairness index, by assigning the category hypothetically to all m clusters and

69

algorithm MaxFair
input P = {p1, p2, . . . , pk} //a set of peers

D = {d1, d2, . . . , dn} //a set of documents
C = {c1, c2, . . . , cn} //a non-empty set of categories
t : D → C //mapping of documents to categories
m //the number of clusters
{u1, u2, . . . , uk} //the processing capacity of each peer pi

compute the popularity p(cj) of each category cj in C
compute the processing capacity vj for each categories cj in C
sort the categories of C in decreasing order of popularity

for each cluster Pi initialize load(Pi) to 0 end for

for each category cj ∈ C do

for i := 1 to m do //suppose cj is allocated to cluster Pi and compute
p′(Si) = p(Si) + p(cj) //the hypothetical cluster popularity
U ′

i = Ui + vj //and processing capacity
load′(Pi) = p′(Si)/U

′

i

y = {load(P1), . . . , load′(Pi), . . . , load(Pm)}
compute F(y) //need to traverse an m-positions array
fi = F(y)

end for

assign cj to Pk where fk is maxifi

x = {load(P1), . . . , load′(Pk), . . . , load(Pm)}
end for

return x

Figure 5.1: A greedy algorithm for ICLB

choosing the allocation that results in the maximum value of the fairness index.
MaxFair needs O(λm2) time and obviously may not provide the optimal solution
to the ICLB problem.

The pseudocode of MaxFair is presented in Figure 5.1.

5.3.2 A Complete Algorithm for ICLB

In order to find the optimal solution to the ICLB problem we can use the following
exhaustive algorithm: consider all possible allocations of the λ categories to the
m clusters and finally return the allocation that results in the maximum value of
the fairness index. The running time of this algorithm is O(mλ), where m ≥ 2.

We now present CICLB, a complete anytime algorithm for the ICLB problem,
which is an improvement over the exhaustive algorithm. CICLB is very similar to
the complete algorithm CGFLA presented in Section 4.4, but considers categories
instead of documents, clusters instead of peers and cluster load instead of peer
load. The input of the algorithm is as follows:

70

1. The set of peers P .

2. The set of documents D contributed by the peers of P . Each document is
assigned to a semantic category.

3. The number of clusters m in which we want to logically organize the peers
of P .

4. The set of categories C.

5. A function t : D → C mapping each document to a category.

CICLB works as follows. Initially, CICLB groups together all documents
of the same category and computes the popularity of each category and the
processing capacity carried with each category. Then, it sorts the categories in C
in decreasing order of popularity. Afterwards, it considers each of the λ categories
in turn, and attempts to place it in each one of the m different clusters, generating
an m-ary search tree which is searched depth-first. The search is ordered and
CICLB uses the greedy heuristic MaxFair whenever it expands a node: m values
of fairness index are computed and the leftmost branch emanating from this node
places the next category to be allocated to the cluster that results in the highest
value for the fairness index, the next branch places this category to the cluster
that results in the second greatest value of the fairness index, etc. Thus, the first
solution found is always the greedy solution returned by MaxFair and the time
complexity of CICLB is O(mλ+2).

Additionally, we use a very simple heuristic in order to reduce the search
space, in analogy to the first heuristic for CGFLA presented in Section 4.4. We
never place a category in more than one empty cluster, and, thus, we avoid
generating duplicate allocations that differ only by a permutation of the clusters.
Therefore, we reduce the search space and produce only mλ/m! distinct m-way
allocations of the λ categories (see Proposition A.2). More generally, we never
place a category in more than one cluster with the same popularity and the same
processing capacity. Once the complete tree is searched, the optimal allocation
has been found and CICLB terminates.

Summarizing, CICLB searches a tree depth-first, left to right and the worst-
case time complexity is O(mλ+2/m!). The first allocation found is the one com-
puted by MaxFair.

5.3.3 Further Discussion

Although, GFLA presented in Chapter 4 and MaxFair presented in this section
look similar, the careful reader should have noticed that MaxFair is more com-
plicated. GFLA always places the next unallocated document to the peer with
the smallest load at each step of the allocation procedure based upon Proposition

71

Parameter Symbol Baseline value

Number of documents n 1000000
Maximum document popularity l 300000
Number of peers k 500000
Number of categories λ 100
Number of clusters m 20
Skewness for the Zipfian distribution θ 0.8
Maximum number of processing capacity of a peer umax 10000

Table 5.2: Baseline values for the parameters used in the experiments

A.1. However, MaxFair computes at each step m values of the fairness index by
allocating hypothetically categories to each one of the clusters before it makes
a final decision. The same difference holds for the corresponding complete algo-
rithms. Unfortunately, the ICLB problem has more complicated formulas than
FLA for computing load so MaxFair appears to be the simplest greedy heuristic
that one could devise.

5.4 Experimental Results

In this section, we present the results of the experimental evaluation carried
out for both MaxFair and CICLB. We firstly discuss the framework in which
all experiments were carried out, and then we analyze and compare the two
algorithms.

5.4.1 Framework

Because of the hierarchical system architecture that CLUSTER imposes, we have
to deal with several parameters that may affect the performance of the algorithms.
The key parameters are the number of documents, the document popularities,
the number of peers, the number of categories and the number of clusters. From
the values of these parameters, we calculate all the other parameters needed. To
observe the impact of each one of the above parameters to the overall performance
of the algorithms under evaluation, we use a baseline set of values (shown in detail
in Table 5.2). For each experiment carried out, we vary one of the parameters
and see how the performance of each algorithm varies.

In the experiments we create n different documents with popularities cho-
sen from the interval (0, l]. In analogy with [TXKN03] the popularities of the
documents follow the Zipf distribution with skewness factor 0.8 as shown also
in Table 5.2. We then generate k peers and assign to each peer u processing
capacity using a Zipf distribution with skewness factor 0.8. In the context of our

72

experiments the processing capacity of a peer is represented by an integer in the
interval [1, umax], where umax is 10000. We choose a rather large value for umax

in order to model the big heterogeneity of processing capacity among peers in
existing content sharing P2P system [SGG02].

Having generated the documents and the peers of the system, we assign each
document to a peer using the uniform distribution. Finally, we randomly as-
sign each document to a category using the uniform distribution. Each time a
document is assigned to a category, the popularity and the portion of the pro-
cessing capacity of the peer contributing the document are added respectively
to the overall popularity and processing capacity of the category. The baseline
parameters of Table 5.2 can be used to compute all the other parameters shown
in Table 5.1, such as the set of categories Ti contributed by peer i, the processing
capacity Ui of cluster i, etc.

Initially, we set up an experiment using the baselines values of the parameters
shown in Table 5.2 and examine the difference in search time between MaxFair
and CICLB. As expected, MaxFair terminated in a few milliseconds, whereas
CICLB needed 11 hours to return the optimal solution, since it conducts an
almost exhaustive search.

In the experiments of the following section we use the values of Table 5.2 for
the key parameters. In each experiment we vary the parameter under consid-
eration, while keeping the rest of the parameters constant, and study the effect
to the algorithm performance. We then explain the behavior of the algorithm
in terms of the fairness achieved and the number of nodes generated until the
solution was found. All the experiments of the next section were run 1000 times
and their results were averaged to produce a point in the graph.

5.4.2 Phase Transitions

Let us remind you that some optimization problems may exhibit phase transition
behavior [GW96]. In Section 4.5 we studied and evaluated experimentally the
easy-hard transition behavior of FLA. A very important parameter for detectinf
this behavior was the upper bound l of the interval in which the popularities of
the documents were generated. In this section we will try to identify whether
ICLB exhibits a similar behavior.

Provided that all documents of the same category are grouped together and
treated as a single entity, we want to partition the λ document categories into
m clusters (see Section 5.1.1). We suppose that category popularities lie in the
interval (0, u], where the upper bound u of the interval is computed as follows.

The documents are generated in the interval (0, l] following the Zipf distribu-
tion with skewness parameter 0.8. The Zipf distribution suggests that the i-th
element of the distribution appears with frequency equal to (1

i
)θ. Provided that

we generate n elements, the number of appearances of the i-th most frequent

73

0

5

10

15

20

25

30

35

40

45

50

0 0.5 1 1.5 2 2.5
constrainedness parameter �

nu
m

be
r

of
 s

ea
rc

he
d

no
de

s

12 documents

6 documents

Figure 5.2: Average nodes searched by CICLB against κ

number of the distribution [Knu73] is

Oi =
n

iθHn

(5.4)

where Hn is the Harmonic mean of order n i.e.,

Hn =
n∑

i=1

1

iθ

We use the function proposed in [GSE+94] to generate the document popularities;
according to this function integer i gets weight proportional to (1

i
)θ. From this

we understand that the i-th most frequent number is in general number i. Thus,
to compute the sum of the generated popularities in the interval (0, l] we take
the following sum:

l∑

i=1

iOi (5.5)

Assigning the documents to categories, the worst case scenario is that all
documents will eventually belong to the same category. Thus, the maximum
possible category popularity, that is the upper bound u of the interval within
which the category popularities lie, equals the sum of the generated document
popularities, that is computed in Equation 5.5. Substituting the baseline value
of θ into Equation 5.5, we have the following:

u =
l∑

i=1

i
n

i0.8
∑n

i=1 (1
i
)0.8

74

Having computed the upper bound u of the interval in which the category
popularities lie, we can now use the same technique presented in Section 4.5.1 to
detect whether ICLB exhibits a phase transition behavior. Thus, we first compute
the expected number of perfect partitions of λ categories into m clusters and then
the resulting constrainedness parameter of the ICLB problem.

The expected number of perfect partitions is

〈Sol〉 = mλ(
1

2
)(m−1)log2u

The corresponding constrainedness parameter is

κ =
(m − 1)logmu

λ
(5.6)

Substituting the value of u in Equation 5.6, the constrainedness parameter of
ICLB becomes equal to:

κ =
(m − 1)logm(

∑l
i=1 i n

i0.8
∑n

i=1
(1

i
)0.8)

λ

Let us now present the details of our experiment which shows that ICLB
exhibits an easy-hard pattern. In order to produce the required amount of runs
we considered a case with less documents and smaller number of categories and
clusters than those appear in Table 5.2. Thus, λ = 6 categories are allocated
to m = 2 clusters, with n = 6 or 12, k = 10 and log2(u) from 0 to 2λ. The
documents were generated in the interval (0, l]. For each value of κ and n, 1000
problem instances were generated.

In Figure 5.2 the average number of nodes searched by CICLB is plotted
against the constraindness parameter κ. A phase transition behavior is detected;
initially, the number of generated nodes is relatively small, while increasing and
staying high for the greater values of κ.

5.4.3 Effect of Number of Documents and Peers

From the description of MaxFair and OICLB in Section 5.3 it is clear that the
number of documents n has an insignificant effect in the behavior of these algo-
rithms.

The same thing happens with the parameter k (number of peers). The number
of peers has no effect in the algorithm because the real parameter of interest is
the capacity of each peer as shown by the resource models of Section 5.2.

5.4.4 Varying the Number of Categories

In this experiment we analyzed the behavior of CICLB under different numbers of
categories. We choose λ to vary from 2 to 10, with the number of clusters m = 2

75

0

100

200

300

400

500

600

700

0 2 4 6 8 10 12
number of categories

�

nu
m

be
r

of
 s

er
ac

he
d

no
de

s 18 documents

24 documents

12 documents

Figure 5.3: Average nodes searched by CICLB against λ for different number of
documents

and n = 12, 18 or 24. For each value of λ and n, 1000 problem instances were
generated. Figure 5.3 plots the number of searched nodes against the number of
categories for three different instances of parameter n.

Figure 5.3 shows that the search time is exponential to the number of cat-
egories, something expected since the worst case complexity of the algorithm,
calculated in Section 5.3.2 has λ in the exponent of the formula.

5.4.5 Varying the Number of Clusters

The number of clusters in which the peers of the system are logically organized is
a crucial parameter that is expected to affect the search time needed for finding
the optimal allocation for ICLB.

In Figure 5.4 the number of searched nodes by CICLB is plotted against the
number of clusters m. Each data point is the average of 1000 problem instances.
The system contains k = 20 peers that contribute n = 24 documents. We
generate the popularities of the documents following the Zipf distribution with
θ = 0.8 and we consider they are assigned in λ = 15 categories.

In Figure 5.4 it is obvious that the number of the searched nodes presents an
easy-hard transition behavior with respect to the number of clusters. Initially,
when the number of clusters is small, the average number of generated nodes is
relatively small. When the number of clusters becomes more than 5, then the
number of generated nodes becomes greater and stays on average constant (' 275
nodes).

The phase transition behavior shown in Figure 5.4 is expected, since the ICLB

76

1

10

100

1000

1 2 3 4 5 6 7 8 9 10 11 12

number of clusters m

nu
m

be
r

of
 s

ea
rc

he
d

no
de

s

Figure 5.4: Average nodes searched by CICLB against m

problem moves from easy to hard instances. Practically, this means that as the
number of clusters m becomes greater, and thus the ratio λ/m moves towards
1, fewer categories are assigned to each cluster and the value of fairness index
depends more on the skewness of these category loads than on the partitioning
itself. Thus, CICLB must search through a large number of possible partitions
before concluding that it has found the optimal solution.

5.4.6 How Fair is MaxFair and CICLB?

MaxFair is a greedy algorithm and thus, does not return the best possible solution.
In this section we want to investigate how fair MaxFair is and the way the greedy
solution is affected by the various parameters of the system. Additionally, we
examined the behavior of the optimal solution under the key parameters.

To examine the difference in the values of fairness index of the returned parti-
tions returned by the two algorithms, we set up an experiment using the values of
Table 5.2 for the key parameters. As expected, although MaxFair terminated in a
few milliseconds returned an allocation with fairness index 0.990395, whereas CI-
CLB needed 11 hours to return the optimal solution with fairness index 0.999995
i.e., only 0.0096 better than the greedy one. It is therefore clear that MaxFair
should be the algorithm of choice in any implementation of CLUSTER.

We additionally conducted several experiments using the baseline values of
the parameters shown in Table 5.2, but for a smaller number of categories and
clusters. The results of the experiments were averaged to produce the graphs
in Figures 5.5 and 5.6. We chose small values for the above parameters as we
wanted to determine the solution quality of MaxFair and thus we needed to run

77

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

2 4 6 8 10 12
number of categories / clusters

di
ffe

re
nc

e
in

 fa
irn

es
s

in
de

x varying categories (m=6)
varying clusters (� =15)

Figure 5.5: Difference in the fairness index between the greedy and the optimal
solution

several instances of the same problem.
The graphs in Figure 5.5 show how close is the greedy to the optimal solution

for different number of categories, and for different number of clusters. Note that
only one parameter is varied each time. We expect the difference between the
greedy and the optimal solution to increase or decrease relatively to the difficulty
of the problem.

From the presentation of the problem in Section 5.1, we would expect the
problem to be difficult when the number of clusters increases as the number
of possible allocations increases too. Practically this means that the complete
algorithm has more choices to identify a subtree, that the greedy approach would
discard by considering it a bad choice at the time. However, the value of the
fairness index depends also on the value of the fraction λ/m. The closer this
quantity is to 1, the fewer categories are allocated in each cluster. Thus, having
only a few categories assigned to each cluster the fairness index depends more on
the skewness of these category loads than on the partitioning itself, which leads us
to the conclusion that MaxFair does the best available choices for the situation
moving closer to the optimal solution. This explains the dropping difference
between the two algorithms shown in Figure 5.5 (notice for example that for
the last point in the graph the algorithms have to partition 15 categories to 12
clusters).

Furthermore, the allocation problem is expected to be more easy when the
number of categories increases as it becomes easier to generate less skewed allo-
cations. In other words, when the number of categories increases, then (using our
favorite analogy with NUMP) we have more numbers to partition, which means
that they have a better chance of being partitioned more uniformly. On the other

78

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 4 6 8 10 12

number of categories / clusters

op
tim

al
 fa

irn
es

s
in

de
x

varying categories (m=6)

varying clusters (� =15)

Figure 5.6: Optimal fairness index

hand, when the number of categories is relatively small, the choices of MaxFair
seem to be the best thing to do, and CICLB does not have the chance to find
something better simply because nothing better exists! To the above we have also
to add that the distribution of the category loads does also matter, since a Zipfian
distribution is less “flexible” in being partitioned (some “heavy” categories go to
different clusters, and all the categories with smaller loads accumulate in the rest
of the clusters), thus favoring MaxFair -that does nothing but the obvious- to
eventually discover the optimal allocation. Figure 5.5 verifies our hypothesis.

Additionally, as we can observe in Figure 5.6, the optimal value of the fairness
index increases with the number of categories and decreases with the number of
clusters. This can be explained as follows. As the number of categories increases,
the possibility of having more uniform allocation vectors increases too. Con-
versely, when the number of clusters increases, it is more difficult to be fair with
all clusters resulting in more skewed allocation vectors.

Finally, let us point out that in all cases the greedy and the optimal solutions
are very close (the difference is always less than 0.0095). This last observation
was expected by the experiments and the high values of fairness index achieved
by MaxFair in [TXKN03].

5.5 Conclusions

In this chapter, we discussed the problem of fair resource allocation in more
sophisticated environments than the ones of Section 3. In particular, we used
more realistic models of P2P system resources proposed originally in the context

79

of CLUSTER [TXKN03]. CLUSTER imposes a hierarchical system structure
based on the concept of peer clusters and takes into account the heterogeneity of
peers by using sophisticated models of resources allowing for peers with varying
capabilities.

We utilized a complete search algorithm, called CICLB, similar to algorithm
CGFLA developed in Chapter 4 to study a particular kind of load balancing
problem emphasized in the context of CLUSTER. Initially, we specified all pa-
rameters affecting the performance of the system, such as the number of peers in
the system, the number of documents contributed by the peers, the number of
semantic categories to which documents are assigned and the number of clusters
to which the peers will eventually belong. We then studied the phase transition
behavior of CICLB and compared it experimentally with the greedy algorithm,
called MaxFair, presented in [TXKN03]. The greedy algorithm performs very
well and returns almost perfectly fair allocations. Finally, we presented a dis-
cussion concerning the way the optimal values of the fairness index are affected
by the two basic parameters of our system: the number of categories and the
number of clusters.

80

Chapter 6

Concluding Remarks

Let us now summarize the main contributions of this dissertation. In this work
we dealt with the problem of fair resource allocation in P2P systems.

Initially, we surveyed the area of P2P computing and paid specific attention
in presenting models of P2P networks, measurements concerning the load and
the traffic of the network, and the use of ideas from economics and game theory
to solve resource allocation problems. This allows the reader of the thesis to see
our work in an appropriate context.

We focused on fairness measures to express the notion of fairness in P2P
systems. We presented quantitative and qualitative fairness metrics (fairness
index [JCH84], max-min fairness [KRT01] and majorization [MO79]) and relate
them in a general context.

We considered a very simple model of resource allocation. We defined formally
the fair load allocation (FLA) problem in this model and related it to the number
partitioning problem (NUMP), one of the six basic NP-complete problems, and
the only one using numbers. We presented some of the important algorithms
solving NUMP, trying to identify whether we can use these algorithms to cope
with FLA.

Then, we proposed two algorithms for solving the FLA problem. One greedy,
called GFLA, and one complete algorithm, called CGFLA. We experimentally
evaluated these algorithms and compared them in terms of their solution quality,
that is the number of generated nodes and the value of the fairness index achieved.
For the precise and quantitative comparison of the algorithms, we identified the
phase transition behavior of FLA.

Finally, we extended our model of resources for P2P systems to the more
sophisticated one originally proposed in [TXKN03] in the context of the P2P
content-sharing system CLUSTER that imposes a logical system organization
and takes into account the heterogeneity of the peers. We developed a complete
anytime algorithm for inter-cluster load balancing in CLUSTER and compared
it in great detail with the greedy algorithm MaxFair proposed in [TXKN03].

81

6.1 Future Work

There are many problems that need to be addressed in future work. We are
already in the process of designing distributed algorithms for balancing the load
among the peers in a P2P system without any centralized control.

In this case we urgently need good mathematical models for performance
analysis in P2P networks and for modelling their evolution and dynamics. Ad-
ditionally, we can consider a P2P system as a complex adaptive system (CAS),
and thus, work with ideas and models from various areas, such as biology, social
science and economics.

82

Bibliography

[ABCdO96] Virǵılio Almeida, Azer Bestavros, Mark Crovella, and Adriana
de Oliveira. Characterizing reference locality in the WWW. In
Proceedings of the IEEE Conference on Parallel and Distributed In-
formation Systems (PDIS), Miami Beach, Florida, 1996.

[ABJ01] Fred S. Annexstein, Kenneth A. Berman, and Mihajlo A. Jovanovic.
Latency Effects on Reachability in Large-scale Peer-to-Peer Net-
works. In ACM Symposium on Parallel Algorithms and Architec-
tures, pages 84–92, 2001.

[AH99] Lada A. Adamic and Bernardo A. Huberman. Scaling Behaviour on
the World Wide Web, 1999. Technical comment on [BA99].

[AH00] Eytan Adar and Bernardo A. Huberman. Free Riding on Gnutella.
First Monday, October 2000.

[AJM01] Yuan An, Jeannett Janssen, and Evangelos Milios. Characterizing
and Mining the Citation Graph of the Computer Science Litera-
ture. Technical Report CS-2001-02, Faculty of Computer Science,
Dalhousie University, 2001.

[BA99] Albert-Laszlo Barabasi and Reka Albert. Emergence of scaling in
random networks. Science, 286:509–511, October 1999.

[BCF+99] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker.
Web Caching and Zipf-like Distributions: Evidence and Implica-
tions. In INFOCOM, volume 1, pages 126–134, 1999.

[BCM03] John Byers, Jeffrey Considine, and Michael Mitzenmacher. Sim-
ple Load Balancing for Distributed Hash Tables. In 2nd Interna-
tional Workshop on Peer-to-Peer Systems (IPTPS ’03), pages 31–35,
February 2003.

[BG87] D. Bertsekas and R. Gallager. Data Networks. Prentice-Hall, 1987.

83

[BKM+00] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan,
R. Stata, A. Tomkins, and J. Wiener. Graph structure in the web.
In Proceedings of the 9th International Conference on the WWW
(WWW9), volume 33 of Computer Networks and ISDN Systems,
pages 309–320, 2000.

[BM99] Regina Berretta and Pablo Moscato. The number partitioning prob-
lem: An open challenge for evolutionary computation? In David W.
Corne, Marco Dorigo, and Fred Glover, editors, New Ideas in Opti-
mization. McGraw Hill, 1999.

[BMM02] Ozalp Babaoglu, Hein Meling, and Alberto Montresor. Anthill:
A framework for the development of agent-based peer-to-peer sys-
tems. In Proceedings of IEEE International Conference on Dis-
tributed Computer Systems, pages 15–22, 2002.

[Bol85] B. Bollobas. Random Graphs. Academic Press, 1985.

[BP98] S. Brin and L. Page. The anatomy of a large-scale hypertextual web
search engine. In Proceedings of the 7th International Conference on
the WWW (WWW7), volume 30 of Computer Networks and ISDN
Systems, pages 107–117, 1998.

[CDS01] C. Courcoubetis, M. Dramitinos, and G. D. Stamoulis. An auction
mechanism for bandwidth allocation over paths. In Proceedings of
the Seventeenth International Teletraffic Congress (ITC), May 2001.

[CEbAH00] R. Cohen, K. Erez, D. ben Abraham, and S. Havlin. Resilience of
internet to random breakdowns. Physical Review Letters, 85, Novem-
ber 2000.

[CGM02a] B. Cooper and H. Garcia-Molina. Peer-to-Peer Data Trading to
Preserve Information. ACM Transactions on Information Systems,
20(2), April 2002.

[CGM02b] B. Cooper and H. Garcia-Molina. Peer-to-Peer Data Trading to
Preserve Information. In Proceedings of the 22nd IEEE International
Conference on Distributed Computer Systems, July 2–5 2002.

[CHM+02] Ian Clarke, Theodore W. Hong, Scott G. Miller, Oskar Sandberg,
and Brandon Wiley. Protecting free expression online with freenet.
IEEE Internet Computing, 6(1):40–49, January 2002.

[CKT91] Peter Cheeseman, Bob Kanefsky, and William M. Taylor. Where the
Really Hard Problems Are. In Proceedings of the Twelfth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-91, pages
331–337, Sidney, Australia, 1991.

84

[Dal20] H. Dalton. The measurement of the inequality of incomes. Economics
Journal, 30:348–361, 1920.

[DGMY03] N. Daswani, H. Garcia-Molina, and B. Yang. Open problems in
data sharing peer-to-peer systems. In Proceedings of the 9th Inter-
national Conference on Database Theory (ICDT 2003), volume 2572
of Lecture Notes in Computer Science, pages 1–15. Springer, January
2003.

[DKM+02] Stephen Dill, Ravi Kumar, Kevin S. McCurley, Sridhar Rajagopalan,
D. Sivakumar, and Andrew Tomkins. Self-similarity in the web.
ACM Transactions on Internet Technology (TOIT), 2(3):205–223,
2002.

[Fer89] D.F. Ferguson. The Application of Microeconomics to the Design of
Resource Allocation and Control Algorithms. PhD thesis, Computer
Science Dept., Columbia University, 1989.

[FFF99] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On
Power-Law Relationships of the Internet Topology. In Proceedings
of ACM Special Interest Group on Data Communications, pages 251–
262, 1999.

[FLGC02] Gary William Flake, Steve Lawrence, C. Lee Giles, and Frans Coet-
zee. Self-organization of the web and identification of communities.
IEEE Computer, 35(3):66–71, 2002.

[FNSY95] D. F. Ferguson, C. Nikolaou, J. Sairamesh, and Y. Yemini. Economic
models for allocating resources in computer systems. In S. Clear-
water, editor, Market-Based Control: A Paradigm for Distributed
Resource Allocation. World Scientific, September 1995.

[Fra00] P. Francis. Yoid: Extending the internet multicast architecture.
Technical report, AT& T Center for Internet Research at ICSI
(ACIRI), April 2000.

[GCL02] D. Grosu, A. T. Chronopoulos, and M.Y. Leung. Load Balancing in
Distributed Systems: An Approach Using Cooperative Games. In
Proceedings of the 16th IEEE International Parallel and Distributed
Processing Symposium (IPDPS 2002), April 2002.

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractabil-
ity: A guide to the Theory of NP-Completeness. Mathematical Sci-
ences. W.H.Freeman and Company, New York, 1979.

85

[GLBM01] Philippe Golle, Kevin Leyton-Brown, and Ilya Mironov. Incentives
for sharing in peer-to-peer networks. In Proceedings of 3rd ACM
Conference on Electronic Commerce, October 2001.

[GMP01] A. Goel, A. Meyerson, and S. A. Plotkin. Approximate majorization
and fair online load balancing. In Proceedings of the Twelfth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA-01), pages
384–390, New York, January 2001. ACM Press.

[GMPW96] Ian P. Gent, Ewan MacIntyre, Patrick Prosser, and Toby Walsh. The
constrainedness of search. In AAAI/IAAI, volume 1, pages 246–252,
1996.

[GSE+94] Jim Gray, Prakash Sundaresan, Susanne Englert, Ken Baclawski,
and Peter J. Weinberger. Quickly generating billion-record synthetic
databases. In Proceedings of the ACM SIGMOD, pages 243–252,
1994.

[GW95] Ian P. Gent and Toby Walsh. The number partition phase transi-
tion. Technical Report 95-185, Department of Computer Science,
University of Strathclyde, 1995.

[GW96] Ian P. Gent and Toby Walsh. Phase transitions and annealed theo-
ries: Number partitioning as a case study. In Proceedings of ECAI-
96, pages 170–174, 1996.

[GW98] Ian P. Gent and Toby Walsh. Analysis of heuristic for number par-
titioning. Computational Intelligence, 14(3):430–451, August 1998.

[HA99] Bernardo A. Huberman and Lada A. Adamic. Growth dynamics of
the web. Nature, 401:131, September 1999.

[HLP52] G.H. Hardy, J.E. Littlewood, and G. Polya. Inequalities. Cambridge
University Press, London and New York, 1st ed., 2nd ed. edition,
1934,1952.

[HPS01] B. Horne, B. Pinkas, and T. Sander. Escrow services and incentives
in peer-to-peer networks. In Proceedings of 3rd ACM Conference on
Electronic Commerce, October 2001.

[HWBM02] Cefn Hoile, Fang Wang, Erwin Bonsma, and Paul Marrow. Core
specification and experiments in DIET: a decentralised ecosystem-
inspired mobile agent system. In Proceedings of the 1st Interna-
tional Joint Conference on Autonomous Agents & Multiagent Sys-
tems (AAMAS 2002), pages 623–630, July 15–19 2002.

86

[JAMS91] D. Johnson, C. Aragon, L. McGeoch, and C. Schevon. Optimization
by simulated annealing: An experimental evaluation; part II, graph
coloring and number partitioning. Operations Research, 39(3):378–
406, May-June 1991.

[JCH84] Rajendra K. Jain, Dah-Ming W. Chiu, and William R. Have. A
quantitive measure of fairness and discrimination for resource allo-
cation in shared computer systems. Technical Report DEC-TR-301,
Digital Institution Corporation, Hudson, MA 01749, September 26
1984.

[Jov01] Mihajlo A. Jovanovic. Modeling Large-scale Peer-to-Peer Networks
and a Case Study of Gnutella. Master of Science, University of
Cincinnati, June 2001.

[KK82] N. Karmarkar and N.R. Karp. The differencing method of set par-
titioning. Technical Report UCB/CSD 82/113, Computer Science
Division, University of California, Berkley, California, U.S.A., 1982.

[Kle00] J. M. Kleinberg. Authoritative sources in a hyperlinked environment.
Journal of the ACM, 46(5):604–632, 2000.

[KLL+97] D. Karger, E. Lehman, F. Leighton, M. Levine, D. Lewin, and
R. Panigray. Consistent hashing and random trees: Distributed
caching protocols for relieving hot spots on the World Wide Web.
In Proceedings of the 29th Annual ACM Symposium on Theory of
Computing, pages 654–663, El Paso, May 1997.

[Knu73] Donald E. Knuth. The Art of Computer Programming, volume 3
of Computer Science and Information Processing. Addison-Wesley,
Massachusetts, 1973.

[Kor95a] Richard E. Korf. From approximate to optimal solutions: A case
study of number partitioning. In Morgan Kaufmann, editor, Proceed-
ings of the Fourteenth International Joint Conference on Artificial
Intelligence (IJCAI), volume 1, pages 266–272, Montréal, Québec,
Canada, August 20-25 1995.

[Kor95b] Richard E. Korf. Optimal number partitioning. Technical Report
950062, University of California, Los Angeles, Computer Science De-
partment, December 31 1995.

[Kor98] Richard E. Korf. A complete anytime algorithm for number parti-
tioning. Artificial Intelligence, 106:181–203, August 1998.

87

[KRR+00] Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, D. Sivaku-
mar, Andrew Tomkins, and Eli Upfal. Stochastic models for the web
graph. In Proceedings of the 41st Annual Symposium on Foundations
of Computer Science (FOCS 2000), pages 57–65, November 2000.

[KRRT99] Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and An-
drew Tomkins. Trawling the web for cyber communities. In Proceed-
ings of the 8th International Conference on the WWW (WWW8),
volume 31 of Computer Networks and ISDN Systems, pages 1481–
1493, 1999.

[KRRT02] Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and An-
drew Tomkins. The Web and Social Networks. IEEE Computer,
35(11):32–36, 2002.

[KRT01] J. M. Kleinberg, Y. Rabani, and E. Tardos. Fairness in routing and
load balancing. Journal of Computer and System Sciences, 63(1):2–
20, 2001.

[Lew98] D. Lewin. Consistent hashing and random trees: Algorithms for
cashing in distributed networks. Master’s thesis, Department of
EECS, MIT, 1998.

[Lor05] M.O. Lorenz. Methods of measuring concentrations of wealth. Jour-
nal of the American Statistical Association, 9:209–219, 1905.

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[Mar02] Evangelos P. Markatos. Tracing a large-scale Peer to Peer System:
an hour in the life of Gnutella. In Proceedings of the CCGrid 2002:
the 2nd IEEE International Symposium on Cluster Computing and
the Grid, pages 65–74, May 2002.

[Mer98] Stephan Mertens. Phase transition in the number partitioning prob-
lem. Physical Review Letters, 81(20):4281–4284, November 1998.

[Mil67] S. Milgram. The small world problem. Psychology Today, 2:60–67,
1967.

[MKL+01] D. S. Milojisic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne,
B. Richard, S. Rollins, and Z. Xu. Peer-to-peer computing. Technical
Report HP-2002-57, HP Laboratories, Palo Alto, 2001.

[MO79] A.W. Marshall and I. Olkin. Inequalities: theory of majorization
and its applications, volume 143 of Mathematics in Science and En-
gineering. Academic Press, 1979.

88

[MRS01] M. Mitzenmacher, A. Richa, and R. Sitaraman. The Power of Two
Choices: A Survey of Techniques and Results, pages 255–312. Kluwer
Academic Publishers, Norwell, MA, 2001.

[NR99] Noam Nisan and Amir Ronen. Algorithmic mechanism design (ex-
tended abstract). In Proceedings of the Thirty-First Annual ACM
Symposium on Theory of Computing (STOC 1999), pages 129–140,
May 1999.

[NWD03] T.-W. Ngan, D. Wallach, and P. Druschel. Enforcing fair sharing
of peer-to-peer resources. In Proceedings of the 2nd International
Workshop on Peer-to-Peer Systems, 2003. Forthcoming.

[Pap01] Christos H. Papadimitriou. Game theory and mathematical eco-
nomics: A theoretical computer scientist’s introduction. In Proceed-
ings of the 42nd Annual Symposium on Foundations of Computer
Science (FOCS 2001), pages 4–8, October 2001.

[RFH+01] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and
Scott Shenker. A scalable content-addressable network. In Proceed-
ings of the ACM SIGCOMM ’01 Conference, San Diego, California,
August 2001.

[RFI02] Matei Ripeanu, Ian Foster, and Adriana Iamnitchi. Mapping the
Gnutella Network: Properties of Large-Scale Peer-to-Peer Systems
and Implications for System Design. IEEE Internet Computing,
6(1):50–57, January-February 2002.

[RHKS01] Sylvia Ratnasamy, Mark Handley, Richard Karp, and Scott Shenker.
Application-level multicast using content-addressable networks. Lec-
ture Notes in Computer Science, 2233:14–??, 2001.

[RLS+03] Ananth Rao, Karthik Lakshminarayanan, Sonesh Surana, Richard
Karp, and Ion Stoica. Load balancing in structured p2p systems. In
2nd International Workshop on Peer-to-Peer Systems (IPTPS ’03),
2003.

[RNMS96] Wheeler Ruml, J. Thomas Ngo, Joe Marks, and Stuart M. Shieber.
Easily searched encodings for number partitioning. Optimization
Theory and Applications, 89(2):251–291, May 1996.

[RS02] Michael Rabinovich and Oliver Spatscheck. Web Caching and Repli-
cation. Addison-Wesley, 2002.

[San02] T. Sandholm. Algorithm for Optimal Winner Determination in Com-
binatorial Auctions. Artificial Intelligence, 135:1–54, 2002.

89

[SAR+02] I. Stoica, D. Adkins, S. Ratnasamy, S. Shenker, S. Surana, and
S. Zhuang. Internet indirection architecture. In Proceedings of ACM
SIGCOMM’02, pages 73–86, August 2002.

[SD96] Barbara M. Smith and Martin E. Dyer. Locating the phase transition
in binary constraint satisfaction problems. Artificial Intelligence,
81(1-2):155–181, 1996.

[SGG02] S. Saroiu, K. Gummadi, and S. Gribble. A measurement study of
peer-to-peer file sharing systems. In Proceedings of Multimedia Con-
ferencing and Networking, January 2002.

[SK97] R. Schwartz and S. Kraus. Bidding mechanisms for data allocation
in multi-agent environments. In Proceedings of ATAL’97, 1997.

[SMK+01] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and
Hari Balakrishnan. Chord: A scalable peer-to-peer lookup service
for internet applications. In Proceedings of the ACM SIGCOMM ’01
Conference, San Diego, California, August 2001.

[SMLN+03] Ion Stoica, Robert Morris, David Liben-Nowell, David Karger,
M. Frans Kaashoek, Frank Dabek, and Hari Balakrishnan. Chord:
a scalable peer-to-peer lookup protocol for internet applications.
IEEE/ACM Transactions on Networking, 11(1):17–32, 2003.

[TXK02] P. Triantafillou, C. Xiruhaki, and M. Koubarakis. Efficient massive
sharing of content among peers. In R. Wagner, editor, Proceedings of
the Workshop on Resource Sharing in Massively Distributed Systems
(RESH’02) – 2002 IEEE International Conference on Distributed
Computer Systems, pages 681–685, July 2-5 2002.

[TXKN03] P. Triantafillou, C. Xiruhaki, M. Koubarakis, and N. Ntarmos. To-
wards high-performance peer-to-peer content and resource sharing
systems. In Proceedings of the First Biennial Conference on Inno-
vative Data Systems Research (CIDR 2003), January 2003.

[Wat99] D. J. Watts. Small Worlds: The Dynamics of Networks Between
Order and Randomness. Princeton University Press, 1999.

[WS98] D. J. Watts and S. H. Strogatz. Collective dynamics of small-world
networks. Nature, 393:440–442, 1998.

[Xir03] Chrysanni Xiruhaki. Load Balancing In Peer-to-Peer Networks: Sys-
tem Architecture and Algorithms. Master of Computer Engineering,
Department of Electronic and Computer Engineering, Technical Uni-
versity of Crete, Chania, Greece, March 2003.

90

[YGM03] B. Yang and H. Garcia-Molina. Designing a super-peer network. In
Proceedings of the 19th International Conference on Data Engineer-
ing (ICDE 2003), March 5–8 2003.

91

Appendix A

Appendix

Proposition A.1 Let us assume that we have a P2P system with k peers and
vector x denotes the current load allocation. Let c > 0 be the popularity of a new
document that arrives in the system. The highest increase to the fairness index
of the system is achieved by allocating this document to one of the peers with the
smallest load.

Proof: The result follows easily. Without loss of generality, we suppose that
we can arrange the components of x in non-increasing order e.g., x1 ≥ x2 ≥ · · · ≥
xk.

If we allocate the new document to some peer i such that xi > xk the
load of that peer would change to xi + c, the new allocation vector would be
(x1, . . . , xi−1, xi + c, xi+1, . . . , xk) and the fairness index would be equal to

A
︷ ︸︸ ︷

(x1 + ... + xi−1 + xi + c + xi+1 + ... + xk)
2

k [x2
1 + ... + x2

i−1 + (xi + c)2 + x2
i+1 + ... + x2

k]
︸ ︷︷ ︸

B

If we had allocated the document to the peer with the smallest popularity
(peer k), then the allocation vector would have been (x1, . . . , xi−1, xi, xi+1, . . . , xk+
c), and the value of the fairness index would have been equal to

A

k [x2
1 + ... + x2

i−1 + x2
i + x2

i+1 + ... + (xk + c)2]
︸ ︷︷ ︸

C

Let us now consider the difference

A

kB
−

A

kC
=

A

kBC
(C − B).

Since quantities k,A,B,C are positive, it is sufficient to consider only the differ-
ence

C − B =

92

x2
1+...+x2

i−1+x2
i +x2

i+1+...+(xk+c)2−[x2
1+...+x2

i−1+(xi+c)2+x2
i+1+...+x2

k] =

2cxk − 2cxi = 2c(xk − xi)

which is easily seen to be negative since xk < xi. Thus, we have the greatest
increase to the fairness index if we allocate the new document to the peer with
the smallest load.

Proposition A.2 By never placing a document in more than one peer with cur-
rent load 0, we cut the search space of algorithm CGFLA and generate only kn/k!
possible allocations.

Proof: If we were placing each document to each one of the peers with current
load 0, taking eventually all possible combinations of all the n documents to the k
peers of the system, we would have kn possible allocations. However, we allocate
each document only to one peer with current load 0 at each level of the search
tree.

At the first level, we place the first document only to one peer with current
load 0, having only one sub-allocation instead of k. Thus, we cut the above
mentioned search space by 1/k and reduce the possible allocations to kn/k.

At the second level, there are k − 1 peers with current load 0, but we choose
only one to place the next document, cutting the above computed search space
by 1/(k − 1), and the possible allocations are now kn/[k · (k − 1)].

. . .
At level (k − 1), there are 2 peers with current load 0, and we choose one of

them to place the next document, cutting the search space in half, and thus we
generate kn/[k · (k − 1) · . . . · 3 · 2] possible allocations.

¿From level k onwards, and until we allocate all the remaining documents at
level n, we place each document to each one of the k peers in turn, having no
further reduction to our search space.

Thus, by never placing the document in more than one peers with current
load 0 we generate kn/k! possible allocations.

Proposition A.3 Let us consider an instance of FLA with parameters k and
D. Let q be the quotient and ρ be the remainder of the division of

∑

d∈D p(d)
with k. Then the maximum value of the fairness index that we can achieve is the
following:

[(k − ρ)q + ρ(q + 1)]2

k[(k − ρ)q2 + ρ(q + 1)2]

Proof: The best we could do is to allocate load q to each of the k − ρ peers,
and allocate load q+1 to each of the remaining ρ peers. In this case, the allocation

93

vector is x = {q + 1, q + 1, . . . , q + 1
︸ ︷︷ ︸

ρ

, q, q, . . . , q
︸ ︷︷ ︸

k−ρ

} and the fairness index value is

[

k−ρ
︷ ︸︸ ︷
q + q + . . . + q +

ρ
︷ ︸︸ ︷

(q + 1) + . . . + (q + 1)]2

k[q2 + q2 + . . . + q2

︸ ︷︷ ︸

k−ρ

+ (q + 1)2 + . . . + (q + 1)2

︸ ︷︷ ︸

ρ

]
=

[(k − ρ)q + ρ(q + 1)]2

k[(k − ρ)q2 + ρ(q + 1)2]

94

