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Abstract 
 

We begin this thesis with a small introduction to the topic. We discuss the 
main aims of our work. In the first chapter, we will see the basic ideas and 
functions which there are in all of the speech recognition systems nowadays. 
More specific we will talk about continuous speech recognition. We will 
explain with details the use of Hidden Markov Models (HMMs) and the ideas 
of initialization and training of HMMs in these systems. The probabilities of 
the observation sequences will be used by the Viterbi recognition algorithm to 
produce the final results. The chapter that follows shows the how the tools of 
HTK toolkit implement the functions we saw in the first chapter.  

 
The third chapter is an introduction to the automatic speech recognition 

process in mobile networks. In our work, we have used a distributed speech 
recognition system, so we discuss the main functions of it. We have the signal 
parameterization, quantization and coding in the user side and in the server 
side there are the signal decoding and the speech recognition process. 

 
Chapter four explains the theory of Missing Feature. One of the main aims 

of this thesis is to apply the technique of Soft Feature decoding in the server 
side to improve the recognition results. We discuss three basic techniques in 
this area: 

• Data Imputation 
• Marginalize Unreliable Feature 
• Exponential Feature Weights 

 
In chapter five, there is all the information about the implementation we 

followed. We will see with all the details all the components of the 
implemented system. Parameterization of the speech signal and its 
quantization are the first functions occur in the mobile terminal. The 
transmission system with the coding algorithm and an unequal error 
protection scheme follows. In the server side there is the most important part 
of this work. The Soft Feature Decoding algorithm is explained.  

 
We can see the results we obtain with the implementation of Soft Feature 

Decoding in speech recognition over wireless channel in chapter six. We used 
two different speech databases to evaluate better Soft Feature algorithm, 
TIMIT database and AURORA 2. We also present the tests we made to be 
sure that the system we created works correctly. In the end there are the 
conclusions and some ideas for future work. 
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Introduction 
 
Due to the expected explosion in the use of wireless devices in cellular 

environments, it is expected that the interest in deployment of mobile speech 
application will continue, and that the interest will further research in robust 
mobile ASR considerably. This thesis aims to contribute in the continuous 
efforts to improve speech recognition in mobile ASR applications. We 
explicitly focus in the problem of recognition through a wireless digital 
communication network. 

 
In this thesis, we applied the Missing Feature Theory in speech 

recognition for applications in mobile network. In a wireless channel the noise 
is the main factor which degrades the performance of speech recognizer. So, 
if we cannot avoid the noise why not to try to minimize its effects to the 
recognition process. The idea of a Soft Feature Decoder is to try to give a 
confidence level of receive correctly each feature from the decoder in the 
server side. The outputs of the Soft Feature Decoder they will be used from 
the speech recognition unit in order to achieve better performance. In other 
words, the speech recognizer is going to count less on features which are 
more probably to be noisy.  

 
We use the model of distributed speech recognition in mobile networks. 

We have the terminal side and the server side. In the first part, we 
parameterized the signal voice of the user and we produce the MFC 
coefficients which we will use later for the final recognition. Then we apply a 
scalar non-uniform quantizer and we code the signal to transmit through the 
channel applying an unequal error protection scheme. We have to mention 
that the aim of this work in not to find the best quantization algorithm or 
coding scheme. So, our work in mobile terminal is based on [6] which have 
been proved that in general gives very well results in speech recognition over 
wireless channels.  

 
In the server side the functions of decoding and speech recognition occur. 

The decoder generates the transmitted sequence of bits. The Soft Feature 
decoding algorithm which we want to apply in this thesis it is placed in this 
part. We examine each bits we receive in the decoder and we assign a 
probability which shown how sure we are that this bit has been received 
correctly. Then we group the bits and we produce the features, in our case 
MFC coefficients. Now, we use the probability of each bit to determine the 
confidence level of each received feature. This confidence score is a 
continuous value between zero and one. When this value is close to one, it 
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means that the feature is more probably to have been received correctly and 
when it is close to zero the opposite. Theses values are used later by the 
speech recognition unit. So for example, a value of 0.55, tells to recognizer to 
multiply the output probability of this feature with 0.55. In this way we hide 
from the recognizer the features which we believe that have been changed due 
to noise of the channel and we minimize the its effects.  Using noisy feature 
gives worst results than delete them. So, this is an easy way to improve the 
performance in speech recognition over wireless channels.  

 
The technique of Soft Feature decoding is promising a big improvement in 

recognition performance.  This technique has been implemented already in 
other speech recognition system for mobile networks and it has shown to 
improve the recognition accuracy. This thesis is based on the work of [2]. We 
use the same Soft Feature Decoding algorithm but we have many differences 
in the whole speech recognition system. We can say that two are the main 
characteristics that distinguish the system proposed in [2] and ours; the speech 
recognition unit and the speech database. In our work we used the HTK 
toolkit for speech recognition and two different databases; DARPA TIMIT 
and AURORA 2.  

 
When we applied the Soft Feature algorithm in TIMIT database we did not 

see any improvement in the final results. This is in contrary, not only with the 
theory but also with the results of other researches. So, with the first look we 
thought that somewhere we had made a mistake and we spent a long time 
searching for the error. We made a lot of tests and finally we decided that 
there is no error in the system. Something is going wrong with the 
characteristic of the speech recognition system. The important difference 
between this thesis and the work of the other researchers in the recognition 
system is the level in which we achieve the recognition. In our application 
using TIMIT database we have a phoneme base recognition instead of word 
level which there is in [2]. 

 
So, we decided to work also with a word based speech database and we 

chose AURORA 2 which has for vocabulary the ten digits. With this change, 
the results we achieved have a significant improvement. In general, the 
improvement is independent of the mobile speed and higher improvement is 
shown in lower SNR channel. The reduction of word error rate is around 50% 
for all the occasions, except for channels with very high SNR and speed. The 
improvement is substantial and is equivalent to enhancing the channel SNR by 
about 1.5db and even in some occasions 2db. 
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The conclusions for this thesis agree with the works of other researchers in 
the same area. The Soft Feature Decoding can give a significant improvement 
in speech recognition over wireless channel. Of course, more work is needed 
to improve some parts of the whole process. More research is underway to 
tune the parameters of Soft Feature algorithm we used in this thesis, in order 
to further improve performance.   
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Chapter 1 
 
 

Few words for speech recognition 
 

In this first introductory chapter we discuss the main functions that occur 
in all of the speech recognition system nowadays. In this thesis, the HTK 
toolkit was used for the whole process of speech recognition. So, we use the 
“HTK book” as a guide reference to explain the basic theory of a speech 
recognition system. 

 

1.1 Introduction 
 
 

 
 

Fig. 1.1 Message Encoding/Decoding 
 
 
Speech recognition systems generally assume that the speech signal is a 

realization of some message encoded as a sequence of one or more symbols 
(see Fig, 1.1). To effect the reverse operation of recognizing the underlying 
symbol sequence given a spoken utterance, the continuous speech waveform 
is first converted to a sequence of equally spaced discrete parameter vector. 
This sequence of parameter vector is assumed to form an exact representation 
of the speech waveform on the basis that for the duration covered by a single 
vector (typically 10ms), the speech waveform can be regarded as a stationary. 
Although this is not strictly true, it is a reasonable approximation. Typical 
parametric representations in common use are Linear Prediction Coefficients 
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(LPC) or Mel Frequency Cepstral Coefficients (MFCC) plus various other 
representations derived from these. 

 
The role of the recognizer is to effect a mapping between sequences of 

speech vectors and the wanted underlying symbol sequences. Two problems 
make this very difficult. Firstly, the mapping from symbol to speech is not 
one-to-one since different underlying symbols can rise to similar speech 
sounds. Furthermore, there are large variations in the realized speech 
waveform due to speaker variability, mood, environment, etc. Secondly, the 
boundaries between symbols cannot be identified explicitly from the speech 
waveform. Hence, it is not possible to treat the speech waveform as a 
sequence of concatenate static patterns. 

 
The speech recognizer is designed according to the needs of each 

application. There are simple applications that utilize Isolated Word 
recognition and more advanced ones that try to recognize Continuous Speech. 
The Continuous Speech recognition, which is the most interesting and is used 
more, can be divided in two categories according to the assumed underlying 
symbol. These could be either whole words for so-called connected speech 
recognition or sub-words such as phonemes for continuous speech 
recognition.  

 
No matter what kind of application we want to create, there are some basic 

ideas that are used in all the speech recognizer nowadays. The main tool we 
use in speech recognition is the Hidden Markov Models (HMMs). Speech 
recognizer, as all pattern recognizers, has two main parts, Training and 
Testing. The main task in first part is the creation and training of HMMs and 
in the next part we use the trained HMMs to recognize the underlying 
symbols. We are going to see in more details the HMMs and how they are 
used by speech recognizers. 

 
 

1.2 HMMs in speech recognition 
 
In continuous speech recognition each phoneme is represented by a 

sequence of speech vectors or observations O, defined as 
    

O = o1, o2,…,oT     (1.1) 
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where ot is the speech vector observed at time t. The continuous speech 
recognition problem can then be regarded as that of computing  

 
 

 }{argmax ( | )i
i

P w O     (1.2) 

            
where wi is the i’th phoneme from the vocabulary. This probability is not 

computable directly but using Bayes’ Rule gives 
 
 

i i
i

P( |w )P(w )P(w | )=
P( )

OO
O     (1.3) 

 
 

Thus, for a given set of prior probabilities P(wi), the most probable spoken 
phoneme depends only on the likelihood P(O|wi). Given the dimensionality of 
the observation sequence O, the direct estimation of the joint conditional 
probability P(o1,o2,…| wi) from examples of spoken words is not practicable. 
However, if a parametric model of phoneme production such as Markov 
model is assumed, then estimation from data is possible since the problem of 
estimating the class conditional observation densities P(O| wi) is replaced by 
the much simpler problem of estimating the Markov model parameters. 

 
In HMM based speech recognition, it is assumed that the sequence of 

observed speech vectors corresponding to each phoneme is generated by a 
Markov model as shown is Fig. 1.2. A Markov model is a finite state machine 
which changes state once every time unit t that a state j is entered, a speech 
vector oT is generated from probability density bj(oT). Furthermore, the transition 
from state i to state j is also probabilistic and is governed by the discrete 
probability aij. Fig. 1.2 shows an example of this process where the six state 
model moves through the state sequence X= 1, 2, 3, 4, 5, 6 in order to 
generate a sequence o1 to o6. Notice that in HTK, the entry and exit states of a 
HMM are no-emitting. These states provide the “glue” needed to join models 
together.  

 
The joint probability that O is generated by the model M moving through 

the state sequence X is calculated simply as the product of the transcription 



 - 13 -

probabilities and the output probabilities. So for the state sequence X in Fig. 
1.2  

 
 

( ) ( ) ( ) ( )12 2 1 22 2 2 23 3, | ...P X M a b a b a b=O o o o   (1.4) 
 
 
However, in practice, only the observation sequence O is known and the 

underlying state sequence X is hidden. This is why it is called Hidden Markov 
Model. 

 
 
 
           Markov            
            Model         a22               a33             a44             a55 
               M  
              
 
                                  a 12             a 23             a 34                   a 45             a 56  
                                                         
 
                                                        a24              a35 

 
 
 

                                      b2(o1)      b2(o2)      b3(o3)       b4(o4)    b4(o5)        b5(o6)                            
      

  Observation           
Sequence                     
                  O1           O2              O3           O4           O5             O6     
 

Fig. 1.2 The Markov generation model 
 
 

Given that X is unknown, the required likelihood is computed by summing 
over all possible state sequences X = x(1),x(2),...,x(T), that is  

 

 (0) (1) ( ) ( ) ( 1)
1

( | ) ( )x t x t x t
x t

P M a b t aχ χ

Τ

+
=

=∑ ∏O o   (1.5) 

2 3 4 5 6 1 
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where x(0) is constrained to be the model entry state and x(T+1) is 
constrained to be the model exit state. As an alternative to equation 1.5, the 
likelihood can be approximated by only considering the most likely state 
sequence, that is  

 

(0) (1) ( ) ( ) ( 1)
1

ˆ( | ) max ( )
T

x x x t x t x Tx t

P M a b t a +
=

⎧ ⎫
= ⎨ ⎬

⎭⎩
∏O o  (1.6) 

 
 

Although the direct computation of equation 1.5 and 1.6 is not tractable, 
simple recursive procedures exist which allow both quantities to be calculated 
very efficiently. Notice that if equation 1.2 is computable then recognition 
problem solved. Given a set of models Mi corresponding to phonemes wi, 
equation 1.2 is solved by using 1.3 and assuming that  

 
 

( ) ( )| |i iP w P M=O O     (1.7) 
 

 
All this of course, assumes that the parameters {aij} and {bj(ot)} are 

known for each model Mi. Herein lies the elegance and the power of the 
HMM framework. Given a set of training examples corresponding to a 
particular model, the parameters of that model can be determined 
automatically by a robust and efficient re-estimation procedure. Thus, 
provided that a sufficient number of representative examples of each phoneme 
can be collected then a HMM can be constructed which implicitly models all 
of the many sources of variability inherent in real speech. 

 
 

1.3 Output Probability Specification 
 
The form of the output distributions {bj(ot)} needs to be made explicit. 

HTK is designed primarily for modeling continuous parameters using 
continuous density multivariate output distributions. It can also handle 
observation sequences consisting if discrete symbols in which case, the output 
distributions are discrete probabilities. For simplicity will assume that 
continuous density distributions are being used. In common with most other 
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continuous density HMM systems, HTK represents output distributions by 
Gaussian Mixture Densities. In HTK, however, a further generalization is 
made. HTK allows each observation vector at time to be split into a number of 
S independent data streams ost. The formula for computing bj(ot) is then  

 
 

11

( ) ( ; , )
sS Ms

j t jsm st jsm jsm
ms

b c N
γ

==

⎡ ⎤= ⎢ ⎥⎣ ⎦
∑∏o o µ Σ   (1.8) 

 
 

where Ms is the number of mixture components in stream s, cjsm is the weight 
of the m’th component and N(.;µ,Σ) is a multivariate Gaussian with mean 
vector µ and a covariance matrix Σ, that is  

 
 

11( ) ( )
21( )

(2 )n
N e

π

−′−
=

o-µ Σ o-µ
o;µ,Σ

Σ
  (1.9) 

 
 

where n is the dimensionality of o. The exponent γs is a stream weight. It can 
be used to give a particular stream more emphasis. 

 
Multiply data streams are used to enable separate modeling of multiply 

information sources. In HTK, the processing of streams is completely general. 
However, the speech input modules assumes that the source data is split into 
at most 4 streams. The main streams are the basic parameters vector, first 
(delta) and second (acceleration) difference coefficient and log energy. 

 
 

1.4 Baum-Welch Re-estimation 
 
To determine the parameters of a HMM it is first necessary to make a 

rough guess at what they might be. Once this is done, more accurate (in the 
maximum likelihood sense) parameters can be found by applying the so-called 
Baum-Welch re-estimation formula. The basis of the formula will be 
represented in a very informal way. Firstly, it should be noted that the 
inclusion of multiple data streams does not alter matters significantly since 
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each stream is considered to be statistically independent. Furthermore, 
mixture components can be a special form of sub-state in which the transition 
probabilities are the mixture weights (see Fig. 1.3). 

 
Thus, the essential problem is to estimate the means and variances of a 

HMM in which each state output distribution is a single component Gaussian, 
that is 

 
 

( )
( )

( ) ( )11
21

2

t j j t j

j t n
j

b e
π

−′− − −
=

o µ Σ o µ
o

Σ
  (1.10) 

 
 
                                                                                          Single 
                                                                                        Gaussian       
 
                                 M-component 
                                   Gaussian        
                                     mixture                      aijcj1    
                    aij                                                             
                                                                

                       aijcj2 
 

                                                      … 
       aijcjM 

 
 
 

 
 

Fig. 1.3 Representing a Mixture 
 
 
If there was just one state j in the HMM, this parameter estimation would 

be easy. The maximum likelihood estimates of µj and Σj would be just the 
simple average, that is 

 
 

j j2 

j1 

jM 
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1

1ˆ
T

j t
tT =

= ∑µ o        (1.11) 

 
 

and  
 
 

( )( )
1

1ˆ
T

j t j t j
tT =

′= − −∑Σ o µ o µ    (1.12) 

 
 

In practice, of course, there are multiple states and there is no direct 
assignment of observation vector to individual states because the underlying 
state sequence is unknown. Note, however, that if some approximate 
assignment of vectors to states could be made then equations 1.11 and 1.12 
could be used to give the required initial values for the parameters. Indeed, 
this is exactly what is done in the HTK tool called HInit. HInit first divides the 
training observation vectors equally amongst the model states and then uses 
equations 1.11 and 1.12 to give the initial values for the mean and variance of 
each state. If then finds the maximum likelihood state sequence using Viterbi 
algorithm described below, reassigns the observation vectors to states and 
then uses equations 1.11 and 1.12 again to get better initial values. This 
process is repeated until the estimates do not change. 

 
Since the full likelihood of each observation sequence is based on the 

summation of the possible state sequences, each observation vector ot 
contributes to the computation of the maximum likelihood parameter values 
for each state j. In other words, instead of assigning each observation vector to 
a specific state as in the above approximation, each observation is assigned to 
every state in proportion to the probability of the model being in that state 
when the vector was observed. Thus, if Lj(t) denotes the probability of being 
in state j at time t then the equations 1.11 and 1.12 given above become the 
following weighted averages 

 
 

( )
( )

1

1

ˆ
T

j tt
j T

jt

L t

L t
=

=

= ∑
∑

o
µ      (1.13) 
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and  
 

( ) ( )( )
( )

1

1

ˆ
T

j t j t jt
j T

jt

L t

L t
=

=

′− −
Σ = ∑

∑
o µ o µ

   (1.14) 

 
 

where the summations in the denominators are included to give the required 
normalization. Equations 1.13 and 1.14 are the Baum-Welch re-estimation 
formula for the means and covariances of a HMM. Of course, to apply the 
above equations, the probability of state occupation Lj(t) must be calculated. 
This is done efficiently using the so-called Forward-Backward algorithm.  
 
 

1.5 Recognition and Viterbi decoding 
 
The previous section has described the basis ideas underlying HMM 

parameters re-estimation using the Baum-Welch algorithm. In passing, it was 
noted the efficient recursive algorithm for computing the forward probability 
also yielded as a by-product the total likelihood P(O|M). Thus, this algorithm 
could also be used to find the model which yields the maximum value of 
P(O|Mi), and hence, it could be used for recognition. 

 
In practice, however, it is preferable to base recognition on the maximum 

likelihood state sequence since this generalizes easily to the continuous speech 
case whereas the use of the total probability does not. This likelihood is 
computed using essentially the same algorithm as the forward probability 
calculation except that the summation is replaced by a maximum operation. 
For a given model M, let Φj(t) represent the maximum likelihood of observing 
speech vector o1 to ot and being in state j at time t. This partial likelihood can 
be computed efficiently using the following recursion  

 
 

( ) ( ){ } ( )max 1j i ij j ti
t t a bφ φ= − o     (1.15) 
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where  
( )1 1 1φ =       (1.16) 

 
( ) ( )1 11j j ja bφ = o      (1.17) 

 
 

for 1<j<N. The maximum likelihood ˆ( | )P MO  is then given by  
 
 

( ) ( ){ }maxN i iNi
T T aφ φ=     (1.18) 

 
 

As for the re-estimation case, the direct computation of likelihoods leads to 
underflow; hence, log likelihoods are used instead. The recursion of equation 
1.15 then becomes  

 
 

( ) ( ) ( ){ } ( )( )max 1 log logj i ij j ti
t t a bψ ψ= − + + o    (1.18)  

 
 

This recursion forms the basis of the so-called Viterbi algorithm and it is used 
from HTK tool HVite for speech recognition. 

 
 

1.6 Summary 
 
In this first chapter we introduced the basic theory for speech recognition 

and we discussed the main parts of a speech recognition system. Also we 
explained the use of Hidden Markov Models in speech recognition, the 
models that most of speech recognizers are using nowadays.  We made clear 
the separation of all the speech recognition systems in two parts, the Training 
and the Test. We saw the main techniques that are used in each part, in 
Training where the main task in the creation of the HMMs and in Test where 
the decisions for the recognition are taken using the HMMs from the first part 
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of the system. We saw how two basic algorithms for speech recognition work 
(Baum-Welch, Viterbi).  
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Chapter 2 
 
 

Speech recognition with HTK 
 

In this chapter we will see how the HTK toolkit implements the main parts 
of a speech recognition system. As we mentioned in the introduction one of 
the main aims of this thesis is to apply a new function in the HTK toolkit in 
the part of the recognition. So, it is necessary to have a clear image, how the 
HTK implements the main functions of a speech recognition system, we have 
shown in the first chapter. Once again, we will use the “HTK book” as a 
reference to present speech recognition with HTK.  

 

2.1 An overview of the HTK toolkit 
 
  Speech Data   Transcription  
 
 
 
 
 
 
 
 
 
 
 
 
 
  Input Speech   Recognition Results 
 

 
Fig. 2.1 The general image 

 
 
HTK is a toolkit for building Hidden Markov Models (HMMs). HMM can 

be used to model any time series and the core of HTK is similarly general-
purpose. However, HTK is primarily designed for building HMM-based 

Training Tools 

HMMs

Recognizer 
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speech processing tools, in particular recognizers. Thus, much of the 
infrastructure support in HTK is dedicated to this task. As shown in Fig. 2.1, 
there are two major processing stages involved. Firstly, the HTK training 
tools are used to estimate the parameters of a set of HMMs using training 
utterances and their associated transcriptions. Secondly, unknown utterances 
are transcribed using the HTK recognition tools. 

 
We will see in more details HTK tools by going through the processing 

steps involved in building a sub-word based continuous speech recognizer. As 
shown in Fig. 2.2, there are 4 main phases:  

 
1. data preparation  
2. training 
3. testing 
4. analysis 
 
 
 

                                                            Data 
Preparation 

 
 
 
 

Training 
 

  
 
 

Testing 
 

 
 
 

 
Analysis 

 
 
 

Fig. 2.2 HTK processing stages 

HLEd 
HLStats 

Transcriptions

HSLab 
HCopy 
HLisy 
HQuant Speech

HCompV, HInit, HRest, 
HERest,HSmooth,HHEd 

HMMs

HVite 

Transcriptions

HResults

Dictionary 

Networks 
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2.2 Data preparation  
 
In order to build a set of HMMs, a set of speech data files and theirs 

associated transcriptions are required. Very often speech data will be obtained 
from databases archives. Before it can be used in training, it must be 
converted into the appropriate parametric form and any associated 
transcriptions must be converted to have the correct format and use the 
required phone or word labels.  

 
Although all HTK tools can parameterise waveforms on-the-fly, in 

practice it is usually better to parameterise the data just once. The tool HCopy 
is used for this. As the name suggests, HCopy is used to copy one or more 
source files to an output file. Normally, HCopy copies the whole file, but a 
variety of mechanisms are provided for extracting segments of files and 
concatenating files. By setting the appropriate configuration variables, all 
input files can be converted to parametric form as they are read-in. Thus, 
simply copying each file in this manner performs the required encoding. In 
stage of data preparation there are more available functions but we are not 
going to reference them in this thesis. 

 
 

2.3 Training process  
 
The second and the most important step of system building is to define the 

topology required for each HMM by writing a prototype definition. HTK 
allows HMMs to be built with any desired topology. HMM definitions can be 
stored externally as simple text files and hence it is possible to edit them with 
any convenient text editor. Alternatively, the standard HTK distribution 
includes a number of example HMM prototypes and a script to generate the 
most common topologies automatically. With the exception of the transition 
probabilities, all of the HMM parameters given in the prototype definition are 
ignored. The purpose of the prototype definition is only to specify the overall 
characteristics and topology of the HMM. The actual parameters will be 
computed later by the training tools. Sensible values for the transition 
probabilities must be given but the training process is very insensitive to 
these. An acceptable and simple strategy for choosing these probabilities is to 
make all of the transitions out of any state equally likely. 

 
The actual training process takes place in stages and it is illustrated in 

more detail in Fig. 2.3. Firstly, an initial set of models must be created. If 
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there is some speech data available for which the location of the sub-word 
(i.e. phone) boundaries has been marked, then this can be used as bootstrap 
data. In this case, the tools HInit and HRest provide isolated word style 
training using the fully labelled bootstrap data. Each of the required HMMs is 
generated individually. HInit reads in all of the bootstrap training data and 
cuts out all of the examples of the required phone. It then iteratively computes 
an initial set of parameter values using a segmental k-means procedure. On 
the first cycle, the training data is uniformly segmented, each model state is 
matched with the corresponding data segments and then means and variances 
are estimated. If mixture Gaussian models are being trained, then a modified 
form of k-means clustering is used. On the second and successive cycles, the 
uniform segmentation is replaced by Viterbi alignment. The initial parameter 
values computed by Hinit are then further re-estimated by HRest. Again, the 
fully labelled bootstrap data is used but this time the segmental k-means 
procedure is replaced by the Baum-Welch re-estimation procedure described 
in the previous chapter. 

  
Once an initial set of models has been created, the tool HERest is used to 

perform embedded training using the entire training set. HERest performs a 
single Baum-Welch re-estimation of the whole set of HMM phone models 
simultaneously. For each training utterance, the corresponding phone models 
are concatenated and then the forward-backward algorithm is used to 
accumulate the statistics of state occupation, means, variances, etc., for each 
HMM in the sequence. When all of the training data has been processed, the 
accumulated statistics are used to compute re-estimates of the HMM 
parameters. HERest is the core HTK training tool. It is designed to process 
large databases, it has facilities for pruning to reduce computation and it can 
be run in parallel across a network of machines.  

 
The philosophy of system construction in HTK is that HMMs should be 

refined incrementally. Thus, a typical progression is to start with a simple set 
of single Gaussian context-independent phone models and then iteratively 
refine them by expanding them to include context-dependency and use 
multiple mixture component Gaussian distributions. The tool HHed is a 
HMM definition editor which will clone models into context-dependent sets, 
apply a variety of parameter tyings and increment the number of mixture 
components in specified distributions. The usual process is to modify a set of 
HMMs in stages using HHed and then re-estimate the parameters of the 
modified set using HERest after each stage. 
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Sub-Word HMMs 
 
 

Fig. 2.3 Training Sub-words HMMs 
 

 
 

2.4 Recognition process 
 
HTK provides a single recognition tool called HVite which performs 

Viterbi-based recognition, as we described in the previous chapter. HVite 
takes as input a network described the allowable word sequences, a dictionary 
defining how each word is pronounce and a set of HMMs. It operates by 
converting the word network to a phone network and then attaching the 
appropriate HMM definition to each phone instance. Recognition can then be 
performed on either a list of stored speech files or on direct audio file. HVite 
can support cross-word triphones and it can run with multiple tokens to 
generate lattices containing multiple hypotheses. It can also be configured to 
rescore lattices and perform forced alignments. 
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Labeled Utterances 

HInit 

HHEd 
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2.5 Analysis tool 
 
Once the HMM-based recogniser has been built, it is necessary to evaluate 

its performance. This is usually done by using it to transcribe some pre-
recorded test sentences and match the recogniser output with the correct 
reference transcriptions. This comparison is performed by a tool called 
HResults which uses dynamic programming to align the two transcriptions 
and then count substitution, deletion and insertion errors. Options are 
provided to ensure that the algorithms and output formats used by HResults 
are compatible with those used by the US National Institute of Standards and 
Technology (NIST). As well as global performance measures, HResults can 
also provide speaker-by-speaker breakdowns, confusion matrices and time-
aligned transcriptions. 

 
 

2.6 Summary  
 
In this chapter we saw in more details a complete system of speech 

recognition. HTK is a specific toolkit which is used widely nowadays for 
speech recognition. We analysed the main parts of HTK and saw the main 
functions that are used in each part. HTK is the tool that we are using for 
speech recognition in this thesis, so this chapter is important for having a 
complete image of the whole process of speech recognition. In this thesis we 
made some changes in the Testing part of HTK and more specific in HVite 
function.  
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Chapter 3 
 
 

Automatic speech recognition in mobile 
networks 

 
 

 

3.1 Introduction 
 

In this chapter we will see the different kind of architectures that are used 
in mobile networks to perform automatic speech recognition. Also we will see 
the main techniques for feature extraction and the quantization of them. In the 
end we will say few words for the coding of speech signal.  
 

Recent progress in Automatic Speech Recognition (ASR) technology has 
enabled the development and deployment of more sophisticated and more 
accurate speech recognition applications. This progress, combined with an 
explosion in the capabilities and use of wireless and mobile communication 
and computing terminal devices, makes it feasible to become a common 
feature and services for current and future portable terminal devices and in 
mobile or wireless networks. This mobile ASR capability can be applied both 
as a user interface to the terminal device as well as a data input/output 
modality between the user and the remote application. 
 

In order to achieve more accurate speech recognition applications over 
wireless channels, it is expected that various modes of operation of speech 
recognition will exist in mobile networks. ASR in mobiles can be 
characterized by the location where the recognition takes place; for example, 
recognition can take place in the terminal device, in a central server, or in a 
mixed or distributed scenario. The constraints that the network imposes on the 
bit rate of the transmitted signal, the limitations imposed by the computing 
capabilities of the device on the complexity of the signal processing front-end 
and the decoder, compounded with the potential exposure of the user to more 
intense and challenging environments, make the problem of ASR in mobile 
environments more susceptible to performance degradation than fixed 
network speech recognition application.  
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3.2 The idea of a centralized ASR 
 

In this section we enumerate the characteristics and limitations that ASR 
applications encounter under the different modalities in which they can be 
deployed employing wireless digital communication links. As we mentioned 
before in this chapter, mobile speech recognition can be characterized 
according to the location where recognition takes place. This defines three 
principal modalities:  
a) Network speech recognition 
b) Terminal speech recognition 
c) Distributed speech recognition  
 
Each of these modalities can have very different and characteristic effects on 
the performance of ASR systems. We describe these modalities in more 
details: 
 
 

3.2.1 Network speech recognition (NSR) 
 

In this scenario, the recognizer is implemented in a location remote to the 
user so the speech signal has to be transmitted from the user’s terminal to the 
recognition server through a wireless channel. Having a recognizer residing in 
a central server enables more sophisticated and elaborate ASR applications 
than those possible on terminal devices. In the server side computers usually 
have sufficient computation and memory resources to support large 
vocabulary continuous speech recognition tasks requiring complex acoustic 
and language models. For example, in a server can run more complex 
applications such as dialog-based systems, speech synthesis and databases 
queries. 

 
A block diagram of a NSR system is shown in Figure 3.1. It consists of 

two distinct components, the mobile terminal and the server of the network. 
The only process occurs to the terminal is the coding of voice signal and the 
transmission of it over the wireless channel. The network server consists of 
three parts: the speech decoder, the feature extraction and the pattern 
recognition. 
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Fig. 3.1   Network Speech Recognition system 

 
 

3.2.2 Mobile terminal speech recognition 
 

In this case, the recognition performed in the user’s terminal device. The 
speech signal does not travel through a wireless communication network, so it 
is unaffected by the transmission channel or source and compression 
algorithms. However, the main disadvantage is that there are constrains in 
computational, memory and power resources due to the cost-sensitive nature 
of the terminal device. These limitations give the possibility, only relatively 
simple recognition applications can be implemented on a mobile device. The 
most popular are hands free voice dialing, basic command and control 
application. 
 
 

3.2.3 Distributed speech recognition (DSR) 
  

In this client-server architecture the ASR application processing and 
computation routines are distributed between the terminal and the central 
ASR server. The speech utterance is acquired at the mobile device (client) and 
transmitted to a remote recognizer engine (server). With this scenario the 
client extracts the features from the voice signal. Then, only the extracted 
features are encoded and transmitted to the server. In the server side the 
speech recognizer operating on the decode feature data. The above process 
described in figure 3.2 that follows. 
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Fig. 3.2   Distributed Speech Recognition system 
 
 
A system of this type can benefit from the advantages of the two modes of 

operation we have previously described: sophisticated systems can be 
implemented (as in NSR), while the features are computed and possibly 
normalized and compressed at the terminal level (as in mobile speech 
recognition). In DSR the computation is distributed between the server and 
the client, most commonly with the client performing the less complex feature 
extraction and the server hosting the complex pattern recognition. Another 
advantage of this approach is that updates of speech recognizers need to be 
done only on the server side, rather than having every device updated. This 
results in a much faster and cost-effective update procedure, and one that is 
effectively “invisible” to the client/customer. A major drawback of distributed 
versus terminal-based speech recognition is the fact that transmission errors 
can lead to degraded recognition performance. In this thesis we adopt the 
distributed approach to wireless ASR and we are going to search for a 
solution to the previous disadvantages. 

 
 

3.2.4 Issues common to the mobile speech recognition 
modalities 
 

The three mobile speech recognition modalities differ in broad terms of 
whether or not the transmitted coded speech is used for recognition, and 
whether the recognizer resides on the terminal device. In spite of these 
dissimilarities, these modalities share the following issues: 
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• Potential exposure to intense environmental noise: This problem is 

compounded by the fact that the additive noise might be highly non-
stationary. Speakers may also modify, albeit unintentionally, their 
speech characteristics when speaking under intense noise conditions. 
Another problem common to hand-held devices that affects the 
quality of the speech signal is the physical placement of the terminal 
device. These types of distortions are the signal typical affects 
recognition substantially. 

 
• Terminal equipment devices are cost sensitive: This implies that 

terminal devices will allow only limited computational capabilities 
and thus allow relatively limited front-end signal processing, feature 
extraction or recognition algorithms. Thus, the mobile network, 
terminal, and distributed speech recognition modalities will have to 
rely, at least in the immediate future on relatively simple signal 
processing, front-ends, and terminal recognizers, as well as 
inexpensive microphones.  

 
 
 

3.3 Speech Signal Parameterization 
 

The first part in the process of speech recognition is the parameterization 
of the speech signal. This occurs in the client side, inside the mobile phone. 
The speech waveform, which is the voice of the user, it is transformed into a 
sequence of parameter vectors. Each of the parameter vectors consist a frame. 
There are many techniques that can parameterize the speech spectrum quite 
well, but we are going to discuss only the filterbank analysis. 

 

3.3.1 Filter bank analysis 
 
The human ear resolves frequencies non-linearly across the audio 

spectrum and empirical evidence suggests that designing a front-end to 
operate in a similar non-linear manner improves recognition performance. 
Filterbank analysis provides a much more straightforward route to obtaining 
the desired non-linear frequency resolution. However, filterbank amplitudes 
are highly correlated and hence, the use of a cepstral transformation in this 
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case is virtually mandatory if the data is to be used in a HMM based 
recognizer. 

 
A cepstrum is a Fourier analysis of the logarithmic amplitude spectrum of 

the signal. If the log amplitude spectrum contains many regularly spaced 
harmonics, then the Fourier analysis of the spectrum will show a peak 
corresponding to the spacing between the harmonics: i.e the fundamental 
frequency. Effectively we are treating the signal spectrum as another signal, 
and then looking for periodicity in the spectrum itself. The cepstrum is so-
called because it turns the spectrum inside-out. The x-axis of the spectrum has 
units of frequency and peaks in the cepstrum are called rahmonics. The 
cepstrum may be defined verbally:  

 
The cepstrum is the FFT of the log of the FFT 

 
The cepstrum can be seen as information about rate of change in the 

different spectrum bands. Usually the spectrum is first transformed using the 
Mel Frequency bands. The result is called the Mel Frequency Cepstral 
Coefficients or MFCCs. It is used for voice identification, pitch detection and 
much more. The cepstrum separates the energy resulting from vocal cord 
vibration from the “distorted” signal formed by the rest of vocal tract. 

 
Mel scale is used to translate regular frequencies to a scale that is more 

appropriate for speech, since the human ear perceives sound in a nonlinear 
manner. In the case of speech recognition, a filter bank is applied of which the 
centre frequency of each bank is scaled according to the Mel scale. This scale 
takes into account the frequency resolution properties of the human ear. The 
inverse Fourier transform of the log output of this filter bank yields the 
MelFrequency Cepstrum Coefficients. 

 
The MFCC parameterization follows common requirements imposed on a 

speech parameterization for speech recognition purposes. Its main features are 
aimed above all at: 

 
• To capture an important information presented in a speech signal 

for recognition purposes 
• To handle as little data as necessary 
• To use any quick evaluation algorithm 
 

Moreover the benefit of MFCC is also in their perceptually scaled frequency 
axis. The mel-scale offers higher frequency resolution on the lower 
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frequencies in the same way as a sound is percept by the human auditory 
organ. In addition, the MFCCs offer through their cepstral nature abilities to 
model both pole and zeros. MFCCs are the parameterization of choice for 
many speech recognition applications. They give good discrimination and 
lend themselves to a number of manipulations.  

 
To augment the spectral parameters derived from mel-filterbank analysis, 

an energy term can be appended in the parameterized vector. The energy is 
computed as the log of the signal energy, that is, for speech samples {sn, n 
=1,N} 

 
 

2log nE s= ∑                           (3.1) 
 
 

In addition to, or in place of the log energy, we can use the 0’th cepstral 
parameter C0. Also, it has been showed that the performance of a speech 
recognition system can be greatly enhanced by adding time derivatives to the 
basic static parameters. It is used to append to the parameterized vector, the 
first order regression coefficients which are also referred as delta coefficients, 
and the second order regression coefficients which are referred as 
acceleration coefficients. When delta and acceleration coefficients are 
requested, they are computed for all static parameters including energy if 
presented.  
 
 

3.4 Quantization 
 
The next step to the remote ASR process is the quantization of features 

vectors. Quantization refers to the process of approximating the continuous 
set of values in the MFCC files with a finite (preferably small) set of values. 
The input to a quantizer is the original data, and the output is always one 
among a finite number of levels. The quantizer is a function whose set of 
output values are discrete, and usually finite. Obviously, this is a process of 
approximation, and a good quantizer is one which represents the original 
signal with minimum loss or distortion. 

 
There are two types of quantization, scalar quantization and vector 

quantization. In scalar quantization, each input symbol is treated separately in 
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producing the output, while in vector quantization the input symbols are 
clubbed together in groups called vectors, and processed to give the output. 
This clubbing of data and treating them as a single unit, increases the 
optimality of the vector quantizer, but at the cost of increased computational 
complexity. 

 
A quantizer can be specified by its input partitions and output levels. If the 

input range is divided into levels of equal spacing, then the quantizer is 
termed as a uniform quantizer, and if not, it is termed as a non-uniform 
quantizer. A uniform quantizer can be easily specified by its lower bound and 
the step size. Also, implementing a uniform quantizer is easier than a non-
uniform quantizer. 

 
 

3.5 Coding – Error protection 
 
The coded speech gets organized into packets of bits (frames), modulated 

and transmitted to the cell/server site. In the server site the packages are 
demodulated and the speech is decoded. At this point it is possible that errors 
have been introduced in the bit-stream representing the signal due to 
interference noise in the transmission. Based on the type of analysis, the most 
sensitive bits are protected or coded more robustly (e.g., using more bits) than 
bits carrying less “perceptual important” information. Also, wireless standards 
permit the regeneration of distorted frames by extrapolation of speech codec 
parameters from adjacent undistorted frames exploiting the correlation or 
continuity that exists in the speech signal between adjacent frames. An 
Unequal Error Protection (UEP) scheme is introduced. The first MFCCs are 
protected more than the last ones, since they are more important to ASR 
performance in that they described the overall spectral shape. More details 
about the UEP scheme we will see in the chapter of implementation, when we 
describe the transmission system.   

 
Whatever error protection scheme we use, it is certain that the signal in 

the receiver will not be the same, due to the noise which will be added. To 
overcome the detrimental effects of transmission errors, common error 
concealment strategies are used but the results are not satisfactory. Almost in 
all the wireless communications there are some basic error mitigation 
algorithms, such as CRC, consistency check, parameters interpolation and 
repetition of previous received frames.  These techniques may help to repair 
random bit errors but may fail for errors occurring in bursts, which are very 
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likely in fading channels. Specially, for the speech recognition systems the 
techniques above cannot be used. So, we have to find another way to deal 
with these errors which can reduce a lot the performance of an ASR system. 
In the next chapter we will discuss a solution to this problem, which is the 
main aim of this thesis 

 

3.5.1 Channel coding considerations 
 
The emphasis in remote ASR is recognition accuracy and not play back. 

Recognition is made by accumulating feature vectors over time and by 
selecting the element in the dictionary that is most likely to have produced 
that sequence of observations. The nature of this task implies different criteria 
for design encoders than those used in speech coding applications. 

 
For speech coding, frequent frame erasures due to poor channel conditions 

result in interruptions, buzzing and muting. For speech recognition where we 
accumulate observations over time, the situation can be different. Frame 
erasures reduce the number of observation vectors for all models, which may 
have little effect on recognition performance. Channel decoding errors, 
however, result in incorrect observation estimates, which in turn affect all 
state metrics, accumulated in the Viterbi recognizer and can be degrade 
significantly recognition performance. Speech recognition, as opposed to 
speech coding, can be more sensitive to channel errors than channel erasures. 

 
In remote speech recognition, especially in wireless communication where 

fadings occur, the decoded feature is a function of the transmission channel 
characteristics. When channel characteristics degrade, one can no longer 
guarantee the reliability of the decoded feature.  If the Viterbi algorithm 
operates without taking into account the decreased confidence in the feature, 
this can have a dramatic effect on speech recognition accuracy since 
maximum likelihood trellis searches accumulate metrics over time and errors 
in decoding a feature will propagate in the path metrics. 

 
 

3.6 Summary 
 
This chapter is an introduction to the automatic speech recognition process 

in mobile networks. We started by explain the three different modalities which 
there are nowadays and we continue giving more information about the 
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Distributed Speech Recognition, which is the modality we will use in this 
thesis. We saw in more details the speech parameterization which is one of the 
most important parts in the whole process. We said few words for the 
quantization and the coding of the speech signal and about error protection for 
automatic speech recognition over wireless channels. In the end of the chapter 
we talked a little for the channel coding considerations. 
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Chapter 4 
 
 

Missing Feature Theory 
 
 

4.1 Introduction 
 
Speech recognition, in contrast with speech coding, can be more sensitive 

to channel errors than channel erasures. This leads us to the idea of Missing 
Feature theory which is a category of the Missing Data theory. The concept is 
that if we cannot correct the errors of transmission in the features, we can hide 
the wrong features from the speech recognition process.  

 
There are two main problems that we have to solve if we want to 

implement the techniques of missing data theory to robust ASR: 
 

a) To find an algorithm which can identify the reliable parts of the 
spectrum in the speech data.  

 
b) To change the recognition process, so it will use only the reliable 

parts of the spectrum 
 
Many researchers until now have been involved in the problem of 

identification of reliable data. For this task, we can use only the properties of 
the speech signal, the physics of sound and human voice. The main idea is to 
divide the feature vector x of speech data into a reliable (present) and 
unreliable (missing/noisy) components x = ( xrel , xunrel ). The process can be 
visualized as if a “mask” xunrel has been placed over the feature vector x 
allowing us to see only the present component xrel.  

 
Later, the idea that dominates the researcher area was to try to deliver 

assessment of how probable is the proposed mask. It would be even better if it 
is possible to assess the probability of every possible mask. That means that 
there will be a probability P(m) associated with each mask m. In other words, 
every feature vector x will be correlated with another vector w, with the same 
length, which will have the probabilities that show how “clean” each feature 
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is. This technique was named as Soft Feature Decoding and it is the one we 
have used in this thesis. 

 
 

4.2 Recognition techniques with Missing Features 
 
The speech models needs to have their probability with only parts of the 

observation vector from the source they are modeling. Since there is no prior 
probability which features are going to missing, it is reasonable to assume that 
the models inferred during the training will have complete feature vectors, and 
will be adapted to handle the occlusion occurring during the recognition 
gracefully and in a principled manner.  

 
They have been proposed three main speech recognition techniques which 

take into account the Missing Feature theory: 
 

1. Data Imputation 
2. Marginalize Unreliable Features 
3. Exponential Feature Weights 

 
We are going to see these techniques in more details in the rest of the chapter. 

 

4.2.1 Data Imputation 
 
The missing data is “filled in” (imputed) using the available knowledge in 

the form of the model P(x|s) where s is the state of the model and the present 
data xrel. In order to do that, the conditional distribution of the missing data 
xunrel is needed first: 

 
 

 

( , | ) ( , | )( | , )
( | ) ( , | )

rel unrel rel unrel
unrel rel

rel rel unrel unrel

p x x s p x x sp x x s
p x s p x x s dx

= =
∫       (4.1) 

 

Then, a single value u nrelx
∧

 from the conditional distribution has to be chosen 
according to some criterion and used as a “plug in” replacement for the 
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missing values. The choice can be made by minimizing an error criterion. One 
of the most commonly used error measures is the mean square error (MSE).   
 
Depending on the circumstances of application of the technique, other criteria 
may be used as well. For example, unreliable values could be replaced by the 
means for those components. A better approach is to use knowledge of 
reliable components in conjunction with the covariance of the distribution 
function that follows each value. Once u n r e lx

∧  is computed, it is used as a 
plug-in value instead of xunrel and the “filled in” feature vector ( xrel, u n r e lx

∧
 ) 

is used for further processing. 
 

This technique has some important disadvantages. The idea to use the 
reliable data for computing the data that are missing, it does not always give 
good results. In wireless communications it is very common to have a whole 
frame with noise, so we cannot rely on this data for reproducing any data of 
this frame. Also, the processing time for this technique it is normally long 
enough for real time voice applications, so it is very difficult to be used in this 
kind of applications. The main advantage of this technique is that we do not 
need to make any change in the speech recognizer because the observation 
vector has not any changes.  
 

4.2.2 Marginalize Unreliable Features 
 
This error concealment strategy discards the transmitted features which 

are most probably erroneous and uses only the reliable ones for likelihood 
computations at the speech recognizer. A reduced feature vector is used based 
only on the components that have a high confidence level. In a hidden Markov 
model (HMM) based speech recognition system, the observed feature vectors 
are modeled by state-specific probability distributions p(x|s), where x is the 
feature vector and s is the state of the model. Usually a mixture of Gaussian 
densities is used for each state of the phoneme specific HMM. In this case, the 
reduced distribution for the reliable part of the feature vector is the marginal 
determined by integrating over all the unreliable components: 

 
 

   ( | ) ( | )rel unrelp x s p x s dx=∫                      (4.3) 
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where xrel, xunrel are the reliable and unreliable components of the feature 
vector. 

 
Using the distribution of only the reliable components for HMM 

likelihood computation is one of the first techniques for improving robustness 
of speech recognizers in noisy conditions, and it was labeled as the “Missing 
Feature theory”. For speech recognition in noise, labeling unreliable spectrum 
features can be a challenging task, while in our application the reliability of 
each feature is provided by the channel decoder. With diagonal covariance 
Gaussian mixture model, which is the model we are using in this thesis, the 
reduced likelihood function can be easily calculated by dropping unreliable 
components from the full likelihood computation. This approach requires little 
modification in existing speech recognition systems. 

 
The soft-feature decoding algorithm that computes likelihood using the 

marginal distribution over unreliable features is implemented as follows: 
 

i. for energy and cepstrum features, if the first or the second bit of 
the decoder symbol has absolute likelihood ratio |Λ(n)| below 
threshold ΛT it is labeled as “unreliable” and not used in the 
likelihood computation. Λ(n) is computed from equation  

     
( ( ) 1)( ) ln
( ( ) 0)

prob a nn
prob a n

=
Λ =

=                             (4.4) 

 
ii. for “delta” and “delta-delta” features, if the first or the second bit 

of any of the symbols in the window used for the delta 
computation has |Λ(n)| < ΛT, then, do not use the delta feature in 
the likelihood computation. Five and seven frame windows are 
used for delta and delta-delta computation, respectively. 

 
The likelihood ratio threshold that minimizes recognition error can be 
computed from held out data. 

 
This soft-feature decoding algorithm, which is labeled as SoftFeatI, has 

made an improvement to the results of speech recognition for wireless 
channels, but still, we can receive better results with a little change. The 
decision for reliable and unreliable data is so “hard”. What if a more “soft” 
decision was made about the data that are affected by noise in the channel? 
The idea of continuous confidence values was born. In this case, continuous 
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confidence values between 0 and 1 would be used and the distribution of each 
feature to the likelihood computation would be scaled by its confidence. In the 
following paragraph we discuss in more details this idea. 
 

4.2.3 Exponential Feature Weights 
 
An alternative soft feature decoding algorithm, labeled SoftFeatII applies 

exponential weights to each feature in the probability computation in decoder. 
Specially, assuming that the state observation probability density function 
(pdf) is a mixture of Gaussian pdfs with diagonal covariance the observation 
probability computation formula is modified as follows: 
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Where x is the feature vector, N is the size of the feature vector, M is the 
number of Gaussian mixtures per states and wm,µm,σm, are the mixture weight, 
mean and standard deviation, respectively, of the mth Gaussian for HMM 
state s. 

 
Cn is the confidence associated with the nth feature and ( )nf C  is a 

function of the confidence Cn. Note that C is a function of time and is updated 
at the frame rate, as often as x is updated. Assuming that the confidence is 
normalized to a number between 0 and 1, then one possible form of the 
function  

 

( )
1

a Cf C
a
+

=
+                                              (4.6) 

 
 

where a is a smoothing constant that is experimentally determined so that 
error is minimized on a held-out data set. For very large values of a, all 
features are more or less weighted equally, confidence C is practically 
ignored, while for very small of a, only features with high confidence ( 1)nC ≈  
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are considered in the observation probability computation. All other aspects of 
the decoding process, apart from the feature weighting in the state observation 
probability computation, remain unchanged.  

 
To compute the feature confidence the symbol bit probabilities computed 

at the channel decoder are translated into feature confidence scores. In our 
case, the mapping from feature value to sequence of bits (quantization) is 
nonlinear. The feature confidence score is thus computed numerically as 
follows: 

 
• Assuming that the most probable symbol obtained at the channel 

decoder is S
∧

, and P(Sk) is the probability that the decoder produces 
the kth symbol and also assuming independence among bits, P(S) 
is simply computed as the product of the decoder probabilities for 
each of the bits in the symbol. The expected mean square error E 
for that features is computed as: 

 
2

1 1( ) ( ) ( )k k
k

E P S Q S Q S
∧

− −⎡ ⎤= −⎢ ⎥⎣ ⎦
∑                  (4.7) 

 
where is the inverse of the quantization mapping. The expected 
mean square error is normalized by the feature variance and 
subtracted from 1 to produce the feature confidence C. 

   
 

4.3 Summary 
 
In this chapter we introduced the Missing Feature Theory. We discussed 

how this idea was born and the two major problems we have to solve. The 
first one is to find an algorithm which can identify the reliable parts of the 
spectrum in the speech data. After, we have to change the recognition process, 
so it will use only the reliable parts of the spectrum. Then we saw three basic 
techniques for soft feature decoding with their advantages and disadvantages.  
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Chapter 5 
 

Implementation 
 
 

In this chapter we describe the whole process of speech recognition over 
wireless channel. We start from what happens into the mobile terminal and we 
reach until speech recognition results which come out to the server side. Our 
work is based on the procedure which is followed in [2].  

 
 

5.1 Mobile terminal 
 
In a DSR system, three are the main functions which are executed in the 

mobile terminal: 
 

1. Parameterization of the speech signal 
2. Quantization of the parameterized signal 
3. Transmission  
 

 
 
 

.wav                                        .mfc                                       .bin     
 

 
 
 

Fig. 5.1: Functions occur in mobile terminal 
 

 

5.1.1 Parameterization of the speech signal 
 
In the mobile, the voice of the user is recorded and is produced a WAV 

file. In order to receive the cepstral features, we pass the WAV file from a 
Front-End feature extraction algorithm. Using cepstral features for signal 
parameterization is a compact and robust speech representation, well suited 

Parameterization 
Front-End 

Quantization Transmission 
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for distance based classifiers. In this thesis, we calculate cepstral features 
using a Mel-filter bank analysis. The acoustic features for speech recognition 
used in this thesis are the 12 cepstral coefficients, C1, C2,…,C12, calculated 
every 10ms based on MFC analysis, and in place of the signal energy, we use 
the 0’th cepstral parameter C0. For the above we used the HCopy tool of HTK 
toolkit. 

 
Until now we have a 13-dimensional feature vector every 10ms. The 

acoustic input to the ASR system will be 39-dimensional feature vector, 
because as we had said in paragraph 3.3.1 the performance of a speech 
recognition system can be greatly enhanced by adding time derivatives to the 
basic static parameters. So, delta and delta-delta coefficients will be generated 
in server side, just before enter the speech recognition system. The next step is 
the quantization of the feature vectors. 

 
 

5.1.2 Quantization of the parameterized signal 
 

In order to transmit from wireless handset to network based recognition 
server, all 13 features are scalar quantized. A simple non-uniform quantizer is 
used in this thesis, to determine the quantization cells. The quantizer uses the 
empirical distribution function as the companding function, so that samples 
are uniformly distributed in quantization cells. The algorithm is a simple non-
iterative approximation to Lloyd’s algorithm, which does not necessarily 
minimize quantization noise. Better performance may be achieved using a k-
means type of algorithm applied to the entire feature vector (vector 
quantization). The coding algorithm that we use is valid for different 
quantization scheme, so quantization scheme and coding can be implemented 
separately.  

 
The bit allocation scheme used in all experiments in this thesis is shown in 

Table I. Six bits were allocated for each of zero cepstrum coefficient (c0) and 
the most significant cepstrum (c1,…,c5) features, while four bits were 
assigned to each if c6,…,c11. Empirical tests showed no significant 
performance degradation for the evaluated task by replacing the last (12th) 
cepstral coefficient c12 with its fixed precalculated mean. This means that 
there is not much information relevant to the speech recognition process in c12 
and, thus, no bits were allocated to c12. At the receiver, c12 is simply restored 
to its fixed precalculated average value, and the standard 13-dimensional 
feature vector is used for the next steps of recognition process.  Note that our 
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ASR unit employs c12, therefore, the value of c12 is restored at the receiver. 
The total number of bits allocation scheme is 60bits/10-ms frame. This 
requires an uncoded data rate of 6kb/s to be transmitted over the wireless 
channel. 

 
 
Feature Component c0, c1,c2,c3 

c4,c5 

c6,c7,c8 
c9,c10,c11 

c12 

Bits per Feature 6 4 0 
 
 

Table 1: Bits allocation for different feature components 
 
 

5.1.3 Transmission system 
 
The data rate for the quantized speech parameters is 6kb/s. With the 

addition of error protection bits the coded data rate is 9.6kb/s. This is one of 
the data rates used in North American cellular standard IS-95. The channel 
overhead introduced at 9.6kb/s-data rate is reasonable and if lower coded bit 
rates are required trellis coded modulation schemes with higher order 
modulation may be considered.  The modulation format of the coded signal 
does not have an important effect to the whole process of remote ASR, so we 
chose the Binary Phase Shift Keying (BPSK) to simplify the demodulation 
process. 

 
In slow fading channels, it is useful to have a large interleaver to improve 

the system performance. However, large interleavers introduce delays and this 
may not be desirable in some real-time applications.  To provide better time 
diversity and improve performance in slow fading channels coded data is 
interleaved over 8 speech frames or 80ms. The total interleaving and 
deinterleaving delay associated with this is 160ms and this time can be 
tolerated in wireless speech recognition applications.  

 
The 12 parameters that have to be protected in a 10-ms speech frame are 

the c0(n) in place of energy and the 11 cepstral  coefficients c1(n), c2(n),..., 
c11(n) where n denotes the speech frame index. Obviously, the most 
significant bits of the above parameters should have better channel error 
protection. In addition, it was determined experimentally that the zero cepstral 
coefficient c0(n) is the most sensitive to quantization as well as random 
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transmission error, followed by c1(n),…, c5(n) and then c6(n),…, c11(n). The 
channel coded bit rate is 9.6kb/s, therefore, the total coded bits in a 80 ms 
channel encoded frame is 768. 

 
 

5.1.3.1 Unequal Error Protection scheme 
 
The UEP scheme that we used in this thesis is based on [6]. It consists of 

three levels of channel error protection denoted by L1, L2 and L3. 
Furthermore, to emphasize the significance of the most important bits of L1, 
this is separated to two levels: L1_1 and L1_2. The assignment of the bits for 
different UEP levels is shown to Table 2. In this notation, 0 1

0 0( ), ( )c n c n ,… 
denote the bits of c0(n) in decreasing order of significance. As seen from the 
table, the number of bits per speech frame in L1, L2 and L3 are 13, 24 and 23, 
respectively. In this case, L1_1 contains the bits that are determined to be the 
most important 7 bits and L1_2 contains the next 6 important bits. We employ 
a rate 1/2 memory 8 code on L1 level bits and thus, the total number of coded 
bits for 8 speech frames for L1 level is 208. 

 
The L2 level contains the next 24 important bits and the total number of 

uncoded L2 bits for 8 speech frames includes the 8-bits tail is 200. In order to 
maintain a total bit budget of 768 coded bits, we puncture 24 bits of the 400 
coded bits to give 376 bits for L2. The least important bits are in L3 and these 
184 bits are transmitted without any channel coding.   

 
Channel coding is done so that L1_1 level bits are followed by L1_2 and 

then L2. Note that, because of the puncturing of coded L2 bits and since the 
coded L1 bits are not terminated, those bits of L1_2 that are separated from 
L2 level by less than a decoding depth of the channel code will not be 
subjected to the usual rate 1/2 mother code. At the channel encoder input the 
L1_2 level bits for the 8 speech frames n,(n+1),…,(n+7) are arranged in the 
following manner: 2 2 2

0 0 0c (n),c (n+1),...,c (n+7) ; 1 1 1
1 1 1( ), ( 1),..., ( 7)c n c n c n+ + ;...; 

1 1 1
5 5 5( ), ( 1),..., ( 7)c n c n c n+ + . As stated previously, we have determined that the 

coefficients c1(n) are more significant than c5(n) and, therefore, this bit 
arrangement will assign bits of lower significance toward the end of the L1_2 
frame which will be subjected to a less powerful code than the usual rate 1/2 
mother code. 
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Table 2: Speech bit assignment for different UEP levels 
 
 
 

5.2 Server side 
 
The server side consists of two main modules: 
 

1) Channel decoder 
2) Speech Recognition unit 

 
 

Channel Output                                    Recognizer Input                                  Recognizer 
                           

Decisions   
 

 
Fig. 5.2: Server side image 

 

5.2.1 Channel Decoder 
 

The channel decoder has two functions: 
 

Level Speech Bits Error Protection 
L1_1 0 1 0 0 0 0 0

0 0 1 2 3 4 5( ), ( ), ( ), ( ), ( ), ( ), ( )c n c n c n c n c n c n c n  rate ½ conv. code 

L1_2 2 1 1 1 1 1
0 1 2 3 4 5( ), ( ), ( ), ( ), ( ), ( )c n c n c n c n c n c n  rate ½ conv. code 

L2 3 4 2 3 2 3
0 0 1 1 2 2( ), ( ), ( ), ( ), ( ), ( ),c n c n c n c n c n c n ... 
0 1 0 1
6 6 7 7( ), ( ), ( ), ( ),c n c n c n c n ... 0 1

11 11( ), ( )c n c n  

rate ½ conv. code 
and puncturing  

L3 5 4 5 4 5
0 1 1 5 5( ), ( ), ( ),..., ( ), ( ),c n c n c n c n c n  

2 3 2 3 2 3
6 6 7 7 11 11( ), ( ), ( ), ( ),..., ( ), ( )c n c n c n c n c n c n  

no code 

Channel 
Decoder 

Speech  
Recognition 
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1. To recover the MFCC files 
2. To implement Soft Feature Decoding 

 
 
 
                                                  DECODER 
 
 
 

        Channel Output                                                                  ASR Input 
                                                                                                                             
 
 
 
 
 
 

Fig. 5.3: Decoder block 
 

 
The first function is the dequantization of the transmitted signal. In this 

stage we will recover the MFCC files which we have sent into the channel. 
Except from the quantization error, now we have also the channel noise. This 
source of errors is more important and our aim in this thesis is to minimize its 
effect to the speech recognition system. To achieve this, we introduced the 
Soft Feature Decoding procedure. We use an algorithm that maximizes the a 
posteriori probability (MAP) [5] which gives the a posteriori probability of 
each decoding bit. More specific, bit error probabilities are estimated using 
the Max-Log-MAP algorithm. The ASR unit utilizes this information to give 
improved performance gains. 

 
The channel output except from the transmitted signal has also other 

information which concerns the transmitted bits. This data is input to the Soft 
Feature decoding function, which in this thesis, it is a simple file written in C 
programming language. The information we have for each bit, can tell us the 
probability to have in the receiver a “clean” bit or not. Furthermore, knowing 
the allocation bits for the features in the transmission system, we can obtain 
the information of how “clean” is each feature we receiver in the decoder.  
 

The work of the Soft Feature decoder is to calculate the probability of 
each received feature to be clean from channel noise. So, the output of this 

Recover of 
MFCC 

Soft Feature 
Decoding 
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part of the decoder is a continuous value from 0 to 1. These values will be 
used in place of confidence function ( )nf C  which we have introduced in 
4.2.3 paragraph, when we explained the Exponential Feature Weights 
function. When the weight is 1, it means that the feature we have received in 
server side is “clean” and it will be used in recognition process by the speech 
recognizer. If the weight value is 0, then this feature has so much noise that it 
will not be participated in the ASR process. The rest of the values show a 
percentage of how correctly has been received each feature.  

 
The Soft Feature Decoding algorithm uses the information from the Most 

Significant Bits (MSB) of each feature, in order to produce the confidence 
level of each received feature. For the C0 coefficient utilizes the 5 MSB to 
compute the weight, for the coefficients C1,C2,C3,C4 and C5 uses the 4 MSB 
and for the rest of the coefficients only the first and the second MSB. If the 
MSB in the feature is “clean” from noisy, this means that, it is more possibly 
this feature has been received “clean” in the server side. So, to show the 
importance of the MSB we put a weight with which we multiply the 
confidence level of each bit of the feature. The weight for the MSB is 1, 0.5 
for the second MSB and so on. To calculate the confidence level of the feature 
we sum the confidence level of the MSB. More details about this algorithm 
there are in the Appendix part.  

 
The output of the Soft Feature function is organized into vectors. Each 

vector of weights is grouping together with the corresponding feature frame. 
In our implementation, we computed the confidence level of 39 features per 
frame which are 13 MFC coefficients, 13 delta coefficients and 13 delta-delta 
coefficients. In this step there is a miss match in the length of feature vector 
and weight vector. This is going to be arranged by the ASR system, where we 
will compute the delta and delta-delta coefficients. 

 
 

5.2.2 Speech Recognizer 
 
First we will say few words for the speech recognition engine we used. 

The HTK toolkit, version 3.2.1, was used in all the experiments in this thesis. 
The TIMIT corpus was used for training and testing purposes. The phoneme 
HMMs models use 3 states with a mixture of Gaussian with 16 components 
and they were trained using Baum-Welch assuming a diagonal covariance 
matrix. The training was done with the clean data and the testing with the files 
which have been passed the implementation process we have described 
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earlier. The Viterbi algorithm was used for the testing process and all the 
recognition results are reported as phoneme percentage correct. In order to use 
the outputs of Soft Feature Decoding algorithm, we made some changes in the 
HVite tool of HTK and in the calculation of output probability. All the details 
for these changes, there are in Appendix part. 

 
The last thing we have to do in the speech frames, before entering the 

speech recognizer, is the augmentation of feature elements from 13 to 39. So, 
we use once again the HCopy tool of HTK toolkit and we add the 1st and the 
2nd order time derivatives. Now feature vector has the same length with 
weight vector.  

 
 

5.3 Summary 
 
In this chapter we saw the implementation, of all the parts of this thesis. 

We started from the functions occur in mobile terminal. The features 
extraction is the first action. It follows the quantization of the speech signal 
and in the end the transmission system module. We saw in details the Unequal 
Error Protection scheme we use in our application. The new in this thesis is 
the implementation of a Soft Feature Decoding function, which generates an 
additional value giving the confidence of correctly decoding each received 
feature. We saw also the small changes we made in speech recognition unit, in 
order to use the output of Soft Feature algorithm. 
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Chapter 6 
 
 

Results and Evaluation 
 
 

In this chapter we will see the speech recognition accuracy we achieve 
with the implementation we have proposed in the previous chapter. In the first 
part, we will see the speech recognition results and then we will have the 
evaluation. 

 
 

6.1 Speech Recognition Results 
 
The HTK toolkit has one tool for recognition (HVite) and one for 

evaluation (HResults). HResults compares the transcriptions output by HVite 
with the original reference transcriptions and then outputs various statistics. 
HResults matches each of the recognized and reference label sequences by 
performing an optimal string match using dynamic programming. The 
percentage correct is computed by the HResults from the following equation: 

 
 

Percentage Correct = 100%N D S
N

− −
×                               (6.1) 

 
 
where N is the total number of labels, D is the number of deletion errors and S 
in the number of substitution errors.  
 
 
TIMIT 
 

The speech database we used for the experiments was DARPA TIMIT 
database. The DARPA TIMIT speech database was designed to provide 
acoustic phonetic speech data for the development and evaluation of 
automatic speech recognition systems. It consists of utterances of 630 
speakers that represent the major dialects of American English. The training 
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part was made with 3696 sentences and the testing with 1344 sentences. The 
whole process of speech recognition is with phonemes. The phoneme list 
consists of 47 phonemes. 

 
 The channel simulator we used has three main parameters. The first is the 

speed of the mobile terminal, the second is the Signal-to-Noise Ratio (SNR) 
and the third is the noise distribution function. We wanted to simulate a fading 
channel, so we used a Rayleigh distribution for noise in the channel which is 
very close to the real conditions of noise in a wireless channel.  

 
For a Rayleigh fading channel we executed experiments for different SNR 
values and speeds of the mobile. We chose the speed of 10, 50 and 100 km/h 
and the SNR of 0dB, 1.5dB, 3dB and 5dB.  First we computed the speech 
recognition performance without using in the speech recognition unit the 
outputs of the Soft Feature decoding. Then we executed again the speech 
recognition, but this time we took into account the outputs of Soft Feature 
algorithm. The first implementation we labeled it, as a Baseline Decoding 
scheme and the other as Soft Feature Decoding scheme. The results for both 
of these schemes are listed below. The clean baseline result is 60.40%. 

 
 

Speed 
[km/h] 

Decoding 
Scheme 

5dB 3dB 1.5dB 0dB 

Baseline 56.53 
 

53.00 48.97 
 

43.01 10 

Soft 
Feature 

56.41 52.98 48.85 41.67 

Baseline 58.54 56.71 52.84 45.97 50 

Soft 
Feature 

58.56 56.71 52.74 45.20 

Baseline 59.24 
 

58.11 55.15 47.80 100 

Soft 
Feature 

59.24 
 

58.11 55.16 47.32 

 
Table 3: TIMIT database. Phoneme level recognition accuracy with and 

without Soft Feature decoding for a Rayleigh fading channel with different 
speeds and SNRs. 
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As we can see, the results we take with the baseline scheme are the ones 
we expected. When we have the same SNR the results are better for the 
mobile terminals which are moving with higher speed. This is because the 
mobiles are passing through the “noise hole” for a shorter time and there are 
affected less from the noise. But, the use of Soft Feature algorithm does not 
improve at all the speech recognition performance. This comes in contrary 
with the theory we have discussed in previous chapters where we were talking 
for significant improvement. 

 
 
AURORA 2 

 
The results we had with the TIMIT database were not the ones we 

expected. We wanted to see an improvement when we applied the Soft 
Feature Decoding algorithm and we used the confidence level of received 
features in final recognition. In TIMIT database the recognition is done in the 
level of phonemes and we believe that this is the main reason why the results 
are not following the theory of Missing Feature. So, changing just the 
database and keeping the rest of the implementation process exactly the same, 
we expect to have better results. 

 
We choose the database of AURORA 2. Here the recognition is done in 

word level instead of phonemes as we had before. The word dictionary we 
have now is the 10 digits (zero, one, two…nine). The testing part of the 
speech recognition system was done with 3712 sentences. Each sentence has a 
different number of digits. The digits are spoken in continuous way but can 
also have silence pause between them. 

  
 We use again MFC coefficients and in general the whole process is the 

same as in the previous example with TIMIT database. We executed the 
experiments for a Rayleigh fading channel with SNR and speed parameters 
exactly the same as before. The results are listed in the following table. We 
can see that now there is a significant improvement using the outputs of the 
Soft Feature Decoding. The clean baseline result is 99.31%. 
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Speed 
[km/h] 

Decoding 
Scheme 

5dB 3dB 1.5dB 0dB 

Baseline 96.23 85.26 84.26 71.71 10 

Soft 
Feature 

98.10 89.16 92.70 86.02 

Baseline 98.91 97.55 93.53 82.08 50 

Soft 
Feature 

99.17 98.69 97.04 92.66 

Baseline 99.21 98.61 96.68 87.07 100 

Soft 
Feature 

99.19 98.93 98.16 94.14 

 
 

Table 5: AURORA2 database. Word level recognition accuracy with and 
without Soft Feature decoding for a Rayleigh fading channel with different 

speeds and SNRs. 
 
 
The above results are following the theory of Missing Feature we have 

discussed in chapter four. Now, we can see the significant improvements over 
the baseline for Soft Feature algorithm. In general, the improvement is 
independent of the mobile speed and higher improvement is shown in lower 
SNR channel. The reduction of word error rate is around 50% for all the 
occasions, except for channels with very high SNR and speed. The 
improvement is substantial and is equivalent to enhancing the channel SNR by 
about 1.5db and even in some occasions 2db. 

  

6.2 Evaluation 
 
The system we implemented in this thesis composed of many independent 

parts. To be sure that there is nowhere an error, we made many testing. We 
began from HTK changes w made in the testing part of recognition and more 
specific in HVite tool. Then we checked the outputs of Soft Feature algorithm. 
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HTK changes 
 
A big part of this thesis was to make the necessary changes to the HTK 

toolkit so it can use in the final recognition process the outputs of Soft Feature 
algorithm. This new function correlates each feature with a weight which 
comes out from the soft feature decoding. When we completed this change 
and before proceed to the next step of implementation, we checked that the 
new function works correctly.  

 
The first check was to fill all the weights with value equal to one. That 

means, all the features are correct and they participate with 100% in 
recognition process. The result we expect is exactly the same as the clean 
baseline result and this is exactly the same 60.40% final recognition 
performance. Then, we took the clean speech data and we put noise in some 
feature. In the same time we computed the weights for these features. So in 
the beginning, we chose by luck three and five features per frame, we changed 
their coefficients values in half and we put the corresponding weights equal to 
0.5. We executed the baseline and soft feature recognition and we received the 
presumed results. Also, instead of choosing by luck the coefficient, we can put 
noise in specific features in every frame. So, we decided to check the 
reactions when the noise is in the feature of energy and in the first MFC 
coefficient. The results of the above test are listed below: 

 
 

Noise Baseline (%) Soft Feature Decoding 
(%) 

3features/frame 58.97 59.49 

5features/frame 57.58 58.57 

Energy 22.69 40.13 

C1 53.11 55.99 

 
Table 6: Recognition results for the testing of HTK changes 

 
As we can see, Soft Feature decoding works correctly. In all the occasions 

the recognition results are higher than the baseline. Also, we can conclude that 
the energy coefficient is the most important in speech recognition and we have 
to be very careful when we choose a weight for it. Being sure that the changes 
we accomplished in the testing part of HTK are working without any bugs, we 



 - 56 -

moved on, in the implementation of the speech recognition system over 
wireless channel.  

 
 

Weights Computation 
 
The next important check we had to make is for the outputs of Soft 

Feature Decoder. We need to have a measure of correctness of the confidence 
level which is computed for each feature. So, first we computed the difference 
between the values of coefficients from the data we have received in server 
side and the clear data. This difference shows how much noise was added in 
the transmitted features. Now, we try to compute the correlation between this 
difference and the weights which are produced by Soft Feature algorithm. The 
perfect scenario is to have correlation value equal to one, but this never 
happens to real world application. So, the correlation we have in our 
application is 0.5. This correlation between noise and weight is a realistic 
value and can give the improvement in speech recognition we have talked 
before.  

 
We examined more the results of Soft Feature algorithm to be sure that 

there is nowhere an error in this part of the system. Unfortunately, we 
observed that in some occasions the weights which are produced have a wrong 
value. That means, in a correctly received feature the soft feature algorithm 
puts the value of the corresponding weight no close to one and the contrary; it 
puts to a wrongly received feature a weight no near to zero. Probably, this 
problem can be overcome by changing some parts in the soft feature 
algorithm. This is one of the most important future works of this thesis. More 
research is underway to tune the parameters of Soft Feature algorithm on held-
out data to further improve performance. 

 
 
Pseudo Soft Feature algorithm 
 

The bad results we received using Soft Feature algorithm in the TIMIT 
database made us to research more this case. We wondered, what the results 
would be if we had a perfect soft feature algorithm? A perfect algorithm in our 
case is the one which chooses correctly the weights for all the features without 
making any mistake. In such an algorithm the correlation between noisy 
features and weights has to be very close to one. 
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In order to achieve correlation near to one, we compared the clean data 
with the one which has passed through the channel. We computed the 
difference between the clean and the noisy feature and then taking into 
account this difference we set the confidence level of each feature. The 
correlation we achieved with this technique was a little higher than 0.9. Now, 
we expected to have a significant improvement in speech recognition 
performance but there is not. 

 
 

 Baseline Soft Feature 
(Correlation:50%) 

Pseudo-Soft Feature 
(Correlation:90%) 

3db – 50km/h 56.71 56.71 57.10 

1,5db – 10km/h 48.97 
 

48.85 50.08 

 
Table 7: Effect of correlation between noise and weight in final 

recognition results using TIMIT database 
 
 
The speech recognition accuracy we reached with correlation near to one 

it does not have significant difference from the baseline. The improvement in 
channels with a lot of noise is less than two percent higher. This test tells us 
that the Soft Feature algorithm does not improve significant the speech 
recognition in systems which work with phonemes instead of word. 
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Chapter 7 
 
 

Conclusions and Future Work 
 
 

7.1 Conclusions 
 

The aim of this thesis was to apply a Soft Feature Decoding algorithm for 
speech recognition purposes over wireless channels. First, we made the 
necessary changes to the speech recognizer unit. Then we worked in the 
process of a distributed speech recognition system. We separated the whole 
process into two main parts, the part of the mobile terminal and the one of the 
server side. In the first one, there are the feature extraction function, the 
quantization and the transmission system. In the second part, there are the 
channel decoder and the speech recognizer. 

 
In the beginning of this thesis, we worked with the speech recognizer unit, 

which in our case is HTK toolkit. We managed to change the Testing part of 
the recognizer, so it will be possibly to use the information that is generated 
from any Soft Feature Decoding algorithm. So, the speech recognition process 
is independent from the Soft Feature Decoding algorithm. The only constraint 
we have is that the soft feature algorithm to produce a weight value for every 
feature component which is used for the speech recognition. That means, the 
weight vector and the feature vector that enter the speech recognizer have the 
same length.  

 
Then, we worked on the functions in the mobile terminal. The first of 

them is the speech parameterization. We used a Front-End feature extraction 
algorithm and we obtained the parameterized signal. The features which we 
worked with were the 12 MFC coefficients and the 0’th coefficient instead of 
signal energy. The next step is the quantization of the signal. We used a scalar 
non-uniform quantizer, which does not necessarily minimize quantization 
noise. Final we transmitted the quantized signal, using an Unequal Error 
Protection scheme, which protects the first 6 MFCCs more than the rests. This 
is logical because the first coefficients are more important for the speech 
recognition, they are carrying with them more “perceptual important” 
information so they need better protection.  
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The last component of the system is the server side functions. Here, there 
are placed the channel decoder and the speech recognition unit. In our work, 
the channel decoder except from the decoding of the speech signal has a more 
important work to do. A part of the decoder is the Soft Feature Decoder 
function which generates an additional value giving the confidence of 
correctly decoding each received feature from the server. This is a way to 
minimize the effect of the channel noise. The weights which are produced 
from the Soft Feature Decoder are used from the speech recognizer to obtain 
better performance.  

 
As a conclusion to this thesis, we managed to apply a Soft Feature 

Decoding algorithm for speech recognition purposes over wireless channels. 
The algorithm employs the bit probabilities at the channel decoder to assign 
confidence on the ASR features. This information is used during decoding to 
improve speech recognition performance. The proposed algorithm can 
enhance speech recognition performance for any wireless channel, ASR 
feature encoding scheme, channel protection scheme, cepstral coefficients and 
speech recognizers.  

 
 

7.2 Future Work 
 

The whole system of speech recognition over wireless channel has many 
parts which can be developed separately. So, there are many things we can 
work with them, for the improvement of the final results.  

 
Into the mobile terminal we can use different algorithms for feature 

extraction from the voice signal. Parameterization of the signal is an important 
procedure for the speech recognition and many researchers are working in this 
area. But in the case of wireless communications, it is also very important the 
quantization of the signal. The channel constrains in transmission rates define 
the bit allocation scheme for the transmitted features, and unfortunately we 
cannot have significant changes in this part. But, we can do a lot of work in 
the quantization algorithm. In this thesis it was not an aim to find the best 
quantization algorithm, so we use a simple scalar and non-uniform one. For 
future work we can try to change the quantization algorithm and use, for 
example, vector quantizer instead of scalar and uniform instead of non-
uniform. Also, we can choose another error protection scheme for the 
transmission over the channel. 
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We can see this thesis as a component of a bigger project. With this point 
of view we can apply the same Soft Feature Decoding algorithm in similar 
systems. Thus, we will have better evaluation results. We can make changes 
in some part of the whole process and see the difference in the final results. 
For example we can use LPC coefficient for voice parameterization and a 
different feature extraction algorithm. Also, a very good idea it would be the 
speech recognizer to make the recognition in word level and not in phonemes. 
In the last occasion, we expect much better results using the Soft Feature 
Decoding algorithm.  

 
An important future task which should be done is to make the necessary 

changes to other speech recognizers so they can accept the outputs of the Soft 
Feature Decoder and to use them in the testing part of the recognition. Also, it 
will be a very good idea to use another database for the training and the 
testing parts. With the above experiments we will have a more general image 
of the application of Soft Feature Decoding in speech recognition over 
wireless channels. 
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Appendix 
 

 

Analysis of output probability function DOutP  
 
Function DOutP is defined in the HModel.c file in HTKLib folder. 

HTKLib folder includes all the files which are used from the tools of HTK. 
The programming language that is used for all the files is C. DOutP is placed 
in the part of HModel.c for the calculations of the Output Probabilities. It 
computes the probability, for the Diagonal case, of an observation vector x in 
the given mixture.  

 
 

Declaration 
 
1: static LogFloat DOutP (Vector x, int vecSize, MixPDF *mp) 
2: { 
3:     int i; 
4:     float sum, xmm; 
5: 
6:  sum = mp->gConst; 
7:     for (i=1; i<=vecSize; i++)  
8:   { 
9:         xmm=x[i] - mp->mean[i]; 
10:         sum += xmm*xmm*mp->cov.var[i]; 
11:      } 
12:     return -0.5*sum; 
13: } 
 
 

Computation of probability 
 
The general type which computes the probability for the normal density is: 
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where d is the length of vector x, µ is the mean vector and Σ is the covariance 
matrix dxd. For the Diagonal case the equation (1) is converted to 
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and if we express the above equation in ln  
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The first two components are calculated inside the FixDiagGConst 

function. So     
 
mp->gConst = d ln2π + d lnσi

2 

 



 - 63 -

in DOutP compute the rest of the probability 
2

i i

i

x µ
σ

⎡ ⎤−
⎢ ⎥
⎣ ⎦

 and we sum all the 

components. In the end we multiply the final sum with -0.5 to take the 
ln(p(x)). 

 
 

Modified function DOutPWGT 
 
In this thesis we changed the way of computation of output probability, so 

we modified the DOutP function. The new function DOutPWGT uses the 
weights which have been calculated by the Soft Feature Decoding algorithm. 
So with the addition of weights in output probability function, we have to 
compute the following equation: 
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 static LogFloat DOutPWGT(Vector x,Vector wgt, int  

      vecSize, MixPDF *mp) 
1: {  int i; 
2:    float sum1,sum2,sum,xmm; 
3:    LogFloat z; 
4:    Vector v; 
5: 
6:    v = mp->cov.var;  
7:    sum = 0; 
8:    for (i=1;i<=vecSize;i++)  
9:  {   
10:        z = (v[i]<=MINLARG)?LZERO:log(v[i]);   
11:        sum1 = log(TPI)+ z;    
12:        xmm = x[i] - mp->mean[i];  
13:        sum2 = xmm*xmm/mp->cov.var[i];  
14:        sum +=wgt[i]* (sum1 + sum2); 
15:      } 
16:    return -0.5*sum; 
17: } 
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Soft Feature Decoding Algorithm 
 

Each feature is represented with a number of bits in the transmission 
channel. The coefficients C0 until C5 have 6 bits for the transmission and the 
rest of the coefficients have 4 bits. The algorithm which computes the 
confidence level of each feature is the following: 

 
 
For the MSBs of each feature 
{     
 

10
10
BITprob = −  

 
 

exp( )
1 exp( )

probprob
prob

=
+

 

 
 

If   prob >= 0.5  // Transmitted bit is 1 
                

(1 )*dd prob MSBweight+ = −  
 

else     // Transmitted bit is 0 
 

*dd prob MSBweight+ =  
} 
 
Return   WeightFactor * dd 
 
If  dd > 1                weight  =  0 
If dd <= 1               weight = 1 - dd 
 
 
The BIT variable has values from 0 to 200. 0 indicates the transmitted bit 

is 0 and 200 indicates the transmitted bit is 1. The MSBweight variable shows 
the importance of the transmitted bits for each feature. So for the MSB of 
every feature the MSBweight has the value 1, the second MSB has the value 
0.5, the third MSB has the value 0.25 and so on.  The variable WeightFactor is 
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an integer which multiplies the confidence level of each feature. The final 
confidence level is stored in the variable weight and this is the output of the 
Soft Feature algorithm. 
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