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             Περίληψη  

Από τις διάφορες στρατηγικές που έχουν χρησιµοποιηθεί τα τελευταία χρόνια 

για τη δηµιουργία συνθετικής φωνής υψηλής ποιότητας, αυτή που παρουσίασε τα 

καλύτερα αποτελέσµατα είναι η στρατηγική του Variable Unit Selection 

Synthesis. Με την τεχνική αυτή για µια δεδοµένη πρόταση, τη στιγµή της 

σύνθεσης το σύστηµα επιλέγει τον καλύτερο συνδυασµό φωνητικών µονάδων, 

διαφορετικών ίσως µεγεθών και τύπου (phones, diphones, συλλαβές, λέξεις η 

ακόµα και τµήµατα προτάσεων), µέσα από το Speech Corpus, το ειδικά 

επεξεργασµένο σύνολο τον ηχογραφήσεων από έναν οµιλητή, το οποίο και 

βασίστηκε σε ένα ειδικά διαµορφωµένο σύνολο κειµένων. Οι µονάδες αυτές 

συνδυάζονται µεταξύ τους, και µετά την εφαρµογή κάποιας επεξεργασίας 

συρράπτονται για να δηµιουργήσουν τη συντεθειµένη πρόταση. 

Το Speech Corpus αποτελείται από δύο στοιχεία : 

- τις κωδικοποιηµένες ηχογραφήσεις που βασίστηκαν σε ένα 

προεπιλεγµένο σύνολο κειµένων   



- πληροφορίες σχετικά µε τα φωνήµατα που αποτελούν την κάθε πρόταση 

που περιλαµβάνεται σε αυτό. 

Όλες αυτές οι πληροφορίες εξάγονται αυτόµατα µε τη χρήση ενός 

παραµετροποιήσιµου αναγνωριστή φωνής. ∆εδοµένου ότι γνωρίζουµε το 

κείµενο (και τη φωνητική αναπαράσταση του), το οποίο διάβασε ο οµιλητής, η 

διαδικασία του ταιριάσµατος αυτή  ονοµάζεται forced alignment. Κατά το 

forced alignment επιδιώκουµε να βρούµε τα όρια των φωνηµάτων που 

απαρτίζουν κάθε πρόταση. Για τους σκοπούς όµως της δηµιουργίας του Speech 

Corpus χρειαζόµαστε και όλα τα επιπλέον δεδοµένα που αναφέραµε παραπάνω. 

Τα στοιχεία αυτά όµως µπορούν να ανακτηθούν µέσα από τον αναγνωριστή. 

Σκοπός της διπλωµατικής εργασίας είναι η δηµιουργία ενός εξειδικευµένου 

αλγορίθµου στo σύστηµα αναγνώρισης HTK, που παρέχεται από το 

Speech,Vision and Robotics Group του πανεπιστήµιου του Cambridge. Ο 

αλγόριθµος αυτό θα παρέχει τη δυνατότητα παραµετροποίησης της διαδικασίας 

του  forced alignment, καθώς και εργαλεία για τον έλεγχο και τη διασύνδεση 

των αποτελεσµάτων µε τα αντίστοιχα σήµατα φωνής. 
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C h a p t e r  1  

Introduction 
Motivation 

 

A fundamental assumption in much of speech processing is that the basic unit of 

speech is the phoneme. Most speech recognizers identify words based on their 

phonetic representation, and nearly all speech synthesizers concatenate or synthesize 

waveform segments according to phonetic pronunciations. As a result, one 

requirement of researching and building speech synthesis systems is the availability 

of speech data that have been labeled and time aligned at the phonetic level.  

 

Time aligned phonetic labels can be created by a trained human labeler or by an 

automatic method. Although precise evaluation of the phonetic labeling is difficult, 

there is a general consensus that manual labeling is more accurate than automatic 

labeling. To give further weight to the claim that manual alignments are more 

accurate than automatic alignments, systems that depend on alignment information 

can be developed using both methods and the performance of the two systems can 

be compared.  Our case study took the manual aligned sentences from TIMIT 

corpus and compared them with the ones we created from our own segmentation 

procedure. 

 

Although manual alignment is considered more accurate than automatic methods, it 

is too time consuming and expensive to be commonly used for aligning large 

corpora. In addition to the greater time required to generate manual alignments there 

is variability in manual generated alignments due to the subjective judgment of the 

human labeler. Because of these disadvantages of manual alignment, there is a need 

for a fast, inexpensive and accurate means of obtaining time aligned phonetic 

labeling of speech waveforms.  

 

The topic of this thesis then is the development of a method of performing speech 

segmentation that is more accurate than current automatic methods and significantly 
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faster than manual alignment. This principles used to develop such a method may 

then be applied to other aspects of speech processing such as speech recognition 

and speech synthesis. 

 

General Overview of the current methods 

 

As noted above, the most accurate method of creating time aligned phonetic labels is 

to employ a trained human labeler. This person typically generates phonetic 

alignments using a software tool that displays the waveform, spectrogram, label and 

possibly other information. The labeler assigns the phonetic labels with the speech 

sentences, by listening the segments of the waveform and by using knowledge of the 

relationship between the waveform, its spectrogram and its phonetic content. As a 

result training in phonetics and spectrogram reading is required to produce 

acceptable label alignments, and manual alignment is a resource intensive method.     

 

The most common automatic method for aligning speech is called “forced 

alignment”. In this method, recognition of the speech signal is performed with the 

search results constrained to the known sequence of phonemes. Such systems obtain 

the alignment, by forcing the recognition result to be the proposed phonetic 

sequence and this phonetic sequence is determined in advance by a pronunciation 

dictionary. In general, there is a strong link between automatic speech recognition 

and forced alignment techniques, in that the same general process can often be used 

for both tasks.  

 

One reason for the greater accuracy of human labeling over automatic methods is 

that humans are better able to detect distinct events in the speech signal that 

correspond to the specific phonetic characteristics, such as the sudden increase in 

energy that signals the beginning of a plosive. The development of our method was 

motivated by the belief that if an automatic alignment system could use such 

acoustic phonetic information, its accuracy will become closer to that of human 

performance, while still maintaining the internal consistency of current automatic 

methods. The model for the proposed method uses forced alignment as foundation. 



 

 3

This model then incorporates specific acoustic phonetic features and performs a 

refinement procedure based on this feature extraction procedure.    
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C h a p t e r  2  

Previous Work in phonetic alignment 
 

Of a review of 32 automatic alignment systems, 44%(14 systems use HMM 

recognition to obtain the alignments, and 25% (8 systems) use dynamic time 

warping(DTW).The remaining systems (10 systems) employ a wide variety of 

approaches including methods that use estimates of voicing, measures of spectral 

variation, diphone detection, rules that encode acoustic-phonetic knowledge, etc. In 

this chapter we will mostly discuss the HMM systems and we will describe the 

current state of the art in automatic phonetic alignment based on the systems 

reviewed here  

 

Automatic alignment agreement with manual labels is most often reported in terms 

of what percentage of the automatic alignment boundaries are within a given 

threshold of the manually-aligned boundaries. For example Brugnara reported that 

for their system 88.95% of their automatic boundaries are within 20ms of the 

manual boundaries. This type of result will be reported as a percent “agreement” 

within the given threshold. Relative differences in the agreement between two 

systems will be reported using the terminology “reduction in error” even if the 

alternate terminology such as “increase in agreement” may be technically more 

correct. 

 

HMM systems 

 

As mentioned before, HMM speech recognizers can be used to obtain phonetic 

alignments using a process called forced alignment. In this technique, the sequence 

of speech segments is matched with the sequence of phonetic labels. The results of 

the Viterbi search, contains the phonetic alignment (as well as the position of each 

phoneme within each sentence).  

In cases where the words are known but the phonetic sequence is not, a dictionary 

can be used in combination with pronunciation rules to generate a phoneme 
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sequence for each word; these sequences can then be concatenated together, with 

optional pauses between words, to arrive at a phoneme sequence for the entire 

utterance. Because the task of phoneme alignment can be considered as simplified 

speech recognition, it is natural to adopt a successful paradigm of automatic speech 

recognition, namely HMMs, for alignment [ref. num]. 

 

Wightman and Talkin [1] developed an HMM-based system called “The Aligner”, 

with the acoustic model training and Viterbi search implemented using the HTK 

toolkit. The aligner uses a 10ms frame rate and five mixture components per 

Gaussian to estimate the state occupation likehoods. Non-speech sounds, such as 

breath noise and lip marks are collapsed into a single “silence” model. The system 

was trained on unvoiced and voiced stop closures, whereas most HMM systems 

train the stop closure and the stop burst as one unit. The system was trained using 

the TIMIT labels as an initial segmentation. In evaluation of their system they did 

not use the TIMIT phonetic sequence directly, but they first mapped the words to 

canonical dictionary pronunciations, that performed forced alignment , and then 

mapped the forced-alignment phonemes to the TIMIT phoneme sequence; this 

allowed them to compare the phonetic boundary alignments while still performing 

forced alignment from word-level information. Performance on the TIMIT test set 

was approximately 80% agreement within 20 ms.          

 

Pellom [3] developed an HMM for forced alignment with a variety of speech 

enhancement algorithms. This system uses a 5msec frame rate, 5-state monophone 

HMMs, gender dependent models, 16 Gaussian mixtures components per state, and 

Gamma distribution transition probabilities. When phoneme level transcription 

probabilities are not available, the system generates pronunciations using the CMU 

dictionary and word-juncture modeling. The system was trained and evaluated on 

TIMIT data that had been down-sampled to 8KHz, had agreement was 86.2% 

within 20msec. Pellom evaluated the same system on the NTIMIT corpus of 

telephone band speech and the CTIMIT corpus of cellular band speech, using 

various noise-reduction techniques. For NTIMIT the system with the best 

combination of speech enhancement algorithms has 76.8% agreement within 
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20msec; for CTIMIT the best performing system had 66.7% agreement within 

20msec. 

 

Ljolje and Riley [4] built a 3-state HMM system that has different types of phonetic 

models, depending on the availability of training data. If enough data are available 

for each phoneme in its left and right contexts, then a complete triphone model is 

used, although the left and right contexts are clusters of similar phonemes instead of 

individual phonemes. If sufficient data are not available for a full triphone model, 

then a “quasi-triphone” model is attempted; this quasi-triphone model has the left 

state dependent on the left context, the middle state context independent and the 

right state dependent on the right context. If sufficient data are not available for the 

quasi-triphone model, then left context dependent and right context dependent 

models are attempted. If sufficient data are still not available then context 

independent phoneme models are used. The HMM uses full covariance Gaussian 

probability density functions to estimate the state occupation probabilities, a Gamma 

distribution duration model and a 10msec frame rate. The models were trained and 

evaluated on TIMIT database. Two types of models were trained, those based on 

manual alignments in the TIMIT database, and those based on a mixture of manual 

alignments and Viterbi re-estimation of the alignments. In either case they found 

80% agreement within 15msec.          

 

Ljolje, Hirschbergh and Van Santen [6] trained a monophone (context-independent) 

three state HMM system with Gaussian estimation of the state occupation 

likehoods. Gamma distributions were used to model the phoneme durations, and 

the frame size was 2.5 msecs. The system was trained using and initial uniform-

duration segmentation of the states instead of manual alignments. Training and 

evaluation was done on Italian utterances in carrier phrases. When mean biases were 

removed from the results, performance was 78.1% agreement within 20msecs. 

 

Other methods for automatic Phonetic Alignment 

 

The HMM approaches are certainly not the only ones. In this section we will discuss 

an alternative system relevant to this thesis. 
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An alignment system developed by Santen and Sproat applies edge detectors to 

spectral-domain representations and energy information in different frequency 

bands. This information is combined with a set of phonetic sequences for each word 

to arrive at the aligned phonetic sequence. This approach focuses on detecting 

phonetic boundaries (referred to as diphones) rather than the conventional HMM 

approach for estimating the likehood of each phonetic category at every frame of 

speech. They note that the spectral cues to different types of phonetic transitions are 

contained in different frequency bands; for example a boundary between an /f/ and 

an /s/ has a decrease in energy bellow 2000Hz and an increase in energy above 

4000Hz; a boundary between an /f/ and a vowel however, an increase in energy in 

the 800 Hz to 2500 Hz frequency range. The authors group the set of phoneme into 

two classes, “broad” and “narrow”. To account for these two type of diphones, van 

Santen and Sproat use two representations of the speech signal; the first 

representation is energy in five different bands (for classifying the broad diphones) 

and the second is a mel-frequency FFT representation (for classifying the narrow 

diphones). Then they perform edge detection on the frequency bands detecting both 

quick changes and less localized changes. The frequency band information is 

combined in such a way that exact synchronicity in time is not required. This 

information is combined using Baye’s rule to estimate the “overall acoustic cost” for 

each diphone at each time frame. For the narrow diphones the mel-FFT 

representation is used with vectors of weights that characterize each diphone to 

locate the time point of greatest change between the two phonemes. Van Santen and 

Sproat reported a 50% agreement within 2 msecs and 95% agreement within 20 

msecs when evaluated on a single speaker. Although the use of a single speaker in 

the test corpus does not guarantee that the results will generalize to multi-speaker 

corpora, the extremely high agreement argues for the merit of this method. 

State of the art in phonetic alignment 

 

For the systems reviewed above that were evaluated on microphone quality speech, 

performance ranged for 77% agreement to 90% agreement [16,89] within 20 msec; 

variables that may affect performance include the method of training the system, the 

number of speakers in the training and test corpora, the type of corpus (isolated 
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word or continuous speech) , and the language used in training and testing. Average 

performance is about 84% agreement within 20 msec, and HMM systems tend to 

outperform other systems.  

 

Our system (HMM-based system) in the baseline segmentation process (performed 

with HTK Toolkit) had 84.53% agreement within 20ms. 
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C h a p t e r  3  

Baseline Segmentation System with HTK 
 

As mentioned earlier, our research focuses on segmentation of speech given a 

phonetic transcription. We will use HMM based ASR system for the first stage. The 

second stage, which we will discuss in chapter 7, will refine the time marks. 

 

 Get the transcriptions (these are built by hand and we call them the 

CORRECT transcriptions) from TIMIT prompts (create a MLF with them). 

 

 Create our own transcriptions (machine built transcriptions) using forced 

Viterbi alignment, where the features and correct words are given - best 

states - produces labels for each input. 

 

 Compare the machine segments with the hand labeled segments; get 

statistics for each phoneme (compute mean error, variance, bias error, 

histogram, context error rate). 

 

 

The TIMIT Corpus 

 

The TIMIT acoustic-phonetic corpus [11] is widely used in the research community 

to benchmark phonetic recognition experiments. It contains 6300 utterances from 

630 American speakers. The speakers were selected from 8 predefined dialect 

regions of the United States, and the male to female ratio of the speakers is 

approximately two to one. Each utterance in the corpus was hand-transcribed by 

acoustic-phonetic experts, both at the phonetic level and at the word level. At the 

phonetic level, the corpus uses a set of 61 phones, but we mapped the phoneme set 

to contain only into a simpler 48 phoneme symbol set. The aim of this mapping is to 

delete all glottal stops, replace all closures preceding a voiced stop by a generic 

voiced closure (vcl), all closures preceding an unvoiced stop by a generic unvoiced 
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closure (cl) and the different types of silence to a single generic silence (sil).  The set 

of phonemes used is described in following figure. 

 
 

Figure 3.1 : The set of English phonemes 

 

 

HTK Introduction 

 

The Hidden Markov Model Toolkit (HTK) is a portable toolkit for building and 

manipulating hidden Markov models. HTK is primarily used for speech recognition 

research although it has been used for numerous other applications. HTK consists 

of a set of library modules and tools available in C source form. The tools provide 

sophisticated facilities for speech analysis, HMM training, testing and results analysis. 

The software supports HMMs using both continuous density mixture Gaussians and 

discrete distributions and can be used to build complex HMM systems.  

Before describing the procedure we used to get the initial segmentation we will 

explain how and why we used HTK for it. HTK can be used to build a simple 

speech recognizer by manipulating hidden Markov models, being the core of most 

state-of-the-art speech recognition systems. The concept in speech recognition is 

that the acoustic information is sampled as a signal suitable for processing by 

computers and fed into a recognition process. The output of the system is a 

hypothesis for a transcription of the speech signal. Our automatic segmentation 

process is like having the following recognition system. 
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Input  given utterances 

Lexical Model  phoneme sequence (phoneme or phoneme following another 

phoneme) 

Acoustic Model  one ΗΜΜ for each phoneme 

Output  phonetic label for each utterance and the corresponding time boundaries 

 

HTK Processing Stages  

 

 1st step – Data Preparation 

 

In ΤΙΜΙΤ we find the information which gives us each sentence and its 

corresponding phoneme sequence. This is called a phone level transcription. Phone 

level transcriptions in TIMIT are build by hand so we call them «hand built» 

segmentation or the correct segmentation of the sentences. We need the correct 

segmentation to compare it with the one we will automatically generate for the same 

sentences (we call this the «automatic» segmentation).  

Firstly we created an MLF file that contains all phone level transcriptions found in 

TIMIT. This was done with HTK, and we used the HLEd tool . (see Appendix for 

HLEd).  Here the MLF file is created directly using the TIMIT phone list and by 

applying a script (HLEdscript), which maps the phonemes used form 61 to 48.The 

aim of this mapping is to delete all glottal stops, replace all closures preceding a 

voiced stop by a generic voiced closure (vcl), all closures preceding an unvoiced stop 

by a generic unvoiced closure (cl) and the different types of silence to a single 

generic silence (sil).  

And in the following example we can see how HLEd affects this TIMIT label file 

   

0 8920 h# 

8920 9530 hh 

9530 10694 ih 

10694 12281 z 

12281 12930 kcl 

12930 13710 k 

13710 15707 ae 
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15707 17540 pcl 

17540 17830 t 

  

The result will be :  

 

0 5575000 sil 

5575000 5956250 hh 

5956250 6683750 ih 

6683750 7675625 z 

7675625 8568750 k 

8568750 9816875 ae 

9816875 10962500 p 

10962500 11143750 t 

 

Notice that label boundaries in TIMIT format are given in terms of sample numbers 

(16kHz sample rate), whereas the edited output file is in HTK format in which all 

times are in absolute 100ns units. The MLF that arises contains the phoneme 

sequence for each sentence and for each speaker but also contains start and end time 

marks for each phoneme within the sentence. 

 

 2nd step –Training Process 

 

Here we will have to get all TIMIT’s train and test files (these are actually mfc files 

that are a result of the procedure described earlier, wav files > signal processing > 

feature vector) and separate each sentence in its corresponding phone sequence, by 

invoking forced segmentation technique. An HMM for each phoneme must be 

generated.  In HTK this is done by writing a proto file first (this is a prototype 

HMM written in hmm definition language, just like it is described in the HTK 

book). The parameters of this prototype are not of a great importance, its main 

purpose is to give us the HMM topology (here we will use a 3-state left to right 

HMM).To create the HMM’s for the phonemes we used HInit( exact 

implementation if HInit can be found in the Appendix).  HInit is called for each 

phoneme in the phonelist, to initialize the HMM for that phoneme.  
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Next we used HHed for tying all individual HMM’s together. This is how our 

acoustic model is generated. The models are then re-estimated with HRest. Here the 

parameters for each phoneme are re-estimated using the HMM definitions we got 

from HInit and a new hmm definition file will be created. 

Now that the acoustic properties of the different phones have been encoded in 

statistical models and the sentence models are generated by concatenating all 

relevant phoneme models, the speech data can be assigned to the acoustic model of 

the complete phoneme sequence. This is done with the Viterbi algorithm and 

appropriate tool is HVite. 

 

 3nd step - Viterbi Alignment  

 

In speech recognition and several other pattern recognition applications, it is useful 

to associate an optimal sequence of states to a sequence of observations, given the 

parameters of a model. For instance, knowing which frames of features belong to 

which state allows location of  the word boundaries across time. This is called 

alignment of acoustic feature sequences. A reasonable optimality criterion consists of 

choosing the state sequence (or path) that has the maximum likelihood with respect 

to a given model. This sequence can be determined recursively via the Viterbi 

algorithm. 

 

In forced alignment the HMM is used to recognize the input speech with the Viterbi 

search constrained to only the correct sequence of phonemes. The result of the 

Viterbi search contains the phonetic alignment. In cases were the words are known 

but the phoneme sequence is not a dictionary can be used in combination with 

pronunciation rules to generate a phoneme sequence for each word, the sequences 

can be concatenated with optional pauses between words, to arrive at a phoneme 

sequence for the entire utterance. 

 

HVite computes a new network for each input utterance using the word level 

transcriptions and a dictionary. By default, the output transcription will just contain 

the words and their boundaries. One of the main uses of forced alignment, however, 

is to determine the actual pronunciations used in the utterances used to train the 
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HMM system in this case, the -m option can be used to generate model level output 

transcriptions. This type of forced alignment is usually part of a bootstrap process; 

initially models are trained on the basis of one fixed pronunciation per word. Then 

HVite is used in forced alignment mode to select the best matching pronunciations. 

The new phone level transcriptions can then be used to retrain the HMMs. Since 

training data may have leading and trailing silence, it is usually necessary to insert a 

silence model at the start and end of the recognition network. The -b option can be 

used to do this. 

 

As an illustration, executing 

HVite -a -b sil -m -o SWT -I words.mlf -H hmmset dict hmmlist file.mfc 

 

would result in the following sequence of events. The input file name file.mfc would 

have its extension replaced by lab and then a label file of this name would be 

searched for. In this case, the MLF file words.mlf has been loaded. Assuming that 

this file contains a word level transcription called file.lab, this transcription along 

with the dictionary dict will be used to construct a network equivalent to file.lab but 

with alternative pronunciations included in parallel. Since -b option has been set, the 

specified sil model will be inserted at the start and end of the network. The decoder 

then finds the best matching path through the network and constructs a lattice 

which includes model alignment information. Finally, the lattice is converted to a 

transcription and the output transcriptions would be written to an MLF using the -i 

option. 

 4th step - Evaluation 

 

The method of measuring the performance of an automatic alignment system is to 

assume that the manually generated labels are correct and compute the automatic 

alignment error relative to these values. 

 

In this step we have to calculate mean error, variance and bias error, on start end 

time marks and find total error for each phoneme. We finally analyzed context 

behavior in our results and calculated error rates. Phones are divided into classes 
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such as vowels, fricatives, nasals etc and we take phoneme pairs to calculate the 

requested error rates. 

 

Results and discussion 

 

In our approach for automatically determining phoneme boundaries, we compared 

the manually segmented transcriptions with the ones that were created automatically. 

We examined each phoneme individually, counted its mean, its standard deviation 

and its bias both in start and end time marks and we also grouped phonemes into 

their associated categories (see figure 3.1) and took phoneme pairs to see how a 

phoneme boundary is influenced by the preceding or the following phoneme’s broad 

category. 

 

Based on our results, comparing the two approaches, it is clear that the automatic 

alignments are worst when the phoneme and its adjacent one, are of the same 

category (or we can in other words say that they are acoustic similar). Most of the 

cases where the pair of phonemes belongs to the same category are actually 

encountered very few times (less than 50 as we can see in Table 3.4 were the 

appearance counts of each context are presented) but there are also cases where we 

have a count larger that 1000. For example ah+vowel has a mean error of 41.5ms 

and is found only 35 times and iy+vowel has a mean error of 21.8ms and is 

encountered 1443 times. Boundaries are also not well detected when we have silence 

following a phoneme especially when the phoneme belongs to the stop class (nasal 

and semivowel classes give a large mean error also), or when we have silence before 

a class (silence-stop is also the largest here as we can see in Tables 3.1 and 3.2). 

 

On the other context combinations, affricates-fricatives transitions have a mean 

error of 24ms but this is not so often encountered in our transcriptions and a 

fricative-affricate transition has a large error of 37.3ms. The largest mean error on 

similar contexts is found when we have a stop phoneme and the adjacent phoneme 

is also a stop and this case is counted 2026 times (see context results of Tables 3.2 

and 3.4 below). Vowel to semivowel transitions, are also very difficult to detect. 
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BIAS(ms) AF FR NAS SEM/V SIL STOP VOW * 

AF -13.0 -20.8 -3.4 -0.36 -12.3 -5.27 3.88 -7.33 
FR -37.3 -4.9 -3.0 -4.6 -10.4 -4.7 -0.7 -9.40 

NAS -1.5 -5.8 -5.8 -5.0 7.9 1.6 -2.8 -1.65 
SEM/V -2.9 -5.5 -1.4 -1.1 7.4 -1.7 3.3 -0.30 

SIL -10.1 -9.7 -12.4 -10.3 0 -37.7 1.9 -11.30 
STOP -0.4 -3.9 -9.1 -9.7 -27.2 -36.1 -4.9 -13.05 
VOW 9.2 -6.2 -3.4 -1.3 14.3 -1.1 4.1 2.22 

* -8.02 -8.16 -5.55 -4.71 -2.89 -12.17 0.70 -5.83 

Table 3.1 Context-context results for Bias   

 

MEAN(ms) AF FR NAS SEM/V SIL STOP VOW * 

AF 13.00 24.69 7.25 8.02 18.67 9.78 7.35 12.68 
FR 37.31 15.94 9.66 9.42 19.08 10.34 7.45 15.60 

NAS 7.50 9.96 16.57 15.90 24.88 11.59 9.29 13.67 
SEM/V 4.19 8.61 10.41 16.55 23.46 7.22 15.94 12.34 

SIL 10.92 15.58 15.13 15.15 0.0 39.55 10.58 15.28 
STOP 6.86 11.48 13.76 11.47 33.83 40.82 8.47 18.10 
VOW 15.12 8.76 9.40 19.98 23.20 6.56 19.65 14.67 

* 13.56 13.57 11.74 13.78 20.45 17.98 11.25 14.62 

Table 3.2 Context-context results for mean error   

 

STD(ms) AF FR NAS SEM/V SIL STOP VOW * 

AF 0.0 21.8 5.6 7.1 19.8 10.5 8.2 10.46 
FR 20.1 15.0 9.8 8.7 20.7 10.9 9.7 13.58 

NAS 6.0 8.4 16.9 16.8 22.9 12.4 12.5 13.72 
SEM/V 2.8 6.7 18.4 19.7 42.8 8.1 16.5 16.44 

SIL 6.7 14.1 11.7 21.8 0 18.3 12.5 12.77 
STOP 6.2 11.7 12.4 8.8 32.9 27.3 9.0 15.5 
VOW 25.9 6.9 11.5 20.7 21.4 7.6 23.6 16.84 

* 9.72 12.14 12.37 14.81 23.50 13.60 13.16 14.19 

Table 3.3 Context-context results for Standard Deviation (abs) 
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COUNT(ms) AF FR NAS SEM/V SIL STOP VOW * 

AF 1 105 48 119 198 301 1665 2387 
FR 3 1165 766 2137 2854 4669 13777 25371 

NAS 56 2490 308 1361 1200 4063 6343 15821 
SEM/V 5 1191 525 766 432 1679 16219 20817 

SIL 119 2031 925 1772 0 1235 1453 12575 
STOP 2182 3438 795 5529 1443 2026 14458 29871 
VOW 21 14951 12454 9133 1408 15898 8286 62151 

* 2387 25371 15821 20817 12575 29871 62151 168993

Table 3.4 Context-context appearance counts 

 

The same tasks (HTK baseline process and evaluation) where performed with 8 and 

16 mixtures per Gaussian and we the results are presented in the Appendix. 

 

We then subtracted from all examples the value of global bias (we calculated all bias 

values for each phoneme and took a mean value of those) so that the error on each 

example will be reduced now. For a transition to a vowel for example, the average 

difference between automatic and manual segmentation can be more than halved 

when compensating for these biases (see Table 3.5).  

 

On another experiment, we subtracted for each phoneme, the value of its bias (as we 

can see in Figire 3.2) and we presented those results on the column named “Error 

after sub. Individual Bias” of Table 3.5. The same experiments were done also by 

taking into consideration the context for each phoneme. So we present an 

experiment were we subtract the bias on every example, but this time the bias is a 

context-dependent value (for example if we had fricative—aa transition, we will 

subtract the bias value of the fricative—vowel context).  
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Figure 3.2: Bias definition 

 

(ms) All 

examples 

count 

% 

After Sub. 

Global  Bias 

% 

After Sub. 

Phon.  Bias 

% 

After Sub. 

Context  Bias  

% 

[ -4 , 4 ] 30.12 31.59 32.81 35.18 

[ -8 , 8 ] 53.85 58.97 57.03 58.28 

[ -10 , 10 ] 59.85 65.23 65.15 66.71 

[ -15 , 15 ] 76.00 78.62 78.87 80.07 

[ -16 , 16 ] 78.27 80.07 80.67 81.67 

[ -20 , 20 ] 84.53 85.42 85.77 86.73 

[ -30 , 30 ] 91.67 91.92 92.18 93.04 

[ -40 , 40 ] 95.03 95.26 95.42 96.04 

[ -50 , 50 ] 96.95 97.14 97.23 97.59 

[ -60 , 60 ] 98.13 98.25 98.29 98.52 

Table 3.5 Overall “agreement” within a given threshold 

 

We can see in Table 3.5 above, that in [-10, 10] area the count of examples is 

increasing after subtracting bias from all examples , which denotes that there was an 

improvement in the error and more phone examples were added into the [-10, 10] 

area. On the contrary the number of examples that are outside the [-10, 10] area is 

decreased, which is of course the expected outcome since the examples were 

“pushed” to a lower error category. The largest improvement in our results is 

encountered when we subtract context-context bias.  

 

aa 

Correct 

Segmentation

ms 

ms 

error 
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All this procedure was not determined to accomplish its purpose by its first 

implementation. We have a basic idea of what went wrong in this procedure but 

finding errors is rather difficult especially when there is no tool to graphically 

represent the results and to correlate them with the original waveforms. So, we 

created a graphical tool for visualization which will be presented in Chapter 5. 

 

Histogram Results 

 

Lastly, we constructed various histograms from our results and took some statistical 

measurements, all of which are summarized in the following tables. We took all of 

the differences we had calculated (between correct and segmentation transcriptions) 

and constructed a histogram to see the exact error distribution of all the examples. 

 

To get a better insight on the boundary errors on the improvement after subtracting 

the bias histogram distributions are shown in the following figures.  

 

  
 Figure 3.3                                                                   Figure 3.4 
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Figure 3.5                                                                      Figure 3.6 

 

  

Figure 3.3 shows the initial error distribution of all examples and Figures 3.4, 3.5 and 

3.6 the resulted distributions after the bias correction technique. All cases denote the 

improvement on the boundary placement as we can see from the figures mentioned, 

but the bias correction based purely on the basis of context gives the best results. As 

we can see in this case the histogram is more “smooth” left and right of the zero in 

the x-axis and it is also sifted in the center of x-axis . 
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C h a p t e r  4  

Basic Feature Extraction theory 

 
The Fourier Transform (Interpretation in terms of time and 

frequency) 

 

When the function f is a function of time and represents a physical signal, the 

transform has a standard interpretation as the spectrum of the signal. The real parts 

of the resulting complex-valued function F represent the amplitudes of their 

respective frequencies (s), while the imaginary parts represent the phase shifts. 

 

Linear Prediction Coefficients 

 

Linear Prediction Coefficients (LPC) can parameterize the speech spectrum quite 

well. Vocal tract is modelled as an all-pole transfer function which is formed by a 

cascade of a small number of two-pole resonators representing the formants. Glottal 

model is represented as a two-pole low-pass filter.  

 

 
Figure 4.1 

 

The LPC are the coefficients {a1, a2, ap}, estimated from the current frame of data, 

given the speech production model. An LPC sequence can be computed directly 
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from the corresponding correlation sequence of equal length. A length twelve LPC 

vector can be derived from a length twelve autocorrelation, which in turn is 

interpreted as a smoothed Fourier spectrum. We used the Matlab function lpc() to 

get the LPS spectrum , we used Fs+2 coefficients, and plotted the frequency 

response of the result. 

 

Cepstrum 

A cepstrum (pronounced "kepstrum") is a Fourier analysis of the logarithmic 

amplitude spectrum of the signal.  If the log amplitude spectrum contains many 

regularly spaced harmonics, then the Fourier analysis of the spectrum will show a 

peak corresponding to the spacing between the harmonics: i.e. the fundamental 

frequency.  Effectively we are treating the signal spectrum as another signal, and 

then looking for periodicity in the spectrum itself. The cepstrum is so-called because 

it turns the spectrum inside-out.  The x-axis of the cepstrum has units of quefrency, 

and peaks in the cepstrum (which relate to periodicities in the spectrum) are called 

rahmonics.The cepstrum may be defined verbally: 

The cepstrum is the FFT of the log of the FFT  

Mathematically:  

X= FFT(the signal) 

cepstrum of signal = FFT(log(X))  

The real cepstrum uses the logarithm function defined for real values, while the 

complex cepstrum uses the complex logarithm function defined for complex values 

also. The complex cepstrum holds information about magnitude and phase of the 

initial spectrum, allowing the reconstruction of the signal. The real cepstrum only 

uses the information of the magnitude of the spectrum. 

There are many ways to calculate the cepstrum, some of them need a phase-

warping algorithm, and others do not. The cepstrum can be seen as information 

about rate of change in the different spectrum bands. Usually the spectrum is first 

transformed using the Mel Frequency bands. The result is called the Mel Frequency 
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Cepstral Coefficients or MFCCs. It is used for voice identification, pitch detection and 

much more. The cepstrum separates the energy resulting from vocal cord vibration 

from the "distorted" signal formed by the rest of the vocal tract. 

Mel scale 

The mel scale, proposed by Stevens, Volkman and Newman in 1937 is a scale of 

pitcheses judged by listeners to be equal in distance one from another. The reference 

point between this scale and normal frequency measurement is defined by equating a 

1000 Hz tone, 40 dB above the listener's threshold, with a pitch of 1000 mels. Below 

about 500 Hz the mel and hertz scales coincide; above that, larger and larger 

intervalss are judged by listeners to produce equal pitch increments. As a result, four 

octaves on the hertz scale above 500 Hz are judged to comprise about two octaves 

on the mel scale. Mel scale is used to translate regular frequencies to a scale that is 

more appropriate for speech, since the human ear perceives sound in a nonlinear 

manner. In the case of speech recognition, a filter bank is applied of which the 

centre frequency of each bank is scaled according to the Mel scale. This scale takes 

into account the frequency resolution properties of the human ear. The inverse 

fourier transform of the log output of this filter bank yields the MelFrequency 

Cepstrum Coefficients. 

The MFCC parameterization follows common requirements imposed on a speech 

parameterization for speech recognition purposes. Its main features are aimed above 

all at: 

 to capture an important information presented in a speech signal for recognition 

purposes 

  to handle as little data as necessary and 

  to use any quick evaluation algorithm. 

 

Moreover the benefit of MFCCs is also in their perceptually scaled frequency axis. 

The mel-scale offers higher frequency resolution on the lower frequencies in the 

same way as a sound is percept by the human auditory organ. In addition, the 

MFCCs offer through their cepstral nature abilities to model both poles and zeros. 
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Calculating Distances 

 

The distance between two points is the length of the path connecting them. In the 

plane, the distance between points (x1,y1) and (x2,y2) is given by the Pythagorean 

theorem, 

 

 
 

In Euclidean three-space, the distance between 3 points is  

 

 
 

In general, the distance between points x and y in a Euclidean space is  

 
 

However in statistics we prefer a distance that for each of the components (the 

variables) takes the variability of that variable into account when determining its 

distance from the centre. Components with high variability should receive less 

weight than components with low variability. This can be obtained by rescaling the 

components. By treating all values equally when calculating the distance from the 

mean point, it weights the differences by the range of variability in the direction of 

the sample point. This is done in the case of the Mahalanobis distance estimate. 

However we conducted some experiments with the Mahalanobis distance but there 

was no substantial improvement in our results, comparing them to the ones done 

with the Euclidean distance. Although the Euclidean metric is computationally more 

expensive than some metrics, it does give more weight to large differences in a single 

feature. 
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C h a p t e r  5  

A Matlab Software Tool for Speech Segmentation Refinement 
 

Tool description  

 

Compatibility 

Matlab 6.x and Matlab Signal Processing Toolbox 

 

Introductory screen 

 

When we run demo we get the following screen 

 

 

 
Figure 5.1: The main Tool Area 

 

First we need to make sure that the following files are in the default tool’s directory 

 

Write paths here 
(defaults are set to my directories) 

Press Plot Button to start 
with the first transcription 
.Select Random to plot a 
random Timit file 

Zoon In /Zoom Out 
actions on current figure  

Type in a phoneme and tick the 
type of its left and right context   

Perform FFT, LPC  and 
Cepstrum analysis on data  

Press to plot the selected phoneme 
along with its context  
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 TIMIT_WavList 

 

This is a text file I created myself that goes like this… 
/test/dr1/faks0/si1573 

/test/dr1/faks0/si2203 

It contains the paths to all wav files of TIMIT, and does not include the “.wav” 

file extension 

 

 MLF_List 

This is a also a text file that contains lines that go like this… 
test_dr1_faks0_si1573 

test_dr1_faks0_si2203 

The purpose of this file is to help us “move” around the MLF files when we are 

processing them with Matlab, because each transcription starts with the file 

name extension given in the above specified format. 

 

 TIMIT MLF 

We must specify the path for the MLF we have from TIMIT 

 

 Segmentation MLF 

We must also specify the path of the MLF we have from the HTK 

segmentation procedure 

 

Then we must specify the following path : 

 

 TIMIT Path  

Specify TIMIT database path were the wav files are selected. 

 

Plot a waveform 

 

Now that the paths are all completed, we press the Plot button and we get the 

following figure.    

(When we press the plot button for the first time it may take a little time for the 

plots to appear, please be patient!) 
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Figure 5.2: This is a plot of a transcription   

 

What we see here is waveform along with its associated transcription.  Red time 

marks and red phonemes plotted are from TIMIT labeling whereas the green ones 

are from the results of our segmentation procedure. 

Pressing Plot button again generates a new plot of another TIMIT waveform file. 

Files are processed in the order they appear TIMIT_WavList.txt file. If we want a 

random file selected we press the Random checkbox and a random file from the 

5071 files will be plotted now…this action will take a little longer to be completed. 

 

 Zoom In/Out Tool 

 

By pressing the Zoom In button you can select a rectangle area with the mouse for 

zooming in.For ex. look at the following figure 

 
Figure 5.3: After zoom, a new plotted area 
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Figure 5.4: After another zoom… 

 

You can zoom in as many times you want, by selecting new rectangles every time in 

the plot area. Zoom Out button takes you one step back in the plot area. 

 

FFT/LPC/Spectogram/Cepstrum Tool 

 

We can choose to do the Signal Analysis on the whole waveform or on the portion 

of the waveform selected with the zoom tool. Signal Analysis gives us the Power 

Spectrum, the LPC spectrum, the FFT Amplitude and the Cepstrum. FFT size is 

selected to be 1024 and LPC coefficients are selected FS+2. If we select 

Spectrogram from the pull down menu we get the spectrogram plot of the current 

transcription (if zoom or context are selected we get the plot for the whole 

transcription data, not the zoomed or context data) 

 

 
Figure 5.5: Spectogram 
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If we select FFT from the pull down menu we get the FFT results for the data that 

are shown in the current top figure. 

 
Figure 5.6: After zoomFFT Analysis on zoomed data 

If we select LPC from the pull down menu we get the LPC results for the data that 

are shown in the current upper figure. 

 
Figure 5.7: After zoom, LPC Analysis on zoomed data 
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Context 

Here we can select a specific phoneme and plot the part of the waveform were the 

phoneme appears along with its right or left context. We can select the type of the 

left and the right context by the pull down menus (ex. Affricate, fricative,nasal etc). 

By pressing the Plot Context button we get the resulted waveform. The result that 

appears on screen is the first one encountered in the MLF file. Pressing Plot Context 

button again will show us the next example found. If a context appears many times 

in a label file then the Plot Context action will give us the result within the label file 

before processing to the next label file in the MLF. 

 

 

 
Figure 5.8:Context buttons 

 

 
Figure 5.9: Context results of phoneme ‘w’  

 

After a result of the specified context is displayed we can use the zoom in tool to get 

a better look on the time marks for the selected phoneme’s context 
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Figure 5.10: A zoom in on the previous figure  

From this point we can perform signal analysis by selecting an option from the FFT 

pull down menu. The following is a LPC analysis on the above zoomed region.  

 

Figure 5.11: LPC analysis on the zoomed context data  

Distances  

 

 
Figure 5.12: First we select a waveform from Context button 

 

Then we Select the desired frame shift (in ms) and press the Differences button. 
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Figure 5.13: Euclidean distance (frame shift is 10ms) 

 
Figure 5.14: Euclidean distance (frame shift is 5ms) 

 

 
Figure 5.15: Euclidean distance (frame shift is 3ms) 
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Figure 5.16: Euclidean distance (frame shift is 2ms) 

 

 

 

Ceptsrum 

 

With this option the Mel-front end is executed and we get the Mel and Ceptsrum 

coefficients on screen. 
 

 

Figure 5.17:A waveform from Context button zoomed one time 

 

 



 

 34

 

Figure 5.18: The Cepstrum coefficients of the above waveform 

 

 

Figure 5.19: Mel Frequency coefficients (MFCC) of the above waveform 

 

 

Front-End Implementation 

 

Our front end implements the following procedure 

 

A pre-emphasis filter whitens the speech signal and overlapping frames are 

multiplied by a hamming window. Next the magnitude squared of the DFT is 

computed. The magnitude squared is processed by a set of mel-filter banks to 

produce an estimate of the mel spectrum. The mel filter banks (their purpose is to 

emphasize the lower frequencies) are implemented as a series of overlapping triangle 

filters that are centered in the mel scale. The result is an estimate of the total energy 
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in the ith critical band. Finally the logarithm of the mel-spectrum is taken to produce 

a weighted log-energy. 

 

This tool was mainly used to visualize waveforms for the TIMIT corpus along with 

the associated phoneme boundaries from manual and automatic alignment. The 

results we got from the ASR technique consist of many different cases and the 

analysis and evaluation of all those results is rather difficult to be performed just by 

analyzing mean error or bias values. 

 

With this tool, we can see each automatic boundary position inside each sentence’s 

waveform and this way we can conduct a much more detailed analysis on the 

boundaries, see specific phoneme placement, see the context segments that are not 

well aligned according to the mean error analysis results of the previous section.  

 

Also, this tool helped us in the refinement procedure described in the next chapter, 

were we are trying to shift the boundaries based on specific signal characteristics that 

best describe the transition between two phonemes. Those signal characteristics are 

plotted in the tool to help us monitor these transitions, especially by the Euclidean 

distance between signal features, as we will describe in the next section.          
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C h a p t e r  6  

Refinement Process 
Introduction to the refinement process 

 

The evolution of the speech waveform near a phoneme boundary is determined by 

the context. The same phone boundary might have different signal characteristics 

for different contexts. Thus for the boundary between any two phones a and b, a 

simple a-end b-start kind of detector will not work very accurately. Also the signal 

features that change sharply near the boundary depend on both the phonemes. For 

example, an unvoiced fricative-fricative boundary will not be accompanied with a 

sharp change in voicing nature unlike a boundary from a fricative to a vowel. Thus it 

seems logical to use separate models for each boundary based on both the 

phonemes defining the boundary. We model the boundary by taking signal features 

for equal number of small frames of speech data on both sides of the boundary 

location.  

Since the region near the boundary is rapidly evolving the frame size varies from 10 

to 2 ms (we tested our refinement algorithm for different values of frame size and 

evaluated our results to see which frame size gave us better results). Signal features 

are then calculated for these frames. We use MFCC’s measures to obtain the feature 

space representation for these frames. The boundary refinement is carried out by 

using these models to search near the approximate time marks generated by the 

initial segmentation process for the actual boundary point. For every initial boundary 

estimate we position candidate boundary points at equal spacing on either side of the 

boundary and calculate the signal features. 

 

Examples of time mark refinement 

The information in each signal has to be represented in some manner. In the 

front-end we perform a filterbank analysis then our feature vector consists of the 

energies in each band averaged over 20ms. The feature vector type we use are Mel 

Frequency Cepstral Coefficients (MFCCs). Since the feature vectors could possibly 
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have multiple elements, a means of calculating the local distance is required. Our 

measure is local because it involves a computational difference between a feature 

of one frame and a feature of the other. The distance measure between two feature 

vectors is calculated using the Euclidean distance metric. The process is to take the 

euclidean distance between two continuous frames i and j. The result is a one row 

vector with one value per frame pair. Although the Euclidean metric is 

computationally more expensive than some metrics, it does give more weight to 

large differences in a single feature. We then plot the resulted vector, after 

mapping the frame index values it represents to absolute time values. The next 

figure explains how we get from frame to time. Each window in the front-end is 

20ms (320 frames). The value in frame 1 point is 10ms (the middle point) and 

frame 2 is 10ms plus the value of the shift size.  

             

So the corresponding time value between frame 1 and 2 is calculated by taking the 

middle of each frame and the sum of the result. 

Next we will present some examples of how the refinement process will be carried 

out. For each phoneme the front-end is executed and the Euclidean distance 

measures are calculated. We are looking for peaks in this measure that shows us the 

probable transition from one phoneme to another. In the following figures the 

frame 1
frame 2

frame 3 
Shift  

Window size 20ms

Time value (t1) Time value (t2)

T=(t1+t2)/2
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discontinued line represents segmentation boundary and the straight line represents 

the correct boundary. 

 

 
Figure 6.1:A portion of a phoneme (straight line with “*” is the correct boundary) 

 

 
Figure 6.2: Euclidean distance with frame shift 10ms  

 

A peak at around 1530ms indicates that there is a change in the waveform so this 

most likely a transition to the next phoneme. The discontinued boundary line (initial 

segmentation) will be moved to 1530ms now, which is closer to the correct 

boundary as we can see from the figure 6.2. 
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Figure 6.3: Another phoneme boundary placement(straight line with “*” is the correct 

boundary) 

 

 
Figure 6.4: Boundary is moved to the peak position (straight line with “*” is the correct 

boundary)   

But not all boundaries can be detected so easy. Bellow we see waveforms and their 

features that have no specific peak in the phoneme boundary (spurious peaks), so 

these boundaries can not be refined.  Another problem in finding a candidate peak is 

when the error between the automatic and the hand segmentation is large. Searching 

near those boundaries may result in a move to a peak that does not represent the 

actual transition from one phoneme to another or in a peak that involves another 

phoneme that the one we trying to shift. 
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Figure 6.5: A difficult situation 

 

In this figure we can see that for the phoneme ‘z’ there is a high peak near 

the segmentation time mark (dashed line) so the peak near the correct 

boundary will be ignored. 

 

 
Figure 6.6: A difficult boundary(straight line with “*” is the correct boundary) 
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Figure 6.7:There is no actual peak (straight line with “*” is the correct boundary) 

 

With frame shift selected at 10ms the Euclidean distance measure results in non 

candidate peak as we can see in the above figures. We reduce the frame shift to 5ms 

and we get the next plot. 

 
Figure 6.8: A small peak (frame shift is 5ms) (straight line with “*” is the correct boundary) 

 

Here a small peak (nearly showing in the figure) will be calculated in the algorithm 

and the boundary will be positioned to that peak. But if we change the frame shift to 

2ms the peak is now more clearly shown and better placed near the correct 

boundary. 
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Figure 6.9: The peak is clear now(straight line with “*” is the correct boundary) 

 

Our refinement algorithm is basically dependent on two parameters. First there is 

Window_Peak, which is chosen 30,20,15 and 10 ms and it is the window in which 

we search for a peak, selected left and right of each segmentation boundary. 

Secondly , Frame Shift which is chosen 10,5,3 and 2 ms and it is the frame shift used 

in the front-end to parameterize each waveform and calculate the MFCC feature 

vector. Experiments were conducted for each combination of Window_Peak and 

Frame shift and results are presented in the following pages. By the letter “f” we 

mean Frame Shift and with the letter “p” we refer to the Window_Peak parameter.   

 

The segmentation algorithm goes like this: 
 

Load Timit and Segmentation MLF’s 

For each phone segment 

Segmentation_Time_Mark=End_Time_Mark of the phoneme 

Refine(Window_Peak,Frame_shift) 

Window_Start=(Segmentation_Time_Mark - Window_Peak) 

Window_End=(Segmentation_Time_Mark + Window_Peak) 

ML=Do front-end on selected data 

ED=Euclidean Distance Measures(ML ) 

P=Find Peaks(ED) 

For each Peak in P 

If (Peak>=Window_Start) OR (Peak <=Window_End) 
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            Segmentation_Time_Mark=Peak 
Else 
             Segmentation_Time_Mark= Segmentation_Time_Mark  
End 

                         End 
End 
Print to refined_mlf resulted time marks 

End 
 

In the next table we present the error distributions for each of these methods after 

refinement. From this table it can be seen that the refined time marks have a much 

higher percentage of boundaries corresponding to the smaller tolerance limits of 4 

and 8 ms. For the 16 ms tolerance limit, there is a significant improvement in 

performance after time mark refinement, though as can be expected it is not as 

pronounced. 

 
(ms) All 

examples  
% 

After refine 
(f20,p20)  

% 

After refine 
(f3,p15)  

% 

After refine 
(f2.5,p10)  

% 

After refine 
(f2,p15)  

% 
0 0.0 4.35 3.22 2.31 3.45 

[ -4 , 4 ] 30.12 40.42 33.83 32.45 33.29 
[ -8 , 8 ] 53.85 62.35 59.15 55.40 58.62 

[ -10 , 10 ] 59.85 68.07 66.56 63.42 66.41 
[ -15 , 15 ] 76.00 77.08 78.09 75.69 78.01 
[ -16 , 16 ] 78.27 78.13 79.84 77.15 79.64 
[ -20 , 20 ] 84.53 83.07 85.47 83.54 85.31 
[ -25 , 25 ] 88.96 87.76 90.05 88.42 89.99 
[ -30 , 30 ] 91.67 90.94 92.97 91.44 92.92 
[ -40 , 40 ] 95.03 94.83 96.12 94.99 96.12 
[ -50 , 50 ] 96.95 96.88 97.72 96.96 97.72 
[ -60, 60 ] 98.13 98.05 98.63 98.12 98.62 

Table 6.1 

The basic problem with the Euclidean distance is that it is scaling variant. This 

means that if the variances of the vector components differ much from each other, 

the components with large variance dominate the distance value. 

 

Next we compared some of the experiments and created a plot which shows the 

improvement on the boundary placement after the refinement procedure, for a 

search window that is 15ms and various values of frame shift in the feature 

extraction procedure. 
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Figure 6.10.  The improvement of the refinement process 

 

As we can see from this figure the refinement process is dependent of the value of 

the frame shift in feature extraction. As this value gets smaller, the algorithm can 

accomplish better results in refining the boundaries. The best results are when the 

frame shift is 3ms. The values of 2ms is too small and as we saw from graphic 

examples results in many spurious peaks near the actually boundary point which are 

in fact misleading the refinement in many phoneme cases.  
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C h a p t e r  7  

Confidence measures 

 
Introduction 

 

There are many circumstances in speech recognition and speech understanding 

where there is a need to associate measures of confidence with a utterance. These are 

objective measures that can be derived from an utterance and which can be used to 

help determine where a given word, phrase or sentence hypothesis corresponds to 

an actual occurrence of that event. 

 

Successful measures for speech recognition should adequately predict when 

recognition fails (i.e., the measure should correlate highly with the actual system 

performance). Assigning similar confidence scores to time-aligned speech poses 

several new challenges. First, there exists a group of possible boundary 

misalignments rather than a binary “correct/incorrect” recognition decision. Second, 

some errors are more significant than others (e.g., consider misalignments involving 

stop-to-vowel compared with vowel-to-vowel transitions). Ideally the confidence 

measure should provide user feedback on the quality of the boundary assigned to 

each phonetic transition.  

 

Speech Recognition confidence Scores 

 

A speech recognition confidence score should reflect how confident the speech 

recognizer is in the recognition of an utterance. Confidence scores are often given in 

the range 0-100 or 0-1.One question here is what this figure really means. Often, the 

only thing to know for sure when using a commercial speech recognizer is that high 

scores mean “confident” and low scores mean “not confident”. 
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Confidence Accuracy 

 

The most common use of confidence is to compare it to a threshold. Phonemes 

with confidence scores below the threshold are rejected, and those with a score 

higher than the threshold are accepted. Alternatively, one could define a grey zone 

where the utterance is implicitly or explicitly confirmed (see section 3.1.1). 

The threshold used should be tuned according to some empirical data. There is a 

trade-off that has to be made between the number of correct rejections and correct 

acceptances. These terms are explained in Table 7.1 :  

 

 Correctly recognized Falsely Recognized 

Above threshold Correct acceptance False acceptance 

Below threshold False Rejection Correct Rejection 

Table 7.1: Classification of acceptances and rejections 

 

A high threshold will give a large number of rejections, but also a low number of 

acceptances. A low threshold will instead give a low number of rejections and a high 

number of acceptances. 

 

The tuning should aim at finding the lowest total number of false acceptances and 

false rejections. This is often close to the so-called equal error rate, where the number 

of false acceptances equals the number of false rejections. An intuitive measure of 

confidence accuracy is how low the equal error rate can get. However, this measure 

is not in line with the assumption that the confidence score should reflect probability 

of correctness. If the confidence should reflect the probability as perfectly as 

possible, recognitions with confidences around 50% would be correctly judged in 

50% of the cases, and those with a confidence of 0% or 100% would be correctly 

judged in 100% of the cases. Thus, the equal error rate would be as high as 25%, 

given the hypothetical case of an even distribution of confidence scores. 

 

How confidence scores are calculated 

 

On the Euclidean distance measures plots, we distinguish the following cases:  
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A peak (a), a valley (b) and on (c) and (d) we have no peaks just a straight line. 

Valleys are never an issue (we only look for peaks in our algorithm). 

 

 

 

 

 

 

 

 

 

Assume that x(n) is the array with the Euclidean distances. Our confidence measure 

is calculated by the second derivative in the position of x(n) as shown in the figures 

above. This position is either the highest peak or just the position of the candidate 

boundary. Cases like (a) give us a negative confidence value. When cases (c) or (d) 

are encountered, a score is calculated and it has a positive value. The second 

derivative at x(n) point is given by the following equation 

 

C_1 = x(n+1) -2 *x(n) + x(n-1)  (Simple confidence measure) 

  

We can expand this and get some other ways to calculate confidence. 

 

C_2= (x(n+1)-x(n-1)-x(n)+x(n-2))/2 (Smoothed confidence measure) 

 

For our evaluation purposes, we take the negation of all confidence values calculated 

(-c = confidence) and all the negative values now are set to zero (this way we are 

eliminating all c and d cases for confidence scores). So we are now left with only 

positive values and zeros. The highest the value, the more confident our decision 

will be. 

 

Confidence measures for the segmentation technique, reflects how confidence the 

segmentation is on boundary placement. Ideally the confidence measure should 

provide feedback on the quality of the boundary assigned to each phonetic 

b a 

x(n) 

x(n+1) x(n-1) 

c 

x(n) 

d 

x(n) 
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transition. The only thing to know for sure is that high scores mean the boundary is 

placed more accurately when comparing it to the manual segmentation and low 

scores mean that the boundary is “far” from the actual point of segmentation. 

 

Results 

 

First, there exists a continuum of possible boundary misalignments rather than a 

binary correct/incorrect decision. Second, some errors are more significant than 

others (ex. Consider the misalignments involving stop-to-vowel compared with 

vowel-to-vowel transitions). Ideally the confidence measure should provide feedback 

on the quality of the boundary assigned to each phonetic transition 

 

We are showing two sets of confidence evaluation plots. The first group of plots 

shows the mean confidence value calculated in various areas of the error 

distribution. Errors are divided into areas such as (0,5) U (-5,0) then (-10,-5) U (5,10) 

etc.  

 

The second group of plots shows the mean absolute error value for the confidence 

distribution. These plots were constructed by grouping confidence scores into 

regions of (0-1), (1-2), (2-3) etc. and then calculated abs mean error for those 

regions.  

 

Figures are present for both simple and smoothed confidence scoring techniques 

and for the various parameters of the search window and the frame shift of our 

experiments. Examples that did not succeed to give good results in refinement 

procedure (in fact the segmentation went worse for some experiments) do not give 

satisfying confidence evaluation plots. Only a couple of these cases are presented 

here the rest of cases are in the Appendix.  
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Confidence Measure (a)  
 

 
Simple confidence plot 

 

This plot all indicates that the confidence value is higher for small errors. When the 

confidence is evaluated within the search window of the refinement algorithm 

confidence scores are which meaning that the boundary placement is very close to 

the manual boundary. However when the all errors that are outside the search 

window are highly unlikely to be refined so the confidence value is decreased   gets 

when the error is bigger then the search window limits.  
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Confidence Measure (b) 

 

   

 
Simple confidence plot 

 

This plot indicates that mean error, remains high for very low values of confidence 

and this means that we are not “confident” on the boundary placement for large 

errors. As the confidence value increases the more “confident” we can say we get 

and as we can see from the plot the error decreases. 

 

Confidence Evaluation  

 

As we mentioned before on transitions between phones who are acoustical similar or 

in plosive transitions the segmentation accuracy inevitably drops. In situations like 

this, it is important to have some ideas of which of the boundaries in a sentence are 

likely to be correct, which are doubtful and which are almost certainly incorrect. 
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To evaluate the confidence scores the number of non-detected deviations that 

exceed 35,70 and 100ms were counted if the lowest confidence scores were to be 

checked manually. The lowest confidence scores are evaluated by setting a threshold 

for the confidence measure and all examples that are below this threshold are 

rejected. In the following figure we computed the histogram for the error 

distribution, after rejecting all values that had a threshold bellow τ=5.5 for the 

example of frame=3ms, peak=15ms. We did the same procedure for various 

thresholds between 1 and 10. The plot in Figure 7.1 shows the error distribution of 

the remaining (non-rejected) examples. The plot in Figure 7.2 shows in the x-axis the 

percent of examples rejected due to low confidence and in the y axis the average 

error of the examples that were not rejected. These results show the amount of 

reduction in error after rejecting low confidence examples. This is important because 

it represents a performance improvement that was obtained without any additional 

information and with minimal additional complexity. The next figures display the 

results. 

 

 
Figure 7.1: Error distribution after rejecting low confidence boundaries(threshold is 5.5) 
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                             Figure 7.2: Confidence evaluation plot for various thresholds 

 

 

We then compared the original segmentation with the hypothetical one that will arise 

after rejecting low confidence scores to see the overall improvement or the 

boundary placement. 
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Figure 7.3: Comparison plot for threshold 7.5 between original and after post correction 

results 
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C h a p t e r  8  

Conclusions and Future Work 
 

Conclusions  

 

The purpose of this thesis was the creation of a specialized algorithm in the HTK 

recognition toolkit. This algorithm provides the ability to parameterize the process of 

forced-alignment as well aw tools for the examination and the connection of the 

results with the correspondent speech signals.  We have described a two-stage 

speech segmentation scheme which uses HMM based boundary models at the initial 

segmentation was implemented with HTK and by forced alignment. This procedure 

was not determined to accomplish its purpose by its first implementation so a 

refinement procedure was conducted later based on Euclidean distance measure.  

 

We created a graphical tool with MATLAB to visualize all data and all calculated 

features (LPC, Spectogram, FFT, MFCC, Euclidean distance). This tool visualizes 

human and automatic segmentation boundaries in one plot with the original 

waveform, which is very useful and really helped us supervise the whole refinement 

procedure and understand for specific boundary examples the reasons for the 

correct of incorrect refinement. 

 

For our evaluation purposes we examined bias (context dependent and context free) 

post-correction techniques. Performance analysis of this scheme indicates that this 

technique can give encouraging results especially when the boundaries were shifted 

based on their context-dependent bias value. 

  

We also calculated confidence measures to decide whether a proposed boundary is 

correct or incorrect. Confidence measures based on the second derivative of a peak 

near a candidate boundary were computed for many values of frame shift and for 

many search windows. All of our results were evaluated but our evaluation scheme is 
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rather simple and although it gave some important conclusions a more proper 

comparative user study should take place based on our results.  

 

We lastly conducted an advanced correction technique based on two confidence 

measures by simply rejecting the boundaries that were judged to be out of limits, 

which resulted in a significant improvement on the error rates. However we only 

examined one case just to show how confidence scores can be used to improve the 

performance of an automatic segmentation system.  

 

Future Work 

 

In order to define the things that can be done in the future to improve the automatic 

segmentation performance, one must start by thorough study of our results and the 

whole approaching scheme to decide in which particular areas a future work should 

be focused. There are many things that can be improved and many of our results can 

be further evaluated before even improved. What follows is a list of possible projects 

to continue this work. 

 

 Improve the initial segmentation 

 

Some future work should involve the task of the initial segmentation to be repeated 

to get an improved segmentation file because the better the initial segmentation is, it 

would lead to a substantial improvement on the refinement procedure also.  

 

Initial segmentation can be improved by adapting acoustic models. The idea is to use 

a small amount of adaptation data to re-estimate only parts of the system. In Chapter 

3, we described how the parameters are estimated for plain continuous density 

HMMs within HTK, primarily using the embedded training tool HERest. This 

technique can produce high performance speaker independent acoustic models. 

However it is possible to build improved acoustic models by tailoring a model set 

to a specific speaker.  
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By collecting data from a speaker and training a model set on this speaker’s data 

alone, the speaker’s characteristics can be modeled more accurately. Such systems 

are commonly known as speaker dependent systems. The drawback of speaker 

dependent systems is that a large amount of data (typically hours) must be 

collected in order to obtain sufficient model accuracy.  

 

HTK supports both supervised adaptation and unsupervised adaptation and the 

tool to use is HEAdapt using maximum likelihood linear regression (MLLR) 

and/or maximum a-posteriori (MAP) techniques to estimate a series of transforms 

or a transformed model set that reduces the mismatch between the current model 

set and the adaptation data. 

 

Results from the adaptation methods in speech recognition are quite impressive so 

this alone is a good reason for trying this method to improve the initial 

segmentation.  

 

 Improve the refinement algorithm 

 

As far as the refinement procedure is concerned, a better algorithm should be used.  

For example, a way to improve the refinement procedure is to implement a 

refinement algorithm that will use a Hamming window to “smooth” the peaks of the 

Euclidean distance measure before shifting the boundary. Remember that there were 

cases that the peaks near the boundary that did not occur in the same time as the 

actual boundary point or there we many spurious peaks near the actual boundary 

point, thus leading the refinement procedure into failure for many of those 

boundaries.    

 

Each time the algorithm looks for peaks inside a search window. Hamming must 

have the same size as the search window. We can change the portion of Euclidean 

distances array inside the search window, leaving everything outside this region 

unchanged. Although the Euclidean distance has sharp peaks and valleys, the 

Hamming window has the effect of producing a higher peak that is more closely 

spaced. 
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A major drawback on our refinement algorithm is that it is very slow. There is no 

doubt that Matlab is the best tool for parameterization, but our front-end process 

combined with the Euclidean distance and the search for the highest peak took a 

little less than 10 hours to be competed on each of our experiments. Maybe a new 

approach should be considered, one that significantly fastens the refinement 

procedure.  

 

 Improvements on the Confidence 

 

Improvements to our confidence scoring techniques are also being investigated. This 

includes incorporating more features in the confidence evaluation procedure. 

Accurate localization of a boundary between two phonetic segments depends on the 

acoustic characteristics of both segments and on what the key contrast between 

them is. If phonemes are to be partitioned into classes and grouping together classes 

that share the same acoustic model, it is expected that using different signal 

representations to build models for different boundary classes (Vowel-Vowel, 

Vowel-Fricative etc.) should give better results.  

 

This system can be extended to include other speech features (features related to the 

acoustic characteristics of the input utterance, features related to the context of every 

labeled unit ,Silence detection, Voicing detection, Zero-crossing rate, the place of 

articulation detection) that have been developed recently to discriminate between 

phonemes without adding unnecessary complexity to the system [11]. The 

information rich acoustic features in general must be extracted. This knowledge is 

expected to have a profound effect on the automatic speech recognition systems 

whose performance can significantly improve by integrating more knowledge into 

their design. 

  

Splines instead of derivatives can also be used to confidence calculation. Splines are a 

mathematical means of representing a curve, by specifying a series of points at 

intervals along the curve and defining a function that allows additional points within 

an interval to be calculated. This way the points x(n-1) and x(n+1) left and right of a 
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peak (as explained in how confidence is calculated) will be positioned the same and 

the slope will be the same, giving a better accuracy to the confidence score.    

 

 How confidence scores can be used  

 

In our work, we only took the confidence statistics evaluated them and showed one 

possible way of how they can be used to improve the segmentation. Another way we 

can use confidence besides rejecting low confidence boundaries, is for example to 

shift the boundaries based explicitly on each phonemes confidence interval. More 

precisely, the bias can be estimated as a function of the boundary’s confidence score. 

Large confidence score typically will represent large shifts in the boundary 

placement. 

 

More tests should be done to the confidence evaluation with various thresholds to 

get a more complete image of the improvement that can be accomplished in the 

segmentation performance. Let’s not forget that setting a threshold introduces two 

kinds of errors: False Acceptance Rate (the rate of falsely accepted items) and False 

Rejection Rate (the rate of falsely rejected items). This parameters need to computed 

on all our results and for various threshold values. 

 

A proper comparative user study is the only way to determine the effectiveness of 

the various strategies for incorporating confidence scores in the segmentation 

process. Unfortunately, we will have to leave this study to future work 

 

 Future work on the Graphical tool  

 

We wanted a framework that could accommodate many kinds of functions for 

speech and other time-based signals in one shell, with a user interface that would 

be flexible enough to show only the information relevant to the task at hand. 

Pre-computed waveform data is cached on disk in order to speed up display, thus 

providing instant file load and quick access anywhere in even the largest of sound 

files. Our tool can be further expanded so that it can become a standard tool in the 
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Telecommunications laboratory for viewing and editing sound files and 

transcriptions. 

 

A simple task for the tool is to add more functionality and flexibility in viewing all 

transcriptions (context-dependent and non-dependent) by adding a back/previous 

button to move to the previous file/context transcription and a “file open” menu to 

allow the user to open specific waveform from TIMIT. The tool now simply loads 

information for all transcriptions and the user can move in a “serial” order between 

them.   

 

One the other hand, in order to determine the effectiveness of confidence scoring 

the user should be able to hand-correct boundaries based on confidence scores. The 

main idea behind this intuition is to present to the user of the tool the segmentation 

result transcriptions, starting from ones that have the lowest confidence score. 

 

 

 

 



 

 60

BIBLIOGRAPHY 

[1] WIGTHMAN ,C.,W.,  AND TALKIN , D. T. The Aligner : Text-to-

speech Alignment using Markov Models. In Progress in Speech Synthesis, 

J.P.H.V. Santen, R. W. Sproat, J. Olive, and J. Hirschberg, eds. Spinger-

Verlag, New York 1997. 

 

[2] Odell J, Ollason D, Woodland P, Young S , Jansen J, “The HTK Book for 

HTK V2.0”, Cambridge University Press, Cambridge, UK, 1995. 

 

[3] Pellom B. L., and Hansen J. H. L. , Automatic Segmentation and labelling 

of speech recorded in unknown noisy channel environments. In proceedings 

of the 1997 ESCA-NATO Workshop in Robust Speech Recognition for 

unknown Communication Channels (1997). 

 

[4] A. Ljolje and M. D. Riley. Automatic segmentation of speech for TTS. In 

Proc. of Eurospeech-93, volume 2, pages 1445-1448(Berlin, 1993.) 

 

[5] Jan Ph.H van Santen, Richard W. Sproat, “High Accuracy Automatic 

Segmentation”, Proc. EUROSPEECH 99. 

 

[6] A. Ljolje, J. Hirschberg and J.P.H van Santen, “Automatic Speech 

Segmentation for Concatenative Inventory Selection”,Progress in Speech 

Synthesis, Springer 1997, pp 305-311. 

 

[7] Abhinav Sethy, Shrikanth Narayanan, “Refined Speech Segmentation for 

Concatenative Speech Synthesis”. ICSLP 2002 

 

[8] L. R. Rabiner A tutorial in Hidden Markov Models and selected 

applications in Speech Recognition, Proceedings of the IEEE vol. 77 pg 257-

286, February 1989 

 



 

 61

[9] L. R. Rabiner Fundamentals of Speech Recognition, Prentice Hall 1993 

 

[10] S. Cox and R. Rose, “Confidence measures for the switchboard 

database,” in Proc. ICASSP, 1996. 

 

[11] A. M. Abdelatty, J. Van der Spiegel, Gavin Haentjens, J. Berman and P. 

Mueller, “An Acoustic-Phonetic Feature-based System for Automatic 

Phoneme Recognition in Continuous Speech”, IEEE ISCAS, May 1999, 

Proc. Vol. III, pp. 118-121 

 

[12] Matthew J Makashay, ColinW.Wightman, Ann K. Syrdal andAlistair 

Conkie, “Perceptual evaluation of automatic segmentation in Text-To-

Speech Synthesis”, Proc. ICSLP 2000. 

 

[13] R. O. Duda and P. E Hart, Pattern classification and scene analysis, John 

Wiley and Sons, 1973. 
 

[14] T. Schaaf and T. Kemp, ``Confidence measures for spontaneous speech 

recognition'', in Proceedings of 1997 ICASSP, Munich, April 1997, vol. II, pp. 

875--878. 

 

[15] L. Gillick, Y. Ito, and J. Young, ``A probabilistic approach to confidence 

estimation and evaluation'', in Proceedings of 1997 ICASSP, Munich, April 1997, 

vol. II, pp. 879--882. 

 

[16] F.Wessel, K. Macherey, and R.Schluter, “Using word probabilities as 

confidence measures,” in International Conference of Acoustics, Speech, and 

Signal Processing, Seattle, WA,May 1998, pp. 225–228. 

 

[17] T. Schaaf and T. Kemp, “Confidence measures for spontaneous speech 

recognition”, Proc. ICASSP, pp.875-878 (1997). 



 

 62

 

[18] Time-Frequency Features for Continuous Speech Recognition, a General 

Examination James G. Droppo, January 5, 1998 

 

[19] Hosom, J.-P. (2000) Automatic Time Alignment of Phonemes Using 

Acoustic-Phonetic Information. PhD Thesis, Oregon Graduate Institute of 

Science and Technology. 

 

[20] Sjolander, K. & Beskow, J. (2000) WaveSurfer - an open source speech 

tool. Proceedings of the ICSLP 2000, IV, 464-467. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 63

APPENDIX 
 

HTK tools we used 
 
HLEd -G $DataBase -n $phonSet $tracing  -i $phones $HLEdScript  -S $Phonelist"; 
 
Parameters in the above command: 
-G : inform HLEd that format of the source files is TIMIT 
-n $phonSet : HLEd can be made to automatically generate a list of all new label names 
(HMM list)  as a by-product of editing the label files by using the -n option. 
-i mlf This specifies that the output transcriptions are written to the master label file mlf. 
$Phonelist are … 
/usr/share/SpeechDatabases/TIMIT/timit/test/dr1/faks0/si1573.phn 
/usr/share/SpeechDatabases/TIMIT/timit/test/dr1/faks0/si2203.phn 
 
foreach(<PHONES>){ 
HInit -m 1 $tracing -S $hlist_train -C $config -i $MaxIter -M $Fold2Store -l $_ -o $_ -I 
$phones $proto";} 
 
Parameters: 
-m N This sets the minimum number of training examples so that if fewer than N examples 
are supplied an error is reported (default value 3). 
-S $hlist this loads the script file with the list of train files or test files from TIMIT. 
-i N This sets the maximum number of estimation cycles to N 
-M dir Store output HMM macro model files in the directory dir.  
-I mlf This loads the master label file mlf. 
-l s The string s must be the name of a segment label. When this option is used, HInit 
searches through all of the training files and cuts out all segments with the given label.  
-o s The string s is used as the name of the output HMM in place of the source name. This is 
provided in HInit since it is often used to initialise a model from a prototype input definition. 
 
HHEd -d $Fold2Store -w $hmmdefs $dummy $phonSet";   
 
Parameters : 

-d dir This option tells HHEd to look in the directory dir to find the model definitions  

-w mmf Save all the macros and model definitions in a single master macro file mmf 

$dummy is a text file containing a sequence of edit commands (here this is empty) 

$phonSet  defines the set of HMMs to be edited (phone list from TIMIT) 

 
HRest $tracing -i $MaxIter -C $config -M $Fold2Store -l $_ -I $phones -H 
$StoredModels/$_ $_ -S $hlist "; 
 
Parameters : 
-$MaxIter : maximum number of iterations for HRest tool  
$Fold2Store : where to store the new models 

$phones :this is the phone list 

$StoredModels : where to find the old models 
-S $hlist this loads the script file with the list of train files or test files from TIMIT. 
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Results from the ASR Segmentation 
 
A) OVERALL CONTEXT STATISTICS 
 

BIAS(ms) AF FR NAS SEM/V SIL STOP VOW * 
AF -3.00 -8.24 -3.86 -2.22 1.98 0.30 5.68 -1.34 
FR -27.31 -2.05 -2.66 -4.20 -1.65 -0.84 2.04 -5.24 

NAS -4.38 -3.39 -2.23 -3.42 8.60 1.50 4.85 0.22 
SEM/V 1.01 -1.43 -1.10 -4.33 3.82 1.72 6.09 0.83 

SIL -12.90 -12.07 -7.72 -10.39 0.0 -30.48 5.71 -9.70 
STOP -0.06 -4.15 -8.66 -7.79 -21.41 -31.52 -1.64 -10.75 
VOW 10.70 -3.80 -3.72 -3.15 7.94 -1.72 6.28 1.79 

* -5.13 -5.02 -4.28 -5.07 -0.11 -8.72 4.14 -3.46 
Context-context results for Bias (8 mixtures) 

 
MEAN(ms) AF FR NAS SEM/V SIL STOP VOW * 

AF 3.00 17.61 7.68 8.79 12.73 7.05 8.51 9.34 
FR 27.31 13.03 8.83 8.73 11.64 8.11 7.43 12.16 

NAS 8.67 9.40 15.90 14.69 21.16 10.60 8.81 12.75 
SEM/V 7.01 7.94 9.13 14.07 16.59 7.11 14.54 10.91 

SIL 13.73 15.87 9.80 13.63 0.0 32.46 11.22 13.82 
STOP 6.38 10.78 12.78 10.46 29.03 34.16 7.70 15.90 
VOW 16.07 7.74 9.18 16.21 19.48 7.53 16.82 13.29 

* 11.74 11.77 10.47 12.37 15.81 15.29 10.72 12.60 
Context-context results for mean error (8 mixtures) 

 
STD(ms) AF FR NAS SEM/V SIL STOP VOW * 

AF 0.00 19.54 5.97 7.24 12.49 6.98 8.27 8.64 
FR 22.57 12.80 7.77 7.24 14.42 9.34 8.92 11.87 

NAS 5.55 8.67 16.21 16.14 21.10 11.09 11.47 12.89 
SEM/V 2.16 6.87 10.03 13.79 20.72 6.64 14.56 10.68 

SIL 7.90 13.14 10.78 13.62 0.0 20.24 13.09 11.60 
STOP 5.65 10.66 13.02 8.77 29.97 28.74 8.54 15.05 
VOW 26.03 6.49 10.72 16.08 19.86 7.51 19.03 15.10 

* 9.98 11.17 10.64 11.84 17.28 12.93 11.98 12.26 
Context-context results for Standard Deviation (abs)(8 mixtures) 
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BIAS(ms) AF FR NAS SEM/V SIL STOP VOW * 
AF -3 -7.19 -2.82 -2.97 5.92 0.47 5.64 -0.57 
FR -23.98 -3.59 -2.90 -5.01 0.69 -1.75 2.35 -4.88 

NAS -4.92 -3.14 -2.62 -2.51 9.12 1.88 5.20 0.43 
SEM/V 3.01 -0.95 -0.52 -4.70 7.38 1.50 5.90 1.66 

SIL -12.48 -12.09 -7.51 -11.40 0.0 -29.82 5.06 -9.76 
STOP 0.39 -2.5 -7.17 -6.75 -19.52 -27.75 -1.20 -9.22 
VOW 10.22 -3.82 -3.39 -3.15 8.60 -2.18 6.24 1.79 

* 10.19 10.77 10.13 11.31 16.95 12.65 11.51 -2.93 
Context-context results for Bias (16 mixtures) 

 
MEAN(ms) AF FR NAS SEM/V SIL STOP VOW * 

AF 3.00 15.03 6.28 8.38 13.31 6.83 8.28 8.73 
FR 23.98 12.13 8.75 9.30 11.75 7.85 7.62 11.62 

NAS 7.08 9.03 15.10 13.47 20.26 10.31 8.64 11.98 
SEM/V 6.01 7.85 8.27 13.06 18.55 6.84 13.72 10.62 

SIL 13.60 15.49 9.35 14.03 0.0 31.50 11.10 13.59 
STOP 6.06 10.37 11.33 9.58 27.96 30.40 7.37 14.73 
VOW 16.17 7.73 8.78 15.01 19.11 7.55 15.87 12.89 

* 10.19 10.77 10.13 11.31 16.95 12.65 11.51 12.02 
Context-context results for mean error (16 mixtures) 

 
STD(ms) AF FR NAS SEM/V SIL STOP VOW * 

AF 0.00 17.91 5.21 6.67 13.01 6.75 7.82 8.20 
FR 24.09 12.39 8.64 7.66 13.37 8.22 8.78 11.88 

NAS 5.18 8.41 14.70 14.84 20.46 10.63 11.37 12.23 
SEM/V 2.77 6.72 9.58 12.86 21.09 6.33 13.60 10.42 

SIL 8.36 13.10 10.58 13.92 0.0 21.79 12.93 12.05 
STOP 5.20 10.39 12.18 8.27 28.66 27.48 8.18 14.34 
VOW 25.71 6.43 10.04 14.93 18.34 7.36 17.89 14.39 

* 10.19 10.77 10.13 11.31 16.95 12.65 11.51 11.93 
Context-context results for Standard Deviation (abs)(16 mixtures) 
 
  
 

B) STATISTICS FOR EACH PHONEME 
 
In the next pages we present the comparison results between the manual and 
the automatic segmentation transcriptions. 
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Confidence Measure (first group)   

   
           Simple confidence plot                                    Smoothed confidence plot 
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             Simple Confidence Plot                                        Smoothed confidence plot  

 
         Simple confidence plot       
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Confidence Measure (second group)  

      
           Simple confidence plot                                    Smoothed confidence plot 
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