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Abstract 19 

Data on soil microbial community distribution at large scales are limited despite the 20 

important information that could be drawn with regard to their function and the 21 

influence of environmental factors on nutrient cycling and ecosystem services. This 22 

study investigates the distribution of Archaea, Bacteria and Fungi as well as the 23 

dominant bacterial phyla (α- and β-Proteobacteria, Acidobacteria, Actinobacteria, 24 

Bacteroidetes, Firmicutes) across the Koiliaris watershed by qPCR and associate them 25 

with environmental variables. Predictive maps of microorganisms distribution at 26 

watershed scale were generated by co-kriging, using the most significant predictors. 27 

Our findings showed that 31–79% of the spatial variation in microbial taxa abundance 28 

could be explained by the parameters measured, with total organic carbon and pH being 29 

identified as the most important. Moreover, strong correlations were set between 30 

microbial groups and their inclusion on variance explanation models improved their 31 

prediction power. The spatial auto-correlation of microbial groups ranged from 309 to 32 

2.226 m and geographic distance, by itself, could explain a high proportion of their 33 

variation. Our findings shed light on the factors shaping microbial communities at a 34 

high taxonomic level and provide evidence for ecological coherence and syntrophic 35 

interactions at the watershed scale.  36 

Introduction 37 

Microorganisms regulate the biogeochemical cycles of nutrients in terrestrial 38 

ecosystems and hence, the services provided. In turn, the prevailing environmental 39 

conditions, including both biotic and abiotic factors, exert an apparent control on 40 

microbial community structure and activity. An increasing body of literature indicates 41 
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that climate, soil properties, vegetation, and land use and management as important 42 

determinants of the abundance, structure, and activity of soil microbial community 43 

(King et al., 2010; Nielsen et al., 2010; Rousk et al., 2010; Wessén et al., 2010; Zinger 44 

et al., 2011). The relationships between microbial community structure and function in 45 

response to environmental parameters and management practices have been poorly 46 

understood (Fierer et al., 2007; Strickland et al., 2009; Fierer et al., 2013). Spatial data 47 

on environmental variables is envisaged to improve our understanding on evolutionary 48 

factors shaping microbial communities and mediating their function. In addition, there 49 

is an ongoing discussion whether the inclusion of data microbial community structure 50 

will improve the simulations of the (global) biogeochemical models (Allison et al., 51 

2010; Wieder et al., 2013). 52 

The study of soil microbial biogeography is an emerging research field and lacks behind 53 

biogeochemical data and/or physical properties. Spatial studies in soil microbial 54 

community structure have been carried out at various scales, ranging from soil pore 55 

(Ruamps et al., 2011), to individual fields (Philippot et al., 2009), regional (Bru et al., 56 

2011), country (Griffiths et al., 2011), continental level (Lauber et al., 2009; Fierer et 57 

al., 2013), or global level (Fierer et al., 2009; Nemergut et al., 2011; Serna-Chavez et 58 

al., 2013). The sampling density, the soil properties assessed (physical, chemical, 59 

biological), and the method and the depth of microbial community characterization 60 

diverge greatly among studies. 61 

The employment of microbial taxa at high taxonomic levels to gain information on their 62 

ecological niches and to assign them functions has been questioned (Green et al., 2008; 63 

Philippot et al., 2010; Nemergut et al., 2013). The enormous diversity of soil microbes 64 

encompassed (e.g. Proteobacteria), and hence the functional traits carried by them 65 

(Baldrian et al., 2012), has been identified as the major constraint. There is also a 66 
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number of studies indicating that pertinent information at the phylum level could 67 

provide important information for the function and the ecological niches of soil 68 

microorganisms. For instance, bacterial and archaeal phyla responded variably to 69 

changes in soil management practices (Wessén et al., 2010). Fierer et al. (2007) 70 

performing a sampling campaign in many field sites accompanied by a meta-analysis 71 

of published data classified some bacterial phyla as copiotrophs and oligotrophs, 72 

allowing us to make predictions about their aggregated ecological attributes. Probably 73 

most importantly, data on soil microbial structure even at a high taxonomic level may 74 

provide critical information on soil biogeochemical cycles and their modeling (Averill 75 

et al., 2014). Information at the domain level, addressed by the fungi:bacteria ratio, 76 

improved model simulations in terms of C and N mineralization that mainly resulted 77 

from differences in bacterial and fungal physiology (Waring et al., 2013). 78 

In this study, we characterize the distribution of soil microorganisms at the domain and 79 

phylum level and provide insights on the environmental variables that drive their spatial 80 

variability at the scale of a watershed. The Koiliaris river watershed is a representative 81 

Mediterranean watershed that has been recently characterized as Critical Zone 82 

Observatory (CZO) (Banwart et al., 2011). Moreover, the dense availability of data 83 

relevant to soil genesis and evolution, soil physico-chemical properties, land uses, 84 

agricultural practices, climatic variability and hydrology, constitute Koiliaris CZO an 85 

interesting case to interpret the effects of these parameters on microbial taxa abundance 86 

as well as to elucidate the drivers shaping soil microbial communities. The abundance 87 

of Archaea, Bacteria, Fungi and of major bacterial phyla was quantified in soil samples, 88 

collected across the Koiliaris CZO which extends to an area of approximately 130 km2. 89 

The Koiliaris CZO is characterized by steep gradients in climatic conditions, soil 90 

pedology and geomorphology and variable land uses. Variance partitioning was applied 91 
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to explain the relative contributions of climate, land use, spatial distance, and eleven 92 

physical, chemical and biochemical soil properties to microorganisms distribution. 93 

Then, geostatistical modelling (co-kriging) was employed to investigate the spatial 94 

correlations of microbial groups and to generate distribution maps at the watershed 95 

scale. In a following step, we included microbial groups in co-kriging to check the 96 

hypothesis if there are any microbial group(s) at the domain or phylum level that could 97 

improve the predictions obtained. The findings of the present study improve our 98 

understanding on the environmental factors regulating the abundance and distribution 99 

of microorganisms at a watershed scale as well as their interrelationships.  100 

Materials and methods 101 

Study area description 102 

Koiliaris CZO is located 25 km east of Chania city, Crete, Greece (005-12-489E, 039-103 

22-112N). The watershed consists of soils depleted in soil organic carbon and severely 104 

degraded due to intense agricultural practices and over-grazing. The Koiliaris CZO 105 

occupies an area of approximately 130 km2 and is characterized by an intense 106 

topography extending from sea level to 2,100 m. More details on Koiliaris CZO with 107 

regard to prevailing climatic conditions, pedology, soil evolution and land use can be 108 

found in Moraetis et al. (2011) and Moraetis et al. (2014). 109 

Soil sampling  110 

Composite samples (three soil cores from each sampling point) were taken from 0-15 111 

cm soil depth during the period May 15 to June 3, 2012 (Fig. 1). Sampling points were 112 

carefully selected following field campaigns in order to effectively capture the great 113 

variability observed at the Koiliaris CZO with regard to climate, soil properties and 114 
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land uses. Samples were passed through a 2-mm mesh immediately after sampling at 115 

the field and maintained on ice packs at 4 oC until they were transferred to the 116 

laboratory. There, each sample was split into subsamples for chemical, biochemical and 117 

biological assays. The later samples were stored at -80°C until the genomic DNA 118 

extraction and biochemical assays were carried out. The coordinates of each sampling 119 

point were recorded with a global positioning system device. 120 

Soil physical, chemical, biochemical analyses  121 

Soils moisture was determined by drying subsamples to constant weight at 65 oC. 122 

Electrical conductivity (EC) and pH were measured in H2O at a soil:solution ratio of 123 

1:2.5. NH4
+-N and NO3¯-N were extracted with 2 M KCl by shaking the samples for 30 124 

min, and were measured colorimetrically in a Perkin-Elmer Lambda 25 125 

spectrophotometer with the Nessler reagent and the Cd reduction method, respectively. 126 

Total organic carbon (TOC) and total nitrogen (TN) were measured in a Analytik Jena 127 

Multi N/C® 2100S analyzer. Particle size analysis was carried out by the Bouyoucos 128 

hydrometer method (Bouyoucos, 1962).  129 

Net N mineralization rate (NMR) and potential nitrification rate (PNR) assays were 130 

employed to follow the mineralization of organic-N and its subsequent oxidation to 131 

NO3¯-N. Both assays were assessed in triplicates immediately after sampling. PNR 132 

assays were performed according to the method developed by Smolders et al. (2001) 133 

with modifications (Tsiknia et al., 2014). NMR was estimated with the laboratory 134 

aerobic incubation method (Hart et al., 1994).  135 

The potential activity of urease (EC 3.5.1.5), phenol oxidase (EC 1.10.3.2), and 136 

peroxidase (EC 1.11.1.7) were assessed according to the protocols of Kandeler &  137 

Gerber (1988), Li et al. (2010), and Sinsabaugh et al. (2005), respectively, since they 138 
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were believed to have an important role on C and N cycling in Koiliaris CZO. More 139 

specifically, phenol oxidase activity is mainly attributed to Fungi although some groups 140 

of bacteria have also been reported to be involved (Theuerl & Buscot, 2010). Hence, 141 

this assay was selected as a proxy of fungal abundance and activity. Furthermore, the 142 

Koiliaris CZO is dominated by olive trees, the litter of which is characterized by high 143 

phenol content, and thus, we assumed that phenol oxidase may have an important role 144 

in C cycling in the study area. Peroxidases are extracellular enzymes with an important 145 

role on soil C cycling through the depolymerization of recalcitrant macro-molecules 146 

(Sinsabaugh, 2010). Finally, urease catalyzes the hydrolysis of urea in agricultural 147 

fields and overall urease has an important role in C and N cycling in terrestrial 148 

ecosystems (Kandeler et al., 1999). Information on the environmental and 149 

biogeochemical parameters measured from all sampling points across the Koiliaris 150 

CZO is summarized in Table S1.  151 

DNA extraction and quantitative PCR (qPCR) assays  152 

Microbial genomic DNA was extracted in triplicates from 0.25 g of soil, previously 153 

frozen and homogenized with mortar, using the PowerSoil® DNA Isolation Kit (MO 154 

BIO Laboratories, Inc. Carlsbad, CA, USA) according to manufacturer’s instructions. 155 

The three DNA extractions per soil sample were pooled before further analysis. DNA 156 

quality from each sample was checked in agarose gel (1%) and quantified in a 157 

NanoPhotometer® Pearl (Implen) and stored at -80 oC. Amplification conditions and 158 

primer pairs used in this study to quantify Fungi, Archaea, Bacteria, α- and β- 159 

Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes, Firmicutes are 160 

summarized in Table S2. Quantification of gene copy numbers was carried out with the 161 

StepOnePlus™ Real-Time PCR System (Applied Biosystems) in 20 μl reactions using 162 

the KAPA SYBR Fast Master Mix (2x) qPCR Kit (KAPA Biosystems) and 0.8 – 3.5 163 
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ng of DNA. All reactions were completed with a melting curve starting at 60 oC, with 164 

an increase of 0.5 oC, up to 95 oC to verify amplicon specificity. Standard curves were 165 

obtained using serial dilutions, 103-107, of linearized plasmids (pGEM-T, Promega) 166 

containing cloned genes from each domain/phylum. Controls without template resulted 167 

in undetectable products in all the samples, while inhibitory effects were not detected 168 

at the dilution used (1/10). The amplification efficiencies ranged from 80% to 92% and 169 

the R2 values of the standard curves ranged from 0.993 to 0.999.  170 

Statistical analysis 171 

All variables, except pH, were prior transformed according to their skewness and 172 

kurtosis characteristics to meet the assumption of normality. The transformation 173 

applied in each of the variables is shown in Table S3. Pearson correlation was employed 174 

to determine the significance of the relationships between microbial taxa and 175 

biogeochemical parameters. The Principal Coordinate of a Neighbor Matrix (PCNM) 176 

approach (Borcard & Legendre, 2002) was applied to geographic coordinates of the 177 

sampling points to construct spatial vectors in accordance to earlier studies (Bru et al., 178 

2011). Twenty-seven spatial variables were constructed representing all spatial scales 179 

present in the study area. The most significant explanatory and PCNM variables were 180 

selected by stepwise multiple regression analysis to predict the abundance of microbial 181 

domains or phyla. In order to determine the unique variance explained by each 182 

predictor, the final R-squared model was partialled out, based on the theory of squared 183 

semi-partial correlation (Legendre & Legendre, 1998) by adjusting R2 values (% of 184 

explained variation) to obtain unbiased estimates (Peres-Neto et al., 2006). Bonferroni 185 

–correction was applied to p values to maintain the family-wise error level in multiple 186 

testing. Analysis of Variance (ANOVA) was carried out between microbial groups and 187 

land use, separated in two broad categories agricultural land and natural ecosystems, 188 
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and also with elevation, separated in three groups (0 to 200 m; 201 to 400 m; and > 400 189 

m). Homoscedasticity was verified using the Levene’s test. All statistical analyses were 190 

performed with the R statistical platform using the vegan, MASS and yhat packages 191 

(Venables & Ripley, 2002; Nimon et al., 2013; Oksanen et al., 2013; R Development 192 

Core Team, 2013). The correlogram of the Pearson’s correlation coefficients 193 

constructed with the corrgram package (Wright, 2013).  194 

Geostatistical interpolation  195 

The accurate mapping of microorganisms’ abundance in soil is important for effective 196 

ecosystem management and monitoring decisions. Estimates at unsampled locations 197 

can be obtained by applying stochastic and deterministic interpolation methods to the 198 

available data (Deutsch & Journel, 1992; Goovaerts, 1997; Varouchakis & Hristopulos, 199 

2013a). Stochastic methods such as kriging are commonly adopted since they allow the 200 

estimation of interpolation uncertainties (Deutsch & Journel, 1992). Optimal kriging 201 

results are obtained when the probability distribution of the data is jointly normal and 202 

stationary in space. Kriging estimates are linear combinations of the data with weights 203 

that follow from the no-bias constraint and the minimization of the mean square error. 204 

The weights are determined from a model semi-variogram, which is commonly 205 

obtained by fitting the empirical semi-variogram of the measurements to theoretical 206 

models. The semi-variogram measures the spatial correlation as a function of the 207 

distance between data points (Goovaerts, 1997). The theoretical semi-variogram model 208 

fitting is usually expressed by three parameters, the nugget that refers to the nonzero 209 

intercept due to measurement error or variation within the distance sampling interval, 210 

the sill that represents the variance of the correlated measurements and the range that 211 

defines the distance, extending from any given location, where measurements are 212 

spatially correlated (Goovaerts, 1997). Ordinary kriging (OK) is the most common 213 



10 
 

methodology that bases its estimates at unsampled locations only on the sampled 214 

primary variable (Kitanidis, 1997). Co-kriging (CoK) involves auxiliary variables that 215 

are significantly correlated with the primary variable leading to predictions with 216 

improved accuracy. CoK is a weighted average of measured values of the primary 217 

variable and of the cross-correlated auxiliary variables. The spatial correlation between 218 

two or more variables at the same location is expressed by the cross-semi-variogram 219 

(Kitanidis, 1997).  220 

Semi-variogram modeling was initially performed in Matlab platform with codes 221 

developed by Varouchakis &  Hristopulos (2013b). Then for the optimal spatial 222 

management of the available dataset the ArcGis software was used to apply 223 

interpolation and mapping. The default settings of the Geostatistical Analyst tool 224 

regarding the semi-variogram determination were met during the calculation of the 225 

optimal semi-variogram in Matlab platform. The latter was necessary for the proper 226 

mapping procedure using the ArcGis software. Optimal estimates of semi-variogram 227 

model parameters obtained by least squares fit to experimental semi-variogram. The 228 

least squares sum for each fitted theoretical semi-variogram model was used as an index 229 

of optimal fitting (Varouchakis & Hristopulos, 2013b). The complicated cross-230 

semivariogram for the CoK method was estimated only with the Geostatistical Analyst 231 

tool of the ArcGis software and the optimal fitted theoretical model was selected using 232 

the provided estimation measures.  233 

Anisotropy was investigated in the Matlab platform by comparing directional semi-234 

variograms in the four main geographical directions (Goovaerts, 1997; Varouchakis & 235 

Hristopulos, 2013a) using an angle tolerance of 40o. Smaller tolerance values do not 236 

permit a sufficient number of data pairs (> 30) at each lag. Hence, no significant 237 
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difference among the directional semi-variograms of the different variables of the 238 

dataset was detected. 239 

For the spatial interpolation approach we use the OK and CoK methods in combination 240 

with normalizing transformations. The box-cox transformation was applied to the data 241 

using code developed in Matlab to predict the optimal transformation parameter 242 

(Varouchakis et al., 2012). The parameter value is then used in interpolation procedure 243 

of the Geostatistical Analyst tool. Next the semi-variogram or the cross-semivariogram 244 

of the transformed data was determined by testing the most commonly used theoretical 245 

models like the Exponential, the Gaussian, the Mattern (K-bessel) and the Spherical 246 

model. The spherical semi-variogram provided the optimal fit for both OK and CoK 247 

methods. Similar studies have also implemented a spherical semi-variogram (King et 248 

al., 2010; Banerjee & Siciliano, 2012; Correa-Galeote et al., 2013). Then, OK or CoK 249 

is used to derive predictions of the transformed field. The predictions are finally back-250 

transformed to obtain estimates in the initial scale. 251 

OK and CoK were used to construct prediction maps for each microorganism. CoK 252 

method applied using the most significant environmental variables for each 253 

microorganism (multiple stepwise regression) to improve the prediction results. The 254 

performance of the kriging-based geostatistical models was evaluated by using the 255 

leave one out cross validation technique that is usually applied in small datasets (Witten 256 

et al., 2011). A series of well-known statistical measures was employed to compare the 257 

true and estimated values of the cross-validation procedure, such as the correlation 258 

coefficient R, the Root Mean Square Error (RMSE), the Mean Relative Error (MRE) 259 

and Analysis of Variance (ANOVA). In addition, the performance of each geostatistical 260 

model was supported by the associated kriging variance plots.  261 
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Results  262 

Bacteria were the most abundant domain of microorganisms in all sampling points 263 

followed by Fungi (Fig. 2). The abundance of Archaea was two to three orders of 264 

magnitube lower compared to that of Fungi and Bacteria. With regard to the bacterial 265 

phyla, Acidobacteria phylum was the most abundant, followed by Bacteroidetes (Fig. 266 

2). In comparison to other phyla (α-Proteobacteria, β-Proteobacteria, Actinobacteria 267 

and Firmicutes), the abundance of Acidobacteria was one to two orders of magnitude 268 

higher. Pearson correlation analysis revealed strong positive relationships between 269 

microbial groups (Fig. 3, Table S4). Actinobacteria and Bacteroidetes were the most 270 

strongly correlated phyla (r=0.96, p<0.001). Fungi, on the other hand, showed the 271 

weakest relationships with the other groups, except from Acidobacteria (r=0.52, p 272 

<0.001). The ratio of fungal 18S rRNA gene copies to bacterial 16S rRNA gene copies, 273 

an indicator commonly employed to draw conclusions for the sustainability of 274 

agricultural systems, showed negative correlations with all bacterial taxa and Archaea 275 

(Table S4).  276 

Multiple regression analysis showed that a proportion of the variance, ranging from 277 

31.10 to 79.65%, in the distribution of the microbial groups investigated in this study 278 

could be explained by the environmental variables monitored (Table 1). Partitioning 279 

out overall models R2, emerged TOC content and pH as the most important predictors 280 

with the highest contributions in variance explanation. TOC, by itself, could explain a 281 

proportion of variance ranging from 11.7% to 74.8%, while the corresponding 282 

proportion of pH varied from 7.36% to 37.14%. Geographical distance also explained 283 

a significant proportion (9.49% to 67.48%) of the total variance in some microbial 284 

groups (e.g. Firmicutes; Table 1). In accordance, Pearson analysis highlighted TOC and 285 
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pH as the most significant variables (p <0.001), (Fig. 3, Table S4). Variance of Fungi 286 

domain was the least explained by environmental variables measured. 287 

Complementarily, in order to test if there is a unique microbial group that could improve 288 

model prediction, the abundance of microbial group was included into the models. 289 

Models predictions were significantly improved, for instance for α-Proteobacteria, 87% 290 

of the variation was explained by the models including data on microbial abundance 291 

compared to 68% when modeling was solely based on environmental variables (Table 292 

S5), but most of the environmental variables were excluded from the models probably 293 

due to the strong correlations between microbial groups.  294 

ANOVA of microbial groups and land uses revealed that the abundance of 295 

Acidobacteria, Actinobacteria, Bacteroidetes, and Firmicutes was statistically higher at 296 

natural ecosystems compared to agricultural lands (Table S6). In addition, the 297 

abundance of all microbial groups, except those of α-Proteobacteria and Fungi, 298 

increased with elevation, especially at elevations higher than 400 m. It must be noted, 299 

however, that land use changes with elevation meaning that natural ecosystems occur 300 

mainly at elevations higher than 300 m. 301 

Semi-variogram modeling of microbial groups revealed strong spatial patterns, with 302 

autocorrelation length ranging between 309 and 2.244 m. In this study CoK method 303 

was adopted to create prediction maps for microbial distribution since it produced more 304 

accurate predictions compared to OK with a lower relative mean error, in some cases 305 

up to 9%, for all microbial groups except Fungi. In addition, the R2 between measured 306 

and predicted values ranged from 0.306 to 0.575 (Table S7).  307 

Regard to the distribution maps, Actinobacteria, β-Proteobacteria, α-Proteobacteria, 308 

Bacteroidetes, and Archaea (Fig. 5b, S1a, 5a, 5d, 4b,) followed more or less the same 309 
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spatial pattern, with a spotty and rough separation between areas. The lowest 310 

abundances occurred mostly at the west and east sides of the map, while the highest at 311 

north-east and south-west. Firmicutes and total Bacteria 16S rRNA gene copies 312 

distribution (Fig. S1b, 4a) followed similar spatial patterns with the previous groups, 313 

but the areas were smoother and better separated. Acidobacteria and Fungi abundance 314 

(Fig. 5c, 4c) followed a more clear distribution and abundance increased with elevation 315 

from north to south direction. For all microbial groups, except Acidobacteria and Fungi, 316 

the west side of the map represents low abundances and follows exactly the pH and 317 

TOC distribution pattern (Fig. S2). At the corresponding part low values of pH and 318 

TOC were measured. Fungi to Bacteria ratio distribution map (Fig. 4d) followed the 319 

opposite pattern from all the above, and it resembled more the distribution pattern of 320 

Fungi.  321 

Discussion 322 

Understanding the drivers regulating the structure of soil microbial communities, their 323 

function and their activity comprise important challenges in the modern environmental 324 

microbiology. Pertinent information, even at high phylogenetic levels, has been useful 325 

to assign taxa with (aggregate) specific functions (Fierer et al., 2007; Philippot et al., 326 

2009; Wessén et al., 2010), to associate broad microbial groups with certain ecosystem 327 

services (Six et al., 2006; Averill et al., 2014) and to provide support for a new 328 

generation of biogeochemical models explicitly addressing microbial structure (Waring 329 

et al., 2013).  330 

Employing qPCR analyses and advanced statistical modeling at the scale of a small-331 

sized Mediterranean watershed, we provide insights on the influence of environmental 332 

variables, land use, biochemical activities and microbial interactions on soil microbial 333 
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community, which were explored at the domain and phylum level. The ratio of archaeal 334 

to bacterial 16S rRNA genes averaged to approximately 0.02, a proportion quite similar 335 

to that of archaeal sequences recovered from soils of various ecosystem types (Bates et 336 

al., 2011). In this study soil C:N ratio was also the only factor consistently correlated 337 

with the relative abundance of Archaea, being higher in soils with lower C:N ratios. An 338 

opposite relation however, was identified in our study, h Archaea abundance was 339 

positively correlated to C:N ratio (Fig. 3; Table S4). Positive correlations were also set 340 

with pH (Pereira e Silva et al., 2012), TOC, NMR and TN as well as with urease and 341 

phenol oxidase activity providing evidence for a significant role of Archaea in C and N 342 

cycling in Mediterranean ecosystems. Variation analysis showed that TOC, pH and 343 

PNR accounted for 55% of the variance observed in Achaea distribution of (Table 1), 344 

with the latter predictor displaying a negative regression coefficient. Although negative 345 

correlations have been reported between Thaumarchaeota, the most abundant soil 346 

archaeal phylum (Thamdrup, 2012), and soil NO3¯-N or NH4
+-N status (Bates et al., 347 

2011; Pereira e Silva et al., 2012) this was not the case for Koiliaris CZO (Fig. 3; Table 348 

S4). Given the correlative nature of the methodology (Ray-Mukherjee et al., 2014), this 349 

finding most probably implies an indirect effect of PNR on microorganisms abundance.    350 

The abundance of 18S rRNA genes of Fungi remained constantly lower to that of 351 

bacterial 16S rRNA genes across the Koiliaris CZO, even at fields dominated by natural 352 

vegetation and/or not-subjected to tillage. Fungal-dominated soils have been associated 353 

with better structure (Rillig & Mummey, 2006) and C sequestration (Six et al., 2006) 354 

which were not the case for Koiliaris CZO. This pattern may reflect the intense 355 

anthropogenic influence that the watershed is subjected, mainly tilling, fertilization and 356 

overgrazing (Banwart et al., 2011; Moraetis et al., 2014). Nitrogen addition (Boyle et 357 

al., 2008), low soil C inputs (Wang et al., 2014) and overgrazing (Lopez-Sangil et al., 358 
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2011) have been linked to a decline in Fungi abundance in soils. Indeed, abundance of 359 

Fungi was positively correlated to SOC (Fig. 3). By contrast, no correlation with phenol 360 

oxidase was set, as it had been hypothesized. This finding may be due to the fact that 361 

the turnover of (poly)phenols is regulated by a specific group of Fungi, the 362 

Basidiomycota (Theuerl & Buscot, 2010). In line with other studies (Zinger et al., 2011; 363 

Pereira e Silva et al., 2012) the F:B ratio was greater in natural ecosystems compared 364 

to agricultural fields (0.29 vs 0.01). Overall, Fungi were weakly linked to the 365 

biogeochemical parameters monitored in this study compared to other microbial taxa 366 

and only a low proportion of the observed variance could be explained by the co-kriging 367 

model. SOM content was the only significant predictor of distribution of Fungi in line 368 

with the saprophytic lifestyle of most of Fungi (Boer et al., 2005). Similarly to our 369 

findings, Zinger et al. (2011) found that only 26% of the fungal variation could be 370 

explained in an Alpine landscape when environmental conditions and plant species 371 

composition were taken into account. In that study, Fungal beta-diversity was mainly 372 

related to SOM, while geographic distance did not account for community changes. 373 

The underlying reasons of unexplained variance remain obscure, but they might be 374 

related to complex interactions with vegetation, environmental variables (Zinger et al., 375 

2011), the relative narrow range of pH variation, and SOM composition (Pereira e Silva 376 

et al., 2012).  377 

The relative abundance of bacterial phyla followed a pattern that diverged substantially 378 

from those reported up to date in various soil ecosystems (Philippot et al., 2009; Wessén 379 

et al., 2010) including arid ones (Fierer et al., 2005). The most remarkable deviations 380 

regarded α-Proteobacteria, Acidobacteria, and Actinobacteria. Acidobacteria were the 381 

most abundant bacterial phylum in Koiliaris CZO comprising on average the 28% of 382 

bacterial community in line with results from a desert soil (Fierer et al., 2005) as well 383 
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as from forest soils and croplands at the Brazilian Amazon (Navarrete et al., 2013). 384 

Pasternak et al. (2013), reported also low abundance of Actinobacteria (0.0013%) and 385 

α-Proteobacteria (0.02%) in Mediterranean soils, although considerably lower to that 386 

observed in this study. The reasons contributing to this variability of the relative 387 

abundance of bacterial phyla across studies remain obscure. It should be underlined that 388 

all the pre-mentioned studies have used the same primers, except from the study of 389 

Pasternak et al. (2013), to amplify bacterial phyla. Although this does not preclude 390 

additional methodological bias (e.g. DNA extraction method), it seems more probable 391 

that environmental factors cause this variability, stressing the need for more studies to 392 

elucidate their influence on the shaping of soil microbial communities. 393 

Distribution of bacterial phyla across the Koiliaris CZO was correlated with some 394 

geochemical parameters including TOC, TN, C:N ratio, pH, and soil texture (Fig. 5, 395 

Table S4) in accordance to other studies (Fierer et al., 2007; Philippot et al., 2009; 396 

Nemergut et al., 2011; Navarrete et al., 2013). With regard to the biochemical 397 

parameters, urease activity was the only parameter consistently correlated with all 398 

bacterial taxa. This finding may suggest the widespread distribution of genes encoding 399 

for urease and the great importance of urea in the cycling of C and N in the studied 400 

watershed. Compared to other studies (Meyer et al., 2013; Rodrigues et al., 2013), land 401 

use had only a slight influence on microbial community structure (Table S6), despite 402 

the shifts in the soil management practices applied and the composition of liter entering 403 

the soil (olive trees, citrus, natural ecosystems). It should be noted however, that the 404 

influence of land use on soil microbial communities may have been confounded by the 405 

effect of elevation which followed a quite similar pattern (Table S6), since natural 406 

ecosystems in Koiliaris CZO occur mainly at elevations higher than 300 m (Fig. 1 and 407 

Fig. S1). These findings may suggest that abiotic factors (climate, geochemistry) had 408 
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the dominant influence on soil microbial community structure in Koiliaris CZO and 409 

this influence may have further exacerbated by the relatively low availability of 410 

organic-C.  411 

Strong correlations were also set between and within bacterial phyla and domains (Fig. 412 

5, Table S4). Although qPCR analysis of bacterial phyla has been found to suffer from 413 

caveats, for instance d-Proteobacteria 16S rDNA sequences are also amplified by the 414 

qPCR assay of a-Proteobacteria and similarly, Actinobacteria assay amplifies some 415 

Verrucomicrobial sequences (Fierer et al., 2005), the low proportion of non-targeted 416 

sequences is not expected to have exerted a strong effect on the correlations obtained. 417 

These relationships may imply to some extent syntrophic partnerships, but most 418 

probably they have been arisen by variations in environmental factors and resources 419 

availability and suggest sharing of similar ecological niches by taxonomicaly distinct 420 

microorganisms displaying functional redundancy and/or similarity. Network analysis 421 

also revealed co-occurrence patterns and non-random association of soil microbial 422 

communities implying that these patterns might have been derived from taxa sharing 423 

similar ecological niches and did not necessarily imply direct symbioses (Barberan et 424 

al., 2012). 425 

Habitat distribution models have been employed to understand and predict the 426 

distribution of microorganisms at various taxonomic levels (King et al., 2010; Bru et 427 

al., 2011). The prediction power of the models set in Koiliaris CZO, based solely on 428 

environmental parameters, differed among the microbial domains and bacterial phyla 429 

(Table 1). The TOC, C:N, and pH were identified as the most important chemical 430 

predictors. In contrast to previous studies (King et al., 2010), biochemical parameters 431 

had a low contribution in explaining microbial variance and only PNR was consistently 432 

included as a predictor of some bacterial taxa (Actinobacteria, Firmicutes, Bacterioides) 433 
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distribution (Table 1). To the best of our knowledge relations among bacterial taxa and 434 

PNR have not studied so far. The negative regression coefficients of the models among 435 

bacterial taxa and PNR may suggest competition among microbial taxa for the available 436 

soil NH4
+-N or may have their origin on the strong relationships among microbial taxa 437 

as it is indicated in Table 2. However, since studies employing multiple regression are 438 

purely correlative, the predictors do not necessarily imply cause-effect relationships. 439 

The geographic distance, as expressed by the spatial vectors resulted from PCNM 440 

analysis, explained a large proportion of the variation and for same cases (β-441 

Proteobacteria and Fungi to Bacteria ratio) higher than any other individual factor. 442 

Moreover semi-variograms revealed strong autocorrelation for microbial groups and 443 

co-kriging cross validation revealed high prediction power. These findings suggest that 444 

geographic distance is an indicator of bacterial dispersal across Koiliaris CZO. When 445 

microbial abundance was incorporated into the models (Table S6) their prediction 446 

power was significantly improved, but most of the environmental variables were 447 

excluded. Contrary to our expectations, there is not a unique or certain microbial groups 448 

that could improve the prediction power of the models and which could be potentially 449 

used as bioindicator(s) for predicting microbial community abundance at the domain or 450 

phylum level. 451 

Conclusions 452 

In this study we investigate the abundance of soil microorganisms at the domain and 453 

the bacterial level across the Koiliaris CZO. This approach allowed us to obtain insights 454 

on the environmental drivers regulating the spatial distribution of microorganisms. 455 

Multiple regression analysis showed that a percentage from 31% to 79% of the spatial 456 

variation in microbial taxa abundance could be explained by the environmental 457 

variables measured, while TOC, C:N ratio, pH, PNR and geographic distance were 458 
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identified as the most important drivers. Strong correlations among microbial taxa 459 

suggesting syntrophic partnerships and/or sharing of similar ecological niches but 460 

additional research is needed to shed light on these relationships. Inclusion of microbial 461 

taxa abundance in geostatistical models improved strongly their prediction power 462 

resulting in variance explanation from 36 to 94%. Our findings contribute on the 463 

understanding of environmental factors controlling the abundance and distribution of 464 

dominant soil microorganisms at large scale, as well as to define the importance of that 465 

influence.  466 
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Table 1 Partitioning of the variation of each microbial domain/phylum in the most important explanatory variables.   

 Overall model  

 N1 
ANOVA2 

(F, p) 

explained var3 

(%) 
Proportion of the total variance unique explanation by each predictor (%) 

Co-variation 

(%) 

Unexplained 

(%) 

α-Proteobacteria 

6 
19.08 

*** 
68.02 

pH 

(16.78) *** 

TOC 

(6.86) ** 

C/N 

(3.64) * 

Sp. Dist
 V2

 

(4.86) * 

Sp. Dist
 V4

 

(6.92) ** 

Sp. Dist
 V23

 

(7.21) ** 
 53.75 31.98 

β-Proteobacteria 

4 
11.66 

*** 
49.8 

TOC 

(11.73) * 

Sp. Dist
 V2

 

(21.94) ** 

Sp. Dist
 V5

 

(17.8) ** 

Sp. Dis
V20

 

(11.92) * 
   36.61 50.2 

Actinobacteria 7 
29.51 

*** 
79.65 

TOC 

(26.4) *** 

pH 

(24.51) *** 

PNR 

(6.43) *** 

PhO 

(2.34) * 

Sp. Dist
 Y

 

(10.47) *** 

Sp. Dist
 V3

 

(5.56) ** 

Sp. Dist
 V20

 

(3.11) * 
21.18 20.35 

Acidobacteria 2 
26.02 

*** 
49.51 

TOC 

(74.8) *** 

NO3_N 

(25.01) *** 
     0.19 50.5 

Bacteroidetes 7 
25.25 

*** 
76.9 

TOC 

(25.01) *** 

pH 

(13.65) *** 

PNR 

(5.54) ** 

Sp. Dist
 V1

 

(3.21) * 

Sp. Dist
 V2

 

(2.66) * 

Sp. Dist
 V3

 

(7.1) *** 

Sp. Dist
 V10

 

(2.4) * 
40.43 23.1 

Firmicutes 5 
32.57 

*** 
52.7 

TOC 

(20.84) *** 

pH 

(37.14) *** 

PNR 

(9.25) * 

Elev 

(10.09) * 

Sp. Dist
 V3

 

(10.32) * 
  12.36 47.3 

Total Archaea 5 
23.54 

*** 
68.85 

TOC 

(23.99) *** 

pH(22.9) 

*** 

PNR 

(8.02) ** 

Sp. Dist
 V2

 

(3.71) * 

Sp. Dist
 V3

 

(7.84) ** 
  33.54 31.15 

Total Fungi 2 
12.50 

*** 
31.08 

TOC 

(98.06) *** 

Soil Moist 

(45.64) ** 
     -43.7 68.92 
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Total Bacteria 5 
28.32 

*** 
78.95 

TOC 

(40.19) *** 

pH  

(36.6) *** 

NO3_N 

(7.08) *** 

PNR 

(10.15) *** 

Sp. Dist
 V3 

(3.87) ** 

Sp. Dist
 V20 

(3.01) * 

Sp. Dist
 V27 

(2.61) * 
-3.57 21.05 

Fungi/Bacteria ratio 7 
22.25 

*** 
74.47 

pH 

(17.36) *** 

Sp. Dist
 V2

 

(14.33) *** 

Sp. Dist
 V5

 

(7.03) ** 

Sp. Dist
 V9

 

(6.14) ** 

Sp. Dist
 V11

 

(2.85) * 

Sp. Dist
 V13

 

(3.5)        * 

Sp. Dist
 V17

 

(23.63) *** 
25.16 25.53 

1N: number of explanatory variables in the final model 
2ANOVA tests the goodness of fit of the model and its significance 
3Total explained variance from the overall model calculated by adjusting R2 values, in order to obtain unbiased estimates (Peres-Neto et al., 2006).  

Bonferroni –correction was applied to p values to maintain the family-wise error level in multiple testing. 

Abbreviations: TOC: total organic carbon; PNR: potential nitrification rate; PhO: phenol oxidase; Elev.: elevation; Sp. Dist.: spatial distance vector 
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Figure captions 659 

Figure 1 Sampling points across Koiliaris CZO. The orange-colored line indicates the 660 

borders of the watershed while the blue one indicates the hydrographic network, the 661 

length of which approaches 36 km. Sampling points are grouped into two broad land 662 

uses, agricultural lands (yellow circles) and natural ecosystems (green circles). 663 

Figure 2 Variation in the abundance (gene copy numbers per g of dry weight soil) of 664 

microbial domains and bacterial phyla across the Koiliaris CZO. The upper and lower 665 

boundaries indicate the 75th and the 25th percentile, respectively; the mid-line indicates 666 

the median of the distribution; above and below whiskers indicate the 90th and 10th 667 

percentiles, respectively; the black asterisks indicate values identified as outliers. 668 

Figure 3 Correlogram representing Pearson's correlation coefficient rank between and 669 

among soil properties and microbial community abundances. All parameters, except 670 

pH, were transformed before statistical analysis. Information on the transformations 671 

applied is included in Table S3. More detailed information on the significance of the 672 

correlations as well as on the correlation coefficients can be found in Table S4. 673 

Figure 4 Maps of the abundance of microbial domains in the Koiliaris CZO generated 674 

through co-kriging. (a) Bacterial 16S rRNA gene copies, (b) Archaeal 16S rRNA gene 675 

copies, (c) Fungal 18S rRNA gene copies, and (d) Bacteria:Fungi ratio. The color scale 676 

at the left of the maps indicates the abundance values (gene copies no/g of soil d.w.) 677 

except in the case of Bacteria:Fungi ratio which indicates proportion.  678 

Figure 5 Maps of the abundance of bacterial phyla in the Koiliaris CZO generated 679 

through co-kriging. (a) α-Proteobacterial 16S rRNA gene copies, (b) Actinobacterial 680 

16S rRNA gene copies and (c) Acidobacterial 16S rRNA gene copies, (d) Bacteroidetes 681 

16S rRNA gene copies. The color scale at the left of the maps indicates the abundance 682 

values (gene copies no/g of soil d.w.).  683 
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 687 

Figure 1: Sampling points across Koiliaris CZO. The orange-colored line indicates the 688 

borders of the watershed while the blue one indicates the hydrographic network, the 689 

length of which approaches 36 km. Sampling points are grouped into two broad land 690 

uses, agricultural lands (yellow circles) and natural ecosystems (green circles). 691 
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 694 

 695 

Figure 1: Variation of the abundance 16S/18S rRNA gene copies (no/g soil d.w) of 696 

microbial domains and bacterial phyla across the Koiliaris CZO. The upper and lower 697 

boundaries indicate the 75th and the 25th percentile, respectively; the mid-line indicates 698 

the median of the distribution; above and below whiskers indicate the 90th and 10th 699 

percentiles, respectively; the black asterisks indicate values identified as outliers. 700 
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 702 

 703 

Figure 2: Correlogram representing Pearson's correlation coefficient rank between and 704 

among soil properties and microbial community abundances. All parameters, except 705 

pH, were transformed before analysis. Information on the transformations applied is 706 

included in Table S3. The correlation coefficients and the significance are 707 

summarized in Table S4. 708 
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 711 

Figure 3: Maps of the abundance of microbial domains in the Koiliaris CZO generated 712 

through co-kriging. (a) Bacterial 16S rRNA gene copies, (b) Archaeal 16S rRNA gene 713 

copies, (c) Fungal 18S rRNA gene copies, and (d) Bacteria:Fungi ratio. The color scale 714 

at the left of the maps indicates the abundance values (gene copies no/g soil d.w.) except 715 

in the case of Bacteria:Fungi ratio which indicates proportion. 716 

  717 
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 719 

Figure 4: Maps of the abundance of bacterial phyla in the Koiliaris CZO generated 720 

through co-kriging. (a) α-Proteobacterial 16S rRNA gene copies, (b) Actinobacterial 721 

16S rRNA gene copies and (c) Acidobacterial 16S rRNA gene copies, (d) Bacteroidetes 722 

16S rRNA gene copies. The color scale at the left of the maps indicates the abundance 723 

values (gene copies no/g soil d.w.). 724 


