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C h a p t  e r 1  

THE WIRELESS FTP COMMUNICATION SYSTEM 

1. INTRODUCTION 
 

This Thesis is a part of a team project for designing, implementing and evaluating the Wireless FTP 

Communication System. The aim of this project was to develop an efficient and low cost 

experimental wireless radio link, between two personal computers over analog FM for data 

communication.  

In particular the objective was to design and develop a software modem operating with the 

appropriate hardware equipment. The WFTP system is a computer based communication system 

mainly used for file transfer. The analog FM radio link was implemented by the use of an FM 

transmitter and the corresponding radio receiver. In order to achieve the transmission of bits between 

two personal computers over the wireless radio link, we had to transform the binary information into 

analog data. Thus the most important part of the software modem is the modulator and the 

demodulator units in the transmitter and the receiver respectively. However the software modulator 

generates the samples of the analog signal that conveys the binary information. Likewise the 

software demodulator processes the samples of the analog signal that conveys the binary 

information. Therefore the only missing parts of our system were the D/A and A/D converters in the 

transmitter and the receiver respectively. Because of the constraints on the budget and the overall 

cost of the system, we had to find a cheap and efficient way to generate the desired analog signal. 

Consequently, we used the playback and the recording features of the soundcards. In the transmitter, 

the sound card performs the digital to analog conversion and generates the audio signal which is 

transmitted through the low-power FM radio transmitter. Likewise in the receiver the sound card 

performs the analog to digital conversion of the analog received signal and produces the 

corresponding digital data.  

So far we have concluded to a basic structure of the WFTP system consisting of six major 

components: 

⇒ Desktop PC 

⇒ Laptop PC 

⇒ Software for the transmitter 

⇒ FM transmitter 

⇒ Software for the receiver 

⇒ Radio receiver 
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A general block diagram of the WFTP system is illustrated in the following figures. 

 

Binary Information Modulator
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PC audio 
device
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transmitter

Hardware

Transmitter

 
Figure 1-1 : Block diagram of the transmitter 
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Figure 1-2 : Block diagram of the receiver 

 

Considering this basic structure of the WFTP Communication system we defined the foremost 

objectives of our system: 

 

⇒ Reliable file transfer. 

⇒ Low bit error rate on the order of 610−  

⇒ Achievement of the highest possible transfer rates. 

 

In order to accomplish our goals we developed and implemented different software modules that 

were integrated in a completely operational communication system. In the subsequent sections it 

follows a thorough analysis of the hardware and software components of the WFTP system. 
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1.1 Hardware 

The hardware equipment in WFTP system consists of two personal computers, a low-power radio 

transmitter, a dipole antenna and a radio receiver.  

 
Figure 1-3 : The WFTP Communication system 

 

 

⇒ FM transmitter specifications: 

o Battery voltage DC4.5 V.  

o Frequency Range 88 MHz ~ 108 MHz.  

o Output power 1 W.  

o Half wave dipole antenna 

 

 

 

⇒ Wide Band Communications Receiver specifications: 

o Frequency Range 0.1 ~ 1299.955 MHz. 

o Antenna Impedance 50 Ω 

o Battery voltage DC3.6V~DC6V 

o Frequency Stability ± 5PPM (-10oC ~ +60oC) 
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Figure 1-4: The FM transmitter and the radio receiver 

 

The half wave dipole antenna and the FM transmitter were assembled by the members of the team 

while the Wide Band Communications Receiver was a choice of our advisor, Mr. N. Sidiropoulos. 

The transmitter can be supplied by an AC/DC adaptor. However, a transformer should be used 

followed by the appropriate filter in order to eliminate the scramble hum which appears due to the 

frequency (50 ~ 60 Hz) of the AC electric current. 

1

2
3

1. Receiver : Desktop PC , Wide band communications receiver
2. Soundcard
3. Wide band communications receiver connected with the Personal Computer via the “line in” of the soundcard  

Figure 1-5 : Receiver 
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1. Transmitter : FM transmitter , Laptop , Half wave dipole antenna , Battery case
2. Battery case : 3 AA batteries 1.5V
3. Ground cable
4. Low power FM transmitter 
5. Cable to the antenna
6. Power in : DC 4.5V
7. Line in (audio signal to be transmitted)
8. Proper case grounding
9. Line out from laptop

9

 
Figure 1-6 : Transmitter 
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1.2 Software 

The modules in the WFTP system were implemented in Matlab. Each member of the team was 

responsible for designing, developing and evaluating a number of functions which were assembled 

in the final form of the system. In this project we developed modules for the following subsystems: 

 

 

⇒ Modulation, Demodulation, and Detection. 

⇒ Error Control Coding and decoding. 

⇒ Synchronization. 

⇒ Phase Recovery. 

⇒ Equalization. 

⇒ Channel Estimation. 

⇒ Cyclic Redundancy Check. 

 

1.3 The Wireless FTP Communication System 

 

The desired implementation of the WFTP system was proposed by the design illustrated in the 

following figure. In this case the system would consist of four basic modules, along with the 

appropriate hardware. 

 

⇒ Desktop PC 

⇒ Laptop PC 

⇒ Software for the transmitter 

⇒ FM transmitter 

⇒ Software for the receiver 

⇒ Radio receiver 
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Figure 1-7: Desired design of the WFTP system 

 

Software Modules: 

 

⇒ Transmitter Unit 

⇒ Transmitter Server 

⇒ Receiver Unit 

⇒ Processor Unit 

 

Each of the preceding modules would integrate a number of functions depending on its operation. 

The Transmitter Unit and the Receiver Unit would work independently of the Processor Unit in 

different personal computers. The Receiver Unit and the Processor Unit would run in the same 

personal computer, but as different processes. The same applies for the Transmitter Unit and 

Transmitter Server. In order to understand the concept of this implementation we present 

transmission scenarios for both open and closed loop operation of the system. 
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In the open loop form of the system the only operating units would be the Transmitter Unit, the 

Receiver Unit, and the Processor Unit. The Transmitter Unit loads a packet and transmits a 

handshake signal in order to “wake up” the Receiver Unit. Once the packet is transmitted, the 

Receiver Unit stores the digital data generated by the soundcard in a specified storage space and 

waits for a new packet. In the meanwhile the Processor Unit which is running as a separate process, 

scans for new stored packets in the storage space of the Receiver Unit. The processing starts when a 

new packet is stored by the Receiver Unit.  

 

In the closed loop form of the system with ARQ(Automatic Repeat Request), the additional unit 

Transmitter Server performs as a server for accepting negative or positive acknowledgments 

concerning packets’ transmission, while the Processor Unit performs both as a processing unit and a 

client. A possible error in the packet’s bits would force the Processor Unit to send a negative 

acknowledgement message to the Transmitter Server for packet retransmission. In all other cases 

Processor Unit should send positive acknowledgement messages to the Transmitter Server.  

Consequently in both scenarios the Transmitter Unit does not wait until the processing in the 

Processor Unit is finished. Thus the transfer time is independent of the processing time spent in the 

receiver. 

 

Unfortunately this design never worked in practice due to the fact that recording from the soundcard 

and processing data in Matlab cannot be done simultaneously. Moreover running the modules in the 

transmitter or the receiver as separate processes in the same PC, means that two Matlab processes 

must be open in the same time in each personal computer. However this scheme consumes a lot of 

memory and could not be implemented. In general the software implementation of a wireless data 

communication system using Matlab, limits our perspective for multiprocessing and hence 

achievement of high transfer rates. 

 

Eventually the prevailing design emerged from the simplest aspect of WFTP system. The Receiver 

and Processor Unit concatenated in one process running on the PC connected with the radio 

receiver. Respectively the Transmitter Unit and the Transmitter Server merged in one process 

running on the PC connected with the FM transmitter. 
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FM TRANSMITTER

`
FM RECEIVER

Transmitter
Unit

Transmitter 
Server

Receiver
Unit

Processor 
Unit

PROCESS RUNNING ON 
THE TRANSMITTER

PROCESS RUNNING ON 
THE RECEIVER  

Figure 1-8: Schematic of the WFTP system 
 

In this implementation the data transfer between the transmitter and the receiver is not independent 

of the processing of the packets. The processing time is included in the total transfer time of the 

transmitted file and hence transfer rate is reduced. 

 

The WFTP system is mainly used for file transfer. Once a file is loaded, it is fragmented in packets 

of specified length. In the same time a specific sequence of bits of specified length, called training 

sequence, which is used for synchronization, equalization, and phase recovery, is generated for every 

packet. Each packet is shifted in the Encoder where redundant bits are added in a controlled manner. 

The Interleaver, which is charged with the mix up of the packet’s bits, provides the resulting data 

bits to the modulator. The modulator transforms the packet’s bits into digital waveforms of duration 

Ts samples. In addition the modulator transforms the training bits into the corresponding digital 

waveforms. The final digital modulated signal is generated by the concatenation of the digital 
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waveforms that correspond to the training and packet bits.  The interface between the radio 

transmitter and the digital output of the modulator is the soundcard. The audio playback feature of 

Matlab enables us to use the soundcard as a digital to analog converter. In particular the digital 

waveforms are play backed in a specified sampling frequency and the generated analog signal is 

driven to the radio transmitter.  

 

In the receiver the soundcard performs the analog to digital conversion of the received signal at the 

same sampling frequency. The generated digital signal enters the synchronizer where the part of the 

signal carrying the actual information is isolated. In the process of synchronization the training 

sequence is of primary importance. The digital waveforms that correspond to the training bits enable 

the synchronizer to indicate the first and the last sample of the digital signal carrying the actual 

information. The isolated signal is filtered by the Equalizer which is responsible for inverting the 

effect of the channel on the transmitted signal.  The demodulator processes the filtered signal and 

generates the corresponding data and training symbols. The phenomenon of phase shifting from the 

channel is eliminated by applying a linear transformation on the data symbols. The linear 

transformation is derived by the training sequence. The recovered symbols are transformed into the 

corresponding bits in the detector. Finally the deinterleaver recovers the detected bits in the correct 

order and the detector removes the additional redundancy.  
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Figure 1-9: Block diagram of the WFTP system 

 

From the above figure we can obtain that the active modules and their corresponding settings are 

controlled by a central module which is called the System Setup. The system settings are stored in a 

specified structure and are available in both the receiver and the transmitter. Once the desired 

settings have been selected in the transmitter, the Data creator module is responsible for generating 

the final samples of the modulated signal using the features specified by the System Setup module. 

The Transmitter Unit is responsible for transmitting the modulated data. 

In the receiver the Receiver Unit is responsible for recording the packets whereas the final binary 

information is generated by the Processor Unit. In the closed loop form of the system if the 

Processor Unit detects errors, it transmits a negative acknowledgment to the Transmitter Unit for 

packet retransmission. 

In the subsequent paragraphs we will refer to specific details concerning the operation of the WFTP 

Communication System. 
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1.3.1 Audio Playback and audio Recording 

In previous sections we mentioned that the interface between the radio transmitter and the personal 

computer is the soundcard. The output of the Transmitter Unit is actually the samples of the analog 

signal that must be transmitted by the FM transmitter. The digital to analog conversion is achieved 

by using the Matlab function wavplay. The wavplay function playbacks an input vector using a PC-

based audio device at a specified sampling rate Fs. The elements of the input vector must be in the 

range of [ ]1,1− .  

Likewise the analog to digital conversion is achieved in the receiver by using the Matlab function 

wavrecord. The wavrecord function records a specified number of samples of an audio signal using 

the soundcard at a specified sampling rate Fs. The samples generated by wavrecord are in the range 

of [ ]1,1− . 

In the WFTP system the recording time is adjusted dynamically according to the size of the packets. 

Because our system is a software implementation running on an operating system, several delays are 

incurred during its experimental operation. These delays are unpredictable and result from the hard 

disk and memory management of the operating system. Therefore in order to ensure the correct 

reception of the packets we add a constant 0.5secft =  additional recording time. This overhead is 

independent of the size of the packets. Therefore in order to maintain high transfer rates, it is desired 

to fragment the transmitted file in a small number of packets. Consequently this results in an 

increase of the packets’ size. 

However increasing the number of bits per packet, results in an increase of the probability of packet 

error. Therefore the selection of the size of the packets, must ensure the achievement of the highest 

possible transfer rate along with the lowest possible probability of bit error. 

 

1.3.2 Handshake and Handoff 

In the WFTP system the handshake between the transmitter and the receiver is implemented using 

the UDP protocol. When communication is about to begin the Receiver Unit which is in the server 

mode scans a specified port of the Computer system until receiving a wake up signal from the 

Transmitter Unit.  

Consider the simple scenario of a file transmission for the open loop system. The Transmitter Unit 

transmits a handshake signal followed by the first packet. The Receiver Unit wakes up, records the 

audio signal for the first packet and starts processing. In the meanwhile the Transmitter Unit in the 

server mode waits for the acknowledgement message from the Receiver Unit. Once the processing is 
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finished the Receiver Unit transmits a neutral acknowledgement (in the open-loop system there is no 

meaning of positive or negative acknowledgment) and the Transmitter Unit transmits a new 

handshake signal followed by the next packet. This procedure is repeated for every packet. The 

acknowledgement of the last packet from the Receiver Unit, which is transmitted after the processing 

of the last packet, is called handoff. In general, the handoff signal informs the Transmitter Unit that 

the communication must be finished. 

 

1.3.3 ARQ (Automatic Repeat Request) 

In the WFTP system ARQ relies on the use of the Cyclic Redundancy Check. The error signals from 

the receiver to the transmitter are transferred through Ethernet using the UDP protocol. 

In particular, when the transmission of a packet from the Transmitter Unit is completed, Transmitter 

Unit enters the server mode waiting for a positive or negative acknowledgement from the Receiver 

Unit.  

In the Receiver Unit the Processor Unit controls the received packet for transmission errors using 

the CRC error detection code. Depending on the result the Receiver Unit enters the client mode and 

transmits a positive or negative acknowledgement to the Transmitter Unit. 
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2. EXECUTIVE SUMMARIES 
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convolutional coding and Viterbi decoding. In addition he implemented the modules for Phase Shift 
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C h a p t  e r 2  

ERROR CONTROL CODING 

1. INTRODUCTION 
 

Error control coding is an important and necessary step in achieving reliable communication in 

digital communication systems.  In the model of a communication system error control coding is 

illustrated in Figure 2-1, and is implemented by the channel encoder and decoder. 

 

Information 
Source

Source
Encoder

Channel
Encoder Modulator

Channel

DemodulatorChannel
Decoder

Source
DecoderDestination

 
Figure 2-1: Block diagram of a typical communication system 

 

The function of a channel encoder is to introduce some redundancy in the binary information 

sequence so that the receiver can correct errors that may have been caused by the transmission 

channel. The added redundancy serves to increase the reliability of the received data and aids the 

decoder to recover the initial information sequence.  

At the receiver, the received sequence that is produced by the demodulator, enters the channel 

decoder and is transformed into a binary sequence called estimated information sequence. The 

decoding scheme depends on the encoding process used in the transmitter. 

To focus attention on error control coding, the encoding process generally involves the mapping of a 

k-bit information sequence into an n-bit information sequence, called a codeword. The amount of 

redundancy introduced by the encoding of the data is measured by the ratio  n
k

 . The reciprocal of 

this ratio is called the code rate kR
n

= . In general, channel codes permit reliable communication of 

an information sequence over a channel that adds noise, introduces bit errors, or otherwise distorts 
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the transmitted signal. According to the manner in which redundancy is added to the information 

message, Error Control Coding can be divided into two main categories; Block and Convolutional 

coding.  

Block codes accept a block of k information bits and produce a block of n coded bits. By 

predetermined rules, n-k redundant bits are added to the k information bits to form the n coded bits. 

Commonly these codes are referred to as (n, k) block codes. 

Convolutional codes are one of the most widely used channel codes in practical communication 

systems. They convert the entire information sequence into a single codeword. The main decoding 

strategy for convolutional codes is based on the Viterbi algorithm. In the next sections it follows a 

thorough analysis of the basic properties and decoding procedures for Convolutional Codes. 

 

2. ALGEBRAIC CODING THEORY FOR CONVOLUTIONAL CODES 
 

2.1 Galois fields 

Error control coding is based on algebraic coding theory. In this section we will introduce some 

basic elements of algebraic coding theory that will be used in the presentation of convolutional 

codes.  

 

Definition: A set of elements G on which a binary operation ∗  is defined is called a group if the 

following conditions are satisfied [1, pg. 25]: 

i. The binary operation ∗  is associative. A binary operation ∗  on G is said to be associative if, 

for any a, b, and c in G, 

a∗  (b∗c)= (a∗b)∗c 

ii. G contains an element e such that, for any α in G, 

a∗e= e∗a=a 

      where e is called an identity element of G. 

iii. For any element a in G, there exists another element a’ (inverse of a) in G such that 

a∗a’= a’∗a=e 

A group G is said to be commutative if its binary operation ∗  also satisfies the following condition: 

For any a and b in G, 

a∗b= b∗a 

 

Theorem: The identity element in a group G is unique. [1, pg 26] 

Theorem: The inverse of a group element is unique. [1, pg 26] 
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Definition: The number of elements in a group is called the order of the group. [1, pg 26] 

Definition: A group of finite order is called a finite group. [1, pg 26] 

 

Example 2-1 
 

Let G be a set of 2 elements {0, 1}. We define the binary operation modulo-2 addition, denoted by 

⊕  , on G such that 

0 1 1, 1 0 1, 0 0 0, 1 1 0⊕ = ⊕ = ⊕ = ⊕ =  

The set of elements G is closed under the binary operation modulo-2 addition. Since the conditions 

in definition 2-1 are satisfied, G is a commutative group under modulo-2 addition. 

 

Definition: Let F be a set of elements on which two binary operations that are called addition “+” 

and multiplication “ ⋅ ”, are defined. The set F together with the two binary operations is a field if the 

following conditions are satisfied [2, pg 32]: 

 

i. F is a commutative group under addition +. The identity element with respect to addition is 

called zero element or the additive identity of F and is denoted by 0. 

 

ii. The set of nonzero elements in F is a commutative group under multiplication ⋅ . The identity 

element with respect to multiplication is called the unit element or the multiplicative identity 

of F and is denoted by 1. 

 

iii. Multiplication is distributive over addition; that is, for any three elements a, b, and c in F, 

( )a b c a b a c⋅ + = ⋅ + ⋅  

Definition: The number of elements in a field is called the order of the field. [2, pg 32] 

Definition: A field of finite order is called a finite field. [2, pg 32] 
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Basic Properties of fields 

i. For every element a in a field, 0 0 0a a⋅ = ⋅ = . 

ii. For any two nonzero elements a and b in a field, 0a b⋅ ≠ . 

iii. 0a b⋅ =  and 0a ≠  imply that b=0. 

iv. For any two elements a and b in a field, 

( ) ( ) ( )a b a b a b− ⋅ = − ⋅ = ⋅ −  

v. For 0a ≠ , a b a c⋅ = ⋅  implies that b=c. 

[2, pg 32, 33]  

 

Definition: A Galois field is defined as any finite set satisfying the axioms of a field, and is denoted 

by GF(q), where q∈ . A prime field GF(p) has the additional condition that p∈  is prime. The 

set of integers (0, …, p-1) satisfies the axioms of a field under the operations (+, ⋅ ) mod p. For any 

positive integer m, it is possible to extend the prime field GF(p) to a field of mp  elements, which is 

called an extension field of GF(p) and is denoted by ( )mGF p . 

[2, pg 27][1, pg 34] 

 

2.2 Binary fields and binary arithmetic 

In general convolutional codes are binary codes with symbols from the Galois field GF(2). The 

binary field GF(2), is a set of two elements {0, 1} under modulo-2 addition and modulo-2 

multiplication.  

 

+ 0 1  ⋅  0 1 
0 0 1  0 0 0 
1 1 0  1 0 1 

Table 2-1: Modulo-2 addition and multiplication 
 

The elements and modulo-2 operations from GF(2) are used to describe the structure, the encoding 

and decoding process of convolutional codes. However in later sections we will come across with a 

more flexible representation, in which polynomials with coefficients from the GF(2) are used in 

order to describe convolutional codes. A polynomial f(X) with one variable X and with coefficients 

from GF(2) is of the following form [1, pg 38] 
2

0 1 2( ) ... n
nf X f f X f X f X= + + + +  
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where {0,1}, 0if i n= ≤ ≤ .  The degree of a polynomial is the largest power of X with a nonzero 

coefficient. In general, polynomials over GF(2) are commutative, associative and distributed. 

Moreover there are 2n polynomials over GF(2) with degree n. 

 

All the usual operations (addition, subtraction, multiplication, division) can be performed between 

polynomials over GF(2).  Multiplication and addition of the coefficients are modulo-2. Consider two 

polynomials over GF(2), f(X) and g(X)  
2

0 1 2( ) ... n
nf X f f X f X f X= + + + +  

2
0 1 2( ) ... m

mg X g g X g X g X= + + + +  

where m n≤  

The sum and the product of the two polynomials over GF(2), denoted  as ( ) ( )f X g X+  and 

( ) ( )f X g X⋅  respectively, are given by [1, pg 39] 

 
2

0 0 1 1 2 2( ) ( ) ( ) ( ) ( ) ... ( ) ...m n
m m nf X g X f g f g X f g X f g X f X+ = + + + + + + + + + +  

0 0 0 1 1 0 0 1 1 1 0( ) ( ) ( ) ( ) ( ... ) ...i n m
i i n mf X g X f g f g f g X f g f g f g X f g X +

−⋅ = ⋅ + + + + + + + +  

 

2.3 Vector space 

Another basic element of algebraic coding theory that will be mentioned in subsequent sections is 

vector spaces. 

 

Definition: Given a field F, a vector space V over F is a set V (whose members are called members 

the vectors of V) equipped with two operations ⊕  (vector addition) and ⋅  (scalar multiplication), 

satisfying the following: 

i. V is a commutative group under addition 

ii. For any element a in F and any element v in V, a ⋅v is an element in V. 

iii. For any elements u and v in V and any elements a and b in F, 

( )
( )
a a a
a b a b
⋅ + = ⋅ + ⋅
+ ⋅ = ⋅ + ⋅
u v u v

v v v
 

iv. For any v in V and any a and b in F, 

( ) ( )a b a b⋅ ⋅ = ⋅ ⋅v v  

v. Let 1 be the unit element of F. Then, for any v in V, 1 ⋅v=v. 

[1, pg 57] 
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Consider a sequence of n components 0 1 1( , ,..., )na a a −  where each component is a member of the 

binary field GF(2). This sequence is called a n-tuple over GF(2). Because each component can take 

up to two different values, there are 2n distinct n-tuples over GF(2). The set Vn of all n-tuples forms 

the vector space over GF(2).  

 

3. FUNDAMENTALS OF CONVOLUTIONAL CODES 
 

Convolutional codes are based on a linear mapping over the GF(2) of a set of information words to a 

set of codewords. A rate kR
n

=  convolutional encoder with memory m can be realized as a k-input 

and n-output linear sequential circuit with input memory m. This means that at any given time unit, 

encoder outputs depend not only on the inputs but also on some number of previous inputs. The 

information sequence is divided into overlapping blocks of length k  
(1) (2) (k) (1) (2) (k) (1) (2) (k)

0 1 t h-1 0 0 0 1 1 1 h-1 h-1 h-1=( , ,..., ,..., )=((u u ...u ),(u u ...u ),..., (u u ...u ))u u u u u  

and the codeword is divided into blocks of length n.  
(0) (1) (n-1) (0) (1) (n-1)

0 t 0 0 0 1 1 1=( ,..., ,...)=((v v ...v ) , (v v ...v ) ,....)v v v  

 

Convolutional 
Encoder

(1)u t

(2)ut

(3)u t

( )u k
t

(0)vt
(1)v t
(2)vt
(3)vt
(4)vt

( 1)vn
t
−

 
Figure 2-2: Block diagram of a Convolutional encoder  

 
Convolutional encoders contains k shift registers (one for each input) , not all of which must have the 

same length. 
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k input bits n output bits

 
Figure 2-3: Memory elements in the encoder 

 
As illustrated in Figure 2-3, each shift register i contains vi delay elements , [1, ]i k∈  

 

Definition: Constraint length vi is called the length of the ith shift register which corresponds to the 

ith input sequence, [1, ]i k∈ . [1, pg 459] 

 

Definition: The encoder memory m is the maximum length of all k shift registers [1, pg 459] 

i1 i k
max(v )m
≤ ≤

=  

Definition: The overall constraint length v of the encoder is the sum of the lengths of all k shift 

registers. [1, pg 459] 

 

In the special case where k=1, it follows that vi=m and v=m. 

 

A convolutional encoder with k inputs, n outputs and overall constraint length v is denoted as 

( , , )n k v .  

In convolutional codes and encoders the elements of the information and encoded sequences, may be 

drawn from the binary field, GF(2). Therefore the operations performed are modulo2-addition and 

modulo-2 multiplication. The result for each output is produced by a modulo-2 adder which can be 

implemented as XOR gate.  
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u(1)

u(2)

u(k)

v(0)

v(1)

v(2)

v(n-1)

 
Figure 2-4: Block diagram of a feedforward convolutional encoder 

 

Encoders for convolutional codes fall into the following categories: 

 

i. Nonsystematic Feedforward Convolutional Encoders 

ii. Systematic Feedforward Convolutional Encoders 

iii. Systematic Feedback Convolutional Encoders 

iv. Nonsystematic Feedback Convolutional Encoders 

 

In this thesis we are mainly concerned on terminated convolutional codes. In order to terminate a 

convolutional code k m⋅ zero bits are appended onto the information sequence in a way that all the 

storage elements in the encoder return to the zero state at the end of the input sequence. 

In the following sections we will focus on the foremost three of the four categories that are used 

most in error control applications. 

 

 

4. NONSYSTEMATIC FEEDFORWARD CONVOLUTIONAL ENCODERS 
 

As mentioned above convolutional encoders can be realized as Linear Time – Invariant systems over 

the GF(2) with k inputs and n outputs. The jth of the n output sequences is denoted by  
( j) ( j) ( j ) ( j)

0 1 2(v ,v ,v ,...) , [0, 1]j n= ∈ −v  

At time t, n output bits are produced by the encoder 
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(0) (0) (0) (0) (0)
0 1 2 t

(1) (1) (1) (1) (1)
0 1 2 t

(n-1) (n-1) (n-1) (n-1) (n-1)
0 1 2 t

(v , v , v ,..., v ,...)

(v , v , v ,..., v ,...)

(v , v , v ,..., v ,...)

=

=

=

v

v

v

 

          

The n output sequences are multiplexed into a single sequence, called the code sequence (codeword).  
(0) (1) (n-1) (0) (1) (n-1)

0 t 0 0 0 1 1 1=( ,..., ,...)=((v v ...v ) , (v v ...v ) ,....)v v v  

where (0) ( 1)(v ...v )n
t t t

−=v  is the encoded n-tuple at time unit t. Since the elements of the encoded 

sequences may be drawn form the GF(2), it follows that (2)n
t GF∈v . 

The jth of the n output sequences (j)v  is obtained by convolving the input sequence with the 

corresponding system impulse response: [2, pg 204] 

(j) (1) (j) (2) (j) (3) (j) (k) (j) (i) (j)
1 2 3 k i

1
... , [1, ] [0, 1]

k

i
i k j n

=

= ∗ + ∗ + ∗ + + ∗ = ∗ ∈ ∈ −∑v u g u g u g u g u g  

where (i)u  is the input sequence that corresponds to input i  
(i) (i) (i) (i)

0 1 2(u , u ,u ,...) , [1, ]i k= ∈u  

 

and ( )j
ig  are the impulse responses that correspond to output sequence j.  

At time unit t the information k-tuple is denoted by (1) ( )(u ...u )k
t t t=u  where (2)k

t GF∈u . 

 

For each output j there are i corresponding impulse responses. 
( j) ( j) ( j ) ( i ) ( i )
i i,0 i,1 i,2 i,m(g ,g ,g ,...,g ) , [1, ], [0, 1]i k j n= ∈ ∈ −g  

Generator sequences (impulse responses) describe the connections of the inputs and the delay 

elements with the modulo-2 adders. Every impulse response ( j)
ig  has finite length vi + 1. Impulse 

responses are called generator sequences. 

At arbitrary time t the output bit of jth output sequence is computed by the difference equations: 

( j) ( i ) ( j) i ( j) i ( j) i ( j )
t i t i,0 t-1 i,1 t-m i,m

1 0 1
v u *g (u g +u g +...+u g )

k m k

i l i= = =

= =∑∑ ∑  

where ( i )
tu  is the ith input bit at time t and ( i ) ( i )

t-1 t-mu ...u  are the m previous input bits which are stored in 

the ith shift register. [2, pg 220] 
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4.1 Generator matrix in Time domain 

The generator sequences are organized into a semi-infinite matrix G which is called the (time 

domain) Generator Matrix1. [1, pg 460] 

0 1 2

0 1 2

0 1 2

m

m

m

G G G G
G G G G

G G G G

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

G

…
…
…

 

where lG  is a k x n submatrix whose entries are 

(0) (1) ( 1)
1, 1, 1,
(0) (1) ( 1)
2, 1, 2,

(0) (1) ( 1)
, , ,

, [0, ]

n
l l l

n
l l l

l

n
k l k l k l

g g g
g g g

G l m

g g g

−

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥= ∈⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Consider the composite information sequence u  with a finite length of blocks h, which is obtained 

by interleaving the k information sequences    
(1) (2) (k) (1) (2) (k) (1) (2) (k)

0 1 t h-1 0 0 0 1 1 1 h-1 h-1 h-1=( , ,..., ,..., )=((u u ...u ),(u u ...u ),..., (u u ...u ))u u u u u  

where (1) ( )( ... )k
t t tu u=u  is the information k-tuple at time unit t. Thus the Generator Matrix will have 

h rows and 2(m+h) columns. 

The encoding equations can be expressed in matrix form as 

= ⋅v u G  

where the code sequence (codeword) is 

0 1 t=( , ,..., ,...)v v v v  

 

Definition: An (n, k, v) convolutional code is the set of all output sequences (codewords) produced 

by an (n, k, v) convolutional encoder; that is, it is the row space of the encoder generator matrix G. 

Because the codeword v is a linear combination of rows of the generator matrix G, an (n, k, v) 

convolutional code is a linear code. [1, pg 461] 

 

Nonsystematic feedforward convolutional encoders produce nonrecursive convolutional codes 

because the response to a single nonzero input in the encoder has finite duration. 

 

                                                 
1 Note that in Generator matrix the blank areas are all zeros 
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4.2 Generator sequences 

Generator sequence ( j)
ig between the ith input and the jth output is found by stimulating the encoder 

with the discrete impulse (1, 0, 0, 0,…) at the ith input and by observing the jth output.  

 

However a more practical method to compute the generator sequences is described in the following 

steps. Suppose we want to compute ( j)
ig : 

Place 1 in the leftmost bit of the binary representation if the ith input is connected with jth adder. 

Place 1 in each spot where a connection line from the shift registers feeds into the adder and a 0 

elsewhere. 

 

Example 2-2 

Consider the 1
2

R =  Nonsystematic Feedforward convolutional encoder presented in the following 

block diagram. 

u(1)

v(0)

v(1)

 
Figure 2-5: A rate R=1/2 binary nonsystematic feedforward convolutional encoder with memory order 

m=3. 
 

Since k=1 the encoder contains one shift register. From the block diagram we can obtain that the 

shift register consists of three delay elements and hence its constraint length is v1=3.  Since k=1 and 

n=2 there will be two generator sequences: 
(0) (1)
1 1(1011) , (1111)g g= = . Therefore we can obtain the generator matrix G by interlacing the 

generator sequences. 
( 0 ) 0 0 0 0
1 1,0 1,1 1,2 1,3

(1) 1 1 1 1
1 1,0 1,1 1,2 1,3

( , , , ) (1011)

( , , , ) (1111)

g g g g g

g g g g g

= =

= =
 

(0) (1) (0) (1) (0) (1) (0) (1)
0 1,0 1,0 1 1,1 1,1 2 1,2 1,2 3 1,3 1,3[ ], [ ], [ ], [ ]G g g G g g G g g G g g= = = =  
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(0) (1) (0) (1) (0) (1) (0) (1)
0 1 2 3 1,0 1,0 1,1 1,1 1,2 1,2 1,3 1,3

(0) (1)(0) (1) (0) (1) (0) (1)
0 1 2 3 1,3 1,31,0 1,0 1,1 1,1 1,2 1,2

G G G G g g g g g g g g
G G G G g gg g g g g g

G

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= =
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

 

 

In the following table we describe the encoding process considering as input to the encoder the 

information sequence 1 1 1 1
0 1 2 3 0 1 2 3( , , , ) ( , , , ) (1,0,1,1)u u u u= = =u u u u u . The information sequence is 

divided into four blocks. Thus the generator matrix will have four rows. 

 

30 1 2

2 30 1

1 2 30

0 31 2

GG G G
G GG G

G
G G GG
G GG G

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 

  

tv  Encoding equations 

0 1
( , )0 0 0v v=v  1 0 1

( ) (1 11 1) (11)0 0 0 1,0 1,0G u g g= = =u i i  

0 1
( , )1 1 1v v=v  1 0 1 1 0 1( ) ( ) (1 0 1 1) (0 1 0 1) (0 1) (0 0) (0 1)0 1 1 0 0 1,1 1,1 1 1,0 1,0G G u g g u g g+ = + = ⊕ = ⊕ =u u i i i i  

2 2 2
0 1

( , )v v=v  1 0 1 1 0 1 1 0 1
( ) ( ) ( ) ... (0 0)0 1 0 0 1,2 1,2 1 1,1 1,1 1,0 1,02 1 2 2G G G u g g u g g u g g+ = + + = =+u u u  

3 3 3
0 1

( , )v v=v  1 0 1 1 0 1 1 0 1 1 0 1
( ) ( ) ( ) ( ) (0 1)0 1 0 1,3 1,3 1 1,2 1,2 1,1 1,1 1,0 1,03 2 2 1 3 0 2 2G G G G u g g u g g u g g u g g+ = + + + =+ +u u u u

4 4 4
0 1

( , )v v=v  0 1 0 1 0 1
( ) ( ) ( ) (0 1)1,3 1,3 1,2 1,2 1,1 1,13 2 1G G G g g g g g g+ = + + =+  

5 5 5
0 1

( , )v v=v  0 1 0 1
( ) ( ) (0 0)1,3 1,3 1,2 1,23 2G G g g g g+ = + =  

6 6 6
0 1

( , )v v=v  0 1
( ) (11)1,3 1,33G g g= =  

Table 2-2: The encoding process 
 

The resulting codeword v is (11, 01, 00, 01, 01, 00, 11). 
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4.3 Polynomial representation of the Generator matrix 

In the section referring to the “Algebraic Coding Theory For Convolutional Codes” we mentioned 

that we can use a specific polynomial form, in order to describe convolutional codes.  

Usually we introduce the delay operator D as the variable of polynomial. The power of D denotes 

the number of time units a bit is delayed with respect to the initial bit of sequence. 

The polynomial representation of the information and encoded sequences are given by [2, pg 221] 

(i) (i ) (i )
t

0

( ) ( ) ( )
t

0

( ) u

( ) v

t

t

j j j t

t

D D

D D

+∞

=

+∞

=

←⎯→ =

←⎯→ =

∑

∑

Z

Z

u u

v v
 

The corresponding polynomial representation of the generator sequence  ( j)
ig  is called generator 

polynomial and is given by [2, pg 221] 

( i ) ( i ) ( )
i , t

0
( ) g j t

t
D D

+∞

=

←⎯→ =∑Zg g  

Therefore  ( j ) ( ) ( j)
i

1

( ) ( ) ( )
k

i

i

D D D
=

=∑v u g  

For an (n,k,v) convolutional encoder there are a total of k n×  system functions which can be 

represented by the k n×  Generator matrix. 
(0) (1) ( 1)
1 1 1
(0) (1) ( 1)
2 2 2

(0) (1) ( 1)
k k k

( )

n

n

n

D

−

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

g g g
g g g

G

g g g

 

 

We can express the encoding equations of a (n,k,v) feedforward encoder in matrix form as  

( ) ( ) ( )D D D=V U G , 

where (1) ( 2 ) ( )( ) [ ( ), ( ),..., ( )]kD D D D=U u u u  is the k-tuple of input sequences and 
( 0 ) (1) ( 1)( ) [ ( ), ( ),..., ( )]nD D D D−=V v v v  is the n-tuple of output sequences. [1, pg 263] 

 

The final code sequence (codeword) which is produced by multiplexing the n output sequences can 

be expressed as  
(0) (1) 1 ( 1) 1( ) ( ) ( ) ... ( )n n n n nD D D D D D− − −= + + +v v v v  

The codeword can be also derived by the expression [1, pg 264] 
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( ) ( )

1
( ) ( ) ( )

k
i n j

i
i

D D D
=

= ∑v u g , 

where  ( 0 ) (1) 1 ( 1) 1
i i i i( ) ( ) ( ) ... ( )n n n n nD D D D D D− − −= + + +g g g g  is the composite generator polynomial 

relating the ith input sequence to the codeword ( )Dv . 

In convolutional codes there are two general realization methods that can be applied to all 

convolutional encoders; Controller canonical form and Observer canonical form. 

In Controller Canonical Form there are k shift registers corresponding to each of the k input 

sequences. The k input sequences enter the left end of each shift register and the n output sequences 

are produced by modulo-2 adders external to the shift registers. The lowest degree (constant2) terms 

in the generator polynomials correspond to the connections at the left ends of the shift registers. The 

highest degree terms correspond to the connections at the right ends of the shift registers. The length 

of the ith shift register iv is given by the expression: 

( )

1 1
max [deg ( )] , [1, ]j

i ij n
v D i k

≤ ≤ −
= ∈g  

Moreover the memory order of the Convolutional Encoder is defined as: 
( )

1 1
max [deg ( )] , [1, ]j

ij n
m D i k

≤ ≤ −
= ∈g  

The overall constraint length of the encoder is defined as: 

1

k

i
i

v v
=

= ∑  

In the Observer Canonical form there is one shift register corresponding to each of the n output 

sequences. The k input sequences enter modulo-2 adders internal to the shift registers and the outputs 

at the right of each shift register form the n output sequences. The lowest degree (constant) terms in 

the generator polynomials represent the connections at the right ends of the shift registers. The 

highest degree terms represent the connections at the left end of the shift registers. For this reason 

when an encoder is realized in observer canonical form, it is common to write the generator 

polynomials in the opposite of the usual order (from the highest to the lowest degree). 

The length of the jth of the n shift registers is defined as: 
( )

1
max[deg ( )] , [0, 1]j

j ii k
v D j n

≤ ≤
= ∈ −g  

The memory order of the encoder is given by the expression: 

1 1
max [ ]jj n

m v
≤ ≤ −

=  

                                                 
2 The constant term in the generator polynomial ( )j

ig  denotes the connection of the ith input with the modulo-2 adder 
that produces the jth output sequence 
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The overall constraint length of the encoder in observer canonical form is defined as: 
1

1

n

j
j

v v
−

=

= ∑  

Consider the generator matrix G(D) of a nonsystematic feedforward encoder in controller canonical 

form. We can obtain the generator matrix of the encoder in the observer canonical form by reversing 

the order of the polynomials of the generator matrix G(D). 

 

Example 2-3 

Consider the 2
3

R =  nonsystematic Convolutional Encoder with the generator matrix in polynomial 

representation: 
( 0 ) (1) ( 2 )
1 1 1
( 0 ) (1) ( 2 )
2 2 2

1 1
( )

1 1
D D D

D
D
+ +⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

g g g
G

g g g
 

where 
( 0 ) (1) ( 2 ) ( 0 ) (1) ( 2 )

1 1 1 1 2 2 2 2max(deg , , ) 1 , max(deg , , ) 1v v= = = =g g g g g g  

are the constraint lengths of the two shift registers. 

u(1)

v(0)

u(2)

v(1)

v(2)

 
Figure 2-6: A rate R=2/3 binary feedforward convolutional encoder with memory order m=1. 

 

The corresponding observer canonical form realization of the Nonsystematic Feedforward 

Convolutional Encoder is obtained by reversing the order of the generator polynomials in the 

Generator Matrix. 
( 0 ) (1) ( 2 )
1 1 1
( 0 ) (1) ( 2 )
2 2 2

1 1
( )

1 1
D D D

D
D
+ +⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

g g g
G

g g g
 

Because n=3 the encoder in the observer canonical form realization will contain three shift registers 

with corresponding constraint lengths: 
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(0) (0) (1) (1) (2) (2)
0 1 2 1 1 2 2 1 2max(deg , ) 1, max(deg , ) 1, max(deg , ) 1= = = = = =v g g v g g v g g  

Moreover the memory order is 0 1 20 2
max( ) max( , , ) 1jj

m
≤ ≤

= = =v v v v  . 

u(1)

v(0)

u(2)

v(1)

v(2)

 
Figure 2-7: Observer canonical form realization of the encoder illustrated in Figure 2-6. 

 
 
 

5. SYSTEMATIC FEEDFORWARD CONVOLUTIONAL ENCODERS 
 

In a Systematic Feedforward convolutional encoder k output sequences, called systematic output 

sequences, are exact replicas of the input sequences. [1, pg 464] 
( 1)

( )

, [1, ]
1 1
0 1{

j i

j
i

i k
j i
j i

− = ∈
= −= ≠ −

v u

g
 

A convolutional generator matrix is systematic if the information sequence appears unchanged in the 

corresponding code sequence. 

The polynomial representation of the generator matrix of a systematic Convolutional Encoder is a 

k n× matrix of the form [1, pg 465] 
( ) ( 1)
1 1
( ) ( 1)
2 2

( ) ( 1)

10 0 ( ) ( )
01 0 ( ) ( )

( )

00 1 ( ) ( )

k n

k n

k n
k k

D D
D D

D

D D

−

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

g g
g g

G

g g

 

Note that the first k output sequences equal the k input sequences and are called output information 

sequences. The last n-k sequences are called output parity sequences. Thus Systematic Feedforward 

Convolutional encoders are defined only by the ( )k n k× − last generator polynomials. The 

polynomial representation of the parity check matrix for the Systematic Feedforward convolutional 

encoder is [1, pg 466] 
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( )( ) ( )
1 2

( 1 )( 1 ) ( 1 )
1 2

( 1 )( 1 ) ( 1 )
1 2

1 0 0( )( ) ( )
0 1 0( )( ) ( )

( )

0 0 1( )( ) ( )

kk k
k
kk k

k

nn n
k

DD D
DD D

D

DD D

++ +

−− −

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

gg g
gg g

H

gg g

 

where the last (n-k) columns of H(D) form the ( ) ( )n k n k− × − identity matrix. The parity check 

matrix can be rewritten as 
(0) (1) ( 1 )
1 1 1
(0) (1) ( 1 )
2 2 2

(0) (1) ( 1)

1 0 0( ) ( ) ( )
0 1 0( ) ( ) ( )

( )

0 0 1( ) ( ) ( )

k

k

k
n k n k n k

D D D
D D D

D

D D D

−

−

−
− − −

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

h h h
h h h

H

h h h

 

 

Any codeword V(D) must satisfy the parity-check equations  

( ) ( ) ( )D D D=TV H 0  

where 0(D) represents the 1 ( )n k× − matrix of all-zero sequences. [1, pg 466] 

In Observer Canonical realization of Systematic Feeforward encoders there are only n-k shift 

registers. The length of each shift register is defined as 
( )

1 1
max [deg ( )] , [0, 1]j

j ii n
v D j n

≤ ≤ −
= ∈ −g  

and the memory order of the encoder is given by the expression  

1 1
max [ ]jj n

m v
≤ ≤ −

=  

 

 

Example 2-4 

 

Consider the 2
3

R =  Systematic Feedforward Convolutional encoder with generator matrix  

(2) 2
1
(2)
2

1 0 1 0 1
( )

0 1 0 1 1
D D

D
D

⎡ ⎤ ⎡ ⎤+ +
= =⎢ ⎥ ⎢ ⎥+⎣ ⎦⎣ ⎦

g
G

g
 

where (2)
1g  corresponds to the generator polynomial of the first input with response to the second 

output and ( 2 )
2g  corresponds to the generator polynomial of the first input with response to the 

second output. The leading order of the generator polynomial (2)
1g  is 2. Therefore the length of the 

first shift register is v1 = 2. The leading order of the generator polynomial ( 2 )
2g  is 1 and hence the 
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length of the second shift register is v1 = 1. The overall constraint length is v = 3. Thus we can obtain 

the block diagram of the systematic C(3,2,3) convolutional encoder in the controller canonical form. 

u(1)

v(0)

u(2)

v(1)

v(2)
 

Figure 2-8: A rate R=2/3 systematic feedforward convolutional encoder in controller canonical form. 
 

The parity-check matrix is given by 
( 0 ) (1) 2
1 1( ) [ ( ) ( ) 1] [1 1 1]H D D D D D D= = + + +h h  

 

In order to obtain the observer canonical form of the encoder we reverse the order of generator 

polynomials in the generator matrix. 
21 0 1

( )
0 1 1

D D
D

D
⎡ ⎤+ +

= ⎢ ⎥+⎣ ⎦
G  

The encoder contains n-k=1 shift register. The constraint length of the shift register is  
(2) (2)

1 1 2max(deg ) 2v g g= =  

Therefore the systematic feedforward encoder can be realized in observer canonical form as shown 

in Figure 2-9. 

u(1) v(0)

u(2) v(1)

v(2)

 
Figure 2-9: Observer canonical form realization of the encoder illustrated in Figure 2-8. 

 

 

6. SYSTEMATIC FEEDBACK CONVOLUTIONAL ENCODERS 
 

Systematic feedback encoders generate the same codes as the corresponding feedforward encoders 

but exhibit a different mapping between information sequences and codewords. Usually we prefer to 

transform a nonsystematic convolutional encoder to a systematic feedback convolutional encoder 
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rather than create it from scratch. Therefore the main idea is to manipulate the k n×  polynomial 

generator matrix G(D) so that  the first k columns of the systematic generator matrix G’(D) form 

an k k×  identity matrix. This is achieved by performing polynomial row operations on the generator 

matrix G(D). The entries of the systematic polynomial generator matrix G’(D) are rational functions 

in the delay operator D. Because elementary row operations do not change the row space of a matrix, 

the matrices G(D) and G’(D) generate the same code and since G’(D) contains rational functions it 

results in a feedback encoder realization.  

 

Since G’(D) is in systematic form it can be used to determine a ( )n k n− ×  systematic parity check 

matrix H’(D). The procedure is the same as described in the systematic feedforward encoders. In this 

case, H’(D) contains rational functions and its last ( )n k−  columns form the ( ) ( )n k n k− × − identity 

matrix.  

 

Because matrices G’(D) and H’(D) contain rational functions, the impulse response of the encoder 

has infinite duration.  Therefore the feedback shift register realization of G’(D) is an infinite impulse 

response linear system (IIR) and the generated code is recursive (SRCC)3. The time domain 

generator matrix G’ contains sequences of infinite length. For this reason systematic feedback 

encoders are more easily described using the polynomial representation. [1, pg 471] 

 

Example 2-5 

Consider the 2
3

R =  nonsystematic feedforward generator matrix given by 

1 1
( )

1 1
D D D

D
D
+ +⎡ ⎤

= ⎢ ⎥
⎣ ⎦

G  

The controller canonical form realization of Figure 2-10 contains two shift registers with the 

corresponding lengths 
0 1 2

1 1 1 1 10 2 0 2

0 1 2
2 2 2 2 20 2 0 2

max deg max deg 1

max deg max deg 1

j

j j

j

j j

v

v
≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

⎡ ⎤ ⎡ ⎤= = =⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤= = =⎣ ⎦ ⎣ ⎦

g g g g

g g g g
 

                                                 
3 SRCC= systematic recursive convolutional code 
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u(1)

v(0)

u(2)

v(1)

v(2)

 
Figure 2-10: A rate R=2/3 nonsystematic feedforward convolutional encoder in controller canonical form. 

 

To convert G(D) to an equivalent systematic feedback encoder, we apply the following sequence of 

elementary row operations. 

( )

1 /(1 ) 11
1 : 1 1 ( )

1 1 1

/(1 )1 1
2: 2 2 1 ( ) 20 1(1 ) / 1

11 /(1 )13: 2 2 ( ) 2 22 0 1 (1 ) /(1 )1

1 0
4: 1 1 2 ( )

01

D D
step row row D

D D

D D
step row row Drow D

DD D D

D DDstep row row D
D D DD D

Dstep row row row D
D

⎡ ⎤+
= ⇒ = ⎢ ⎥+ ⎣ ⎦

+⎡ ⎤
= + ⇒ =⎢ ⎥

++ + +⎢ ⎥⎣ ⎦

⎡ ⎤++
= ⇒ =⎢ ⎥

+ + +⎢ ⎥+ + ⎣ ⎦

= + ⇒ =
+

G

G

G

G
21/(1 )

1 2 2(1 ) /(1 )

D D

D D D

⎡ ⎤+ +⎢ ⎥
⎢ ⎥+ + +⎣ ⎦

 

 

The systematic parity check matrix is given by 
2

'
2 2

1 1( ) 1
1 1

DD
D D D D

⎡ ⎤+
= ⎢ ⎥+ + + +⎣ ⎦

H  

The equivalent nonsystematic polynomial parity-check matrix is given by 
2 2( ) 1 1 1D D D D⎡ ⎤= + + +⎣ ⎦H  

where the ( ) ( ), 0 1j D j n≤ ≤ −h  represents the parity check polynomial associated with the jth 

output sequence. H(D) and H’(D) correspond to the controller canonical form realization of the 

encoder. We can obtain the observer canonical form realization by reversing the order of the 

polynomials. The generator matrix and the systematic parity check matrix in observer canonical 

form are given by 

21 0 1/( 1)
( )

0 1 2 2( 1) /( 1)

D D
D

D D D

⎡ ⎤+ +⎢ ⎥=
⎢ ⎥+ + +⎣ ⎦

G   ,  
2

'
2 2

1 1( ) 1
1 1

DD
D D D D
⎡ ⎤+

= ⎢ ⎥+ + + +⎣ ⎦
H  
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7. STRUCTURAL PROPERTIES OF CONVOLUTIONAL CODES 
 
7.1 State Diagram 

The operation of convolutional encoders can be described by a state diagram. State diagram is a 

graph where nodes correspond to the encoder’s possible states and branches denote the transitions 

between states. The state transitions are labeled with the appropriate input / output binary tuples 

/t tu v . The state of an encoder is defined as the contents of its k shift registers. For a ( , , )n k v  

convolutional encoder in controller canonical form there are a total of 2v possible states. The ith shift 

register of the encoder at time unit t contains vi bits denoted as ( ) ( )
1 ,..., , [1, ]i i

t t vi
s s i k− − ∈  where ( )

1
i

ts −  

represents the contents of the rightmost delay element and ( )i
t v

i
s − represents the contents of the 

leftmost delay element. 

Definition: The encoder state at time unit t is the binary v-tuple  
(1) (1) (1) (2) (2) (2) (3) (3) (3) ( ) ( ) ( )

1 2 1 2 1 2 1 21 2 3
( ... ... ... ... ... )k k k

t t t t v t t t v t t t v t t t vk
s s s s s s s s s s s sσ − − − − − − − − − − − −=  

The ith shift register at time unit t contains the vi previous input bits ( ) ( )
1 ...i i

t t vi
u u− − . Therefore the 

encoder state at time unit  t can be expressed  as a v-tuple of the memory values. 
(1) (1) (1) ( ) ( ) ( )

1 2 1 21
( ... ... ... )k k k

t t t t v t t t vk
u u u u u uσ − − − − − −=  

A ( , , )n k v convolutional encoder in observer canonical form contains n shift registers. In this case 

there are a total of 2v possible states and the encoder state at time unit t is the binary v-tuple 
(1) (1) (1) (2) (2) (2) (3) (3) (3) ( ) ( ) ( )

1 2 1 2 1 2 1 21 2 3
( ... ... ... ... ... )n n n

t t t t v t t t v t t t v t t t vn
s s s s s s s s s s s sσ − − − − − − − − − − − −=  

The states are labeled S0, S1, …, S2
v
- 1 where Si represents the state whose binary        v-tuple 

representation is b0 b1… bv – 1 . The exponent i is given by the expression 1 1
0 1 12 ... 2v

vi b b b−
−= + + +  

[1, pg 487]. 

 

7.2 Trellis Diagram 

The state diagram can be represented as it evolves in time with a trellis diagram. Trellis diagram is 

constructed by reproducing the states horizontally and showing the state transitions going from left 

to right corresponding to time and data input. At time ti, 2v nodes that correspond to the possible 2v 

states are placed vertically. At time ti+1, the same structure is repeated. Then we denote with 

branches the possible 2k transitions from each state to another. The branches are labeled with the 

corresponding output.  
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Consider a ( , , )n k v  convolutional encoder with memory m. For an information sequence of length 
*K kh=  the trellis diagram contains h m+  time units. The final codeword is obtained from the 

labels of the branches that determine the path that corresponds to the information sequence. 

 

In steady state the trellis diagram denotes the possible transitions between states and the 

corresponding outputs. 

 

Example 2-6 
 

Consider the 2
3

R =  nonsystematic Convolutional Encoder presented in Figure 2-10. Since the 

overall constraint length v=2 there are 22=4 possible states with binary representation 00, 01, 10, 11. 

The label of each state i is Si, where the indicator i is given by the expression 
1 1

0 1 12 ... 2v
vi b b b−
−= + + + . The mapping between labels and states is provided in the following table 

  
State Label 
00 S0 
01 S2 
10 S1 
11 S3 

Table 2-3: States labeling 
 

In order to determine the state diagram of the encoder we must construct the following table 

 
State Input bits Output bits Next State 

S0 00 000 S0 
S0 01 011 S2 
S0 10 101 S1 
S0 11 110 S3 
S1 00 111 S0 
S1 01 100 S2 
S1 10 010 S1 
S1 11 001 S3 
S2 00 100 S0 
S2 01 111 S2 
S2 10 001 S1 
S2 11 010 S3 
S3 00 011 S0 
S3 01 000 S2 
S3 10 110 S1 
S3 11 101 S3 

Table 2-4: Input/Output bits for every possible state transition  
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for the rate R=2/3 convolutional encoder of Figure 2-10. 
 

 
Figure 2-11: State diagram of the convolutional encoder of Figure 2-10 

 
 

 
Figure 2-12: The corresponding trellis diagram in steady state of the encoder of Figure 2-10 

 
 
7.3 Catastrophic Encoders 

This class of convolutional encoders should be avoided when developing an error control system. 

The foremost disadvantage is that a finite number of channel errors can generate an infinite number 

of decoding errors. 

 

Definition: An encoder is catastrophic if and only if the state diagram contains a cycle with zero 

output weight other than the zero-weight cycle around the state S0. [1, pg 485] 
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Any encoder for which a feedforward exists is noncatastrophic. Therefore systematic encoders are 

always noncatastrophic, since a trivial feedforward inverse exists. Minimal nonsystematic encoders 

are also noncatastrophic.  

 

7.4 Distance Properties of convolutional codes 

The most important distance measure for convolutional codes is the minimum free distance dfree. 

Free distance determines the error-correcting capabilities of a convolutional code.  

 

Definition: The free distance of a convolutional code is the minimum Hamming distance4 between 

any two code sequences of the code 

' ' '

' ''

,
min ( , )free
u u

d d= v v  

where v’ and v’’ are the codewords corresponding to the information sequences u’, u’’. [2, pg 213] 

Codewords v’ and v’’ have finite length and start and end in the zero state S0. Because a 

convolutional code is a linear code the minimum hamming distance of v’ and v’’ is equal to the 

minimum hamming weight5 of the sum v’ and v’’. 

' ' '

' ''

,
min{ ( )} min{ ( )} min{ ( )}free
u u

d w w w= = =v + v v uG  

where v is the codeword corresponding to the information sequence u. Therefore dfree is the min-

weight codeword produced by any finite nonzero length information sequence. Moreover it is the 

minimum weight of all finite length nonzero paths in the state diagram that diverge from and 

remerge with the all-zero state S0. The free distance is a code property and hence it is independent of 

the encoder realization. A minimum distance encoder can always correct an error sequence e, if 

( )
2
freed

w <e  

Definition: The maximum error-correcting capability of an encoder freet  is given by  

1
2

free
free

d
t

−
=  

[3, pg 49] 

 

                                                 
4 Hamming distance between two n-tuples v and w denoted d(v, w) is defined as the number of places where they differ. 
5 The hamming weight of a n-tuple v denoted w(v) is defined as the number of nonzero components of v. 
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We can obtain the free distance from the state diagram by finding the path that corresponds to the 

codeword with the minimum weight. Only a subset of all the codewords specified by the state 

diagram is necessary in order to evaluate the minimum free distance. 

 

• Only codewords with finite length that leave zero state at time t=0 and end at zero state 

again, have to be considered. 

 

• Codewords that leave zero state more than once can be excluded since a codeword with a 

smaller weight always exist. 

 

• Codewords that are not in the zero state after 2vt >  state transitions can be excluded. In such 

a case the corresponding path would require passing at least twice from the zero state and 

would form a loop in the state diagram. Therefore a codeword with a smaller weight always 

exist. 

 

An encoder is an optimum free distance (OFD) encoder if its free distance is equal or superior to that 

of any other encoder of the same rate and constraint length.  [3, pg 49] 

 

The process of finding the free distance of a convolutional code from the state diagram is illustrated 

in the following example. 

 
 
Example 2-7 

 

Consider the state diagram of the Example 2-5. The transitions are labeled with an operator W where 

its power corresponds to the Hamming weight of the output associated with the transition/branch. 

Figure 2-13 shows the modified state diagram. 
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Figure 2-13: Modified encoder state diagram for the encoder of Figure 2-10. 

 

The free distance of the C(3,2,2) convolutional code can be obtained by the codewords that leave S0 

at time t=0 and return to it for the first time at the latest when t=4. The codewords that satisfy these 

requirements and the corresponding weight of each code sequence are given in the following table. 

 
Codeword Labels multiplication Codeword weight 
S0, S1, S0 W2 W3= W5 5 

S0, S1, S2, S0 W2 WW= W4 4 
S0, S1, S3, S2, S0 W2 WW= W4 4 

S0, S3, S0 W2 W2 = W4 4 
S0, S3, S1, S0 W2 W2 W2 = W6 6 
S0, S3, S2, S0 W2 W= W3 3 

S0, S2, S0 W2 W= W3 3 
Table 2-5: Possible paths and the corresponding codewords weight in order to obtain the free distance. 

 

Therefore the free distance of the code is dfree=3. 
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8. OPTIMUM DECODING OF CONVOLUTIONAL CODES 
 

8.1 Maximum Likelihood Decoding 

The Viterbi algorithm is a maximum likelihood decoding algorithm. In maximum likelihood 

decoding the goal is to produce an estimate û  of the information sequence u based on the received 

sequence r in order to achieve the minimum probability of decoding error assuming equiprobable 

input symbols. Equivalently in ML decoding for convolutional codes the decoder produces an 

estimate v̂ of the codeword v that maximizes the conditional probability of the received sequence r, 

( | )P r v .  

 

Definition: A decoder that chooses its estimate to maximize the conditional probability of the 

received sequence r is called a maximum likelihood decoder. [1, pg 11] 

 

For a ( , , )n k v encoder and an information sequence of length *K kh=  there are 2k branches leaving 

and entering the state and 2K*

 distinct paths through the trellis corresponding to the 2K*

codewords. 

Assume that an information sequence 0 1( , ,...)=u u u  of length *K kh=  is encoded into a codeword 

0 1( , ,...)=v v v  of length ( )N n h m= +  and 0 1( , ,...)=r r r is the received sequence of length N. A 

decoding error occurs if and only if ˆ ≠v v . An optimum decoding rule must minimize the error 

probability of the decoder which is given by [1, pg 11] 

 ( ) ( | ) ( )P E P E P=∑
r

r r  

Consequently the optimum decoding rule must minimize the conditional probability of the decoder 

which is defined as [1, pg 11] 

ˆ( | ) ( )P E P ≠r v v | r  

or equivalently must maximize the conditional probability [1, pg 11] 

ˆ( )P =v v | r  

where ( )P r  is the probability of the received sequence r and is independent of the decoding rule. 

Therefore the decoding rule that minimizes ( )P E  must minimize ( | )P E r . The conditional 

probability ( | )P E r  is minimized for a given r by selecting v̂ as the codeword v that maximizes 

( | )( | )
( )

PP
P

=
r vv r

r
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If all information sequence and hence all codewords are equally likely then ( | )P E r  is minimized 

for a given r by choosing v̂  as the codeword v that maximizes ( | )P r v . For a memoryless channel  
1 1

0 0

( | ) ( | ) ( | )
h m N

l l l l
l l

P P P r v
+ − −

= =

= =∏ ∏r v r v  

1 1

0 0

log ( | ) log ( | ) log ( | )
h m N

l l l l
l l

P P P r v
+ − −

= =

= =∑ ∑r v r v  

where the log ( | )l lP r v  is a channel transition probability.  The conditional probability ( | )P r v  is 

called the path metric [1, pg 517]. The terms log ( | )l lP r v are called branch metrics and denoted as 

( | )l lM r v  whereas the terms log ( | )l lP r v  are called bit metrics and denoted as  ( | )l lM r v . The path 

metric ( | )M r v  can be written as [1, pg 517] 
1 1

0 0

( | ) ( | ) ( | )
h m N

l l l l
l l

M M M r v
+ − −

= =

= =∑ ∑r v r v  

The partial path metric for the first t branches of a path can be expressed as [1, pg 517] 
1 1

0 0
([ | ) ( | ) ( | )

t nt

l l l l
l l

tM M M r v
− −

= =

= =∑ ∑r v] r v  

This is a minimum error probability rule when all codewords are equally likely. If the codewords are 

not equally likely then an maximum likelihood decoder is not necessarily optimum, since the 

conditional probabilities ( | )P r v  must be weighted by the codeword probabilities ( )P v to determine 

which codeword maximizes ( | )P v r . In some cases where the codeword probabilities are not known 

at the receiver a maximum likelihood decoder becomes the best feasible decoding rule. [1 pg 517] 

 

In general there are two main categories of decoding, Hard-decision decoding and Soft-decision 

decoding. In hard-decision decoding the decoder processes the received sequence which is in binary 

form whereas in soft-decision decoding the decoder processes a received sequence which is 

unquantized or quantized in more than two levels. 

The metric used in hard-decision decoding is the Hamming distance. The objective is to decode the 

hard-decision received sequence to the closest codeword in the Hamming distance. In this case a 

maximum likelihood decoder chooses v as the codeword that minimizes the Hamming distance 
1 1

0 0
( | ) ( | ) ( | )

h m N

l l l l
l l

d d d r v
+ − −

= =

= =∑ ∑r v r v  

In this case the terms ( | )l ld r v  become the branch metrics whereas the terms ( | )l ld r v  become the 

bit metrics.  
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8.2 The Viterbi algorithm 

The decoding process of the Viterbi algorithm is based on the trellis diagram. The algorithm when 

applied to the received sequence r finds the path through the trellis with the largest metric (maximum 

likelihood path). For a terminated convolutional code ( , , )n k v , in the first and the last m time units 

not all the possible states can be reached. In the center portion of the trellis, all states are possible 

and each time unit contains a replica of the state diagram. There are 2k branches leaving and entering 

each state. 

 

8.2.1 Basic Algorithm 

 

Consider a ( , , )n k v convolutional encoder with memory m. An information sequence 0 1( , ,...)=u u u  

of length *K kh=  is encoded into a codeword 0 1( , ,...)=v v v  of length ( )N n h m= +  and 

0 1( , ,...)=r r r is the received sequence of length N. Assume that we apply the Viterbi algorithm in 

order to obtain the information sequence from the received sequence. Before describing the steps of 

the algorithm we will define some additional elements that will be useful in the following analysis. 

In the trellis diagram, for every branch j entering state Si at time unit t there is a predecessor state 

Spredecessor. 

branch 0

bra
nc

h 2

br
an

ch
 2

v

Predecessor state of 
branch 0

Predecessor state of 
branch 1

Predecessor state of 
branch 2

Predecessor state of 
branch 2v

branch 1

 
Figure 2-14: Branches and predecessor states 

 

The path with the largest metric is called the survivor path. 

The predecessor state of the survivor path is called the predecessor-successor state. 
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Figure 2-15: Survivor path and the Predecessor successor state 

 

The first step of the Viterbi algorithm is called Branch Metric Generator. For every time interval 

1i it t +→  in the trellis diagram, compute the branch metrics for all the branches entering each state at 

time unit 1it + , where  [0, 1]i h m∈ + − . [1, pg 518][5, pg 87] 

 

The next step is called ACS (add, compare and select). For every time unit t, where 0 t h m< < + , for 

each state compute the partial metric of each path entering that state. The accumulated partial metric 

of jth path entering state Si is given by the sum of the jth branch metric and the metric of the state 

Spredecessor. Afterwards, for each state, compare the partial metrics of all the paths entering that state, 

select the path with the largest metric (survivor path), store its path along with its metric and 

eliminate all other paths. [1, pg 518][5, pg 87] 

In practice the information sequence corresponding to the survivor path at each state is stored instead 

of the surviving path itself. In this case there is no need to invert the estimated codeword v̂  in order 

to obtain the estimated information sequence û . 

Moreover the performance of Viterbi algorithm is affected by several additional factors such as 

Decoder Memory, Computational Complexity. 

 

i. Decoder Memory. At time unit t in the trellis diagram there are 2v states. Therefore decoder 

must be able to reserve 2v words in order to store 2v survivor paths and their metrics. Memory 

space increases exponentially with the overall constraint length and hence in practice, it is 

not feasible to implement the Viterbi decoder for large v.  

 



 2-49

ii. Computational Complexity. At time unit t in the trellis diagram 2k binary additions and 2k-1 

binary comparisons are performed for every state. Therefore the Viterbi computational 

complexity is proportional to the branch complexity 2v2k. Consider an information sequence 

of length *K kh= . The trellis diagram will contain h+m time units (stages). Therefore the 

complexity of the Viterbi algorithm is on the order of 2 2 ( )k vO h m⎡ ⎤+⎣ ⎦ . The number of time 

units in the trellis diagram h, is linear factor in the complexity. However there will be an 

exponential increase of the computational complexity if the number of inputs or the overall 

constraint length of the encoder increases. Because of the exponential dependence of the 

computational complexity on the overall constraint length v and the number of inputs of the 

encoder k, in practical applications Viterbi algorithm is used for codes with low code-rate 

and relatively small overall constraint length. 

 

There are two general methods for implementing Viterbi decoding: 

⇒ Hard decision output Viterbi algorithm 

⇒ Soft-output Viterbi decoding algorithm 

 

Hard decision output Viterbi algorithm is based on the basic Viterbi algorithm and is implemented 

by the use of the hamming distance as the partial metric. 

In Soft-output Viterbi algorithm the unquantized received sequence is processed by the use of the 

Euclidean distance or a correlation metric. The real valued inputs and the use of the above metrics in 

the Soft-output Viterbi algorithm, increases the computational complexity and the required storage 

memory compared with the hard decision output Viterbi algorithm. For this reason in WFTP system 

we implemented a software version of a hard decision output Viterbi algorithm. 

 

 

9. EVALUATION OF CONVOLUTIONAL CODES 
 

The most important metrics that can be used as guidance in order to evaluate convolutional codes are 

the free distance freed , and the overall constraint length v. An encoder can always correct an error 

sequence e, if ( )
2
freed

w <e . Because of the dependence of the error correcting capability of a 

convolutional code on the free distance of the code, for a given code rate and overall constraint 

length the best convolutional code is the one with the maximum free distance. However, free 
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distance depends on the overall constraint length. Therefore maximizing free distance results in an 

increase of the constraint length and hence in an increase of the computational complexity in the 

decoder. In general freed is of primary importance in determining the performance at high SNR’s. 

Another quantity that is used as a performance measure for convolutional codes is the asymptotic 

coding gain. In general coding gain is defined as the reduction in the 
0

bE
N

 required to achieve a 

specific error probability for a coded communication system compared with an uncoded 

communication system. The asymptotic coding gain is the coding gain for large SNR and depends 

only on the code rate and the free distance of the code. For a hard decision decoder the asymptotic 

coding gain γ is defined as [1, pg 18] 

1010log
2

freeRd
dBγ

⎛ ⎞
⎜ ⎟
⎝ ⎠

, 

where R is the code rate k
n

 and freed  the free distance of the (n, k, v) convolutional code. 

For a soft decision decoder the asymptotic coding gain γ is defined as 

( )1010log freeRd dBγ  

Notice that there is an increase of 3dB over the hard decision. However in soft decision decoding, 

the decoding complexity increases owing to the need to accept real-valued inputs. 

In general when designing a coding system for error control in a communication system, it is desired 

to minimize the SNR required to achieve a specific error rate. This is equivalent to maximizing the 

coding gain of the system compared to an uncoded system, using the same modulation signal set.  

The most practically important encoders are the nonsystematic feedforward and systematic feedback 

convolutional encoders. Since free distance is the most important criterion for evaluating 

convolutional codes the two categories of the encoders will be compared on the basis of their bounds 

on free distance.  

The lower bounds for nonsystematic convolutional codes are shown to lie above the upper bounds 

for systematic codes and it is concluded that more free distance is available with nonsystematic 

convolutional codes. In particular in systematic encoder realizations there is a reduced number of 

modulo-2 adders compared with the nonsystematic encoders. This results in reduced free distance in 

systematic encoders. For asymptotically large constraint length K the performance of a systematic 

code of overall constraint length K is approximately the same as that of a nonsystematic code of 

constraint length K(1-R). [4, pg 763] 

 



 2-51

Consequently the best nonsystematic codes achieve lower error probabilities than the best systematic 

codes when used with maximum likelihood or sequential decoding. 

In general systematic feedback form of encoder realization is preferred in cases where decoding is 

done offline, decoder is subject to temporary failures or the channel is known to be noiseless during 

certain time intervals and decoding becomes unnecessary.  

On the other hand, nonsystematic feedforward encoders may be preferred when using terminated 

convolutional codes. In nonsystematic feedforward encoders the termination sequence is k m×  zeros 

appended in the end of the information sequence. Though in systematic feedback encoders the 

termination sequence depends on the information sequence and cannot be chosen arbitrarily. This 

results in additional complexity in the encoder. 

 

In the WFTP system we implemented a nonsystematic feedforward convolutional encoder with the 

corresponding Viterbi decoder.   

 

The selection of the most suitable convolutional codes for our system was based on the optimum 

convolutional codes for code rates 1 1 1 2 3, , , ,
2 3 4 3 4

 which are listed in the following tables.  

 

v (0)g  (1)g  (2)g  freed  γ(dB) 

1 1 3 3 5 -0.79 
2 5 7 7 8 1.25 
3 13 15 17 10 2.22 
4 25 33 37 12 3.01 
5 47 53 75 13 3.36 
6 117 127 155 15 3.98 
7 225 331 367 16 4.25 
8 575 623 727 18 4.77 
9 1167 1375 1545 20 5.23 

Table 2-6: Optimum rate R=1/3 convolutional codes [1, pg 539] 
 

 

Table 2-7: Optimum rate R=1/4 convolutional codes [1, pg 539] 
 
 

v (0)g  (1)g  (2)g  (3)g  freed  γ(dB) 

1 1 1 3 3 6 -1.25 
2 5 5 7 7 10 0.97 
3 13 13 15 17 13 2.11 
4 25 27 33 37 16 3.01 
5 45 53 67 77 18 3.52 
6 117 127 155 171 20 3.98 
7 257 311 337 355 22 4.39 
8 533 575 647 711 24 4.77 
9 1173 1325 1467 1751 27 5.28 
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v (0)g  (1)g  freed  γ(dB) 
1 3 1 3 -1.25 
2 5 7 5 0.97 
3 13 17 6 1.76 
4 27 31 7 2.43 
5 53 75 8 3.01 
6 117 155 10 3.98 
7 247 371 10 3.98 
8 561 753 12 4.77 
9 1131 1537 12 4.77 

Table 2-8: Optimum rate R=1/2 convolutional codes [1, pg 540] 
 

v v1 v2 
( 0 )
1g  (1)

1g  (2 )
1g  ( 0 )

2g  (1)
2g  ( 2 )

2g  freed  γ(dB) 
2 1 1 3 1 0 2 3 3 3 0 
3 1 2 3 2 1 4 1 7 4 1.25 
4 2 2 6 5 1 7 2 5 5 2.22 
5 2 3 7 6 3 12 1 13 6 3.01 
6 3 3 6 13 13 13 06 17 7 3.67 
7 3 4 16 13 3 25 5 34 8 4.26 
8 4 4 37 31 16 23 14 35 8 4.26 
9 4 5 27 23 16 46 17 41 9 4.77 

Table 2-9: Optimum rate R=2/3 convolutional codes [6] 
 

v v1 v2 v3 ( 0 )
1g  (1)

1g  (2)
1g  (3)

1g  (0)
2g  (1)

2g  (2)
2g  (3)

2g  (0)
3g  (1)

3g  (2)
3g  (3)

3g  freed  γ(dB) 

2 0 1 1 1 1 1 0 3 0 0 1 3 2 0 2 3 -1.25 
3 0 1 2 1 1 1 1 0 3 1 2 0 2 5 5 4 0.51 
4 1 1 2 0 1 2 3 3 0 1 2 2 4 1 5 4 1.76 
5 1 2 2 3 3 2 2 5 2 7 0 4 7 0 1 5 2.73 
6 2 2 2 5 4 3 2 4 6 5 5 6 1 4 3 6 3.52 
7 2 2 3 02 03 04 07 03 07 03 05 15 02 02 17 6 4.19 
8 2 3 3 04 06 07 07 01 12 05 14 00 07 14 11 7 4.77 
9 3 3 3 03 06 10 15 00 16 03 13 16 05 02 17 8 5.28 

Table 2-10: Optimum rate R=3/4 convolutional codes [6] 
 

 

The codes that are listed in the preceding tables, are generated by nonsystematic feedforward 

encoders in controller canonical form and are optimum in the sense that for a specific code rate 

kR
n

=  and constraint length v the code listed in the appropriate table has the maximum free distance 

of all the ( , , )n k v codes. 

For a code rate kR
n

=  and overall constraint length v, the generator sequences are provided in octal 

form. Consider the optimum convolutional encoder (2, 1, 3). The generator sequences (0)g , (1)g  in 

binary form are given by (001011) and (001111). However v1=m=v=3 and hence only the rightmost 

m+1 bits form the binary representation of each generator sequence. In general, the binary 

representation of each generator sequence ( )j
ig is formed by the leftmost vi+1 bits. In order to obtain 
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the octal form of a generator sequence ( )j
ig , we consider consecutive triplets of bits by starting from 

the rightmost bit. If the number of bits is not multiple of three, pad at the left with the appropriate 

zero bits. 

Notice from the above tables that for large overall constraint length, the asymptotic coding gain and 

the free distance increases. Therefore we would like to select the convolutional code with maximum 

free distance and asymptotic coding gain. However because of the exponential dependence of the 

decoding complexity on the overall constraint length our choices are limited.  

 The upper bound on the BER of  the optimum codes with hard-decision decoding and coherent 

BPSK as a function of the bit SNR in dB, are plotted in the following figures.  

 

 
Figure 2-16: Upper bound on the BER for R=1/2 

codes listed in Table 2-5. 
 

 
Figure 2-17: Upper bound on the BER for R=1/3 codes 

listed in Table 2-4. 
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Figure 2-18: Upper bound on the BER for R=1/4 

codes listed in Table 2-4. 
 

 
Figure 2-19: Upper bound on the BER for R=2/3 

codes listed in Table 2-6. 
 

 

 

 
Figure 2-20: Upper bound on the BER for R=3/4 codes listed in Table 2-7. 

 

 

The preceding figures denote that by increasing the overall constraint length, a specific probability 

of error can be achieved in lower SNR. However there is a contemporary exponential increase in the 

decoding complexity. 

In the following tables the optimum convolutional codes are compared on the basis of their typical 

decoding timings in the personal computers used for the experimental operation of the WFTP system 

for 100.000 bits. 
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v R=1/2 R=1/3 R=1/4 R=2/3 R=3/4 
1 0.22 sec 0.26 sec 0.30 sec -  - 
2 0.28 sec 0.32 sec 0.43 sec 0.20 sec 0.21 sec 
3 0.52 sec 0.38 sec 0.53 sec 0.30 sec 0.27 sec 
4 0.49 sec 0.52 sec 0.58 sec 0.39 sec 0.39 sec 
5 0.78 sec 0.76 sec 1.22 sec 0.64 sec 0.63 sec 
6 1.22 sec 1.23 sec 1.28 sec 1.04 sec 1.05 sec 
7 2.21 sec 2.16 sec 2.20 sec 2.02 sec 2.05 sec 

Table 2-11: Typical decoding timings of the optimum rates convolutional codes for 100.000 bits 
 

In general, large free distances and low error probabilities are achieved not by increasing k and n but 

by increasing the memory order m. Thus it is desired to use a convolutional encoder with the 

maximum overall constraint length. However as we can obtain from the table 2-11, the decoding 

time increases along with the increase of the overall constraint length v. In the WFTP system the 

desired typical processing time for the different modules must be less than 1 sec in order to reduce 

the processing time to the minimum possible. Therefore we must select the convolutional codes that 

achieve the maximum possible free distance along with an acceptable decoding complexity. 

Though   we can obtain that for v > 6 the gain in SNR, as v increases, is less than 1dB. Moreover for 

v>6 the decoding time exceeds the 2 sec for all the code rates. Consequently the set of convolutional 

codes that meet our requirements and will be applied to the WFTP system are listed in the following 

table. 

 

R v m freed  γ(dB) Branch 
Complexity 

1/4 6 6 20 3.98 27 
1/4 4 4 16 3.01 25 

1/3 6 6 15 3.98 27 
1/3 5 5 13 3.36 26 

1/2 6 6 10 3.98 27 
1/2 5 5 8 3.01 26 
2/3 6 3 7 3.67 28 

3/4 6 2 6 3.52 29 
2/3 5 3 6 3.01 27 
3/4 5 2 5 2.73 28 
2/3 4 2 5 2.22 26 
3/4 4 2 4 1.76 27 

Table 2-12: The convolutional codes that will be applied on the WFTP system.  
 

The convolutional codes in the preceding table are listed in descending order on the basis of their 

free distance. The code with the largest free distance is expected to achieve better performance. 
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However the use of a convolutional encoder in an uncoded communication system reduces the 

transmission rate. The decrease of transmission rate depends on the code rate of the convolutional 

code. The code rate determines the redundant information that will be added to the actual 

information sequence. Assume that a packet of length N in the WFTP system is an input to a kR
n

=  

convolutional encoder. The encoded packet will be of length N
R

. Consequently this results in a 

decrease of transmission rate, since the transmission of the same actual information requires more 

time units. 

Consider the uncoded WFTP system where each packet contains N bits and each symbol 

corresponds to 2log ( )M bits. If the number of samples per symbol is Tsym and the sampling 

frequency is Fs, then the total transmission time per packet is  

2log ( )TRANSMISSION sym
Nt T

Fs M
=  

Therefore the transmission rate is  

2log ( )
TRANSMISSION

TRANSMISSION sym

Fs MNR
t T

= =  

If we add an (n, k, v) convolutional encoder to the system, the total transmission time will be given 

by 

2 2log ( ) log ( )TRANSMISSION sym sym

Nn
Nnkt T T

Fs M Fs M k
= = , 

and the transmission rate  

2log ( )'
TRANSMISSION TRANSMISSION

TRANSMISSION sym

kFs MN kR R
t nT n

= = =  

Eventually the transmission rate of the system is decreased by a factor k
n

. The transmission rate loss 

percentage is given by 100%n k
n
− . 

In the following table we represent the transmission rate loss for each one of the convolutional codes 

that we have selected for the WFTP system. 
 Code rates 

1/4 1/3 ½ 2/3 3/4  
Transmission 

rate loss 75% 66% 50% 33% 25% 

Table 2-13: Transmission rate loss as a function of code rate  
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The transmission rate loss per code rate is listed in descending order. Notice that the 1/4 code, which 

is expected to achieve the best performance in the set of codes listed in Τable 2-12, results in an 75% 

transmission rate loss while the 3/4 code, which is expected to achieve the worst performance, 

results in a 25% transmission rate loss. In general the selection of the convolutional codes that will 

be used in a communication system must compromise the tradeoff between performance, 

transmission rate loss and decoding complexity. 

 

 

10. IMPLEMENTATION OF THE FECC MODULES 
 

In WFTP system the transmitter contains a nonsystematic feedforward convolutional encoder 

module and the receiver the corresponding hard-decision Viterbi decoder module. The two modules 

are implemented in MATLAB.  

  

10.1 Encoder Implementation 

The encoder module consists of two components: 

 

⇒ Polynomial to trellis diagram  

⇒ Convolutional Encoder  

 

10.1.1 Polynomial to trellis diagram 

Encoding of convolutional codes is based on the state diagram or equivalently the trellis diagram in 

steady state. The poly2trellis function accepts as inputs the constraint lengths of the convolutional 

encoder and the generator sequences in octal form and constructs the trellis diagram that corresponds 

to the specified encoder.  

The generator sequences are given as input to the function through the kxn matrix Gmatrix which is of 

the form 
(0) (1) ( 1)
1 1 1
(0) (1) ( 1)
2 2 2

(0) (1) ( 1)

n

n

matrix

n
k k k

g g g
g g g

G

g g g

−

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 
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where ( )j
ig  is the ith generator sequence with response to jth output in octal form6. 

The pseudocode of the function poly2trellis is given in Listing 2-1. 

 
/*inputs*/ 
vi, Gmatrix 
v = sum(vi) , m = max(vi) , [k, n] = size(Gmatrix) 
states = dec2bin(0:2v-1) 
 
/*possible blocks of information containing k bits*/ 
u = dec2bin(0:2k-1 , k)  
 
for every state 
      store state number 
      /*add state to the delay elements*/ 
      start_index = 1 
      end_index = 0 
      for  every shift register i 
             end_index = end_index + vi 
             shift_registers( i, 1:vi) = state(start_index:end_index) 
             start_index = start_index + vi  
      end 
      for every possible block of information 
            for every jth output  
                 g_current = ( ( )

1
jg . . . ( )j

gk  )T  
                 for every element in g_current 
                      /* find the connection lines of  input i and its corresponding delay elements */ 
                      /*to the adder that produces jth output*/ 
                      ith_connections = find( oct2bin(g_current) = =1 ) 
                      Store in xor_buffer the bit of the ith input and the bits of the connected delay elements   
                      output_bit = mod( sum(xor_buffer) , 2 ) 
                      codeword=[codeword;output_bit] 
                 end 
                 store codeword in octal form 
            end 
            shift right by 1 all bits in the delay elements  
            add in the leftmost delay element of ith shift register the ith current input bit   
            calculate state number and store next state 
      end 
end       

Listing 2-1: Function poly2trellis for polynomial representation to trellis diagram conversion 
 

Remarks. The result of the function poly2trellis is a struct which contains the number of input 

symbols 2k, the number of output symbols 2n, the number of states 2v, the next states and the 

corresponding codewords. In the nextStates matrix the ith column number corresponds to the binary 

input in the encoder dec2bin(i-1, k). The jth row number indicates the initial state with binary 

representation that results from the labeling convention which was mentioned in previous section. 
                                                 
6 In order to convert the binary representation of the generator sequence ( )j

ig into an octal form, consider consecutive 

triplets of bits, by starting from the rightmost bit. The rightmost bit in each triplet is the least significant. If the number of 

bits is not a multiple of three, then place zero bits at the left end as necessary.  
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Therefore the row with number j corresponds to the state with label St where t=j-1 and 
1 1

0 1 12 ... 2v
vt b b b−
−= + + + . Consequently nextStates(j,i) corresponds to the encoder’s next state if 

input is i-1 and previous state is Sj-1. 

 

 

10.2 Convolutional Encoder 

The convolutional encoder is implemented as a look up table. Starting at zero state and using the 

trellis diagram produced by poly2trellis function the information sequence is encoded into the 

corresponding codeword. 

 
/*inputs*/ 
Trellis 
current_state=0 
for every block of k bits 
       input← calculate the decimal representation of the information block 
       output←  Trellis.outputs (current_state+1, input+1) 
       codeword←  [codeword; output]       
       current_state←Trellis.nextStates(current_state+1, input+1) 
end 

Listing 2-2: Function convenc encodes the information sequence into the corresponding codeword. 
 

Remarks. The information sequence is encoded by the convolutional encoder in blocks of k bits. 

Because of the structure of the trellis struct, which is obtained by the poly2trellis function, it is 

desirable to express the information blocks in decimal form. In particular, consider the decimal 

representation “x” of a block of k bits. If the current state is y, the output of the encoder in octal form 

is given by trellis.outputs(y+1, x+1) while the corresponding next state in decimal form 

trellis.nextStates(y+1, x+1).  

 

10.3 Decoder Implementation 

The Viterbi decoder implementation is a hard-decision decoder which is based on the Basic Viterbi 

algorithm and the traceback technique.  

 

Step 1. Construct the metrics table along with the history table. The 2vx(h+m) metrics table contains 

the metric of the survivor path of each state for all (m+h) time units. History table contains the 

predecessor-successor state of each state for all (m+h) time units. This step combines the Branch 

Metric Generator and the ACS units of Viterbi algorithm. Because we are interested in terminated 

convolutional codes, at time unit t=0 the initial state is S0 and its metric is 0. Increase t by 1 and for 
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each state compute the partial metric of each path entering that state. The partial metric of each path 

is the sum of the Hamming distance between, the received n bits and the n bits that correspond to the 

path7 and the metric of the predecessor state. Afterwards for each state, compare the partial metrics 

of all the paths entering that state and select the path with the largest metric (survivor path). The 

predecessor state of this path is called the predecessor-survivor state. Therefore for time unit t we 

store in the metrics table the metric of the survivor path for each state and in the history table the 

number of predecessor-survivor state for each state. 

Step 2. Start from the last record in the metrics table that correspond to the time unit h+m-1. Select 

the state having the smallest partial metric and save the number of that state in the  h+m-1 position 

of the traceback path table. 

Step 3. For the state being selected in step 2 check in the history table its predecessor state. Select 

the new state and save its number in the traceback path table. Continue working backward until the 

beginning of trellis is reached. 

Step 4. Work forward through the states that are stored in the traceback path table. For each 

transition between states i and i+1 in the traceback path table, look up from the trellis diagram the 

input bit/bits that corresponds to the specified transition. The process finishes when the end of the 

traceback path table is reached. The result of Step 4 is concatenation of the information sequence 

and the termination sequence. In order to obtain the actual information, the last km bits must be 

discarded. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
7 Each path in the trellis diagram is labeled with the corresponding n output bits. 
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C h a p t  e r 3  

CYCLIC REDUNDANCY CHECK 

 

1. INTRODUCTION 
 

Cyclic Redundancy Check (CRC) is an error-checking code that is widely used in data 

communication systems. The CRC is a very powerful but easily implemented technique to obtain 

data reliability and is used to protect k-bit blocks of data called Frames. Using this technique, the 

transmitter appends an extra (n-k)-bit sequence to every frame called Frame Check Sequence (FCS). 

The resulting n-bit frame is exactly divisible by some predetermined number. The receiver then 

divides the incoming frame by that number and, if there is no remainder, assumes that there is no 

error. Therefore the FCS holds redundant information about the frame that helps the receiver detect 

errors in the frame. Since the CRC is only an error detecting code, the position of an error in the 

received message can not be determined. CRC codes are used in communication protocols that use 

automatic repeat request (ARQ).  

 

2. FRAME CHECK SEQUENCE GENERATION 
 

In CRC codes the FCS is obtained using modulo-2 arithmetic. In general FCS is the remainder of the 

binary long division between the k-bit block of data and a predetermined divisor. Assume that D is 

the k-bit block of data, F the (n-k)-bit frame check sequence, T the n-bit frame to be transmitted and 

P the predetermined divisor consisting of n-k+1 bits. The frame to be transmitted T is produced by 

shifting left the block of data D by (n-k) bits and padding the rightmost (n-k) bits with zeros. Adding 

F to the rightmost (n-k) zeros yields to the concatenation of D and F which is 2n kT D F−= + .[8, 

pg207]. 

D
k-bit block of data

F
(n-k) bits

Frame check sequence

n-bit frame  
Figure 3-1: Concatenation of Frame check sequence and the data block 
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In order to have no transmission errors in the receiver, the remainder of the division T
P

 should be 

zero. Suppose we divide 2n k D− by P. 
2n k D RQ

P P

−

= + , 

where Q is the quotient and R the remainder. Therefore the frame to be transmitted can be written as 

2n kT D R−= + . Rewrite the division of the frame T and the predetermined divisor. 

2 2n k n kT D R R R RQ
P P P P P P

− −+
= = + = + +  

However in modulo-2 addition any binary number added to itself yields zero. Thus T Q
P
= . There is 

no remainder and therefore T is exactly divisible by P. 

 

The frame check sequence is obtained by the (n-k) bits of the remainder of the division of ( )2 n k D−  

with P.  

  

The process of frame check sequence generation will be illustrated with the following example.  

 

Example 3-1 

In order to understand the frame check sequence generation we represent a simple binary long 

division between the bit strings 1110 (divisor) and 1100011(dividend). 

 
        1011 quotient 
1110 1100011  
 
 
 
 

1110        quotient = (degree(1100)= = degree(1110))=1,  remainder=XOR(1100,1110)=010 
  0100      quotient = (degree(1110)= = degree(0100))=0  
  0000      remainder=XOR(0100,0000)=100 
    1001    quotient = (degree(1110)= = degree(1001))=1, remainder=XOR(1110,1001)=0111 
    1110 
      1111  quotient = (degree(1110)= = degree(1111))=1, remainder=XOR(1110,1111)=0001 
      1110 
        001  remainder 

Table 3-1: Binary long division 
 

Consider D=1001 and P=1101. Since k=4 and n-k+1=4, the length of the frame to be transmitted T 

is given by n=4+k-1=7. Thus the length of the FCS is n-k = 3.  

Step 1. Shift left block of data by (n-k)=3 bits and pad with zeros. Thus D=1001000. 

Step 2. Perform binary long division between the padded block of data D and the predetermined 

divisor P.  
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        1111 Quotient 
1101 1001000  
 
 
 
 

1101       quotient = (degree(1001)= = degree(1101))=1,  remainder=XOR(1001, 1101)=0100 
  1000       
  1101     quotient = (degree(1000)= = degree(1101))=1, remainder=XOR(1000, 1101)=0101  
    1010 
    1101   quotient = (degree(1010)= = degree(1101))=1, remainder=XOR(1010, 1101)=0111 
      1110  
      1101 quotient = (degree(1110)= = degree(1101))=1, remainder=XOR(1110, 1101)=0011 
        011  

Table 3-2: Computation of the frame check sequence 
 

Therefore T=1001011.  

At the receiver the received frame is divided with the predetermined divisor P. 
        1111 Quotient 
1101 1001011  
 
 
 
 

1101        
  1000       
  1101      
    1011 
    1101    
      1101  
      1101  
        000  

Table 3-3: Division of the received frame by the predetermined divisor P 
 

Since the remainder is 000 the frame received with no errors. 

 

CRC codes can be described using polynomial representation. Starting from the least significant 

(rightmost) bit of the binary representation, express all values as polynomials in a variable X, with 

binary coefficients. The coefficients correspond to the bits in the binary number. The polynomial 

representation of the frame T is given by [8, pg 210] 

( ) ( ) ( )n kT X X D X R X−= + , 

where D(X) is the polynomial representation of the data block and R(X) is the polynomial 

representation of FCS. Notice that the coefficients of the polynomials can be drawn from the GF(2) 

as described in Chapter 2. The operations between the binary coefficients are modulo-2 addition and 

multiplication.  

 

An error E(X) is undetectable only if it is divisible by the generator polynomial P(X). Detectable 

errors are the errors that are not divisible by P(X) and are listed below. 

o All single-bit errors, if P(X) has more than one nonzero term. 

o All double-bit errors, as long as P(X) has a factor with three terms. 
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o Any odd number of errors, as long as P(X) contains a factor (X+1). 

o Any burst error for which the length of the burst is less than or equal to n-k. 

o A fraction of error bursts of length n-k+1. 

o A fraction of error bursts of length greater than n-k+1.  

[9, pg 64] 

The table 3-4 represents the most widely used generator polynomials. 

 

CRC Code Generator Polynomial 
CRC-16 16 15 2 1X X X+ + +  
SDLC (IBM, CCITT) 16 15 2 1X X X+ + +  
CRC-16 REVERSE 16 14 1X X X+ + +  
SDLC REVERSE 16 11 4 1X X X+ + +  
LRCC-16 16 1X +  
CRC-12 12 11 3 2 1X X X X X+ + + + +  
LRCC-8 8 1X +  
ETHERNET, CRC-32 32 26 23 22 16 12 11

10 8 7 5 4 2 1

X X X X X X X

X X X X X X X

+ + + + + +

+ + + + + + + +
 

  
Table 3-4: Commonly used generator polynomials [9, pg 64] 

 

In the WFTP system we used the CRC-16 generator polynomial, 16 15 2 1X X X+ + + with 

corresponding binary representation 11000000000000101. 
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3. IMPLEMENTATION 
 

3.1 Error detection in WFTP system 

The Cyclic Redundancy Check in WFTP system consists of two modules. The function crc_addfcs 

in the transmitter adds the appropriate FCS to the data block that accepts as input. At the receiver, 

the function crc_err_detect checks the received frame for errors. 

 
crc_addfcs (Message, Pattern) 
 
k← length(Message) 
n←  length(Pattern)+k-1 
pad Message with n-k zeros 
initialize register with the n-k first bits of padded Message 
current_element ←  n-k+1 
while current_element~ = n+1 do 
          shift left register’s contents by 1 and add current_element 
         current_element ← current_element+1 
          if  degree(pattern) = = degree(register) then 
               register← xor (pattern, register) 
          else 
               register← xor (zeros(1,n-k+1), register) 
          end 
end 
FCS← last n-k register’s contents 
add FCS to Message 
 

Remarks. The function crc_addfcs accepts as inputs the block of data D and the predetermined 

divisor P in order to produce the corresponding FCS and construct the frame to be transmitted. The 

initial message is padded with n k−  zeros. The procedure that will be described in the following 

steps, implements the binary long division between the padded message and the predetermined 

divisor. Initially the register is filled with the n k− rightmost bits of the padded message. In the first 

iteration the contents of the register are shifted left by one, and the 1n k− +  bit of the message is 

entered in the rightmost position in the register. If the degree of the binary representation of the 

register’s contents is the same as the degree of the predetermined divisor then the result of the xor 

operation between these two bit strings is stored in the register. In any other case the result of the xor 

operation between the predetermined divisor and 1n k− +  zeros is the remainder and is stored in the 

register. This process continues for every bit in the padded message. The n k−  rightmost bits that 

are in the shift register after the 1k − iterations, represent the frame check sequence. 
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crc_err_detect (ReceivedMessage, Pattern) 
 
k← length(ReceivedMessage) 
n←  length(Pattern)+k-1 
initialize register with the n-k first bits of ReceivedMessage  
current_element ←  n-k+1 
while current_element~ = n+1 do 
          shift left register’s contents and add current_element 
          current_element ← current_element+1 
          if  degree(pattern) = = degree(register) then 
               register← xor (pattern, register) 
          else 
               register← xor (zeros(1,n-k+1), register) 
          end 
end 
rx ← sum (register) 
if rx = = 0 then 
         no error 
else 
         error 
 

Remarks. The same procedure is followed in the function crc_err_detect. In order to obtain if there 

is an error in the received sequence, we check the remainder of the binary long division between the 

received sequence and the predetermined divisor. 
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C h a p t  e r 4  

PHASE SHIFT KEYING 

 

1. MPSK 
 

1.1 Modulation, Demodulation, Detection 

In the WFTP system, along with the error correction and error detection modules we implemented 

the necessary modules for the MPSK modulation scheme. 

In MPSK k= 2log ( )M  data bits are represented by a symbol of different phase and hence the 

bandwidth efficiency is increased k times. The M-ary PSK signal set is defined as [7, pg 397] 

c
2 m( ) ( ) cos(2 f ) 1,..., , 0 t Tm Tu t g t t m M
M
ππ= + = ≤ ≤  

where ( )Tg t  is a rectangle pulse which is given by 

2( ) , 0T
Esg t t T
T

= ≤ ≤  

 

The above expression can be written as  

c
2 m( ) ( ) cos(2 f )

2 2πm 2πmcos(2 fc t) cos( ) sin(2 fc t)sin( )
M M

2 2cos(2 fc t) sin(2 fc t)

m Tu t g t t
M

Es
T

Es Amc Es Ams
T T

ππ

π π

π π

= +

= −

= −

 

where  

2cos 1,...,

2sin 1,...,

mc

ms

mA m M
M

mA m M
M

π

π

⎛ ⎞= =⎜ ⎟
⎝ ⎠
⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

The orthogonal basis functions are given by  
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( )

( )

1

2

2( ) cos 2 , 0

2( ) sin 2 , 0

c

c

y t f t t T
T

y t f t t T
T

π

π

= ≤ ≤

= − ≤ ≤

 

Therefore the signal set of MPSK can be written as 

1 2( ) ( ) ( ), 1,..., , 0m s mc s msu t E A y t E A y t m M t T= + = ≤ ≤  

where sE is the energy per symbol. 

The phase of each symbol is given by 

2
m

m
M
πθ =  

The MPSK signal constellation is two-dimensional and hence each signal is represented by a two-

dimensional vector of the form [7, pg 398] 

1 2
2 2( ) cos sinm m s s

m ms s E E
M M
π π⎛ ⎞⎛ ⎞ ⎛ ⎞= = ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

sm  

The polar coordinates of the signal are ( ),s mE θ  where sE is its magnitude and θm is its angle 

with respect to the horizontal axis. The signal points are equally spaced on a circle of radius sE  

and centered at the origin.  

 
Figure 4-1: 4-PSK contellation 
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Figure 4-2: 8-PSK contellation 

 

In PSK modulation technique the main process in done by the mapping of k bits to the corresponding 

symbols. Since every k bits are represented by a symbol there are 2k possible combinations of bits 

and hence 2k symbols.  

 
m Bits Phase sm 
1 000 π/8 0.92 Es  0.38 Es  

2 001 3π/8 0.38 Es  0.92 Es  

3 010 5π/8 -0.38 Es  0.92 Es  

4 011 7π/8 -0.92 Es  0.38 Es  

5 100 9π/8 -0.92 Es  -0.38 Es  

6 101 11π/8 -0.38 Es  -0.92 Es  

7 110 13π/8 0.38 Es  -0.92 Es  

8 111 15π/8 0.92 Es  -0.38 Es  
Table 4-1: Mapping of bits into symbols for 8-PSK 

 
m Bits Phase sm 
1 00 π/4 Es  Es  

2 01 3π/4 
-
Es  Es  

3 10 5π/4 
-
Es  - Es  

4 11 7π/4 Es  - Es  
Table 4-2: Mapping of bits into symbols for 4-PSK 
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Figure 4-3: Block diagram of MPSK modulator 

 

The MPSK modulator is presented in the above figure. The level generator unit, performs the 

mapping of bits to the corresponding symbols. The oscillator produces the carrier cos(2 )cf tπ . 

Shifting the phase of cos(2 )cf tπ  by π/2 we can obtain the carrier sin(2 )cf tπ− , since  

cos(2 / 2) sin(2 )c cf t f tπ π π+ = − .  

 

The Euclidean distance between to symbols on the constellation is given by [7, pg 399] 

2 2 ( )|| || 2 1 cosmn s
m nd E
M

π −⎛ ⎞= − = −⎜ ⎟
⎝ ⎠

s sm n  

The minimum Euclidean distance betweens two symbols on the constellation is given by 

22 1 cosmin sd E
M
π⎛ ⎞= −⎜ ⎟

⎝ ⎠
 

 

The corresponding MPSK correlation demodulator is presented in the following figure. 

 
Figure 4-4: Block diagram of MPSK demodulator 

 

Since the MPSK signal set has only two basis functions the receiver uses two correlators.  
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The optimum detector for MPSK signals finds the symbol sm that minimizes the Euclidean 

distance
1/ 2

2

1

( , ) ( ) , 1...
N

k mk
k

r s m M
=

⎛ ⎞= − =⎜ ⎟
⎝ ⎠
∑r smD . Equivalently the detector selects the symbol sm 

that corresponds to the maximum projection of r on sm 

( , )C =r sm  r sm 

Since all the symbols have the same energy, the optimum detector can be implemented in order to 

select the vector sm whose phase is closest to 1 2

1

tanr
r
r

θ −= .  

 

1.2 Error Probability for MPSK 

Consider the transmission of digital information by use of M PSK waveforms through an AWGN 

channel. Each waveform of duration T sec is corrupted by additive white Gaussian noise, with power 

spectral density 0 /
2nm

N W HzΦ = . Thus the received signal in the interval 0 t T≤ ≤  can be 

expressed as ( ) ( ) ( ), 0mr t s t n t t T= + ≤ ≤ . The function of the demodulator is to convert the 

received signal into a two-dimensional vector 1

2

r
r
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

r . Given that the transmitted symbol is 

1

2

m

m

s
s
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

sm , an error occurs if r falls outside the decision region of sm, Zm. Thus [7, pg 461] 

1 ( )
m

s
Z

P p d= − ∫ r | s rm  

where ( ) ( )2 2

1 2
0 0

1 1( | ) exp cos coss m s mp r E r E
N N

θ θ
π

⎧ ⎫⎡ ⎤= − − + −⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
r sm  is the two-dimensional 

joint probability density function of the received vector r [7, pg 461]. Eventually the symbol error 

probability for MPSK is given by 

0
2

/ sin /

0 0

1 1 1sin cot
2

sE N M
ys

s
M EP erf e erf y dy

M N M M

ππ π
π

−⎡ ⎤− ⎛ ⎞= − −⎢ ⎥ ⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

∫ 8 

However for 0/ 1sE N  the preceding expression for symbol error probability can be obtained by 

the following approximation.[7, pg 463] 
                                                 
8 The error function is defined as

2

0

2( )
x

terf x e dt
π

−∫ . The complementary error function erfc is given 

by ( )1 2 2erfc erf Q x= − = . 
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0 0

2sin 2 sins s
s

E EP erfc Q
N M N M

π π⎛ ⎞ ⎛ ⎞
≈ =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

The bit error rate can be related to the symbol error rate by 

2log
s

b
PP

M
≈  

The symbol and bit error rates for 2,4,8,16,32 64M and=  are illustrated in the following figures. 

 

 
Figure 4-5: Probability of symbol error Ps for MPSK 

 

 
Figure 4-6: Probability of bit error Pb for MPSK 

 

From the above figures we can obtain that beyond M=4, doubling the number of phases, require a 

substantial increase in SNR. At 510sP −= , the SNR difference between M=4 and M=8 is 

approximately 4dB and the difference between M=8 and M=16 is approximately 5dB. In general for 
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large values of M, doubling the number of phases requires an SNR increase of 6dB to maintain the 

same performance. 

 

 

 

2. IMPLEMENTATION 
 

In WFTP system we have implemented a software version of the MPSK modulator, demodulator 

and detector. However, modulation is performed by two units. The modulator unit which works as 

the level generator shown in figure 4-3 and a special unit called pulse_shape which is responsible to 

perform the multiplication with the two carriers and the construction of the signal to be transmitted. 

Pulse_shape is a unitary function that produces a discrete waveform, depending on the modulation 

technique, by using the corresponding basis waveforms. Moreover it performs demodulation by 

correlating the received signal with the corresponding orthogonal basis functions and produces the 

received symbols.  

 

At the transmitter, the psk_modulator function along with the psk_mapper function is used to map 

the packet bits into symbols. 

 

The psk_mapper function creates an 2(log ( ) 4)M M× + table with the mappings between bits and 

symbols. This table is called psk map and each row of the table corresponds to a value of m=1…M. 

The first column of the table holds the decimal representation of the M possible bit strings while the 

next 2log ( )M  columns hold the M bit strings. Eventually the three last columns hold the phase, and 

the two-dimensional vector sm that correspond to each value of m.  

 

The mapping of packet bits into the corresponding symbols is performed by the psk_modulator 

function with the use of the psk map as a look up table. The symbol sm that corresponds to 2log ( )M  

bits with decimal representation i, is found in the i+1 position of the map. The psk_modulator 

function clusters the N 2log ( )M  packet bits into N groups of 2log ( )M  bits, and calculates their 

corresponding decimal representation. This procedure can be obtained in the following figure. 
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2

0
0
1
0

0 1 0 1
0 0 0 0 0 0 0

0 0 1 0 1
log ( )

1
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Clustering Convert in
k kin N groupsof the corresponding

N M bits decimal representationN N N N N N

N

k
N

Packet bits

b
b

b b b b b b b
dec

b b b b b b b
b

b

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥ ⇒ ⇒⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

0

N

d

d

⎛ ⎞⎡ ⎤ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥=⎜ ⎟⎢ ⎥ ⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦⎝ ⎠

 

Figure 4-7: Creating the index vector for mapping bits to symbols 
 

The decimal representation is used as index in the psk map in order to obtain the symbols that 

correspond to the initial packet bits. 

 

In the next step pulse_shape accepts as input the symbols created by psk_modulator and generates 

the discrete-time waveform with a specified symbol period. Symbol period is defined as the number 

of samples of the basis discrete-time waveforms, and is denoted as sT . Let 1sm  and 2sm be the N-

dimensional column vectors containing the symbols generated by the modulator. The basis functions 

in vector form can be expressed as 

1

2

2 cos 2 , 0

2 sin 2 , 0

s
s s

s
s

n n T
T T

n n T
T T

π

π

⎛ ⎞
= ≤ ≤⎜ ⎟

⎝ ⎠
⎛ ⎞

= − ≤ ≤⎜ ⎟
⎝ ⎠

y

y
 

where y1 and y2 are sT  x 1 vectors.  

Therefore the modulation process in matrix notation can be described by 
' '
1 2= ⋅ + ⋅1 2U s y s ym m  

where U is a sN T×  matrix containing the N discrete-time waveforms of length Ts for each symbol 

sm. Eventually the matrix U is transformed into a 1sNT × vector u. This vector contains the samples 

of the N discrete-time waveforms of length Ts following the order of symbols in vectors 1sm  and 

2sm . Therefore the samples of the waveform that corresponds to the symbol sm are 

( )( ) ( )-1  1 ...
T

s sm T mT⎡ ⎤+⎣ ⎦u u , where 1 m M≤ ≤ .  



 4-75

Modulation process in the software implementation that is used in WFTP system is based on the 

preceding analysis.  

 

At the receiver, pulse_shape is used to demodulate the received signal. Let v be a 1sNT ×  vector 

containing the samples of the N waveforms of the received signal. This vector is transformed into a 

sN T× matrix V, which contains the Ts samples of the N discrete-time waveforms. Consider again the 

vector form y1 and y2 of the two basis functions. In order to obtain the received symbols from the 

matrix V, we define a 2sT ×  matrix Y where the first and the second columns of Y correspond to y1 

and y2 respectively. Therefore the demodulation process in matrix form is defined as  

= ⋅R V Y  

where R is a 2N ×  matrix containing the symbols generated by the correlators. Each row of matrix 

R corresponds to a transmitted symbol sm. 

 

 Afterwards psk_detector along with the psk map created by psk_mapper performs the detection of 

the received bits. Consider the 2N ×  matrix R generated by the pulse_shape function. 

11 12

21 22

1 2N N

r r
r r

r r

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

R =  

In order to obtain the detected bits, it is essential to compute the Euclidean distance of every 

received symbol ( )1 2 , 1...i ir r i N= from the M possible transmitted symbols sm. We define the 

2N M×  matrix R’, which contains M replicas of the matrix R.  

11 12 11 12 11 12

21 22 21 22 21 22'

1 2 1 2 1 2N N N N N N

r r r r r r
r r r r r r

r r r r r r

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

R  

Equivalently we define the 2N M×  matrix S, which contains N replicas of the M possible symbols. 

11 12 21 22 1 2

11 12 21 22 1 2

11 12 21 22 1 2

M M

M M

M M

s s s s s s
s s s s s s

s s s s s s

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

S  

In order to compute the Euclidean distance we define the 2N M× matrix C so that 
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( )

( )
( )

( )

( )
( )

( )

( )
( )

( )

( )
( )

( )

( )
( )

( )

( )
( )

( )

2 2 2 2 2 2
11 11 12 12 11 21 12 22 11 1 12 2

2 2 2 2 2 2
2' 21 11 22 12 21 21 22 22 21 1 22 2

2 2 2 2 2 2
1 11 2 12 1 21 2 22 1 1 1 2

M M

M M

N N N N N M N M

r s r s r s r s r s r s

r s r s r s r s r s r s

r s r s r s r s r s r s

⎡ ⎤− − − − − −
⎢ ⎥
⎢ ⎥− − − − − −

= − = ⎢ ⎥
⎢ ⎥
⎢ ⎥− − − − − −⎣ ⎦

C R S  

We split matrix C into two matrices C1, C2 of size N M× , containing the elements of the odd and 

even columns of C respectively. 

( )
( )

( )

( )
( )

( )

( )
( )

( )

( )
( )

( )

( )
( )

( )

( )
( )

( )

2 2 2 2 2 2
11 11 11 21 11 1 12 12 12 22 12 2

2 2 2 2 2 2
21 11 21 21 21 1 22 12 22 22 22 2

1 2

2 2 2 2 2 2
1 11 1 21 1 1 2 12 2 22 1 2

M M

M M

N N N M N N N M

r s r s r s r s r s r s

r s r s r s r s r s r s

r s r s r s r s r s r s

⎡ ⎤ ⎡ ⎤− − − − − −
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − − − − −

= =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − − − − −⎣ ⎦ ⎣ ⎦

C C  

 

Therefore the Euclidean distance of the received symbols from all the M possible symbols generated 

by MPSK is given by 

( )1/ 2
1 2= +D C C  

The received symbol jr , where [1, ]j N∈ , is mapped to the symbol sm that minimizes the Euclidean 

distance 2|| ||jmd = −r sj m , where [1, ]m M∈ .  

 

The detected bits can be obtained by using the psk map as a look up table indexed with the generated 

symbols sm. 
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C h a p t  e r 5  

 
EVALUATION OF THE WFTP COMMUNICATION SYSTEM 

 
1. INTRODUCTION 

 

In Chapter 1, we have mentioned the three foremost objectives of the WFTP Communication 

system. 

 

⇒ Reliable file transfer. 

⇒ Low bit error rate on the order of 610−  

⇒ Achievement of the highest possible transfer rates. 

 

In general, based on the results that were gathered from the trial transmissions of the WFTP system, 

we may conclude that our primary objectives were accomplished. The reliability of the system lies 

on the use of an ARQ mechanism (“Stop and wait”) as described in Chapter 1. The drawback from 

the use of an error detection mechanism is the additional delays that are introduced in the transfer 

time. Moreover low bit error rates achieved using different modulation schemes whereas the zero bit 

error rates in many transmissions were the irrefutable evidence of the success of our efforts.  

Unfortunately the hardware and software constraints that emerged during the design and 

development of the WFTP system, limits our perspective for achieving high transfer rates.   

In Chapter 1 we have underlined that several factors in the software and hardware implementation, 

lower the performance of the WFTP system. The inability of developing a distributed software 

application in Matlab, leads us in a simple and less efficient design. Furthermore the unpredictable 

delays of the operating system resulting from the memory and hard disk management, yield in an 

unnecessary additional recording duration in the Receiver Unit which increases the total transfer 

time.  

The ARQ mechanism is implemented using the UDP protocol which is supported in Matlab. 

However the UDP does not ensure that the sent message will reach its destination and hence the 

acknowledgements may be lost. Such cases have been predicted in the design of the system, but 

introduce additional delay, as the Transmitter Unit waits a number of timeouts to occur before 

deciding to resend the packet or end the transmission. 
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Considering the hardware, the maximum sampling frequency that is supported from the PC audio 

device, is a very important factor concerning the maximum transfer and transmission rate that we 

can achieve. The nominative sampling rate referred in Matlab, is 44100 Hz. Usually soundcards 

support this nominal rate. Our experiments testified that we can attain zero bit errors in some 

modulation schemes using as an upper bound the 88200 Hz sampling rate. 

 

This chapter provides a thorough analysis of the performance of the WFTP system based on the 

results of the trial transmissions.  

 

1.1 Evaluation Metrics 

1.1.1 Bit error rate 

The reliability and performance of the WFTP system is measured by the bit error rate in packet and 

the average bit error rate. 

The packet bit error rate in the open and closed loop WFTP system is defined as the number of 

corrupted bits in the packet divided by the number of the total bits in the packet. 

Therefore the average bit error rate for a transmitted file in an open loop system is given by 

1

N

packet i
i

average

ber
ber

N
==
∑

 

where #N packets= . 

In the closed loop WFTP system the average bit error rate is defined as 

1

Np

packet i
i

average

ber
ber

Np
==
∑

 

where  # #Np packets retransmitted packets= + .  

 

1.1.2 Transmission and Transfer rates 

Before introducing the measures of transmission and transfer rates we define the total transfer time 

TRANSFERt  of a file, as the total time duration between the first handshake and the last handoff among 

the transmitter and the receiver. The total transfer time includes the processing time from the 

Receiver Unit, the total audio recording time in the receiver and the delays introduced by the 

handshake and acknowledgement signals. 
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Consider a file of size F bits, which is fragmented in N packets of length L bits. The rate 
TRANSFER

N L
t

×  is 

called the transfer rate TRANSFERR  and is measured in / secbits . In the presentation of the experimental 

results we will refer to average transfer rates. In cases where we used encoded schemes, we will 

represent the results for each encoder (Block or Convolutional) separately. The transmission rate has 

been computed in Chapter 2 and is given by the expression 

2log ( )
TRANSMISSION

s

Fs MR
T

=  (bps) 

where sF  is the sampling frequency in samples/sec, M is the size of the modulation method and sT  is 

the number of samples per symbol.  

The above expressions stand for the open and closed loop form of the WFTP system. 

 

1.2 Evaluation Process 

The evaluation of the performance of the WFTP system is based on the results of the 

experimentation on the system. The possible settings of the system are listed in the two subsequent 

tables. 

 
System Settings 
Filesize 
Number of bits per 
packet 
Number of training 
bits 
Sampling frequency 
(Hz) 

Table 5-1: General System Settings 
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Field Modules Settings 
Error Control 
Coding  

Convolutional Encoder 
Viterbi Decoder On / Off Code rate Operation 

Mode  

 Reed Solomon 
Encoder / Decoder On / Off Message length Codeword 

length  

Interleaving Random Interleaver On / Off Word length   
 Block Interleaver On / Off Word length   
Error Detection CRC On / Off    

Equalization LMS Equalizer On / Off Number of 
weights Stepsize  

 RLS Equalizer On / Off Number of 
weights Initialization Forgetting 

factor 

 CMA Equalizer On / Off Number of 
weights Stepsize  

 Viterbi Equalizer On / Off Preamble Postamble Depth 
Digital 
Transmission MPSK On / Off Size Samples per 

Symbol  

 QAM On / Off Size Samples per 
Symbol  

 PPM On / Off Size Samples per 
Symbol  

Phase Recovery Phase Recovery On / Off    
Table 5-2: Settings for the  modules of the WFTP system 

 

Because of the huge number of the possible combinations, our main effort was to avoid performing 

meaningless transmissions. Therefore we considered performing the transmissions for a specified 

packet and file size that will provide us with some representative results concerning the system’s 

performance.  

 

In order to select the size of the packet, we transmitted three files of 6KB, 18KB, and 108KB 

respectively, with packets of size 15000, 50000 and 100000 bits using the following system settings: 

 

Number of training 
bits Modulation sT   

(samples) 
500 4-PSK 10 

 

The experiments were performed on the open loop system with sampling rate at 44100 Hz. The 

system consisted of the following modules. 

⇒ 4-PSK modulator 

⇒ 4-PSK demodulator 

⇒ 4-PSK detector 

⇒ Synchronizer 

⇒ Phase recovery 

The distance between the radio transmitter and the radio receiver was about 2m. 
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The question that springs to mind immediately is why we didn’t use packets of size greater than 

100000 bits. All the modulation methods have been tested with packets of size greater than 100000 

bits, but 4-PSK was the only one that resulted in not detectable bit error rates. However 

transmissions with 100000 bits per packet resulted in significantly low bit error rates with the most 

of the modulation methods. In general for the choice of the packet size, we wanted to test packet 

sizes that could perform well in the majority of the modulation methods. The total transfer time for 

each transmission is listed in the following table. 

 
 File size (KB) 
Packet size (bits) 6 18 108 

15000 14 (sec) 41.09 (sec) 237.471 (sec) 
50000 12 (sec) 30.7 (sec) 171.587 (sec) 

100000 19.6 (sec) 38.51 (sec) 162.203 (sec) 
Table 5-3: Transfer times for different size of packets and different file sizes 

 

 
Figure 5-1: The most efficient packet size for WFTP system is 100000 bits 

 

From the above results we can easily obtain that the best transfer time for the 6 KB and 18 KB files 

is achieved by using 50000 bits per packet. However for a 108 KB file the packet size that achieves 

the best transfer time is 100000 bits per packet.  

In general in the WFTP system it is desired to fragment the transmitted file in a small number of 

packets. Several unpredictable delays have been obtained during its experimental operation and 

result from the operating system. Therefore in order to ensure the correct reception of the packets we 

added a constant 0.5 sec additional recording time. This overhead is independent of the size of the 

packets. Thus increasing the number of the packets, results in a proportional increase of the 
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additional recording time. Consequently in order to maintain high transfer rates in the open loop 

system, we selected the maximum possible packet size of 100000 bits. 

However increasing the number of bits per packet, results in an increase of the probability of bit 

error in every packet. Therefore the use of this packet size in high order modulation schemes may 

result in high bit error rates. Consequently in the closed loop form of the system this results in a 

large number of retransmissions and hence in a significant decrease of the transfer rate. In such cases 

we must enhance a powerful encoder in the system in order to reduce the number of retransmissions 

and maintain high transfer rates.  

 

In the subsequent sections we will represent the results of our experimentation on the WFTP system 

and evaluate the overall performance for different settings. Moreover we will focus particularly on 

the performance of the Convolutional Codes and the PSK modulation scheme as they constitute the 

main part of this thesis.   

 

In the trial transmissions we used the nominal sampling rate of 44100 Hz that is supported from the 

majority of the soundcards. However because increasing the sampling rate results in an increase of 

the transmission and transfer rate, we experimented with the 88200 Hz sampling rate. Following the 

same perspective we evaluated the minimum value of the symbol period in samples that would result 

in the maximum possible transfer rate along with low bit error rate in the majority of the modulation 

schemes. Consequently the experiments were performed with the following system settings: 

 

⇒ Symbol period 10sT samples=  

⇒ Sampling frequency 44100,88200sF Hz=   

⇒ Size of packet 100.000 bits 

⇒ Size of file 108 KB 

 

The distance between the radio transmitter and the radio receiver was about 2m. 

Every modulation scheme was tested on the open and closed loop system. In cases where the 

transmissions were not successful, we enhanced different encoders in the system and obtained the 

overall performance. The results will be provided in tables according to the modulation scheme used 

in the open and closed loop system.  

Considering an encoded system (open or closed loop) the metrics average BER, TRANSMISSIONR , and 

TRANSFERR  correspond to the average performance of the most efficient encoder resulted from the 
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experimentation on the specific system. In the closed loop system (uncoded or encoded) the average 

BER and TRANSFERR  do not include the time spent in packet retransmissions. 

 

1.3 MPSK Modulation 

In this section we provide the results and the conclusions drawn from the experimentation on the 

PSK modulation scheme. The experiments were performed in both the open and the closed loop 

form of the WFTP system. Every M-PSK modulation scheme is primarily evaluated with the basic 

system settings consisting of the Synchronizer, the PSK modulator, the PSK demodulator, the PSK 

detector and the Phase recovery. This basic system is tested with the sampling rates of 44100, 88200 

Hz and symbol period of 10 samples. Thereby we achieve the least processing time and hence the 

highest possible transfer rate. In the next step we added the LMS and RLS modules in the system 

and obtained the overall performance. Because of the fact that the two equalizers did not presented a 

substantial difference in the processing time we used the LMS equalizer along with the most of our 

experiments. In cases where errors occurred we used a Block or Convolutional encoder to ensure the 

correct reception of the packets. Despite the average adequate performance of the encoders, they 

could not yield in sufficiently low bit error rates in every M-PSK modulation scheme. 

 

In the trial transmissions, our primary concern was to achieve the lowest possible bit error rate. 

Therefore the experiments for the M-PSK modulation scheme followed an increasing order on the 

basis of the modulation size, M. 

 

1.3.1  4-PSK 

The 4-PSK modulation scheme using the basic system on both sampling rates of 44100 and 88200 

Hz, performed with an average bit error rate below the 610−  threshold. In the closed loop form of the 

system additional delays were introduced due to the processing of the packet bits. The above 

transmissions were repeated with the additional modules of RLS and LMS equalizers resulting in a 

constant zero average bit error rate. However the average transfer rate decreased due to the extra 

processing time in the equalizers.   
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Additional 
Modules 

Fs 
(Hz) 

Packet size 
(bits) #Packets Average  

BER 
TRANSMISSIONR  

(bps) 
TRANSFERR  
(bps) 

Transfer 
Rate 

Loss (%) 

44.100  510  9 0 8820  5518  - LMS 
Equalizer 

Off 88.200 510  9 0 17640  8281 - 

44.100  510  9 0 8820  5480  0.69 LMS 
Equalizer 

On 88.200 510  9 0 17640  7808  5.7 

Table 5-4: 4-PSK open loop results 
 

 

Additional 
Modules 

Fs 
(Hz) 

Packet size 
(bits) #Packets Average  

BER 
TRANSMISSIONR  

 (bps) 
TRANSFERR  
 (bps)  

44.100  510  9 0 8820  4888 LMS Equalizer 
Off 

CRC On 88.200 510  9 0 17640  6921 

44.100  510  9 0 8820  4851 LMS Equalizer 
On 

CRC On 88.200 510  9 0 17640  6587 

Table 5-5: 4-PSK closed loop results 
 

1.3.2 8-PSK 

In order to increase the transfer rate we performed the same transmissions on 8-PSK. As expected 

the total transfer time decreased and hence the average transfer rate improved significantly. The 

transmissions occurred with no errors in the closed and open loop form of the system. 

 

Additional 
Modules 

Fs 
(Hz) 

Packet size 
(bits) #Packets Average  

BER 
TRANSMISSIONR  

 (bps) 
TRANSFERR  
 (bps)  

Transfer Rate 
Loss (%) 

44.100  510  9 0 13230 8635 - LMS 
Equalizer 

Off 88.200 510  9 0 26460 12525 - 

44.100  510  9 0 13230 8378 3 LMS 
Equalizer 

On 88.200 510  9 0 26460 12403 1 

Table 5-6: 8-PSK open loop results 
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Additional 
Modules 

Fs 
(Hz) 

Packet size 
(bits) #Packets Average  

BER 
TRANSMISSIONR  

 (bps) 
TRANSFERR  
 (bps)  

44.100  510  9 0 13230 7168 LMS Equalizer 
Off 

CRC On 88.200 510  9 0 26460 9656 

44.100  510  9 0 13230 6977 LMS Equalizer 
On 

CRC On 88.200 510  9 0 26460 9574 

Table 5-7: 8-PSK closed loop results 
 

From the above results we may conclude that for 4 and 8 PSK modulation schemes the WFTP 

system operates with no errors. The rate loss introduced by the equalizers is negligible and hence 

their use is proposed. Since the system operates with no errors there is no need to use an error 

correction scheme as there will be an overhead in the processing time and consequently a reduction 

of the transfer rate. The reduced transfer rates in the closed loop form of the system for 4 and  8 PSK 

resulted from the extra processing time introduced in the receiver. 

 

 

1.3.3 16-PSK 

As increasing the order of the PSK modulation scheme we expect that the packets will be received 

with errors. Before applying any error correction scheme on the system we performed the 

appropriate experiments on the basic system. In spite of the increase of the average transfer rate, the 

transmissions were not successful and errors occurred and without the use of equalizers. Therefore 

we tested different Reed Solomon and Convolutional encoders and evaluated their error correcting 

capabilities over a large number of transmissions. In general both codes managed to correct the bit 

errors occurred in the open loop system operating at sampling rate of 44100 Hz. The Reed Solomon 

encoder at a sampling frequency of 44100 results in a lower decrease of the transfer rate compared 

with the Convolutional encoder. Nevertheless at sampling rate of 88200 Hz the transfer rate loss 

introduced by the Convolutional encoder is much lower than that of the Reed Solomon encoder. 
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Additional 
Modules 

Fs 
(Hz) 

Packet size 
(bits) #Packets Average  

BER 
TRANSMISSIONR

 
 (bps) 

TRANSFERR  
 (bps)  

Transfer Rate 
Loss (%) 

44100  510  9 41.24 10−⋅  17640 11370 - LMS 
Equalizer 

Off 88200 510  9 25.6 10−⋅  35280 16636 - 

44100  510  9 41.03 10−⋅  17640 11296 0.65 LMS 
Equalizer 

On 88200 510  9 22 10−⋅  35280 15914 4.4 

44100  510  9 0 15786 9940 12.6 
(255, 231)  

Reed Solomon 
encoder On 

LMS 
Equalizer On 

88200 510  9 21.1 10−⋅  26460 7006 58 

(3,2,6)  
Convolutional 

encoder On 
LMS 

Equalizer On 

44100  510  9 0 11760 7033 38 

(2,1, 5)  
Convolutional 

encoder On 
LMS 

Equalizer On 

88200 510  9 36 10−⋅  17640 8881 44 

Table 5-8: 16-PSK open loop results 
 
 
 
 

Additional 
Modules 

Fs  
(Hz) 

Packet size 
(bits) #Packets Average  

BER 
TRANSMISSIONR  

 (bps) 
TRANSFERR  
 (bps) 

(255, 231)  
Reed Solomon  

encoder On 
LMS Equalizer On 

CRC On 

44100  510  9 0 15876 7154 

(4, 3,6) Convolutional 
encoder On 

LMS Equalizer On 
CRC On 

44100  510  9 0 13230 6912 

Table 5-9: 16-PSK closed loop results 
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1.3.4 Evaluation of Convolutional encoders for 16-PSK 

 
In Chapter 2 we selected a variety of convolutional codes of different code rates to apply on the 

WFTP system.  

 

R v m freed  γ(dB) Branch 
Complexity 

1/4 6 6 20 3.98 27 
1/4 4 4 16 3.01 25 

1/3 6 6 15 3.98 27 
1/3 5 5 13 3.36 26 

1/2 6 6 10 3.98 27 
1/2 5 5 8 3.01 26 
2/3 6 3 7 3.67 28 

3/4 6 2 6 3.52 29 
2/3 5 3 6 3.01 27 
3/4 5 2 5 2.73 28 
2/3 4 2 5 2.22 26 
3/4 4 2 4 1.76 27 

Table 5-10: The optimum convolutional codes  
that we selected for the WFTP system 

 

Considering the open loop system with 16-PSK and operating sampling rate at 44100 Hz, we would 

like to select a convolutional encoder that would correct the transmission errors and would not 

deteriorate a lot the transfer rate. Therefore we tested the optimum 1
2

 encoder (2,1,6) , which 

resulted in zero average bit error rate. However the average transfer rate reduced at 5580 bps. This 

reduction is due to the additional recording and processing time introduced by the encoder. The 

(2,1,6)  encoder doubles the input bits and hence doubles the samples of the modulated signal. 

Therefore for sampling frequency of 44100 Hz there is an additional recording time in the receiver. 

Consequently the processing time in the synchronizer, is increased. The processing time in the PSK 

modulator, demodulator and detector due to their design is not incremented significantly. However 

there is an average 1.22 sec additional time per packet in the decoder. In order to reduce the transfer 

rate we selected an encoder of higher code rate. We expect that the 2
3

 convolutional code with the 

maximum free distance will achieve the best performance. If this encoder cannot result in zero bit 

error rates we must test the rest of the 1
2

encoders in order to attain higher transfer rates. However 

the (3, 2,6) encoder performed with zero average bit error rate and improved the transfer rate at 7033 
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bps. Trying to attain the maximum transfer rate we used the (4,3,6)  encoder which also resulted in 

zero average bit error rate with a transfer rate of 7625 bps. Notice that the decoding time of the 

(4,3,6)  encoder is similar to the decoding time of the (3,2,6)  encoder. The (4,3,6)  and (3,2,6)  

encoders increase the samples of the modulated signal by a factor of 1.3 and 1.5 respectively. 

Therefore the overall processing time in the receiver using the (3,2,6)  encoder is greater than that of 

the (4,3,6) . 

In order to attain the performance of the rest 3
4

 encoders we experimented with the (4,3,5)  encoder. 

The trial transmissions occurred with errors and hence because of the fact that the (4,3,5)  encoder is 

expected to reach better performance than the (4,3,4)  we stopped experimenting.  

Up to this point we may conclude that the (4,3,6)  and (3,2,6)  encoders can be used to the system 

over a sampling rate of 44100 Hz. Using 1
4

and 1
3

 encoders is not essential, since zero average bit 

error rate can be achieved with encoders that result in a less reduction of the transfer rate. 

The same procedure is applied on the open loop system with 16-PSK and sampling rate of 88200 Hz. 

However we tested more convolutional encoders since we could not achieve average bit error rate 

below the threshold accuracy of our experiments which was  51 10
9

−⋅ . The results are listed in the 

following table. 

 

Convolutional 
Encoders 

Average  
BER 

TRANSFERR  
 (bps) 

TRANSMISSIONR  
 (bps) 

(3,1, 6)  413 10−⋅  4581 11760 
(3,1, 5)  33 10−⋅  5592 11760 
(2,1, 6)  33.4 10−⋅  8049 17640 
(2,1, 5)  36 10−⋅  8881 17640 
(3, 2, 6)  38.9 10−⋅  10844 23520 
(4, 3, 6)  39.3 10−⋅  11655 26460 
(3, 2, 5)  312 10−⋅  11429 23520 
(4, 3, 5)  323 10−⋅  12396 26460 
(3, 2, 4)  338 10−⋅  11643 23520 
(4, 3, 4)  341 10−⋅  12892 26460 

Table 5-11: Performance of the Convolutional Codes at 16-PSK (88200 Hz) 
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Figure 5-2: Average bit error rates for the tested convolutional codes 

 

 

 
Figure 5-3: Average transfer rates for the tested convolutional codes 

 

 

 

From the above results we obtain that the performance of the convolutional encoders verify the 

theoretical conclusions mentioned in chapter 2. The encoder with the maximum free distance (3,1,6)  

achieves the lowest bit error rates. However it did not nullify the average BER of 22 10−⋅ . Thus we 

should experiment with the 1
4

 convolutional encoders. However since the (3,1,6)  encoder reduced 

the average transfer rate at 4581 bps without correcting all the transmission errors there is no need to 

use an encoder which will result in lower transfer rates. A better performance can be achieved using 
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a 4-PSK modulated scheme without encoders. To conclude with, the best transfer rate in 16-PSK is 

9940 bps which has been obtained using the modules Synchronizer, PSK modulator, PSK 

demodulator, PSK detector, Phase Recovery and Reed Solomon encoder. 

In the closed loop system with 16-PSK we tested the (4,3,6)  encoder for sampling rate of 44100 Hz 

and achieved zero average bit error rate. Since the average bit error rate for sampling rate of 88200 

Hz with the use of encoders in the open loop system is on the order of 210−  the use of an error 

detection scheme does not improve the performance.   

 

1.3.5 32-PSK 

Since in the 16-PSK the operation of the system at the sampling rate of 88200 Hz occurred with 

errors which could not be corrected, the 32-PSK will be tested only for the sampling frequency of 

44100 Hz. Considering again the basic system as the basis of our experiments we represent the 

results for 32-PSK in the following table. 

 

Additional 
Modules 

Fs 
(Hz) 

Packet size 
(bits) #Packets Average  

BER 
TRANSMISSIONR

 (bps) 
TRANSFERR  
 (bps) 

Transfer Rate 
Loss (%) 

LMS  
Equalizer 

Off 
44100  510  9 215 10−⋅  22050 13722 - 

LMS  
Equalizer 

On 
44100  510  9 212.8 10−⋅  22050 13447 2% 

(255, 201)  
Reed Solomon 

encoder On 
LMS  

Equalizer On 

44100  510  9 211.1 10−⋅  17199 3467 75% 

(2,1, 5)  
Convolutional 

encoder On 
LMS  

Equalizer On 

44100  510  9 210.8 10−⋅  11025 4973 64% 

Table 5-12: 32-PSK open loop results 
 

The average bit error rate of 212.8 10−⋅  using the basic system along with the equalizers, justify the 

use of Block and Convolutional encoders. In general despite the use of the encoders we did not 

achieve zero bit error rates. The least average bit error rate attained with the Convolutional encoder 

(2,1,5) . However the transfer rate reduced at 4973 bps. This performance is similar to the average 

bit error rate achieved by the (3,1,6)  convolutional encoder in 16-PSK and is less than the average 

transfer rate of the uncoded 4-PSK. Therefore the encoders with lower code rate were not tested. 
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1.3.6 MPSK conclusions 

In the preceding presentation of the experimental results for the MPSK modulation scheme, we set 

as the initial objective the achievement of zero average bit error rate over a basic system consisting 

of the Synchronizer, the PSK modulator, the PSK demodulator, the PSK detector and the Phase 

Recovery. This goal was accomplished with the use of 4 and 8 PSK without the need of encoders. 

The cost of the use of equalizers in the average transfer rate is negligible and hence they will be 

embodied in the basic system. 

 

Experimenting on the open and close loop form of the system with 16 and 32 PSK shown that it is 

essential to enhance an encoder in the system. Due to the resulting low transfer rate, it is not feasible 

to use encoders of low code rate.  

In general the highest transfer rate along with the average zero bit error rate in MPSK is performed 

by the uncoded 8-PSK without the use of equalizers.  

Figure 5-4: Average transfer rates of MPSK schemes 
that performed with zero average bit error rate in 

open loop. 

Figure 5-5: Average transfer rates of MPSK schemes 
that performed with zero average bit error rate in 

closed loop. 
 

 

1.4 MQAM Modulation 

The experimentation on the Quadrature Amplitude Modulation scheme was realized in a similar way 

as MPSK. The basic system consists of the Synchronizer, the MQAM modulator, the MQAM 

demodulator, the MQAM detector, the Phase recovery and the RLS, LMS equalizing modules. The 

trial transmissions were performed for sampling frequencies of 44100 and 88200 Hz whereas the 

symbol period was preserved at 10 samples per symbol.  
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1.4.1 4-QAM 

The operation of the 4-QAM modulation scheme on the basic system, on both sampling rates of 

44100 and 88200 Hz, resulted in zero average bit error rate. In the closed loop form of the system 

additional delays were introduced due to the processing of the packet bits. 

 

Additional 
Modules 

Fs 
(Hz) 

Packet size 
(bits) #Packets Average  

BER 
TRANSMISSIONR  

(bps) 
TRANSFERR  
 (bps) 

44100  510  9 0 8820 5483 LMS  
Equalizer 

On 88200 510  9 0 13230 7343 
Table 5-13: 4-QAM open loop results 

 
 

Additional 
Modules 

Fs 
(Hz) 

Packet size 
(bits) #Packets Average  

BER 
TRANSMISSIONR  

(bps) 
TRANSFERR  
 (bps) 

44100  510  9 0 8820 4853 LMS Equalizer 
On 

CRC 
On 

88200 510  9 0 13230 6250 

Table 5-14: 4-QAM closed loop results 
 

Notice that the average transfer rates for the 4-QAM and the 4-PSK modulation schemes are similar. 

Moreover the average transfer rate using CRC is reduced due to the additional processing time for 

error detection in the received packet. 

 

 

1.4.2 8-QAM 

In the 8-QAM modulation scheme the system performed with no errors operating at sampling rate of 

44100 Hz. However the enhancement of a Block or Convolutional encoder became necessary at the 

sampling rate of 88200 Hz. In general the tested Reed Solomon encoders achieved a lower average 

bit error rate compared to the Convolutional encoders but reduced the average transfer rate of the 

basic system with the uncoded 8-QAM by 57%. 
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Additional 
Modules 

Fs 
(Hz) 

Packet size 
(bits) #Packets Average  

BER 
TRANSMISSIONR  

(bps) 
TRANSFERR  
 (bps) 

44100  510  9 0 13230 8569 LMS  
Equalizer 

On 88200 510  9 33.6 10−⋅  26460 12308 
(127,111)  Reed Solomon  

encoder On 
LMS Equalizer On 

88200  510  9 31.4 10−⋅  23126 4557 

(2,1, 6) Convolutional  
encoder On  

LMS Equalizer On 
88200  510  9 537 10−⋅  13230 6277 

Table 5-15: 8-QAM open loop results 
 

Additional 
Modules 

Fs 
(Hz) 

Packet size 
(bits) #Packets Average  

BER 
TRANSMISSIONR  

(bps) 
TRANSFERR  
 (bps) 

LMS Equalizer On 
CRC On 44100 510  9 0 13230 7143 

(127,111)  
Reed Solomon 

Encoder On 
LMS Equalizer On 

CRC On 

88200  510  9 0 23126 4001 

(2,1, 6) Convolutional  
encoder On 

LMS Equalizer On 
CRC On 

88200  510  9 0 13230 4580 

Table 5-16: 8-QAM closed loop results 
 
Notice that the average transfer rate in the closed loop form of the system using the (2,1,6)  encoder 

is reduced dramatically. Because of the fact that the encoder does not ensure the correction of the 

received packet many retransmissions may occur. Therefore the increase of the overall transfer time, 

results in the significant decrease of the transfer rate. 

 
 

1.4.3 Evaluation of Convolutional encoders for 8-QAM 

We experimented with Convolutional encoders of large free distance on the open and closed loop 

form of the basic system with 8-QAM and sampling rate at 88200 Hz. Unfortunately we could not 

achieve zero bit error rates.  

 

Convolutional Encoders Average BER Average Transfer Rate 
(bps) 

Transmission Rate 
(bps) 

(2,1, 6)  537 10−⋅  6277 13230 

(3, 2, 6)  31.5 10−⋅  8489 17640 

Table 5-17: Performance of the tested convolutional codes for 8-QAM  
on the open loop form of the system with sampling rate at 88200 Hz 
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At first we used the (3,2,6) , encoder as it reduces the transmission rate only by a factor of ~ 0.6 . 

However the results were not satisfactory and hence we used the encoder (2,1,6) . We can obtain 

that the last encoder which achieved the best average bit error rate decreased the transfer rate at the 

level of the uncoded 4-PSK. The use of an encoder of code rates 1
3

, 1
4

 is meaningless as the transfer 

rate will be diminished. 

In the closed loop form of the basic system with 8-QAM and sampling rate of 88200 Hz, the (2,1,6)  

encoder managed to achieve error rates below the threshold of 510−  in the total of the trial 

transmissions. In addition the (3,2,6)  encoders presented a significant error correcting capability.  

 

1.4.4 16-QAM 

In 16-QAM we performed the trial transmissions over the basic system, and attained the following 

results for the open and closed loop form of the system.  

 

Additional 
Modules 

Fs 
(Hz) 

Packet size 
(bits) #Packets Average  

BER 
TRANSMISSIONR  

(bps) 
TRANSFERR  
 (bps) 

44100  510  9 46.42 10−⋅  17640 9823 LMS Equalizer 
On 88200 510  9 36.8 10−⋅  35280 13868 

(127,111)  
Reed Solomon 

encoder On 
LMS Equalizer On 

44100 510  9 0 13759 8413 

(127,105)  
Reed Solomon 

encoder On 
LMS Equalizer On 

88200  510  9 30.8 10−⋅  28929 6996 

(3,1, 6) Convolutional 
encoder On 

LMS Equalizer On 
44100 510  9 0 5880 4082 

(3,1, 6) Convolutional 
encoder On 

LMS Equalizer On 
88200  510  9 49.18 10−⋅  11760 6056 

Table 5-18: 16-QAM open loop results 
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Additional 
Modules 

Fs 
(Hz) 

Packet size 
(bits) #Packets Average  

BER 
TRANSMISSIONR  

(bps) 
TRANSFERR  
 (bps) 

Equalizer On 
CRC On 44100 510  9 0 17640 7965 

(127,111) Reed Solomon  
encoder On 

LMS Equalizer On 
CRC On 

44100 510  9 0 15347 5157 

(3,1, 6) Convolutional 
encoder On 

LMS Equalizer On 
CRC On 

44100 510  9 0 5880 2016 

Table 5-19: 16-QAM closed loop results 
 

The enhancement of the Reed Solomon and Convolutional encoders on the experiments performed 

at 44100 Hz, resulted in zero average bit error rate. However they did not manage to achieve average 

bit error rates below the threshold of  510−  bit error rate at sampling frequency of 88200 Hz.  

 

 

1.4.5 Evaluation of Convolutional encoders for 16-QAM 

The encoders used in the experimentation on the open loop form of the basic system with 16-QAM 

are listed in the following table. 

 

Convolutional Encoders Average BER Average Transfer Rate 
(bps) 

Transmission Rate 
(bps) 

(3,1, 6)  0 4082 5880 
(2,1, 6)  51.22 10−⋅  5754 8820 
(2,1, 5)  49.3 10−⋅  5874 8820 
(3, 2, 6)  41.1 10−⋅  7462 11760 
(4, 3, 6)  42.03 10−⋅  8073 13230 

Table 5-20: Convolutional encoders used with 16-QAM at 44100 Hz 
 

Convolutional Encoders Average BER Average Transfer Rate 
(bps) 

Transmission Rate 
(bps) 

(3,1, 6)  49.18 10−⋅  6056 11760 

(2,1, 6)  46.76 10−⋅  8446 17640 

(3, 2, 6)  35.6 10−⋅  10451 23520 

Table 5-21: Convolutional encoders used with 16-QAM at 88200 Hz 
 

The experiments on the open loop system with 16-QAM modulation and sampling rate of 44100 Hz 

showed that only the (3,1,6)  encoder managed to perform with zero bit errors while the (2,1,6)  and 

the (2,1,5)  encoders achieved significant performance. On the contrary the (3,2,6)  and (4,3,6)  
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encoders did not lower the BER substantially. However the use of the (3,1,6)  encoder decreases the 

average transfer rate and deteriorates the overall performance. 

In the trial transmissions over the basic system with 16-QAM modulation and sampling rate of 

88200 Hz, the encoder with the maximum free distance attained the least average bit error rate. The 

first encoder tested, was the (3,2,6)  convolutional encoder which resulted in 35.6 10−⋅  average bit 

error rate. In order to achieve lower bit errors we used the (2,1,6)  encoder which improved the 

average ber, but decreased the average transfer rate. Trying to nullify the bit errors we enhanced on 

the system the (3,1,6)  encoder. Although the ber decreased, the average transfer rate reached the 

performance level of 4-QAM and hence the use of an encoder with lower code rate was meaningless. 

In the closed loop form of the system we considered only the 16-QAM scheme with sampling 

frequency at 44100 Hz which resulted in zero average bit error rate for (3,1,6)  encoder. 

1.4.6 32-QAM 

In the case of 32 QAM we did not achieve reliable transmission of the packets. The experimentation 

on the  32 QAM in general proved that there is an upper limit in the order of the modulation we are 

able to use in the WFTP system. 

 

Additional 
Modules 

Fs 
(Hz) 

Packet size 
(bits) #Packets Average  

BER 
TRANSMISSIONR  

(bps) 
TRANSFERR  
 (bps) 

LMS Equalizer 
On 44100  510  9 214.3 10−⋅  22050 12330 

Reed Solomon 
encoder On 

LMS Equalizer On 
44100 510  9 29 10−⋅  17199 3167 

(2,1, 5)  
Convolutional 

encoder On 
LMS Equalizer On 

44100 510  9 27.6 10−⋅  11025 5012 

Table 5-22: 32 QAM open loop results 
 

In spite of the use of a convolutional encoder with a good theoretical performance the results proved 

that the system cannot operate with 32 QAM. Since the average bit error rate is on the order of 210− , 

applying the CRC code on the system would result in a large number of retransmissions and a 

further deterioration of the average transfer rate. 

 

1.4.7 MQAM conclusions 

In the MQAM modulation scheme we followed the same order of experiments as in MPSK. In 

general the 4-QAM and the 8-QAM can operate without errors and the need of an encoder in both 
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the open and closed loop form of the system. The use of encoders was necessary in 8-QAM at 

sampling rate of 88200 Hz, in 16-QAM and in 32-QAM.  

In the first case despite the significant decrease in the bit error rate, the Convolutional encoders that 

we tested did not succeed in eliminating the transmission errors. However using a more powerful 

encoder would reduce the transfer rate to a minimal level. Since the basic system with 8-QAM 

performs with no errors at 44100 Hz with an average transfer rate of 8569 bps, the further 

experimentation was not essential. 

In 16-QAM, the encoders eliminated the transmissions errors occurred in the uncoded scheme of the 

open loop system at 44100 Hz. Moreover they offered a slight improvement of the average bit error 

rate to the open loop system at 88200 Hz sampling rate. As expected the 32-QAM could not perform 

without errors. Despite the use of encoders the average bit error rate preserved in high level and 

hence it was not further tested. In general the highest transfer rate along with the average zero bit 

error rate in MQAM is performed by the uncoded 8-QAM operating at 44100 Hz.  

It is worth noticing that the best average transfer time along with zero average bit error rate in the 

closed loop form of the system is achieved by using 16-QAM modulation scheme at sampling 

frequency of 44100 Hz. On the contrary we expected that 8-QAM would have the best performance 

as in the open loop case. However the use of encoders degraded the average transfer time in 8-QAM 

and hence the use of uncoded 16-QAM at sampling rate of 44100 Hz resulted in the best average 

transfer time. 

 

 
Figure 5-6: Average transfer rates of MQAM schemes 
that performed with zero average bit error rate in the 

open loop system form. 

 
Figure 5-7: Average transfer rates of MQAM 

schemes that performed with zero average bit 
error rate in the closed loop system form. 
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1.5 PPM Modulation 

The trial transmissions over the PPM modulation scheme were realized in a different way from the 

two preceding modulation schemes. The basic system consisted of the Synchronizer, the PPM 

modulator, the PPM correlators, the PPM detector, and the Phase recovery. The experiments 

performed for both sampling rates of 44100 and 88200 Hz and a varying symbol period depending 

on the order of the modulation. 

 

 

1.5.1 4-PPM 

In the 4-PPM we used symbol period 8sT =  samples. The transmissions were performed for 44100 

and 88200 Hz sampling rates in open and closed loop form of the system. 

 

 

Additional 
Modules 

Fs 
(Hz) 

Packet size 
(bits) #Packets Average  

BER 
TRANSMISSIONR  

(bps) 
TRANSFERR  
 (bps) 

44100 510  9 0 11025 5659 
LMS Equalizer 

Off 
88200 510  9 0 22050 11399 

Table 5-23: 4-PPM open loop results 
 
 

Additional 
Modules 

Fs 
(Hz) 

Packet size 
(bits) #Packets Average  

BER 
TRANSMISSIONR  

(bps) 
TRANSFERR  
 (bps) 

44100 510  9 0 11025 4988 LMS Equalizer 
Off 

CRC On 88200 510  9 0 22050 9004 

Table 5-24:4-PPM closed loop results 
 

Notice that 4-PPM operating at sampling rate of 88200 Hz achieves the best transfer rate among the 

three modulation schemes of order M=4. However the 4-PSK and 4-QAM operate with symbol 

period of 10 samples per symbol whereas the symbol period of 4-PPM is 8 samples per symbol. 
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1.5.2 8-PPM 

Unfortunately the increase of the order of the modulation scheme did not result in higher transfer 

rates. The increase in the symbol period reduced the average transfer rates at both sampling 

frequencies by 21% and 50.4% respectively, compared with the results of 4-PPM. 

 

Additional 
Modules 

Fs 
(Hz) 

Packet size 
(bits) #Packets Average  

BER 
TRANSMISSIONR  

(bps) 
TRANSFERR  
 (bps) 

44100 510  9 0 8269 4487 
LMS Equalizer 

Off 
88200 510  9 0 16538 5930 

Table 5-25: 8-PPM open loop results 
 
 

Additional 
Modules 

Fs 
(Hz) 

Packet size 
(bits) #Packets Average  

BER 
TRANSMISSIONR  

(bps) 
TRANSFERR  
 (bps) 

44100 510  9 0 8269 4034 LMS Equalizer 
Off 

CRC On 88200 510  9 0 16538 5193 

Table 5-26: 8-PPM closed loop results 
 
 

1.5.3 16-PPM 

In this case the symbol period was set to 32 samples per symbol and the trial transmissions occurred 

with no errors. 

 

Additional 
Modules 

Fs 
(Hz) 

Packet size 
(bits) #Packets Average  

BER 
TRANSMISSIONR  

(bps) 
TRANSFERR  
 (bps) 

44100 510  9 0 5513 3097 LMS 
Equalizer 

Off 88200 510  9 0 11026 4189 

Table 5-27: 16-PPM open loop results 
 

Additional 
Modules 

Fs 
(Hz) 

Packet size  
(bits) #Packets Average  

BER 
TRANSMISSIONR  

(bps) 
TRANSFERR  
 (bps) 

44100 510  9 0 5513 2884 
LMS 

Equalizer 
Off 

CRC 
On 

88200 510  9 0 11026 3800 

Table 5-28: 16-PPM closed loop results 
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1.5.4 PPM conclusions 

In the PPM modulation scheme, despite the zero average bit error rate the transfer rates were not 

improved compared with the two preceding modulation schemes. The 4-PPM resulted with no errors 

while the average transfer rate at sampling rate of 88200 Hz was very promising. However from the 

above results we can obtain that the performance of the PPM is degraded by increasing the 

modulation order. The experimentation on 8 PPM with symbol period 8sT = samples resulted in an 

average bit error rate on the order of 110− . Moreover similar results were obtained by testing the 16 

PPM with symbol period 16sT =  samples which resulted in an average bit error rate of 28.4 10−⋅ . 

Even if we use a Block or Convolutional encoder, we will not achieve zero bit error rates. 

Consequently we increased the symbol period. However this resulted in an increase of the 

processing time in the receiver and an overall reduction of the average transfer rate.  

 

Figure 5-8: Average transfer rates of PPM schemes 
that performed with zero average bit error rate in 

the open loop system form.  

Figure 5-9: Average transfer rates of PPM schemes 
that performed with zero average bit error rate in 

the closed loop system form. 
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1.6 Summary 

In this section we will provide an overall evaluation of the WFTP system along with the most 

significant conclusions that were drawn from the preceding analysis. 
 

Average 
Transfer Rate 

 

Modulation 
scheme M Fs 

(Hz) 
Ts 

(samples) Additional System Modules 

4000bps<  PPM 16 44100 32 - - - 
        

PSK 4 44100 10 LMS 
Equalizer - - 

PSK 4 44100 10 - - - 

QAM 4 44100 10 LMS 
Equalizer - - 

PPM 4 44100 8 - - - 
PPM 8 44100 16 - - - 
PPM 8 88200 16 - - - 
PPM 16 88200 32 - - - 

4000 6000bps−  

QAM 16 44100 10 LMS 
Equalizer 

(3,1, 6)  
Convolutional 

encoder 
- 

        

PSK  4 88200 10 LMS 
Equalizer - - 

PSK 16 44100 10 LMS 
Equalizer 

(3, 2, 6)  
Convolutional 

encoder 
- 

QAM 4 88200 10 LMS 
Equalizer - - 

6000 8000bps−  

PSK 16 44100 10 LMS 
Equalizer 

(4, 3, 6)  
Convolutional 

encoder 
- 

        
PSK  4 88200 10 - - - 
PSK  8 44100 10 - - - 

PSK  8 44100 10 LMS 
Equalizer - - 

PSK 16 44100 10 LMS 
Equalizer 

(255, 231) Reed 
Solomon 
encoder 

- 

QAM 8 44100 10 LMS 
Equalizer - - 

8000 10000bps−  

QAM 16 44100 10 LMS 
Equalizer 

(127,111) Reed 
Solomon 
encoder 

- 

        
PSK 8 88200 10 - - - 

PSK 8 88200 10 LMS 
Equalizer - - 10000bps>  

PPM 4 88200 8 - - - 
Table 5-29: Average transfer rates achieved by various open loop systems with BER below 10- 5 
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Average 

Transfer Rate 
 

Modulation 
scheme M Fs 

(Hz) 
Ts 

(samples) Additional System Modules 

QAM 16 44100 10 LMS 
Equalizer 

(3,1, 6)  
Convolutional 

encoder 
CRC 

PPM 16 88200 32 - - CRC 
4000bps<  

PPM 16 44100 32 - - CRC 
        

PSK 4 44100 10 LMS 
Equalizer - CRC 

PSK 4 44100 10 - - CRC 
QAM 4 44100 10 LMS 

Equalizer - CRC 
PPM 4 44100 8 - - CRC 
PPM 8 44100 16 - - CRC 
PPM 8 88200 16 - - CRC 

QAM 16 44100 10 LMS 
Equalizer 

(127,115) Reed 
Solomon 
encoder 

CRC 

QAM 8 88200 10 LMS 
Equalizer 

(3,1, 6)  
Convolutional 

encoder 
CRC 

4000 6000bps−  

QAM 8 88200 10 LMS 
Equalizer 

(127,111) Reed 
Solomon 
encoder 

CRC 

        

PSK  4 88200 10 LMS 
Equalizer - CRC 

PSK 16 44100 10 LMS 
Equalizer 

(3, 2, 6)  
Convolutional 

encoder 
CRC 

QAM 4 88200 10 LMS 
Equalizer - CRC 

PSK 16 44100 10 LMS 
Equalizer 

(4, 3, 6)  
Convolutional 

encoder 
CRC 

PSK  8 44100 10 - - CRC 
PSK  8 44100 10 LMS 

Equalizer - CRC 
PSK  4 88200 10 - - CRC 

PSK 16 44100 10 LMS 
Equalizer 

(255, 231) Reed 
Solomon 
encoder 

CRC 

QAM 8 44100 10 LMS 
Equalizer - CRC 

6000 8000bps−  

QAM 16 44100 10 LMS 
Equalizer - CRC 

        
PSK 8 88200 10 - - CRC 
PSK 8 88200 10 LMS 

Equalizer - CRC 8000 10000bps−  

PPM 4 88200 8 - - CRC 
Table 5-30: Average transfer rates achieved by various closed loop systems with BER below 10- 5 
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In the above tables we represent the average transfer rates achieved by the various open and closed 

loop systems with BER below the threshold of 510− .  

At first we may notice that the use of the LMS equalizer did not have a negative impact on the 

average transfer rate of the tested systems. In general because the equalizer operates on symbols and 

not on the samples of the received signal, the processing time spent on equalizing is trivial. 

Moreover the use of the encoders managed to reduce the BER of the open loop systems with 16 

QAM and 16 PSK at sampling rate of 44100 Hz. However the resulting transfer rates are similar to 

the transfer rates attained by the use of lower order modulation schemes. In particular the average 

transfer rate of the open loop system with 16 QAM and the (3,1,6)  convolutional encoder at 

sampling rate of 44100 Hz is in the same level as the average transfer rate of the open loop system 

with 4 PSK, 4 QAM and 4 PPM at sampling rate of 44100 Hz. In addition the average transfer rate 

of the open loop system with 16 PSK and the (3,2,6)  convolutional encoder at sampling rate of 

44100 Hz is in the same level as the average transfer rate of the open loop system with 4 PSK, 4 

QAM at sampling rate of 88200 Hz.  

The highest transfer rates achieved in every modulation scheme that was tested with the WFTP 

system are listed in the following table. Notice that we consider transmissions on the open loop and 

closed loop form of the system where no errors occurred.  

 

Modulation Scheme TRANSFERR  
 (bps) 

Fs 
(Hz) 

sT  
(samples) 

8-PSK 12525 88200 10 
8-QAM 8569 44100 10 
4-PPM 11399 88200 8 

Table 5-31: Highest transfer rates for every modulation scheme on the open loop form of the system 
 

Modulation Scheme TRANSFERR  
 (bps) 

Fs 
(Hz) 

sT  
(samples) 

8-PSK 9656 88200 10 
16-QAM 7965 44100 10 
4-PPM 9004 88200 8 

Table 5-32: Highest transfer rates for every modulation scheme on the closed loop form of the system 
 

The most efficient modulation scheme that can be used along with the WFTP system is the 8-PSK. 

Recall that the trial transmissions were performed with 500 bits of training sequence. In cases where 

we reduced the training sequence the system operated in higher transmission rates but we could not 

ensure that all the transmissions would occur with no errors. In order to eliminate the possible bit 

errors we experimented with a variety of encoders. However the resulting transfer rates were lower 

than 12525 bps. Modulation schemes of high order, such as 32 QAM and 32 PSK were tested with 
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2000, 3500 bits of training sequence. In spite of the decrease in the number of bit errors, the transfer 

rates were reduced at 3 – 4 kbps. The enhancement of an error correcting scheme in such a system 

will result in transfer rates which have no practical meaning. 

In general the Convolutional encoders reduced the bit errors in the MPSK and MQAM modulation 

schemes. They were mainly used along with the 16-PSK, 16-QAM, 32-PSK and 32-QAM. 

Undoubtedly, the ( ,1, )n v  encoders, such as (3,1,6)  and (2,1,6)  presented the best error correcting 

capability. However due to the large amount of redundancy they introduce in the packet, the 

processing time in the modules of the Synchronizer, the PSK demodulator and the PSK detector is 

increased. On the contrary, the ( , 1, )n n v−  convolutional encoders that used in the experiments are 

less efficient but result in a lower rate loss. The best error correcting capability was attained by the 

(2,1,6)  convolutional encoder in the open-loop system with modulation scheme of 8-QAM and 

operating sampling rate of 44100 Hz. In general the performance of the Convolutional Codes is more 

efficient when the system is operating at sampling rate of 44100 Hz. However in order to enforce the 

reliability of the WFTP system without a significant decrease of the transfer rate we propose the 

enhancement of an (4,3,6)  or (3, 2,6)  encoder as an additional module to the basic system. 

The use of the CRC code improved the credibility of the system in cases where the bit error rates 

were on the order of 410− . However the transfer rates degraded due to the additional processing time 

for error detection in the receiver and the unpredictable number of retransmissions. In order to 

ensure the correct transmission of the packets a CRC code is proposed as an additional module in the 

system. 

In cases where we want the system to operate with the maximum transfer rate and the least possible 

BER we propose the following system settings. 

 

Fs  
(Hz) 

sT   
(samples) 

Modulation Scheme Synchronizer Phase Recovery Equalizer 

88200 10 8-PSK On On LMS 
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Figure 5-10: Block diagram of the system operating with the highest transfer rate  

 

However the nominal sampling frequency supported by Matlab and the majority of the soundcards is 

44100 Hz. Therefore in order to ensure the compatibility with the hardware, we suggest the system 

settings listed in the subsequent table. 

 

Fs  
(Hz) 

sT   
(samples) 

Modulation Scheme Synchronizer Phase Recovery Equalizer 

44100 10 8-PSK On On LMS 
44100 10 8-QAM On On LMS 
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Figure 5-11: Block diagram of the system operating with the highest transfer rate, compatible with every 

soundcard 
 

In cases where our primary concern is reliability, we propose the following system settings. 

 

Fs  
(Hz) 

sT  
(samples) 

Modulation 
Scheme Synchronizer Phase 

Recovery Equalizer Encoder CRC 

88200 10 8-PSK On On LMS - On 
88200 8 4-PPM On On - - On 
44100 10 16-PSK On On LMS (3, 2, 6)  - 

 

In general the WFTP system offers the ability to experiment with the various system settings. The 

main idea of this project was to implement a software based communication system where we could 

try various system designs with different modules and observe the resulting performance. Due to 

hardware and software constraints the WFTP system can operate reliably up to a maximum transfer 

rate. The enhancement of high order modulation schemes resulted in higher transfer rates along with 

the need of a Block or Convolutional channel encoder for error correction. Eventually the overall 

results proved that in the WFTP system it is more efficient to use uncoded 8-PSK modulation 

scheme rather than modulation schemes of higher order with channel encoders.  
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