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A b s t r a c t 
 
    Image fusion constitutes a basic subset of a more general concept named as 
combination-unification of information (known by the term information fusion) and has 
become a basic tool for a large number of applications. Fusion of images (or image 
fusion) is the process of combining two or more images into a single one retaining 
important features from each and is an active subject of research with application in 
medical and satellite images, quality control and machine vision. 
    In the general area of image processing, wavelet analysis constitutes a powerful 
mathematical tool. Wavelets are simply a set of functions that satisfy certain conditions 
and are able to fully represent and reconstruct input signals via a mathematical model. 
Wavelet analysis was developed independently in the fields of lots of knowledge areas. 
The interchanges between these fields during the last fifteen years have led to many new 
applications, including image processing.    
    In this thesis, an effort is made to combine these two concepts. We present four basic 
wavelet transforms and discuss recent results on the use of these algorithms for image 
fusion. The advantages and disadvantages of each method are taken into consideration 
and a detailed analysis of evaluation results is performed in order to compare these 
wavelet-based fusion algorithms. We implement and test the Discrete Wavelet Transform 
(DWT), two improved expanded versions of it, the Shift-Invariant Discrete Wavelet 
Transform (SIDWT) and the Dual Tree Complex Wavelet Transform (DT-CWT) and 
finally the Mallat-Zhong Discrete Wavelet Transform (MZ-DWT). Our application of 
wavelet analysis in image fusion is focused in medical images (Computed Tomography 
and Magnetic Resonance Images). For objective comparison, we extract qualitative and 
quantitative results through a well defined performance metric. 
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P r e f a c e 
 

    Image fusion constitutes a basic subset of a more general concept, not very recent but 
certainly rapidly developing, named as combination-unification of information (known 
by the term information fusion) and has become a basic tool for a great number of 
applications. Fusion of images (or image fusion) is an active subject of research with 
application in medical and satellite images, quality control and machine vision. Although 
it belongs to the more general area of information fusion, it has particular and unique 
characteristics that differentiate it because of the complexity of the nature of image 
understanding, leading to the development of special methods for image fusion. 
    On the other hand, wavelets constitute a powerful mathematical tool, rapidly 
developing and applicable to a great number of scientific areas. When introduced, not 
very recently, it was thought to bring “fresh air”, to become a revolution, in mathematics 
and change the scientists’ mindset about data processing and computation. They were 
developed independently in the fields of lots of knowledge areas. The interchanges 
between these fields during the last fifteen years have led to many new applications, 
including image processing, our point of interest.      
    In this thesis an effort is attempted to introduce some basic wavelet transforms and 
present recent results on the use of these algorithms for image fusion in particular. The 
advantages and disadvantages of each method are mentioned, the theoretical background 
of each algorithm is briefly analyzed and a detailed analysis of evaluation results is 
presented in order to compare these methods and make things clear to the reader. In this 
report, the application of wavelet analysis in image fusion takes place in medical images 
(Computed Tomography and Magnetic Resonance Images) but the general fusion scheme 
can be expanded to other image formats too. In this case the qualitative and quantitative 
results and conclusions might be different, as image fusion algorithms are very 
“objective”: they depend very much on the kind of application used. 
   It ‘s worth mentioning that most terms in this subject have been established in English 
in international bibliography and have no precise corresponding in other languages, so 
any possible translation attempted can be trial.    
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Terminology 
 

IF                                                      Information fusion 
 
CT                                                    Computed tomography 
 
MR                                                  Magnetic resonance 
 
MRA                                               Multiresolution Analysis 
 
DWT                                                Discrete Wavelet Transform 
 
SIDWT                                            Shift Invariant Discrete Wavelet Transform 
 
DT-CWT                                         Dual Tree-Complex Wavelet Transform 
 
DDWT                                             Dyadic Discrete Wavelet Transform 
 
CWT                                                Continuous Wavelet Transform   
 
MZDWT                                          Mallat Zhong Discrete Wavelet Transform  
 
HH                                                    High-High 
 
HL                                                     High-low 
 
LH                                                     Low-High 
  
LL                                                      Low-Low 
 
MS                                                     Maximum Selection 
 
WA                                                    Weighted Average 

 
WBV                                                  Window based verification 
  
RMSE                                                Root Mean Square Error 
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I n t r o d u c t i o n 
 
    The availability of multi-sensor systems in key regions of image applications today, 
such as battlefield target recognition, automated inspection, robot automatic navigation 
e.t.c., has encouraged researchers to work in multi-sensory image fusion.. 
    Each picture is a compressed representation of real world. Fusing images having 
redundant information we acquire a more complete comprehension of reality. However, 
due to the imperfections in image sources and in the internal complexity of image 
understanding, fusion requires the maintenance of redundant information and the removal 
of inconsistencies in the initial source images, preserving at the same time a valid 
interpretation of these. 
    The term image fusion is translated in the bibliography as "the combination of two or 
more images for the creation of a new image that will contain more information using a 
given algorithm" [1]. 
   Depending on the level of description in which information is fused, image fusion takes 
place in the following levels:    

• Pixel-level, also known as picture or data or signal level. Fusion of images in  
this level is the process of combining two or more spatially registered pictures in an 
“enriched” one. Images are described in the spatial or frequency domain. The 
characteristics in each separate initial source image should be preserved or enriched 
in the fused image and any artifact should be avoided. Multiresolution techniques 
have a particular application in this category.    
• feature level .In this level the initial images are described by edge or region  
maps, shape feature values, fuzzy measures, probabilities e.t.c. It requires algorithms 
in order to recognize objects based mostly on the statistical characteristics of 
dimension, shape, edges, and regions. Segmentation algorithms have been proved 
useful.   
• Decision level, also known as symbol level. It separately processes the entry  
images in order to derive information and applies decision rules to achieve common 
interpretation and remove the differences. 

   Image fusion algorithms can be categorized according to the above approach. An 
analytic presentation of this categorization is described in the Appendix, in the first part 
A:” Categorization of fusion methods”.  
    Up to day a great effort of research is focused in the development and implementation 
of various fusion algorithms, most of which are suitable for concrete applications. A 
more general methodology is required for planning and evaluating image fusion 
techniques. Even more, an objective criterion-measure is desirable in order to evaluate 
the various algorithms, in a general scale, independent from the application in which they 
are used. In this thesis we’ll use the wavelet analysis, which belongs to pixel-level fusion 
techniques, in order to implement the image fusion procedure.  
Definition: image fusion can be defined as the assimilation of information acquired by 
two or more sensors viewing the same scene. The result of this procedure can be images, 
which are not necessarily the visual pictures or symbols that describe the scene. The 
fused image may only be understood on the basis of some specific knowledge of the 
sensor data [2]. 
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    The complementary information in a picture/image tends to suppress the confusions 
and the ambiguities of other pictures/images. As an example we can mention medical 
imaging where Computed Tomography images provide details about the structure of 
bones while Magnetic Resonance images are informative about blood flow and soft tissue 
density [3].In order to develop both sets of information we should combine them 
somehow. The redundancy contained in each picture can be consistent or conflicting, a 
fact that should be avoided. In general terms, the goal of image fusion is to unify 
dissimilar data to export more accurate, reliable and useful data. Having in mind the 
image properties above, image fusion should satisfy the following conditions [3]: 
1. increase completeness by providing complementary information 
2. limit uncertainty and inaccuracy 
3. minimize redundant information 
4. resolve conflicting, incompatible information 
5. acquire a precise and meaningful representation of scene 

 
Schematic definition of redundancy/complementarity  

 
   Summarizing the above, image fusion has (or should have) the following attributes-
characteristics: 

Advantages Objectives 

• Improve the reliability of the 
results(by using redundant 
information) 

• Improve the capabilty of producing 
different kinds of results according to 
the needs of applications(by using 
complementary information)  

• Reduce the total amount of 
information without loss of image 
quality or content data 

• Focuses on the features we are 
interested in 

• Multi-sensor image fusion reduces  
cost as it combines data from some 
simple sensors instead of making one 
complicated and expensive device 

• Extract all the useful information from 
the images 

• Do not introduce inexistent 
information(artifacts) and 
incosistensies 

• Remain reliable and stable to the 
imperfections of the images and the 
sensors(such as mis-registration)  
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    Generally, the problem of image fusion can be summarized in the following processes 
[3]: 
1. preprocessing 
2. generation of image description 
3. combination of images (fusion) 
4. generation of world description 
    Fusion takes place under a concrete mathematic background, separate and proportional 
with the technique that is followed. Under this prism, images should be modeled and 
described in this mathematic model before being processed .After fusion, a moreover 
treatment is needed to convert the fused result, via some mathematic background again, 
to a  suitable form in order to become analyzable and comprehensible as a description of 
real world. 

 
Stages of process of image fusion 

 
    A concise analysis of the process above follows: 
1. Preprocessing 
    This stage includes the registration of the image and the histogram matching. The 
scene of each image should aliase each other. If the pictures are not of the same size, 
interpolation and resampling of the pixels values should be performed in order to acquire 
the same size. Some techniques do not presuppose the existence of images of equal size 
provided that the level of analysis of each image is known. Image registration is very 
important; it constitutes the first basic step for almost all the techniques of image fusion. 
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However we should take into consideration that errors in the registration process cause 
errors, even failure in the fusion algorithms, so the stability and robustness of algorithm 
with respect to mis-registration need to be considered [3] 
   Since most algorithms in pixel and feature level are numerical, histogram 
matching is often needed in order to scale the source image pixel values to the same 
range. On the contrary in the higher level, decision level, the only requirement is an 
identity association [3].   
2. Generation of image description 
    Depending on the degree of abstraction, an image is described in one of the following 
levels: 
• pixel-level, also known as image or data or signal level. 
   Images can be represented in the spatial or in frequency domain. Raw image data are a 
2D or 3D spatial array. This can be converted in the frequency domain, in which the 
image is decomposed into different levels of analysis. The representation of multiple 
analysis is named “image pyramid” and the operators for “building” the pyramid include 
2D Wavelet transformation, Gaussian, Laplacian and morphological filtering. The two 
representations are absolutely equivalent. The spatial array can be recovered by inverse 
transform of the pyramid. 
• segmentation level: 
    In this level, the image is described by edge or region maps. The maps are result of 
segmentation algorithms or edge detectors. The edges can be refined using thinning and 
linking operations 
    This level is usually unified with the attaché in order to constitute the more general level, the 
feature level as it is reported in bibliography.         
• feature level:  
     In this level the image is described using a set of feature data in an N-dimensional 
feature space, where one class of objects is grouped and can be separated from other 
classes. The feature data are obtained from feature extractor for the regions or the edges 
in an image. 
• decision level: It is a symbolic description that receives the forms of  symbols,  
propositions, rules, e.t.c. . The images should be described in the theoretical background 
in which fusion is executed.  
     Images have to be described in one of the levels above using the appropriate 
mathematical background. For example when fuzzy logic approaches are used for fusion, 
in pixel-level, each pixel is determined by a fuzzy relation depending on its value, while 
in segmentation level, each edge-point is determined by a relation depending on the 
gradient at this point.   
3. Image fusion 
    The process of fusion plays the central role in image fusion techniques. The fusion 
operator is selected according to the physical characteristics of sensors, the performance 
measure and the interpretation of image [3], generally according to the requirements of 
application. The same operator does not produce the same quality results in all the 
applications. Fusion operators can be averaging (weighted), selective (min, max)) or rules 
from fuzzy logic theory, the probabilistic theory and evidence theory when uncertainty 
exists. 
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4. Generation of description in the world 
    The result of the stage above usually belongs in the same theoretical background and in 
the same level of abstraction as the generation of description of image in stage 2.The 
result should be converted or processed farther in order to compose a comprehensible 
description in the real world.  
   The following stages of processing are also mentioned in bibliography: 
• Noise removal, in order to remove any possible inserted noise in the source images. 
• Histogram equalization, in order to export the details and maximize the content 

information of the source images. 
• Registration, in order to make images ideal to be processed. 
• Fusion, where combination of characteristics takes place. 
• Increase of the output image resolution, as bigger image size exposes more details. 
    Image fusion techniques are very widely used in the regions of industry, biomedical, in 
armed forces and in telecommunication services. A synopsis of formal applications is the 
following [4]: 
• Intelligent robotics: The applications include intelligent viewing control and 

automatic target and trajectory recognition. Motion control is required in such 
applications based on feedback from various types of sensors. 

• Medical imaging: Images of computed tomography with X-Ray beams and magnetic 
resonance can be fused to use in computer and image guided surgery. 

• Industry-manufacturing: Fusion of images is very widely used in the industry for 
goals of inspection, viewing, assembly and diagnostics. 

• Armed forces and law enforcement: These applications include detection and 
recognition of objects, targets or events such as concealed weapons or flight guidance 
in the night. 

• Telecommunications-remote sensing: A big part of bibliography is dedicated in this 
object. The quantity of data to be treated is enormous; therefore the reduction of 
information is essential and urgent. Fusion techniques are categorized in photographic 
and numerical methods.  

   In this thesis, the application of image fusion in medical imaging combining Computed 
Tomography and Magnetic Resonance images is presented. The technique to be followed 
is wavelet analysis, a pixel-level based algorithm. For a further study of image fusion 
techniques refer to the Appendix A 
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    The wavelet transform, wavelet analysis in general, is a powerful tool for 
multiresolution analysis. During the recent years, with the rapid development of wavelet 
theory, researchers began to apply wavelet multiresolution decomposition to take the 
place of pyramid decomposition for the needs of image fusion. Wavelet analysis can be 
considered as one special type of the pyramid decomposition scheme, retaining most of 
its advantages but introducing a much more theoretical background. 
    Multiresolution analysis requires a set of cascaded, multiresolution sub-spaces as 
illustrated below: 
 

 
General scheme: cascaded multiresolution spaces 

     The original space V0 can be decomposed into a lower resolution-level sub-space V1, 
the difference between sub-spaces V0 and V1 can be represented by sub-space W1. 
Similarly, sub-space V1 can be decomposed into a lower resolution sub-space V2 via 
sub-space W2 and so on until the last level of decomposition is reached. For an N-level 
(or stage) decomposition scheme we get N+1 sub-spaces, N spaces Wi and one last, final 
sub-space VN. This procedure is followed because, in many cases, it’s much easier to 
analyze the decomposed elements than analyze the whole original element itself. [5]  
    The above general scheme can be applied to signals, in the frequency domain, via a 
pair of filters, dividing the original signal into two subbands (low frequency and high 
frequency one) and then, recursively, apply the same procedure to the low frequency 
subband for the needs of the next level of decomposition according to the following 
figure: 
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                                                                                     C1 
                                                                          ( sub-space W1) 
 
signal  S1 
(space V0)                                                                                                             C2 
                                                                                                                      (sub-space W2) 
                                                                   S2 
 
                                                              (spaceV2) 
                                                                                                                    S3 
                                                                                                                               
                                                                                                                (space V3) 
 
                                                                                                                                                                 
 
 
  
                                   Level 1                                                 Level 2                                    Level 3 
 

Signal decomposition via filters 
   This procedure, in order to be useful and applicable, has to be capable to be reversed, to 
give the researcher the ability through finite and certain steps to move back and 
reconstruct the original source signal. The more “similar” the reconstructed signal is the 
more efficient and preferable the multiresolution algorithm is. That is the goal: to point 
out and clarify the parameters of the suitable method (.e.g. the filters and the number of 
levels to be used) to have the best result according to a carefully defined quality metric. 
   The inverse steps are similar, illustrated in the scheme below: 
 
lowpass3 
    
                                                                                      
                                                       S3’                                                                
                                                                    
 
       C3                                                                                         S2’ 
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Signal reconstruction via filters 
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      Having decomposed the input signals, fusion can take place, fusing each 
corresponding component produced during the decomposition procedure leading to a 
single, fused element for each subband, at each level. Following the reconstruction 
procedure the final, fused signal is calculated, containing the relevant, useful information 
from all the input signals. The fusion implementation is summarized in the following 
flowchart: 
 
     
   signal S1 
 
       
 
 
 
    signal S2 
 
 
 
 
 
 
 
 
                                                                                           
                                                                                          Fused signal S 
 

General fusion procedure 
 
     Considering the above scheme the implementation is left to the researcher, having in 
mind the following issues: 
-which decomposition algorithm should be used? 
-what are the best parameters of the decomposition mechanism?  
-which fusion rule should be used? 
-how can the performance of the methods be evaluated objectively? Which quality 
metrics should be followed? 
    In the following chapters an effort is made to answer the above questions by using 
wavelet analysis as decomposition/reconstruction algorithms in order to fuse 2-D signals, 
in particular medical images. The evaluation of the methods, the comparison of the 
results and the extraction of conclusions are of great importance.  
 
 
 
 
 
 

 
Decomposition 

 
Decomposition 

 
Fusion 

 
Reconstruction 
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C h a p t e r   1 
W a v e l e t s     

    The wavelet transform creates a summation of elementary functions (= wavelets) from 
arbitrary functions of finite energy [7]. Wavelets are functions that satisfy certain 
mathematical requirements and are used to represent data or other functions. They are 
considered as an alternative, a development of the Fourier transform, which played an 
essential role in the evolution of the way functions were processed in mathematics. The 
basic idea that lies behind wavelets is to analyze data according to scale (or resolution). 
For many years mathematicians were looking for more appropriate functions than sines 
and cosines (the basis of Fourier transform) to approximate signals. The arrival of 
wavelets tended to offer two basic advantages against these: a) they don’t stretch out to 
infinity and b) they are suitable in representing data of sharp discontinuities [7].  
   The wavelet analysis procedure is to define a suitable prototype function, named as 
analyzing wavelet or mother wavelet or basis function. Two “versions” of the mother 
function are obtained: one low-frequency (known as scaling function), used for temporal 
analysis and one high-frequency function (known as wavelet function) used for 
frequency analysis. Using coefficients in a linear combination of these functions we can 
fully represent the source signal. So, data operations can be performed using only the 
corresponding wavelet coefficients, which, of course, need to be suitably chosen and play 
an important role in the determination of structure characteristics at a certain scale in a 
certain location [7]. One of the goals of changing data through this transformation is to 
bring it in a form that is more readily and easily interpretable than it was before. Once we 
have determined the coefficients we can manipulate them in place of the original 
function, since the coefficients uniquely determine this function. If we are clever in 
selecting the basis function, many of the coefficients will be small, so that we can neglect 
these terms and represent the original data with just a few wavelet coefficients. 
    The wavelet transform is a two-parameter expansion of a signal in terms of a particular 
wavelet basis function. If ψ(x) represents the mother wavelet, all other wavelets are 
computed by the following equation: 

α,τ
1 t-τψ (t)=( )ψ( )

αα
 

where the scaling factor α, usually α=2-j, defines the scale and the factor τ, usually  
τ=kT2-j, defines the dilation. In this case the wavelet basis functions are obtained by  

j/2 j
j,kψ (t)=(2 )ψ(2 t-kT)  

    The parameterization of time/space by integer k and the frequency/scale by integer j 
turns out to be very effective. Selecting different values of j, k the different wavelets are 
computed. 
    The multiresolution representation of a signal needs two closely related basic 
functions. In addition to the wavelet function ψ(t), there is a need for another basic 
function called the scaling function, which is denoted as φ(t) and is derived in a similar 
way to the wavelet function 

j/2 j
j,k (t)=(2 ) (2 t-kT)ϕ ϕ  

    As a result the wavelet expansion for a signal x (t) is given by the following 
decomposition series in which the scaling and wavelet functions are utilized  
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0 , , ,
,

( ) ( ) ( )k j k j k j k
k k j

x t a t c tϕ ψ= +∑ ∑    , 

where coefficients ka  are referred to as approximation or lowpass coefficients at original 
scale j0 and coefficients ,j kc  are referred to as detail or highpass coefficients at scale j. As 
noticed, the scaling function produces the lowpass information and the wavelet function 
produces the highpass data of the signal. As it will be shown in the next chapter, instead 
of using mathematical functions the calculation of the coefficients is generally formulated 
in terms of a particular set of filters, whose structure is obtained from the knowledge of 
the mother wavelet and the scaling function. 
    A real or complex-value continuous-time function ψ (t) satisfying the following 
properties is called a wavelet: 

    1. ( ) 0t dtψ
∞

−∞

=∫ , which means that ψ (t) has to be oscillatory, it must be a wave 

    2. 2| ( ) |t dtψ
∞

−∞

〈∞∫ , which means that ψ (t) must have finite energy 

    Wavelets can be divided in two categories: 
• Orthogonal wavelets, whose coefficients are given by the equation  

, ,( ) ( )j k j kc x t t dtψ=    ,  ,( ) ( )k j ka x t t dtϕ=  
      and the orthogonality property is satisfied 

                                        , ,

                                 1      if j=m and k=n
( ) ( )

                                 0      otherwise
j k m nt t dtψ ψ =   , 

 

                          , ,

                                 1      if j=m and k=n
( ) ( )

                                0      otherwise
j k m nt t dtϕ ϕ =         , 

 
                                         , ,( ) ( ) 0j k j kt t dtϕ ψ =  
      In this case the analysis and synthesis filters are not symmetric, which is         
      very useful in image processing. In addition, the order of the filter is always  
      an even number. 
• Biorthogonal wavelets, where the wavelet and scaling functions appear in 

pairs ( ), '( )t tψ ψ  and ( ), '( )t tϕ ϕ . In this case the one set ( ), ( )t tϕ ψ  is used for 
the analysis/decomposition of the signal and the other pair '( ), '( )t tϕ ψ  is used 
for the synthesis/reconstruction of the final signal. Due to more flexibility in 
this case, the analysis and synthesis filters can be forced to be symmetric. The 
order of the filters, unlike the orthogonal case, can be an even or an odd 
number.    

    Attempting a historical flashback, wavelets came out when mathematicians were led 
from frequency analysis (Fourier transform) to scale analysis, that is, analyzing 
functions by creating mathematical structures that vary in scale. The procedure is simple: 
define a function, shift it by some amount, change its scale and apply it in order to 
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approximate the source signal. Repeat this procedure: take the structure created, shift it, 
change its scale and get a new approximation of the input signal. And so on, until the 
predefined number of scales is reached. The advantage of scale analysis is that it turns out 
to be less sensitive to noise. 
    In the 1930s, the term scale-varying basis functions was introduced (see Appendix B 
for more details), a key point in understanding wavelets. It was found that the so called 
Haar basis function was proved more efficient than Fourier basis function for special 
applications. At the same time, the definition of the energy of a function and the fact that 
its computation produced different results depending on the interval the energy was 
distributed led to the need to discover a function that can vary in scale but be able to 
conserve energy: wavelets. 
    In 1985, Stephane Mallat, the establisher of wavelets, gave them a great impulse 
through his research in digital signal processing, combing filters, pyramid algorithms and 
wavelet bases. His work inspired other researchers to define their own wavelet functions, 
each used in different knowledge areas, ending to Ingrid Daubechies, who constructed a 
set of wavelet orthonormal basis functions, the cornerstone of wavelet applications today. 
    Fourier and wavelet analysis have some very strong common links but also some basic 
dissimilarities. They are both linear operators, they can be viewed as a rotation in 
function space to different domain: sines and cosines for Fourier transform and mother 
wavelets for the wavelet transform. Finally, they are both localized in frequency, which is 
useful in calculating power distributions. 
    On the other hand, wavelet functions are localized in space while Fourier sine and 
cosine are not, a property that is proved useful in data compression, feature detection and 
noise removal. Wavelets are negligible outside some interval, meaning that outside some 
interval they either vanish or decay exponentially. Exponential functions, vice versa, are 
not negligible in the whole real-area, so Fourier Transform cannot be used for local data 
analysis. In this way, wavelets provide the ability to obtain frequency representation in a 
small interval of our data independent of the data outside of that interval. Due to this 
“locality” wavelet basis functions offer a much more efficient way of approximating 
discontinuities. Another advantage of wavelets is that we can adjust the wavelet 
transform parameters by combining different basis functions. For example, in order to 
obtain detailed frequency analysis we need long basis functions while in order to obtain 
signal discontinuities we would like short basis functions. The above can be achieved by 
having short high-frequency mother wavelets and long low-frequency ones. This is the 
most powerful property of wavelets. Finally, the efficiency of calculating the coefficients 
in the wavelet expansion is greater than the one of the Discrete Fourier Transform [14].    
   Concluding, it is worth mentioning that wavelet transforms do not have certain, 
predetermined basis functions, such as sines and cosines. There is an infinite set of basis 
functions to be used. And this is the difficulty and the goal at the same time: which basis 
should be used in order to have the best result for a particular application? The different 
wavelet families make different trade-offs between how compactly the basis functions are 
localized and how smooth they are. Some common wavelet families are illustrated below 
(see Appendix C for more details on how wavelets look like). 
     Wavelets are used in a great number of applications. Some of them include computer 
and human vision, fingerprint compression, denoising noisy data, musical tones e.t.c. In 
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this report we will focus on the use of wavelet analysis in image fusion, presenting the 
most well-known and efficient wavelet transforms met in bibliography. 
 

 
Wavelet families (a) Haar (b) Daubechies4 (c) Coiflet1 (d) Symlet2 (e) Meyer (f) Morlet (g) Mexican 
Hat. 

 
    Any discussion of wavelets starts with the Haar wavelet while Daubechies wavelets are 
the most popular. In most wavelet transform applications it is required that the original 
signal be nearly ideally synthesized from the wavelet coefficients. This condition is 
referred to as perfect reconstruction. The first four are capable of perfect signal 
reconstruction, the last three are symmetric. As mentioned, the choice of the suitable 
wavelet family is application dependent. For example, in image processing it is very 
desirable to use symmetric wavelets as they make it easier to deal with the boundaries of 
the image and, in addition, human vision is more tolerant to symmetric error than 
asymmetric one. By comparison, Coiflets wavelets are closer to symmetry, though not 
perfectly symmetric. Perfect symmetry is possible only for complex wavelet filters and 
biorthogonal wavelets [15]. For most applications it is desirable to have real filter 
coefficients, so the only choice for the class of symmetric wavelets would be 
biorthogonal wavelets.  
    For a more detailed presentation of wavelet families it is recommended to refer to the 
Appendix C:”Wavelet families”.    
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C h a p t e r   2 
Perfect reconstruction transforms 

    Several wavelet based techniques for image fusion have been met in bibliography. 
Some of them require an advanced mathematical background, others have poor 
performance, others are very specialized. After a careful research, this report focuses on 
four basic wavelet transforms, fully implementable and applicable to medical images. 
    The general idea that lies behind all wavelet based fusion schemes is simple: 
    -the wavelet transforms W of two fully registered images I1(x,y) and  I2(x,y) are   
     computed 
    -these transforms are fused using a suitable fusion rule φ 
    -the inverse wavelet transform W-1 is computed and the fused image If(x,y) is   
      reconstructed 

If(x,y) = W-1 ( φ ( W (I1(x,y)) , W (I2(x,y)) ) ) 
 

 
 I1(x,y)                         W 
 

 
                                                                                           W-1                  If (x,y) 
I2(x,y)                          W                                                                                                                                      

 
 
 

           Input images                  Wavelet                                  Fused                          Fused 
                                                      Coefficients                           Coefficients                  Image 
 
    The advantages of wavelet based fusion schemes against similar pyramid fusion 
schemes are summarized in the following: 

• They provide directional information, as data are processed in both vertical and 
horizontal orientation and in some versions in the diagonal orientation. 

• In pyramid based image fusion, the fused images often contain artifacts where the 
input images are very different, while in wavelet based fusion such imperfections 
are not present. 

• Images fused using wavelet transforms are less sensitive to noise [9]. 
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2.1 Discrete Wavelet Transform 
    The discrete wavelet transform (DWT) is a spatial-frequency decomposition that 
provides a flexible multiresolution analysis of an image [9]. In one dimension it is simply 
a linear combination of wavelets in order to represent the source signal f(x) 

,m,n ,
f(x) = ( )cm n m n

xψ∑  

where ψm,n(x) is the scaled version of the mother wavelet ψ  
                    / 2

,
( ) 2 (2 )ψ m m

m n
x x nψ− −= −            (1) 

m, n integers and cm,n suitably selected coefficients.  
    In the general case, if ψ(t) represents the mother wavelet, all other wavelets are 
computed by the following equation: 

                     α,τ
1 t-τψ (t)=( )ψ( )

αα
                (2) 

where the scaling factor α, usually α=2j, defines the scale and the factor τ, usually  
τ=kT2j, defines the dilation. In this case the wavelet basis functions are obtained by  

-j/2 -j
j,kψ (t)=(2 )ψ(2 t-kT) . Setting α=2m and n=kT in (2) we obtain the transform of 

equation (1) 
m- -m2

m,nψ (t)=2 ψ(2 t-n)   
  and the source signal f(x) is represented by the equation 

,m,n ,
f(x) = ( )cm n m n

xψ∑  

    which is known as the Dyadic Discrete Wavelet Transform (DDWT) because the 
scale factor α is now assigned a value that is a power of 2. In the general case, not the 
absolutely correct, when referring to the Discrete Wavelet Transform we mean the 
Dyadic Discrete Wavelet Transform. This notation is used, unfortunately, in international 
bibliography causing a small compatibility problem.   
    The variables m and n are integers that scale and dilate the mother function ψ to 
generate wavelets. The scale index m indicates the width of the wavelet and the location 
index n indicates its position. Notice that the mother functions are rescaled, or “dilated" 
by powers of two, and translated by integers. What makes wavelet bases (=the mother 
functions used to generate wavelets) especially interesting is the self-similarity caused by 
the scales and dilations. Once we know about the mother functions, we know everything 
about the basis. A further explanation of basis is presented in Appendix B. 
    For an iterated wavelet transform extra coefficients am,n  are required at each scale, 
where am,n, am-1,n   approximate the signal at resolution 2m and  2m-1 respectively, while 
coefficients   cm,n represent the difference between one approximation and the other. The 
coefficients am,n at each scale and position are computed by using a scaling function 
applied repetitively to the signal through the convolution procedure. This function is 
usually implemented through a low pass filter hn according to the relation 

m,n 2 m-1,k
.a an kk h −

= ∑  
while coefficients cm,n are calculated by repetitively applying a high pass filter gn to the 
signal according to the relation 

m,n m-1,k2
.c ak n kg

−
=∑  
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where the lowest level coefficient a0,n is the original signal. 
    It is helpful to think of the coefficients am,n, cm,n as a filter. The filter or coefficients are 
placed in a transformation matrix, which is applied to a raw data vector. The coefficients 
are ordered using two dominant patterns, one that works as a smoothing filter (lowpass 
filter), and one pattern that works to bring out the “detail” information (high-pass filter). 
Coefficients am,n represent the smoothed data version and the coefficients cm,n the 
detailed one. The transformation matrix is applied in a hierarchical algorithm, sometimes 
called a pyramidal algorithm. The coefficients are arranged so that odd rows contain an 
ordering of wavelet coefficients that act as the smoothing filter, and the even rows 
contain an ordering of coefficients with different signs that act to bring out the data's 
detail. The matrix is firstly applied to the original, full-length vector. Then the vector is 
smoothed (the lowpass filter is applied) and decimated by half and the matrix is applied 
again. Then the smoothed, halved vector is smoothed, and halved again, and the matrix 
applied once more. This process continues until the final number of index m, that was 
user defined, is reached (number of stages or scales or levels). That is, each matrix 
application brings out a higher resolution of the data while at the same time smoothing 
the remaining data. The same matrix is applied at each resolution. 
    Having applied the above transform, the reconstruction of the estimated signal is 
required. The goal is simple: the reconstructed signal to be as similar as possible to the 
source signal. The procedure to be followed is the inverse of the above, the inverse 
wavelet transform, which is simply an iterative application of filters to the calculated 
coefficients am,n, cm,n  according to the equation 

( )m-1,k m,n 2 m,n2
.a c an kn n kg h −−

= ⋅ +′ ′∑  
where g΄, h΄ are the high pass and low pass synthesis (or reconstruction) filters 
respectively, capable for perfect reconstruction. The condition for perfect 
reconstruction is that the z transform of the output signal is identical to that of the 
input signal. Ideally we would like 

W-1 ( W ( I(x,y) )  ) =  I(x,y) 
where W-1 , W denote the inverse and the forward wavelet transform of the signal I(x,y) 
respectively. 
    The following figure summarizes the above: 
 
 
                                                                            am,n coeffs 
 
 
 
input  signal                                                                                        reconstructed signal 
                                
                                                                             cm,n coeffs 
                                          
 

 
             up/down sampling of the corresponding signal 
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 2  2

 2

      h΄ 

      g΄ 
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    For perfect reconstruction, filters h, g, h΄, g΄ should satisfy the following property: 

-d

'( ) ( )+G'( ) ( )=0  

'( ) ( )+G'( ) ( )=2z

H z H z z G z

H z H z z G z

⋅ − ⋅ −

⋅ ⋅

 

 where '( ),G'( )H z z  are the z-transforms of the filters h΄, g΄ respectively and 
( ), ( )H z G z are the z-transforms of the filters h, g respectively. The first condition 

implies that the reconstruction is aliasing-free and the second that the amplitude 
distortion has amplitude of one. It can be observed that the perfect reconstruction 
condition does not change if we switch the analysis and synthesis filters.   
    A key point is the wavelet family to be chosen. As mentioned above, this is a very 
subjective matter; the selection is application dependent and let to the researcher’s ability 
and “imagination”. Any attempt to uniquely determine and suggest the optimum wavelet 
family (which will also determine the filter structure to be applied) can be misleading. 
However, it is useful to make a basic categorization of the wavelet approaches that can be 
followed and set a bread-and-butter question: Real or Complex wavelets?   
Complex and real wavelets: After a very careful research in international bibliography, 
it was attempted to compare these two basic wavelet approaches, to get familiar with 
their characteristics and to make conclusions about their effectiveness in image fusion 
application. Unfortunately, in most sources found, a complicated mathematical 
background was introduced and required, which will not (and cannot) be analyzed in this 
report. A simple approach to real and complex wavelet issues is shortly mentioned in the 
Appendix C. 
    Complex wavelets can provide both shift invariance and good directional selectivity, 
with only modest increases in signal redundancy and computational load. However, 
development of a complex wavelet transform with perfect reconstruction and good filter 
characteristics has been proved difficult until recently [16]. Complex wavelets were 
created to overcome the two key problems of the typical wavelets: 
   -Lack of shift invariance, which means that small shifts in the input signal leads to 
major variations in the distribution of energy between wavelet coefficients at different 
scales. The energy distribution between the various levels depends critically on the 
position of the key features of the signal and not on the features themselves. This is 
caused by aliasing due to subsampling at each level.   
   - Poor directional selectivity, which means that the diagonal features are not 
appropriately represented because only three spatial orientations are revealed (vertical, 
horizontal and all the diagonal directions included in one diagonal orientation)  
    However, a significant problem arises because the final signal cannot be perfectly 
reconstructed beyond the first level, when the input becomes complicated.  
    Complex wavelets have the following properties: 
a)the complex wavelet transform has the same structure as described in the previous 
figure with the difference that the filters have complex coefficients and generate complex 
outputs. In this case each component produced contains two parts: the real and the 
imaginary one, introducing a 2:1 redundancy (becomes 4:1 in two dimensions).   
b) the phases of the complex wavelets vary approximately linearly with input shift, which 
makes the interpolation between consecutive complex samples simple and accurate [16]. 
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    Extending complex wavelets to two dimensions is achieved by separable filtering 
along columns and rows. Additional filtering with complex conjugate filters of the row 
and column filters is needed, as two adjacent quadrants of the spectrum are required to 
fully represent a 2-D signal. As a result separate imaginary operators j1 and j2, for row 
and column processing are maintained. This produces four-element complex vectors {a, 
b, c, d} =a + b j1 +c j2 + d j1 j2. If j =j1 = j2 once and –j = j1 = -j2 in the other case then the 
4-element vector is divided into a pair of conventional complex 2-element vectors; 

vector1 = (a-d) + (b+c)j and vector2 = (a+d) + (c-b)j, 
corresponding to the sum and difference operations. 
    The two-dimensional approach is illustrated in the following flowchart 

 
    **The downsampling of the output of each filter is not illustrated in the scheme, but is a key part of the 
process, in order to make the figure more clearly visible     
   Complex filters in multiple dimensions provide true directional selectivity, despite 
being implemented separably, because they are still able to separate all parts of the m-
dimensional frequency space. To provide shift invariance and directional selectivity, all 
of the complex filters should emphasize positive frequencies and reject the negative ones, 
or vice versa. Unfortunately, it is very difficult to design an inverse transform, based on 
complex filters as illustrated above. Although such filters can be designed to give perfect 
reconstruction easily at level 1 by applying the constraint that the reconstructed signal 
must be real, the same constraint cannot be applied at further levels where the inputs and 
the outputs are complex. As an alternative complex wavelet transforms can be 
modeled, in a “pseudo-way”, by using real wavelet transforms with some changes 
and additions. The basic complex wavelet transform is the Dual-Tree Complex Wavelet 
Transform that will be introduced in section 2.1.3. 
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    To complete the presentation of the general characteristics of the general wavelet 
transform scheme a short categorization of it is presented. 
    At first, wavelet transform can be divided into two forms: a) the Continuous Wavelet 
Transform and b) the Discrete Wavelet Transform. 
    The Continuous Wavelet Transform is defined as  

*1( , ) ( ) ( )
| |WT

tX a x t dt
sa
ττ ψ −

= ⋅∫  

where x(t) is the signal to be analyzed, ψ(t) is the mother wavelet, α is the scale factor, 
usually α=2j in the case of the Dyadic Wavelet Transform and τ is the dilation factor, 
which relates to the location of the wavelet function as it is shifted through the signal and 
corresponds to the time information in the Wavelet Transform. The scale parameter α is 
defined as 1/frequency and corresponds to the frequency information. 
    The Discrete Wavelet Transform evolved as an attempt to limit the computational cost 
of the Continuous Wavelet Transform (CWT). It is easy to implement and reduces the 
computation time and resources required. It comes from the CWT by discretizing the 
scale and location parameters. In CWT , the signal are analyzed using a set of basis 
functions which relate to each other by simple scaling and translation while in the case of 
the DWT, a time-scale representation of the signal is obtained using digital filtering 
techniques. The signal to be analyzed is passed through filters with different cut-off 
frequencies at different scales. 
    When the energy of the input signal is finite, not all values of decomposition are 
needed to reconstruct the original signal, provided that we are using a wavelet that 
satisfies some admissibility condition. In such cases, discrete analysis is sufficient and 
continuous analysis is redundant [Matlab Documentation, Wavelet Toolbox]. 
    The Wavelet Transforms could also be categorized in redundant and non-redundant. 
A wavelet transform is redundant if it carries out the data to be processed in its initial 
form, without eliminating its size, while non-redundant transforms process input data 
converting it to a simpler and more abstract form containing less information (e.g. by 
subsampling the original signal). Redundant representation uses much more scale and 
position values to achieve accuracy while non-redundant representation offers less 
complexity with the cost of data loss.     
 

Wavelet Transforms                                   Wavelet Transforms 
 
 
 
 
Redundant                  Non-redundant                      Continuous                      Discrete 
 
 
 
                Categorization 1                                                                               Categorization 2 
 
    The main characteristics of CWT and DWT are summarized in the following table: 
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    In the sections that follow the Discrete Wavelet Transform (the Dyadic Discrete 
Wavelet Transform to be absolutely correct in expression!) is introduced. Three versions 
of it are analyzed.  

- the regular Discrete Wavelet Transform (R-DWT), which is the general wavelet 
transform met in bibliography 

- the Shift Invariant Discrete Wavelet Transform (SIDWT), an improved version 
of the DWT in order to overcome one of its basic limitations: shift invariance  

- the Dual-Tree Complex Wavelet Transform (DT-CWT), an improved and 
overcomplete, expanded version of the DWT that overcomes all of its limitations 

 
 
 
 
 
 
 

Continuous Wavelet 
Transform 

(CWT) 

Discrete Wavelet Transform 
(DWT) 

1( , ) ( ) ( )
R

tC s t dtτα τ ψ
αα
−

= ∫  

s(t)=original signal,  
C(α,τ)=wavelet coefficients  

{0},a R Rτ+∈ − ∈  

1( , ) ( ) ( )
R

tC s t dtτα τ ψ
αα
−

= ∫  

s(t)=original signal,  
C(α,τ)=wavelet coefficients 

22 , 2 , ( )j ja k jk Zτ= = ∈
 

Advantages Advantages 
• Calculations are performed in 

Fourier space, so frequency is 
known exactly 

• Offers great accuracy 
• No loss of information 
• Good directionality 
• No limitations on wavelet families 

selection 

• Uses discrete values of scale and 
location 

• Orthogonality removes 
redundant representations 

• The amplitude of the wavelet 
coefficients is associated with 
sharp signal variations 

• Fast computation, simple 
implementation 

Disadvantages Disadvantages 
• Redundant information 
• Edge effects introduced by FFT 
• Large computational load 

• Decimation of data 
• Difficult to discern what 

frequency each level 
corresponded with 

• Shift-invariance  due to missing 
elements 

• Aliasing of  information between 
the levels 

• Poor directionality 
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Discrete Wavelet Transform 
 
 
 
Regular DWT                 Dual-Tree Complex WT           Shift-invariant DWT                
 
 
 
                           Real DT-CWT                     Complex DT-CWT 
 
 
  In the final section (2.1.4) an attempt to use complex wavelets in the Discrete Wavelet 
transform is presented, considering all of the limitations described and the difficulty in 
implementation.      
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2.1.1 Regular Discrete Wavelet Transform 
2.1.1.1 Decomposition of images 
    The DWT can, of course, be extended to two dimensions, which means to images too, 
as an image can be considered as a 2-D signal. The procedure is very similar to the 
above: we use two 1-D wavelet transforms, one for each dimension, horizontal and 
vertical. As a result, four sets of coefficients (subbands), two from the transform in each 
direction, are created at each scale/level. Starting from the horizontal frequency first 
(rows of the image data matrix) and ending to the vertical frequency (columns of the 
image data matrix) the subbands are obtained; the high-high (HH), the high-low (HL), the 
low-high (LH) and the low-low (LL) one. The LH, HL, HH subbands contain the vertical, 
the horizontal and the diagonal frequencies respectively and the LL subband is the source 
image for the next filter. This counts for each level. By recursively applying filters to the 
low-low subband, for N steps, called levels, a multiresolution scheme is constructed. 
Each subband is an image too, with half of the size of its corresponding “ancestor” 
lowpass image, a downsampled version of it, preserving a special part of its information. 
The values of the pixels of each subband image are the values computed by the 
application of the wavelet transform to the corresponding position. The above steps are 
summarized in the following scheme: 
 
 
                                                                                                                        LLj+1 
 
 
 
                                                                             
 
                                                                                                                        HLj+1 
                                                                                                                    horizontal 
                           ROWS                            COLUMNS                              subband 
LLj                                                                                                                        
                                                                                                                         LHj+1              
                                                                                                                       vertical 
                                                                                                                       subband 
 
 
 
 
                                                                                                                           HHj+1 
                                                                                                                        diagonal 
                                                                                                                        subband 

Decomposition procedure at level j 
 
             downsampling of the corresponding subimage 
               

                          j=current decomposition level, j+1=next decomposition level 
                         lowpass analysis/decomposition filter, convolution with the input image 
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                         highpass analysis/decomposition filter, convolution with the input image           
                 
      
    The filters h and g give the wavelet coefficients aj and cj as described in pages 19, 20. 
    The procedure above decomposes the original image to downsampled subimages, each 
of which inherits certain characteristics from its “ancestor” and the source image in 
general. Given the number N of levels, 3 highpass images and a lowpass one are 
generated at each level. At the end, we have 3*N highpass images and one remaining 
lowpass image, the one of the last level. At each level the size of the subimages is 
subdoubled. As a result, the maximum number of levels is limited by the size of the 
source image; cannot overcome the value log2 (image size). This decomposition process 
can be illustrated by the following tree-structure     
     
                                                                                                Source image 
               Level 1 
                                  
 
                                                                             LL1           HL1           LH1                 HH1 
                
               Level 2 
 
                                                       
                                                      LL2       HL2     LH2   HH2 
 
               Level 3 
 
 
                                  LL3     HL3     LH3   HH3 
               Level 4 
 
 
             LL4        HL4     LH5       HH4 
 
 
 
    In this way the image structure, level by level, gets the following sequence: 
 
 
 
 
 
 
  
 
 

    g 

 
 

Original 
Image 

 
HL1       LH1 

 
LL1       HH1 
 

 
HL1       LH1 
 
HL LH2  
             HH1 
LL2  HH2                    

 
HL1       LH1 
 
HL LH2  
             HH1 
       HH2                      
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    Remark: It’s worth making a notice on the filtering-sampling procedure 
 
                                                H 
                                                                            lowpass   M΄xN΄ 
 
 
 
input  subimage  MxN                                                                                        
                                
                                                 G                            highpass  M΄xN΄ 
                                          
 

 
                 Subsampling operation 
 
 

    According to what was mentioned above, the size of the highpass and lowpass images 
should be M/2xN/2, which means M’=M/2, N’=N/2. 
    In fact, according to theory, the convolution of the subimage with the corresponding 
filter increases the size of the produced image by a certain factor. 
    If the length of each filter is 2W and n=length(s), where s is a signal in general, the size 
of the signals H and G is n+2W-1, so the size of the highpass and lowpass outputs is 
 

n-1Floor( ) + W
2

 

    In our case, applying the above conclusion in each direction, the size of the lowpass 
and highpass subimages is 

M-1 N-1M N = Floor( ) + W  Floor( ) + W
2 2

⎛ ⎞ ⎛ ⎞′ ′× •⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  
  ***This fact has to be taken into consideration in the reconstruction procedure, which 
means to keep the appropriate part of the subimage, in order the size of the reconstructed 
image to be the same as the original. In other case reconstruction is not absolutely 
correct. 
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2.1.1.2 Fusion process 
    Having decomposed the input images the fusion process takes place in order to fuse the 
coefficients of each image, filter the most “useful” information from them and combine 
it. Fusion takes place at pixel-level, processing each pair of coefficients in each subband 
created (HL, LH, HH and the one LL) independently through a well-defined selection 
criterion, called fusion rule. 
 
Subband coefficients of image 1  

 
     
 
                                                                                  
                                                                              
      
   Fusion rule 
 
 
 
 
                                                                            

                                                                                      
Subband coefficients of image 2 

 
 
 
 
 
 
 
Coefficients fused within a window 
 
 
 

Coefficients of image 1 
 
 
 
 
Coefficients of image 2 
 
 
                                                                                                                               Fused 
                                                                                                                           Coefficients 
                                  Schematic illustration of fusion process 

 

        
        
        
        
        
        
        
        

        
        
        
        
        
        
        
        

        
        
        
        
        
        
        
        

    
    
    
    

    
    
    
    

    
    
    
    

 
FUSION RULE 



Wavelet transforms:                                                                                                                            page 30 

   Three of the most common fusion rules are described below [9]: 
• Maximum selection (MS) scheme: we simply select the coefficient in each 

subband with largest value, either taking the magnitude or just the maximum of 
the two.  

• Weighted average (WA) scheme: also called the Burt’s fusion rule. This scheme 
uses a normalized correlation between the two image subbands over a small area 
(window of neighbor coefficients-pixels). The fused coefficient is calculated from 
this measure via a weighted average of the two subband coefficients [Burt and 
Kolcynski, 1993]. The weighted average is defined by a mathematical equation, 
the parameters of which will determine which of the two images will contribute to 
the fused image.     

• Window based verification (WBV) scheme: also known as Li’s method. This 
scheme creates a binary decision map to choose between each pair of coefficients 
using a majority filter. In the common case, at each pixel of each image, the 
coefficient to be fused, a nxn window is centered. The pixels in the neighborhood 
defined by the window are checked and the one of the largest absolute value is 
selected. This counts for each of the two images. If the selected pixel belongs to 
the first image then the corresponding coefficient of this image will contribute to 
the fused image, otherwise the coefficient of the second image will contribute to 
the final result. The window moves along each direction until the whole image is 
“scanned”, which means that all the pixels-coefficients are processed. 

   The MS fusion rule is the simplest and the fastest one and gives very good results for 
the sharp variations of the input images, which are preserved in a better way in the fused 
image. The other two fusion rules are more sophisticated and computational complex, as 
they are not applied directly to simple pixels but process the images in “windows”- areas, 
which can lead to better representation of certain regions in the final image.    
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2.1.1.3. Reconstruction of images 
    Having decomposed the source images and fused the coefficients we are able to 
reconstruct the final, fused image through the reconstruction (or synthesis) procedure, 
which means to apply the inverse wavelet transform. A pair of synthesis filters (a lowpass 
filter h΄ and a highpass g΄ one), capable to allow nearly perfect reconstruction, is 
recursively applied to the successive level subband images, starting from the last level 
and ending to the first one. The fused subbands constructed are upsampled in order to 
make the size of the final image equal to the first one. The general reconstruction scheme 
is the following: 
 
LLj+1 
 
 
 
                                                                             
 
HLj+1 
horizontal 
subband              CΟLUMNS                                      ROWS                               
                                                                                                                                                                             
LHj+1              
vertical 
subband 
                                                                                                                                       LLj 
                                                                                        
 
 
HHj+1 
diagonal 
subband 

Reconstruction procedure at level j 
 
 

Upsampling of the corresponding subband (insert zeros at odd-indexed                  
columns/rows) 

 
               Convolution with lowpass filter h’ 
 
 
               Convolution with highpass filter g’ 
 
 
 
                               
                    Select the valid part in order to have the appropriate image size (see page 28) 
 

    h΄ 

  2 

  2 

  2 

  2 

    2 

    g΄ 

    g΄ 

    h΄ 

    h΄ 

    g΄ 

 2

 2

select 

    h΄ 

    g΄ 

select 



Wavelet transforms:                                                                                                                            page 32 

    As described above, within the three stages of the image fusion analysis using the 
DWT, the general procedure has some very basic parameters which need to be properly 
defined and selected. We make a brief analysis to this basic point: 

• The input images: source images must, of course, have the same size and be fully 
registered. This means that the corresponding pixels have to represent the same 
part of the information to be processed, in order to fuse the appropriate data and 
not irrelevant ones. 

•  The number N of decomposition/reconstruction levels: this parameter is firstly 
limited by the size of the original images, it cannot overcome the value 
log2(image size). In theory, larger number of levels means detailed 
decomposition, as even the smallest area/window of the image contributes to the 
calculation of the information to be fused. On the other hand, this leads to 
computation complexity and system delay, especially in high-dimensional images. 

• The structure of analysis (decomposition) and synthesis (reconstruction) filters: 
Filters, used to “simulate” the behavior of wavelet mother functions, have to be 
properly designed. Their values must be carefully determined in order to allow 
perfect reconstruction and be associated with the corresponding wavelet family. 
Wavelets can be realized by iteration of filters with rescaling. The resolution of 
the image, which is a measure of the amount of detail information in it, is 
determined by the filtering operations, and the scale is determined by upsampling 
and downsampling (subsampling) operations.  

                There are two categories of filters: 
           a) orthogonal, whose coefficients are real numbers, filters are of the same size and  
               are not symmetric. The lowpass and highpass filter are alternated flip of each  

   other. They have regular structure which leads to easy implementation and  
   scalable architecture. The analysis and synthesis filters are inverse. An example  
   of orthogonal filters is illustrated below: 

           b) biorthogonal. In the case of the biorthogonal wavelet filters, the low pass and    
               the high pass filters do not have the same length. The low pass filter is always   
               symmetric, while the high pass filter could be either symmetric or antisymme- 
               tric. The coefficients of the filters are either real numbers or integers. For   
               perfect reconstruction, biorthogonal filter bank has all odd length or all even    
               length filters. The two analysis filters can be symmetric with odd length or one  
               symmetric and the other antisymmetric with even length. Also, the two sets of  
               analysis and synthesis filters must be dual. The linear phase biorthogonal filters  

    are the most popular filters for data compression applications. 
An example of orthogonal and biorthogonal filters is illustrated in the next page. 

• The fusion rule: depending on the application and the structure of the source 
images, the suitable fusion rule can be followed for best result. 
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Orthogonal analysis/synthesis filters 
 

Lowpass decomposition filter 

 
   -0.0106    0.0329    0.0308   -0.1870   -0.0280    0.6309    0.7148    0.2304 

 
Highpass decomposition filter 

 
   -0.2304    0.7148   -0.6309   -0.0280    0.1870    0.0308   -0.0329   -0.0106 
 

Lowpass reconstruction filter 
    0.2304    0.7148    0.6309   -0.0280   -0.1870    0.0308    0.0329   -0.0106 

 
Highpass reconstruction filter 

   -0.0106   -0.0329    0.0308    0.1870   -0.0280   -0.6309    0.7148   -0.2304 
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Biorthogonal analysis/synthesis filters 
 

Lowpass decomposition filter 

 
0.0166   -0.0166   -0.1215    0.1215    0.7071    0.7071    0.1215   -0.1215   -0.0166    0.0166 

 
Highpass decomposition filter 

 
   0         0         0         0   -0.7071    0.7071         0         0         0         0  
 

Lowpass reconstruction filter 
     
   0         0         0         0    0.7071    0.7071         0         0         0         0 

 
Highpass reconstruction filter 

  0.0166    0.0166   -0.1215   -0.1215    0.7071   -0.7071    0.1215    0.1215   -0.0166   -0.0166 
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2.1.1.4 Implementation of Regular Discrete Wavelet  
2.1.1.4.1. Analysis/synthesis process 
    In this section the results of the DWT application to medical images and its use to 
image fusion is presented. The implementation of the above was made using the Matlab 
Toolbox. It is attempted, through a great number of tests using different parameter values, 
to export, as much as possible, conclusions about the algorithm and determine the 
conditions under which this method turns out to be optimum. 
    At first, we attempt to test and evaluate the analysis/synthesis procedure. To do so we 
make use of two quality metrics: a) the Root Mean Square Error and b) the quality index 
Q valued in the range [-1 1] (see Chapter 6 for more details) as proposed by Wang and 
Bovik [10]. The number N of decomposition levels and the structure of filters (size and 
coefficients) are the parameters to be determined. The values of the applied filters are 
given by the function wfilters() of Matlab which associates different wavelet families 
with filters. 
    Continuing, we attempt to test and evaluate the whole fusion process. To do so we 
make use of the quality metrics Qf (see Chapter 6 for more details) as proposed by 
Gemma Piella and Henk Heijmans [11]. The number N of decomposition levels, the 
fusion rule and the structure of filters (size and coefficients) are the parameters to be 
determined.  
    To evaluate the contribution of each parameter to the final result, at every test step we 
change the value of  one, keeping the others fixed. 
    Another point to focus on is the value range of the coefficients calculated by the 
application of the discrete wavelet transform. As known, for an 8-bit image, the value 
range of its pixels is the interval [0 255]. We noticed that the wavelet coefficients, 
depending on the algorithm, tend to have a much greater range, sometimes taking 
negative values. In order to compare the input and output images, it is wise to set their 
pixels values in the same domain. So, histogram stretching takes place in order to cut off 
the pixel values over 255 and under 0. That’s why in our evaluation tests two sets of 
results are presented, one using the coefficients as they are obtained by the application of 
the transform and one after the normalization has taken place.     
    A sequence of results is presented in the following pages. The first four testing sets 
check the efficiency of the DWT and the inverse DWT applied to a single image. The 
remaining sets evaluate the whole fusion process of two input medical images. 
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                               TEST 1 : Defining the number of levels              
 
                                                          Original image      

 

 
                Level 1                                 Level 2                              Level 3                            Level 4 

 
            Level 5                                Level 6                             Level 7                                Level 8 
     

Number                             RMSE                                       Q 
   Of                         Non            normalized                 Non            normalized   
Levels               normalized        values                normalized             values  

N=1 6.5545e-013 0.0060        0.9852 0.8043 
N=2 1.3756e-012 0.0059         0.9853 0.8233 
N=3 2.1524e-012 0.0058        0.9852 0.8333 
N=4 2.9583e-012 0.0055        0.9852 0.8851 
N=5 3.8398e-012 0.0054        0.9853 0.9148 
N=6 4.6868e-012 0.0055        0.9852 0.9186 
N=7 5.0051e-012 0.0056         0.9852 0.9185 
N=8 5.1987e-012 0.0057         0.9852 0.9163 

System parameters:  size of filters        =                20         
                                          wavelet family     =         Daubechies 
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TEST 2 : Defining the size of the filter 
Original image 

 

 
               size=2                                 size=4                               size=6                               size=8 

 
               size=10                                size=20                                size=40                          size=80 

  Size                                  RMSE                                       Q 
   Of                         Non            normalized                 Non            normalized   
 Filters               normalized        values                normalized             values  

S=2 5.7346e-016 0.0039 0.9853  0.9087 
S=4 7.7022e-013 0.0055           0.9852  0.9175 
S=6 9.7243e-012 0.0060        0.9852  0.8156 
S=8 1.8239e-012 0.0056        0.9852  0.9184 

S=10 2.8431e-012 0.0060        0.9853  0.8156 
S=20 4.6868e-012 0.0055        0.9852  0.9186 
S=40 4.6864e-012 0.0058         0.9852 0.9031 
S=80 3.4361e-005 0.0059         0.9852 0.8156 

System parameters:  number of levels        =                6         
                                          wavelet family            =         Daubechies 
 
 



Wavelet transforms:                                                                                                                            page 38 

TEST 3 : Defining the wavelet family 
Original image 

 
 

 
       Daubechies                       Coiflets                           Symlets                        Biothogonal 

  
 Reverse biorthogonal                 other 

                                        RMSE                                           Q 
 Wavelet                 Non            normalized                 Non                 normalized   
 Family              normalized        values                normalized               values  

Daubechies 2.8431e-012 0.0060 0.9852  0.8156 
Coiflets 3.2403e-009 0.0058          0.9852  0.8498 
Symlets 1.9853e-013 0.0055        0.9852  0.9146 

Biorthogonal 6.2543e-016 0.0045        0.9853  0.8649 
Reverse 

Biorthogonal 
6.0376e-016 0.0044        0.9852  0.8779 

Other 
(defined by 

Oliver 
Rockinger)  

7.9238e-016 0.0071 0.9853  0.8236 

System parameters:  number of levels        =                6         
                                          size of filter                 =               10 
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TEST 4 : Testing the input 
 

                                           RMSE                                         Q 
 Input                     Non              normalized                 Non                 normalized  
 Image               normalized          values                normalized               values  

Image1 6.0376e-016 0.0044 0.9852  0.8779 
Image2 6.1832e-016 0.0035 0.8941  0.9398 
Image 3 7.1044e-016 0.0041        0.9998   0.9366 
Image 4 6.8036e-016 0.0040       0.9988  0.9592 
Image 5 6.0376e-016 0.0044        0.9852  0.8779 
Image 6 7.9238e-016 0.0071 0.9853  0.8236 

System parameters:  number of levels        =                6         
                                          size of filter                 =               10 
                                          wavelet family             =         reverse biorthogonal 

 
Original image                                         Reconstructed image 
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    From the analysis above we can have a first impression of the problem. At first sight 
no very obvious conclusion can be made. Performance is a combination of many 
parameters and its evaluation is not an easy part. The only obvious is that the coefficients 
have to be normalized in order to have a clear comparison. Taking a closer look at the 
results summarized in the tables, and focusing on the peak values of the quality factor Q 
we can assume that the following set of parameters seems to produce a result very close 
to the optimum possible 
 
Parameter set:  size of filter =20 (efficient enough, not so much calculation complexity)    
                       wavelet family = Symlet  
                       number of levels=6-7 
 
    Let’s attempt to confirm this hypothesis:  
 

Number                             RMSE                                       Q 
   Of                         Non            normalized                 Non            normalized   
Levels               normalized        values                normalized             values  

N=1 3.2662e-014 0.0059      0.9860 0.8038 
N=2 6.0180e-014 0.0060       0.9853 0.8013 
N=3 9.0157e-014 0.0059      0.9852 0.8171 
N=4  1.1768e-013 0.0057       0.9851 0.8434 
N=5 1.5491e-013 0.0056       0.9853 0.8874 
N=6 1.9853e-013 0.0055        0.9852 0.9146 
N=7 2.0694e-013 0.0055         0.9852 0.9170 
N=8 2.1902e-013 0.0058         0.9852 0.9091 

System parameters:  size of filters        =                10        
                                          wavelet family     =             Symlet 
 

     It is getting clear, comparing to the tables above, that increasing the number of levels, 
the performance of the algorithm is improved (notice that we have not chosen the 
“optimum” filter size), which is confirmed by both evaluation measures. The RMSE is 
eliminated, which means that the reconstructed image gets closer to the original one and 
the quality factor Q is increased, which means that the output image is more similar to the 
input one.   
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Number                             RMSE                                       Q 
   Of                         Non            normalized                 Non            normalized   
Levels               normalized        values                normalized             values  

N=1 1.2913e-016 0.0040 0.9941 0.9156 
N=2 2.3322e-016 0.0040 0.9855 0.9150 
N=3 3.3150e-016 0.0041 0.9853 0.9091 
N=4 4.2521e-016 0.0043 0.9852 0.8858 
N=5 5.1218e-016 0.0044 0.9853 0.8817 
N=6 6.0376e-016 0.0044 0.9852 0.8779 
N=7 6.7199e-016 0.0042 0.9852 0.8797 
N=8 7.6204e-016 0.0039 0.9853 0.9116 

System parameters:  size of filters        =                10        
                                          wavelet family     =       reverse biorthogonal 
 

    Using the same filter size but different filter coefficients we notice that increasing the 
number of levels the performance is decreased! 

Number                             RMSE                                       Q 
   Of                         Non            normalized                 Non            normalized   
Levels               normalized        values                normalized             values  

N=1 4.0574e-015 0.0058      0.9852 0.8676 
N=2 8.6017e-015 0.0060       0.9853 0.8570 
N=3 1.3681e-014 0.0061      0.9852 0.8376 
N=4  1.9018e-014 0.0062       0.9852 0.8240 
N=5 2.5523e-014 0.0061       0.9852 0.8174 
N=6 3.1646e-014 0.0060        0.9853 0.8155 
N=7 3.4270e-014 0.0060         0.9852 0.8156 
N=8 3.5757e-014 0.0059         0.9853 0.8169 

System parameters:  size of filters        =                20        
                                          wavelet family     =             Symlet 
 

     If we try to combine the values that seem to give the best performance we end to the 
conclusion that increasing the number of levels, the performance is decreased! Notice 
that the filter coefficients are the same as in the table of TEST 3 but the filter size is 
doubled. The results are totally different!! 
     Conclusion: Taking into consideration all these we notice that attempting to uniquely 
determine what is “optimum” can be misleading, it is application dependent. That‘s why 
in the whole bibliography researchers provide their own suggestion about the parameters 
of the wavelet analysis/synthesis procedure.  
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2.1.1.4.2. Fusion process 
    In the previous section the Discrete Wavelet Transform was introduced. In this section 
its application in image fusion is presented. To evaluate the performance of the 
algorithm, a quality metric Qf (see chapter 6) for image fusion is used. The results are 
extracted through a similar procedure as presented before: the 
decomposition/reconstruction parameters- number of levels, filter size, wavelet family- 
are gradually changed in order to attempt to approximate the “optimum” system 
structure.  
    The three fusion rules mentioned (maximum selection, weighted average using 
variance and window based verification in a 3x3 window) are implemented. The fusion 
of the LL subband coefficients, also called the “base” or the “lowpass” image, is a 
different topic. On the grounds that the lowpass image contains much of the information 
the original images carry out, as it is simply a downsampled, blurred copy of them, the 
fusion rule can take the following simple forms: a) select the base subband of the one 
image, b) select the base subband of the other image, or c) take their average. The third 
choice is the optimum and the usual, as in most cases the structure of the input images is 
not predefined so as to determine which image can have better contribution to the final 
information. As for the implementation of the fusion process in the highpass subbands the 
following can be mentioned: 
a) maximum selection: simply, the coefficient with the largest magnitude is selected  
 
b) weighted average (Burt’s method): firstly, a small local area (window) size is 
selected. Moving this window pixel-to-pixel within each image a salience factor is 
computed within each area according to the relation 
 
    factor(i,j) = Σimage1(i,j)*image2(i,j)  
                  Σ[image1(i,j)2 +image2(i,j)2] 
 
where (i,j) is the position where the window is applied. 
    A threshold T is then defined and a selection factor is calculated 
    weight = 0.5 – 0.5*(1-factor)  
                      1-T 
If the value of the factor at position (i,j) is over the threshold T and  
Σimage1(i,j)2 > Σ[image2(i,j)2 then the coefficients of image1 are selected 
multiplied by the factor (1- weight), otherwise the coefficients of image2 weighted by the 
factor weight are selected as the coefficients of the fused image at position (i,j). 
 
c) window based verification (Li’s method): a window is defined again and centered at 
each position (i,j). The coefficient of the image that has the largest magnitude within the 
window, will define which image will contribute to the fused result. Then, the coefficient 
at position (i,j) of the chosen image (simply its value and NOT its magnitude) is selected 
for the fused image 
    A sequence of results follows: 
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Test1: 

wavelet family=daubechies, filter size=20 
  

 
Qf=0.5230 

 
Qf=0.5491 

 
Qf=0.5821 

 
                                                             Qf=0.5671 

Fusion rule=maximum selection 
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Qf=0.4787 

 
Qf=0.5109 

 
Qf=0.5456 

 
Qf=0.5282 

 
Fusion rule= weighted average (using variance) within a 3x3 window 
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Qf=0.4751 

 
Qf=0.5063 

 
Qf=0.5477 

 
Qf=0.5290 

 
Fusion rule= window based verification within a 3x3 window 
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Test2: 
wavelet family=daubechies, filter size=10 

 

 
Qf=0.5418 

 
Qf=0.5604 

 
Qf=0.6008 

 
Qf=0.5881 

Fusion rule =maximum selection 
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Qf=0.5009 

 
Qf=0.5249 

 
Qf=0.5587 

 
Qf=0.5564 

 
Fusion rule= weighted average (using variance) within a 3x3 window 
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Qf=0.5014 

 
Qf=0.5185 

 
Qf=0.5614 

 
Qf=0.5506 

 
Fusion rule= window based verification within a 3x3 window 
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Test3: 
wavelet family=Symlet, filter size=10 

 

 
Qf=0.5504 

 
Qf=0.5689 

 
Qf=0.5908 

 
Qf=0.5928 

Fusion rule =maximum selection 
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Qf=0.5016 

 
Qf=0.5284 

 
Qf=0.5653 

 
Qf=0.5542 

 
Fusion rule= weighted average (using variance) within a 3x3 window 
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Qf=0.5118 

 
Qf=0.5226 

 
Qf=0.5629 

 
Qf=0.5517 

 
Fusion rule= window based verification within a 3x3 window 
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    The above are summarized in the following table in order to have a clearer view of the 
results: 
 

 
Parameters: Number of levels=5,filter size=20,wavelet family=daubechies 

Image pair 
 

Fusion rule 1 
Maximum Selection 

Fusion rule 2 
Weighted Average 

Fusion rule 3 
WBV 

 
1 

 
0.5230 

 
0.4787 

 
0.4751 

             
             2 

 
0.5491 

 
0.5109 

 

 
0.5063 

3 0.5821 0.5456 0.5477 

4 0.5671 0.5282 0.5290 

 
Parameters: Number of levels=5,filter size=10,wavelet family=daubechies 

1 0.5418 0.5009 0.5014 

2 0.5604 0.5249 0.5185 

3 0.6008 0.5587 0.5614 

4 0.5881 0.5564 0.5506 

 
Parameters: Number of levels=5,filter size=10,wavelet family=Symlets 

1 0.5504 0.5016 0.5118 

2 0.5689 0.5284 0.5226 

3 0.5908 0.5653 0.5629 

4 0.5928 0.5542 0.5517 
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2.1.1.5 Conclusions 
    As mentioned in the sections above evaluation is not an easy issue and sometimes the 
results extracted cannot be objective, unfortunately they can be misleading. In addition, it 
is much more difficult to determine the parameters (number of levels, structure of filters) 
of the decomposition-fusion-reconstruction scheme, as performance is application and 
input dependent. Besides, one parameter value can give unsatisfactory results but in 
combination with another suitable parameter value it is likely to have a much duckier 
effect. 
    The last table gave us a very clear conclusion: the maximum selection rule 
outperforms the other two implemented fusion rules, no matter what the “system 
parameters” are. 
    As regards the number of levels, a value in the range [4-6] seems to be optional (the 
images used were of size 256x256, so the maximum number of levels is 8). In theory 
level number one should produce the perfect reconstruction results. 
    The structure of filters is also a key point. A key point is the size of the filters to be 
used. A filter of large size could produce redundant information and a filter of small size 
could not represent the sufficient information, data loss would take place. A size of 10 
seems to be a satisfactory selection. 
    Finally, the wavelet family to determine the value of the filter is also a topic to 
mention. Daubechies wavelets are the most commonly used, the Symlets wavelet family 
had the best performance in our measures, biorthogonal filters were suggested in 
bibliography for perfect reconstruction. It depends on the researcher to decide the optimal 
solution. 
    In our case the triple 5(levels)-10(size)-Symlets (wavelet family) was proved sufficient 
enough.     
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2.1.2. The Shift Invariant Discrete Wavelet Transform 
2.1.2.1. Introduction 
    The Shift Invariant Discrete Wavelet Transform (SIDWT) evolved as an extension of 
the DWT, an improved version of it in order to overcome its limitations. In a normal 
wavelet decomposition small shifts of the input image are able to move energy between 
subbands, which is a result of the subsampling necessary for critical decimation. 
Sampling takes place in order to reduce the amount of data that has to be analyzed and to 
enforce the implicit time-frequency uncertainty of the analysis. However, this results in 
coefficients that are highly dependent on their location, which can lead to small shifts in 
the input causing large changes in the wavelet coefficients, large variations in the 
distribution of energy at different scales and possibly large changes in the reconstructed 
images [12]. The SIDWT overcomes shift invariance by discarding all subsampling. 
    The decomposition/reconstruction scheme of the SIDWT is the same as the DWT 
discarding subsampling:         
                                                                                       LLj+1 
 
                                                                                                                         
                                                                                       HLj+1              
                                                                                vertical subband 
                                                                            
 LLj                                                                               LHj+1 
                                                                                   horizontal                                  
                                                                                    subband 
 
                                                                                    
              ROWS                       COLUMNS                               
                                                                                                                      
                                                                                      HHj+1 
                                                                                     diagonal 
                                                                                     subband 
                                                                                                     

Decomposition procedure at level j 
 

 
LLj+1 
 
HLj+1 
horizontal 
subband 
                                                                                                                                   LLj 
LHj+1              
vertical 
                                                                                                                                                                             
HHj+1              
Diagonal                                                   Reconstruction procedure at level j 
 

    h 

    g 

    g 

    h 

    h 

    g 

    h΄ 

    g΄ 

    g΄ 

    g΄ 

    h΄ 

select 

    h΄ 
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2.1.2.2. Implementation of the Shift Invariant Wavelet Transform  
    Having in mind the above and following the same procedure as in the previous section, 
we implement the fusion using the SIDWT. The three, already known and analyzed, 
fusion rules are adopted, a number of 4 levels is chosen, the “Daubechies” wavelet and a 
filter size of 4 are selected. At each level the filter is zero-padded, a number of zeros, 
depending on the level the decomposition/reconstruction takes place, are inserted 
between the coefficients. The same quality indexes, Q and Qf, are adopted (see Chapter 3 
for details).     
          Original image                            N=1                                N=2                                  N=3 

 
                   N=4                                  N=5                                  N=6                                N=7 

 
 

Number                             RMSE                                       Q 
   Of                                     normalized                             normalized   
Levels                       values                                                    values  

N=1 0.0051 0.9179 
N=2 0.0058 0.9174 
N=3 0.0075 0.9141 
N=4 0.0151 0.9089 
N=5 0.0240 0.8896 
N=6 0.0388 0.8585 
N=7 0.0506 0.7796 

   

System parameters:  size of filters        =                     4 (at first)      
                                          wavelet family     =             Daubechies 
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T E S T   1 : NUMBER OF LEVELS=4 
Fusion rule=maximum selection 

 
                                                              Qf=0.6238 

 
Qf=0.6322 

 
Qf=0.6804 

 
Qf=0.6848 
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Fusion rule=weighted average 

 
                                                              Qf=0.6244 

 
Qf=0.6302 

 
Qf=0.6793 

 
Qf=0.6838 
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Fusion rule=window based verification 

 
                                                              Qf=0.6217 

 
Qf=0.6281 

 
Qf=0.6784 

 
Qf=0.6822 
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T E S T   2 : NUMBER OF LEVELS=5 
Fusion rule=maximum selection 

 
                                                              Qf=0.5803 

 
Qf=0.6281 

 
Qf=0.6538 

 
Qf=0.6638 
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Fusion rule=weighted average 

 
                                                              Qf=0.5844 

 
Qf=0.6270 

 
Qf=0.6541 

 
Qf=0.6655 
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Fusion rule=window based verification 

 
                                                              Qf=0.5777 

 
Qf=0.6242 

 
Qf=0.6515 

 
Qf=0.6605 

2.1.2.3. Conclusions 
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    The performance evaluation of the Shift Invariant Wavelet Transform just validated 
the theoretical background: it is an improved version of the Discrete Wavelet Transform. 
The improvement is obvious at the first sight, and the evaluation through the quality 
metric Qf confirms that the SIDWT outperforms the DWT. It is also clear that increasing 
the number of decomposition levels increases the Root Mean Square Error and decreases 
the quality factor, which means that the performance of the algorithm tails away. It is also 
clear that although the Maximum Selection fusion rule provides the highest fusion 
performance in the DWT, in this case the three fusion rules produce very similar results!! 
.   

         
                     Qf=0.5418                                            Qf=0.5803 
                        DWT                                                    SIDWT   

Wavelet family= Daubechies, Number of levels=5 
 

       
Qf=0.6238                                                     Qf=0.5803 

           SIDWT with N=4                                          SIDWT with N=5 
 



Wavelet transforms:                                                                                                                            page 63 

 
Parameters: filter size at first level=4,wavelet family=daubechies 

 
Number of levels=4 

Image pair 
 

Fusion rule 1 
Maximum Selection 

Fusion rule 2 
Weighted Average 

Fusion rule 3 
WBV 

 
1 

0.6238 0.6244 0.6217 

             
             2 

0.6322 0.6302 0.6281 

3 0.6804 0.6793 0.6784 

4 0.6848 0.6838 0.6822 

 
Parameters: filter size at first level=4,wavelet family=daubechies 

 
Number of levels=5 

1 0.5803 0.5844 0.5777 

2 0.6281 0.6270 0.6242 

3 0.6538 0.6541 0.6515 

4 0.6638 0.6655 0.6605 

 
SIDWT at different number of decomposition levels and fusion rules 

 
    Of course it is not all perfect! The improvement the algorithm offers comparing to the 
regular DWT has the cost of excessive redundancy, as the extracted data are not 
subsampled but preserve the size of the input images. The memory requirements are 
increased by a factor of 2j for each input (j defines the level of decomposition) at each 
stage comparing to the regular DWT and the computational complexity is high in a 
similar way. This is not evident in powerful computing systems, where computations are 
performed in milliseconds. However, an input of considerable size, a complicated filter 
structure, a great number of levels and a medium or slow computing system certainly 
outlines this drawback. 
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2.1.3 Dual Tree Complex Wavelet Transform 
2.1.3.1. Introduction 
    Another suggestion to integrate shift invariance into the Discrete Wavelet Transform is 
the Dual Tree Complex Wavelet Transform [Kingsbury, 1998]. The name of the 
algorithm implies that complex filters are used in both the decomposition and 
reconstruction stage. Unfortunately, many experiments have shown that it is very difficult 
to design an inverse transform, based on complex filters which can guarantee perfect 
reconstruction of the output signal and good frequency selectivity. Although complex 
filters can be designed to give perfect reconstruction quite easily at level 1 by applying 
the constraint that the reconstructed signal must be real, a similar constraint cannot be 
applied at further levels where inputs and outputs are complex [16]. Hence, a different 
approach should be followed.  
    The solution proposed by Kingsbury was the development of the Dual Tree Complex 
Wavelet Transform by noting that shift-invariance can be achieved with a real Discrete 
Wavelet Transform. Instead of discarding subsampling as in the SIDWT, the DT-CWT 
doubles the sampling rate at each level of the tree (the term will be analyzed below) by 
eliminating the downsampling by 2 after the first level of filtering. This is equivalent to 
having two parallel fully decimated trees (each performing a Discrete Wavelet 
Transform) after the first level of decomposition. The filter structure at each level should 
then satisfy some conditions.   
    The Dual-Tree Complex Wavelet Transform iteratively applies separable spatial filters 
to produce frequency subbands as in the Discrete Wavelet Transform [9]. Two fully 
decimated trees are constructed, the one containing the even and the other containing the 
odd samples after the first level of filtering. It was found that, to get uniform intervals 
between samples from the two trees below level 1, the filters in one tree must provide 
delays that are half a sample different from those in the other tree. This requires odd-
length filters in the one tree and even-length filters in the other. In order to achieve 
greater symmetry between the two trees, the one tree could use odd and the other even 
filters alternately from level to level. However, this is optional, not essential and will 
not be considered in our implementation.  
    Thus far, the Dual Tree transform does not seem to be complex. However, we can 
make it, in a “pseudo-way”: we can assume that the outputs from the two trees are 
interpreted as the real and imaginary parts of complex wavelet coefficients. The filters are 
selected from a perfect reconstruction biorthogonal set and the impulse responses can be 
considered as the real and imaginary part of a complex wavelet [Kingsbury, 1998].  
    The filters, as in the case of the DWT, are applied to the two dimensions, firstly to the 
rows and then to the columns of the image data vector. As a result eight subbands are 
constructed now, four in each tree, three highpass and a lowpass one. This stands for real 
filters. In the case of complex (“pseudo-complex”) wavelet transform the subbands are 
doubled; eight subbands representing the real part and eight subbands representing the 
imaginary part. The lowpass (LL) subband at each level constitutes the input for the next 
decomposition one, so only the lowpass approximation of the last level is finally 
preserved. 
    Fusion takes place in a similar way as in the discrete wavelet transform, combining the 
corresponding coefficients at each tree. The three fusion rules used with the DWT can 
also be used in this case. However they must be applied to the magnitude of the 
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coefficients as they are complex numbers. Theoretically, the DT-CWT should produce 
improved results over the corresponding DWT scheme due to its shift-invariance. This 
has, and will be, tested in the sections that follow. 
    Putting these all together in a tangible and complete scheme gives us a clearer point of 
view: 
 
 
 
                                                            Source image 
               Level 1 
                                  
 
         HH11         LH11      HL11           LL11          LL12         HL12          LH12                HH12 
                
                
                
                                     
               Level 2                                   
 
                                  HH21   LH21   HL21    LL21        LL22   HL22   LH22   HH22 
 
 
  
               Level 3 
 
                                      HH31  LH31  HL31   LL31       LL32  HL32  LH32  HH32 

 
 
 In this way the image structure, level by level, gets the following sequence: 
 
 
 
 
 
 
 
 
   The only limitation in the filter structure is that different filters are used for all the 
stages after the first level of decomposition and that different filters are applied to each 
tree. In the synthesis procedure, in a similar way, the last decomposition level uses 
different filters from the previous ones and each tree has its own reconstruction filter 
structure. The schematic representation of the analysis/synthesis procedure gets the 
following form: 
 
 
 

 
Original 
Image 

 
HL11    LH11 

 
HH11    LL11 
 

 
HL11    LH11 
 
               HL21LH21     
 HH11                      
              HH21   LL21    

 
LH12    HL12 
 
HL22 LH22  
            HH12 
LL22  HH22                  

 
LH12    HL12 
 
LL12    HH12 
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                                                                                                                         LLj+1,1            
                                                                                                                                             
                                                                                                                                             
                                                                                                                          HLj+1,1          T 
                                                                                                                      horizontal     R 
                                                                                                                        subband      E 
                                                                                                                          LHj+1,1       E       
                                                                                                                         vertical 
                                                                                                                         subband     1 
                                                                                                    
                                                                                                                 
                                                                                                                           HHj+1,1                                      
                                                                                                                         diagonal 
   LLj                                                                                                                 subband                                     

 
       ROWS                                  COLUMNS 

 
 

                                                                                                                         LLj+1,2 
 
 
                                                                                                                          HLj+1,2          T 
                                                                                                                      horizontal     R 
                                                                                                                        subband      E 
                                                                                                                          LHj+1,2       E       
                                                                                                                         vertical 
                                                                                                                         subband     2 
                                                                                                                                                           
                                                                                                                           HHj+1,2                                      
                                                                                                                         diagonal 
                                                                                                                         subband                                       
 

Decomposition procedure at level j 
 

 
             downsapling of the corresponding subimage 
               

                          j=current decomposition level, j+1=next decomposition level 
                         lowpass analysis/decomposition filter, convolution with the input image 
                         hij  lowpass filter for tree i (i=1, 2) at level j 
 
                                  (j=1 for the first decomposition level and 2 for the other levels) 
 
                         highpass analysis/decomposition filter, convolution with the input image           
                         gij  highpass filter for tree i (i=1, 2) at level j 

    h11 

  2 

  2 

 2

    2 

    g11 

    g11 

    h11 

    g11 

 2

 2

hij 

   gij 

    h11  2

    h21 

  2 

  2 

 2

    g21 

    g21 

    h21 

    g21 

 2

 2

    h21  2
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  Having decomposed the original images, the wavelet coefficients in each of the six 
highpass subbands and the one final lowpass one are fused and the reconstruction 
procedure is performed in a similar way, by upsampling and filtering the fused 
coefficients level to level. 
 
LLj+1,1 
 
 
 
HLj+1,1 
                                                                             T R E E  1                                                    
LHj+1,1                              
                                                                                                                                                                             
              
 
HHj+1 
                                                                 
                                                                                                                                         LLj                        
                       CΟLUMNS                                      ROWS                               
                                                                 
 
LLj+1,1 
 
 
 
HLj+1,1 
                                                                                T R E E  2                                                 
LHj+1,1                              
                                                                                                                                                                             
              
 
HHj+1 
 
 

Reconstruction procedure at level j 
 

 
Upsampling of the corresponding subband (insert zeros at odd-indexed                  

columns/rows) 
 
               Convolution with lowpass filter h΄ij  for tree i (i=1,2) at level j 
  
                            (j=1 for the last reconstruction level and 2 for the other levels) 
 
               Convolution with highpass filter g΄ij for tree i (i=1, 2) at level j 
 

   h11΄ 

  2 

  2 

  2 

    2 

   g11΄ 

   g11΄ 
   h11΄ 

   g11΄ 

 2

 2

h΄ij 

g΄ij 

   h11΄   2 

   h21΄ 

  2 

  2 

  2 

   g21΄ 

   g21΄ 
   h21΄ 

   g21΄ 

 2

 2

   h21΄   2 
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Remark: if we use “complex” wavelets then 12 highpass subbands will be created, 6 for 
the real part of the coefficient and six for the imaginary part of it. To eliminate this great 
number of subbands, which adds complexity, we can take the magnitude of the 
coefficients, or use real number as coefficients, leading to the Dual-Tree Real Wavelet 
Transform. 
  
2.1.3.2. Implementation of the Dual-Tree Complex Wavelet Transform 
   There are two versions of the Dual Tree Complex Wavelet Transform: the Real one, 
which is 2-times expansive (comparing to the regular Discrete Wavelet Transform 
presented in the previous section) and the Complex one, which is 4-times expansive. As 
met in theory the filters of the first level differ from the ones of the other stages. The 
filters used for the first level and the other stages are chosen according to the analysis of 
Kingsbury [13].  

D e c o m p o s i t i o n    s t a g e  
L o w p a s s   f i l t e r s 

TREE 1 
 

        1st level                         other 

TREE 2 
 

          1st level                         other 
0 

-0.08838834764832 
0.08838834764832 
0.69587998903400 
0.69587998903400 
0.08838834764832 

  -0.08838834764832 
0.01122679215254 
0.01122679215254 

0 

   0.03516384000000         
                 0 
  -0.08832942000000   
   0.23389032000000         
   0.76027237000000    
   0.58751830000000   
                  0    
  -0.11430184000000    
                  0                   
                  0   

 

0.01122679215254 
0.01122679215254 

   -0.08838834764832 
0.08838834764832 
0.69587998903400 
0.69587998903400 
0.08838834764832 

   -0.08838834764832 
0 
0 

                  0  
                  0                   
  -0.11430184000000    
                  0    
   0.58751830000000   
   0.76027237000000    
  0.23389032000000        

  -0.08832942000000  
                  0                   
  0.03516384000000        

 
R e c o n s t r u c t i o n     s t a g e  

L o w p a s s     f i l t e r s 

TREE 1 
 

1st level        other 

TREE 2 
 

         1st level                          other 
0 

0.01122679215254 
0.01122679215254 
-0.08838834764832 
0.08838834764832 
0.69587998903400 
0.69587998903400 
0.08838834764832 

   -0.08838834764832 
0 
 

0 
0 

  -0.11430184000000    
0 

0.58751830000000  
0.76027237000000   
0.23389032000000  
-0.08832942000000  

0 
0.03516384000000       

  

0 
0 

-0.08838834764832 
 0.08838834764832 
0.69587998903400 
0.69587998903400 
0.08838834764832 

   -0.08838834764832 
0.01122679215254 
0.01122679215254 

 

0.03516384000000 
0 

   -0.08832942000000  
0.23389032000000  
0.76027237000000  

    0.58751830000000  
0 

   -0.11430184000000  
0 
0 
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D e c o m p o s i t i o n    s t a g e  
H i g h p a s s   f i l t e r s 

TREE 1 
 

        last level                         other 

TREE 2 
 

          last level                         other 
0 

  -0.01122679215254 
0.01122679215254 
0.08838834764832 
0.08838834764832 

  -0.69587998903400 
0.69587998903400 
-0.08838834764832 

   -0.08838834764832 
0 
 

0 
0 

    -0.11430184000000    
0 

0.58751830000000  
    -0.76027237000000   

0.23389032000000  
     0.08832942000000  

0 
    -0.03516384000000       
 

0 
0 

   -0.08838834764832 
   -0.08838834764832 

0.69587998903400 
   -0.69587998903400 

0.08838834764832 
    0.08838834764832 

0.01122679215254 
   -0.01122679215254 

 

  -0.03516384000000 
0 

    0.08832942000000  
0.23389032000000  

   -0.76027237000000  
    0.58751830000000  

0 
   -0.11430184000000  

0 
0 
 

R e c o n s t r u c t i o n     s t a g e  
H i g h p a s s     f i l t e r s 

TREE 1 
 

         last level                       other 

TREE 2 
 

          last  level                     other 
0 

   -0.08838834764832 
   -0.08838834764832 

0.69587998903400 
   -0.69587998903400 

0.08838834764832 
    0.08838834764832 

0.01122679215254 
   -0.01122679215254 

0 

 -0.03516384000000        
                 0 
   0.08832942000000   
   0.23389032000000        
  -0.76027237000000    
   0.58751830000000   
                  0    
  -0.11430184000000    
                  0                   
                  0   

   -0.01122679215254 
0.01122679215254 

    0.08838834764832 
0.08838834764832 

   -0.69587998903400 
0.69587998903400 

   -0.08838834764832 
   -0.08838834764832 

0 
0 

                  0  
                  0                   
  -0.11430184000000    
                  0    
   0.58751830000000   
  -0.76027237000000    
  0.23389032000000        

   0.08832942000000  
                  0                   
  -0.03516384000000       
                    

    Taking a closer look to the coefficients of the filters it is noticed that the synthesis 
filters, for both trees and in all levels, are the analysis filters of the corresponding trees 
and level reversed. In addition, the analysis filters after the first level of tree 1 are the 
synthesis filters of tree 2 and vice versa! Finally, at the first level of analysis and the last 
level of synthesis, the reconstruction filters of tree 2/tree1 are the decomposition filters of 
tree1/tree 2 delayed by one sample. These conditions meet the requirements indicated by 
theory.    
    Let’s analyze each version:     

Real Dual Tree Wavelet Transform 
    The Real Dual Tree Wavelet Transform (or simply Dual Tree Transform) is 
implemented using two separable DWTs in parallel, as in the scheme above. After the 
decomposition stage, the fusion process takes places and the fused image is reconstructed 
through the synthesis scheme illustrated before. The quality metric Qf is adopted again to 
evaluate the performance of the algorithm. 
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Complex Dual Tree Wavelet Transform 
    The Complex Dual Tree Wavelet Transform also produces six distinct directions, 
subbands, with the difference that there are two wavelets in each direction, the real and 
imaginary part of the complex wavelet. Because the complex version has twice as many 
wavelets as the real version, the complex version is 4-times expansive (comparing to the 
regular Discrete Wavelet Transform), which means four separable DWTs in parallel. The 
filter structure is the same as presented before. Different filters are applied at the first/last 
level of decomposition/reconstruction and at the intermediate levels. In addition, each 
tree uses different filters too. In our implementation we added one more condition to 
avoid dublication of results comparing to the real Dual Tree Transform: different filters 
are applied to the rows and the columns. 
Remark:    In fact, the Dual-Tree Wavelet Transform is a “pseudo-complex” wavelet 
transform because it does not make use of complex wavelet families. Complex analysis 
and synthesis filters are very difficult to be created by complex wavelets, only 
theoretically. Trying to implement the algorithm using the Matlab toolbox, only real 
filters, derived from wavelet families, are supported. Thus, we “simulate” the complex 
transform using real wavelets-filters. This is achieved by considering the outputs of the 
analysis procedure as the real and imaginary parts of complex coefficients. We use a pair 
of real lowpass and highpass filters to simulate each part of a hypothetical complex 
coefficient: the real and imaginary part.  
    The structure of these real filters is a key point for the efficiency of the algorithm. 
They must satisfy some certain conditions. This analysis will not be mentioned here. 
Instead, two very good sources for further reading is proposed: “Image processing using 
complex wavelets” by Nick Kingsbury, 1999, pp 2543-2560 and  “Complex wavelet 
transforms with allpass filters”, Felix C. Fernandes and Ivan W. Selesnick, Rutger L.C. 
van Spaendonck, C. Sidney Burrus, December 18, 2002  
    In general, the DT-CWT has excellent directionality, reduced shift sensitivity and 
explicit phase information but has the drawback that is redundant because the transform 
coefficients require more storage space than the input signal.    
    In the following figure the structure of a tree produced by the Dual Tree Complex 
Wavelet Transform is illustrated. Due to limited space and in order to make the 
decomposition procedure clear to the reader only the one tree is illustrated. In addition, 
the downsampling procedure is not illustrated but, of course, is a key part of the 
decomposition process. The structure of the second tree is similar with the difference that 
different filters are applied. Notice that different filters are applied to the two directions 
(rows and columns of the input image matrix). The notation used is described below:  
   Analysis          Synthesis 
                    Lowpass filter for tree i (i=1, 2) at level j applied to rows 
 ,                                  
 
                                            Lowpass filter for tree i (i=1, 2) at level j applied to columns 
                   , 
                 Highpass filter for tree i (i=1, 2) at level j applied to rows 
 , 
 
                   ,                       Highpass filter for tree i (i=1, 2) at level j applied to columns 

    hrij 

    hcij 

    grij 

    gcij 

    h΄rij 

   h΄cij 

    g΄rij 

    g΄cij 
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                                                                                                                                           T 
                         Real part                                                                                                  R 
                                                                                                                                           E   
                                                                                                                                           E  
                                                                                                                                            
                                                                                                                                           1 
                                                                                                                                             
 
                                                                                                                                             
                                                                                                                                             
                     Imaginary part                                                                                                
                                                                                                                                                                                                

 

 

                                                                                                                                                                                                                  
 
 
 
                                          
                                                                                                                                           T 
                         Real part                                                                                                  R 
                                                                                                                                           E   
                                                                                                                                           E  
                                                                                                                                            
                                                                                                                                           2 
                                                                                                                                             
 
                                                                                                                                             
                                                                                                                                             
                      Imaginary part                                                                                                                                          
                                                                                                                                                                                                                   

 

 

                                                                                                                                                                                                                  
 
 
                         ROWS               COLUMNS          COLUMNS          ROWS 
 
***the implementation of the real and complex filter part is different, that’s why a 
different color is used.  

Decomposition/reconstruction stages  
 

    hr1j 

    gr1j    gc1j 

   hc1j 

   gc1j 

   hc1j 

   gc1j 

   hc1j 

   gc1j 

    hr1j 

    gr1j 

  hc1j 

    hr2j 

   gr2j    gc2j 

   hc2j 

   gc2j 

   hc2j 

   gc2j 

   hc2j 

   gc2j 

    hr2j 

    gr2j 

  hc2j 

  h΄c1j 

  g΄c1j 

   g΄c1j

 g΄c1j 

  g΄c1j 

  h΄c1j 

  h΄c1j 

  h΄c1j 

   h΄r1j 

   h΄r1j 

    g΄r1j 

    g΄r1j 

 h΄c2j 

 h΄c2j 

 h΄c2j 

 h΄c2j 

  g΄c2j 

  g΄c2j 

  g΄c2j 

  g΄c2j 

   h΄r2j 

   h΄r2j 

    g΄r2j 

    g΄r2j 
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TEST 1 
Real and Complex Dual Tree Wavelet Transform in the analysis/synthesis process 

 

          
                           N=1                                                                 N=2, 3, 4, 5 

          
                           N=6                                                                    N=7 

Number                             RMSE                                  Q 
Of                                 normalized                             normalized 
Levels                                values                                      values 
 
 
DTWT           Real            Complex            Real            Complex 
N=1 0.0073           0.0073 0.8152           0.8152 
N=2 0.0038           0.0038 0.9188           0.9188 
N=3 0.0038           0.0038 0.9188           0.9188 
N=4 0.0038           0.0038 0.9188           0.9188 
N=5 0.0038           0.0038 0.9188           0.9188 
N=6 0.0086           0.0086 0.8529           0.8529 
N=7 0.1081           0.1076 0.5596           0.5583 
   

System parameters:  size of filters        =                    10 
                                          wavelet family     =             Kingsbury 
                                                                                          defined 
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TEST 2 
Real and Complex Dual Tree Wavelet Transform in the analysis/synthesis process 

Change the input image 

 

         
                           N=1                                                                 N=2, 3, 4, 5 

        
                           N=6                                                                    N=7 

Number                             RMSE                                  Q 
Of                                 normalized                             normalized 
Levels                                values                                      values 
 
 
DTWT           Real            Complex            Real            Complex 
N=1 0.0066           0.0066 0.9104           0.9104 
N=2 0.0034           0.0034 0.9469           0.9469 
N=3 0.0034           0.0034 0.9469           0.9469 
N=4 0.0034           0.0034 0.9469           0.9469 
N=5 0.0034           0.0034 0.9469           0.9469 
N=6 0.0069           0.0069 0.8942           0.8940 
N=7 0.0933           0.0941 0.7295           0.7350 
   

System parameters:  size of filters        =                    10 
                                          wavelet family     =    Kingsbury defined        
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TEST 3 

Real and Complex Dual Tree Wavelet Transform in image fusion 
Number of levels=5 

 

 
                        Qf=0.6289                                         Qf=0.6534 
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                    Qf=0.6161                                           Qf=0.6295 
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Qf=0.6509                                          Qf=0.6697 
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Qf=0.6380                                          Qf=0.6643 
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TEST 4 

Real and Complex Dual Tree Wavelet Transform in image fusion 
Number of levels=3 

 

 

 
                        Qf=0.7065                                            Qf=0.7163 
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Qf=0.6173                                             Qf=0.6258 
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Qf=0.6689                                         Qf=0.6773 
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Qf=0.6610                                          Qf=0.6691 

Quality metric Qf 
        
Levels         Image pair          Real DTWT                 Complex DTWT 

 
 
N=3 

        1 
        2 
        3 
        4 

0.7065 0.7163 
0.6173 0.6258 
0.6689                       0.6773 
0.6610                       0.6691 

 
 

N=5 
 

1 
2 
3 
4 

0.6289 0.6534 
0.6161                       0.6295 
0.6509                       0.6697 
0.6380                       0.6643 
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2.1.3.3 Conclusions 
    From the section before we could make some useful and remarkable conclusions. First 
of all we notice the impressive result (from TEST 1 and TEST 2) that the two versions of 
the Dual-Tree Complex Wavelet Transform perform equally well during the 
decomposition/reconstruction process but the Complex version outperforms the Real one 
when the fusion process is involved. Another remarkable result is that the two transforms 
have exactly the same behavior, the same values of metrics, at levels 2 to 5!!! 
Overcoming this range the difference in performance is obvious in the reconstructed 
images too. The fact that in the analysis/synthesis procedure the same values of 
evaluation are met between the levels 2-5 is not a coincidence; the same result was 
extracted using another input image in TEST 2. This is due to the similar structure of the 
decomposition/reconstruction process. Using totally different filters along the real and 
imaginary “parts”, along the rows and columns, this can change.      
    Finally, changing the number of levels, in particular reducing the number from 5 to 3, 
has a small effect in the final result. Selecting a lower level the performance gets slightly 
improved.  

N=5 

 
                        Qf=0.6289                                         Qf=0.6534 

N=3 

 
                        Qf=0.7065                                            Qf=0.7163 
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    Another issue that is worth discussing is the contribution of the filters at the different 
stages. As mentioned in theory, it is preferable to use different filters in the first/last 
decomposition/reconstruction procedure from the ones used in the intermediate stages. 
This is proved practically, evaluating the performance of the Dual Tree Discrete Wavelet 
Transform when the same filter structure is used among all the analysis/synthesis stages. 
The results from the application of the above concept are illustrated below:     

 
 

 
Qf=0.6979                                   Qf=0.7050 
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Qf=0.6109                                Qf=0.6156 
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Qf=0.6580                                           Qf=0.6634 
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     Qf=0.6511                                         Qf=0.6566 

 
Levels                                        Quality metric Qf 
  =      
    3                 Image pair          Real DTWT                 Complex DTWT 

Use 
different 

stage 
filters 

        1 
        2 
        3 
        4 

0.7065 0.7163 
0.6173 0.6258 
0.6689                       0.6773 
0.6610                       0.6691 

Use 
same 
stage 
filters 

 

1 
2 
3 
4 

        0.6979                       0.7050 
        0.6109                       0.6156 
        0.6580                       0.6534 
        0.6511                       0.6566 
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2.1.4. Real versus Complex wavelet transform implementation 
    As mentioned in section 2.1.1, complex wavelet transforms offer basic advantages over 
real ones but are not easily applicable, especially in the decomposition-filtering-
reconstruction procedure described. In practice, trying to obtain the filter coefficients 
using the Matlab toolbox was not possible as only real wavelet analysis/synthesis 
filters were supported. However, complex wavelet transforms can be “simulated’ using 
two real wavelets for each component produced considering them as the real and 
imaginary part of complex coefficients. In this section the two versions of the Discrete 
Wavelet Transform described (regular DWT and DT-CWT) are compared using the same 
filter structure, “simulating” a complex wavelet transform version of them. The other 
version, the Shift-Invariant Discrete Wavelet Transform, is preferable not to be expanded 
in a complex form, because the structure of the filters needed, with zero-padding along 
different levels, is a little complicated to be achieved. The DT-CWT has already been 
introduced and the complex Regular Discrete Wavelet Transform is constructed 
according to the following scheme: 
                                                                                                                         LLj+1,1              
                                                                                                                                            R 
                                                                                                                                            E 
                                                                                                                          HLj+1,1          A 
                                                                                                                      horizontal    L 
                                                                                                                        subband       
                                                                                                                          LHj+1,1       P       
                                                                                                                         vertical      A 
                                                                                                                         subband     R 
                                                                                                                                             T 
                                                                                                                 
                                                                                                                           HHj+1,1                                      
                                                                                                                         diagonal 
   LLj                                                                                                                 subband                                    

       ROWS                                  COLUMNS 
 

 
                                                                                                                     LLj+1,2                 
                                                                                                                                             I 
                                                                                                                                            M 
                                                                                                                          HLj+1,2          A 
                                                                                                                      horizontal    G 
                                                                                                                        subband      I 
                                                                                                                          LHj+1,2       N       
                                                                                                                        vertical       A  
                                                                                                                       subband       R 
                                                                                                                                             Y 
                                                                                  
                                                                                                                                             P 
                                                                                                                           HHj+1,2     A                                
                                                                                                                         Diagonal    R 
                                                                                                                         subband     T 

    h1 

  2 

  2 

 2

    g1 

    g1 

    h1 

    g1 

 2

 2

    h1 

    h2 

  2 

  2 

 2

    g2 

    g2 

    h2 

    g2 

 2

 2

    h2  2
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    At first, it is important to compare the real and complex version of the Regular 
Discrete Wavelet Transform, both in the decomposition-reconstruction and the analysis-
fusion-synthesis-phase:                                                   

Number of levels=4 
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Number of levels=6 
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    The results are summarized in the following table: 
                                      Real DWT                Complex DWT 

 
Levels       Image pair           Q            RMSE             Q            RMSE 

 
 

4 

1 
2 
3 
4 

    0.8152        0.0073         0.8152      0.0073 
    0.9104        0.0066         0.9104      0.0066 
    0.9008        0.0075         0.9008      0.0075 
    0.9211        0.0076         0.9211      0.0076 

 
 

6 
 

1 
2 
3 
4 

    0.8431        0.0071         0.8708      0.0058 
    0.9031        0.0062         0.9278      0.0051 
    0.8913        0.0071         0.9144      0.0060 
    0.9199        0.0069         0.9300      0.0060 

    
    Conclusion: It is very interesting to notice that the two versions of the regular Discrete 
Wavelet Transform perform exactly equally, for all inputs, until a certain number of 
levels is reached. When the number of levels is increased enough it is getting clear that 
the complex transform outperforms the real one in a satisfactory way. The theoretical 
expectation tends to be proved. 
    It’s worth attempting to define the filter structure of the analysis/synthesis procedure 
for the complex Discrete Wavelet Transform. Different approaches were tested: using 
different filters for the first/last and the upper/lower decomposition/reconstruction levels 
and different filter application along rows and columns, as adopted in the implementation 
of the Dual Tree Complex Wavelet Transform. The results clearly showed that the only 
condition that gives efficient results is the use of different filters for the imaginary and 
real parts of the transformation scheme presented above. The conditions of the filter 
structure are: 

• the synthesis filters are the analysis filters inversed 
• the analysis filters of the “imaginary part” of the transform are the synthesis filters 

of the “real part ” of the transform delayed by one sample and vice veersa.  
    The filter structure adopted is the following (it the first stage filter structure of the DT-
CWT implementation!): 
    The filter structure applied to the rows and the columns of the input image matrix is 
retained the same and the filter structure within the first level and the remaining ones is 
also kept in the original, fixed form.   
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Filter structure for the implementation of the complex DWT 
 

D e c o m p o s i t i o n    s t a g e  

TREE 1 (Real part) 
   
   Lowpass filter           Highpass filter 

TREE 2(Imaginary part)  
 

     Lowpass filter           Highpass filter 
0 

-0.08838834764832 
0.08838834764832 
0.69587998903400 
0.69587998903400 
0.08838834764832 

  -0.08838834764832 
0.01122679215254 
0.01122679215254 

0 

   0 
  -0.01122679215254 
   0.01122679215254 
    0.08838834764832 
    0.08838834764832 
   -0.69587998903400 
    0.69587998903400 
   -0.08838834764832 
   -0.08838834764832 

0 
 

 

0.01122679215254 
0.01122679215254 

   -0.08838834764832 
0.08838834764832 
0.69587998903400 
0.69587998903400 
0.08838834764832 

   -0.08838834764832 
0 
0 

                   0 
0 

   -0.08838834764832 
   -0.08838834764832 

0.69587998903400 
   -0.69587998903400 

0.08838834764832 
    0.08838834764832 

0.01122679215254 
   -0.01122679215254 
 

 
R e c o n s t r u c t i o n     s t a g e  

L o w p a s s     f i l t e r s 

TREE 1 
 

Lowpass filter           Highpass filter 

TREE 2 
 

     Lowpass filter           Highpass filter 
0 

0.01122679215254 
0.01122679215254 
-0.08838834764832 
0.08838834764832 
0.69587998903400 
0.69587998903400 
0.08838834764832 

   -0.08838834764832 
0 
 

0 
   -0.08838834764832 
   -0.08838834764832 

0.69587998903400 
   -0.69587998903400 

0.08838834764832 
    0.08838834764832 

0.01122679215254 
   -0.01122679215254 

0 

0 
0 

-0.08838834764832 
 0.08838834764832 
0.69587998903400 
0.69587998903400 
0.08838834764832 

   -0.08838834764832 
0.01122679215254 
0.01122679215254 

 

   -0.01122679215254 
0.01122679215254 

    0.08838834764832 
0.08838834764832 

   -0.69587998903400 
0.69587998903400 

   -0.08838834764832 
   -0.08838834764832 

0 
0 
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    Let’s try to compare the Regular DWT and the DT-CWT using complex wavelets in 
the decomposition/reconstruction procedure (* the filter structure remains the same): 
 

Number of  levels =4 
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Number of  levels =6 
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    The results are summarized in the following table: 
 

                                 Complex Dual Tree WT       Complex DWT 
 

Levels       Image pair           Q            RMSE             Q            RMSE 
 
 

4 

1 
2 
3 
4 

    0.9188        0.0038         0.8152      0.0073 
    0.9469        0.0034         0.9104      0.0066 
    0.9464        0.0039         0.9008      0.0075 
    0.9622        0.0039         0.9211      0.0076 

 
 

6 
 

1 
2 
3 
4 

    0.8529        0.0086         0.8708      0.0058 
    0.8940        0.0069         0.9278      0.0051 
    0.8596        0.0084         0.9144      0.0060 
    0.8929        0.0082         0.9300      0.0060 

Conclusion: 
    We notice that in the lower levels, the DT-CWT performs in a better way while the 
complex Regular Discrete Wavelet Transform is recommended for higher levels, as its 
performance increases as the number of levels gets higher!!!! 
    We now expand the above procedure taking into consideration the fusion process. The 
structure of the filters remains the same in both transforms, the fusion rule as well: select 
the highpass coefficients of maximum amplitude and take the average of the created 
lowpass coefficients. We have already seen, in the previous sections, that the Dual 
Tree Complex Wavelet Transform outperforms the corresponding Real Dual Tree 
Transform and that the Dual Tree structure outperforms the Real Discrete Wavelet 
Transform. We expect that the regular Discrete wavelet transform using complex 
wavelets would give better results in compare with the Real one. The conclusions are 
summarized in the following pages: 
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Qf=0.5279            Levels=6         Qf=0.5329 

    
Qf=0.5784            Levels=4         Qf=0.5940 
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Qf=0.5552            Levels=6                   Qf=0.5776 

 
Qf=0.5817              Levels=4                       Qf=0.6005 
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Qf=0.5580                 Levels=6                        Qf=0.5748 

 
Qf=0.6279             Levels=4                       Qf=0.6510 
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     Qf=0.5499                 Levels=6                        Qf=0.5725 

 
    Qf=0.6224                 Levels=4                       Qf=0.6409 
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    The above are summarized in the following table: 
                                                  Quality metric Qf 
        
                       Image pair             Real DWT                 Complex DWT 
Number 

of 
levels 

= 
4 

        1 
        2 
        3 
        4 

0.5784                       0.5940 
0.5817                       0.6005 
0.6279                       0.6510 
0.6224                       0.6409 

Number 
of  

levels 
=6 

 

1 
2 
3 
4 

        0.5279                       0.5329 
        0.5552                       0.5776 
        0.5580                       0.5748 
        0.5499                       0.5725 

    In this section it was attempted to compare the complex and the real version of the 
Discrete Wavelet Transform. Two useful conclusions were extracted: 

• The complex version of the wavelet transform, in the pseudo-simulation process 
implemented, clearly outperforms the corresponding real one, both in the regular 
Discrete Wavelet Transform and the Dual Tree Wavelet Transform. 

• In the analysis-fusion-synthesis procedure, the fusion performance, for all the 
inputs used, deteriorates as the number of decomposition levels is getting higher 
(the metric Qf is decreased), although the complex Discrete Wavelet Transform 
reconstructed the original image, without fusing the coefficients, in a better way 
in the upper levels. 

                                      Real DWT                Complex DWT 
 

Levels       Image pair           Q            RMSE             Q            RMSE 

 
 

4 

1 
2 
3 
4 

    0.8152        0.0073         0.8152      0.0073 
    0.9104        0.0066         0.9104      0.0066 
    0.9008        0.0075         0.9008      0.0075 
    0.9211        0.0076         0.9211      0.0076 

 
 

6 
 

1 
2 
3 
4 

    0.8431        0.0071         0.8708      0.0058 
    0.9031        0.0062         0.9278      0.0051 
    0.8913        0.0071         0.9144      0.0060 
    0.9199        0.0069         0.9300      0.0060 

 
 
 
 
                                                                       Discarding the fusion process, the            
                                                             reconstructed image using the complex DWT  
                                                             was a closer approximation to the input image  
                                                                in the upper level 6 than in the lower level 4 
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C h a p t e r  3 
Non-perfect reconstruction wavelet transforms 

 
    In this chapter, we deal with wavelet-based algorithms and techniques that do not have 
the perfect reconstruction property, which means that the reconstructed image (signal in 
the general purpose) is not identical to the input one. The results extracted clearly showed 
that the fusion process cannot be efficiently implemented. However, these methods offer 
other basic advantages. In section 3.1 the Mallat-Zhong Discrete Wavelet transform 
(generally mentioned as Dyadic Discrete Wavelet Transform) is presented and its 
application to medical images is tested. A new concept is introduced in sections 3.1.2, 
3.2: multiscale edge detection and its application to image fusion. Following this 
approach, input data can be represented and manipulated using their edge points, which 
are extracted through wavelet-based transforms. This representation brings data into a 
more abstract and subtractive description, which can give the implementer less 
computational load to manipulate and information about the parts where the input signal 
has sharp variations. Reconstructing the output image from edges was not perfectly 
achieved using our proposed wavelet-based techniques. A much more complicated and 
deeply theoretical algorithm is needed for the synthesis procedure. This technique was 
proposed by Mallat in [20] but is not implemented in our case. Instead, a much simpler 
technique is used with the cost of poor performance.  
3.1. The Mallat-Zhong Discrete Wavelet Transform 
3.1.1. The analysis-fusion-synthesis process 
    The Discrete Dyadic Wavelet Transform (this is the general notation, not absolutely 
correct, met in bibliography for the Mallat-Zhong Discrete Wavelet Transform) is another 
simplified “version” of the Discrete Wavelet Transform, basically used for edge detection 
along different scales/levels. It has a similar structure as the DWT described in the 
sections above. It can be implemented using two approaches: 
a) the theoretical/analytical one, using only mathematical calculations by convolving the 
input signal (images in our case) with a wavelet scaling function         
b) the practical one, applying low and high pass filters along each dimension through a 
certain decomposition/reconstruction scheme. 
 
ANALYTICAL IMPLEMENTATION: 
    The two dimensional Discrete Dyadic Wavelet Transform of an image I(x, y) at scale 
2j and in orientation k is defined as 

 
2 2

( , ) ( , ) ( , )j j
kW I x y I x y x yκψ= ∗  

with k=1, 2(horizontal and vertical dimension) and j=1, …, N (=maximum number of 
levels) 
    The orientated wavelets 2

( , )j x yκψ  can be constructed by taking the partial derivatives 
of the scaling function 

1 ( , )( , ) x yx y
x

θψ ∂
=

∂     and   2 ( , )( , ) x yx y
y

θψ ∂
=

∂
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where θ(x, y) is a separable spline scaling function which plays the role of a smoothing 
filter. It can be shown that the DDWT gives the gradient of the image I(x, y) smoothed by 
θ(x, y) at dyadic scales: 
 

( ) ( ) ( )1 2

2 2 2 2 22 2

1 1( , ) ( , ), ( , ) ( , ) ( , )
2 2

j j j j jj jI x y I x y I x y I x y I x yW W θ θ≡ = ∇ ∗ = ∇ ∗∇  

  
    The smoothing function θ(x, y) can be defined as the product of two one dimensional 
smoothing functions, e.g. the prototypical example, the Gaussian 

1 2( , ) ( ) ( )x y x yθ θ θ=  

with the Gaussian functions 
2

1
1( ) xx eθ
π

−= ,
2

2
1( ) yy eθ
π

−=  

We can consider that at each scale s=2j the two orientated wavelets are given by the 
relation: 

1 1
2

1( , ) ( , )s
x yx y

s s s
ψ ψ=  and  

2 2
2

1( , ) ( , )s
x yx y

s s s
ψ ψ=  

 
    However, the lack of shift invariance and the aliasing associated with the use of non-
redundant wavelet transforms, e.g. DWT, may introduce undesirable artifacts in the 
reconstructed images. Thus the use of the redundant wavelet representations such as the 
DDWTs is often justified [9] [18]. 
    The synthesis procedure is complicated and deeply based on mathematical terms and 
calculations and will not be further analyzed. The reconstruction algorithm can be further 
approached at [20], [21]. Instead, the “practical” implementation, using cascaded 
application of filters is most frequently adopted.    
PRACTICAL IMPLEMENTATION: 
    Following this approach, things are much more simplified.  The basic 
decomposition/reconstruction scheme is similar to the one introduced in the previous 
sections and is presented below: 
                                                                                                                        Lj+1 
                                                                                                                    lowpass 
                                                                                                                    subband 
                                                                                                                                                                           
                          ROWS                            COLUMNS                              
LLj                                                                                                                        
                                                                                                                         H1j+1              
                                                                                                                    horizontal 
                                                                                                                      subband 
                                                                                                                       
                                 
                                                                           
                                                                                                                         H2j+1 
                                                                                                                        vertical 
                                                                                                                       subband                                         

Decomposition procedure at level j 

    h 

  2 

  2 

    g 

    g 

    h  2

 2
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Lj+1 
 
                                                                             
 
H1j+1 
horizontal 
subband              CΟLUMNS                                      ROWS                               
 
                                                                                                                                       LLj 
 
H2j+1 
vertical 
subband 

Reconstruction procedure at level j 
 

 
             up/downsampling of the corresponding subimage (optional in most 

cases) 
               

                          j=current decomposition level, j+1=next decomposition level 
                         lowpass analysis/decomposition filter, convolution with the input image 
 
                         highpass analysis/decomposition filter, convolution with the input image           
                 
  
                          select the valid part in order to obtain the appropriate image size due to                                   
                          convolution increment of subband size  
    In practice, the dyadic wavelet transform is computed by iterative filtering with a set of 
low and high pass filters h and g, associated with the wavelets ψ1 and ψ2 of the theoretical 
approach described before. These filters have finite impulse response, which makes the 
transform fast and easy to implement: 

j+1 jj,x j,y2 2
L (x, y)=[H *[H * L ]](x, y)  

 
j+1 j

1
j,x j,y j+12 2

D (x, y)=[D *[G * L ]](x, y)= H1  

j+1 j
2

j,x j,y j+12 2
D (x, y)=[G *[D * L ]](x, y)= H2  

where L1 is the input image, L2
j is the lowpass subimage at scale j, D is the Dirac filter 

whose impulse response is equal to 1 at 0 and 0 otherwise and  iD2
j i=1,2, j=1, …, N are 

the detail, or highpass, subbands at scale j [18]. The orientation 1 refers to the rows and 
the orientation 2 refers to the columns. 
    In general, the up/downsampling procedure is discarded in the decomposition-
reconstruction process of the previous scheme. Ivan Christov in [19] proposed the 
Mallat-Zhong Discrete Wavelet Transform which implements the dyadic transform using 

    2 

    h 

    g 

    h΄   2 

  2 

    h΄ 

    g΄ 

 2

 2
select 

    g΄ 

select 
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a quadratic spline lowpass filter h(n)={…, 0, 1, [3], 3, 1, 0, …}*√2/4 in order to generate 
the scaling function and the wavelets associated with it and speed-up computation and 
prevent group delays that would be introduced by non-symmetric filters. The 
decomposition filters at each resolution 2j are computed by upsampling the filter hj[n] by 
j and the filters gj[n] are normalized finite difference filters meant to approximate the 
gradient of the image. The reconstruction filters h΄, g΄ are simply the decomposition 
filters flipped [19].  

jh [n]=( j) h[-n]↑  

j-1
j 0

2 2g [-/+ 2 ]=+/-   ,  g [-1]=-
2 2  

j j jh' [n]=h [-n]  ,  g' [n]=g[-n]  
    The dyadic transform is performed via a cascade of separable convolutions using the 
above filters:  

j+1 j jA (x, y)=A *h [x]* h[y]  
1
j+1 j jD (x,y) =A *g [x] (at rows)  

          
2
j+1 j jD (x,y)=A *g [y] (at columns)  

    The coefficients Aj+1 are the lowpass ones, while coefficients 1
j+1D (x,y) and 

2
j+1D (x,y) are the highpass ones at horizontal and vertical orientation respectively. 

    The inverse transform is computed in a similar way 
1 2

j j+1 j j j+1 j j+1 jA (x, y)=A *h [x]* h [y] + D *g [x]  + D *g [y]  
    **It must be remarked that the 2-D dyadic discrete wavelet transform does not 
have perfect reconstruction because the diagonal detail coefficients are not 
calculated. However, for edge detection it is sufficient to compute the horizontal and 
vertical wavelet coefficients.   
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The Mallat-Zhong Discrete Wavelet Transform 

                                                                                                                       Aj+1 
                                                                                                                   lowpass 
                                                                                                                    subband 
                                                                                                                                                                           
                          ROWS                            COLUMNS                              
Aj                                                                                                                        
                                                                                                                        D1j+1              
                                                                                                                    horizontal 
                                                                                                                      subband 
                                                                                                                       
                                 
                                                                                                                         D2j+1 
                                                                                                                        vertical 
                                                                                                                       subband                                         

Decomposition procedure at level j 
 
Aj+1 
 
                                                                             
 
D1j+1 
Horizontal                                                                                                           Aj 
subband              CΟLUMNS                                      ROWS                               
 
                                                                                                                                       
 
D2j+1 
vertical 
subband 

Reconstruction procedure at level j 
 
                          j=current decomposition level, j+1=next decomposition level 
                         lowpass analysis/synthesis filter, upsampled, convolution with the input          
                         image 
                         highpass analysis/synthesis filter, zero-padded, convolution with the input                              
image               image       
   
    A list of tests is presented in the following pages in order to make a clearer view of the 
Dyadic Discrete Wavelet Transform. The two "practical implementations" are adopted 
with the difference that in the first one the up/downsampling procedure is discarded. Both 
the decomposition/reconstruction and the analysis-fusion-synthesis stages are 
implemented in order to compare the two versions. We expect that the second version, 
known as the Mallat-Zwong Wavelet Transform [19], which uses upsampling in the 
different stage filters, is proved more efficient. The fusion rules to be followed are fixed: 

    h 

    g 

    g 

 h, h΄ 

 g, g΄ 

    h 

    h΄     h΄ 

    g΄ 

    g΄ 
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a) take the average of the lowpass coefficients and b) select the highpass coefficients of 
the maximum magnitude. 

 
Test 1: evaluate the decomposition/reconstruction process 

Number of levels = 4 
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Number of levels = 6 
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The above are summarized in the following table: 

                                   Dyadic version1 WT       Mallat-ZwongWT 
 

Levels       Image pair           Q            RMSE             Q            RMSE 
 
 

4 

1 
2 
3 
4 

    0.5981        0.0675         0.8430      0.0295 
    0.7904        0.0443         0.9123      0.0430 
    0.7098        0.0582         0.8962      0.0207 
    0.7369        0.0422         0.9132      0.0165 

 
 

6 
 

1 
2 
3 
4 

    0.5862        0.0691         0.8367      0.0295 
    0.7815        0.0449         0.9099      0.0429 
    0.6951        0.0598         0.8946      0.0207 
    0.7203        0.0445         0.9111      0.0165 

 
Conclusion: From the above, we notice that the expected theoretical results are 
confirmed in practice too. The performance deteriorates very slightly as the number of 
levels is increased and the MZDWT, which uses upsampled filters, is a much better 
version than the simple dyadic transform discarding the sampling process.    
    We implement the previous scheme for the needs of image fusion. Having decomposed 
the input images via the forward wavelet transform (the Dyadic Discrete wavelet 
transform), we fuse the corresponding coefficients of each subband produced using the 
Maximum Selection rule and finally we perform the inverse transform and reconstruct the 
fused image. We noticed that the wavelet transform produced coefficients of large 
amplitude and due to the non-perfect reconstruction imperfection of the transform the 
fused image attained large values too, outside the range [0 256] where an 8-bit image is 
normally valued. So, rescaling of the values needed to take place. 
    The qualitative (images) and quantitative (metric Qf) results of the fusion process are 
presented in the following pages. 
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Test 2: evaluate the analysis-fusion-synthesis  process 
Number of levels=4 
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Number of levels=6 
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    The evaluation results are summarized in the following table: 
                                                  Quality metric Qf 
        
                       Image pair      Dyadic WT version1     Mallat-Zwong WT 
Number 

of 
levels 

= 
4 

        1 
        2 
        3 
        4 

0.4805                      0.8138 
0.4426                      0.7400 
0.4595                      0.7371 
0.4350                      0.7387 

Number 
of  

levels 
=6 

 

1 
2 
3 
4 

        0.4727                      0.8138 
        0.4361                      0.7401 
        0.4520                      0.7372 
        0. 4275                     0.7384 

Conclusion: From the analysis above we conclude that the Mallat-Zhong wavelet 
transform performs in a much better way than the simple version of the Dyadic Discrete 
Wavelet Transform. This is due to upsampling. The “simple” version of the Dyadic 
Transform tends to blur the input image and the lowpass subband seems to overwhelm 
the two highpass subbands in the final contribution of the coefficients because lowpass 
filtering is used in both dimensions (rows and columns) but highpass filtering is applied 
in rows, once, and the columns, next. 
                                                                                                                          Lj+1 
                                                                                                                    lowpass 
                                                                                                                    subband 
                                                                                                                                                                           
                          ROWS                            COLUMNS                              
LLj                                                                                                                        
                                                                                                                         H1j+1              
                                                                                                                    horizontal 
                                                                                                                      subband 
                                                                                                                       
                                 
                                                                           
                                                                                                                         H2j+1 
                                                                                                                        vertical 
                                                                                                                       subband                                         
    Another important conclusion is that the MZ-DWT is very stable when different 
number of stages are used, performs extremely equally in either case! Further tests, not 
presented here proved so: the performance of the MZ-DWT in the fusion process is 
extremely stable along the different number of decomposition levels. In the next 
sections, this version of the Dyadic Wavelet Transform will be adopted.  
 
 
 
 

    h 

    g 

    g 

    h 
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3.1.2 Multiscale edge detection via modulus maxima calculation 
    We can expand the Dyadic Discrete Wavelet Transform for the needs of multiscale 
edge detection. Again, edge detection can be implemented using two approaches: a) the 
analytical, mathematical one, which uses mathematical functions for wavelet 
representation and b) the practical one, which “simulates” the mathematical calculations 
via application of filters associated with wavelets. In both implementations, the 
mathematical basis comes from the Dyadic Wavelet Transform. 
ANALYTICAL IMPLEMENTATION: 
    As already presented, the two dimensional Discrete Dyadic Wavelet Transform of an 
image I(x, y) at scale 2j and in orientation k is defined as 

 
2 2

( , ) ( , ) ( , )j j
kW I x y I x y x yκψ= ∗  

with k=1, 2(horizontal and vertical dimension) and j=1, …, N (=maximum number of 
levels) 
    The orientated wavelets 2

( , )j x yκψ  can be constructed by taking the partial derivatives 
of the scaling function 

1 ( , )( , ) x yx y
x

θψ ∂
=

∂     and   2 ( , )( , ) x yx y
y

θψ ∂
=

∂
  

where θ(x, y) is a separable spline scaling function which plays the role of a smoothing 
filter.  
    The smoothing function θ(x, y) can be defined as the product of two one dimensional 
smoothing functions, e.g. the prototypical example, the Gaussian 

1 2( , ) ( ) ( )x y x yθ θ θ=  

with the Gaussian functions 
2

1
1( ) xx eθ
π

−= ,
2

2
1( ) yy eθ
π

−=  

    We can consider that at each scale s=2j the two orientated wavelets are given by the 
relation: 

1 1
2

1( , ) ( , )s
x yx y

s s s
ψ ψ=  and  

2 2
2

1( , ) ( , )s
x yx y

s s s
ψ ψ=  

    At each orientation 1, 2 we consider the two wavelet transforms  
1 1

2 2
( , ) ( , ) ( , )j jW I x y I x y x yψ= ∗   and  2 2

2 2
( , ) ( , ) ( , )j jW I x y I x y x yψ= ∗  

    If we want to locate the positions of rapid variation of an image I, the “edges”, we 
should consider the local maxima of the gradient magnitude at various scales [9]. This is 
given by the following equation: 

1 2 2 2
2 2 2 2

( , ) ( , ) ( ( , )) ( ( , ))j j j jM I x y I x y W I x y W I x y≡ ∇ = +  

    The gradient term 
2

( , )jM I x y  is also known as the Modulus of the image I at scale j.    
    A point (x, y) of the image is a multiscale edge point at scale j if the magnitude of the 
modulus attains a local maximum along the gradient direction  

2
( , )jA I x y  , also known as 

the Angle of the image I, defined as 
2

2
12

2

( , )
( , ) arctan

( , )
j

j

j

W I x y
A I x y

W I x y
⎡ ⎤

≡ ⎢ ⎥
⎢ ⎥⎣ ⎦
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   This means that the point(x, y) must have the largest magnitude along its “neighbors” 
located at the same direction the Angle(x, y) defines, as illustrated in the scheme below: 
 

angle 
    On the grounds that the value of the angle is not fragmented, there is a great number of 
possible “neighbors”, which means computational complexity and delay in order to find 
and compare the neighbored pixels. To avoid this inconvenience, we quantize the angle 
in the values [0  45  90  135  180 ]o o o o o , so we have only a 8-elements neighborhood to 
check: 
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    If a point (x, y) is found to be a local maxima (commonly named as modulus maxima) 
then it is assigned the value 1, otherwise it is assigned the value 0. As a result, at each 
scale, a new set (matrix) of values is obtained containing the edges of the image. 

    The set  { }12 2
( ) ( , ),[ ( )]j j j JI S I x y P Iρ ≤ ≤=  where 2

( , )jS I x y  is the 

lowpass approximation of the image at scale j, { }2 2 , 2
( ) ( , ); ( , )j j ji i i ii

P I p x y M I x y= = is 

the set of points where the Modulus 
2

( , )j i iM I x y has local maximum at 
2 ,

( , )j i ii
p x y=  is 

called a multiscale edge representation of the image I(x, y), which a shift invariant form. 
    Two key points need to be clarified: 
    a) how the edge detection algorithm via modulus maxima calculation performs along 
the different number of levels/stages? On the grounds that this edge detection algorithm 
is mathematical and analytical it is proved much more computational expensive. 
Increasing the number of levels normally means that less edges will be detected and 
mainly, the delay in the extraction of the results will be increased. 
    b) what should be the size of the scaling function θ(x,y)? For the same reason as in the 
previous question, a scaling function of big size would delay the algorithm in a 
considerable measure and probably insert false edges or miss some edges. 
    The first results proved that the modulus maxima detection algorithm is very efficient 
but slow. The delay in the extraction of edges gets very slow as the size of the scaling 
function increases(over 32 elements) and mainly as the size of the input image is large( 
for example the classic “Lenna” 512x512 input image in combination with a 64 –point 
scaling function needed several minutes to extract the result!). So it is wise to carefully 
select and consider the parameters of the algorithm. There is no certain metric to evaluate 
the result of edge detection but our only “weapons”, the observer’s eye and the clock, 
immediately help us to make conclusions.        
    Examples of the use of the above process for the needs of edge detection are presented 
below: 
 

Input image 
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TEST 1: How the modulus maxima, modulus and the angle of an image look like?       
 Levels=1-6          Modulus maxima                                Modulus                                        Angle 
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TEST 2: Modulus maxima using scaling function of different size 
 Levels=1-6               size=16                                       size=32                                         size=64 
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Conclusion: Observing the above, we notice that increasing the number of levels, as it 
was expected, the edge detection algorithm deteriorates; fewer edges are 
detected/preserved. As regards the size of the scaling function, we notice that a small size 
detects many information in some parts of the image and looses information in other 
(notice the right top hand corner) when the size is 16. In addition, bigger size of the 
scaling function means, firstly, computational delay and secondly less edges in the upper 
levels. For the needs of our work a Gaussian scaling function of size 32 is very efficient.   
 
PRACTICAL IMPLEMENTATION: 
   Instead of using mathematical terms, we can follow the practical version presented in 
the previous section, applying low and high pass filters h and g to the input image, 
associated with the wavelets ψ1 and ψ2 of the theoretical approach. These filters have 
finite impulse response, which makes the transform fast and easy to implement: 

j+1 jj,x j,y2 2
L (x, y)=[H *[H * L ]](x, y)  

 
j+1 j

1
j,x j,y j+12 2

D (x, y)=[D *[G * L ]](x, y)= H1  

j+1 j
2

j,x j,y j+12 2
D (x, y)=[G *[D * L ]](x, y)= H2  

where L1 is the input image, L2
j is the lowpass subimage at scale j, D is the Dirac filter 

whose impulse response is equal to 1 at 0 and 0 otherwise and  iD2
j i=1,2, j=1, …, N are 

the detail, or highpass, subbands at scale j. The orientation 1 refers to the rows and the 
orientation 2 refers to the columns. 
   If we want to locate the positions of rapid variation of an image I, the “edges”, we 
should consider the local maxima of the gradient magnitude at various scales. This is 
given by the following equation: 

1 2 2 2
2 2 2

( , ) ( ( , )) ( ( , ))j j jM I x y D I x y D I x y= +  

    The gradient term 
2

( , )jM I x y  is also known as the Modulus of the image I at scale j.    
    A point (x, y) of the image is a multiscale edge point at scale j if the magnitude of the 
modulus attains a local maximum along the gradient direction  

2
( , )jA I x y  , also known as 

the Angle of the image I, defined as 
2
2
12
2

( , )
( , ) arctan

( , )
j

j

j

D I x y
A I x y

D I x y
⎡ ⎤

≡ ⎢ ⎥
⎢ ⎥⎣ ⎦

 

   This means that the point(x, y) must have the largest magnitude along its two 
“neighbors” located at the same direction the Angle(x, y) defines. Again, for simplicity, 
we quantize the angle in the interval [0  45  90  135  180 ]o o o o o , so we have four possible 
directions, which means 8 possible neighbor pixels to check. 
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TEST 3: Analytical VS practical implementation 
 

 
              ANALYTICAL APPROACH                                             PRACTICAL APPROACH 

 

 

 

 
    Levels=1-4          Levels=4-8          Levels=1-4       Levels=4-8 
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             ANALYTICAL APPROACH                        PRACTICAL APPROACH 

                                             
                           Level 1                                                   Level 1 

                                                
                           Level 2                                                    Level 2 
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Level 3                                                        Level 3 

                                   
                         Level 4                                                     Level 4 
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                        Level 5                                                    Level 5 

                                   
                        Level 6                                                  Level 6 
 
Conclusion: From the above, we notice that the analytical approach preserves less edges 
as the number of levels is increased but does not insert “blank” areas in the lower levels 
(notice the white areas in the images of the practical implementation in the first 4 levels). 
This is done because the filters in the “practical” version (the scaling function in the 
analytical one) have small size in the first levels (remember that at each stage they are 
upsampled; their size is doubled) and the convolution with the input cannot represent the 
whole information leading to loss of some data. Finally, it is worth mentioning that the 
computational complexity and delay was rapidly increased when the input was the 
512x512 “Lenna” image and the result was extracted after several minutes of 
calculations.  
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3.2. Fusion of images using their multiscale edges 
3.2.1. Point Representation fusion 
    Having extracted the multiscale edge representation of the input images we can fuse 
them and produce the final fused image. Reconstruction from edge representation is not 
an easy issue; on the contrary, it is a very complicated problem. Mallat and Zhong 
proposed an algorithm at [Mallat and Zhong, 1992] that reconstructs a very close and 
visually indistinguishable approximation of the input image from its multiscale edge 
representation. Thus, this representation of the image is complete. The algorithm makes 
use of complicated mathematical models and algebraic equations and is not very easy 
implemented. In this report, it is attempted to reconstruct the final image using the 
inverse MZ-DWT, using application of filters as presented in the previous sections. The 
general fusion scheme is the following: 

The MZ_DWT-modulus maxima fusion scheme 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
---------------------------------------------------------------------------------------- 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The analytical decomposition modulus maxima fusion scheme 
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    In this report we will try to reconstruct the fused image using the inverse Dyadic 
Discrete Wavelet Transform, mentioned as Mallat-Zhong Discrete Wavelet Transform 
(MZ-DWT) 
  Aj+1 
 
                                                                             
 
D1j+1 
Horizontal                                                                                                           Aj 
subband              CΟLUMNS                                      ROWS                               
 
                                                                                                                                       
 
D2j+1 
vertical 
subband 

Reconstruction procedure at level j 
    The above scheme will be slightly modified and adjusted to the needs of edge 
representation, as follows: 

• the coefficients Aj+1 remain the same: they are the lowpass approximations of the 
input image at scale j+1, computed by cascaded filtering with the lowpass filter h, 
along both dimensions 

• the coefficients D1j+1 are replaced by the modulus maxima MaximaXj+1  at the 
horizontal direction 

• the coefficients D2j+1 are replaced by the modulus maxima MaximaYj+1at the 
vertical direction 

How the coefficients MaximaXj+1, MaximaYj+1 are computed? Simply by splitting  
the angle range in two intervals, one for the vertical and one for the horizontal direction, 
as illustrated below: 

 
 

red area=MaximaX                                                            yellow area=MaximaY 
    The points that are located within the red neighborhood, as indicated by the angle at 
point (x,y) and are found to be maxima will be referred as MaximaX(modulus maxima at 
x-direction) while those found within the yellow region will be considered as MaximaY.  

    h΄     h΄ 

    g΄ 

    g΄ 
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    The fusion scheme takes its final form: 
 
 
     Aj+1  of image 1                                                                      
                                                 Aj+1 
                   Fusion 
     Aj+1 of image 2                                                                      
                                                  
 
     MaximaXj+1 of image 1                                                                      
 
              Fusion                       MaximaXj+1 
    MaximaXj+1 of image 2                                                                                          A 
                                                                     CΟLUMNS                      ROWS                               
 
    MaximaYj+1 of image 1                                                                                                                                  
 
                    Fusion                MaximaYj+1 
    MaximaXj+1 of image 2                                                                      
 

Reconstruction procedure at level j 
 
    Following the above approach it is attempted to reconstruct the fused image, fusing the 
multiscale edges of the input images. Instead of combining all wavelet coefficients, we 
can fuse the two edge representations of the two source images. The fusion rule is simple: 
average the lowpass approximations and take the union of the edges. If an edge point (x, 
y) is found in both images then the one edge point will overwrite the other.  
   A sequence of results is presented in the following pages in order to test the algorithm. 
At first we attempt to evaluate the reconstruction result along different number of levels. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    h΄     h΄ 

    g΄ 

    g΄ 
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 “The MZ-DWT decomposition->modulus maxima calculation-> 
fusion->reconstruction procedure along different number of levels” 

 

 
Levels=1                                                   Levels=2 

 
Levels=3                                                       Levels=4 
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    We try another version: calculate the modulus maxima using the analytical approach 
using mathematical forms, the Gaussian scaling function and use the MZ-DWT 
reconstruction scheme to obtain the fused image.  

 
 
ANALUTICAL COMPUTATION 
 

 

 
                                               Levels=1                                                 Levels=2 
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                                     Levels=3                                         Levels=4 
Conclusion: As we can observe, the reconstruction from the edge representation is not 
perfect. On the contrary, it is very poor, as the final, reconstructed image still preserves a 
respectable amount of edges, which, of course, is not desirable. The result deteriorates as 
the number of levels is increased. As a solution, we can replace the value of the modulus 
maxima points (1 if the point is a local maximum, 0 otherwise) with the value of the 
Modulus of the image at this point. The result is much more encouraging, especially in 
the first two levels, but still it is not efficient.  

 
Levels=1                                         Levels=2 

 
Levels=3                                        Levels=4 
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    On the grounds that the MZ-DWT suffers from poor directionality, as only the two of 
the three orientations are represented in the coefficients, another solution needs to be 
found. As a final presentation, a novel method for multimodality medical image fusion 
proposed by Guilong Qu, Dall Zhang and Pingfan Yan is analyzed. It is based on the 
wavelet transformation modulus maxima and emphasizes the extraction of the edge and 
margin information [22]. The advantages of the algorithm are: 

• It offers better preservation of both edge features and component information in  
the fused image 
• Fusion can be performed at different levels 

    Wavelet transform modulus maxima has been used to extract explicit important 
features of images. However, it could become a mean for image fusion performance. 
Mallat and Zhong in [20, 21] introduced a projection algorithm that can compute an 
efficient, visually identical to the original image, approximation from their edges. 
However, due to complexity, the following scheme is adopted: 
 

The DWT-modulus maxima fusion scheme 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    At first, the input images are decomposed in the low and high pass subbands by using 
the Discrete Wavelet Transform, which has already been widely analyzed in the section 
2.1.1. As already mentioned, this transform decomposes each image into one low-
frequency subband image and three high-frequency subband images (one along each 
orientation) at each level. 
    The wavelet transform modulus maxima for each high-frequency subband are 
calculated using the analytical approach of section 2.2.2. 
    The information from each image is then combined using a certain fusion rule; average 
the lowpass subbands of the last level and select the highpass subbands of the greatest 
magnitude at each level of decomposition, as the larger absolute transform values 
correspond to sharper intensity change such as edges, lines and region boundaries [22]. 
    To make things clearer the general procedure is illustrated graphically in the following 
figure: 
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The DWT-modulus maxima fusion scheme for one level of decomposition 
 
                                                           LL1 

                              DWT                   LH1 

                              
                                                           HL1 

                                                           HH1 

 
 
 
                                                            LL2 

                              DWT                    LH2 

                                                            
                                                            HL2 

                                                            HH2 

 
 
                                                             LLfused 

 
                                                             LHfused 

                                                             HLfused 

                                                    HHfused 

    One thing to take into consideration is the number of decomposition levels to be used 
and the number of stages in which the modulus maxima will be calculated. These two 
numbers are not necessarily the same. For example, we can use four levels of 
decomposition and compute the modulus maxima only at the first level, which seems to 
be the optimum suggestion, as the first level preserves grater number of edges(=useful 
information). 
    Finally, it is worth making a remarkable notice: in order to achieve the best 
reconstruction result, when a point (x, y) is found to be a local maximum its value will be 
replaced by the value of the corresponding wavelet decomposition coefficient at this 
point. 
    The results of this approach are presented below: 
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                          Level 1, Qf=0.5299                               Level 2, Qf=0.4280 

 
                            Level 3, Qf=0.3056                              Level 4, Qf=0.2234 
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                           Level 1, Qf=0.4877                            Level 2, Qf=0.3958 

 
Level 3, Qf=0.2971                          Level 4, Qf=0.2416 

 



Wavelet transforms:                                                                                                                            page 133 

 

 
                        Level 1, Qf=0. 4957                                Level 2, Qf=0.4017 

 
                         Level 3, Qf=0.2952                                 Level 4, Qf=0.2270 

 



Wavelet transforms:                                                                                                                            page 134 

 

 
                           Level 1, Qf=0.4831                            Level 2, Qf=0.3896 

 
                           Level 3, Qf=0.2894                            Level 4, Qf=0.2176 
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    The evaluation results are summarized in the following table: 
 

Quality metric Qf 
 

“DWT maxima calculation and reconstruction ” 
 
      Image pair             Level 1       Level 2       Level 3       Level 4 

 
1 
2 
3 
4 

 
    0.5299    0.4280      0.3056      0.2234 
    0.4877    0.3958      0.2971      0.2416 
    0.4957    0.4017      0.2952      0.2270 
    0.4831    0.3896      0.2894      0.2176 
 

    **The computation of the modulus maxima was performed taking only one stage, 
while the decomposition levels had values in the range [1-4]. 
    Conclusion: The final algorithm proved efficient enough to fuse and reconstruct the 
two images from their multiscale edges, especially in the first two decomposition levels, 
where the result is impressive contrary to the methods presented before. It is worth 
mentioning that computing the modulus maxima of each highpass wavelet coefficient in a 
level higher than one produced exactly the same results, so our choice for only one stage 
of maxima calculation was proved efficient, simple and mainly fast!     
 
3.2.2 Chain representation fusion 
    Except for the point edge representation of the input images described in the previous 
section, there is another approach: the chain edge representation. Due to its complexity it 
will not be implemented and further analyzed in this report but we simply mention its 
main characteristics for academic purposes only.  
    Sharp variations of images often belong to curves in the image plane [Mallat and 
Zhong, 1992]. Along these curves the image density can be singular in one direction and 
varying smoothly in the vertical direction. These curves are sometimes more meaningful 
than edge points. Mallat and Zhong created a high-level structure, a set of chains of edge 
points in order to represent the image. Two neighbored local maxima points belong to the 
same chain if their respective position is perpendicular to the direction indicated by the 
Angle of the image at each point (x, y). The idea is to recover the curves along which the 
image profile varies smoothly, so maxima points are chained together only where the 
Modulus(x,y) of the image has close values [9]. The chain image representation is proved 
very useful in the image fusion process.     
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          Edge representation of a part         Chain representation of a part  
          from two images                              from two images 
 
                    image 1 part                                         image 1 part  
 
 
                    image 2 part                                         image 2 part  

 
 
 

                    
 
                   Enlarged selected part            The corresponding part represented  
                            of edges                                             by chains 
    Following this procedure one oriented graph for image is constructed. Fusion will take 
place in this form this time, so much more complicated fusion rules need to be developed. 
The goal now is to combine the two oriented graphs from the two images to a new one, 
from which the final, fused image will be reconstructed. This is not an easy part!! 
Distance measures between the nodes of the graphs, merging or deleting nodes needs to 
take place and so on. Graphs handling is a very complex and computationally insufficient 
problem. However the fusion result is satisfactory.   
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C h a p t e r    4 

Performance evaluation and comparison 
     Having widely analyzed the fusion algorithms based on wavelet analysis in the 
previous chapter, we attempt to evaluate and compare their performance via a well 
defined and objective, as possible, metric. This is not an easy part as meaningful 
comparison of image fusion techniques is often application dependant. We can evaluate 
the results through two approaches: 

• The qualitative one, based on the human vision system and observe the fused 
images, which needs experience and can be misleading 

• The quantitative one, based on a well defined mathematical quality metric 
     For the needs of the second approach, the quality metric Qf (mentioned in the previous 
section) is introduced, based on the presentation of Gemma Piella and Henk Heijmans 
[12]. Its advantage is that it is computed by “raw” data (the two input images and the 
fused one) without demanding the existence of a model-ideal (commonly known ground-
truth) reference image. Its disadvantage is that, in our implementation, the computational 
complexity and delay was remarkable, as the results needed a couple of minutes to be 
extracted and its performance deteriorates as the system equipment gets old and the size 
of the images increases. The fusion index Qf is an expansion of the quality index Q that 
was proposed by Wang and Bovik in [10]. 
    Given two real-valued sequences x = [x1, x2, …, xn] and y = [y1, y2, …, yn] the 
following terms are defined 
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    We compute the term Qo as follows 
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    which is a measure for the similarity of the vectors x and y and takes values between -1 
and 1. The maximum value Qo=1 is achieved when x and y are identical. 
    This measure can be expanded to images too.Instead of computing the above index 
point-by-point it was suggested to compute the quality index Qo over local regions and 
then combine the different results into a single measure. In [10], Wang and Bovik 
proposed the “sliding window approach’: starting from the top-left corner of the images a 
and b, a sliding window w of fixed size (with nxn pixels) moves pixel-to-pixel over the 
entire image until the bottom-right corner is reached. For each window w, the local 
quality index Qo (a, b|w) is computed for the values a (i, j), b (i, j) where pixels (i, j) are 
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within the window. The overall image quality index is computed by averaging all local 
quality indices, according to the equation: 
 

0 0
1( , ) ( , | )

| | w W

Q a b Q a b w
W ∈

= ∑    , 

where W is the family of all windows and |W| is the cardinality of W, the total number of 
windows applied.  
 

                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    
                    

     
    If the window falls outside the borders of the image then no action is taken and 
the window moves to the next pixel.   
    The above procedure can be expanded for the needs of image fusion performance 
evaluation. We define the fusion index Q (a, b, f), where a, b are the input images and f is 
the fused image. Again the fusion index is computed within a sliding window. This time 
we denote a saliency measure (e.g. the variance, the contrast, the entropy) s (a|w) in the 
window w. Given the local saliencies s(a|w) and s(b|w) of the two input images a and b, 
we compute a local weight λ(w) between 0 and 1, indicating the relative importance of 
image a compared to image b [11].      

( | )( )
( | ) ( | )

s a ww
s a w s b w

λ =
+

  

and the fusion index is computed from the following equation 
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    Thus in regions where image a has a large saliency compared to b, the quality index Qf 
(or Q (a, b, f)) is mainly determined by the input image a. Vice versa, in regions where 
the saliency of image b is larger than that of a, the input image b contributes to the 
computation of the quality index. In the following examples, the saliency measure to be 
adopted is the variance of the images a , b. As already mentioned, the computational 
complexity of the algorithm is high, since a great number of mathematical calculations 
along rows and columns are needed. A key point is the size of the window to be applied. 
In our implementation, the default window size was 8x8. It was proved efficient enough 
as it both extracted relatively quick results and preserved enough information from the 
input images. A window of larger size would delay the computation very much, 
especially when the input images were of big size (e.g over 256x256).  
   The algorithms presented in this report will be compared using this metric. A list of 
results follows. As a notice, we mention that the relatively low values of the quality index 
Q (a, b, f), from referred as Qf, are due to the form of the input images: medical, CT and 
MRI, images. On the grounds that some algorithms have poor performance as the number 
of levels is increased and others are more stable at the higher levels, the comparison takes 
place using two numbers of levels, 2 and 4. Some conclusions can be extracted 
immediately observing carefully the fused images, other conclusions are extracted 
through the quantitative results using the quality index Qf. The algorithms to be 
compared have the following properties: 

1. Discrete Wavelet Transform using symmetric orthogonal filters of size 10 
2. Discrete Wavelet Transform using filters of size 10 derived from the Symlets 

wavelet family 
3. Shift Invariant Discrete Wavelet Transform starting with the Haar wavelet 

family filters 
4. Dual Tree Complex Wavelet Transform, using both its Real and Complex 

version  
5. Modulus maxima fusion method with Discrete Wavelet Transform 

decomposition method using orthogonal filters of size ten, analytical modulus 
maxima calculation using the Gaussian scaling function of size 32 points at only 
the first stage 
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Test 1 : Number of levels = 2 
 
 

Image pair 1 

 

 
                            Qf=0.5813                                                   Qf=0.6325                                                            
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                            Qf=0.6714                                                  Qf=0.4280                                                             
 

 
                            Qf=0.6466                                                  Qf=0.6490                                                             
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Image pair 2 

 

 
                                  Qf=0.5740                                                  Qf=0.5955                                                       
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                            Qf=0.6287                                                 Qf=0.3958                                                             
 

 

 
                            Qf=0.6056                                                  Qf=0.6097                                                            
 
 
 
 
 



Wavelet transforms:                                                                                                                            page 144 

 
 
 
 
 

Image pair 3 

 

 
                            Qf=0.5549                                                   Qf=0.6621                                                            
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                            Qf=0.7022                                                  Qf=0.4017                                                             
 

 

 
                            Qf=0.6742                                                 Qf=0.6773                                                              
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Image pair 4 

 

 
                            Qf=0.5504                                                Qf=0. 6465                                                              
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                            Qf=0.6870                                                   Qf=0.3896                                                            
 

 
                            Qf=0.6593                                                 Qf=0.6620                                                             
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Test 2 : Number of levels = 4 
 

Image pair 1 

 

 
                            Qf=0.5282                                                   Qf=0.5631                                                            
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                            Qf=0.6270                                                  Qf=0.2234                                                             

 
 

 
                            Qf=0.6033                                                  Qf=0.6178                                                             
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Image pair 2 

 

 
                            Qf=0.5325                                                 Qf=0.5786                                                              
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                            Qf=0.6343                                                  Qf=0.2416                                                            

 
 

 
                            Qf=0.6097                                                   Qf=0.6205                                                            
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Image pair 3 

 

 
                            Qf=0.5114                                                  Qf=0.6288                                                             
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                            Qf=0.6868                                                   Qf=0.2270                                                            

 
 

 
                            Qf=0.6616                                                   Qf=0.6754                                                            
 
 
 
 
 



Wavelet transforms:                                                                                                                            page 154 

 
 
 
 
 
 

Image pair 4 

 

 
                            Qf=0.5114                                                    Qf=0.6124                                                           
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                            Qf=0.6888                                                 Qf=0.2176                                                             

 
 

 
                            Qf=0.6545                                                   Qf=0.6700                                                            
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        Although some conclusions could have been visually extracted, the summarization 
of the quantitative results will give us a clearer view of the image fusion evaluation 
problem  

 
“  O v e r a l l    c o m p a r i s o n ” 

 
                                                                                                 Quality index Q(a,b,f) 
          Method                     Number                          
                                                 of                                        Image pair 
                                              levels                                             
                                                                      Pair 1      Pair 2      Pair 3       Pair 4 
                                           2             
DWT using symme- 
tric orthogonal  filters                         4 
 
DWT  using filters deri-           2             
ved from the Symlets  wave- 
let family                                            4             
 
                                                           2 
SIDWT                 
                                          4 
                         
Real DTWT                     2 
                            
                                          4 
Complex DTWT             2 
 
                                         4 
Modulus Maxima           2   
      reconstruction 

                             4 
                            

 0.5813         0.5740         0.5549           0.5504 
 
 0.5282         0.5325          0.5114          0.5114  
 
 0.6325         0.5955          0.6621          0.6465 
 
 
 0.5631         0.5786          0.6288          0.6124 
 
0.6714      0.6287       0.7022       0.6870  
 
0.6270      0.6343       0.6868       0.6888 
 
 
0.6466           0.6056          0.6742         0.6593 
 
0.6033           0.6097          0.6616         0.6545 
 
0.6490           0.6085          0.6773         0.6620 
 
 
0.6178           0.6205          0.6754         0.6700 
 
0.4280           0.3958          0.4017         0.3896 
 
0.2234           0.2416          0.2270         0.2176 
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C h a p t e r    5 
 

C o n c l u s i o n 
 

     Taking a look at the table above we notice that the SIDWT outperforms the other 
image fusion algorithms based on wavelet analysis. This was not surprising as it evolved 
as an improved version of the Discrete Wavelet Transform, which constitutes the basis 
for wavelet analysis techniques. On the contrary, the technique based on image edge 
representation through the modulus maxima calculation was proved poor enough over the 
third level of decomposition. These two conclusions were confirmed from all the input 
image pairs. Another very important issue is that the Complex Dual Tree Wavelet 
Transform is the only technique that has increased performance as the number of 
decomposition levels gets higher! In general, the performance of fusion process 
deteriorates rapidly as the number of levels increases. 
    The DWT fusion method provides a computationally efficient image fusion technique. 
It is simple and fast enough and can be easily expanded to different “versions”. Its 
performance is efficient, qualitatively, as a visual result and quantitatively, as a quality 
measure result. Its main disadvantage is the presence of shift-variance and the poor 
directionality.  
    The SIDWT fusion method is definitely an improved expansion of the DWT offering 
better performance results with the cost of inserting more computational complexity, as 
the amount of data to be processed is not decreased between the different decomposition 
levels (subsampling is discarded). Comparing to the DWT method the complexity is of 
factor O (logN2) while the regular Discrete Wavelet Transform has a complexity of factor 
O (logN). The performance is improved contrary to the DWT; the new transform is now 
shift-invariant but still suffers from poor directionality. However, as mentioned, it suffers 
from excessive redundancy. 
    The Dual-Tree Discrete Wavelet Transform comes to overcome the limitations of the 
two previous techniques. It is shift-invariant, offers good directionality as the two 
diagonal orientations are now present in the fused result, it is non-redundant as the data to 
be processed are subsampled but has a more complex structure. As the number of 
decomposition levels is increased this transform outperforms all the other, so it is highly 
recommended for a large number of analysis stages. 
    Finally, the fusion method using the edge representation of the input images proved to 
be the poorest image fusion technique, especially after the third decomposition level. The 
main difference, comparing to the other methods presented, is that this is a feature-level 
based wavelet fusion method, which combines the high-level sparse representations of 
the input images, in the form of multiscale edges (wavelet transform modulus maxima) or 
chains of such edge points in order to fuse the images. The advantage of this technique is 
that the sharp characteristics of the initial images are preserved in the final image in a 
better way. In addition, by suitably thresholding the edges of the source images it is 
possible to control the edge information to be retained in the fused image, especially in 
cases where there is some pre-knowledge about the importance of certain types of edges 
[9].     
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    However, it is not an easy part to completely determine which algorithm is optimum. 
The evaluation comparison is deeply application dependant and not totally objective. The 
same algorithm can perform in a different way when applied to a different input or when 
its parameters are altered. For example, the use of different filter structure (e.g. the size of 
the filters or the wavelet family from which they are derived), or the increment of the 
decomposition levels may deteriorate or improve the performance of a method contrary 
to one other. For example, the DT-CWT overcomes the other transforms after the fifth 
decomposition level. 
    Taking all these into consideration, we conclude that the image fusion problem is a 
very complicated and “thin” issue. In this report, most of the basic wavelet transforms 
were presented and deeply analyzed and the important issues on image fusion were 
discussed. Having introduced the theoretical background it is then up to the researcher to 
decide the most efficient way to apply theory in practice according to the needs of his/her 
application. 
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Α p p e n d i x 
 
A. Categorization of fusion methods 
    Depending on the level of description in which information is fused, image fusion 
takes place in the following levels:    

• pixel-level, also known as picture or data or signal level. Fusion of images in  
this level is the process of combining two or more spatially registered pictures in an 
“enriched” one. Images are described in the spatial or frequency domain. The 
characteristics in each separate initial source image should be preserved or enriched 
in the fused image and any artifact should be avoided. Multiresolution techniques 
have a particular application in this category.    
• feature level .In this level the initial images are described by edge or region  
maps, shape feature values, fuzzy measures, probabilities e.t.c. It requires algorithms 
in order to recognize objects based mostly on the statistical characteristics of 
dimension, shape, edges, and regions. Segmentation algorithms have been proved 
useful.   
• decision level, also known as symbol level. It separately processes the entry  
images in order to derive information and applies decision rules to achieve common 
interpretation and remove the differences. 

Image fusion levels 
L e v e l D e s c r i p t i o n  

Pixel level 
(Data or image or signal 

level) 

 

The lowest of the three levels, description of the 
information in its raw form.The aim is the 
representation of the visual information provided by 
the input images in a fused image without distortion 
or loss of the original information. 

 
 

intermediate 
 

 
 

 
 
 
Feature 

 
 

       feature 

 
 
Demands algorithms capable to recognize objects in 
the various,different sources of information,based on 
statistical features of dimension,shape,edges,or 
regions.Segmentation methods have been proved 
useful for this category  

 
Decision level 
(Symbol level) 

 
Processes the input images seperately in order to 
derive information and applies decision rules to 
achieve common representation and remove 
differences and inconsistencies  
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    The basic categorization of methods of image fusion that is followed in this text is 
done depending on the three levels of description in which the information is fused, that 
is  
• Pixel level 
• Feature level 
• Decision level 

A schematic representation of the fusion process in the three levels above is the  
following: 
 
Image 1       Image 2    …  Image N                  Image 1         Image 2   …  Image N                  Image 1          Image 2  …  Image N 
 
            

 
 
 
 
 

Pixel level                                 Feature level                              Decision level 
 

    We can notice the difference of the levels. They have the same structure but as the 
level gets higher one more abstraction-processing segment is added.  

A detailed correspondence of most known methods to one of the levels above and 
their general description follows, without focusing so much in the mathematic 
background and the implementation algorithm 
 
 
 
 

Fusion 

Fusion 

Fusion 

Feature extractor Feature extractor 

Feature Identification 

Evaluation Evaluation Evaluation 

         

Result Result Result
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A.1Pixel-level Image Fusion (also known as Image Merging)   
    This category is the most popular and most widely adopted by the researchers and the 
implementators. Fusion of images in pixel-level refers to the process of combination of 
two or more spatially registered images in an enriched, fused image. The 
combination/fusion takes place in the level of pixel description .The real time description 
is a new image that is represented by a spatial array, mostly containing values by 
applying nymerical or statistical transformations to pixel densities of the source images. 
When fusion takes place in the frequency domain an inverse transformation is required. 
Fusion operators are usually averaging or selective while the fusion rule may be different 
[3]. 
   Up to day, fusion of images in pixel level is used mainly in order to create enriched, 
fused images with characteristics for human observers. 
   The general requirements of this category are summarized in the following: 
• Pattern conservation: The relevant, basic information in the initial input image 

should be preserved in the final output image too. No loss of “crucial” data is 
allowed. 

• Minimal inconsistencies and artifacts: The implementation schema should not 
insert additional, non-existent or inconsistent elements that will cause confusion in 
the observer or in the next processing stages. 

• Shift and rotational invariance: The fusion algorithm should be invariable to the 
change of position and rotation of the image or some object, always giving the same 
results. 

• Robustness to registration errors: The algorithm should not be sensitive to errors in 
the position and the one-to-one matching of the pixels of the input images. 

   The most common drawbacks of this category are the facts that: 
1. The output image suffers from blurring effects due to filtering and artifacts. 
2. The pixel-level based techniques are very sensitive to noise. 
3. There is sensitivity to imperfections in the source images and the sensors that 
provide the information. 

   Most image fusion methods are based on multiresolution analysis. Other methods 
include IHS fusion and fusion based on probabilities. In the following table the categories 
of fusion methods in pixel level and their general explanation are summarized. 
A more analytic approach and description of multiresolution fusion and multispectral 
techniques follows. 
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Categorization of pixel-level image fusion methods 

 
Category 

 
Methods 

 
Description 

 
Linear 

superposition 

PCA analysis,IHS ,RGB 
method,averaging 

Probably the most direct way to fuse 
images.Implements fusion as a linear 
combination weighted by all input 
images.   

 
Non linear 
methods 

 
 

Bayesian model 

One more simple approach by using 
a simple non-linear operator e.g. 
min,max or a morphological operator 
or,to another aspect,image algebra 

 
 

Optimization 
approaches 

 
 

Hidden Markov trees 
methods 

Image fusion is expressed as a 
Bayesian optimization problem, 
using a-priory model of the fusion 
result in order to find the image that 
optimizes the a-posteriori possibility  

 
 

Artificial neural 
networks 

 
 

Newman and Hartline 
approach 

 
Inspired by fusion of signals taken 
by sensors in biological systems, 
researchers established neural 
networks to pixel-level image fusion 

 
 

Image pyramids 

Gradient, difference, 
morphological, 

averaging, 
contrast, ratio 

pyramids 

Image pyramids are a sequence of 
images where each image is 
constructed by lowpass filtering and 
downsampling of its “ancestor” 
image  

 
 

Wavelet 
transform 

 
 

MWD 
2DWT 

Relevant to the category above with 
the difference that this transform 
leads to non-redundant 
representation of the image having as 
a disadvantage  its shift dependency  

 

 
 

Multiresolution 
fusion scheme 

Includes the 2 categories 
above, 

Toet’s method, 
Burt’s method, 

Wilson’s method, 
Yocky’s method, 

Region-based method 

The basic idea lies to the fact that the 
human vision system is especially 
sensitive to local contrast changes 
e.g.edges.The fused image arises as a 
combination of multiscale edge 
representation  
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A.1.1Multiresolution image fusion  
A.1.1.1 Introduction to multiresolution analysis 
    Undeniably the most important method for pixel-level image fusion is the last of those  
mentioned before, multiresolution image fusion, a hyper-generalized technique that 
includes, among the others, the method of pyramids and its “relative” approach, the 
wavelet analysis. The hierarchical fusion model based on multiresolution decomposition 
and reconstruction of images, has become a subject of research for the last 20 years.  
    The basic idea lies in the fact that the human visual system is especially sensitive to 
local contrast changes e.g. edges. Motivated by  this conscience and having in mind that 
both image pyramids and wavelet analysis  lead to a multiresolution edge representation 
we are immediately lead to the generation of the final, fused image as a combined/fused 
multiscale edge representation. The “building”-“construction” process is summarized 
below: 
   In the beginning, the input images are decomposed into the multiscale edge 
representation using either a pyramid technique or a wavelet transform. Two kind of 
information are generated: the high-pass information, which contains the detailed parts of 
the source image and the low-pass information. The real fusion process takes place in the 
relevant domain, where the final multiscale representation is created by a pixel-to-pixel 
selection of the factors, both of the high-pass and low-pass coefficients, having the 
maximum value. Ultimately, the fused image is calculated by application of the suitable 
reconstruction schema [23]. The general multiresolution fusion scheme is the following 

 
General multiresolution image fusion scheme 

 
    A subset of the approach above is the fusion of images that is based on various 
pyramid types, which differ in the type and in the rules for the selection of the 
characteristics-coefficients. The decomposition of image pyramids can be implemented 
by using Gaussian, morphological filters and the 2-D discrete Wavelet Transform 
(2DWT). The pyramidical approach is described in the following pages. 
    The image fusion schema that is based on pyramid techniques can be considered as an 
approach of pattern selection since an image can be described via a sequence of levels. 
The characteristics are presented only in a given range of levels. Combining the 
characteristics of these different levels obtained by each input image using concrete 
criteria, the most important characteristics are presented in the final, unified image. This 
process can be valued in the three following stages [24]: 
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• stage of decomposition, in which the pyramid description  is constructed from each 
of the spatially registered source images 

• stage of fusion, where the description for the fused image is constructed by selecting 
values from the corresponding nodes in the component pyramids. The selection rule 
depends on the reliability of sensors, the performance measure and the values of 
intermediary nodes and the kind of application. 

• stage of reconstruction, where the final picture is recovered from its pyramid 
representation through the corresponding reconstruction procedure. 

 
Image fusion based on image pyramids 

    The construction of multiresolution description initially requires that the source images 
acquire the same size, using a certain method, if they haven’t already done so. Then the 
image representation as pyramid in levels is created. The initial picture constitutes the 
minimum level of pyramid, the "beginning point". Each node of pyramid is acquired by 
sampling the filtered “version” of the previous level. Thus for each of the N levels the 
following equation stands  

1≤k≤ N  
Pk=REDUCE (Pk-1) 

where the REDUCE operation is a filter of reduction of the pixel density and the 
resolution-size of the image pyramid (usually by a factor of 2). 
   The pyramids convert the local characteristics of the images to general ones. Each level 
maintains the characteristics of the initial image in a concrete degree. The initial image 
can be recovered by inverting the procedure above. For the construction and 
reconstruction of the pyramid levels sampling (downsampling/upsampling respectively) 
is required so that redundancy is removed, having the cost however to insert undesirable 
high frequency noise due to aliasing. Reducing the number of decompositions levels 
eliminates the processing redundancy, which means less complexity. Having fewer levels 
also means that less sub-band images are created, which reduces the possibility of errors 
in the reconstruction process, as fewer discontinuities are inserted during fusion. 
However, fewer levels also mean fewer detail data extracted from the sub-images. 
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   The construction of the fused image pyramid is based on the following three basic 
fusion/selection rules: 
• sample-based, where the comparison of coefficients in the corresponding positions 

takes place without taking into consideration the coefficients in the neighbor pixels, 
with the cost of the sensitivity to noise. Only one pixel, the corresponding pixel to the 
particular position, from each image is compared and participates in the claculation of 
the corresponding pixel value in the fused image.     

• window-based, where the comparison of coefficients in the corresponding position 
takes place with comparison of 3x3, 5x5 windows centered in these positions.  

• region-based, where decisions are taken based on the object in which the pixel 
belongs to.It is the most general set of fusion rules, as each pixel is corresponded to a 
large set of pixels that form an object in the source image.  

   The fusion rules above are more clearly explained in the following figure 
 

 
Schematic explanation of the two basic fusion rules 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Wavelet transforms:                                                                                                                            page 166 

A.1.1.2 Description of multiresolution fusion methods 
    The most common multiresolution techniques found in bibliography are the following: 
1. Maximum Contrast Selection or Toet's method (contrast pyramids) 
   This method is based on the fact that the human vision system is sensitive to local 
luminance contrast. According to Toet’s analysis the ratio of lowpass images in 
successive levels of the Gaussian pyramid is calculated. As a result a luminance contrast 
pyramid is created having the property that each of its level is the ratio of two successive 
levels of the Gaussian pyramid of decreased size according to the relation 

                  (1) 
where the EXPAND (Pk+1) function interpolates the image-subimage to the higher (k+1) 
level by filtering with a suitable “construction” filter and upsampling and Rk, Pk are the 
contrast and the Gaussian pyramid respectively. 
  The contrast pyramid is a complete representation of the initial image, which is 
reconstructed immediately by inversing the steps of pyramid building 

     (2) 
   When two images A and B are fused, the ratio of their pyramids is constructed and the 
final, fused pyramid is built by applying a selection criterion based on the maximum 
absolute value of contrast 

     (3) 
where Rk(x, y)s are the fused pyramids, the pyramid of image A and B respectively in 
level k 
   The final image is reconstructed by its pyramid according to the second relation. 
Conclusion: This method manages to offer more information for observation by 
selecting details of the maximum contrast but does not take into consideration the fact 
that these contrasts appear in noisy images. As a result the method chooses the points that 
have been affected more by noise; hence it loses information about the corresponding 
desirable sections. 
 
2. Salient pattern selection or Burt's method  
   Contrary to the method above Burt used other selection metrics in order to make the 
details more obvious and distinct. Thus, at the points where the images differ obviously 
the most clear-sighted patterns are selected by the pyramids while the less obvious are 
rejected. At the same time, at the points where the images are similar the patterns are 
calculated on average, which contributes to the removing of noise and to the existence of 
stability at the points where the initial images have similar characteristics. The degree in 
which we determine how clear-sighted a pattern is depends on its contribution to the 
representation of scene information. Thus, a pattern has a great distinctness degree if it is 
relatively noticeable by the eye in the initial image,” it seperates". Various mathematic 
models are used for this determination. 
Conclusion: This method manages to decrease the effect of noise and preserve the details 
of low contrast if these are the “distinct characteristics". The main problem however is 
that the metrics are calculated in absolute values for pyramids. Moreover the 
determination of the size of the window to be applied for the neighboring contour is 
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ambiguous, since windows of small size do not eliminate the noise and windows of big 
size tend to blur the patterns.  
 
3. Perceptually Salient pattern selection or Wilson's method 
   This method constitutes an improved extension of the previous method taking into 
consideration the frequency response of the human optical system. It avoids the case 
where the energy of images that are not perceptual to the human eye becomes dominant 
in the image fusion rule. Thus, which part of the input images will be calculated by 
averaging or not, in order to eliminate noise, is determined by the sensitivity in the 
analyst’s contrast. The metrics for the determination of distictness are redesigned 
including the perceptible energy in a given set of the information-detail. 
 
4. Yocky’s Mwd-based image fusion 
    This method creates a general background for MWD (Multiresolution Wavelet 
Decomposition) image fusion. According to Yocky, each level of an N-dimensional 
pyramid built by MWD consists of three detailed images in this level of resolution with 
the highest level being the N-th approach in the wavelet decomposition. In each level of 
the resolution pyramid the images can be evaluated and manipulated how they are being 
reconstructed. Each stage of reconstruction can include various techniques such as 
conservation of energy, edge enhancement, contrast stretching e.t.c. and the wavelet 
coefficients can be arithmetically or logically manipulated as it happens in the simple 
case of wavelet substitution and reconstruction. 
   The most common case of application of this method is reported for image fusion of 
two different sensors: one that provides data of high spatial resolution, having the cost of 
high spectrum bandwidth and a second one that provides low-resolution multi-spectra 
data, having the cost of the spatial resolution. Thus we have a combination of 
panchromatic data and low-resolution multi-spectral data. The MWD is used in order to 
decompose the two categories of images above in three different levels: 1/2, 1/4 and 1/8. 
Then new pyramids are manufactured for each color band importing its 1/8 color 
approach in the 1/8 panchromatic pyramid. Inverse transformation is applied in each 
pyramid in order to receive the final, fused image. 
 
5. Additive MWD image fusion or Nunez method 
   Nunez proposed that instead of fusing each colored element we should convert the 
multi-spectra image into the hue-intensity-saturation (HIS) space and fuse the intensity 
component only with the panchromatic image. The decomposition of the input images in 
wavelet level is achieved using the "a trous" Discrete Wavelet Transform. Each pyramid 
level is computed as the difference between two consecutive approximations. All levels 
of the pyramid should be summed up as well as the residual in order to recover the image. 
It should be marked that the pyramid built by this way has the same size at each level 
since this algorithm is non-orthogonal oversampled transform. The new intensity values 
are converted again into the RGB model with” old" elements H and S. 
Conclusion: Nunez supports that by this additive method the detailed information  
from both images is used and since the difference pyramids have zero mean, the total 
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flux of the multi-spectral image is preserved. However the fact that the components are 
added leads to the effect that intensity exceeds the range of gray-levels and the result 
should be re-scaled with the cost of color distortion. 
(For more information about the methods above refer to [3]) 
 
6. Region-based MWD fusion   
    This method is based on the fact that each pixel belongs to an object. Thus the 
decision-making on each coefficient should also take into consideration the wider region 
they represent. Features such as edges and regions are guiding elements for image fusion 
that takes place in the following stages: 

1. Edge detection using an operator leading to the generation of edge images that 
provide information about the location and the intensity of edges in the initial 
images. 

2. Segmentation of regions based on the information above. 
3. The activity of regions is calculated by averaging the high-resolution wavelet 

coefficients. Bigger values of activity mean that the region contains more 
information [5].  

 
7. Gradient-based image fusion 
    The information is presented in the gradient maps domain. Contrary to the coefficients 
of wavelet pyramids, whose size is only a clue of the distinctness of features within a 
pixel neighborhood, the absolute size of the elements of gradient maps is a precise, direct, 
spatial indication of the feature contrast. Moreover the elements of maps contain 
information from all spectra which adds reliability to the selection and the fusion of 
elements. That’s why this method achieves important restriction to the distortion of the 
fused visual information [25].  
 
8. Image pyramids 
   Generally, an image pyramid is a set of simplified versions of the initial source image 
in which its size is decreased. As a result different levels-pyramid parts are created. Each 
level inludes the low-pass or approximation pyramid and the high-pass or detail 
pyramid. In the low-pass pyramid, the lowest level (also mentioned as zero level) image 
is the original source image X and each of the following level images X (k), (k>0), is built 
by filtering and sub-sampling of the previous level image X (k-1). Then, the high-pass 
pyramid at each level is built by interpolation of image X (k) and the resulting image Y (k) 
is created by substraction of X (k) from its predecessor X (k-1). The resulting image Y (k) at 
each level contains only the information lost from one level to the other, does not keep 
useless data.  
   Usually, this method is implemented as a process of features selection that transfers the 
most important coefficients of the input pyramids to the pyramid of the final image, 
which is converted to the fused image via the reconstruction procedure [26].The 
advantage of this method is the fact that: 

1. it can provide information on the sharp contrast changes of the images, which is 
directly noticeable to hyman eye 

2. it can provide both spatial and frequency dimain localization 
   The most common image pyramid schemes are shortly inttroduced below: 
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• Gaussian and Laplacian pyramids: a Gaussian pyramid is a sequence of images 
in which each image is a filtered and downsampled copy of its predecessor one. Due 
to sampling, the size of the image is subdoubled in both spatial dimensions in each 
stage of the decomposition procedure, leading to a multiresolution signal 
representation. The difference between the input image and the filtered one is 
essential so as a precise reconstruction by the representation of pyramid to be 
allowed. This approach leads to a representation of signal with two pyramids: the 
smoothing pyramid that contains the average pixel values and the difference pyramid 
that contains the differences in pixels e.g. edges. The difference pyramid can be 
considered as a multiresolution edge representation of the entry images. The 
procedure of the decomposition of the initial image to pyramid structure is named 
REDUCE and the process of interpolation of an image of higher level in the pyramid 
is named EXPAND. The successive application of the REDUCE operation in an 
image leads to the smoothed pyramid (Gaussian pyramid) and the application of 
Gaussian filtering followed by an abstraction process leads to the difference 
pyramid(laplacian pyramid).The image is reconstructed by the Laplacian pyramid 
inversing the steps above 

 
• .Gradient pyramid: the process above is followed with the difference that one 
other mathematic background (different values of the filters applied) is used. The 
reconstruction is implemented by converting the Gradient pyramid to Laplacian and 
the Laplacian to Gaussian pyramid. 
• Morphological pyramid: it differs as regards the mathematic calculations for the 
pyramid building. Morphological filters are used where the intensities of objects are 
preserved, thus the appreciated position of the contours remains unchanged. This 
filters abstract details from the image (foreground and background) which are less 
relevant to each structural element and are suitable for shape extraction 
• .Contrast pyramid: it is built by dividing each level of the Gaussian lowpass 
pyramid with the extended “version” of the next level. Each level of the pyramid 
contains information only about the corresponding level of the Gaussian pyramid. 
Moreover, the size of the pyramid coefficients is a measure of the contrast and the 
fusion of the final pyramid is achieved by the selection of the coefficients that 
correspond to the values of maximum contrast in each position of the pyramid. 
 

9. Wavelets    
   It is a mathematic tool that was initially developed for signal processing, however it can 
be used in the frames of MRA (multi-resolution analysis). The wavelet transform 
generates a sequence of elementary functions (wavelets) from arbitrary functions of finite 
energy. The weights assigned to wavelets are the wavelet coefficients, which play an 
important role in the determination of the structural features in a given scale and position 
[9].     
   The basic schema is the following: 
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• Discrete Wavelet Transform: it is successfully applied to image fusion 
applications based on DWT decomposition using Mallat’s implementation algorithm. 
The DWT pyramids are fused using metrics of energy calculated for each pixel such 
as the maximum absolute coefficient value in a surrounding region of neighboring 
pixels or simply using the sample-based rule. It produces a non-redundant image 
representation, a fact that offers better spatial and spectral localization of information 
in relation to other multiresolution representations. However it introduces errors to 
reconstruction and ringing artifacts when changes and discontinuities are imported in 
the subband coefficients values.  
• Dual-Tree Complex Wavelet Transform (DT-CWT):it applies repetitive 
different spatial filters in order to produce frequency subbands in a similar way as the 
classic discrete wavelet transform.The number of subbands is twofold in this case. 
• Discrete Dyadic Wavelet Transform (DDWT) 
• UDWT: 

 

 

• Redundant Wavelet Transform: 
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A.1.1.3.Conclusions for multiresolution image fusion 
Summary: 
    Certain questions immediately originated about the multiresolution techniques are:  

• Which pyramid technique is better for the image fusion problem? 
• To what resolution level should images be decomposed? 
• Which fusion rule is preferred? 
• How the algorithm performance is evaluated? Is there any objective criterion for 
all applications? 

    The answer cannot be absolute! Everything depends on the application and the 
attributes of the entry images. Concepts such as stability of techniques to imperfections of 
the entry images (such as misregistration) or artifacts in reconstruction where redundant, 
non-relevant information is imported "from nowhere" during reconstruction should be 
seriously taken into consideration. 
 
Advantages of multiresolution scheme: 
• Flexibility: the information(the “scene”) is described on different resolution  
scales. The number of levels is selected depending on the resolution requirement and the 
computation load. 
• Compactness: the redundant information is removed decreasing the pixel intensity as  
long as the level is increased, preserving the memory requirements in reasonable bounds. 
• Feature conservation: features both in fine and coarse scale are preserved in the 

final image. 
• Feature enhancement: with suitable criteria the features of the entry images can be   
enhanced and become more recognizable by the human eye-observer. 
 
Restrictions of multiresolution scheme: 
• Introduction of noise: sampling, used for the pyramid “building” and the  
reconstruction of the final image has as a result the introduction of high frequency noise 
and interpolation due to aliasing.   
• Restriction on images size: pyramid algorithms require certain image size. As a  
result zero-padding is needed, which introduces noise on the edge. 
• Preprocessing of source images: Before the application of algorithms registration of  
the source images, sampling or histogram matching are required. Except for the increased 
computational activity, errors during the preprocessing stage can introduce noise and 
feature distortion on the fused image. 
   The above multiresolution techniques are summarized in the following table: 
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A.1.2. Other methods (Multispectral techniques) 
 

Linear superposition 
1. Principal Component Transform (PCT) or Principal Component analysis (PCA)  
   It summarizes and decorrelates the images by removing noise and redundancy and 
packing the residual information in small sets of images, termed principal components. 
These components are rank ordered by the magnitude of their variances (eigen values) 
[27].Therefore, most of the spectral contrast is pushed forward to the first few 
components with an increase in the signal-to-noise ratio of these components. The flow 
chart of the method is the following: 

 
PCT-based fusion algorithm 

 
 
2. HIS transformation 
   Another pixel-level fusion method is HIS fusion. It is used when a low resolution color 
image and a high resolution monochrome one are joined in order to create a color high 
resolution image. It is based on the transformation of the source images intensity 
components from the RGB model to the HIS and the replacement of intensity 

 
Image 

pyramids 
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-Laplacian 
-Contrast 
-Gradient 

-Morphological 

 
Wavelets 
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-DDWT 
-UDWT 
-RWT 
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Analysis 

 
 
 
 
 

 
 
 

Other 

-Maximum Contrast Selection 
-Salient Patern Selection 

-Perceptually SPS 
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-Additive MWD fusion 
-Region-based MWD fusion 

-Gradient-based fusion 
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components with the monochrome image and the retransformation to the RGB color 
image as seen in the figure below: 

 

Probabilistic image fusion 
    In the previous methods selection or averaging was mostly used to reconstruct the final 
image. In the probabilistic method  the mapping from the true scene to a sensor image is 
modeled  as a noisy, local affine transformation whose  parameters are allowed to vary 
across the image[1].Taking into consideration the parameters of transformation 
probabilistic models are used, such as the Bayesian MAP and ML rules, in order to 
evaluate “the true scene” value. This model produces cleaner images when the source 
ones have been affected by noise. The restrictions of this method are summarized below: 
• the sensor parameters are estimated based on local pixel values 
• the image formation model is assumed to be linear and the noise is normal 
• the evaluation of parameters is performed locally, thus for each new patch the fusion 

model should be recomputed, which increases computational complexity. 
 

Performance evaluation for pixel-level algorithms 
    As already reported, the determination of metrics for the performance of the various 
algorithms is not absolute and objective. It depends on the applications, the source 
images, the sensors, the algorithms. The most acceptable method is the root mean square 
(RMS) error, which is defined as  

 
where c is the initial value and c^ is the value of the fused image. This quantity is 
calculated for each pixel and afterwards the mean value is selected. 
   This metrics offers facility in calculation and provides the average deviation from the 
ideal image. However, since the objective of pixel-level algorithms is to create images 
with enhanced features for human observer another statistical metrics is used, the Mutual 
Information, in order to compare the methods based on their faculty to preserve and 
enhance those features that are sensitive to be observed by human eye. 
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A.2. Feature-level image fusion 
    Feature level was created in order to overcome the drawbacks of pixel-level fusion 
methods such as blurring, sensitivity to noise and imperfection of the source images.The 
theoritical background under this level is that instead of fusing images based on their raw 
data form, pixel densities,we should be based on a more robust and clear data form, 
image features.They consitute a more abstract and less complex structure that is stable, 
capable of fully representing the source image and less possible to produce errors in the 
output image     
    A feature can be considered as an elementary or basic attribute in an image or in a 
region of an image. The first type of features is associated with the objects in a scene. 
Such features may describe the shape of the object, the texture or a combination of them. 
The second type of features is associated with distortions or abnormalities in the 
generation of image. The techniques of this category are relational to the field of pattern 
recognition and image segmentation. Raw image data will be transformed in the output 
into a suitable representation, which depends on the application and the method followed, 
such as image segments or signal amplitude or as shape, length, or orientation of objects 
in an image. Raw image data are transformed into features via certain mechanisms named 
as “feature extractors”.The output of the extractors is the input of the feature level 
scheme, usually in the form of vectors containing values that uniquely describe features 
according to the method adopted and the application in which fusion takes place.  . 
    Feature level fusion techniques require the extraction of objects from the image, either 
manually or automatically. These features can be detected using geometric or structural 
characteristics (e.g. edges), statistics or spectral properties. Features are extracted from 
the images using proportional techniques and are transmitted in classifiers for class 
recognition, which is the ultimate goal of most object recognition systems. The classifiers 
determine the status and the kind of the feature; they simply “decide what it is”. “Is it a 
region, an edge or something else?” Features can be edge maps, lines, moments, Fourier 
descriptors, height-width ratios or any compact characterization that is suitable for the 
description of the problem.  
   The segmentation features include points of interest, edges and regions. Even if these 
two significances are considered as “dual”, they refer to two different image properties: 
local differences and global homogeneity [28]. Their behavior is different on certain parts 
of the image due to the complexity of the real image and does not always coincide with 
the ideal model of edges-regions. For most compact features the classification can be 
performed on each set of features independently or on the set of all features. 

 
Feature level fusion framework 
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    Features are extracted from each of the sensor data, followed by a registration step, 
usually performed at the level of regions of interest or image segments containing more 
than one pixel. Such a co-registration of features from individual sensors is often 
easier to achieve than pixel level fusion. A detection/classification algorithm can then 
be applied on the combined feature vector characterising a region of a certain spatial 
extent. Feature level fusion involves extracting feature vector information and creating a 
single feature vector for identifying an object.  
    From all the above it becomes obvious that the feature extraction mechanism 
plays a very important role in the fusion process. The creation of a robust feature 
selection scheme and a sophiticated feature extraction technique becomes critical.    
    One method of achieving feature-level fusion is with a region-based fusion scheme. An 
image is initially segmented in some way to produce a set of regions. Various properties 
of these regions can be calculated and used to determine which features from which 
images are included in the fused image. This has advantages over pixel-based methods 
as more intelligent fusion rules can be considered, based on actual features in the 
image, rather than on single or arbitrary groups of pixels. 
   Advantages-objectives: 

• Fusion at the feature level has many advantages, especially for medical 
application such as multi-modality tomography. In particular, there is no need to 
put reconstruction procedures or image format in a specific form; processing is 
facilitated at each modality unit; the amount of information to be transmitted to a 
central processor unit can be reduced. It is less sensitive to noise, less 
computationally complex and more intelligent fusion rules can be adopted. 

• Feature level fusion, combines various features.  Those features may come from 
several raw data sources (several sensors, different moments, etc.) or from the 
same raw data. In the latter case, the objective is to find relevant features amongs 
available features that might come from several feature extraction methods. The 
objective is to obtain a limited number of relevant features. 

   A synoptic presentation of feature-level image fusion methods follows. It should be 
marked that the existent bibliography for the techniques of this level is too much limited.       
   The following methods have been reported [27]: 

• parametric templates 
• hierarchical clusters 
• neural networks: the most effective of the rest methods, especially in medical 

applications. It performs a nonlinear transformation between an input vector and 
an output feature. It is fed by multiple images taken on different planar views and 
produces an output image of clearer view and higher quality. By using a suitable 
training set the network produces the output from its associated input within 
seconds, after it has generated association function between the input and the 
output computing random interconnection weights. These functions will be used 
later for any input to produce the appropriate output. However high training level 
is required in order to achieve the transformation function.  

• knowledge based approaches: an alternative neural network method that 
emulates the cognitive processes used by human. It emphasizes the use of certain 
production rules and computational logic. Unfortunately it requires a considerable 
high level of training 
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    The following four methods have been more extensively reported: 
1. Multi-Spectral Cooperative Segmentation 
   It is used for edge point fusion according to which an edge-thinning algorithm is used 
in order to preserve a simple pixel in the orthogonal direction of the edge. A majority or a 
maximum-weighted-sum rule is used for the selection of edge points and the 
determination of their direction. 
   The multi-spectral region is extracted by the different mono-spectral images which are 
processed in parallel but with explicit information exchanges and synchronization. An 
area is considered a multi-spectral region if it is multi-spectral homogeneous enough. The 
computation of the homogeneity criterion should be applicable in the area of each mono-
spectral image [3].    
    
2. Binary Edge Map Fusion by Majority Voting Rule 
   Binary edge maps obtained from multi-spectral images are fused pixel to pixel using 
the majority voting rule. Edge maps are obtained with application of edge detection 
algorithms from all the different spectral channels. The fused edge information is 
achieved creating the “majority vote" and "score" images from the maps. Each pixel 
value in the score image is simply the number of channels the pixel detected as edge 
point. The majority vote image is simply the score image thresholded at half the number 
of multi-spectral channels. If the pixel has been considered as edge pixel by at least half 
of the classifiers it is assigned the value 1, otherwise it is assigned the value 0.The flow 
chart of the algorithm is the following: 

 
 

Multi-spectral edge detection algorithm combining spectral edge maps using majority voting rule. 
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3. Influence Factor Modification Fusion (IFMF) 
   In contrast to the previous method, the IFMF [29] method performs fusion before each 
edge map is derived independently. The local edge pixels are calculated using the 
analysis of variance (ANOVA=analytical tool for image processing) contrast function 
edge detector via an influence factor [3]. Successful ANOVA models exist for line, edge 
detection and image segmentation. The edge line detected by the ANOVA algorithm is 
presented by several parallel lines. At strong lines, where sharp gray-level change exists, 
thin regions are presented while at weak lines thin and discontinuous regions are found. 
The size of line is smaller than 5 pixels. Various, mathematically founded, computations 
take place for the creation of the new, fused image from the addition of the located edges, 
lines, regions. The rules that condition these computations are based on the principle that 
the final edge map is generally selected by the basic information where the main image 
presents a strong line feature. The system takes two images, MAIN and COMPL 
(ementary), as an input. The first (main) image contains more recognizable information 
while the second image is used in order to modify the initial and create the image with 
the combined information. The complementary image is used only when the main image 
has unilateral edge features, in order to enhance the features of the initial one, if it 
contains the same feature, or in order to reject it in the opposite case. 
   The method however meets the following restrictions: 

• the refinement of the edge map of the fused image is not an easy task 
• It is not necessary to modify the main image and repeat the ANOVA procedure  
for edge detection. Instead we can simply modify the edge map of the main image 
and proportionally receive the fusion map. 

   The flow chart of the method is summarized in the following form:   

 
The IFMF method. 
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4. Fusion of Segmented Images 
   Instead of selecting a segmentation method it is preferable to receive the best of each 
method, performing “competition of methods" in a way. The N different algorithms are 
applied to an image giving N different, segmented images as a result. The regions 
acquired are interpreted using a multi-scale fuzzy classifier and afterwards the 
"interpreted" image is merged using various fusion operators. Using a mathematic model 
in this method too, that will not be analyzed here, certain quantities are also computed 
based on some selection criterion, usually the criterion of maximum value or mean value, 
the quantities-coefficients are selected that produce the final, fused image. 
   The flow chart of method is the following: 

 

Fusion of images segmented and interpreted. 
Summary: feature-level VS pixel-level image fusion 
Advantages: 

• Compared to pixel-level methods, feature-level techniques extract  feature  
information from images. The amount of data is dramatically reduced while the most 
significant features are preserved. 
• Although the data volume is reduced dramatically, feature information is distilled  
and retained in the edge/region maps or feature vectors so that analytical 
methodologies can be used for analysis and classification 

Disadvantages-open problems:  
• Loss of information: loss of information is inevitable in the abstraction process 
• Feature selection and feature extraction algorithms. 
• The ability of extraction algorithms and fusion rules to conserve image features. 
• Feature refinement methods. 
• Performance evaluation of fusion algorithms. 
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A.3. Decision-level techniques 
   Symbol level or decision level fusion consists of merging information at a higher level 
of abstraction. It represents high-level information where the symbol represents an input 
in the form of a decision, where the fusion describes both a logical and a statistical 
conclusion. The most significant improvement of using symbol-level fusion is the 
increase in the truth values.  
   An example of this type of fusion is the construction of probabilities associated with 
object recognition. 
    High-level data fusion or decision fusion occurs where sensor data, with or without 
pre-processing, is combined with other data or a priori knowledge. Each sensor makes an 
independent decision based on its own observations and passes these decisions to a 
central fusion unit where a global decision is made. Alternatively, in a decentralized 
multi-sensor system each node functions performs fusion based on local observations and 
the information communicated from neighbouring nodes. 
   In this level of description, sensor data are processed separately and a "determination of 
identity" is applied using 

• voting techniques: they provide discrimination with a simple determination of 
majority, where the most possible object is detected. 

• scoring models: they compose a set of weights and determine the maximum 
result with weights 

• other ad hoc methods. 
   The advantage of methods of this category is that all knowledge about sensors can be 
applied separately. Each sensor expert knows the most about the capabilities and 
limitations of sensors which belong to his cognitive field and can use this information in 
order to optimize the detection performance. 
   The techniques of this category follow two approaches: 

1. Based on knowledge, using logical patterns, syntactic rules and relevant 
combination. 

2. Based on identity, using assumptions and probabilities in order to classify 
objects. 

   The most basic methods mentioned in international bibliography are the following and 
are based on mathematic models [30, 31]: 

• Bayes approaches: this method makes use of complicated mathematic models, 
mainly probabilistic theory. 

• Dempster-Shafer theory: this method is non-statistical; nevertheless it can be 
described with discriminant functions in sensor confidence space with 
corresponding error functions. Dempster-Shafer evidential theory is an extension 
of the Bayesian approach, where unknown values are defined as ignorance until 
“new” information arrives to change the opinion of the system. The uncertainty 
measures define how well the sensory information that has been captured from 
sensors match.  

• Fuzzy probabilities: they are used in order to indicate that there is uncertainty in 
the estimation of the probability. The fuzzy membership function defines the 
range of possible probabilities and the ‘likehood’ of each possible probability. 

• Rule-based method: it forms an intuitive and flexible approach as it is very easy 
to incorporate any available a priory knowledge into the system 
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  The two images below can be very helpful to understand the different description levels 
and how the different kinds of information look like within the various stages of 
processing   
 
 

 

 
Decision level fusion 

 

\ 
Feature level fusion 

 

 
 

Pixel level fusion 
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     An example on how a simple “tank image “ looks like in the different description 
levels. 
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Discussion topics for pixel, feature and decision-level image fusion 
   Given the problem of image fusion that captured by one or more sensors and going 
through the implementation stage the following questions immediately arise: 

• In which of the three levels should fusion be performed? 
• In which mathematic background is the problem modeled? 
• Which technique should be applied? 
• How can we evaluate its performance? 

   As already mentioned the answer on these questions that concern image fusion is not 
easy and absolute. On the contrary: it is ambiguous! Despite the researches on the various 
fusion theories, their capabilities for feature preservation when combined with image 
processing techniques have not been studied in fusion models. In any case, the main 
query is still the problem of evaluation of the performance of image fusion methods, as, 
despite the existing bibliography and study, the evaluation is not determined by 
absolutely objective and commonly acceptable criteria for all the applications, methods 
and inputs. 
   An important notice is that as long as the fusion level gets higher (by increasing 
sequence pixel    feature   decision) as much information is lost during the abstractive 
process of information. Yet, the amount of data to be processed is dramatically decreased, 
the problem is simplified and the computation load becomes reasonable, specifically in 
real-time applications. At the same time, the preservation of this information is easier 
during processing. It appears that the more time the relative information is kept during 
the abstractive process the higher should the level of fusion implementation. 
Nevertheless, due to the complexity in understanding it is difficult to be assured that 
information is not lost, making hard to decide which level of description should be 
preferred in order to preserve the useful data. 
    The choice of the suitable level of description depends on the type of the available 
sensors. When sensors are similar pixel-level description is adopted, otherwise when they 
differ too much decision-level analysis is more suitable and more computationally 
efficient. Analysis in feature-level is most suitable when features captured by the sensors 
can be correlated. In order to achieve the greatest accuracy and information, it is desirable 
to fuse at the signal level before any information can be lost due to reconstruction or 
feature extraction. 
    Another issue that emerges is the handling of inaccuracy and uncertainty of source 
images. Fuzzy logic approaches, theory of evidence and the Bayesian model are the three 
basic tools used for this aim. However, their contribution to the interpretation of the 
initial images should be searched further. 
. 
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Graphic categorization synopsis 

   A sequence of tables follows as an effort to summarize all the above information in a 

more readable, compact and presentable 

 

Table1.Levels of description of information 

L e v e l D e s c r i p t i o n 

Pixel level 
(Data or image or signal 

level) 

The lowest of the three levels, description of information in 
its raw form..The goal is the representation of the optical 
information provided by source images in a fused image 
without distortion and loss of information  

 
 

intermediate 
 

 
 

Feature 
  

       feature 

Requires algorithms capable to recognize objects from the 
various sources of information based on statistical features 
of dimension, shape and edges. Segmentation algorithms 
have been proved useful for this category. 

 
Decision level 
(Symbol level) 

Processes the source images separately to extract 
information and applies decision rules to achieve common 
interpretation and throw differences  
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Schema1.Special categorization of image fusion methods 
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Table2.Categorization of pixel-level methods 

 
Category 

 
Methods 

 
Description 

 
Linear 

superposition 

PCA analysis,IHS ,RGB 
method,averaging 

Probably the most direct way to fuse 
images. Implements fusion as a linear 
combination weighted by all input 
images.   

 
Non linear 
methods 

 
 

Bayesian model 

One more simple approach by using a 
simple non-linear operator e.g. min, 
max or a morphological operator or, 
to another aspect, image algebra 

 
 

Optimization 
approaches 

 
 

Hidden Markov trees 
methods 

Image fusion is expressed as a 
Bayesian optimization problem, using 
a-priory model of the fusion result in 
order to find the image that optimizes 
the a-posteriori possibility  

 
 

Artificial neural 
networks 

 
 

Newman and Hartline 
approach 

 
Inspired by fusion of signals taken by 
sensors in biological systems, 
researchers established neural 
networks to pixel-level image fusion 

 
 

Image pyramids 

Gradient,difference, 
morphological, 

averaging, 
contrast,ratio 

pyramids 

Image pyramids are a sequence of 
images where each image is 
costructed by lowpass filtering and 
downsampling of its “ancestor” 
image  

 
 

Wavelet 
transform 

 
 

MWD 
2DWT 

Relevant to the category above with 
the difference that this transform 
leads to non-redundant representation 
of the image having as a disadvantage  
its shift dependency  

 

 
 

Multiresolution 
fusion scheme 

Includes the categories 
above, 

Toet’s method, 
Burt’s method, 

Wilson’s method, 
Yocky’s method, 

Region-based method 

The basic idea lies to the fact that the 
human vision system especially 
sensitive to local contrast changes 
e.g.edges.The fused image arises as a 
combination of multiscale edge 
representation  
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Image 

pyramids 
 

-Gaussian 
-Laplacian 
-Contrast 
-Gradient 
-Morphological 

 
Wavelets 

 

-DT-CWT 
-DDWT 
-UDWT 
-RWT 
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Other 

-Maximum Contrast 
Selection 
-Salient Patern Selection 
-Perceptually SPS 
-MWD-based 
-Additive MWD fusion 
-Region-based MWD fusion 
-Gradient-based fusion 

Linear superposition -PCA 
-HIS,RGB models 
-Averaging 
 

Non-linear methods -Bayesian model 

Neural Networks  

 
 
 
 
 
 
 
 

PIXEL 
LEVEL 

Optimization approaches -Hidden Markov Trees 

Parametric templates 

Hierarchical clusters 

Neural Networks 

 
 
 

FEATURE 
LEVEL 

Knowledge-based approaches 

 
-Multi-spectral Cooperative 
Segmentation 
-Binary Edge Map Fusion by 
Majority Voting Rule 
-Influence Factor 
Modification 
Fusion(IFMF) 
-Fusion of segmented images

Voting techniques 

Scoring models 
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B. Basis Functions 
    Basis functions, in general, are carefully selected and well defined functions, a linear 
combination of which can approximate a source signal. A simple example comes from 
the digital world: Every two dimensional vectors(x, y) is a combination of the vectors (1, 
0) and (0, 1). These two vectors constitute the basis “functions” (vectors) because x 
multiplied by (1, 0) and y multiplied by (0, 1) result, by adding them, to the original 
vector (x, y). In addition, the basis vectors have an important property: they are 
orthogonal to each other. 
    In a similar way, basis functions in the analog world (functions) are treated. A simple 
example is a voice signal: we can approximate it by adding sines and cosines using 
combinations of amplitudes and frequencies. Sine and cosine are the basis functions now. 
Expanding this concept we can create the scale-varying basis functions by diving data 
using different scale sizes. As an example let‘s imagine that we have a signal in the 
domain (0, 1). We can divide it by using two step functions in the intervals (0, ½) and 
(1/2, 1). Similarly we can divide it by using other two step functions in each interval, 
resulting in four step functions in the intervals (0, 1/4), (1/4, 1/2), (1/2, ¾), (3/4, 1) and so 
on. So we have managed to represent the original signal by basis functions within a 
particular scale [7]. 
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C. Wavelet families 
    Wavelet theory is based on analyzing signals to their components by using a set of 
basis functions. One basic characteristic of wavelet basis functions is that they relate to 
each other by simple scaling and dilation. The original function, known as mother 
wavelet, is designed under some desired characteristics and rules and is used to generate 
all basis functions. In most applications it is required that the original signal be 
synthesized from the wavelet coefficients. To do so, wavelets should satisfy some 
conditions. For example, if we use the same wavelets for both decomposition and 
reconstruction they should satisfy the orthogonality condition, otherwise, if we use two 
different sets of wavelets, one for the analysis and one for the synthesis procedure, they 
should satisfy the biorthogonality condition.  
    It is not an easy part to design a uniform procedure in order to develop the best mother 
wavelet for a given class of signals. However, based on several general characteristics of 
the wavelet functions, it is possible to determine which wavelet is more suitable for a 
given application. 
    A wavelet is a small wave with finite energy, which has its energy concentrated in time 
or space. It still has the oscillating wave-like characteristics but has also the ability to 
allow simultaneous time and frequency analysis with a flexible mathematical approach 
[15].      

   
                  Sine wave with infinite energy                          Wavelet of finite energy 
   The wavelet transform is a two-parameter expansion of a signal in terms of a particular 
wavelet basis function. If ψ(x) represents the mother wavelet, all other wavelets are 
computed by the following equation: 

α,τ
1 t-τψ (t)=( )ψ( )

αα
 

where the scaling factor α, usually α=2-j, defines the scale and the factor τ, usually  
τ=kT2-j, defines the dilation. The parameterization of time or space by integer k and the 
frequency or scale by integer j turns out to be very effective. Selecting different values of 
j, k the different wavelets are computed 

   
                   mother wavelet                                     wavelet at scale 1            scale 2 
 
A list of popular wavelets follows 
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Haar wavelet 
    It is the simplest wavelet, the only orthogonal that has symmetric analysis and 
synthesis filters. Due to its simplicity and fast computational efficiency, it’s a good 
choice for image processing. It is also known as Daubechies1. 
 

 
Daubechies wavelet family 
    Ingrid Daubechies, one of the greatest researchers in wavelet theory, invented what are 
called compactly supported orthonormal wavelets, which make discrete wavelet analysis 
practicable. Daubechies wavelets have good compression property for wavelet 
coefficients but not for the approximation ones. Depending on the order N of the wavelet, 
the basis function can take the following form: 
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Biorthogonal wavelet family 
    This wavelet family satisfies the biorthogonality condition, which is essential for 
perfect image reconstruction. By using two different wavelets, one for the decomposition 
and one for the reconstruction procedure, interesting properties are derived. 
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Coiflets wavelet family 
    

 
 
Symlets wavelet family 
    The symlets are nearly symmetrical wavelets and were proposed by Daubechies as a 
modification of the Daubechies wavelet family. 
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Morlet wavelet  

 
 
Mexican hat wavelet 
    It is derived from a function that is proportional to the second derivative of the 
Gaussian probability function 
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Meyer wavelet 

 
 
 

 
 

Reverse biorthogonal wavelet family 
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D. Complex and real wavelets 
    As already mentioned, complex wavelet transforms offer some basic advantages 
against real wavelet transforms. However their complexity, the demand for a good 
mathematical background and mainly their implantation difficulty makes their use in 
image applications unattractive. Some basic complex wavelets are listed below: 
 
Complex Gaussian Wavelets 
    This family is built starting from the complex Gaussian function and taking the Nth 
derivative, where N defines the order of the wavelet family 
 
Definition: derivatives of the complex Gaussian function 

2

pf(x)=C ix xe e− − where Cp is such that 
2( ) 1pf =  where ( )pf is the p-th derivative of f 

 
                   Real part of mother function                              Imaginary part of mother function 

 
                  Modulus of mother function                                         Angle of mother function 
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Morlet wavelet 
     Definition: a complex Morlet wavelet is 

2

2
( )

x
i f x fc bx f e eb
π

ψ π
−

=  
    depending on two parameters: 
        Fb is a bandwidth parameter 
        Fc is a wavelet center frequency 

 
Complex frequency B-spline wavelets  
Definition: a complex Frequency B-Spline wavelet is 

2
( ) sin ( )

mi f x f xc bx f e cb m
π

ψ ⎛ ⎞= ⎜ ⎟
⎝ ⎠  

    depending on three parameters: 
            M is an integer order parameter (>=1) 
            Fb is a bandwidth parameter 
            Fc is a wavelet center frequency 
    For M = 1, the condition Fc > Fb/2 is sufficient to ensure 
    that zero is not in the frequency support interval. 
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Complex Shannon Wavelets 
    Definition: a complex Shannon wavelet is 

            
2

( ) sin ( )
i f xcx f e c f xb b
π

ψ =  
    depending on two parameters: 
            Fb is a bandwidth parameter 
            Fc is a wavelet center frequency 
  
    The condition Fc > Fb/2 is sufficient to ensure that 
    zero is not in the frequency support interval. 
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    The Discrete Wavelet Transform using filters obtained by complex wavelets is difficult 
to be implemented. Instead, Fernandez proposed a projection-based Complex Wavelet 
Transform in order to exploit the applicability of real Discrete Wavelet Transform [21]. 
There is a lot of theoretical background beyond this idea but the main themes are briefly 
mentioned. The main idea is that complex wavelet coefficients can be obtained by 
projecting the input signal onto the Hardy space and then computing its wavelet 
transform using the DWT associated with a real wavelet, as illustrated in the figure below  

 
 
 
    As an improved version Fernandez proposed the non-redundant Complex wavelet 
transform by simply inserting the up/downsampling procedure in the projection phase 
 

 
    The projection filter h+ has certain characteristics [21] 
    This transform can be expanded to two dimensions in a similar way 
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    The projection filter h+

x is performed along rows and the filter h+
y along columns. The 

role of the projection phase is to eliminate the redundant negative-vertical frequencies 
and decouple the positive horizontal frequencies from the negative ones.   
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