

Technical University of Crete
Department of Computer and Electronic Engineering

Forward Error Correction for experimental wireless
ftp radio link over analog FM

Supervisor: Nikolaos Sidiropoulos
Committee: Athanasios Liavas

 Alexandros Potamianos

Iliakis Evangelos

 1-1

TABLE OF CONTENTS

The Wireless FTP Communication System... 1-5

1. Introduction.. 1-5
1.1 Hardware.. 1-7
1.2 Software ... 1-10
1.3 The Wireless FTP Communication System... 1-10

1.3.1 Audio Playback and audio Recording... 1-16
1.3.2 Handshake and Handoff.. 1-16
1.3.3 ARQ (Automatic Repeat Request).. 1-17

2. Executive Summaries... 1-18
Error Control Coding ... 2-19

1. Introduction.. 2-19
2. Algebraic coding theory for convolutional codes.. 2-20

2.1 Galois fields ... 2-20
2.2 Binary fields and binary arithmetic.. 2-22
2.3 Vector space... 2-23

3. Fundamentals of Convolutional Codes.. 2-24
4. Nonsystematic Feedforward Convolutional Encoders... 2-26

4.1 Generator matrix in Time domain.. 2-28
4.2 Generator sequences .. 2-29
4.3 Polynomial representation of the Generator matrix... 2-31

5. Systematic Feedforward Convolutional Encoders... 2-34
6. Systematic Feedback Convolutional Encoders.. 2-36
7. Structural Properties of Convolutional Codes ... 2-39

7.1 State Diagram... 2-39
7.2 Trellis Diagram .. 2-39
7.3 Catastrophic Encoders ... 2-41
7.4 Distance Properties of convolutional codes... 2-42

8. Optimum Decoding Of Convolutional Codes.. 2-45
8.1 Maximum Likelihood Decoding.. 2-45
8.2 The Viterbi algorithm .. 2-47

8.2.1 Basic Algorithm.. 2-47
9. Evaluation of convolutional codes... 2-49
10. Implementation of THE FECC modules.. 2-57

10.1 Encoder Implementation.. 2-57
10.1.1 Polynomial to trellis diagram.. 2-57

10.2 Convolutional Encoder .. 2-59
10.3 Decoder Implementation.. 2-59

Cyclic Redundancy Check... 3-61
1. Introduction.. 3-61
2. Frame Check Sequence Generation ... 3-61
3. Implementation .. 3-65

3.1 Error detection in WFTP system.. 3-65
Phase Shift Keying... 4-67

1. MPSK... 4-67
1.1 Modulation, Demodulation, Detection .. 4-67

2. Implementation .. 4-73

 1-2

Evaluation Of The WFTP Communication System... 5-77
1. Introduction.. 5-77

1.1 Evaluation Metrics ... 5-78
1.1.1 Bit error rate.. 5-78
1.1.2 Transmission and Transfer rates ... 5-78

1.2 Evaluation Process ... 5-79
1.3 MPSK Modulation... 5-83

1.3.1 4-PSK.. 5-83
1.3.2 8-PSK.. 5-84
1.3.3 16-PSK.. 5-85
1.3.4 Evaluation of Convolutional encoders for 16-PSK .. 5-87
1.3.5 32-PSK.. 5-90
1.3.6 MPSK conclusions.. 5-91

1.4 MQAM Modulation ... 5-91
1.4.1 4-QAM.. 5-92
1.4.2 8-QAM.. 5-92
1.4.3 Evaluation of Convolutional encoders for 8-QAM .. 5-93
1.4.4 16-QAM.. 5-94
1.4.5 Evaluation of Convolutional encoders for 16-QAM .. 5-95
1.4.6 32-QAM.. 5-96
1.4.7 MQAM conclusions.. 5-96

1.5 PPM Modulation.. 5-98
1.5.1 4-PPM ... 5-98
1.5.2 8-PPM ... 5-99
1.5.3 16-PPM ... 5-99
1.5.4 PPM conclusions... 5-100

1.6 Summary .. 5-101

 1-3

TABLE OF FIGURES

Figure 1-1 : Block diagram of the transmitter ... 1-6
Figure 1-2 : Block diagram of the receiver.. 1-6
Figure 1-3 : The WFTP Communication system... 1-7
Figure 1-5 : Receiver ... 1-8
Figure 1-6 : Transmitter ... 1-9
Figure 1-7: Desired design of the WFTP system... 1-11
Figure 1-8: Schematic of the WFTP system.. 1-13
Figure 1-9: Block diagram of the WFTP system... 1-15
Figure 2-1: Block diagram of a typical communication system.. 2-19
Figure 2-2: Block diagram of a Convolutional encoder .. 2-24
Figure 2-3: Memory elements in the encoder .. 2-25
Figure 2-4: Block diagram of a feedforward convolutional encoder... 2-26
Figure 2-5: A rate R=1/2 binary nonsystematic feedforward convolutional encoder with memory
order m=3... 2-29
Figure 2-6: A rate R=2/3 binary feedforward convolutional encoder with memory order m=1. 2-33
Figure 2-7: Observer canonical form realization of the encoder illustrated in Figure 2-6. 2-34
Figure 2-8: A rate R=2/3 systematic feedforward convolutional encoder in controller canonical form.
.. 2-36
Figure 2-9: Observer canonical form realization of the encoder illustrated in Figure 2-8. 2-36
Figure 2-10: A rate R=2/3 nonsystematic feedforward convolutional encoder in controller canonical
form.. 2-38
Figure 2-11: State diagram of the convolutional encoder of Figure 2-10.. 2-41
Figure 2-12: The corresponding trellis diagram in steady state of the encoder of Figure 2-10....... 2-41
Figure 2-13: Modified encoder state diagram for the encoder of Figure 2-10. 2-44
Figure 2-14: Branches and predecessor states ... 2-47
Figure 2-15: Survivor path and the Predecessor successor state ... 2-48
Figure 2-16: Upper bound on the BER for R=1/2 codes listed in Table 2-5. 2-53
Figure 2-17: Upper bound on the BER for R=1/3 codes listed in Table 2-4. 2-53
Figure 2-18: Upper bound on the BER for R=1/4 codes listed in Table 2-4. 2-54
Figure 2-19: Upper bound on the BER for R=2/3 codes listed in Table 2-6. 2-54
Figure 2-20: Upper bound on the BER for R=3/4 codes listed in Table 2-7. 2-54
Figure 3-1: Concatenation of Frame check sequence and the data block.. 3-61
Figure 4-1: 4-PSK contellation .. 4-68
Figure 4-2: 8-PSK contellation .. 4-69
Figure 4-3: Block diagram of MPSK modulator ... 4-70
Figure 4-4: Block diagram of MPSK demodulator.. 4-70
Figure 4-5: Probability of symbol error Ps for MPSK ... 4-72
Figure 4-6: Probability of bit error Pb for MPSK .. 4-72
Figure 4-7: Creating the index vector for mapping bits to symbols .. 4-74
Figure 5-1: The most efficient packet size for WFTP system is 100000 bits.................................. 5-81
Figure 5-2: Average bit error rates for the tested convolutional codes.. 5-89
Figure 5-3: Average transfer rates for the tested convolutional codes .. 5-89
Figure 5-4: Average transfer rates of MPSK schemes that performed with zero average bit error rate
in open loop.. 5-91
Figure 5-5: Average transfer rates of MPSK schemes that performed with zero average bit error rate
in closed loop. .. 5-91
Figure 5-6: Average transfer rates of MQAM schemes that performed with zero average bit error
rate in the open loop system form.. 5-97

 1-4

Figure 5-7: Average transfer rates of MQAM schemes that performed with zero average bit error
rate in the closed loop system form. .. 5-97
Figure 5-8: Average transfer rates of PPM schemes that performed with zero average bit error rate in
the open loop system form... 5-100
Figure 5-9: Average transfer rates of PPM schemes that performed with zero average bit error rate in
the closed loop system form. ... 5-100
Figure 5-10: Block diagram of the system operating with the highest transfer rate...................... 5-105
Figure 5-11: Block diagram of the system operating with the highest transfer rate, compatible with
every soundcard ... 5-106

 1-5

C h a p t e r 1

THE WIRELESS FTP COMMUNICATION SYSTEM

1. INTRODUCTION

This Thesis is a part of a team project for designing, implementing and evaluating the Wireless FTP

Communication System. The aim of this project was to develop an efficient and low cost

experimental wireless radio link, between two personal computers over analog FM for data

communication.

In particular the objective was to design and develop a software modem operating with the

appropriate hardware equipment. The WFTP system is a computer based communication system

mainly used for file transfer. The analog FM radio link was implemented by the use of an FM

transmitter and the corresponding radio receiver. In order to achieve the transmission of bits between

two personal computers over the wireless radio link, we had to transform the binary information into

analog data. Thus the most important part of the software modem is the modulator and the

demodulator units in the transmitter and the receiver respectively. However the software modulator

generates the samples of the analog signal that conveys the binary information. Likewise the

software demodulator processes the samples of the analog signal that conveys the binary

information. Therefore the only missing parts of our system were the D/A and A/D converters in the

transmitter and the receiver respectively. Because of the constraints on the budget and the overall

cost of the system, we had to find a cheap and efficient way to generate the desired analog signal.

Consequently, we used the playback and the recording features of the soundcards. In the transmitter,

the sound card performs the digital to analog conversion and generates the audio signal which is

transmitted through the low-power FM radio transmitter. Likewise in the receiver the sound card

performs the analog to digital conversion of the analog received signal and produces the

corresponding digital data.

So far we have concluded to a basic structure of the WFTP system consisting of six major

components:

⇒ Desktop PC

⇒ Laptop PC

⇒ Software for the transmitter

⇒ FM transmitter

⇒ Software for the receiver

⇒ Radio receiver

 1-6

A general block diagram of the WFTP system is illustrated in the following figures.

Binary Information Modulator

Software

PC audio
device

FM
transmitter

Hardware

Transmitter

Figure 1-1 : Block diagram of the transmitter

Demodulator

Software

PC audio
device

Radio
receiver

Hardware

Receiver

Binary Information

Figure 1-2 : Block diagram of the receiver

Considering this basic structure of the WFTP Communication system we defined the foremost

objectives of our system:

⇒ Reliable file transfer.

⇒ Low bit error rate on the order of 610−

⇒ Achievement of the highest possible transfer rates.

In order to accomplish our goals we developed and implemented different software modules that

were integrated in a completely operational communication system. In the subsequent sections it

follows a thorough analysis of the hardware and software components of the WFTP system.

 1-7

1.1 Hardware

The hardware equipment in WFTP system consists of two personal computers, a low-power radio

transmitter, a dipole antenna and a radio receiver.

Figure 1-3 : The WFTP Communication system

⇒ FM transmitter specifications:

o Battery voltage DC4.5 V.

o Frequency Range 88 MHz ~ 108 MHz.

o Output power 1 W.

o Half wave dipole antenna

⇒ Wide Band Communications Receiver specifications:

o Frequency Range 0.1 ~ 1299.955 MHz.

o Antenna Impedance 50 Ω

o Battery voltage DC3.6V~DC6V

o Frequency Stability ± 5PPM (-10oC ~ +60oC)

 1-8

Figure 1-4: The FM transmitter and the radio receiver

The half wave dipole antenna and the FM transmitter were assembled by the members of the team

while the Wide Band Communications Receiver was a choice of our advisor, Mr. N. Sidiropoulos.

The transmitter can be supplied by an AC/DC adaptor. However, a transformer should be used

followed by the appropriate filter in order to eliminate the scramble hum which appears due to the

frequency (50 ~ 60 Hz) of the AC electric current.

1

2
3

1. Receiver : Desktop PC , Wide band communications receiver
2. Soundcard
3. Wide band communications receiver connected with the Personal Computer via the “line in” of the soundcard

Figure 1-5 : Receiver

 1-9

1

2

3

4

5
6

7

8

1. Transmitter : FM transmitter , Laptop , Half wave dipole antenna , Battery case
2. Battery case : 3 AA batteries 1.5V
3. Ground cable
4. Low power FM transmitter
5. Cable to the antenna
6. Power in : DC 4.5V
7. Line in (audio signal to be transmitted)
8. Proper case grounding
9. Line out from laptop

9

Figure 1-6 : Transmitter

 1-10

1.2 Software

The modules in the WFTP system were implemented in Matlab. Each member of the team was

responsible for designing, developing and evaluating a number of functions which were assembled

in the final form of the system. In this project we developed modules for the following subsystems:

⇒ Modulation, Demodulation, and Detection.

⇒ Error Control Coding and decoding.

⇒ Synchronization.

⇒ Phase Recovery.

⇒ Equalization.

⇒ Channel Estimation.

⇒ Cyclic Redundancy Check.

1.3 The Wireless FTP Communication System

The desired implementation of the WFTP system was proposed by the design illustrated in the

following figure. In this case the system would consist of four basic modules, along with the

appropriate hardware.

⇒ Desktop PC

⇒ Laptop PC

⇒ Software for the transmitter

⇒ FM transmitter

⇒ Software for the receiver

⇒ Radio receiver

 1-11

FM TRANSMITTER

`FM RECEIVER

Transmitter
Unit

Transmitter
Server

Receiver
Unit

Processor
Unit

Common storage space

Two processes running
on the receiver

Two processes running
on the transmitter

Figure 1-7: Desired design of the WFTP system

Software Modules:

⇒ Transmitter Unit

⇒ Transmitter Server

⇒ Receiver Unit

⇒ Processor Unit

Each of the preceding modules would integrate a number of functions depending on its operation.

The Transmitter Unit and the Receiver Unit would work independently of the Processor Unit in

different personal computers. The Receiver Unit and the Processor Unit would run in the same

personal computer, but as different processes. The same applies for the Transmitter Unit and

Transmitter Server. In order to understand the concept of this implementation we present

transmission scenarios for both open and closed loop operation of the system.

 1-12

In the open loop form of the system the only operating units would be the Transmitter Unit, the

Receiver Unit, and the Processor Unit. The Transmitter Unit loads a packet and transmits a

handshake signal in order to “wake up” the Receiver Unit. Once the packet is transmitted, the

Receiver Unit stores the digital data generated by the soundcard in a specified storage space and

waits for a new packet. In the meanwhile the Processor Unit which is running as a separate process,

scans for new stored packets in the storage space of the Receiver Unit. The processing starts when a

new packet is stored by the Receiver Unit.

In the closed loop form of the system with ARQ(Automatic Repeat Request), the additional unit

Transmitter Server performs as a server for accepting negative or positive acknowledgments

concerning packets’ transmission, while the Processor Unit performs both as a processing unit and a

client. A possible error in the packet’s bits would force the Processor Unit to send a negative

acknowledgement message to the Transmitter Server for packet retransmission. In all other cases

Processor Unit should send positive acknowledgement messages to the Transmitter Server.

Consequently in both scenarios the Transmitter Unit does not wait until the processing in the

Processor Unit is finished. Thus the transfer time is independent of the processing time spent in the

receiver.

Unfortunately this design never worked in practice due to the fact that recording from the soundcard

and processing data in Matlab cannot be done simultaneously. Moreover running the modules in the

transmitter or the receiver as separate processes in the same PC, means that two Matlab processes

must be open in the same time in each personal computer. However this scheme consumes a lot of

memory and could not be implemented. In general the software implementation of a wireless data

communication system using Matlab, limits our perspective for multiprocessing and hence

achievement of high transfer rates.

Eventually the prevailing design emerged from the simplest aspect of WFTP system. The Receiver

and Processor Unit concatenated in one process running on the PC connected with the radio

receiver. Respectively the Transmitter Unit and the Transmitter Server merged in one process

running on the PC connected with the FM transmitter.

 1-13

FM TRANSMITTER

`
FM RECEIVER

Transmitter
Unit

Transmitter
Server

Receiver
Unit

Processor
Unit

PROCESS RUNNING ON
THE TRANSMITTER

PROCESS RUNNING ON
THE RECEIVER

Figure 1-8: Schematic of the WFTP system

In this implementation the data transfer between the transmitter and the receiver is not independent

of the processing of the packets. The processing time is included in the total transfer time of the

transmitted file and hence transfer rate is reduced.

The WFTP system is mainly used for file transfer. Once a file is loaded, it is fragmented in packets

of specified length. In the same time a specific sequence of bits of specified length, called training

sequence, which is used for synchronization, equalization, and phase recovery, is generated for every

packet. Each packet is shifted in the Encoder where redundant bits are added in a controlled manner.

The Interleaver, which is charged with the mix up of the packet’s bits, provides the resulting data

bits to the modulator. The modulator transforms the packet’s bits into digital waveforms of duration

Ts samples. In addition the modulator transforms the training bits into the corresponding digital

waveforms. The final digital modulated signal is generated by the concatenation of the digital

 1-14

waveforms that correspond to the training and packet bits. The interface between the radio

transmitter and the digital output of the modulator is the soundcard. The audio playback feature of

Matlab enables us to use the soundcard as a digital to analog converter. In particular the digital

waveforms are play backed in a specified sampling frequency and the generated analog signal is

driven to the radio transmitter.

In the receiver the soundcard performs the analog to digital conversion of the received signal at the

same sampling frequency. The generated digital signal enters the synchronizer where the part of the

signal carrying the actual information is isolated. In the process of synchronization the training

sequence is of primary importance. The digital waveforms that correspond to the training bits enable

the synchronizer to indicate the first and the last sample of the digital signal carrying the actual

information. The isolated signal is filtered by the Equalizer which is responsible for inverting the

effect of the channel on the transmitted signal. The demodulator processes the filtered signal and

generates the corresponding data and training symbols. The phenomenon of phase shifting from the

channel is eliminated by applying a linear transformation on the data symbols. The linear

transformation is derived by the training sequence. The recovered symbols are transformed into the

corresponding bits in the detector. Finally the deinterleaver recovers the detected bits in the correct

order and the detector removes the additional redundancy.

 1-15

Soundcard

PC

Data Creator & Transmitter Unit

Binary
Information Encoder Modulator FM Transmitter

PC

System Setup

C
on

vo
lu

tio
na

l
En

co
de

r O
n/

O
ff

C
on

vo
lu

tio
na

l
En

co
de

r N
am

e

Bl
oc

k
En

co
de

r
O

n/
O

ff

Block Encoder
Name

Block Encoder
Message length

Block Encoder
Codeword length

In
te

rle
av

er

N
am

e

M
od

ul
at

io
n

Sc
he

m
e

M
od

ul
at

io
n

O
rd

er

Sy
m

bo
l P

er
io

d
(s

am
pl

es
)

Sa
m

pl
in

g
Fr

eq
ue

nc
y

(H
z)

Interleaver

Pa
tte

rn

Radio Receiver Soundcard

Receiver Unit & Processor Unit

Sa
m

pl
in

g
Fr

eq
ue

nc
y

(H
z)

Synchronizer Demodulator Equalizer Phase
Recovery CRC Deinterleaver Decoder

CRC

C
R

C
O

n/
O

ff

In
te

rle
av

er

O
n/

O
ff

M
od

ul
at

io
n

O
rd

er
M

od
ul

at
io

n
Sc

he
m

e
Sy

m
bo

l P
er

io
d

(s
am

pl
es

)

Eq
ua

liz
er

 O
n/

O
ff

Deinterleaver On/Off

Interleaver Name

Convolutional Decoder On/Off
Convolutional Encoder Name

Block D
ecoder O

n/O
ff

B
lock D

ecoder N
am

e

Block D
ecoder M

essage length
Block D

ecoder C
odew

ord length

Pattern

C
R

C
 O

n/O
ff

PC

E
qu

al
iz

er
 N

am
e

#w
ei

gh
ts

st
ep

si
ze

Fo
rg

et
tin

g
fa

ct
or

 /
In

iti
al

iz
at

io
n

Bi
na

ry
 O

ut
pu

t

An
al

og
 s

ig
na

l

An
al

og
 s

ig
na

l

D
ig

ita
l S

ig
na

l

D
ig

ita
l S

ig
na

l

An
al

og
 s

ig
na

l

An
al

og
 s

ig
na

l

Pr
ea

m
bl

e/
Po

st
am

bl
e

D
ep

th

Figure 1-9: Block diagram of the WFTP system

From the above figure we can obtain that the active modules and their corresponding settings are

controlled by a central module which is called the System Setup. The system settings are stored in a

specified structure and are available in both the receiver and the transmitter. Once the desired

settings have been selected in the transmitter, the Data creator module is responsible for generating

the final samples of the modulated signal using the features specified by the System Setup module.

The Transmitter Unit is responsible for transmitting the modulated data.

In the receiver the Receiver Unit is responsible for recording the packets whereas the final binary

information is generated by the Processor Unit. In the closed loop form of the system if the

Processor Unit detects errors, it transmits a negative acknowledgment to the Transmitter Unit for

packet retransmission.

In the subsequent paragraphs we will refer to specific details concerning the operation of the WFTP

Communication System.

 1-16

1.3.1 Audio Playback and audio Recording

In previous sections we mentioned that the interface between the radio transmitter and the personal

computer is the soundcard. The output of the Transmitter Unit is actually the samples of the analog

signal that must be transmitted by the FM transmitter. The digital to analog conversion is achieved

by using the Matlab function wavplay. The wavplay function playbacks an input vector using a PC-

based audio device at a specified sampling rate Fs. The elements of the input vector must be in the

range of []1,1− .

Likewise the analog to digital conversion is achieved in the receiver by using the Matlab function

wavrecord. The wavrecord function records a specified number of samples of an audio signal using

the soundcard at a specified sampling rate Fs. The samples generated by wavrecord are in the range

of []1,1− .

In the WFTP system the recording time is adjusted dynamically according to the size of the packets.

Because our system is a software implementation running on an operating system, several delays are

incurred during its experimental operation. These delays are unpredictable and result from the hard

disk and memory management of the operating system. Therefore in order to ensure the correct

reception of the packets we add a constant 0.5secft = additional recording time. This overhead is

independent of the size of the packets. Therefore in order to maintain high transfer rates, it is desired

to fragment the transmitted file in a small number of packets. Consequently this results in an

increase of the packets’ size.

However increasing the number of bits per packet, results in an increase of the probability of packet

error. Therefore the selection of the size of the packets, must ensure the achievement of the highest

possible transfer rate along with the lowest possible probability of bit error.

1.3.2 Handshake and Handoff

In the WFTP system the handshake between the transmitter and the receiver is implemented using

the UDP protocol. When communication is about to begin the Receiver Unit which is in the server

mode scans a specified port of the Computer system until receiving a wake up signal from the

Transmitter Unit.

Consider the simple scenario of a file transmission for the open loop system. The Transmitter Unit

transmits a handshake signal followed by the first packet. The Receiver Unit wakes up, records the

audio signal for the first packet and starts processing. In the meanwhile the Transmitter Unit in the

server mode waits for the acknowledgement message from the Receiver Unit. Once the processing is

 1-17

finished the Receiver Unit transmits a neutral acknowledgement (in the open-loop system there is no

meaning of positive or negative acknowledgment) and the Transmitter Unit transmits a new

handshake signal followed by the next packet. This procedure is repeated for every packet. The

acknowledgement of the last packet from the Receiver Unit, which is transmitted after the processing

of the last packet, is called handoff. In general, the handoff signal informs the Transmitter Unit that

the communication must be finished.

1.3.3 ARQ (Automatic Repeat Request)

In the WFTP system ARQ relies on the use of the Cyclic Redundancy Check. The error signals from

the receiver to the transmitter are transferred through Ethernet using the UDP protocol.

In particular, when the transmission of a packet from the Transmitter Unit is completed, Transmitter

Unit enters the server mode waiting for a positive or negative acknowledgement from the Receiver

Unit.

In the Receiver Unit the Processor Unit controls the received packet for transmission errors using

the CRC error detection code. Depending on the result the Receiver Unit enters the client mode and

transmits a positive or negative acknowledgement to the Transmitter Unit.

 1-18

2. EXECUTIVE SUMMARIES

Iliakis Evangelos. His primary responsibility was to develop and evaluate the modules for

convolutional coding and Viterbi decoding. In addition he implemented the modules for Phase Shift

Keying modulation scheme and the Cyclic Redundancy Check. Finally he was responsible for the

implementation of the ARQ mechanism using the UDP protocol.

Kardaras Georgios. He was responsible for implementing and evaluating the Block encoders and

decoders along with the Block interleavers and deinterleavers. Finally he was responsible for

developing the Pulse Position Modulation (PPM) scheme.

Kokkinakis Chris. Chris developed and evaluated the LMS, RLS and CMA equalizers.

Mpervanakis Markos. Markos implemented the Viterbi equalizer along with the Quadrature

Amplitude Modualtion scheme. Moreover he was responsible for the synchronization and the phase

recovery. Finally he assembled the modules that were implemented by the members of the group, to

a completely operating application.

 2-19

C h a p t e r 2

ERROR CONTROL CODING

1. INTRODUCTION

Error control coding is an important and necessary step in achieving reliable communication in

digital communication systems. In the model of a communication system error control coding is

illustrated in Figure 2-1, and is implemented by the channel encoder and decoder.

Information
Source

Source
Encoder

Channel
Encoder Modulator

Channel

DemodulatorChannel
Decoder

Source
DecoderDestination

Figure 2-1: Block diagram of a typical communication system

The function of a channel encoder is to introduce some redundancy in the binary information

sequence so that the receiver can correct errors that may have been caused by the transmission

channel. The added redundancy serves to increase the reliability of the received data and aids the

decoder to recover the initial information sequence.

At the receiver, the received sequence that is produced by the demodulator, enters the channel

decoder and is transformed into a binary sequence called estimated information sequence. The

decoding scheme depends on the encoding process used in the transmitter.

To focus attention on error control coding, the encoding process generally involves the mapping of a

k-bit information sequence into an n-bit information sequence, called a codeword. The amount of

redundancy introduced by the encoding of the data is measured by the ratio n
k

 . The reciprocal of

this ratio is called the code rate kR
n

= . In general, channel codes permit reliable communication of

an information sequence over a channel that adds noise, introduces bit errors, or otherwise distorts

 2-20

the transmitted signal. According to the manner in which redundancy is added to the information

message, Error Control Coding can be divided into two main categories; Block and Convolutional

coding.

Block codes accept a block of k information bits and produce a block of n coded bits. By

predetermined rules, n-k redundant bits are added to the k information bits to form the n coded bits.

Commonly these codes are referred to as (n, k) block codes.

Convolutional codes are one of the most widely used channel codes in practical communication

systems. They convert the entire information sequence into a single codeword. The main decoding

strategy for convolutional codes is based on the Viterbi algorithm. In the next sections it follows a

thorough analysis of the basic properties and decoding procedures for Convolutional Codes.

2. ALGEBRAIC CODING THEORY FOR CONVOLUTIONAL CODES

2.1 Galois fields

Error control coding is based on algebraic coding theory. In this section we will introduce some

basic elements of algebraic coding theory that will be used in the presentation of convolutional

codes.

Definition: A set of elements G on which a binary operation ∗ is defined is called a group if the

following conditions are satisfied [1, pg. 25]:

i. The binary operation ∗ is associative. A binary operation ∗ on G is said to be associative if,

for any a, b, and c in G,

a∗ (b∗c)= (a∗b)∗c

ii. G contains an element e such that, for any α in G,

a∗e= e∗a=a

 where e is called an identity element of G.

iii. For any element a in G, there exists another element a’ (inverse of a) in G such that

a∗a’= a’∗a=e

A group G is said to be commutative if its binary operation ∗ also satisfies the following condition:

For any a and b in G,

a∗b= b∗a

Theorem: The identity element in a group G is unique. [1, pg 26]

Theorem: The inverse of a group element is unique. [1, pg 26]

 2-21

Definition: The number of elements in a group is called the order of the group. [1, pg 26]

Definition: A group of finite order is called a finite group. [1, pg 26]

Example 2-1

Let G be a set of 2 elements {0, 1}. We define the binary operation modulo-2 addition, denoted by

⊕ , on G such that

0 1 1, 1 0 1, 0 0 0, 1 1 0⊕ = ⊕ = ⊕ = ⊕ =

The set of elements G is closed under the binary operation modulo-2 addition. Since the conditions

in definition 2-1 are satisfied, G is a commutative group under modulo-2 addition.

Definition: Let F be a set of elements on which two binary operations that are called addition “+”

and multiplication “ ⋅ ”, are defined. The set F together with the two binary operations is a field if the

following conditions are satisfied [2, pg 32]:

i. F is a commutative group under addition +. The identity element with respect to addition is

called zero element or the additive identity of F and is denoted by 0.

ii. The set of nonzero elements in F is a commutative group under multiplication ⋅ . The identity

element with respect to multiplication is called the unit element or the multiplicative identity

of F and is denoted by 1.

iii. Multiplication is distributive over addition; that is, for any three elements a, b, and c in F,

()a b c a b a c⋅ + = ⋅ + ⋅

Definition: The number of elements in a field is called the order of the field. [2, pg 32]

Definition: A field of finite order is called a finite field. [2, pg 32]

 2-22

Basic Properties of fields

i. For every element a in a field, 0 0 0a a⋅ = ⋅ = .

ii. For any two nonzero elements a and b in a field, 0a b⋅ ≠ .

iii. 0a b⋅ = and 0a ≠ imply that b=0.

iv. For any two elements a and b in a field,

() () ()a b a b a b− ⋅ = − ⋅ = ⋅ −

v. For 0a ≠ , a b a c⋅ = ⋅ implies that b=c.

[2, pg 32, 33]

Definition: A Galois field is defined as any finite set satisfying the axioms of a field, and is denoted

by GF(q), where q∈ . A prime field GF(p) has the additional condition that p∈ is prime. The

set of integers (0, …, p-1) satisfies the axioms of a field under the operations (+, ⋅) mod p. For any

positive integer m, it is possible to extend the prime field GF(p) to a field of mp elements, which is

called an extension field of GF(p) and is denoted by ()mGF p .

[2, pg 27][1, pg 34]

2.2 Binary fields and binary arithmetic

In general convolutional codes are binary codes with symbols from the Galois field GF(2). The

binary field GF(2), is a set of two elements {0, 1} under modulo-2 addition and modulo-2

multiplication.

+ 0 1 ⋅ 0 1
0 0 1 0 0 0
1 1 0 1 0 1

Table 2-1: Modulo-2 addition and multiplication

The elements and modulo-2 operations from GF(2) are used to describe the structure, the encoding

and decoding process of convolutional codes. However in later sections we will come across with a

more flexible representation, in which polynomials with coefficients from the GF(2) are used in

order to describe convolutional codes. A polynomial f(X) with one variable X and with coefficients

from GF(2) is of the following form [1, pg 38]
2

0 1 2() ... n
nf X f f X f X f X= + + + +

 2-23

where {0,1}, 0if i n= ≤ ≤ . The degree of a polynomial is the largest power of X with a nonzero

coefficient. In general, polynomials over GF(2) are commutative, associative and distributed.

Moreover there are 2n polynomials over GF(2) with degree n.

All the usual operations (addition, subtraction, multiplication, division) can be performed between

polynomials over GF(2). Multiplication and addition of the coefficients are modulo-2. Consider two

polynomials over GF(2), f(X) and g(X)
2

0 1 2() ... n
nf X f f X f X f X= + + + +

2
0 1 2() ... m

mg X g g X g X g X= + + + +

where m n≤

The sum and the product of the two polynomials over GF(2), denoted as () ()f X g X+ and

() ()f X g X⋅ respectively, are given by [1, pg 39]

2

0 0 1 1 2 2() () () () () ... () ...m n
m m nf X g X f g f g X f g X f g X f X+ = + + + + + + + + + +

0 0 0 1 1 0 0 1 1 1 0() () () () (...) ...i n m
i i n mf X g X f g f g f g X f g f g f g X f g X +

−⋅ = ⋅ + + + + + + + +

2.3 Vector space

Another basic element of algebraic coding theory that will be mentioned in subsequent sections is

vector spaces.

Definition: Given a field F, a vector space V over F is a set V (whose members are called members

the vectors of V) equipped with two operations ⊕ (vector addition) and ⋅ (scalar multiplication),

satisfying the following:

i. V is a commutative group under addition

ii. For any element a in F and any element v in V, a ⋅v is an element in V.

iii. For any elements u and v in V and any elements a and b in F,

()
()
a a a
a b a b
⋅ + = ⋅ + ⋅
+ ⋅ = ⋅ + ⋅
u v u v

v v v

iv. For any v in V and any a and b in F,

() ()a b a b⋅ ⋅ = ⋅ ⋅v v

v. Let 1 be the unit element of F. Then, for any v in V, 1 ⋅v=v.

[1, pg 57]

 2-24

Consider a sequence of n components 0 1 1(, ,...,)na a a − where each component is a member of the

binary field GF(2). This sequence is called a n-tuple over GF(2). Because each component can take

up to two different values, there are 2n distinct n-tuples over GF(2). The set Vn of all n-tuples forms

the vector space over GF(2).

3. FUNDAMENTALS OF CONVOLUTIONAL CODES

Convolutional codes are based on a linear mapping over the GF(2) of a set of information words to a

set of codewords. A rate kR
n

= convolutional encoder with memory m can be realized as a k-input

and n-output linear sequential circuit with input memory m. This means that at any given time unit,

encoder outputs depend not only on the inputs but also on some number of previous inputs. The

information sequence is divided into overlapping blocks of length k
(1) (2) (k) (1) (2) (k) (1) (2) (k)

0 1 t h-1 0 0 0 1 1 1 h-1 h-1 h-1=(, ,..., ,...,)=((u u ...u),(u u ...u),..., (u u ...u))u u u u u

and the codeword is divided into blocks of length n.
(0) (1) (n-1) (0) (1) (n-1)

0 t 0 0 0 1 1 1=(,..., ,...)=((v v ...v) , (v v ...v) ,....)v v v

Convolutional
Encoder

(1)u t

(2)ut

(3)u t

()u k
t

(0)vt
(1)v t
(2)vt
(3)vt
(4)vt

(1)vn
t
−

Figure 2-2: Block diagram of a Convolutional encoder

Convolutional encoders contains k shift registers (one for each input) , not all of which must have the

same length.

 2-25

1 v1

1 v2

1 v3

1 vk

(1)u t

(2)ut

(3)u t

()u k
t

(0)vt
(1)v t
(2)vt
(3)vt
(4)vt

(1)vn
t
−

k input bits n output bits

Figure 2-3: Memory elements in the encoder

As illustrated in Figure 2-3, each shift register i contains vi delay elements , [1,]i k∈

Definition: Constraint length vi is called the length of the ith shift register which corresponds to the

ith input sequence, [1,]i k∈ . [1, pg 459]

Definition: The encoder memory m is the maximum length of all k shift registers [1, pg 459]

i1 i k
max(v)m
≤ ≤

=

Definition: The overall constraint length v of the encoder is the sum of the lengths of all k shift

registers. [1, pg 459]

In the special case where k=1, it follows that vi=m and v=m.

A convolutional encoder with k inputs, n outputs and overall constraint length v is denoted as

(, ,)n k v .

In convolutional codes and encoders the elements of the information and encoded sequences, may be

drawn from the binary field, GF(2). Therefore the operations performed are modulo2-addition and

modulo-2 multiplication. The result for each output is produced by a modulo-2 adder which can be

implemented as XOR gate.

 2-26

u(1)

u(2)

u(k)

v(0)

v(1)

v(2)

v(n-1)

Figure 2-4: Block diagram of a feedforward convolutional encoder

Encoders for convolutional codes fall into the following categories:

i. Nonsystematic Feedforward Convolutional Encoders

ii. Systematic Feedforward Convolutional Encoders

iii. Systematic Feedback Convolutional Encoders

iv. Nonsystematic Feedback Convolutional Encoders

In this thesis we are mainly concerned on terminated convolutional codes. In order to terminate a

convolutional code k m⋅ zero bits are appended onto the information sequence in a way that all the

storage elements in the encoder return to the zero state at the end of the input sequence.

In the following sections we will focus on the foremost three of the four categories that are used

most in error control applications.

4. NONSYSTEMATIC FEEDFORWARD CONVOLUTIONAL ENCODERS

As mentioned above convolutional encoders can be realized as Linear Time – Invariant systems over

the GF(2) with k inputs and n outputs. The jth of the n output sequences is denoted by
(j) (j) (j) (j)

0 1 2(v ,v ,v ,...) , [0, 1]j n= ∈ −v

At time t, n output bits are produced by the encoder

 2-27

(0) (0) (0) (0) (0)
0 1 2 t

(1) (1) (1) (1) (1)
0 1 2 t

(n-1) (n-1) (n-1) (n-1) (n-1)
0 1 2 t

(v , v , v ,..., v ,...)

(v , v , v ,..., v ,...)

(v , v , v ,..., v ,...)

=

=

=

v

v

v

The n output sequences are multiplexed into a single sequence, called the code sequence (codeword).
(0) (1) (n-1) (0) (1) (n-1)

0 t 0 0 0 1 1 1=(,..., ,...)=((v v ...v) , (v v ...v) ,....)v v v

where (0) (1)(v ...v)n
t t t

−=v is the encoded n-tuple at time unit t. Since the elements of the encoded

sequences may be drawn form the GF(2), it follows that (2)n
t GF∈v .

The jth of the n output sequences (j)v is obtained by convolving the input sequence with the

corresponding system impulse response: [2, pg 204]

(j) (1) (j) (2) (j) (3) (j) (k) (j) (i) (j)
1 2 3 k i

1
... , [1,] [0, 1]

k

i
i k j n

=

= ∗ + ∗ + ∗ + + ∗ = ∗ ∈ ∈ −∑v u g u g u g u g u g

where (i)u is the input sequence that corresponds to input i
(i) (i) (i) (i)

0 1 2(u , u ,u ,...) , [1,]i k= ∈u

and ()j
ig are the impulse responses that correspond to output sequence j.

At time unit t the information k-tuple is denoted by (1) ()(u ...u)k
t t t=u where (2)k

t GF∈u .

For each output j there are i corresponding impulse responses.
(j) (j) (j) (i) (i)
i i,0 i,1 i,2 i,m(g ,g ,g ,...,g) , [1,], [0, 1]i k j n= ∈ ∈ −g

Generator sequences (impulse responses) describe the connections of the inputs and the delay

elements with the modulo-2 adders. Every impulse response (j)
ig has finite length vi + 1. Impulse

responses are called generator sequences.

At arbitrary time t the output bit of jth output sequence is computed by the difference equations:

(j) (i) (j) i (j) i (j) i (j)
t i t i,0 t-1 i,1 t-m i,m

1 0 1
v u *g (u g +u g +...+u g)

k m k

i l i= = =

= =∑∑ ∑

where (i)
tu is the ith input bit at time t and (i) (i)

t-1 t-mu ...u are the m previous input bits which are stored in

the ith shift register. [2, pg 220]

 2-28

4.1 Generator matrix in Time domain

The generator sequences are organized into a semi-infinite matrix G which is called the (time

domain) Generator Matrix1. [1, pg 460]

0 1 2

0 1 2

0 1 2

m

m

m

G G G G
G G G G

G G G G

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

G

…
…
…

where lG is a k x n submatrix whose entries are

(0) (1) (1)
1, 1, 1,
(0) (1) (1)
2, 1, 2,

(0) (1) (1)
, , ,

, [0,]

n
l l l

n
l l l

l

n
k l k l k l

g g g
g g g

G l m

g g g

−

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥= ∈⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Consider the composite information sequence u with a finite length of blocks h, which is obtained

by interleaving the k information sequences
(1) (2) (k) (1) (2) (k) (1) (2) (k)

0 1 t h-1 0 0 0 1 1 1 h-1 h-1 h-1=(, ,..., ,...,)=((u u ...u),(u u ...u),..., (u u ...u))u u u u u

where (1) ()(...)k
t t tu u=u is the information k-tuple at time unit t. Thus the Generator Matrix will have

h rows and 2(m+h) columns.

The encoding equations can be expressed in matrix form as

= ⋅v u G

where the code sequence (codeword) is

0 1 t=(, ,..., ,...)v v v v

Definition: An (n, k, v) convolutional code is the set of all output sequences (codewords) produced

by an (n, k, v) convolutional encoder; that is, it is the row space of the encoder generator matrix G.

Because the codeword v is a linear combination of rows of the generator matrix G, an (n, k, v)

convolutional code is a linear code. [1, pg 461]

Nonsystematic feedforward convolutional encoders produce nonrecursive convolutional codes

because the response to a single nonzero input in the encoder has finite duration.

1 Note that in Generator matrix the blank areas are all zeros

 2-29

4.2 Generator sequences

Generator sequence (j)
ig between the ith input and the jth output is found by stimulating the encoder

with the discrete impulse (1, 0, 0, 0,…) at the ith input and by observing the jth output.

However a more practical method to compute the generator sequences is described in the following

steps. Suppose we want to compute (j)
ig :

Place 1 in the leftmost bit of the binary representation if the ith input is connected with jth adder.

Place 1 in each spot where a connection line from the shift registers feeds into the adder and a 0

elsewhere.

Example 2-2

Consider the 1
2

R = Nonsystematic Feedforward convolutional encoder presented in the following

block diagram.

u(1)

v(0)

v(1)

Figure 2-5: A rate R=1/2 binary nonsystematic feedforward convolutional encoder with memory order

m=3.

Since k=1 the encoder contains one shift register. From the block diagram we can obtain that the

shift register consists of three delay elements and hence its constraint length is v1=3. Since k=1 and

n=2 there will be two generator sequences:
(0) (1)
1 1(1011) , (1111)g g= = . Therefore we can obtain the generator matrix G by interlacing the

generator sequences.
(0) 0 0 0 0
1 1,0 1,1 1,2 1,3

(1) 1 1 1 1
1 1,0 1,1 1,2 1,3

(, , ,) (1011)

(, , ,) (1111)

g g g g g

g g g g g

= =

= =

(0) (1) (0) (1) (0) (1) (0) (1)
0 1,0 1,0 1 1,1 1,1 2 1,2 1,2 3 1,3 1,3[], [], [], []G g g G g g G g g G g g= = = =

 2-30

(0) (1) (0) (1) (0) (1) (0) (1)
0 1 2 3 1,0 1,0 1,1 1,1 1,2 1,2 1,3 1,3

(0) (1)(0) (1) (0) (1) (0) (1)
0 1 2 3 1,3 1,31,0 1,0 1,1 1,1 1,2 1,2

G G G G g g g g g g g g
G G G G g gg g g g g g

G

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= =
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

In the following table we describe the encoding process considering as input to the encoder the

information sequence 1 1 1 1
0 1 2 3 0 1 2 3(, , ,) (, , ,) (1,0,1,1)u u u u= = =u u u u u . The information sequence is

divided into four blocks. Thus the generator matrix will have four rows.

30 1 2

2 30 1

1 2 30

0 31 2

GG G G
G GG G

G
G G GG
G GG G

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

tv Encoding equations

0 1
(,)0 0 0v v=v 1 0 1

() (1 11 1) (11)0 0 0 1,0 1,0G u g g= = =u i i

0 1
(,)1 1 1v v=v 1 0 1 1 0 1() () (1 0 1 1) (0 1 0 1) (0 1) (0 0) (0 1)0 1 1 0 0 1,1 1,1 1 1,0 1,0G G u g g u g g+ = + = ⊕ = ⊕ =u u i i i i

2 2 2
0 1

(,)v v=v 1 0 1 1 0 1 1 0 1
() () () ... (0 0)0 1 0 0 1,2 1,2 1 1,1 1,1 1,0 1,02 1 2 2G G G u g g u g g u g g+ = + + = =+u u u

3 3 3
0 1

(,)v v=v 1 0 1 1 0 1 1 0 1 1 0 1
() () () () (0 1)0 1 0 1,3 1,3 1 1,2 1,2 1,1 1,1 1,0 1,03 2 2 1 3 0 2 2G G G G u g g u g g u g g u g g+ = + + + =+ +u u u u

4 4 4
0 1

(,)v v=v 0 1 0 1 0 1
() () () (0 1)1,3 1,3 1,2 1,2 1,1 1,13 2 1G G G g g g g g g+ = + + =+

5 5 5
0 1

(,)v v=v 0 1 0 1
() () (0 0)1,3 1,3 1,2 1,23 2G G g g g g+ = + =

6 6 6
0 1

(,)v v=v 0 1
() (11)1,3 1,33G g g= =

Table 2-2: The encoding process

The resulting codeword v is (11, 01, 00, 01, 01, 00, 11).

 2-31

4.3 Polynomial representation of the Generator matrix

In the section referring to the “Algebraic Coding Theory For Convolutional Codes” we mentioned

that we can use a specific polynomial form, in order to describe convolutional codes.

Usually we introduce the delay operator D as the variable of polynomial. The power of D denotes

the number of time units a bit is delayed with respect to the initial bit of sequence.

The polynomial representation of the information and encoded sequences are given by [2, pg 221]

(i) (i) (i)
t

0

() () ()
t

0

() u

() v

t

t

j j j t

t

D D

D D

+∞

=

+∞

=

←⎯→ =

←⎯→ =

∑

∑

Z

Z

u u

v v

The corresponding polynomial representation of the generator sequence (j)
ig is called generator

polynomial and is given by [2, pg 221]

(i) (i) ()
i , t

0
() g j t

t
D D

+∞

=

←⎯→ =∑Zg g

Therefore (j) () (j)
i

1

() () ()
k

i

i

D D D
=

=∑v u g

For an (n,k,v) convolutional encoder there are a total of k n× system functions which can be

represented by the k n× Generator matrix.
(0) (1) (1)
1 1 1
(0) (1) (1)
2 2 2

(0) (1) (1)
k k k

()

n

n

n

D

−

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

g g g
g g g

G

g g g

We can express the encoding equations of a (n,k,v) feedforward encoder in matrix form as

() () ()D D D=V U G ,

where (1) (2) ()() [(), (),..., ()]kD D D D=U u u u is the k-tuple of input sequences and
(0) (1) (1)() [(), (),..., ()]nD D D D−=V v v v is the n-tuple of output sequences. [1, pg 263]

The final code sequence (codeword) which is produced by multiplexing the n output sequences can

be expressed as
(0) (1) 1 (1) 1() () () ... ()n n n n nD D D D D D− − −= + + +v v v v

The codeword can be also derived by the expression [1, pg 264]

 2-32

() ()

1
() () ()

k
i n j

i
i

D D D
=

= ∑v u g ,

where (0) (1) 1 (1) 1
i i i i() () () ... ()n n n n nD D D D D D− − −= + + +g g g g is the composite generator polynomial

relating the ith input sequence to the codeword ()Dv .

In convolutional codes there are two general realization methods that can be applied to all

convolutional encoders; Controller canonical form and Observer canonical form.

In Controller Canonical Form there are k shift registers corresponding to each of the k input

sequences. The k input sequences enter the left end of each shift register and the n output sequences

are produced by modulo-2 adders external to the shift registers. The lowest degree (constant2) terms

in the generator polynomials correspond to the connections at the left ends of the shift registers. The

highest degree terms correspond to the connections at the right ends of the shift registers. The length

of the ith shift register iv is given by the expression:

()

1 1
max [deg ()] , [1,]j

i ij n
v D i k

≤ ≤ −
= ∈g

Moreover the memory order of the Convolutional Encoder is defined as:
()

1 1
max [deg ()] , [1,]j

ij n
m D i k

≤ ≤ −
= ∈g

The overall constraint length of the encoder is defined as:

1

k

i
i

v v
=

= ∑

In the Observer Canonical form there is one shift register corresponding to each of the n output

sequences. The k input sequences enter modulo-2 adders internal to the shift registers and the outputs

at the right of each shift register form the n output sequences. The lowest degree (constant) terms in

the generator polynomials represent the connections at the right ends of the shift registers. The

highest degree terms represent the connections at the left end of the shift registers. For this reason

when an encoder is realized in observer canonical form, it is common to write the generator

polynomials in the opposite of the usual order (from the highest to the lowest degree).

The length of the jth of the n shift registers is defined as:
()

1
max[deg ()] , [0, 1]j

j ii k
v D j n

≤ ≤
= ∈ −g

The memory order of the encoder is given by the expression:

1 1
max []jj n

m v
≤ ≤ −

=

2 The constant term in the generator polynomial ()j

ig denotes the connection of the ith input with the modulo-2 adder
that produces the jth output sequence

 2-33

The overall constraint length of the encoder in observer canonical form is defined as:
1

1

n

j
j

v v
−

=

= ∑

Consider the generator matrix G(D) of a nonsystematic feedforward encoder in controller canonical

form. We can obtain the generator matrix of the encoder in the observer canonical form by reversing

the order of the polynomials of the generator matrix G(D).

Example 2-3

Consider the 2
3

R = nonsystematic Convolutional Encoder with the generator matrix in polynomial

representation:
(0) (1) (2)
1 1 1
(0) (1) (2)
2 2 2

1 1
()

1 1
D D D

D
D
+ +⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

g g g
G

g g g

where
(0) (1) (2) (0) (1) (2)

1 1 1 1 2 2 2 2max(deg , ,) 1 , max(deg , ,) 1v v= = = =g g g g g g

are the constraint lengths of the two shift registers.

u(1)

v(0)

u(2)

v(1)

v(2)

Figure 2-6: A rate R=2/3 binary feedforward convolutional encoder with memory order m=1.

The corresponding observer canonical form realization of the Nonsystematic Feedforward

Convolutional Encoder is obtained by reversing the order of the generator polynomials in the

Generator Matrix.
(0) (1) (2)
1 1 1
(0) (1) (2)
2 2 2

1 1
()

1 1
D D D

D
D
+ +⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

g g g
G

g g g

Because n=3 the encoder in the observer canonical form realization will contain three shift registers

with corresponding constraint lengths:

 2-34

(0) (0) (1) (1) (2) (2)
0 1 2 1 1 2 2 1 2max(deg ,) 1, max(deg ,) 1, max(deg ,) 1= = = = = =v g g v g g v g g

Moreover the memory order is 0 1 20 2
max() max(, ,) 1jj

m
≤ ≤

= = =v v v v .

u(1)

v(0)

u(2)

v(1)

v(2)

Figure 2-7: Observer canonical form realization of the encoder illustrated in Figure 2-6.

5. SYSTEMATIC FEEDFORWARD CONVOLUTIONAL ENCODERS

In a Systematic Feedforward convolutional encoder k output sequences, called systematic output

sequences, are exact replicas of the input sequences. [1, pg 464]
(1)

()

, [1,]
1 1
0 1{

j i

j
i

i k
j i
j i

− = ∈
= −= ≠ −

v u

g

A convolutional generator matrix is systematic if the information sequence appears unchanged in the

corresponding code sequence.

The polynomial representation of the generator matrix of a systematic Convolutional Encoder is a

k n× matrix of the form [1, pg 465]
() (1)
1 1
() (1)
2 2

() (1)

10 0 () ()
01 0 () ()

()

00 1 () ()

k n

k n

k n
k k

D D
D D

D

D D

−

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

g g
g g

G

g g

Note that the first k output sequences equal the k input sequences and are called output information

sequences. The last n-k sequences are called output parity sequences. Thus Systematic Feedforward

Convolutional encoders are defined only by the ()k n k× − last generator polynomials. The

polynomial representation of the parity check matrix for the Systematic Feedforward convolutional

encoder is [1, pg 466]

 2-35

()() ()
1 2

(1)(1) (1)
1 2

(1)(1) (1)
1 2

1 0 0()() ()
0 1 0()() ()

()

0 0 1()() ()

kk k
k
kk k

k

nn n
k

DD D
DD D

D

DD D

++ +

−− −

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

gg g
gg g

H

gg g

where the last (n-k) columns of H(D) form the () ()n k n k− × − identity matrix. The parity check

matrix can be rewritten as
(0) (1) (1)
1 1 1
(0) (1) (1)
2 2 2

(0) (1) (1)

1 0 0() () ()
0 1 0() () ()

()

0 0 1() () ()

k

k

k
n k n k n k

D D D
D D D

D

D D D

−

−

−
− − −

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

h h h
h h h

H

h h h

Any codeword V(D) must satisfy the parity-check equations

() () ()D D D=TV H 0

where 0(D) represents the 1 ()n k× − matrix of all-zero sequences. [1, pg 466]

In Observer Canonical realization of Systematic Feeforward encoders there are only n-k shift

registers. The length of each shift register is defined as
()

1 1
max [deg ()] , [0, 1]j

j ii n
v D j n

≤ ≤ −
= ∈ −g

and the memory order of the encoder is given by the expression

1 1
max []jj n

m v
≤ ≤ −

=

Example 2-4

Consider the 2
3

R = Systematic Feedforward Convolutional encoder with generator matrix

(2) 2
1
(2)
2

1 0 1 0 1
()

0 1 0 1 1
D D

D
D

⎡ ⎤ ⎡ ⎤+ +
= =⎢ ⎥ ⎢ ⎥+⎣ ⎦⎣ ⎦

g
G

g

where (2)
1g corresponds to the generator polynomial of the first input with response to the second

output and (2)
2g corresponds to the generator polynomial of the first input with response to the

second output. The leading order of the generator polynomial (2)
1g is 2. Therefore the length of the

first shift register is v1 = 2. The leading order of the generator polynomial (2)
2g is 1 and hence the

 2-36

length of the second shift register is v1 = 1. The overall constraint length is v = 3. Thus we can obtain

the block diagram of the systematic C(3,2,3) convolutional encoder in the controller canonical form.

u(1)

v(0)

u(2)

v(1)

v(2)

Figure 2-8: A rate R=2/3 systematic feedforward convolutional encoder in controller canonical form.

The parity-check matrix is given by
(0) (1) 2
1 1() [() () 1] [1 1 1]H D D D D D D= = + + +h h

In order to obtain the observer canonical form of the encoder we reverse the order of generator

polynomials in the generator matrix.
21 0 1

()
0 1 1

D D
D

D
⎡ ⎤+ +

= ⎢ ⎥+⎣ ⎦
G

The encoder contains n-k=1 shift register. The constraint length of the shift register is
(2) (2)

1 1 2max(deg) 2v g g= =

Therefore the systematic feedforward encoder can be realized in observer canonical form as shown

in Figure 2-9.

u(1) v(0)

u(2) v(1)

v(2)

Figure 2-9: Observer canonical form realization of the encoder illustrated in Figure 2-8.

6. SYSTEMATIC FEEDBACK CONVOLUTIONAL ENCODERS

Systematic feedback encoders generate the same codes as the corresponding feedforward encoders

but exhibit a different mapping between information sequences and codewords. Usually we prefer to

transform a nonsystematic convolutional encoder to a systematic feedback convolutional encoder

 2-37

rather than create it from scratch. Therefore the main idea is to manipulate the k n× polynomial

generator matrix G(D) so that the first k columns of the systematic generator matrix G’(D) form

an k k× identity matrix. This is achieved by performing polynomial row operations on the generator

matrix G(D). The entries of the systematic polynomial generator matrix G’(D) are rational functions

in the delay operator D. Because elementary row operations do not change the row space of a matrix,

the matrices G(D) and G’(D) generate the same code and since G’(D) contains rational functions it

results in a feedback encoder realization.

Since G’(D) is in systematic form it can be used to determine a ()n k n− × systematic parity check

matrix H’(D). The procedure is the same as described in the systematic feedforward encoders. In this

case, H’(D) contains rational functions and its last ()n k− columns form the () ()n k n k− × − identity

matrix.

Because matrices G’(D) and H’(D) contain rational functions, the impulse response of the encoder

has infinite duration. Therefore the feedback shift register realization of G’(D) is an infinite impulse

response linear system (IIR) and the generated code is recursive (SRCC)3. The time domain

generator matrix G’ contains sequences of infinite length. For this reason systematic feedback

encoders are more easily described using the polynomial representation. [1, pg 471]

Example 2-5

Consider the 2
3

R = nonsystematic feedforward generator matrix given by

1 1
()

1 1
D D D

D
D
+ +⎡ ⎤

= ⎢ ⎥
⎣ ⎦

G

The controller canonical form realization of Figure 2-10 contains two shift registers with the

corresponding lengths
0 1 2

1 1 1 1 10 2 0 2

0 1 2
2 2 2 2 20 2 0 2

max deg max deg 1

max deg max deg 1

j

j j

j

j j

v

v
≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

⎡ ⎤ ⎡ ⎤= = =⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= = =⎣ ⎦ ⎣ ⎦

g g g g

g g g g

3 SRCC= systematic recursive convolutional code

 2-38

u(1)

v(0)

u(2)

v(1)

v(2)

Figure 2-10: A rate R=2/3 nonsystematic feedforward convolutional encoder in controller canonical form.

To convert G(D) to an equivalent systematic feedback encoder, we apply the following sequence of

elementary row operations.

()

1 /(1) 11
1 : 1 1 ()

1 1 1

/(1)1 1
2: 2 2 1 () 20 1(1) / 1

11 /(1)13: 2 2 () 2 22 0 1 (1) /(1)1

1 0
4: 1 1 2 ()

01

D D
step row row D

D D

D D
step row row Drow D

DD D D

D DDstep row row D
D D DD D

Dstep row row row D
D

⎡ ⎤+
= ⇒ = ⎢ ⎥+ ⎣ ⎦

+⎡ ⎤
= + ⇒ =⎢ ⎥

++ + +⎢ ⎥⎣ ⎦

⎡ ⎤++
= ⇒ =⎢ ⎥

+ + +⎢ ⎥+ + ⎣ ⎦

= + ⇒ =
+

G

G

G

G
21/(1)

1 2 2(1) /(1)

D D

D D D

⎡ ⎤+ +⎢ ⎥
⎢ ⎥+ + +⎣ ⎦

The systematic parity check matrix is given by
2

'
2 2

1 1() 1
1 1

DD
D D D D

⎡ ⎤+
= ⎢ ⎥+ + + +⎣ ⎦

H

The equivalent nonsystematic polynomial parity-check matrix is given by
2 2() 1 1 1D D D D⎡ ⎤= + + +⎣ ⎦H

where the () (), 0 1j D j n≤ ≤ −h represents the parity check polynomial associated with the jth

output sequence. H(D) and H’(D) correspond to the controller canonical form realization of the

encoder. We can obtain the observer canonical form realization by reversing the order of the

polynomials. The generator matrix and the systematic parity check matrix in observer canonical

form are given by

21 0 1/(1)
()

0 1 2 2(1) /(1)

D D
D

D D D

⎡ ⎤+ +⎢ ⎥=
⎢ ⎥+ + +⎣ ⎦

G ,
2

'
2 2

1 1() 1
1 1

DD
D D D D
⎡ ⎤+

= ⎢ ⎥+ + + +⎣ ⎦
H

 2-39

7. STRUCTURAL PROPERTIES OF CONVOLUTIONAL CODES

7.1 State Diagram

The operation of convolutional encoders can be described by a state diagram. State diagram is a

graph where nodes correspond to the encoder’s possible states and branches denote the transitions

between states. The state transitions are labeled with the appropriate input / output binary tuples

/t tu v . The state of an encoder is defined as the contents of its k shift registers. For a (, ,)n k v

convolutional encoder in controller canonical form there are a total of 2v possible states. The ith shift

register of the encoder at time unit t contains vi bits denoted as () ()
1 ,..., , [1,]i i

t t vi
s s i k− − ∈ where ()

1
i

ts −

represents the contents of the rightmost delay element and ()i
t v

i
s − represents the contents of the

leftmost delay element.

Definition: The encoder state at time unit t is the binary v-tuple
(1) (1) (1) (2) (2) (2) (3) (3) (3) () () ()

1 2 1 2 1 2 1 21 2 3
(...)k k k

t t t t v t t t v t t t v t t t vk
s s s s s s s s s s s sσ − − − − − − − − − − − −=

The ith shift register at time unit t contains the vi previous input bits () ()
1 ...i i

t t vi
u u− − . Therefore the

encoder state at time unit t can be expressed as a v-tuple of the memory values.
(1) (1) (1) () () ()

1 2 1 21
(...)k k k

t t t t v t t t vk
u u u u u uσ − − − − − −=

A (, ,)n k v convolutional encoder in observer canonical form contains n shift registers. In this case

there are a total of 2v possible states and the encoder state at time unit t is the binary v-tuple
(1) (1) (1) (2) (2) (2) (3) (3) (3) () () ()

1 2 1 2 1 2 1 21 2 3
(...)n n n

t t t t v t t t v t t t v t t t vn
s s s s s s s s s s s sσ − − − − − − − − − − − −=

The states are labeled S0, S1, …, S2
v
- 1 where Si represents the state whose binary v-tuple

representation is b0 b1… bv – 1 . The exponent i is given by the expression 1 1
0 1 12 ... 2v

vi b b b−
−= + + +

[1, pg 487].

7.2 Trellis Diagram

The state diagram can be represented as it evolves in time with a trellis diagram. Trellis diagram is

constructed by reproducing the states horizontally and showing the state transitions going from left

to right corresponding to time and data input. At time ti, 2v nodes that correspond to the possible 2v

states are placed vertically. At time ti+1, the same structure is repeated. Then we denote with

branches the possible 2k transitions from each state to another. The branches are labeled with the

corresponding output.

 2-40

Consider a (, ,)n k v convolutional encoder with memory m. For an information sequence of length
*K kh= the trellis diagram contains h m+ time units. The final codeword is obtained from the

labels of the branches that determine the path that corresponds to the information sequence.

In steady state the trellis diagram denotes the possible transitions between states and the

corresponding outputs.

Example 2-6

Consider the 2
3

R = nonsystematic Convolutional Encoder presented in Figure 2-10. Since the

overall constraint length v=2 there are 22=4 possible states with binary representation 00, 01, 10, 11.

The label of each state i is Si, where the indicator i is given by the expression
1 1

0 1 12 ... 2v
vi b b b−
−= + + + . The mapping between labels and states is provided in the following table

State Label
00 S0
01 S2
10 S1
11 S3

Table 2-3: States labeling

In order to determine the state diagram of the encoder we must construct the following table

State Input bits Output bits Next State

S0 00 000 S0
S0 01 011 S2
S0 10 101 S1
S0 11 110 S3
S1 00 111 S0
S1 01 100 S2
S1 10 010 S1
S1 11 001 S3
S2 00 100 S0
S2 01 111 S2
S2 10 001 S1
S2 11 010 S3
S3 00 011 S0
S3 01 000 S2
S3 10 110 S1
S3 11 101 S3

Table 2-4: Input/Output bits for every possible state transition

 2-41

for the rate R=2/3 convolutional encoder of Figure 2-10.

Figure 2-11: State diagram of the convolutional encoder of Figure 2-10

Figure 2-12: The corresponding trellis diagram in steady state of the encoder of Figure 2-10

7.3 Catastrophic Encoders

This class of convolutional encoders should be avoided when developing an error control system.

The foremost disadvantage is that a finite number of channel errors can generate an infinite number

of decoding errors.

Definition: An encoder is catastrophic if and only if the state diagram contains a cycle with zero

output weight other than the zero-weight cycle around the state S0. [1, pg 485]

 2-42

Any encoder for which a feedforward exists is noncatastrophic. Therefore systematic encoders are

always noncatastrophic, since a trivial feedforward inverse exists. Minimal nonsystematic encoders

are also noncatastrophic.

7.4 Distance Properties of convolutional codes

The most important distance measure for convolutional codes is the minimum free distance dfree.

Free distance determines the error-correcting capabilities of a convolutional code.

Definition: The free distance of a convolutional code is the minimum Hamming distance4 between

any two code sequences of the code

' ' '

' ''

,
min (,)free
u u

d d= v v

where v’ and v’’ are the codewords corresponding to the information sequences u’, u’’. [2, pg 213]

Codewords v’ and v’’ have finite length and start and end in the zero state S0. Because a

convolutional code is a linear code the minimum hamming distance of v’ and v’’ is equal to the

minimum hamming weight5 of the sum v’ and v’’.

' ' '

' ''

,
min{ ()} min{ ()} min{ ()}free
u u

d w w w= = =v + v v uG

where v is the codeword corresponding to the information sequence u. Therefore dfree is the min-

weight codeword produced by any finite nonzero length information sequence. Moreover it is the

minimum weight of all finite length nonzero paths in the state diagram that diverge from and

remerge with the all-zero state S0. The free distance is a code property and hence it is independent of

the encoder realization. A minimum distance encoder can always correct an error sequence e, if

()
2
freed

w <e

Definition: The maximum error-correcting capability of an encoder freet is given by

1
2

free
free

d
t

−
=

[3, pg 49]

4 Hamming distance between two n-tuples v and w denoted d(v, w) is defined as the number of places where they differ.
5 The hamming weight of a n-tuple v denoted w(v) is defined as the number of nonzero components of v.

 2-43

We can obtain the free distance from the state diagram by finding the path that corresponds to the

codeword with the minimum weight. Only a subset of all the codewords specified by the state

diagram is necessary in order to evaluate the minimum free distance.

• Only codewords with finite length that leave zero state at time t=0 and end at zero state

again, have to be considered.

• Codewords that leave zero state more than once can be excluded since a codeword with a

smaller weight always exist.

• Codewords that are not in the zero state after 2vt > state transitions can be excluded. In such

a case the corresponding path would require passing at least twice from the zero state and

would form a loop in the state diagram. Therefore a codeword with a smaller weight always

exist.

An encoder is an optimum free distance (OFD) encoder if its free distance is equal or superior to that

of any other encoder of the same rate and constraint length. [3, pg 49]

The process of finding the free distance of a convolutional code from the state diagram is illustrated

in the following example.

Example 2-7

Consider the state diagram of the Example 2-5. The transitions are labeled with an operator W where

its power corresponds to the Hamming weight of the output associated with the transition/branch.

Figure 2-13 shows the modified state diagram.

 2-44

Figure 2-13: Modified encoder state diagram for the encoder of Figure 2-10.

The free distance of the C(3,2,2) convolutional code can be obtained by the codewords that leave S0

at time t=0 and return to it for the first time at the latest when t=4. The codewords that satisfy these

requirements and the corresponding weight of each code sequence are given in the following table.

Codeword Labels multiplication Codeword weight
S0, S1, S0 W2 W3= W5 5

S0, S1, S2, S0 W2 WW= W4 4
S0, S1, S3, S2, S0 W2 WW= W4 4

S0, S3, S0 W2 W2 = W4 4
S0, S3, S1, S0 W2 W2 W2 = W6 6
S0, S3, S2, S0 W2 W= W3 3

S0, S2, S0 W2 W= W3 3
Table 2-5: Possible paths and the corresponding codewords weight in order to obtain the free distance.

Therefore the free distance of the code is dfree=3.

 2-45

8. OPTIMUM DECODING OF CONVOLUTIONAL CODES

8.1 Maximum Likelihood Decoding

The Viterbi algorithm is a maximum likelihood decoding algorithm. In maximum likelihood

decoding the goal is to produce an estimate û of the information sequence u based on the received

sequence r in order to achieve the minimum probability of decoding error assuming equiprobable

input symbols. Equivalently in ML decoding for convolutional codes the decoder produces an

estimate v̂ of the codeword v that maximizes the conditional probability of the received sequence r,

(|)P r v .

Definition: A decoder that chooses its estimate to maximize the conditional probability of the

received sequence r is called a maximum likelihood decoder. [1, pg 11]

For a (, ,)n k v encoder and an information sequence of length *K kh= there are 2k branches leaving

and entering the state and 2K*

 distinct paths through the trellis corresponding to the 2K*

codewords.

Assume that an information sequence 0 1(, ,...)=u u u of length *K kh= is encoded into a codeword

0 1(, ,...)=v v v of length ()N n h m= + and 0 1(, ,...)=r r r is the received sequence of length N. A

decoding error occurs if and only if ˆ ≠v v . An optimum decoding rule must minimize the error

probability of the decoder which is given by [1, pg 11]

 () (|) ()P E P E P=∑
r

r r

Consequently the optimum decoding rule must minimize the conditional probability of the decoder

which is defined as [1, pg 11]

ˆ(|) ()P E P ≠r v v | r

or equivalently must maximize the conditional probability [1, pg 11]

ˆ()P =v v | r

where ()P r is the probability of the received sequence r and is independent of the decoding rule.

Therefore the decoding rule that minimizes ()P E must minimize (|)P E r . The conditional

probability (|)P E r is minimized for a given r by selecting v̂ as the codeword v that maximizes

(|)(|)
()

PP
P

=
r vv r

r

 2-46

If all information sequence and hence all codewords are equally likely then (|)P E r is minimized

for a given r by choosing v̂ as the codeword v that maximizes (|)P r v . For a memoryless channel
1 1

0 0

(|) (|) (|)
h m N

l l l l
l l

P P P r v
+ − −

= =

= =∏ ∏r v r v

1 1

0 0

log (|) log (|) log (|)
h m N

l l l l
l l

P P P r v
+ − −

= =

= =∑ ∑r v r v

where the log (|)l lP r v is a channel transition probability. The conditional probability (|)P r v is

called the path metric [1, pg 517]. The terms log (|)l lP r v are called branch metrics and denoted as

(|)l lM r v whereas the terms log (|)l lP r v are called bit metrics and denoted as (|)l lM r v . The path

metric (|)M r v can be written as [1, pg 517]
1 1

0 0

(|) (|) (|)
h m N

l l l l
l l

M M M r v
+ − −

= =

= =∑ ∑r v r v

The partial path metric for the first t branches of a path can be expressed as [1, pg 517]
1 1

0 0
([|) (|) (|)

t nt

l l l l
l l

tM M M r v
− −

= =

= =∑ ∑r v] r v

This is a minimum error probability rule when all codewords are equally likely. If the codewords are

not equally likely then an maximum likelihood decoder is not necessarily optimum, since the

conditional probabilities (|)P r v must be weighted by the codeword probabilities ()P v to determine

which codeword maximizes (|)P v r . In some cases where the codeword probabilities are not known

at the receiver a maximum likelihood decoder becomes the best feasible decoding rule. [1 pg 517]

In general there are two main categories of decoding, Hard-decision decoding and Soft-decision

decoding. In hard-decision decoding the decoder processes the received sequence which is in binary

form whereas in soft-decision decoding the decoder processes a received sequence which is

unquantized or quantized in more than two levels.

The metric used in hard-decision decoding is the Hamming distance. The objective is to decode the

hard-decision received sequence to the closest codeword in the Hamming distance. In this case a

maximum likelihood decoder chooses v as the codeword that minimizes the Hamming distance
1 1

0 0
(|) (|) (|)

h m N

l l l l
l l

d d d r v
+ − −

= =

= =∑ ∑r v r v

In this case the terms (|)l ld r v become the branch metrics whereas the terms (|)l ld r v become the

bit metrics.

 2-47

8.2 The Viterbi algorithm

The decoding process of the Viterbi algorithm is based on the trellis diagram. The algorithm when

applied to the received sequence r finds the path through the trellis with the largest metric (maximum

likelihood path). For a terminated convolutional code (, ,)n k v , in the first and the last m time units

not all the possible states can be reached. In the center portion of the trellis, all states are possible

and each time unit contains a replica of the state diagram. There are 2k branches leaving and entering

each state.

8.2.1 Basic Algorithm

Consider a (, ,)n k v convolutional encoder with memory m. An information sequence 0 1(, ,...)=u u u

of length *K kh= is encoded into a codeword 0 1(, ,...)=v v v of length ()N n h m= + and

0 1(, ,...)=r r r is the received sequence of length N. Assume that we apply the Viterbi algorithm in

order to obtain the information sequence from the received sequence. Before describing the steps of

the algorithm we will define some additional elements that will be useful in the following analysis.

In the trellis diagram, for every branch j entering state Si at time unit t there is a predecessor state

Spredecessor.

branch 0

bra
nc

h 2

br
an

ch
 2

v

Predecessor state of
branch 0

Predecessor state of
branch 1

Predecessor state of
branch 2

Predecessor state of
branch 2v

branch 1

Figure 2-14: Branches and predecessor states

The path with the largest metric is called the survivor path.

The predecessor state of the survivor path is called the predecessor-successor state.

 2-48

1
2
7

4

Survivor p
ath

Predecessor
successor state

Figure 2-15: Survivor path and the Predecessor successor state

The first step of the Viterbi algorithm is called Branch Metric Generator. For every time interval

1i it t +→ in the trellis diagram, compute the branch metrics for all the branches entering each state at

time unit 1it + , where [0, 1]i h m∈ + − . [1, pg 518][5, pg 87]

The next step is called ACS (add, compare and select). For every time unit t, where 0 t h m< < + , for

each state compute the partial metric of each path entering that state. The accumulated partial metric

of jth path entering state Si is given by the sum of the jth branch metric and the metric of the state

Spredecessor. Afterwards, for each state, compare the partial metrics of all the paths entering that state,

select the path with the largest metric (survivor path), store its path along with its metric and

eliminate all other paths. [1, pg 518][5, pg 87]

In practice the information sequence corresponding to the survivor path at each state is stored instead

of the surviving path itself. In this case there is no need to invert the estimated codeword v̂ in order

to obtain the estimated information sequence û .

Moreover the performance of Viterbi algorithm is affected by several additional factors such as

Decoder Memory, Computational Complexity.

i. Decoder Memory. At time unit t in the trellis diagram there are 2v states. Therefore decoder

must be able to reserve 2v words in order to store 2v survivor paths and their metrics. Memory

space increases exponentially with the overall constraint length and hence in practice, it is

not feasible to implement the Viterbi decoder for large v.

 2-49

ii. Computational Complexity. At time unit t in the trellis diagram 2k binary additions and 2k-1

binary comparisons are performed for every state. Therefore the Viterbi computational

complexity is proportional to the branch complexity 2v2k. Consider an information sequence

of length *K kh= . The trellis diagram will contain h+m time units (stages). Therefore the

complexity of the Viterbi algorithm is on the order of 2 2 ()k vO h m⎡ ⎤+⎣ ⎦ . The number of time

units in the trellis diagram h, is linear factor in the complexity. However there will be an

exponential increase of the computational complexity if the number of inputs or the overall

constraint length of the encoder increases. Because of the exponential dependence of the

computational complexity on the overall constraint length v and the number of inputs of the

encoder k, in practical applications Viterbi algorithm is used for codes with low code-rate

and relatively small overall constraint length.

There are two general methods for implementing Viterbi decoding:

⇒ Hard decision output Viterbi algorithm

⇒ Soft-output Viterbi decoding algorithm

Hard decision output Viterbi algorithm is based on the basic Viterbi algorithm and is implemented

by the use of the hamming distance as the partial metric.

In Soft-output Viterbi algorithm the unquantized received sequence is processed by the use of the

Euclidean distance or a correlation metric. The real valued inputs and the use of the above metrics in

the Soft-output Viterbi algorithm, increases the computational complexity and the required storage

memory compared with the hard decision output Viterbi algorithm. For this reason in WFTP system

we implemented a software version of a hard decision output Viterbi algorithm.

9. EVALUATION OF CONVOLUTIONAL CODES

The most important metrics that can be used as guidance in order to evaluate convolutional codes are

the free distance freed , and the overall constraint length v. An encoder can always correct an error

sequence e, if ()
2
freed

w <e . Because of the dependence of the error correcting capability of a

convolutional code on the free distance of the code, for a given code rate and overall constraint

length the best convolutional code is the one with the maximum free distance. However, free

 2-50

distance depends on the overall constraint length. Therefore maximizing free distance results in an

increase of the constraint length and hence in an increase of the computational complexity in the

decoder. In general freed is of primary importance in determining the performance at high SNR’s.

Another quantity that is used as a performance measure for convolutional codes is the asymptotic

coding gain. In general coding gain is defined as the reduction in the
0

bE
N

 required to achieve a

specific error probability for a coded communication system compared with an uncoded

communication system. The asymptotic coding gain is the coding gain for large SNR and depends

only on the code rate and the free distance of the code. For a hard decision decoder the asymptotic

coding gain γ is defined as [1, pg 18]

1010log
2

freeRd
dBγ

⎛ ⎞
⎜ ⎟
⎝ ⎠

,

where R is the code rate k
n

 and freed the free distance of the (n, k, v) convolutional code.

For a soft decision decoder the asymptotic coding gain γ is defined as

()1010log freeRd dBγ

Notice that there is an increase of 3dB over the hard decision. However in soft decision decoding,

the decoding complexity increases owing to the need to accept real-valued inputs.

In general when designing a coding system for error control in a communication system, it is desired

to minimize the SNR required to achieve a specific error rate. This is equivalent to maximizing the

coding gain of the system compared to an uncoded system, using the same modulation signal set.

The most practically important encoders are the nonsystematic feedforward and systematic feedback

convolutional encoders. Since free distance is the most important criterion for evaluating

convolutional codes the two categories of the encoders will be compared on the basis of their bounds

on free distance.

The lower bounds for nonsystematic convolutional codes are shown to lie above the upper bounds

for systematic codes and it is concluded that more free distance is available with nonsystematic

convolutional codes. In particular in systematic encoder realizations there is a reduced number of

modulo-2 adders compared with the nonsystematic encoders. This results in reduced free distance in

systematic encoders. For asymptotically large constraint length K the performance of a systematic

code of overall constraint length K is approximately the same as that of a nonsystematic code of

constraint length K(1-R). [4, pg 763]

 2-51

Consequently the best nonsystematic codes achieve lower error probabilities than the best systematic

codes when used with maximum likelihood or sequential decoding.

In general systematic feedback form of encoder realization is preferred in cases where decoding is

done offline, decoder is subject to temporary failures or the channel is known to be noiseless during

certain time intervals and decoding becomes unnecessary.

On the other hand, nonsystematic feedforward encoders may be preferred when using terminated

convolutional codes. In nonsystematic feedforward encoders the termination sequence is k m× zeros

appended in the end of the information sequence. Though in systematic feedback encoders the

termination sequence depends on the information sequence and cannot be chosen arbitrarily. This

results in additional complexity in the encoder.

In the WFTP system we implemented a nonsystematic feedforward convolutional encoder with the

corresponding Viterbi decoder.

The selection of the most suitable convolutional codes for our system was based on the optimum

convolutional codes for code rates 1 1 1 2 3, , , ,
2 3 4 3 4

 which are listed in the following tables.

v (0)g (1)g (2)g freed γ(dB)

1 1 3 3 5 -0.79
2 5 7 7 8 1.25
3 13 15 17 10 2.22
4 25 33 37 12 3.01
5 47 53 75 13 3.36
6 117 127 155 15 3.98
7 225 331 367 16 4.25
8 575 623 727 18 4.77
9 1167 1375 1545 20 5.23

Table 2-6: Optimum rate R=1/3 convolutional codes [1, pg 539]

Table 2-7: Optimum rate R=1/4 convolutional codes [1, pg 539]

v (0)g (1)g (2)g (3)g freed γ(dB)

1 1 1 3 3 6 -1.25
2 5 5 7 7 10 0.97
3 13 13 15 17 13 2.11
4 25 27 33 37 16 3.01
5 45 53 67 77 18 3.52
6 117 127 155 171 20 3.98
7 257 311 337 355 22 4.39
8 533 575 647 711 24 4.77
9 1173 1325 1467 1751 27 5.28

 2-52

v (0)g (1)g freed γ(dB)
1 3 1 3 -1.25
2 5 7 5 0.97
3 13 17 6 1.76
4 27 31 7 2.43
5 53 75 8 3.01
6 117 155 10 3.98
7 247 371 10 3.98
8 561 753 12 4.77
9 1131 1537 12 4.77

Table 2-8: Optimum rate R=1/2 convolutional codes [1, pg 540]

v v1 v2
(0)
1g (1)

1g (2)
1g (0)

2g (1)
2g (2)

2g freed γ(dB)
2 1 1 3 1 0 2 3 3 3 0
3 1 2 3 2 1 4 1 7 4 1.25
4 2 2 6 5 1 7 2 5 5 2.22
5 2 3 7 6 3 12 1 13 6 3.01
6 3 3 6 13 13 13 06 17 7 3.67
7 3 4 16 13 3 25 5 34 8 4.26
8 4 4 37 31 16 23 14 35 8 4.26
9 4 5 27 23 16 46 17 41 9 4.77

Table 2-9: Optimum rate R=2/3 convolutional codes [6]

v v1 v2 v3 (0)
1g (1)

1g (2)
1g (3)

1g (0)
2g (1)

2g (2)
2g (3)

2g (0)
3g (1)

3g (2)
3g (3)

3g freed γ(dB)

2 0 1 1 1 1 1 0 3 0 0 1 3 2 0 2 3 -1.25
3 0 1 2 1 1 1 1 0 3 1 2 0 2 5 5 4 0.51
4 1 1 2 0 1 2 3 3 0 1 2 2 4 1 5 4 1.76
5 1 2 2 3 3 2 2 5 2 7 0 4 7 0 1 5 2.73
6 2 2 2 5 4 3 2 4 6 5 5 6 1 4 3 6 3.52
7 2 2 3 02 03 04 07 03 07 03 05 15 02 02 17 6 4.19
8 2 3 3 04 06 07 07 01 12 05 14 00 07 14 11 7 4.77
9 3 3 3 03 06 10 15 00 16 03 13 16 05 02 17 8 5.28

Table 2-10: Optimum rate R=3/4 convolutional codes [6]

The codes that are listed in the preceding tables, are generated by nonsystematic feedforward

encoders in controller canonical form and are optimum in the sense that for a specific code rate

kR
n

= and constraint length v the code listed in the appropriate table has the maximum free distance

of all the (, ,)n k v codes.

For a code rate kR
n

= and overall constraint length v, the generator sequences are provided in octal

form. Consider the optimum convolutional encoder (2, 1, 3). The generator sequences (0)g , (1)g in

binary form are given by (001011) and (001111). However v1=m=v=3 and hence only the rightmost

m+1 bits form the binary representation of each generator sequence. In general, the binary

representation of each generator sequence ()j
ig is formed by the leftmost vi+1 bits. In order to obtain

 2-53

the octal form of a generator sequence ()j
ig , we consider consecutive triplets of bits by starting from

the rightmost bit. If the number of bits is not multiple of three, pad at the left with the appropriate

zero bits.

Notice from the above tables that for large overall constraint length, the asymptotic coding gain and

the free distance increases. Therefore we would like to select the convolutional code with maximum

free distance and asymptotic coding gain. However because of the exponential dependence of the

decoding complexity on the overall constraint length our choices are limited.

 The upper bound on the BER of the optimum codes with hard-decision decoding and coherent

BPSK as a function of the bit SNR in dB, are plotted in the following figures.

Figure 2-16: Upper bound on the BER for R=1/2

codes listed in Table 2-5.

Figure 2-17: Upper bound on the BER for R=1/3 codes

listed in Table 2-4.

 2-54

Figure 2-18: Upper bound on the BER for R=1/4

codes listed in Table 2-4.

Figure 2-19: Upper bound on the BER for R=2/3

codes listed in Table 2-6.

Figure 2-20: Upper bound on the BER for R=3/4 codes listed in Table 2-7.

The preceding figures denote that by increasing the overall constraint length, a specific probability

of error can be achieved in lower SNR. However there is a contemporary exponential increase in the

decoding complexity.

In the following tables the optimum convolutional codes are compared on the basis of their typical

decoding timings in the personal computers used for the experimental operation of the WFTP system

for 100.000 bits.

 2-55

v R=1/2 R=1/3 R=1/4 R=2/3 R=3/4
1 0.22 sec 0.26 sec 0.30 sec - -
2 0.28 sec 0.32 sec 0.43 sec 0.20 sec 0.21 sec
3 0.52 sec 0.38 sec 0.53 sec 0.30 sec 0.27 sec
4 0.49 sec 0.52 sec 0.58 sec 0.39 sec 0.39 sec
5 0.78 sec 0.76 sec 1.22 sec 0.64 sec 0.63 sec
6 1.22 sec 1.23 sec 1.28 sec 1.04 sec 1.05 sec
7 2.21 sec 2.16 sec 2.20 sec 2.02 sec 2.05 sec

Table 2-11: Typical decoding timings of the optimum rates convolutional codes for 100.000 bits

In general, large free distances and low error probabilities are achieved not by increasing k and n but

by increasing the memory order m. Thus it is desired to use a convolutional encoder with the

maximum overall constraint length. However as we can obtain from the table 2-11, the decoding

time increases along with the increase of the overall constraint length v. In the WFTP system the

desired typical processing time for the different modules must be less than 1 sec in order to reduce

the processing time to the minimum possible. Therefore we must select the convolutional codes that

achieve the maximum possible free distance along with an acceptable decoding complexity.

Though we can obtain that for v > 6 the gain in SNR, as v increases, is less than 1dB. Moreover for

v>6 the decoding time exceeds the 2 sec for all the code rates. Consequently the set of convolutional

codes that meet our requirements and will be applied to the WFTP system are listed in the following

table.

R v m freed γ(dB) Branch
Complexity

1/4 6 6 20 3.98 27
1/4 4 4 16 3.01 25

1/3 6 6 15 3.98 27
1/3 5 5 13 3.36 26

1/2 6 6 10 3.98 27
1/2 5 5 8 3.01 26
2/3 6 3 7 3.67 28

3/4 6 2 6 3.52 29
2/3 5 3 6 3.01 27
3/4 5 2 5 2.73 28
2/3 4 2 5 2.22 26
3/4 4 2 4 1.76 27

Table 2-12: The convolutional codes that will be applied on the WFTP system.

The convolutional codes in the preceding table are listed in descending order on the basis of their

free distance. The code with the largest free distance is expected to achieve better performance.

 2-56

However the use of a convolutional encoder in an uncoded communication system reduces the

transmission rate. The decrease of transmission rate depends on the code rate of the convolutional

code. The code rate determines the redundant information that will be added to the actual

information sequence. Assume that a packet of length N in the WFTP system is an input to a kR
n

=

convolutional encoder. The encoded packet will be of length N
R

. Consequently this results in a

decrease of transmission rate, since the transmission of the same actual information requires more

time units.

Consider the uncoded WFTP system where each packet contains N bits and each symbol

corresponds to 2log ()M bits. If the number of samples per symbol is Tsym and the sampling

frequency is Fs, then the total transmission time per packet is

2log ()TRANSMISSION sym
Nt T

Fs M
=

Therefore the transmission rate is

2log ()
TRANSMISSION

TRANSMISSION sym

Fs MNR
t T

= =

If we add an (n, k, v) convolutional encoder to the system, the total transmission time will be given

by

2 2log () log ()TRANSMISSION sym sym

Nn
Nnkt T T

Fs M Fs M k
= = ,

and the transmission rate

2log ()'
TRANSMISSION TRANSMISSION

TRANSMISSION sym

kFs MN kR R
t nT n

= = =

Eventually the transmission rate of the system is decreased by a factor k
n

. The transmission rate loss

percentage is given by 100%n k
n
− .

In the following table we represent the transmission rate loss for each one of the convolutional codes

that we have selected for the WFTP system.
 Code rates

1/4 1/3 ½ 2/3 3/4
Transmission

rate loss 75% 66% 50% 33% 25%

Table 2-13: Transmission rate loss as a function of code rate

 2-57

The transmission rate loss per code rate is listed in descending order. Notice that the 1/4 code, which

is expected to achieve the best performance in the set of codes listed in Τable 2-12, results in an 75%

transmission rate loss while the 3/4 code, which is expected to achieve the worst performance,

results in a 25% transmission rate loss. In general the selection of the convolutional codes that will

be used in a communication system must compromise the tradeoff between performance,

transmission rate loss and decoding complexity.

10. IMPLEMENTATION OF THE FECC MODULES

In WFTP system the transmitter contains a nonsystematic feedforward convolutional encoder

module and the receiver the corresponding hard-decision Viterbi decoder module. The two modules

are implemented in MATLAB.

10.1 Encoder Implementation

The encoder module consists of two components:

⇒ Polynomial to trellis diagram

⇒ Convolutional Encoder

10.1.1 Polynomial to trellis diagram

Encoding of convolutional codes is based on the state diagram or equivalently the trellis diagram in

steady state. The poly2trellis function accepts as inputs the constraint lengths of the convolutional

encoder and the generator sequences in octal form and constructs the trellis diagram that corresponds

to the specified encoder.

The generator sequences are given as input to the function through the kxn matrix Gmatrix which is of

the form
(0) (1) (1)
1 1 1
(0) (1) (1)
2 2 2

(0) (1) (1)

n

n

matrix

n
k k k

g g g
g g g

G

g g g

−

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,

 2-58

where ()j
ig is the ith generator sequence with response to jth output in octal form6.

The pseudocode of the function poly2trellis is given in Listing 2-1.

/*inputs*/
vi, Gmatrix
v = sum(vi) , m = max(vi) , [k, n] = size(Gmatrix)
states = dec2bin(0:2v-1)

/*possible blocks of information containing k bits*/
u = dec2bin(0:2k-1 , k)

for every state
 store state number
 /*add state to the delay elements*/
 start_index = 1
 end_index = 0
 for every shift register i
 end_index = end_index + vi
 shift_registers(i, 1:vi) = state(start_index:end_index)
 start_index = start_index + vi
 end
 for every possible block of information
 for every jth output
 g_current = (()

1
jg . . . ()j

gk)T
 for every element in g_current
 /* find the connection lines of input i and its corresponding delay elements */
 /*to the adder that produces jth output*/
 ith_connections = find(oct2bin(g_current) = =1)
 Store in xor_buffer the bit of the ith input and the bits of the connected delay elements
 output_bit = mod(sum(xor_buffer) , 2)
 codeword=[codeword;output_bit]
 end
 store codeword in octal form
 end
 shift right by 1 all bits in the delay elements
 add in the leftmost delay element of ith shift register the ith current input bit
 calculate state number and store next state
 end
end

Listing 2-1: Function poly2trellis for polynomial representation to trellis diagram conversion

Remarks. The result of the function poly2trellis is a struct which contains the number of input

symbols 2k, the number of output symbols 2n, the number of states 2v, the next states and the

corresponding codewords. In the nextStates matrix the ith column number corresponds to the binary

input in the encoder dec2bin(i-1, k). The jth row number indicates the initial state with binary

representation that results from the labeling convention which was mentioned in previous section.

6 In order to convert the binary representation of the generator sequence ()j

ig into an octal form, consider consecutive

triplets of bits, by starting from the rightmost bit. The rightmost bit in each triplet is the least significant. If the number of

bits is not a multiple of three, then place zero bits at the left end as necessary.

 2-59

Therefore the row with number j corresponds to the state with label St where t=j-1 and
1 1

0 1 12 ... 2v
vt b b b−
−= + + + . Consequently nextStates(j,i) corresponds to the encoder’s next state if

input is i-1 and previous state is Sj-1.

10.2 Convolutional Encoder

The convolutional encoder is implemented as a look up table. Starting at zero state and using the

trellis diagram produced by poly2trellis function the information sequence is encoded into the

corresponding codeword.

/*inputs*/
Trellis
current_state=0
for every block of k bits
 input← calculate the decimal representation of the information block
 output← Trellis.outputs (current_state+1, input+1)
 codeword← [codeword; output]
 current_state←Trellis.nextStates(current_state+1, input+1)
end

Listing 2-2: Function convenc encodes the information sequence into the corresponding codeword.

Remarks. The information sequence is encoded by the convolutional encoder in blocks of k bits.

Because of the structure of the trellis struct, which is obtained by the poly2trellis function, it is

desirable to express the information blocks in decimal form. In particular, consider the decimal

representation “x” of a block of k bits. If the current state is y, the output of the encoder in octal form

is given by trellis.outputs(y+1, x+1) while the corresponding next state in decimal form

trellis.nextStates(y+1, x+1).

10.3 Decoder Implementation

The Viterbi decoder implementation is a hard-decision decoder which is based on the Basic Viterbi

algorithm and the traceback technique.

Step 1. Construct the metrics table along with the history table. The 2vx(h+m) metrics table contains

the metric of the survivor path of each state for all (m+h) time units. History table contains the

predecessor-successor state of each state for all (m+h) time units. This step combines the Branch

Metric Generator and the ACS units of Viterbi algorithm. Because we are interested in terminated

convolutional codes, at time unit t=0 the initial state is S0 and its metric is 0. Increase t by 1 and for

 2-60

each state compute the partial metric of each path entering that state. The partial metric of each path

is the sum of the Hamming distance between, the received n bits and the n bits that correspond to the

path7 and the metric of the predecessor state. Afterwards for each state, compare the partial metrics

of all the paths entering that state and select the path with the largest metric (survivor path). The

predecessor state of this path is called the predecessor-survivor state. Therefore for time unit t we

store in the metrics table the metric of the survivor path for each state and in the history table the

number of predecessor-survivor state for each state.

Step 2. Start from the last record in the metrics table that correspond to the time unit h+m-1. Select

the state having the smallest partial metric and save the number of that state in the h+m-1 position

of the traceback path table.

Step 3. For the state being selected in step 2 check in the history table its predecessor state. Select

the new state and save its number in the traceback path table. Continue working backward until the

beginning of trellis is reached.

Step 4. Work forward through the states that are stored in the traceback path table. For each

transition between states i and i+1 in the traceback path table, look up from the trellis diagram the

input bit/bits that corresponds to the specified transition. The process finishes when the end of the

traceback path table is reached. The result of Step 4 is concatenation of the information sequence

and the termination sequence. In order to obtain the actual information, the last km bits must be

discarded.

7 Each path in the trellis diagram is labeled with the corresponding n output bits.

 3-61

C h a p t e r 3

CYCLIC REDUNDANCY CHECK

1. INTRODUCTION

Cyclic Redundancy Check (CRC) is an error-checking code that is widely used in data

communication systems. The CRC is a very powerful but easily implemented technique to obtain

data reliability and is used to protect k-bit blocks of data called Frames. Using this technique, the

transmitter appends an extra (n-k)-bit sequence to every frame called Frame Check Sequence (FCS).

The resulting n-bit frame is exactly divisible by some predetermined number. The receiver then

divides the incoming frame by that number and, if there is no remainder, assumes that there is no

error. Therefore the FCS holds redundant information about the frame that helps the receiver detect

errors in the frame. Since the CRC is only an error detecting code, the position of an error in the

received message can not be determined. CRC codes are used in communication protocols that use

automatic repeat request (ARQ).

2. FRAME CHECK SEQUENCE GENERATION

In CRC codes the FCS is obtained using modulo-2 arithmetic. In general FCS is the remainder of the

binary long division between the k-bit block of data and a predetermined divisor. Assume that D is

the k-bit block of data, F the (n-k)-bit frame check sequence, T the n-bit frame to be transmitted and

P the predetermined divisor consisting of n-k+1 bits. The frame to be transmitted T is produced by

shifting left the block of data D by (n-k) bits and padding the rightmost (n-k) bits with zeros. Adding

F to the rightmost (n-k) zeros yields to the concatenation of D and F which is 2n kT D F−= + .[8,

pg207].

D
k-bit block of data

F
(n-k) bits

Frame check sequence

n-bit frame
Figure 3-1: Concatenation of Frame check sequence and the data block

 3-62

In order to have no transmission errors in the receiver, the remainder of the division T
P

 should be

zero. Suppose we divide 2n k D− by P.
2n k D RQ

P P

−

= + ,

where Q is the quotient and R the remainder. Therefore the frame to be transmitted can be written as

2n kT D R−= + . Rewrite the division of the frame T and the predetermined divisor.

2 2n k n kT D R R R RQ
P P P P P P

− −+
= = + = + +

However in modulo-2 addition any binary number added to itself yields zero. Thus T Q
P
= . There is

no remainder and therefore T is exactly divisible by P.

The frame check sequence is obtained by the (n-k) bits of the remainder of the division of ()2 n k D−

with P.

The process of frame check sequence generation will be illustrated with the following example.

Example 3-1

In order to understand the frame check sequence generation we represent a simple binary long

division between the bit strings 1110 (divisor) and 1100011(dividend).

 1011 quotient
1110 1100011

1110 quotient = (degree(1100)= = degree(1110))=1, remainder=XOR(1100,1110)=010
 0100 quotient = (degree(1110)= = degree(0100))=0
 0000 remainder=XOR(0100,0000)=100
 1001 quotient = (degree(1110)= = degree(1001))=1, remainder=XOR(1110,1001)=0111
 1110
 1111 quotient = (degree(1110)= = degree(1111))=1, remainder=XOR(1110,1111)=0001
 1110
 001 remainder

Table 3-1: Binary long division

Consider D=1001 and P=1101. Since k=4 and n-k+1=4, the length of the frame to be transmitted T

is given by n=4+k-1=7. Thus the length of the FCS is n-k = 3.

Step 1. Shift left block of data by (n-k)=3 bits and pad with zeros. Thus D=1001000.

Step 2. Perform binary long division between the padded block of data D and the predetermined

divisor P.

 3-63

 1111 Quotient
1101 1001000

1101 quotient = (degree(1001)= = degree(1101))=1, remainder=XOR(1001, 1101)=0100
 1000
 1101 quotient = (degree(1000)= = degree(1101))=1, remainder=XOR(1000, 1101)=0101
 1010
 1101 quotient = (degree(1010)= = degree(1101))=1, remainder=XOR(1010, 1101)=0111
 1110
 1101 quotient = (degree(1110)= = degree(1101))=1, remainder=XOR(1110, 1101)=0011
 011

Table 3-2: Computation of the frame check sequence

Therefore T=1001011.

At the receiver the received frame is divided with the predetermined divisor P.
 1111 Quotient
1101 1001011

1101
 1000
 1101
 1011
 1101
 1101
 1101
 000

Table 3-3: Division of the received frame by the predetermined divisor P

Since the remainder is 000 the frame received with no errors.

CRC codes can be described using polynomial representation. Starting from the least significant

(rightmost) bit of the binary representation, express all values as polynomials in a variable X, with

binary coefficients. The coefficients correspond to the bits in the binary number. The polynomial

representation of the frame T is given by [8, pg 210]

() () ()n kT X X D X R X−= + ,

where D(X) is the polynomial representation of the data block and R(X) is the polynomial

representation of FCS. Notice that the coefficients of the polynomials can be drawn from the GF(2)

as described in Chapter 2. The operations between the binary coefficients are modulo-2 addition and

multiplication.

An error E(X) is undetectable only if it is divisible by the generator polynomial P(X). Detectable

errors are the errors that are not divisible by P(X) and are listed below.

o All single-bit errors, if P(X) has more than one nonzero term.

o All double-bit errors, as long as P(X) has a factor with three terms.

 3-64

o Any odd number of errors, as long as P(X) contains a factor (X+1).

o Any burst error for which the length of the burst is less than or equal to n-k.

o A fraction of error bursts of length n-k+1.

o A fraction of error bursts of length greater than n-k+1.

[9, pg 64]

The table 3-4 represents the most widely used generator polynomials.

CRC Code Generator Polynomial
CRC-16 16 15 2 1X X X+ + +
SDLC (IBM, CCITT) 16 15 2 1X X X+ + +
CRC-16 REVERSE 16 14 1X X X+ + +
SDLC REVERSE 16 11 4 1X X X+ + +
LRCC-16 16 1X +
CRC-12 12 11 3 2 1X X X X X+ + + + +
LRCC-8 8 1X +
ETHERNET, CRC-32 32 26 23 22 16 12 11

10 8 7 5 4 2 1

X X X X X X X

X X X X X X X

+ + + + + +

+ + + + + + + +

Table 3-4: Commonly used generator polynomials [9, pg 64]

In the WFTP system we used the CRC-16 generator polynomial, 16 15 2 1X X X+ + + with

corresponding binary representation 11000000000000101.

 3-65

3. IMPLEMENTATION

3.1 Error detection in WFTP system

The Cyclic Redundancy Check in WFTP system consists of two modules. The function crc_addfcs

in the transmitter adds the appropriate FCS to the data block that accepts as input. At the receiver,

the function crc_err_detect checks the received frame for errors.

crc_addfcs (Message, Pattern)

k← length(Message)
n← length(Pattern)+k-1
pad Message with n-k zeros
initialize register with the n-k first bits of padded Message
current_element ← n-k+1
while current_element~ = n+1 do
 shift left register’s contents by 1 and add current_element
 current_element ← current_element+1
 if degree(pattern) = = degree(register) then
 register← xor (pattern, register)
 else
 register← xor (zeros(1,n-k+1), register)
 end
end
FCS← last n-k register’s contents
add FCS to Message

Remarks. The function crc_addfcs accepts as inputs the block of data D and the predetermined

divisor P in order to produce the corresponding FCS and construct the frame to be transmitted. The

initial message is padded with n k− zeros. The procedure that will be described in the following

steps, implements the binary long division between the padded message and the predetermined

divisor. Initially the register is filled with the n k− rightmost bits of the padded message. In the first

iteration the contents of the register are shifted left by one, and the 1n k− + bit of the message is

entered in the rightmost position in the register. If the degree of the binary representation of the

register’s contents is the same as the degree of the predetermined divisor then the result of the xor

operation between these two bit strings is stored in the register. In any other case the result of the xor

operation between the predetermined divisor and 1n k− + zeros is the remainder and is stored in the

register. This process continues for every bit in the padded message. The n k− rightmost bits that

are in the shift register after the 1k − iterations, represent the frame check sequence.

 3-66

crc_err_detect (ReceivedMessage, Pattern)

k← length(ReceivedMessage)
n← length(Pattern)+k-1
initialize register with the n-k first bits of ReceivedMessage
current_element ← n-k+1
while current_element~ = n+1 do
 shift left register’s contents and add current_element
 current_element ← current_element+1
 if degree(pattern) = = degree(register) then
 register← xor (pattern, register)
 else
 register← xor (zeros(1,n-k+1), register)
 end
end
rx ← sum (register)
if rx = = 0 then
 no error
else
 error

Remarks. The same procedure is followed in the function crc_err_detect. In order to obtain if there

is an error in the received sequence, we check the remainder of the binary long division between the

received sequence and the predetermined divisor.

 4-67

C h a p t e r 4

PHASE SHIFT KEYING

1. MPSK

1.1 Modulation, Demodulation, Detection

In the WFTP system, along with the error correction and error detection modules we implemented

the necessary modules for the MPSK modulation scheme.

In MPSK k= 2log ()M data bits are represented by a symbol of different phase and hence the

bandwidth efficiency is increased k times. The M-ary PSK signal set is defined as [7, pg 397]

c
2 m() () cos(2 f) 1,..., , 0 t Tm Tu t g t t m M
M
ππ= + = ≤ ≤

where ()Tg t is a rectangle pulse which is given by

2() , 0T
Esg t t T
T

= ≤ ≤

The above expression can be written as

c
2 m() () cos(2 f)

2 2πm 2πmcos(2 fc t) cos() sin(2 fc t)sin()
M M

2 2cos(2 fc t) sin(2 fc t)

m Tu t g t t
M

Es
T

Es Amc Es Ams
T T

ππ

π π

π π

= +

= −

= −

where

2cos 1,...,

2sin 1,...,

mc

ms

mA m M
M

mA m M
M

π

π

⎛ ⎞= =⎜ ⎟
⎝ ⎠
⎛ ⎞= =⎜ ⎟
⎝ ⎠

The orthogonal basis functions are given by

 4-68

()

()

1

2

2() cos 2 , 0

2() sin 2 , 0

c

c

y t f t t T
T

y t f t t T
T

π

π

= ≤ ≤

= − ≤ ≤

Therefore the signal set of MPSK can be written as

1 2() () (), 1,..., , 0m s mc s msu t E A y t E A y t m M t T= + = ≤ ≤

where sE is the energy per symbol.

The phase of each symbol is given by

2
m

m
M
πθ =

The MPSK signal constellation is two-dimensional and hence each signal is represented by a two-

dimensional vector of the form [7, pg 398]

1 2
2 2() cos sinm m s s

m ms s E E
M M
π π⎛ ⎞⎛ ⎞ ⎛ ⎞= = ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

sm

The polar coordinates of the signal are (),s mE θ where sE is its magnitude and θm is its angle

with respect to the horizontal axis. The signal points are equally spaced on a circle of radius sE

and centered at the origin.

Figure 4-1: 4-PSK contellation

 4-69

Figure 4-2: 8-PSK contellation

In PSK modulation technique the main process in done by the mapping of k bits to the corresponding

symbols. Since every k bits are represented by a symbol there are 2k possible combinations of bits

and hence 2k symbols.

m Bits Phase sm
1 000 π/8 0.92 Es 0.38 Es

2 001 3π/8 0.38 Es 0.92 Es

3 010 5π/8 -0.38 Es 0.92 Es

4 011 7π/8 -0.92 Es 0.38 Es

5 100 9π/8 -0.92 Es -0.38 Es

6 101 11π/8 -0.38 Es -0.92 Es

7 110 13π/8 0.38 Es -0.92 Es

8 111 15π/8 0.92 Es -0.38 Es
Table 4-1: Mapping of bits into symbols for 8-PSK

m Bits Phase sm
1 00 π/4 Es Es

2 01 3π/4
-
Es Es

3 10 5π/4
-
Es - Es

4 11 7π/4 Es - Es
Table 4-2: Mapping of bits into symbols for 4-PSK

 4-70

Figure 4-3: Block diagram of MPSK modulator

The MPSK modulator is presented in the above figure. The level generator unit, performs the

mapping of bits to the corresponding symbols. The oscillator produces the carrier cos(2)cf tπ .

Shifting the phase of cos(2)cf tπ by π/2 we can obtain the carrier sin(2)cf tπ− , since

cos(2 / 2) sin(2)c cf t f tπ π π+ = − .

The Euclidean distance between to symbols on the constellation is given by [7, pg 399]

2 2 ()|| || 2 1 cosmn s
m nd E
M

π −⎛ ⎞= − = −⎜ ⎟
⎝ ⎠

s sm n

The minimum Euclidean distance betweens two symbols on the constellation is given by

22 1 cosmin sd E
M
π⎛ ⎞= −⎜ ⎟

⎝ ⎠

The corresponding MPSK correlation demodulator is presented in the following figure.

Figure 4-4: Block diagram of MPSK demodulator

Since the MPSK signal set has only two basis functions the receiver uses two correlators.

 4-71

The optimum detector for MPSK signals finds the symbol sm that minimizes the Euclidean

distance
1/ 2

2

1

(,) () , 1...
N

k mk
k

r s m M
=

⎛ ⎞= − =⎜ ⎟
⎝ ⎠
∑r smD . Equivalently the detector selects the symbol sm

that corresponds to the maximum projection of r on sm

(,)C =r sm r sm

Since all the symbols have the same energy, the optimum detector can be implemented in order to

select the vector sm whose phase is closest to 1 2

1

tanr
r
r

θ −= .

1.2 Error Probability for MPSK

Consider the transmission of digital information by use of M PSK waveforms through an AWGN

channel. Each waveform of duration T sec is corrupted by additive white Gaussian noise, with power

spectral density 0 /
2nm

N W HzΦ = . Thus the received signal in the interval 0 t T≤ ≤ can be

expressed as () () (), 0mr t s t n t t T= + ≤ ≤ . The function of the demodulator is to convert the

received signal into a two-dimensional vector 1

2

r
r
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

r . Given that the transmitted symbol is

1

2

m

m

s
s
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

sm , an error occurs if r falls outside the decision region of sm, Zm. Thus [7, pg 461]

1 ()
m

s
Z

P p d= − ∫ r | s rm

where () ()2 2

1 2
0 0

1 1(|) exp cos coss m s mp r E r E
N N

θ θ
π

⎧ ⎫⎡ ⎤= − − + −⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
r sm is the two-dimensional

joint probability density function of the received vector r [7, pg 461]. Eventually the symbol error

probability for MPSK is given by

0
2

/ sin /

0 0

1 1 1sin cot
2

sE N M
ys

s
M EP erf e erf y dy

M N M M

ππ π
π

−⎡ ⎤− ⎛ ⎞= − −⎢ ⎥ ⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

∫ 8

However for 0/ 1sE N the preceding expression for symbol error probability can be obtained by

the following approximation.[7, pg 463]

8 The error function is defined as

2

0

2()
x

terf x e dt
π

−∫ . The complementary error function erfc is given

by ()1 2 2erfc erf Q x= − = .

 4-72

0 0

2sin 2 sins s
s

E EP erfc Q
N M N M

π π⎛ ⎞ ⎛ ⎞
≈ =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

The bit error rate can be related to the symbol error rate by

2log
s

b
PP

M
≈

The symbol and bit error rates for 2,4,8,16,32 64M and= are illustrated in the following figures.

Figure 4-5: Probability of symbol error Ps for MPSK

Figure 4-6: Probability of bit error Pb for MPSK

From the above figures we can obtain that beyond M=4, doubling the number of phases, require a

substantial increase in SNR. At 510sP −= , the SNR difference between M=4 and M=8 is

approximately 4dB and the difference between M=8 and M=16 is approximately 5dB. In general for

 4-73

large values of M, doubling the number of phases requires an SNR increase of 6dB to maintain the

same performance.

2. IMPLEMENTATION

In WFTP system we have implemented a software version of the MPSK modulator, demodulator

and detector. However, modulation is performed by two units. The modulator unit which works as

the level generator shown in figure 4-3 and a special unit called pulse_shape which is responsible to

perform the multiplication with the two carriers and the construction of the signal to be transmitted.

Pulse_shape is a unitary function that produces a discrete waveform, depending on the modulation

technique, by using the corresponding basis waveforms. Moreover it performs demodulation by

correlating the received signal with the corresponding orthogonal basis functions and produces the

received symbols.

At the transmitter, the psk_modulator function along with the psk_mapper function is used to map

the packet bits into symbols.

The psk_mapper function creates an 2(log () 4)M M× + table with the mappings between bits and

symbols. This table is called psk map and each row of the table corresponds to a value of m=1…M.

The first column of the table holds the decimal representation of the M possible bit strings while the

next 2log ()M columns hold the M bit strings. Eventually the three last columns hold the phase, and

the two-dimensional vector sm that correspond to each value of m.

The mapping of packet bits into the corresponding symbols is performed by the psk_modulator

function with the use of the psk map as a look up table. The symbol sm that corresponds to 2log ()M

bits with decimal representation i, is found in the i+1 position of the map. The psk_modulator

function clusters the N 2log ()M packet bits into N groups of 2log ()M bits, and calculates their

corresponding decimal representation. This procedure can be obtained in the following figure.

 4-74

2

0
0
1
0

0 1 0 1
0 0 0 0 0 0 0

0 0 1 0 1
log ()

1

k k k

Clustering Convert in
k kin N groupsof the corresponding

N M bits decimal representationN N N N N N

N

k
N

Packet bits

b
b

b b b b b b b
dec

b b b b b b b
b

b

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥ ⇒ ⇒⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0

N

d

d

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥=⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦⎝ ⎠

Figure 4-7: Creating the index vector for mapping bits to symbols

The decimal representation is used as index in the psk map in order to obtain the symbols that

correspond to the initial packet bits.

In the next step pulse_shape accepts as input the symbols created by psk_modulator and generates

the discrete-time waveform with a specified symbol period. Symbol period is defined as the number

of samples of the basis discrete-time waveforms, and is denoted as sT . Let 1sm and 2sm be the N-

dimensional column vectors containing the symbols generated by the modulator. The basis functions

in vector form can be expressed as

1

2

2 cos 2 , 0

2 sin 2 , 0

s
s s

s
s

n n T
T T

n n T
T T

π

π

⎛ ⎞
= ≤ ≤⎜ ⎟

⎝ ⎠
⎛ ⎞

= − ≤ ≤⎜ ⎟
⎝ ⎠

y

y

where y1 and y2 are sT x 1 vectors.

Therefore the modulation process in matrix notation can be described by
' '
1 2= ⋅ + ⋅1 2U s y s ym m

where U is a sN T× matrix containing the N discrete-time waveforms of length Ts for each symbol

sm. Eventually the matrix U is transformed into a 1sNT × vector u. This vector contains the samples

of the N discrete-time waveforms of length Ts following the order of symbols in vectors 1sm and

2sm . Therefore the samples of the waveform that corresponds to the symbol sm are

()() ()-1 1 ...
T

s sm T mT⎡ ⎤+⎣ ⎦u u , where 1 m M≤ ≤ .

 4-75

Modulation process in the software implementation that is used in WFTP system is based on the

preceding analysis.

At the receiver, pulse_shape is used to demodulate the received signal. Let v be a 1sNT × vector

containing the samples of the N waveforms of the received signal. This vector is transformed into a

sN T× matrix V, which contains the Ts samples of the N discrete-time waveforms. Consider again the

vector form y1 and y2 of the two basis functions. In order to obtain the received symbols from the

matrix V, we define a 2sT × matrix Y where the first and the second columns of Y correspond to y1

and y2 respectively. Therefore the demodulation process in matrix form is defined as

= ⋅R V Y

where R is a 2N × matrix containing the symbols generated by the correlators. Each row of matrix

R corresponds to a transmitted symbol sm.

 Afterwards psk_detector along with the psk map created by psk_mapper performs the detection of

the received bits. Consider the 2N × matrix R generated by the pulse_shape function.

11 12

21 22

1 2N N

r r
r r

r r

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

R =

In order to obtain the detected bits, it is essential to compute the Euclidean distance of every

received symbol ()1 2 , 1...i ir r i N= from the M possible transmitted symbols sm. We define the

2N M× matrix R’, which contains M replicas of the matrix R.

11 12 11 12 11 12

21 22 21 22 21 22'

1 2 1 2 1 2N N N N N N

r r r r r r
r r r r r r

r r r r r r

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

R

Equivalently we define the 2N M× matrix S, which contains N replicas of the M possible symbols.

11 12 21 22 1 2

11 12 21 22 1 2

11 12 21 22 1 2

M M

M M

M M

s s s s s s
s s s s s s

s s s s s s

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

S

In order to compute the Euclidean distance we define the 2N M× matrix C so that

 4-76

()

()
()

()

()
()

()

()
()

()

()
()

()

()
()

()

()
()

()

2 2 2 2 2 2
11 11 12 12 11 21 12 22 11 1 12 2

2 2 2 2 2 2
2' 21 11 22 12 21 21 22 22 21 1 22 2

2 2 2 2 2 2
1 11 2 12 1 21 2 22 1 1 1 2

M M

M M

N N N N N M N M

r s r s r s r s r s r s

r s r s r s r s r s r s

r s r s r s r s r s r s

⎡ ⎤− − − − − −
⎢ ⎥
⎢ ⎥− − − − − −

= − = ⎢ ⎥
⎢ ⎥
⎢ ⎥− − − − − −⎣ ⎦

C R S

We split matrix C into two matrices C1, C2 of size N M× , containing the elements of the odd and

even columns of C respectively.

()
()

()

()
()

()

()
()

()

()
()

()

()
()

()

()
()

()

2 2 2 2 2 2
11 11 11 21 11 1 12 12 12 22 12 2

2 2 2 2 2 2
21 11 21 21 21 1 22 12 22 22 22 2

1 2

2 2 2 2 2 2
1 11 1 21 1 1 2 12 2 22 1 2

M M

M M

N N N M N N N M

r s r s r s r s r s r s

r s r s r s r s r s r s

r s r s r s r s r s r s

⎡ ⎤ ⎡ ⎤− − − − − −
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − − − − −

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − − − − −⎣ ⎦ ⎣ ⎦

C C

Therefore the Euclidean distance of the received symbols from all the M possible symbols generated

by MPSK is given by

()1/ 2
1 2= +D C C

The received symbol jr , where [1,]j N∈ , is mapped to the symbol sm that minimizes the Euclidean

distance 2|| ||jmd = −r sj m , where [1,]m M∈ .

The detected bits can be obtained by using the psk map as a look up table indexed with the generated

symbols sm.

 5-77

C h a p t e r 5

EVALUATION OF THE WFTP COMMUNICATION SYSTEM

1. INTRODUCTION

In Chapter 1, we have mentioned the three foremost objectives of the WFTP Communication

system.

⇒ Reliable file transfer.

⇒ Low bit error rate on the order of 610−

⇒ Achievement of the highest possible transfer rates.

In general, based on the results that were gathered from the trial transmissions of the WFTP system,

we may conclude that our primary objectives were accomplished. The reliability of the system lies

on the use of an ARQ mechanism (“Stop and wait”) as described in Chapter 1. The drawback from

the use of an error detection mechanism is the additional delays that are introduced in the transfer

time. Moreover low bit error rates achieved using different modulation schemes whereas the zero bit

error rates in many transmissions were the irrefutable evidence of the success of our efforts.

Unfortunately the hardware and software constraints that emerged during the design and

development of the WFTP system, limits our perspective for achieving high transfer rates.

In Chapter 1 we have underlined that several factors in the software and hardware implementation,

lower the performance of the WFTP system. The inability of developing a distributed software

application in Matlab, leads us in a simple and less efficient design. Furthermore the unpredictable

delays of the operating system resulting from the memory and hard disk management, yield in an

unnecessary additional recording duration in the Receiver Unit which increases the total transfer

time.

The ARQ mechanism is implemented using the UDP protocol which is supported in Matlab.

However the UDP does not ensure that the sent message will reach its destination and hence the

acknowledgements may be lost. Such cases have been predicted in the design of the system, but

introduce additional delay, as the Transmitter Unit waits a number of timeouts to occur before

deciding to resend the packet or end the transmission.

 5-78

Considering the hardware, the maximum sampling frequency that is supported from the PC audio

device, is a very important factor concerning the maximum transfer and transmission rate that we

can achieve. The nominative sampling rate referred in Matlab, is 44100 Hz. Usually soundcards

support this nominal rate. Our experiments testified that we can attain zero bit errors in some

modulation schemes using as an upper bound the 88200 Hz sampling rate.

This chapter provides a thorough analysis of the performance of the WFTP system based on the

results of the trial transmissions.

1.1 Evaluation Metrics

1.1.1 Bit error rate

The reliability and performance of the WFTP system is measured by the bit error rate in packet and

the average bit error rate.

The packet bit error rate in the open and closed loop WFTP system is defined as the number of

corrupted bits in the packet divided by the number of the total bits in the packet.

Therefore the average bit error rate for a transmitted file in an open loop system is given by

1

N

packet i
i

average

ber
ber

N
==
∑

where #N packets= .

In the closed loop WFTP system the average bit error rate is defined as

1

Np

packet i
i

average

ber
ber

Np
==
∑

where # #Np packets retransmitted packets= + .

1.1.2 Transmission and Transfer rates

Before introducing the measures of transmission and transfer rates we define the total transfer time

TRANSFERt of a file, as the total time duration between the first handshake and the last handoff among

the transmitter and the receiver. The total transfer time includes the processing time from the

Receiver Unit, the total audio recording time in the receiver and the delays introduced by the

handshake and acknowledgement signals.

 5-79

Consider a file of size F bits, which is fragmented in N packets of length L bits. The rate
TRANSFER

N L
t

× is

called the transfer rate TRANSFERR and is measured in / secbits . In the presentation of the experimental

results we will refer to average transfer rates. In cases where we used encoded schemes, we will

represent the results for each encoder (Block or Convolutional) separately. The transmission rate has

been computed in Chapter 2 and is given by the expression

2log ()
TRANSMISSION

s

Fs MR
T

= (bps)

where sF is the sampling frequency in samples/sec, M is the size of the modulation method and sT is

the number of samples per symbol.

The above expressions stand for the open and closed loop form of the WFTP system.

1.2 Evaluation Process

The evaluation of the performance of the WFTP system is based on the results of the

experimentation on the system. The possible settings of the system are listed in the two subsequent

tables.

System Settings
Filesize
Number of bits per
packet
Number of training
bits
Sampling frequency
(Hz)

Table 5-1: General System Settings

 5-80

Field Modules Settings
Error Control
Coding

Convolutional Encoder
Viterbi Decoder On / Off Code rate Operation

Mode

 Reed Solomon
Encoder / Decoder On / Off Message length Codeword

length

Interleaving Random Interleaver On / Off Word length
 Block Interleaver On / Off Word length
Error Detection CRC On / Off

Equalization LMS Equalizer On / Off Number of
weights Stepsize

 RLS Equalizer On / Off Number of
weights Initialization Forgetting

factor

 CMA Equalizer On / Off Number of
weights Stepsize

 Viterbi Equalizer On / Off Preamble Postamble Depth
Digital
Transmission MPSK On / Off Size Samples per

Symbol

 QAM On / Off Size Samples per
Symbol

 PPM On / Off Size Samples per
Symbol

Phase Recovery Phase Recovery On / Off
Table 5-2: Settings for the modules of the WFTP system

Because of the huge number of the possible combinations, our main effort was to avoid performing

meaningless transmissions. Therefore we considered performing the transmissions for a specified

packet and file size that will provide us with some representative results concerning the system’s

performance.

In order to select the size of the packet, we transmitted three files of 6KB, 18KB, and 108KB

respectively, with packets of size 15000, 50000 and 100000 bits using the following system settings:

Number of training
bits Modulation sT

(samples)
500 4-PSK 10

The experiments were performed on the open loop system with sampling rate at 44100 Hz. The

system consisted of the following modules.

⇒ 4-PSK modulator

⇒ 4-PSK demodulator

⇒ 4-PSK detector

⇒ Synchronizer

⇒ Phase recovery

The distance between the radio transmitter and the radio receiver was about 2m.

 5-81

The question that springs to mind immediately is why we didn’t use packets of size greater than

100000 bits. All the modulation methods have been tested with packets of size greater than 100000

bits, but 4-PSK was the only one that resulted in not detectable bit error rates. However

transmissions with 100000 bits per packet resulted in significantly low bit error rates with the most

of the modulation methods. In general for the choice of the packet size, we wanted to test packet

sizes that could perform well in the majority of the modulation methods. The total transfer time for

each transmission is listed in the following table.

 File size (KB)
Packet size (bits) 6 18 108

15000 14 (sec) 41.09 (sec) 237.471 (sec)
50000 12 (sec) 30.7 (sec) 171.587 (sec)

100000 19.6 (sec) 38.51 (sec) 162.203 (sec)
Table 5-3: Transfer times for different size of packets and different file sizes

Figure 5-1: The most efficient packet size for WFTP system is 100000 bits

From the above results we can easily obtain that the best transfer time for the 6 KB and 18 KB files

is achieved by using 50000 bits per packet. However for a 108 KB file the packet size that achieves

the best transfer time is 100000 bits per packet.

In general in the WFTP system it is desired to fragment the transmitted file in a small number of

packets. Several unpredictable delays have been obtained during its experimental operation and

result from the operating system. Therefore in order to ensure the correct reception of the packets we

added a constant 0.5 sec additional recording time. This overhead is independent of the size of the

packets. Thus increasing the number of the packets, results in a proportional increase of the

 5-82

additional recording time. Consequently in order to maintain high transfer rates in the open loop

system, we selected the maximum possible packet size of 100000 bits.

However increasing the number of bits per packet, results in an increase of the probability of bit

error in every packet. Therefore the use of this packet size in high order modulation schemes may

result in high bit error rates. Consequently in the closed loop form of the system this results in a

large number of retransmissions and hence in a significant decrease of the transfer rate. In such cases

we must enhance a powerful encoder in the system in order to reduce the number of retransmissions

and maintain high transfer rates.

In the subsequent sections we will represent the results of our experimentation on the WFTP system

and evaluate the overall performance for different settings. Moreover we will focus particularly on

the performance of the Convolutional Codes and the PSK modulation scheme as they constitute the

main part of this thesis.

In the trial transmissions we used the nominal sampling rate of 44100 Hz that is supported from the

majority of the soundcards. However because increasing the sampling rate results in an increase of

the transmission and transfer rate, we experimented with the 88200 Hz sampling rate. Following the

same perspective we evaluated the minimum value of the symbol period in samples that would result

in the maximum possible transfer rate along with low bit error rate in the majority of the modulation

schemes. Consequently the experiments were performed with the following system settings:

⇒ Symbol period 10sT samples=

⇒ Sampling frequency 44100,88200sF Hz=

⇒ Size of packet 100.000 bits

⇒ Size of file 108 KB

The distance between the radio transmitter and the radio receiver was about 2m.

Every modulation scheme was tested on the open and closed loop system. In cases where the

transmissions were not successful, we enhanced different encoders in the system and obtained the

overall performance. The results will be provided in tables according to the modulation scheme used

in the open and closed loop system.

Considering an encoded system (open or closed loop) the metrics average BER, TRANSMISSIONR , and

TRANSFERR correspond to the average performance of the most efficient encoder resulted from the

 5-83

experimentation on the specific system. In the closed loop system (uncoded or encoded) the average

BER and TRANSFERR do not include the time spent in packet retransmissions.

1.3 MPSK Modulation

In this section we provide the results and the conclusions drawn from the experimentation on the

PSK modulation scheme. The experiments were performed in both the open and the closed loop

form of the WFTP system. Every M-PSK modulation scheme is primarily evaluated with the basic

system settings consisting of the Synchronizer, the PSK modulator, the PSK demodulator, the PSK

detector and the Phase recovery. This basic system is tested with the sampling rates of 44100, 88200

Hz and symbol period of 10 samples. Thereby we achieve the least processing time and hence the

highest possible transfer rate. In the next step we added the LMS and RLS modules in the system

and obtained the overall performance. Because of the fact that the two equalizers did not presented a

substantial difference in the processing time we used the LMS equalizer along with the most of our

experiments. In cases where errors occurred we used a Block or Convolutional encoder to ensure the

correct reception of the packets. Despite the average adequate performance of the encoders, they

could not yield in sufficiently low bit error rates in every M-PSK modulation scheme.

In the trial transmissions, our primary concern was to achieve the lowest possible bit error rate.

Therefore the experiments for the M-PSK modulation scheme followed an increasing order on the

basis of the modulation size, M.

1.3.1 4-PSK

The 4-PSK modulation scheme using the basic system on both sampling rates of 44100 and 88200

Hz, performed with an average bit error rate below the 610− threshold. In the closed loop form of the

system additional delays were introduced due to the processing of the packet bits. The above

transmissions were repeated with the additional modules of RLS and LMS equalizers resulting in a

constant zero average bit error rate. However the average transfer rate decreased due to the extra

processing time in the equalizers.

 5-84

Additional
Modules

Fs
(Hz)

Packet size
(bits) #Packets Average

BER
TRANSMISSIONR

(bps)
TRANSFERR
(bps)

Transfer
Rate

Loss (%)

44.100 510 9 0 8820 5518 - LMS
Equalizer

Off 88.200 510 9 0 17640 8281 -

44.100 510 9 0 8820 5480 0.69 LMS
Equalizer

On 88.200 510 9 0 17640 7808 5.7

Table 5-4: 4-PSK open loop results

Additional
Modules

Fs
(Hz)

Packet size
(bits) #Packets Average

BER
TRANSMISSIONR

 (bps)
TRANSFERR
 (bps)

44.100 510 9 0 8820 4888 LMS Equalizer
Off

CRC On 88.200 510 9 0 17640 6921

44.100 510 9 0 8820 4851 LMS Equalizer
On

CRC On 88.200 510 9 0 17640 6587

Table 5-5: 4-PSK closed loop results

1.3.2 8-PSK

In order to increase the transfer rate we performed the same transmissions on 8-PSK. As expected

the total transfer time decreased and hence the average transfer rate improved significantly. The

transmissions occurred with no errors in the closed and open loop form of the system.

Additional
Modules

Fs
(Hz)

Packet size
(bits) #Packets Average

BER
TRANSMISSIONR

 (bps)
TRANSFERR
 (bps)

Transfer Rate
Loss (%)

44.100 510 9 0 13230 8635 - LMS
Equalizer

Off 88.200 510 9 0 26460 12525 -

44.100 510 9 0 13230 8378 3 LMS
Equalizer

On 88.200 510 9 0 26460 12403 1

Table 5-6: 8-PSK open loop results

 5-85

Additional
Modules

Fs
(Hz)

Packet size
(bits) #Packets Average

BER
TRANSMISSIONR

 (bps)
TRANSFERR
 (bps)

44.100 510 9 0 13230 7168 LMS Equalizer
Off

CRC On 88.200 510 9 0 26460 9656

44.100 510 9 0 13230 6977 LMS Equalizer
On

CRC On 88.200 510 9 0 26460 9574

Table 5-7: 8-PSK closed loop results

From the above results we may conclude that for 4 and 8 PSK modulation schemes the WFTP

system operates with no errors. The rate loss introduced by the equalizers is negligible and hence

their use is proposed. Since the system operates with no errors there is no need to use an error

correction scheme as there will be an overhead in the processing time and consequently a reduction

of the transfer rate. The reduced transfer rates in the closed loop form of the system for 4 and 8 PSK

resulted from the extra processing time introduced in the receiver.

1.3.3 16-PSK

As increasing the order of the PSK modulation scheme we expect that the packets will be received

with errors. Before applying any error correction scheme on the system we performed the

appropriate experiments on the basic system. In spite of the increase of the average transfer rate, the

transmissions were not successful and errors occurred and without the use of equalizers. Therefore

we tested different Reed Solomon and Convolutional encoders and evaluated their error correcting

capabilities over a large number of transmissions. In general both codes managed to correct the bit

errors occurred in the open loop system operating at sampling rate of 44100 Hz. The Reed Solomon

encoder at a sampling frequency of 44100 results in a lower decrease of the transfer rate compared

with the Convolutional encoder. Nevertheless at sampling rate of 88200 Hz the transfer rate loss

introduced by the Convolutional encoder is much lower than that of the Reed Solomon encoder.

 5-86

Additional
Modules

Fs
(Hz)

Packet size
(bits) #Packets Average

BER
TRANSMISSIONR

 (bps)

TRANSFERR
 (bps)

Transfer Rate
Loss (%)

44100 510 9 41.24 10−⋅ 17640 11370 - LMS
Equalizer

Off 88200 510 9 25.6 10−⋅ 35280 16636 -

44100 510 9 41.03 10−⋅ 17640 11296 0.65 LMS
Equalizer

On 88200 510 9 22 10−⋅ 35280 15914 4.4

44100 510 9 0 15786 9940 12.6
(255, 231)

Reed Solomon
encoder On

LMS
Equalizer On

88200 510 9 21.1 10−⋅ 26460 7006 58

(3,2,6)
Convolutional

encoder On
LMS

Equalizer On

44100 510 9 0 11760 7033 38

(2,1, 5)
Convolutional

encoder On
LMS

Equalizer On

88200 510 9 36 10−⋅ 17640 8881 44

Table 5-8: 16-PSK open loop results

Additional
Modules

Fs
(Hz)

Packet size
(bits) #Packets Average

BER
TRANSMISSIONR

 (bps)
TRANSFERR
 (bps)

(255, 231)
Reed Solomon

encoder On
LMS Equalizer On

CRC On

44100 510 9 0 15876 7154

(4, 3,6) Convolutional
encoder On

LMS Equalizer On
CRC On

44100 510 9 0 13230 6912

Table 5-9: 16-PSK closed loop results

 5-87

1.3.4 Evaluation of Convolutional encoders for 16-PSK

In Chapter 2 we selected a variety of convolutional codes of different code rates to apply on the

WFTP system.

R v m freed γ(dB) Branch
Complexity

1/4 6 6 20 3.98 27
1/4 4 4 16 3.01 25

1/3 6 6 15 3.98 27
1/3 5 5 13 3.36 26

1/2 6 6 10 3.98 27
1/2 5 5 8 3.01 26
2/3 6 3 7 3.67 28

3/4 6 2 6 3.52 29
2/3 5 3 6 3.01 27
3/4 5 2 5 2.73 28
2/3 4 2 5 2.22 26
3/4 4 2 4 1.76 27

Table 5-10: The optimum convolutional codes
that we selected for the WFTP system

Considering the open loop system with 16-PSK and operating sampling rate at 44100 Hz, we would

like to select a convolutional encoder that would correct the transmission errors and would not

deteriorate a lot the transfer rate. Therefore we tested the optimum 1
2

 encoder (2,1,6) , which

resulted in zero average bit error rate. However the average transfer rate reduced at 5580 bps. This

reduction is due to the additional recording and processing time introduced by the encoder. The

(2,1,6) encoder doubles the input bits and hence doubles the samples of the modulated signal.

Therefore for sampling frequency of 44100 Hz there is an additional recording time in the receiver.

Consequently the processing time in the synchronizer, is increased. The processing time in the PSK

modulator, demodulator and detector due to their design is not incremented significantly. However

there is an average 1.22 sec additional time per packet in the decoder. In order to reduce the transfer

rate we selected an encoder of higher code rate. We expect that the 2
3

 convolutional code with the

maximum free distance will achieve the best performance. If this encoder cannot result in zero bit

error rates we must test the rest of the 1
2

encoders in order to attain higher transfer rates. However

the (3, 2,6) encoder performed with zero average bit error rate and improved the transfer rate at 7033

 5-88

bps. Trying to attain the maximum transfer rate we used the (4,3,6) encoder which also resulted in

zero average bit error rate with a transfer rate of 7625 bps. Notice that the decoding time of the

(4,3,6) encoder is similar to the decoding time of the (3,2,6) encoder. The (4,3,6) and (3,2,6)

encoders increase the samples of the modulated signal by a factor of 1.3 and 1.5 respectively.

Therefore the overall processing time in the receiver using the (3,2,6) encoder is greater than that of

the (4,3,6) .

In order to attain the performance of the rest 3
4

 encoders we experimented with the (4,3,5) encoder.

The trial transmissions occurred with errors and hence because of the fact that the (4,3,5) encoder is

expected to reach better performance than the (4,3,4) we stopped experimenting.

Up to this point we may conclude that the (4,3,6) and (3,2,6) encoders can be used to the system

over a sampling rate of 44100 Hz. Using 1
4

and 1
3

 encoders is not essential, since zero average bit

error rate can be achieved with encoders that result in a less reduction of the transfer rate.

The same procedure is applied on the open loop system with 16-PSK and sampling rate of 88200 Hz.

However we tested more convolutional encoders since we could not achieve average bit error rate

below the threshold accuracy of our experiments which was 51 10
9

−⋅ . The results are listed in the

following table.

Convolutional
Encoders

Average
BER

TRANSFERR
 (bps)

TRANSMISSIONR
 (bps)

(3,1, 6) 413 10−⋅ 4581 11760
(3,1, 5) 33 10−⋅ 5592 11760
(2,1, 6) 33.4 10−⋅ 8049 17640
(2,1, 5) 36 10−⋅ 8881 17640
(3, 2, 6) 38.9 10−⋅ 10844 23520
(4, 3, 6) 39.3 10−⋅ 11655 26460
(3, 2, 5) 312 10−⋅ 11429 23520
(4, 3, 5) 323 10−⋅ 12396 26460
(3, 2, 4) 338 10−⋅ 11643 23520
(4, 3, 4) 341 10−⋅ 12892 26460

Table 5-11: Performance of the Convolutional Codes at 16-PSK (88200 Hz)

 5-89

Figure 5-2: Average bit error rates for the tested convolutional codes

Figure 5-3: Average transfer rates for the tested convolutional codes

From the above results we obtain that the performance of the convolutional encoders verify the

theoretical conclusions mentioned in chapter 2. The encoder with the maximum free distance (3,1,6)

achieves the lowest bit error rates. However it did not nullify the average BER of 22 10−⋅ . Thus we

should experiment with the 1
4

 convolutional encoders. However since the (3,1,6) encoder reduced

the average transfer rate at 4581 bps without correcting all the transmission errors there is no need to

use an encoder which will result in lower transfer rates. A better performance can be achieved using

 5-90

a 4-PSK modulated scheme without encoders. To conclude with, the best transfer rate in 16-PSK is

9940 bps which has been obtained using the modules Synchronizer, PSK modulator, PSK

demodulator, PSK detector, Phase Recovery and Reed Solomon encoder.

In the closed loop system with 16-PSK we tested the (4,3,6) encoder for sampling rate of 44100 Hz

and achieved zero average bit error rate. Since the average bit error rate for sampling rate of 88200

Hz with the use of encoders in the open loop system is on the order of 210− the use of an error

detection scheme does not improve the performance.

1.3.5 32-PSK

Since in the 16-PSK the operation of the system at the sampling rate of 88200 Hz occurred with

errors which could not be corrected, the 32-PSK will be tested only for the sampling frequency of

44100 Hz. Considering again the basic system as the basis of our experiments we represent the

results for 32-PSK in the following table.

Additional
Modules

Fs
(Hz)

Packet size
(bits) #Packets Average

BER
TRANSMISSIONR

 (bps)
TRANSFERR
 (bps)

Transfer Rate
Loss (%)

LMS
Equalizer

Off
44100 510 9 215 10−⋅ 22050 13722 -

LMS
Equalizer

On
44100 510 9 212.8 10−⋅ 22050 13447 2%

(255, 201)
Reed Solomon

encoder On
LMS

Equalizer On

44100 510 9 211.1 10−⋅ 17199 3467 75%

(2,1, 5)
Convolutional

encoder On
LMS

Equalizer On

44100 510 9 210.8 10−⋅ 11025 4973 64%

Table 5-12: 32-PSK open loop results

The average bit error rate of 212.8 10−⋅ using the basic system along with the equalizers, justify the

use of Block and Convolutional encoders. In general despite the use of the encoders we did not

achieve zero bit error rates. The least average bit error rate attained with the Convolutional encoder

(2,1,5) . However the transfer rate reduced at 4973 bps. This performance is similar to the average

bit error rate achieved by the (3,1,6) convolutional encoder in 16-PSK and is less than the average

transfer rate of the uncoded 4-PSK. Therefore the encoders with lower code rate were not tested.

 5-91

1.3.6 MPSK conclusions

In the preceding presentation of the experimental results for the MPSK modulation scheme, we set

as the initial objective the achievement of zero average bit error rate over a basic system consisting

of the Synchronizer, the PSK modulator, the PSK demodulator, the PSK detector and the Phase

Recovery. This goal was accomplished with the use of 4 and 8 PSK without the need of encoders.

The cost of the use of equalizers in the average transfer rate is negligible and hence they will be

embodied in the basic system.

Experimenting on the open and close loop form of the system with 16 and 32 PSK shown that it is

essential to enhance an encoder in the system. Due to the resulting low transfer rate, it is not feasible

to use encoders of low code rate.

In general the highest transfer rate along with the average zero bit error rate in MPSK is performed

by the uncoded 8-PSK without the use of equalizers.

Figure 5-4: Average transfer rates of MPSK schemes
that performed with zero average bit error rate in

open loop.

Figure 5-5: Average transfer rates of MPSK schemes
that performed with zero average bit error rate in

closed loop.

1.4 MQAM Modulation

The experimentation on the Quadrature Amplitude Modulation scheme was realized in a similar way

as MPSK. The basic system consists of the Synchronizer, the MQAM modulator, the MQAM

demodulator, the MQAM detector, the Phase recovery and the RLS, LMS equalizing modules. The

trial transmissions were performed for sampling frequencies of 44100 and 88200 Hz whereas the

symbol period was preserved at 10 samples per symbol.

 5-92

1.4.1 4-QAM

The operation of the 4-QAM modulation scheme on the basic system, on both sampling rates of

44100 and 88200 Hz, resulted in zero average bit error rate. In the closed loop form of the system

additional delays were introduced due to the processing of the packet bits.

Additional
Modules

Fs
(Hz)

Packet size
(bits) #Packets Average

BER
TRANSMISSIONR

(bps)
TRANSFERR
 (bps)

44100 510 9 0 8820 5483 LMS
Equalizer

On 88200 510 9 0 13230 7343
Table 5-13: 4-QAM open loop results

Additional
Modules

Fs
(Hz)

Packet size
(bits) #Packets Average

BER
TRANSMISSIONR

(bps)
TRANSFERR
 (bps)

44100 510 9 0 8820 4853 LMS Equalizer
On

CRC
On

88200 510 9 0 13230 6250

Table 5-14: 4-QAM closed loop results

Notice that the average transfer rates for the 4-QAM and the 4-PSK modulation schemes are similar.

Moreover the average transfer rate using CRC is reduced due to the additional processing time for

error detection in the received packet.

1.4.2 8-QAM

In the 8-QAM modulation scheme the system performed with no errors operating at sampling rate of

44100 Hz. However the enhancement of a Block or Convolutional encoder became necessary at the

sampling rate of 88200 Hz. In general the tested Reed Solomon encoders achieved a lower average

bit error rate compared to the Convolutional encoders but reduced the average transfer rate of the

basic system with the uncoded 8-QAM by 57%.

 5-93

Additional
Modules

Fs
(Hz)

Packet size
(bits) #Packets Average

BER
TRANSMISSIONR

(bps)
TRANSFERR
 (bps)

44100 510 9 0 13230 8569 LMS
Equalizer

On 88200 510 9 33.6 10−⋅ 26460 12308
(127,111) Reed Solomon

encoder On
LMS Equalizer On

88200 510 9 31.4 10−⋅ 23126 4557

(2,1, 6) Convolutional
encoder On

LMS Equalizer On
88200 510 9 537 10−⋅ 13230 6277

Table 5-15: 8-QAM open loop results

Additional
Modules

Fs
(Hz)

Packet size
(bits) #Packets Average

BER
TRANSMISSIONR

(bps)
TRANSFERR
 (bps)

LMS Equalizer On
CRC On 44100 510 9 0 13230 7143

(127,111)
Reed Solomon

Encoder On
LMS Equalizer On

CRC On

88200 510 9 0 23126 4001

(2,1, 6) Convolutional
encoder On

LMS Equalizer On
CRC On

88200 510 9 0 13230 4580

Table 5-16: 8-QAM closed loop results

Notice that the average transfer rate in the closed loop form of the system using the (2,1,6) encoder

is reduced dramatically. Because of the fact that the encoder does not ensure the correction of the

received packet many retransmissions may occur. Therefore the increase of the overall transfer time,

results in the significant decrease of the transfer rate.

1.4.3 Evaluation of Convolutional encoders for 8-QAM

We experimented with Convolutional encoders of large free distance on the open and closed loop

form of the basic system with 8-QAM and sampling rate at 88200 Hz. Unfortunately we could not

achieve zero bit error rates.

Convolutional Encoders Average BER Average Transfer Rate
(bps)

Transmission Rate
(bps)

(2,1, 6) 537 10−⋅ 6277 13230

(3, 2, 6) 31.5 10−⋅ 8489 17640

Table 5-17: Performance of the tested convolutional codes for 8-QAM
on the open loop form of the system with sampling rate at 88200 Hz

 5-94

At first we used the (3,2,6) , encoder as it reduces the transmission rate only by a factor of ~ 0.6 .

However the results were not satisfactory and hence we used the encoder (2,1,6) . We can obtain

that the last encoder which achieved the best average bit error rate decreased the transfer rate at the

level of the uncoded 4-PSK. The use of an encoder of code rates 1
3

, 1
4

 is meaningless as the transfer

rate will be diminished.

In the closed loop form of the basic system with 8-QAM and sampling rate of 88200 Hz, the (2,1,6)

encoder managed to achieve error rates below the threshold of 510− in the total of the trial

transmissions. In addition the (3,2,6) encoders presented a significant error correcting capability.

1.4.4 16-QAM

In 16-QAM we performed the trial transmissions over the basic system, and attained the following

results for the open and closed loop form of the system.

Additional
Modules

Fs
(Hz)

Packet size
(bits) #Packets Average

BER
TRANSMISSIONR

(bps)
TRANSFERR
 (bps)

44100 510 9 46.42 10−⋅ 17640 9823 LMS Equalizer
On 88200 510 9 36.8 10−⋅ 35280 13868

(127,111)
Reed Solomon

encoder On
LMS Equalizer On

44100 510 9 0 13759 8413

(127,105)
Reed Solomon

encoder On
LMS Equalizer On

88200 510 9 30.8 10−⋅ 28929 6996

(3,1, 6) Convolutional
encoder On

LMS Equalizer On
44100 510 9 0 5880 4082

(3,1, 6) Convolutional
encoder On

LMS Equalizer On
88200 510 9 49.18 10−⋅ 11760 6056

Table 5-18: 16-QAM open loop results

 5-95

Additional
Modules

Fs
(Hz)

Packet size
(bits) #Packets Average

BER
TRANSMISSIONR

(bps)
TRANSFERR
 (bps)

Equalizer On
CRC On 44100 510 9 0 17640 7965

(127,111) Reed Solomon
encoder On

LMS Equalizer On
CRC On

44100 510 9 0 15347 5157

(3,1, 6) Convolutional
encoder On

LMS Equalizer On
CRC On

44100 510 9 0 5880 2016

Table 5-19: 16-QAM closed loop results

The enhancement of the Reed Solomon and Convolutional encoders on the experiments performed

at 44100 Hz, resulted in zero average bit error rate. However they did not manage to achieve average

bit error rates below the threshold of 510− bit error rate at sampling frequency of 88200 Hz.

1.4.5 Evaluation of Convolutional encoders for 16-QAM

The encoders used in the experimentation on the open loop form of the basic system with 16-QAM

are listed in the following table.

Convolutional Encoders Average BER Average Transfer Rate
(bps)

Transmission Rate
(bps)

(3,1, 6) 0 4082 5880
(2,1, 6) 51.22 10−⋅ 5754 8820
(2,1, 5) 49.3 10−⋅ 5874 8820
(3, 2, 6) 41.1 10−⋅ 7462 11760
(4, 3, 6) 42.03 10−⋅ 8073 13230

Table 5-20: Convolutional encoders used with 16-QAM at 44100 Hz

Convolutional Encoders Average BER Average Transfer Rate
(bps)

Transmission Rate
(bps)

(3,1, 6) 49.18 10−⋅ 6056 11760

(2,1, 6) 46.76 10−⋅ 8446 17640

(3, 2, 6) 35.6 10−⋅ 10451 23520

Table 5-21: Convolutional encoders used with 16-QAM at 88200 Hz

The experiments on the open loop system with 16-QAM modulation and sampling rate of 44100 Hz

showed that only the (3,1,6) encoder managed to perform with zero bit errors while the (2,1,6) and

the (2,1,5) encoders achieved significant performance. On the contrary the (3,2,6) and (4,3,6)

 5-96

encoders did not lower the BER substantially. However the use of the (3,1,6) encoder decreases the

average transfer rate and deteriorates the overall performance.

In the trial transmissions over the basic system with 16-QAM modulation and sampling rate of

88200 Hz, the encoder with the maximum free distance attained the least average bit error rate. The

first encoder tested, was the (3,2,6) convolutional encoder which resulted in 35.6 10−⋅ average bit

error rate. In order to achieve lower bit errors we used the (2,1,6) encoder which improved the

average ber, but decreased the average transfer rate. Trying to nullify the bit errors we enhanced on

the system the (3,1,6) encoder. Although the ber decreased, the average transfer rate reached the

performance level of 4-QAM and hence the use of an encoder with lower code rate was meaningless.

In the closed loop form of the system we considered only the 16-QAM scheme with sampling

frequency at 44100 Hz which resulted in zero average bit error rate for (3,1,6) encoder.

1.4.6 32-QAM

In the case of 32 QAM we did not achieve reliable transmission of the packets. The experimentation

on the 32 QAM in general proved that there is an upper limit in the order of the modulation we are

able to use in the WFTP system.

Additional
Modules

Fs
(Hz)

Packet size
(bits) #Packets Average

BER
TRANSMISSIONR

(bps)
TRANSFERR
 (bps)

LMS Equalizer
On 44100 510 9 214.3 10−⋅ 22050 12330

Reed Solomon
encoder On

LMS Equalizer On
44100 510 9 29 10−⋅ 17199 3167

(2,1, 5)
Convolutional

encoder On
LMS Equalizer On

44100 510 9 27.6 10−⋅ 11025 5012

Table 5-22: 32 QAM open loop results

In spite of the use of a convolutional encoder with a good theoretical performance the results proved

that the system cannot operate with 32 QAM. Since the average bit error rate is on the order of 210− ,

applying the CRC code on the system would result in a large number of retransmissions and a

further deterioration of the average transfer rate.

1.4.7 MQAM conclusions

In the MQAM modulation scheme we followed the same order of experiments as in MPSK. In

general the 4-QAM and the 8-QAM can operate without errors and the need of an encoder in both

 5-97

the open and closed loop form of the system. The use of encoders was necessary in 8-QAM at

sampling rate of 88200 Hz, in 16-QAM and in 32-QAM.

In the first case despite the significant decrease in the bit error rate, the Convolutional encoders that

we tested did not succeed in eliminating the transmission errors. However using a more powerful

encoder would reduce the transfer rate to a minimal level. Since the basic system with 8-QAM

performs with no errors at 44100 Hz with an average transfer rate of 8569 bps, the further

experimentation was not essential.

In 16-QAM, the encoders eliminated the transmissions errors occurred in the uncoded scheme of the

open loop system at 44100 Hz. Moreover they offered a slight improvement of the average bit error

rate to the open loop system at 88200 Hz sampling rate. As expected the 32-QAM could not perform

without errors. Despite the use of encoders the average bit error rate preserved in high level and

hence it was not further tested. In general the highest transfer rate along with the average zero bit

error rate in MQAM is performed by the uncoded 8-QAM operating at 44100 Hz.

It is worth noticing that the best average transfer time along with zero average bit error rate in the

closed loop form of the system is achieved by using 16-QAM modulation scheme at sampling

frequency of 44100 Hz. On the contrary we expected that 8-QAM would have the best performance

as in the open loop case. However the use of encoders degraded the average transfer time in 8-QAM

and hence the use of uncoded 16-QAM at sampling rate of 44100 Hz resulted in the best average

transfer time.

Figure 5-6: Average transfer rates of MQAM schemes
that performed with zero average bit error rate in the

open loop system form.

Figure 5-7: Average transfer rates of MQAM

schemes that performed with zero average bit
error rate in the closed loop system form.

 5-98

1.5 PPM Modulation

The trial transmissions over the PPM modulation scheme were realized in a different way from the

two preceding modulation schemes. The basic system consisted of the Synchronizer, the PPM

modulator, the PPM correlators, the PPM detector, and the Phase recovery. The experiments

performed for both sampling rates of 44100 and 88200 Hz and a varying symbol period depending

on the order of the modulation.

1.5.1 4-PPM

In the 4-PPM we used symbol period 8sT = samples. The transmissions were performed for 44100

and 88200 Hz sampling rates in open and closed loop form of the system.

Additional
Modules

Fs
(Hz)

Packet size
(bits) #Packets Average

BER
TRANSMISSIONR

(bps)
TRANSFERR
 (bps)

44100 510 9 0 11025 5659
LMS Equalizer

Off
88200 510 9 0 22050 11399

Table 5-23: 4-PPM open loop results

Additional
Modules

Fs
(Hz)

Packet size
(bits) #Packets Average

BER
TRANSMISSIONR

(bps)
TRANSFERR
 (bps)

44100 510 9 0 11025 4988 LMS Equalizer
Off

CRC On 88200 510 9 0 22050 9004

Table 5-24:4-PPM closed loop results

Notice that 4-PPM operating at sampling rate of 88200 Hz achieves the best transfer rate among the

three modulation schemes of order M=4. However the 4-PSK and 4-QAM operate with symbol

period of 10 samples per symbol whereas the symbol period of 4-PPM is 8 samples per symbol.

 5-99

1.5.2 8-PPM

Unfortunately the increase of the order of the modulation scheme did not result in higher transfer

rates. The increase in the symbol period reduced the average transfer rates at both sampling

frequencies by 21% and 50.4% respectively, compared with the results of 4-PPM.

Additional
Modules

Fs
(Hz)

Packet size
(bits) #Packets Average

BER
TRANSMISSIONR

(bps)
TRANSFERR
 (bps)

44100 510 9 0 8269 4487
LMS Equalizer

Off
88200 510 9 0 16538 5930

Table 5-25: 8-PPM open loop results

Additional
Modules

Fs
(Hz)

Packet size
(bits) #Packets Average

BER
TRANSMISSIONR

(bps)
TRANSFERR
 (bps)

44100 510 9 0 8269 4034 LMS Equalizer
Off

CRC On 88200 510 9 0 16538 5193

Table 5-26: 8-PPM closed loop results

1.5.3 16-PPM

In this case the symbol period was set to 32 samples per symbol and the trial transmissions occurred

with no errors.

Additional
Modules

Fs
(Hz)

Packet size
(bits) #Packets Average

BER
TRANSMISSIONR

(bps)
TRANSFERR
 (bps)

44100 510 9 0 5513 3097 LMS
Equalizer

Off 88200 510 9 0 11026 4189

Table 5-27: 16-PPM open loop results

Additional
Modules

Fs
(Hz)

Packet size
(bits) #Packets Average

BER
TRANSMISSIONR

(bps)
TRANSFERR
 (bps)

44100 510 9 0 5513 2884
LMS

Equalizer
Off

CRC
On

88200 510 9 0 11026 3800

Table 5-28: 16-PPM closed loop results

 5-100

1.5.4 PPM conclusions

In the PPM modulation scheme, despite the zero average bit error rate the transfer rates were not

improved compared with the two preceding modulation schemes. The 4-PPM resulted with no errors

while the average transfer rate at sampling rate of 88200 Hz was very promising. However from the

above results we can obtain that the performance of the PPM is degraded by increasing the

modulation order. The experimentation on 8 PPM with symbol period 8sT = samples resulted in an

average bit error rate on the order of 110− . Moreover similar results were obtained by testing the 16

PPM with symbol period 16sT = samples which resulted in an average bit error rate of 28.4 10−⋅ .

Even if we use a Block or Convolutional encoder, we will not achieve zero bit error rates.

Consequently we increased the symbol period. However this resulted in an increase of the

processing time in the receiver and an overall reduction of the average transfer rate.

Figure 5-8: Average transfer rates of PPM schemes
that performed with zero average bit error rate in

the open loop system form.

Figure 5-9: Average transfer rates of PPM schemes
that performed with zero average bit error rate in

the closed loop system form.

 5-101

1.6 Summary

In this section we will provide an overall evaluation of the WFTP system along with the most

significant conclusions that were drawn from the preceding analysis.

Average
Transfer Rate

Modulation
scheme M Fs

(Hz)
Ts

(samples) Additional System Modules

4000bps< PPM 16 44100 32 - - -

PSK 4 44100 10 LMS
Equalizer - -

PSK 4 44100 10 - - -

QAM 4 44100 10 LMS
Equalizer - -

PPM 4 44100 8 - - -
PPM 8 44100 16 - - -
PPM 8 88200 16 - - -
PPM 16 88200 32 - - -

4000 6000bps−

QAM 16 44100 10 LMS
Equalizer

(3,1, 6)
Convolutional

encoder
-

PSK 4 88200 10 LMS
Equalizer - -

PSK 16 44100 10 LMS
Equalizer

(3, 2, 6)
Convolutional

encoder
-

QAM 4 88200 10 LMS
Equalizer - -

6000 8000bps−

PSK 16 44100 10 LMS
Equalizer

(4, 3, 6)
Convolutional

encoder
-

PSK 4 88200 10 - - -
PSK 8 44100 10 - - -

PSK 8 44100 10 LMS
Equalizer - -

PSK 16 44100 10 LMS
Equalizer

(255, 231) Reed
Solomon
encoder

-

QAM 8 44100 10 LMS
Equalizer - -

8000 10000bps−

QAM 16 44100 10 LMS
Equalizer

(127,111) Reed
Solomon
encoder

-

PSK 8 88200 10 - - -

PSK 8 88200 10 LMS
Equalizer - - 10000bps>

PPM 4 88200 8 - - -
Table 5-29: Average transfer rates achieved by various open loop systems with BER below 10- 5

 5-102

Average

Transfer Rate

Modulation
scheme M Fs

(Hz)
Ts

(samples) Additional System Modules

QAM 16 44100 10 LMS
Equalizer

(3,1, 6)
Convolutional

encoder
CRC

PPM 16 88200 32 - - CRC
4000bps<

PPM 16 44100 32 - - CRC

PSK 4 44100 10 LMS
Equalizer - CRC

PSK 4 44100 10 - - CRC
QAM 4 44100 10 LMS

Equalizer - CRC
PPM 4 44100 8 - - CRC
PPM 8 44100 16 - - CRC
PPM 8 88200 16 - - CRC

QAM 16 44100 10 LMS
Equalizer

(127,115) Reed
Solomon
encoder

CRC

QAM 8 88200 10 LMS
Equalizer

(3,1, 6)
Convolutional

encoder
CRC

4000 6000bps−

QAM 8 88200 10 LMS
Equalizer

(127,111) Reed
Solomon
encoder

CRC

PSK 4 88200 10 LMS
Equalizer - CRC

PSK 16 44100 10 LMS
Equalizer

(3, 2, 6)
Convolutional

encoder
CRC

QAM 4 88200 10 LMS
Equalizer - CRC

PSK 16 44100 10 LMS
Equalizer

(4, 3, 6)
Convolutional

encoder
CRC

PSK 8 44100 10 - - CRC
PSK 8 44100 10 LMS

Equalizer - CRC
PSK 4 88200 10 - - CRC

PSK 16 44100 10 LMS
Equalizer

(255, 231) Reed
Solomon
encoder

CRC

QAM 8 44100 10 LMS
Equalizer - CRC

6000 8000bps−

QAM 16 44100 10 LMS
Equalizer - CRC

PSK 8 88200 10 - - CRC
PSK 8 88200 10 LMS

Equalizer - CRC 8000 10000bps−

PPM 4 88200 8 - - CRC
Table 5-30: Average transfer rates achieved by various closed loop systems with BER below 10- 5

 5-103

In the above tables we represent the average transfer rates achieved by the various open and closed

loop systems with BER below the threshold of 510− .

At first we may notice that the use of the LMS equalizer did not have a negative impact on the

average transfer rate of the tested systems. In general because the equalizer operates on symbols and

not on the samples of the received signal, the processing time spent on equalizing is trivial.

Moreover the use of the encoders managed to reduce the BER of the open loop systems with 16

QAM and 16 PSK at sampling rate of 44100 Hz. However the resulting transfer rates are similar to

the transfer rates attained by the use of lower order modulation schemes. In particular the average

transfer rate of the open loop system with 16 QAM and the (3,1,6) convolutional encoder at

sampling rate of 44100 Hz is in the same level as the average transfer rate of the open loop system

with 4 PSK, 4 QAM and 4 PPM at sampling rate of 44100 Hz. In addition the average transfer rate

of the open loop system with 16 PSK and the (3,2,6) convolutional encoder at sampling rate of

44100 Hz is in the same level as the average transfer rate of the open loop system with 4 PSK, 4

QAM at sampling rate of 88200 Hz.

The highest transfer rates achieved in every modulation scheme that was tested with the WFTP

system are listed in the following table. Notice that we consider transmissions on the open loop and

closed loop form of the system where no errors occurred.

Modulation Scheme TRANSFERR
 (bps)

Fs
(Hz)

sT
(samples)

8-PSK 12525 88200 10
8-QAM 8569 44100 10
4-PPM 11399 88200 8

Table 5-31: Highest transfer rates for every modulation scheme on the open loop form of the system

Modulation Scheme TRANSFERR
 (bps)

Fs
(Hz)

sT
(samples)

8-PSK 9656 88200 10
16-QAM 7965 44100 10
4-PPM 9004 88200 8

Table 5-32: Highest transfer rates for every modulation scheme on the closed loop form of the system

The most efficient modulation scheme that can be used along with the WFTP system is the 8-PSK.

Recall that the trial transmissions were performed with 500 bits of training sequence. In cases where

we reduced the training sequence the system operated in higher transmission rates but we could not

ensure that all the transmissions would occur with no errors. In order to eliminate the possible bit

errors we experimented with a variety of encoders. However the resulting transfer rates were lower

than 12525 bps. Modulation schemes of high order, such as 32 QAM and 32 PSK were tested with

 5-104

2000, 3500 bits of training sequence. In spite of the decrease in the number of bit errors, the transfer

rates were reduced at 3 – 4 kbps. The enhancement of an error correcting scheme in such a system

will result in transfer rates which have no practical meaning.

In general the Convolutional encoders reduced the bit errors in the MPSK and MQAM modulation

schemes. They were mainly used along with the 16-PSK, 16-QAM, 32-PSK and 32-QAM.

Undoubtedly, the (,1,)n v encoders, such as (3,1,6) and (2,1,6) presented the best error correcting

capability. However due to the large amount of redundancy they introduce in the packet, the

processing time in the modules of the Synchronizer, the PSK demodulator and the PSK detector is

increased. On the contrary, the (, 1,)n n v− convolutional encoders that used in the experiments are

less efficient but result in a lower rate loss. The best error correcting capability was attained by the

(2,1,6) convolutional encoder in the open-loop system with modulation scheme of 8-QAM and

operating sampling rate of 44100 Hz. In general the performance of the Convolutional Codes is more

efficient when the system is operating at sampling rate of 44100 Hz. However in order to enforce the

reliability of the WFTP system without a significant decrease of the transfer rate we propose the

enhancement of an (4,3,6) or (3, 2,6) encoder as an additional module to the basic system.

The use of the CRC code improved the credibility of the system in cases where the bit error rates

were on the order of 410− . However the transfer rates degraded due to the additional processing time

for error detection in the receiver and the unpredictable number of retransmissions. In order to

ensure the correct transmission of the packets a CRC code is proposed as an additional module in the

system.

In cases where we want the system to operate with the maximum transfer rate and the least possible

BER we propose the following system settings.

Fs
(Hz)

sT
(samples)

Modulation Scheme Synchronizer Phase Recovery Equalizer

88200 10 8-PSK On On LMS

 5-105

Soundcard

PC

Data Creator & Transmitter Unit

Binary
Information Modulator FM Transmitter

Radio Receiver Soundcard Synchronizer Demodulator Equalizer Phase
Recovery

Bi
na

ry
 O

ut
pu

t

An
al

og
 s

ig
na

l

An
al

og
 s

ig
na

l

D
ig

ita
l S

ig
na

l
D

ig
ita

l S
ig

na
l

A
na

lo
g

si
gn

al

A
na

lo
g

si
gn

al

PS
K

M
=8

Ts
=1

0
sa

m
pl

es

Fs
=8

82
00

 H
z

PC

PS
K

M
=8

Ts
=1

0
sa

m
pl

es

Fs
=8

82
00

 H
z

LM
S

Figure 5-10: Block diagram of the system operating with the highest transfer rate

However the nominal sampling frequency supported by Matlab and the majority of the soundcards is

44100 Hz. Therefore in order to ensure the compatibility with the hardware, we suggest the system

settings listed in the subsequent table.

Fs
(Hz)

sT
(samples)

Modulation Scheme Synchronizer Phase Recovery Equalizer

44100 10 8-PSK On On LMS
44100 10 8-QAM On On LMS

 5-106

Soundcard

PC

Data Creator & Transmitter Unit

Binary
Information Modulator FM Transmitter

Radio Receiver Soundcard Synchronizer Demodulator Equalizer Phase
Recovery

Bi
na

ry
 O

ut
pu

t

An
al

og
 s

ig
na

l

An
al

og
 s

ig
na

l

D
ig

ita
l S

ig
na

l
D

ig
ita

l S
ig

na
l

A
na

lo
g

si
gn

al

A
na

lo
g

si
gn

al

Q
Α
Μ

 /
PS

K

M
=8

Ts
=1

0
sa

m
pl

es

Fs
=4

41
00

 H
z

PC

M
=8

Ts
=1

0
sa

m
pl

es

Fs
=4

41
00

 H
z

LM
S

Q
Α
Μ

 /
PS

K

Figure 5-11: Block diagram of the system operating with the highest transfer rate, compatible with every

soundcard

In cases where our primary concern is reliability, we propose the following system settings.

Fs
(Hz)

sT
(samples)

Modulation
Scheme Synchronizer Phase

Recovery Equalizer Encoder CRC

88200 10 8-PSK On On LMS - On
88200 8 4-PPM On On - - On
44100 10 16-PSK On On LMS (3, 2, 6) -

In general the WFTP system offers the ability to experiment with the various system settings. The

main idea of this project was to implement a software based communication system where we could

try various system designs with different modules and observe the resulting performance. Due to

hardware and software constraints the WFTP system can operate reliably up to a maximum transfer

rate. The enhancement of high order modulation schemes resulted in higher transfer rates along with

the need of a Block or Convolutional channel encoder for error correction. Eventually the overall

results proved that in the WFTP system it is more efficient to use uncoded 8-PSK modulation

scheme rather than modulation schemes of higher order with channel encoders.

 5-107

 5-108

REFERENCES

[1] Shu Lin, Daniel J. Costello, Jr “Error Control Coding (2nd edition),” Prentice Hall 2004

[2] Martin Bossert, “Channel Coding for Telecommunications” Wiley 1999

[3] Ajay Dholakia, “Introduction to Convolutional Codes with Applications”, Kluwer Academic

 Publishers 1994.

[4] A. J. Viterbi, ”Convolutional Codes and Their Performance in Communication Systems”,

 IEEE Trans. Commun. Technol., COM-19:751-72, October 1971.

[5] Robert H. Morelos-Zaragoza, “The Art of Error Correcting Coding”, Wiley 2002

[6] J.J. Chang, D.J. Hwang and M. C. Lin, “Some extended results on the search for

 Good Convolutional Codes”, IEEE Trans. Inform. Theory, IT-43: 1682-97, September 1997

[7] John Proakis, Masoud Salehi, “Digital Communications”, Prentice Hall 2002

[8] William Stallings, “Wireless Communications and Networks”, Prentice Hall 2002

[9] Ramabadran, T., and Gaitonde,S. “A Tutorial on CRC Computations.” IEEE Micro

 August 1988

	C h a p t e r 1
	1. INTRODUCTION
	1.1 Hardware
	1.2 Software
	1.3 The Wireless FTP Communication System
	1.3.1 Audio Playback and audio Recording
	1.3.2 Handshake and Handoff
	1.3.3 ARQ (Automatic Repeat Request)
	
	

	2. EXECUTIVE SUMMARIES
	C h a p t e r 2
	1. INTRODUCTION
	2. ALGEBRAIC CODING THEORY FOR CONVOLUTIONAL CODES
	2.1 Galois fields
	Example 2-1

	2.2 Binary fields and binary arithmetic
	2.3 Vector space

	3. FUNDAMENTALS OF CONVOLUTIONAL CODES
	4. NONSYSTEMATIC FEEDFORWARD CONVOLUTIONAL ENCODERS
	4.1 Generator matrix in Time domain
	4.2 Generator sequences
	4.3 Polynomial representation of the Generator matrix

	5. SYSTEMATIC FEEDFORWARD CONVOLUTIONAL ENCODERS
	6. SYSTEMATIC FEEDBACK CONVOLUTIONAL ENCODERS
	7. STRUCTURAL PROPERTIES OF CONVOLUTIONAL CODES
	7.1 State Diagram
	7.2 Trellis Diagram
	7.3 Catastrophic Encoders
	7.4 Distance Properties of convolutional codes

	8. OPTIMUM DECODING OF CONVOLUTIONAL CODES
	8.1 Maximum Likelihood Decoding
	8.2 The Viterbi algorithm
	8.2.1 Basic Algorithm

	9. EVALUATION OF CONVOLUTIONAL CODES
	10. IMPLEMENTATION OF THE FECC MODULES
	10.1 Encoder Implementation
	10.1.1 Polynomial to trellis diagram

	10.2 Convolutional Encoder
	10.3 Decoder Implementation

	C h a p t e r 3
	1. INTRODUCTION
	2. FRAME CHECK SEQUENCE GENERATION
	3. IMPLEMENTATION
	3.1 Error detection in WFTP system

	C h a p t e r 4
	1. MPSK
	1.1 Modulation, Demodulation, Detection

	2. IMPLEMENTATION

	C h a p t e r 5
	1. INTRODUCTION
	1.1 Evaluation Metrics
	1.1.1 Bit error rate
	1.1.2 Transmission and Transfer rates

	1.2 Evaluation Process
	1.3 MPSK Modulation
	1.3.1 4-PSK
	1.3.2 8-PSK
	1.3.3 16-PSK
	1.3.4 Evaluation of Convolutional encoders for 16-PSK
	1.3.5 32-PSK
	1.3.6 MPSK conclusions

	1.4 MQAM Modulation
	1.4.1 4-QAM
	1.4.2 8-QAM
	1.4.3 Evaluation of Convolutional encoders for 8-QAM
	1.4.4 16-QAM
	1.4.5 Evaluation of Convolutional encoders for 16-QAM
	1.4.6 32-QAM
	1.4.7 MQAM conclusions

	1.5 PPM Modulation
	1.5.1 4-PPM
	1.5.2 8-PPM
	1.5.3 16-PPM
	1.5.4 PPM conclusions

	1.6 Summary

