
 
 
 
 
 

IMPLEMENTATION OF AN EFFICIENT XML FILTERING MECHANISM 
WITH XPATH EXPRESSIONS BASED ON XTRIE 

 
 
 

by 
 
 
 

Sarafis Dimitrios 
 
 
 

A thesis submitted in fulfillment of the 
Requirements for the degree of 

 
 
 

ELECTRONIC AND COMPUTER ENGINEERING 
 

 
 
 
 
 
 
 
 
 

 
 

TECHNICAL UNIVERSITY OF CRETE 
DEPARTMENT OF ELECTRONIC AND COMPUTER ENGINEERING 

 
 
 

Chania 2004 
 
 
 
 
 

1 



 
 
 
 
 
 
 
 
 
 
 
 
 

Abstract 
 

Recently the publish/subscribe model has been popular in many application 
domains due to its efficiency on the integration process. Early publish/subscribe 
systems have relied on typical matching schemes, such as simple comparison 
predicates on attribute values The emergence of XML as a standard for information 
exchange on the Internet has led to an increased interest in using more expressive 
subscription mechanisms based on XPath expressions. In the last few years several 
systems have addressed the problem of filtering a stream of XML documents. 

This dissertation presents the implementation of a novel index structure, termed 
XTrie, which supports the efficient filtering of XML documents with XPath 
expressions. In this work, we dealt with the problem of filtering streaming XML 
documents with XPath expressions. The main goal was to implement the XTrie 
structures and algorithms for efficient XML filtering. The XTrie system, provides 
efficiency and scalability, has low space requirements and offers high throughput. 
Those features make it especially attractive for large scale distributed systems over 
the internet such as publish/subscribe systems. 

Our implementation of XTrie supports the ordered matching model and XPath 
expressions with wildcards, predicates, and closures. We believe that we capture the 
key features of XPath expressions that will prove most useful in data-dissemination 
applications. 

We use the Java 2 SDK 1.4 and the herces SAX parser interface for our 
implementation. 

 

 
 
 
 
 
 

 2 
 



 
 
 
 
 
Contents 
 
 
1 Introduction..........................................................................................................7 

1.1 Overview........................................................................................................7 
1.2 Contributions of the Dissertation ...................................................................9 
1.3 Organization of the Dissertation ..................................................................11

 
2 Background ........................................................................................................12 

2.1 Data Models and Query Languages.............................................................12 
2.1.1 Structured Data Model.........................................................................13 
2.1.2 Unstructured Data Model.....................................................................13 
2.1.3 Semi-structured Data Model ................................................................13 

2.2 eXtensible Markup Language (XML) .........................................................14 
2.2.1 XML Data ............................................................................................14 
2.2.2 DTD .....................................................................................................16 
2.2.3 Well-Formedness and Validity ............................................................17 
2.2.4 XML Tree ............................................................................................18 

2.3 XPath Language...........................................................................................18 
2.3.1 XPath Expressions (XPE’s) .................................................................19 

2.4 XML Parsers ................................................................................................21 
2.4.1 Document Object Model (DOM) Parser..............................................21 
2.4.2 Simple API for XML (SAX) Parser.....................................................21 

2.5 Summary ......................................................................................................23 
 
3 Related work.......................................................................................................24 

3.1 Streaming vs. non-streaming XML Data .....................................................24 
3.2 Systems for Filtering Streaming XML Data................................................25 
3.3 Systems for Querying XML Data ................................................................27 

3.3.1 Streaming XML Data...........................................................................27 
3.3.2 Non-streaming XML Data ...................................................................29 

3.4 Other Systems ..............................................................................................31 
3.5 Summary ......................................................................................................33 

 
4 XPE Decompositions and Matchings ...............................................................34 

4.1 XPE-Tree and XPE Matching......................................................................34 
4.2 Substring Decompositions ...........................................................................36 

4.2.1 Minimal Decomposition ......................................................................37 

 3 
 



4.2.2 Simple Decomposition.........................................................................38 
4.3 Substring-Trees ............................................................................................39 
4.4 Matching with Substrings ............................................................................40 

4.4.1 Partial and Complete Matching ...........................................................41 
4.4.2 Redundant Matching............................................................................41 

4.5 Subtree Matching .........................................................................................42 
4.6 Summary ......................................................................................................44 

 
5 XTrie Structure and Indexing Scheme ............................................................46 

5.1 The Index Structure......................................................................................46 
5.1.1 The Substring-Table.............................................................................47 
5.1.2 The Trie................................................................................................48 

5.2 The XTrie Matching Algorithm...................................................................49 
5.2.1 B-array .................................................................................................50 
5.2.2 C-array .................................................................................................50 
5.2.3 Detect non-redundant Matchings.........................................................51 
5.2.4 Details of Matching Algorithm............................................................53 
5.2.5 Theoretical Space and Time Complexity.............................................57 

5.3 Attributes and Text Data..............................................................................57 
5.4 Maintenance.................................................................................................58 

5.4.1 Reverse Trie .........................................................................................58 
5.4.2 Insertions..............................................................................................59 
5.4.3 Deletions ..............................................................................................61 

5.5 Lazy XTrie Optimization.............................................................................63 
5.6 Summary ......................................................................................................67 

 
6 System Architecture and Implementation.......................................................69 

6.1 XTrie Architecture .......................................................................................69 
6.2 XTrie Implementation..................................................................................70 

6.2.1 XPath Parser.........................................................................................70 
6.2.2 XPE Tree Constructor..........................................................................72 
6.2.3 Substring Tree Constructor ..................................................................73 
6.2.4 XTrie Builder .......................................................................................74 
6.2.5 XML Document Parser ........................................................................76 
6.2.6 XTrie Matching Algorithms ................................................................77 

6.3 Summary ......................................................................................................79 
 
7 Conclusions and Future work...........................................................................80 

7.1 Concluding Remarks and Summarizing ......................................................80 
7.2 Future Work .................................................................................................82 

 

 

 

 4 
 



 
 
 
 
List of Figures 
 
Figure 1.1 : The Publish-Subscribe system architecture................................................8 
Figure 1.2 : XTrie architecture.......................................................................................9 
Figure 2.1 : A simple XML Document example .........................................................15 
Figure 2.2 : The DTD of our XML document .............................................................17 
Figure 2.3 : The XML Tree of our XML document ....................................................18 
Figure 2.4 : Our XPath fragment .................................................................................19 
Figure 2.5 : A more complex XML document ............................................................20 
Figure 2.6 : The XML DOM Tree of our XML Document .........................................22 
Figure 4.1 : XPath Tree matching with an XML Tree.................................................35 
Figure 4.2 : An XPE Tree and an XML Tree example................................................36 
Figure 4.3 : Minimal and Simple XPE decompositions ..............................................38 
Figure 4.4 : Substring tree for Sb..................................................................................39 
Figure 4.5 : Partial and redundant matching example .................................................42 
Figure 4.6 : Example of redundant matching...............................................................43 
Figure 4.7 : Subtree-based conditions for redundant matchings..................................44 
Figure 5.1 : An XTrie example ....................................................................................48 
Figure 5.2 : Propagation of subtree-matchings example .............................................51 
Figure 5.3 : Algorithm to search XTrie .......................................................................54 
Figure 5.4 : Algorithm to process a matched substring ...............................................55 
Figure 5.5 : Algorithm to update run-time information arrays and detect complete 

matchings .............................................................................................................56 
Figure 5.6 : Algorithm for insertion of a set of XPEs..................................................60 
Figure 5.7 : Algorithm for XPE deletion .....................................................................62 
Figure 5.8 : Algorithm to search lazy XTrie................................................................64 
Figure 5.9 : Algorithm to process a matching substring in lazy XTrie........................65 
Figure 5.10 : Auxiliary algorithm to process a matching substring in lazy XTrie ......66 
Figure 6.1 : The XTrie Architecture ............................................................................70 
Figure 6.2 : Location steps produced by the XPath parser ..........................................71 
Figure 6.3 : (a) XPE Tree node structure and (b) XPE Tree........................................72 
Figure 6.4 : (a) Substring Tree node structure and (b) Substring Tree ........................73 
Figure 6.5 : (a) Trie node structure and (b) ST Row structure ....................................74 
Figure 6.6 : The input XPE set.....................................................................................75 
Figure 6.7 : The Trie and the Substring Table produced by XTrie builder .................76 
Figure 6.8 : The XML Document as input of the XTrie system..................................78 
Figure 6.9 : The output of the XTrie system................................................................79 

 

 5 
 



 
 
 
 
List of Tables 
 
Table 2.1 : XML SAX events ......................................................................................23 
Table 5.1 : XTrie basic notations.................................................................................47 
Table 5.2 : Execution trace of changes to B array for the matching of p on D in Figure 

4.1.........................................................................................................................52 

 

 

 

 

 

 

 

 

 

 

 

 

 

 6 
 



 

 

 

 

Chapter 1 

 
1 Introduction 
 
Recently the publish/subscribe model has been popular in many application domains 

due to its efficiency on the integration process. This model allows publishers to 

selectively disseminate data to a large number of widely dispersed subscribers who 

have registered their interest in specific information items. Early publish/subscribe 

systems [1, 8, 37] have relied on a typical scheme that implements matching 

mechanisms based on combinations of keywords and predicates over associative 

values of the keywords. The emergence of XML [42] as a standard for information 

exchange on the Internet has led to an increased interest in using more expressive 

subscription mechanisms (e.g., based on XPath [46] expressions) that exploit both the 

structure and the content of published XML documents. There are several data-

filtering mechanisms, which are used to effectively identify the subscription profiles 

that match an incoming XML document. This dissertation presents the 

implementation of a novel index structure, termed XTrie [9], which supports the 

efficient filtering of XML documents based on XPath expressions.  

 

1.1 Overview 
Recently, advanced services for providing rapid notifications of certain events, have 

been deployed in the form of information dissemination in many domains including 

stock quotes, financial news, transportation and so on. This trend has led to the

 7 
 



Figure 1.1 : The Publish-Subscribe system architecture 

 

emergence of novel middleware architectures that asynchronously propagate data 

from a set of publishers (i.e., data generators) to a large number of widely dispersed 

subscribers (i.e., data consumers), who have pre-registered their interest in specific 

information items [8]. In general, such publish-subscribe architectures are 

implemented using a set of networked servers that selectively propagate relevant 

messages to the consumer population, where message relevance is determined by 

subscriptions representing the consumers’ interests in specific messages. An example 

of the publish/subscribe architecture is shown in Figure 1.1. The majority of existing 

publish/subscribe systems [1, 8, 37] have typically relied on simple subscription 

mechanisms, such as keyword or “bag of words” matching, or simple comparison 

predicates on attribute values. For example, systems such as Gryphon [1], Siena [8], 

and Elvin [37], all use filters in the form of a set of attributes and simple arithmetic or 

Boolean comparisons on the values of these attributes. Recent trends of XML [42] 

have rapidly been increasing areas where XML data need to be analyzed for further 

processing such as information exchanges on the Internet. Therefore, environments 

where XML data from multiple information providers are streamed and various users 

define their interest over such XML data are frequently referred to imply necessity of 

XML based publish/subscribe system architectures. In such environments both 

contents and structures are used to match XML data against users’ interests, so a 

language for describing the interests requires expressing desirable contents in specific 

structures. For this purpose, XPath [46] which is a W3C [43] proposed standard for

8 



Figure 1.2 : XTrie architecture 

 

addressing parts of an XML document, has been adopted as a filter-specification 

language by a number of recent XML data dissemination systems (e.g., XFilter [2], 

Intel’s NetStructure XML Accelerator [21]).  Due to the importance of the effective 

identification of subscriptions that match an incoming XML document we have 

implemented an efficient XML matching scheme, named XTrie [9]. More specifically, 

XTrie is able to solve the key problem [9] faced in XPath based data-dissemination 

systems, which can be abstracted as follow: 

  

“Given a large collection P of XPath expressions (XPEs) and an input XML               

document D, find the subset of XPEs in P that match D.”  

 

The key technique which is used by XTrie for expediting XPE retrieval is to construct 

an appropriate index structure on the given collection of XPE subscriptions, as shown 

in Figure 1.2. Furthermore, simplistic approaches (e.g., building an index based solely 

on the element names contained in the XPEs) can result in very ineffective retrieval 

schemes that incur a lot of unnecessary checking of (irrelevant) XPE subscriptions. 

  

1.2 Contributions of the Dissertation 
In this dissertation, we implement a novel index structure, termed XTrie, which 

supports the efficient filtering of XML documents based on XPath expressions. We 

9 



implement several important features of XTrie indexing scheme which are especially 

attractive for large-scale publish/subscribe systems. Thus, our implementation of 

XTrie:  

 

• Supports effective filtering based on complex XPath expressions (as opposed 

to simple, single-path specifications). 

• Supports XPath expressions with wildcards and closures. 

• Allows for predicates comparing element/attribute values against constants. 

• Supports ordered matching of XML data. Note that ordered matching is an 

important requirement for many applications (e.g., document processing) that 

has typically been overlooked in existing data dissemination systems.  

• Provides extremely efficient filtering by indexing on a carefully-selected set 

of substrings [9] (rather than individual element names) in the XPEs and 

using a sophisticated matching algorithm [9]. So XTrie is able to minimize 

both the number and the cost of the required index probes.  

• Supports on-line filtering of streaming XML data, based on the event-based 

SAX parsing interface [33] (in contrast to the alternative DOM parsing 

interface [41], which requires a main-memory representation of the XML data 

tree to be built before filtering can commence). 

 

Informative, the only other SAX-based index structure for the XPE retrieval problem 

is Altinel and Franklin’s XFilter [2], which relies on indexing the XPE element names 

using a hash-table structure. By indexing on substrings rather than individual element 

names, the XTrie index provides a much more effective indexing mechanism than 

XFilter. A further limitation of XFilter is that its space requirement can grow to a very 

large size as an input document is parsed, which can also increase the filtering time 

significantly. The experimental results [9] over a wide range of XML document and 

XPath expression workloads, demonstrate that the XTrie index scheme scales well to 

high volumes of XPEs and complex documents, and consistently outperforms XFilter 

by significant margins (factors of up to one or two orders of magnitude). 

 

 10 
 



1.3 Organization of the Dissertation 
This dissertation is organized as follows. In Chapter 2, we give an overview of the 

general data models and languages and we present the basic features of the XML data 

model and XPath query language. In Chapter 3, we briefly discuss alternative 

mechanisms for XML data processing. Chapter 4 presents some important definitions 

about the basic features of the XTrie indexing scheme. Then, in Chapter 4, we present 

the methodology for decomposing complex XPEs into substrings for effective 

indexing. In Chapter 5, we present the XTrie index structure and algorithms. Also, 

Chapter 5 discusses an optimized variant of XTrie. This variant is optimized to further 

reduce the number of unnecessary index probes. Chapter 6 presents the basic data 

structures in our XTrie implementation. Finally, in Chapter 7, we present our 

conclusions and future work possibilities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 11 
 



 

 

 

 

Chapter 2 

 
2 Background 
 
In this chapter we present the basic data models and their query language. We discuss 

in detail the XML features and the XPath language. Also we present some examples 

to show the fragment of XPath which is used in the dissertation. Final, we discuss 

several important features of the XML data model such as: XML syntax [42], DTD 

[42], SAX [33] parser, DOM [41] parser, and XML validation [42] and well-

formedness [42]. 

 

2.1 Data Models and Query Languages 
In the last few years, various data models have been developed. Those models, are 

mainly used for the representation of information and the exchange of data over the 

internet. Each data model consists of data, a query language and an optional schema. 

The first contains data values, the second is used to pose queries over those data and 

the latter is used to describe those data. There are three different types of data models, 

which are used widely in publish/subscribe systems: structured data model, 

unstructured data model and Semi-structured data model. In the next sections we 

briefly discuss those models. 

 

 

 12 
 



2.1.1 Structured Data Model 
Data in relational databases is structured. It has a schema (e.g. E-R diagram [39]), 

which is usually stored in a part of the database called the catalog, while the data 

values are stored separately, in tables, following a layout that is completely described 

by the schema. Queries, expressed in SQL [39], refer both to the schema components, 

such as relation names and their attributes, and to the data values, in the form of 

equality predicates, inequality predicates, or string matches. Research on query 

processing has focused on join processing techniques, join ordering, and indexes. 

 

2.1.2 Unstructured Data Model 
Text documents are unstructured. There is no schema, only the text, and the data 

consists of some large collection of documents. A query consists of a regular 

expression, often as simple as a single word, and the answer consists of the set of text 

documents that match the given query. Indexes are used here too, and they are 

conceptually similar to, although technically different from those in relational 

databases (e.g. inverted files vs. B+-trees). Research on query processing has focused, 

among other things, on how to process efficiently regular expressions on a text 

document, and has produced celebrated results such as Knuth-Morris-Pratt’s [27] 

string search algorithm, suffix trees [27], and suffix arrays [27]. These techniques 

have often been based on, and even expanded automata theory. 

 

2.1.3 Semi-structured Data Model 
A new kind of data is semi-structured data. Although considered in one form or 

another for a long time, semi-structured has gained main-stream acceptance only 

recently, since the introduction of XML [42]. Like in structured data, we have schema 

components (the tags and attributes in XML), and data values are organized along 

these components. In this case, the schema is embedded with the data. Thus each data 

item can describe its own local schema. This allows much more freedom in designing 

the structure, and often leads to structures that were explicitly disallowed in the 

relational data, such as nested collections, multiple or missing subelements, elements 

of the same type but with different structures, heterogeneous collections, etc. In the 

 13 
 



past, researchers have studied instances of data that we would call today semi-

structured, either in the form of SGML [45] documents, or as structured documents, 

i.e. documents with a predefined grammar. 

 

2.2 eXtensible Markup Language (XML) 
XML (eXtensible Markup Language) [42] is a format for specifying structured 

documents and data. XML is called extensible because it allows users to define their 

own schema, unlike HTML [44] which is a pre-defined markup language. With XML 

one can define his own customized markup language to describe different types of 

documents. XML has become a popular way to display and distribute structured data 

on the web because of its flexibility. 

An XML specification defines a standard way to add mark-up language to 

documents, identifying the embedded structures in a consistent way. By applying a 

consistent identification structure, data can be shared between different systems, up 

and down the levels of agencies, across the nation, and around the world, with the 

ease of using the Internet. In other words, XML lays the technological foundation that 

supports interoperability. 

XML is compatible with major Internet transmission protocols, and is also 

highly compressible for faster transmission. Almost all major software vendors fully 

support the general XML standard. XML is very developer-friendly, yet ordinary 

users with no particular XML expertise can make sense of an XML file. The XML 

standard is designed to be independent of vendor, operating system, source 

application, destination application, storage medium (database), and/or transport 

protocol.  

XML is a hierarchical data model consisting of two parts: the schema, and the 

data. In XML, the schema describes the structure of the data. The following two 

sections present those parts. 

 
 
2.2.1 XML Data 
XML documents contain structured plain text. Authors indicate the structure by 

placing special text, called markup tags, around the text data. The structural delimiters  

 14 
 



Figure 2.1 : A simple XML Document example 

 

are tags, which begin and end with angle brackets <...>. The text between the angle 

brackets contains information about the element; at a minimum, it names the element. 

An element consists of an opening tag, the element’s contents, and a closing tag. 

Closing tags have the same name as the opening tag, but start with </. Elements can 

contain text, other elements, or a mixture of the two; elements can also be empty tags, 

are strictly case-sensitive, elements must always be closed, and cross-nesting is illegal. 

Empty elements have either a closing </element> tag with no contents, or are written 

<element/> in order to distinguish them from illegal unclosed elements. XML 

comments appear between the characters <!-- and --> and are usually ignored by 

processing applications. Tags may also contain additional information called 

attributes. The attributes are placed in the element’s opening tag, and are written in 

the form name="value". 

A simple example of an XML document with information about an mp3 song 

file shown in Figure 2.1. The document element is <Song> which has five children 

elements: <Title>, <Artist>, <Album>, <Duration> and <Encoding>. The <Title> 

element encloses text data (“A million miles away”) with information about the title 

 15 
 



of the song. The <Artist> element encloses text data (“Rory Gallagher”) with 

information about the artist name. The <Album> element encloses text data (“Tattoo”) 

with information about the album name. The <Duration> element has three attributes 

(hours, minutes, seconds) with some values representing the duration of the song. 

Finally the 5th child element of the document element (<Encoding>) encloses text data 

(“Mpeg1-Layer 3”) with information about the encoding type of the mp3 file.    

 

2.2.2 DTD 
A popular language used for XML schemas definitions is DTD (Document Type 

Definition) [42]. DTD is a grammar that specifies a set of element types, a model for 

their content, constraints for the value of the attributes, and possibly declares a set of 

entities that can be referenced. In DTD, elements and attributes defined by the 

keywords <!ELEMENT> and <!ATTRIBUTE> respectively. Elements are the main 

building blocks of XML Schema Data documents. Once Elements are defined for a 

given XML document, elements can be marked up by tags. Attributes provide extra 

information about elements and are placed inside element tags and come in 

name/value pairs. The following is the general BNF syntax for element and attribute 

components: 

 

<!ELEMENT> <elem-name> <elem-content-model> 

<!ATTLIST> <attr-name> <attr-type> <attr-option> 

 

The DTD specifies the attributes allowed for each element, with an indication about 

their content (character data, CDATA) and if the attribute must be always specified 

(#REQUIRED), or if it is optional (#IMPLIED). An XML document declares the 

DTD by a DOCTYPE declaration after the prologue but before the root element: 

 

<!DOCTYPE function "functions.dtd" [...]> 

 

The part within square brackets is optional, and can be used to declare further entities. 

The name function in the DOCTYPE declaration refers to the root element of the 

document, whereas functions.dtd refers to the resource containing the DTD. 

 16 
 



Figure 2.2 : The DTD of our XML document 

 

The element content model is used to define the general structure of the element. 

Regular expressions can be used to describe the cardinality of parts of an element 

such as: 

• “?” (0 or 1 instance) 

• “*” (0 or many instances) 

• “+” (1 or many instances). 

 

For example, the following XML element describes a paper with one title sub element, 

one or more author sub-element, and zero or more citation sub-elements: 

  

<!ELEMENT paper (title, author+, citation*)> 

 

Once the schema has been defined, the remainder of the XML document contains data. 

Each data element has a starting and ending tag defined by the schema. Figure 2.2 

shows the DTD of the XML document in Figure 2.1. 

         

2.2.3 Well-Formedness and Validity                                 
XML files must match both the XML syntax and the rules given in the DTD. There 

are two different notions of correctness that correspond to these constraints. One is 

called well-formedness [42], and means that the XML file has a valid syntax. 

Moreover, XML does not define any set of predefined element types.

 17 
 



Figure 2.3 : The XML Tree of our XML document 

 

As a consequence, the document well-formedness property does not enforce any 

constraint on the used element types, as long as the element tags obey to the proper 

nesting condition. The other constraint is validity [42], which can only be determined 

by checking if the elements and attributes conform to the DTD. Validity is a stronger 

constraint than well-formedness, because a valid file must also be well-formed.  

 
2.2.4 XML Tree 
Every XML document can be represented as an ordered rooted tree. The root node of 

the XML-tree is the document element. Every node consists of the element name, the 

attributes with their values and the enclosed text between the start and the end tag. 

The XML-tree has a node level which represents the depth of the tree. The root node 

has level 1.The level of a node d is the level of it’s father node d’ plus 1 (level(d) = 

level(d’) +1). Figure 2.3 depicts the XML tree of the XML document in Figure 2.1. 

 

2.3 XPath Language 
The primary purpose of XPath is to address parts of an XML document. In support of 

this primary purpose, it also provides basic facilities for the manipulation of strings, 

numbers and Booleans. XPath uses a compact, non-XML syntax to facilitate the use 

of XPath within web pages and XML attribute values. XPath operates on the abstract,  

18 



Figure 2.4 : Our XPath fragment 

 

logical structure of an XML document, rather than its surface syntax. XPath gets its 

name from its use of a path notation as in web pages for navigating through the 

hierarchical structure of an XML document. 

 

2.3.1 XPath Expressions (XPE’s) 
Generally an XPath query is an expression (XPE) of the form of N1 N2 … Nn / O, 

which consists of a location path, N1N2 … Nn, and an output expression O. Each 

location step Ni  in the location path is in the form /a :: n[p] where a is an axis, n is a            

node test, and p is an optional predicate which is specified syntactically using square 

brackets. A location step matches a node in the document tree. The evaluation of an 

XPE yields an object whose type can be a node-set, a Boolean, a number, or a string.  

For the XPE retrieval problem described in [9], an XML document matches an XPE 

when the evaluation result is a non-empty node set. The XPath expressions don’t have 

an output expression because we need to filter, not query XML documents. Figure 2.4 

shows the simplified grammar used in our descriptions in this dissertation. The axis 

specifies the relation between the previous node and the current node. In the 

simplified grammar, / is shorthand for the /child :: axis, which selects the children of 

the current node. Similarly,  //, called closure axis,  is shorthand for the /descendant-

or-self :: node()/ axis, which selects the current node and its descendants. If no axis is 

specified, the default axis is the child axis. However, if the axis before the first 

location step is omitted, the default axis is the closure axis, not the child axis. An 

element matches a location path if the path from the document root to that element, 

matches the sequence of labels in the location path, and satisfies all predicates. The 

predicates can be applied to the text or the attributes of the addressed elements, and 

may also include other path expressions. Any relative paths in a predicate expression 

are evaluated in the context of the element nodes addressed in the location step at

 19 
 



Figure 2.5 : A more complex XML document 

 

which they appear.  XPath also allows the use of a wildcard operator (“*”) to match 

any element name at a location step. The following queries, evaluated on the data of 

Figure 2.1, illustrate some of the key features of XPath which are used in our 

dissertation. 

 

• //Artist[text()=”Rory Gallagher”]: This query returns the Artist elements that 

have a text with value “Rory Gallagher”. The first location step is //Artist, 

which consists of the closure axis //, and the node-test Artist; it has a predicate 

which requires the enclosed text in Artist element to has a “Rory Gallagher” 

value. This location step matches all descendants of the document root that 

have tag Artist. We note that this query may also be expressed as 

Artist[text()=”Rory Gallagher”], because a missing axis in the first location 

step defaults to closure.  

 
• /Song//Duration[@minutes<’7’][@seconds=’59’]: This query returns the 

Duration elements with two attributes (minutes with value less than 7, and 

20 



seconds with value 59), that have Song ancestor that occurs at the top level. 

We note that the second location step in this query use the closure axis.  

 
• /Song[Title][Artist]/Encoding[text()=”Mpeg1-Layer 3”]: This query returns 

the Encoding elements that have a text value “Mpeg1-Layer 3”. The Encoding 

element must have a Song parent that occurs at the top level. Also the Song 

element must have two other children (Title and Artist).We note that this 

query does not use the closure axis. 

 

2.4 XML Parsers 
To retrieve the data of a XML document, the program has to parse it. Fortunately, 

Java [23] already provides XML parser classes, which are described later on. 

Generally, there are two main technologies: DOM [41] and SAX [33]. In the next two 

sections we discuss those parsers. 

 

2.4.1 Document Object Model (DOM) Parser 
In Document Object Model (DOM) [41], an XML document is modelled as a node-

labelled tree. Each element in the document is mapped to a subtree in the tree, whose 

root node is labelled with the tag of the element. Although element E is mapped to a 

subtree of the DOM tree, it is convenient to refer to the root of this subtree as the node 

E. The sub elements of an element E are mapped to sub elements of the node E that 

have node type of element. The attributes and text contents of element E are also 

mapped to sub elements of node E, but with node types Attr and Text, respectively. 

Figure 2.6 depicts the DOM tree of the XML document in Figure 2.5. In the figure, 

the nodes with dotted boxes are Attr nodes and the nodes without boxes are Text 

nodes. 

 

2.4.2 Simple API for XML (SAX) Parser 
For streaming data, building a DOM tree in memory is not usually desirable because 

the data may be unbounded. Further, we may not need the entire DOM tree to process 

the given query. Therefore, streaming data is better modelled using the SAX (Simple 

 21 
 



Figure 2.6 : The XML DOM Tree of our XML Document 

 

API of XML) model [33]. Parsers based on the SAX Application Programming 

Interface process an XML document and generate a sequence of SAX events. For 

each opening and closing tag of an element, the SAX parser generates, respectively, a 

begin and end event. The begin event of an element comes with an attribute list that 

encodes the names and values of attributes associated with the element. (Since the 

XML standard does not allow an element to be associated with multiple attributes 

with the same name, this list is composed of pairs that are uniquely identified by their 

first element). The text contents enclosed by the opening and closing tag result in the 

SAX parser generating a text event. Essentially, the sequence of the SAX events 

corresponds to a pre-order traversal of the DOM tree of the data in  which the attribute 

nodes are combined with their parents. Table 2.1 depicts the SAX events generated by 

a SAX parser given the data of Figure 2.5 as input.  

In more detail, we model the input as a sequence of SAX events, where each event 

is a three tuple (tag, attrs, type,) where:  

 

• tag is a string that corresponds the name of the element that generates the SAX 

event.  

• attrs is the attribute list of this element. That is, it is a list of elements of the 

form (a, v) indicating that the element has attribute a with value v. Recall that,   

since elements do not have multiple attributes with the same name, there is

22 



 

Event Description 
(root, φ, B) the begin event of root element. 
(pub, φ, B) the begin event of pub element. 
(name, {(id, "1")}, B) the begin event of book element. The name-value list 

{(id,"1")} is associated with the event. 
(price, φ, B) the begin event of price element. 
(price, {(text, "12:00")}, T) the text event of price element. The text "12.00" is 

associated with the event. 
(price, φ, E) the end event of price element. 
(name, φ, B) the begin event of name element. 
(name, {(text, "First")}, T) the text event of name element. The text "First" is 

associated with the event. 
(name, φ, E) the end event of name element. 
(author, φ, B) the begin event of author element. 

Table 2.1 : XML SAX events 

 
at most one pair of the form (a, v) in the attribute list of any element, for all a. 

• type is B for a begin event, E for an end event, and T for a text event. Events of 

type E have an empty attribute list, while events of type T have an attribute list 

containing the single pair (text, t), indicating that t is the text content of the 

element.  

 

2.5 Summary 
In this chapter we specified the difference between the three types of data models. We 

presented several important features of the XML data model together with some 

examples to explain their functionality.  Also, we described the XPath query language 

and we focused on the fragment of XPath used in our implementation. In the next 

chapter we present some related systems, which have been developed to address the 

XML data processing problem.  

 

 

 

 

 

23 



 

 

 

 

Chapter 3 

 
3 Related work 
 

In the previous chapter, we discussed some important concepts of the XML data 

model and the XPath query language. This model and its language have been used in 

most of the systems for processing XML documents. In this chapter, we present the 

difference between the streaming and non-streaming XML data. Also, we discuss 

several systems which have been implemented to address the problem of filtering and 

querying XML data (streamed or non-streamed).  

 

3.1 Streaming vs. non-streaming XML Data  
The Extensible Markup Language (XML) [42] has become a well-established data 

format and an increasing amount of information is becoming available in XML form. 

The term streaming data is used to describe data items that are available for reading 

only once and that are provided in a fixed order determined by the data source. 

Applications that use such data cannot seek forward or backward in the stream and 

cannot revisit a data item seen earlier unless they buffer it on their own. Examples of 

data that occur naturally in streaming form include real-time news feeds, stock market 

data, sensor data, surveillance feeds, and data from network monitoring equipment. 

One reason for some data being available in only streaming form is that the data may 

have a limited lifetime of interest to most consumers. For example, articles on a 

topical news feed are not likely to retain their value for very long. Another reason is 

 24 
 



that the source of data may lack the resources required for providing non-streaming 

access to data. For example, a network router that provides real-time packet counts, 

error reports, and security violations is typically unable to fulfill the processing or 

storage requirements of providing non-streaming (so-called random) access to such 

data. Similar concerns may lead servers hosting large files to offer only streaming 

network access to data even though the data is available internally in non-streaming 

form. Finally, since sequential access to data is typically orders of magnitude faster 

than random access, it is often beneficial to use methods for streaming data on non-

streaming data as well. In what follows, we focus on streaming data that is in XML 

form and use the term streaming XML to refer to XML data in all of the above 

scenarios. 

 

3.2 Systems for Filtering Streaming XML Data 
Several systems have addressed the problem of filtering a stream of XML documents 

[2, 13, 18, 28]. Those systems are most related to the XTrie system [9] which has 

been implemented in the dissertation. This problem has been referred to variously as 

selective dissemination of information (SDI), publish-subscribe (pub-sub), and query 

labeling. Briefly, filtering assumes that the input is a stream of documents that are to 

be matched with a given set of queries. A query is said to match a document if the 

result of evaluating the query on the document is non-empty. Since there is no output 

other than the identifiers of the documents matching each query, methods for filtering 

are simpler than those needed for querying. So, we may think of methods for filtering 

as starting points for the exploration of more general methods for querying. Filtering 

systems typically focus on supporting high throughput for a large number of queries 

using only a moderate amount of main memory. 

The XFilter system [2] focuses on the problem of evaluating a large number of 

XPath filter expressions over every document in a stream of documents. It uses finite-

state automata for each XPath expression. An important limitation of XFilter is that its 

space requirement can grow to a very large size as an input document is parsed, which 

can also increase the filtering time significantly. 

 25 
 



The YFilter system [13] addresses a similar problem and uses one automaton 

to evaluate all submitted filter expressions. It combines all the automata into one big 

automaton that uses a run time stack to track all the possible states for all the queries. 

Instead of the index used by XFilter, YFilter uses query identifiers in the states to 

denote the queries corresponding to the results. Thus, YFilter shares processing 

among path expressions to eliminate redundant work. By indexing on substrings 

rather than individual element names, the XTrie index provides a much more effective 

indexing mechanism than XFilter and YFilter. 

Automaton-based methods spend a significant amount of time matching 

transitions to incoming events; as a result, deterministic automata typically yield 

higher throughput than their nondeterministic [9, 2, 13] counterparts. However, as 

usual, the deterministic version of an automaton may require a large amount of 

memory. This problem is addressed in [18] by using a lazy deterministic finite state 

automaton. The main idea is to first build a naive finite-state automaton directly from 

the XPath expression. At run time, the system adds new states as needed on the since 

it does not need to use a stack to keep track of all possible states, its throughput is 

improved. Although the deterministic automaton requires more memory than its 

nondeterministic counterparts, an upper bound on the size of DFA is provided in [18]. 

The XTrie system [9] offers less throughput than [18]. On the other hand, XTrie has 

less space requirements than [18], which is an important issue for the system’s 

scalability. Also [18] does not support predicates in XPath expressions. 

The problem of query labeling is studied in [28]. The authors propose a 

requirements index as a dual to the traditional data index. A framework is provided to 

organize the index efficiently and to label the nodes in streaming XML documents 

with all the matched requirements in the index. The problem of validating XML 

streams using pushdown automata has been studied in [38]. (Briefly an XML 

document is said to be valid with respect to a given Document Type Definition (DTD), 

if the document structure obeys the grammar specified in the DTD [42].) This 

problem can also be considered as a filtering problem because the pushdown 

automaton can filter the documents that satisfy the DTD. The [38] ,like [18], requires 

a large amount of memory because the states in the automaton can grow in 

exponential manner. 

 26 
 



 

3.3 Systems for Querying XML Data 
The above systems, like XTrie, support filtering, not querying of XML streams. We 

use the term filtering to refer to the task of finding the documents (from a given set) 

that satisfy a given predicate and the term querying to mean the task of extracting 

relevant portions of data from one or more documents, or from streaming XML. As 

we said before, methods for filtering are simpler than those needed for querying. The 

querying of XML documents requires extra work. Thus, XTrie is more efficient than 

the systems for querying XML streams. This makes XTrie very attractive for 

publish/subscribe systems where the efficiency and scalability are very important 

issues. In this section we present systems for querying XML data, due to their relation 

with the XML processing problem. 

 

3.3.1 Streaming XML Data 
The XMLTK system [3] uses a lazy deterministic finite state automaton where new 

states are added as needed (at runtime) [18]. The determinism results in higher system 

throughput. The trade-off is that the deterministic automaton requires more memory 

than its nondeterministic counterpart. XMLTK supports XPath expressions that 

retrieve only parts of a document. However XMLTK does not support predicates in 

XPath expressions. Therefore whenever it encounters an element that matches the 

path expression in a query, it can write it directly to output and no buffering is needed. 

In contrast, if the query includes predicates, the membership of an element in the 

query result cannot be decided immediately in general. 

The XSQ system [15] provides an efficient implementation of XPath for 

streaming XML data. It supports XPath queries that have multiple predicates, 

aggregations, closure axes, and output functions that permit extraction of portions of 

the stream. These features, especially in combination, complicate query processing. 

The implementation is based on a clean system design that centers on a hierarchical 

arrangement of pushdown transducers augmented with buffers and auxiliary stacks 

(HPDT). Furthermore, XSQ produces incremental results and buffers data in an 

optimal manner (least amount of data for the least amount of time possible). A notable 

 27 
 



feature of XSQ is that at any point during query processing, the data that is buffered 

by XSQ must necessarily be buffered by any streaming XPath query engine. 

A transducer-based approach to evaluating XQuery queries on streaming data 

is presented in [31]. An XQuery is decomposed into sub expressions and each sub 

expression is mapped to an XML Stream Machine (XSM). Each XSM consumes the 

content of its input buffer and writes output to its output buffers. The output buffer of 

one XSM may be the input buffer of another. This producer-consumer relationship of 

XSMs through their buffers results in a network of XSMs. This network is merged 

into a single XSM that can be optimized if the DTD for the input data is available. In 

[35], a similar approach is used to evaluate regular path expressions with qualifiers 

over well-formed XML streams. That system proposes a transducer network model 

called SPEX, in which each transducer is generated from a regular path expression 

construct. The output tape of one transducer forms the input tape of another. XSM 

does not support XPath features such as aggregations, closures, and multiple 

predicates. The combined, optimized XSM is quite complicated, making it difficult to 

group similar queries.  

An interesting feature of the XAOS system [5] for streaming XML is that it 

supports XPath's reverse axes, such as parent and ancestor. It uses two data structures 

called X-tree and X-dag to reduce the amount of streaming data buffered in a 

matching structure. Essentially, the X-tree is the parse tree of the XPath expression, 

with reverse axes permitted. The X-dag is the equivalent XPath representation with 

reverse axes removed. The X-dag is used as a pattern to filter the incoming stream to 

remove the irrelevant nodes. The relevant nodes are stored in the matching structure 

based on their relations in the X-tree. When the end of the stream is encountered, 

results are produced by traversing the matching structure. A drawback of this 

approach is that it does not output any results until the end of the stream is 

encountered. (For unbounded streams, a periodic evaluation of the matching structure 

could be used). Rewriting XPath queries with reverse axes into equivalent queries 

with only forward axes is studied in [35]. However, since the rewriting algorithm 

introduces node set comparison operations in the new expression, the approach is 

difficult to apply in a streaming environment. For example, for an expression 

 28 
 



X[ancestor :: Y/Z], the rewriting algorithm produces X[/descendant :: Y[Z] 

/descendant :: node() = self :: node()]. 

 

3.3.2 Non-streaming XML Data 
Several systems provide methods for querying non-streaming XML data. Galax [16] 

is a full-fledged XQuery query engine. It implements almost all of the XML Query 

Data Model along with the type system and dynamic semantics of the XML Query 

Algebra.  

XQEngine [24] is a full-text search engine for XML documents that uses 

XQuery and XPath as its query language. XPath expressions and boolean 

combinations of keywords are used to query collections of XML documents. The 

engine creates a full-text index for every document before the document can be 

queried. It is difficult to adapt these systems for streaming data. 

A topic closely related to XPath query processing is XML transformation. 

XSLT is a standard template-based language for transforming XML [47]. The popular 

implementation of XSLT in Saxon [25] is based on an in-memory materialization of 

the entire XML document and is therefore limited in the size of documents it can 

efficiently transform. By using a streaming XPath processor such as XTrie, we can 

design an XML transformation system that buffers only limited amount amounts of 

data.  

The STX system [6] takes a different, more procedural, approach to 

transforming streaming XML. It uses templates to specify the operations that should 

be performed when data matching the template pattern is encountered. We may think 

of STX as a general-purpose event-driven programming environment that is not 

tailored to a specific query language. However, it may be used for XPath processing if 

we design a method for generating efficient STX templates from XPath queries. For 

example, if there are two predicates in an XPath query, we may create two variables 

in the program to store the current results of the predicates. When a predicate is 

evaluated, the corresponding variable is set to the result of the evaluation. We also 

need to specify explicitly when to reset the variables. We may then choose the right 

operation based on the current values of the variables. However, in this scheme, the 

positions of the elements have to satisfy the requirement that the predicate is 

 29 
 



evaluated before the target items. In general, it is not obvious how to generate STX 

templates equivalent to an XPath query in a systematic manner.  

The query complexity of XPath is addressed by [17], which provides a main-

memory algorithm for evaluating XPath on non-streaming data that is polynomial in 

the size of the query (and data). The method is based on reducing every axis to two 

primitive axes: first-child and next-sibling. The algorithm traverses the XPath parse 

tree in a bottom-up manner. The sub expressions in the lowest level are evaluated by 

scanning the data. The results of these sub expressions are then used in the evaluation 

of their parent sub expressions, recursively. The system also provides a refined top-

down algorithm and suggests a core subset of XPath that can be evaluated in linear 

time. Since these methods require multiple passes of the data, it is not easy to adapt 

them methods for a streaming environment. 

The evaluation of XPath queries over XML data is closely related to the 

problem of tree pattern matching [34, 11]. As described in [34], despite the 

resemblance, there are important differences between XPath evaluation and the 

classical problems of tree pattern matching [19] and unordered tree inclusion [26]. In 

particular, the problem of unordered tree inclusion is NP-hard (by direct reduction 

from SAT) [26], while XPath queries can be answered in polynomial time [17]. 

Intuitively, the reason the inclusion problem is harder than the XPath problem is that 

the former does not permit multiple nodes in the pattern tree to be mapped to the same 

node in the data tree. Most of the algorithms for these problems require a postorder 

(bottom-up) traversal of the data trees and are thus unsuitable for streaming data that 

is provided in preorder. As an exception, the algorithm described in [19] for the 

classical tree pattern matching problem, needs only a preorder traversal of the data 

tree. However, it allows only parent-child (not descendant) edges in patterns and finds 

only matches for which siblings occur in the same order in the data and as in the 

pattern. On the other hand, tree patterns corresponding to XPath queries include 

ancestor-descendant edges (for the closure axis) and XPath semantics require that the 

sibling order in the pattern (order of nodes mentioned in predicates) be ignored. 

Therefore, this algorithm cannot be easily applied to XPath.  

An alternating automaton is an automaton in which each state has a indicating 

the acceptance or rejection [10]. There are three types of states: universal, existential, 

 30 
 



and negating. A universal (existential) state becomes an accepting state if all 

(respectively, at least one) of its offspring states reach accepting states. A negating 

state has a unique offspring and becomes an accepting state only when the offspring 

state is a rejecting state. There are two difficulties in applying alternating automata for 

streaming XPath evaluation: First, alternating automata naturally express the 

semantics of filtering expressions, but not querying expressions. In particular, they do 

not provide a mechanism to solve the address the buffering problems. Second, they 

use a bottom-up model of computation that does not fit well with the preorder arrival 

of streaming XML input. However, it may be possible to adapt some of the ideas used 

by alternating automata for XPath.  

 

3.4 Other Systems 
The Aurora system [7, 12, 49] is a data stream management system for monitoring 

applications, in which typical tasks include tracking the abnormalities among multiple 

streams, filtering specific target data for the user, and executing queries involving 

aggregations and joins. The Aurora system processes data streams using a large 

trigger network. The trigger, which is essentially a data-graph, is generated from the 

persistent queries provided by applications. The tuples in the results of these queries 

are created from the incoming streams and fed into the original application also in 

streaming form. The Aurora system provides a set of operators for an application to 

specify the persistent query and quality of service (QoS) requirements. At runtime, the 

Aurora system is optimized by using techniques such as load shedding (discarding 

data that requires a long time to process) and real-time scheduling.  

The Fjords architecture [32] has been developed for managing multiple 

queries over the numerous data streams generated from sensors. Sensor data is 

generated in streaming form and the data rate is typically high and variable. The 

Fjords architecture is designed to maintain a high throughput for queries even when 

the data rate is unpredictable. It provides an efficient and adaptive infrastructure for 

more sophisticated query applications. The main components of the architecture are 

the queuing system and the sensor proxies. The queues can function in either pull or 

push mode. They are the basic functional structures to route data between the 

 31 
 



operators in a query plan. Query operators may be adaptive, such as Eddies [4]. Each 

sensor has a sensor proxy that accepts queries and tries to simplify the queries for the 

sensor's processor. The proxy adjusts the sample rate of the sensor based on the 

queries and permits different users share data from the sensor. Such optimizations 

result in higher throughput and longer sensor battery life, since energy is conserved by 

avoiding unnecessary sampling.  

The NiagaraCQ system [11] is designed to efficiently support a large number 

of subscription queries expressed in XML-QL over distributed XML datasets. It 

groups queries based on their signatures. Essentially, queries that have similar query 

structure by different constants are grouped and share the results of the sub queries 

representing the overlap among the queries. Although NiagaraCQ handles both 

change-based and timer-based continuous queries, the events it handles (such as 

changed remote XML file and activated timer) are at a high level. Therefore, it can 

use materialized data that is managed by a cache manager. In contrast, the XTrie 

system responds to every event generated by a SAX-like parser. XTrie filters queries 

on streaming data, and the result is also in streaming form.  

A related system, WebCQ, implements server-based Web page monitoring [29, 

30]. Users use WebCQ's own query language to specify a sentinel, which is 

essentially a request for monitoring the specified Web objects. The sentinel supports 

different kinds of objects, such as images and links in Web pages, different time 

intervals for change detection, and different kinds of notification mechanisms. 

Although both WebCQ and XTrie are event-driven systems, the events in WebCQ 

systems are specified by the user and are mostly timer-based. When a timer is 

activated, WebCQ visits the specified Web resource and pulls the content that will be 

compared with its stored version in the cache.  

Another system for processing data streams is dQUOB [36]. It views the data 

streams as a relational database. Each event in the stream maps to a tuple in a relation 

that characterizes the stream. It uses SQL [39] extended with create-if-then rules from 

Starburst's active database query language [48]. The create clause specifies the name 

of the rule and the data source, the if clause contains a SQL query, and the then clause 

specifies an optional function that accepts the result of the SQL query for further 

processing (including serving as the input of another query). The dQUOB system can 

 32 
 



generate optimized query plans for the continuous queries presented in the system 

based on the relational model and allows user-specified adaptation for changes in data 

streams.  

Most work on streaming data assumes that the input consists of only the raw 

data. In this environment, certain limitations are unavoidable. For example, it is easy 

to devise XPath queries and sample inputs for which an unbounded amount of 

buffering is required for any XPath processor that produces exact results. An 

interesting alternative to this environment is one in which the input provides some 

assistance to the query processor by specifying constraints on forthcoming data or 

some other similar hints. For example, [40] describes a method for embedding 

punctuations in streaming data, facilitating the streaming evaluation of queries that 

include blocking operators such as group by. It should be interesting to use similar 

ideas for streaming XML to support XPath queries that include traversal axes. 

 

3.5 Summary 
In this chapter, we discussed some of the well-known systems related with the XML 

data processing problem. We distinguished the systems for filtering XML data 

streams, from those which query streaming and non-streaming XML data. Finally, we 

discussed some other related systems referenced to XML processing. In the next 

chapter, we will thoroughly present several important definitions about the key 

features which are used in the XTrie indexing model. We will discuss in detail the 

methodology for decomposing complex XPEs into substrings as described in [9] and 

we will show how these substrings can be organized to a rooted tree. Finally, we will 

present some important notions about the substring matchings [9] with XML 

documents. 

 

 

 

 

 

 33 
 



 

 

 

Chapter 4 

 
4 XPE Decompositions and Matchings 
 

This chapter presents some important concepts that play key role in the XTrie 

indexing structure. We explain how an XPE can be represented as a rooted tree and 

match an XML document. Moreover, we describe the mechanisms for decomposing 

XPEs into sequences of XML element names (i.e., substrings), and explain how these 

substrings can be organized into substring-trees [9]. Then, we continue by discussing 

some important concepts for matching based on substring-trees. We close this chapter 

with a section about subtree-matching [9], where we describe how the subtrees can be 

used for effective matching over streaming XML documents.  

 

4.1 XPE-Tree and XPE Matching 
The XTrie index is dealing with a fragment of XPath known as tree patterns. A tree 

pattern expression is represented as a rooted tree. Each node is labeled with an 

element name prefixed by ‘/’ or ‘//’ and optionally by a sequence of one or more */. 

The ordering of nodes in the tree is determined by the order of appearance of their 

corresponding elements in the XML document examined. [9] refers to such a tree-

structured representation of an XPE as an XPE-tree. As an example, Figure 4.1 

depicts the XPE-tree of the expression p = //a[//b[*/c]/d]]/f. Note that in Figure 4.1, 

the child node for */c precedes the child node for d since the former precedes the 

latter in the expression for p.  

 

 

 34 
 



Figure 4.1 : XPath Tree matching with an XML Tree 

 
Definition: [9] given two nodes υ and υ’ in a rooted tree T, we say that υ precedes υ’ 

in a pre-order traversal of T, denoted by υ<pre υ’, if υ is visited before υ’ in a pre-

order traversal of T. 

 

The structure described leads to the definition of an interesting and useful metric, 

called the relative level [9] of a node. The relative level expresses the possible 

distance of a node from its closest ancestor in the XPE Tree. 

 

Definition: [9] for each node t, if the label of t is prefixed with ‘//’ followed by (k-1) 

‘*/’ then relLevel(t) = [k, ∞] (at least k). Otherwise, if t is prefixed by ‘/’ followed by 

(k-1) ‘*/’ its relative level is relLevel(t) = [k, k](exactly k). 

 

Also [9] defines the XPE-tree node mapping with an XML document node. Consider 

an XPE-tree T and an XML document tree D.  

 

Definition: [9] a node ti in T matches at a node d in D if the element name of ti is 

equal to that of d. 

 

 

 35 
 



Figure 4.2 : An XPE Tree and an XML Tree example 

 

Figure 4.1 shows the relative-level annotations for the nodes in our example XPE-tree 

and the node mapping indicated by the set of dashed arrows from the nodes in T to 

those in D. 

 
4.2 Substring Decompositions 
A substring [9] s of an XPath expression p, is a string produced by the concatenation 

of element names s = t1.t2…tn of nodes u1, u2…un respectively, such that ui is the 

parent node of ui+1 and every ui (with the possible exception of u1) is prefixed only by 

‘/’. Let P = <p1, p2, …, pn> a sequence of paths in the tree of p and let <s1, s2, …, sn> 

be a sequence of strings where si derives from the concatenation of element names in 

pi. If each si is a substring of p and: 

 

1. Each node in the tree of p is in at least one pi 

2. pi precedes pj iff its last node precedes that of pj in a pre-order traversal of 

XPE tree of p 

 

then the sequence <s1, s2, …, sn> is called a substring decomposition [9] of p. As an 

example, consider the XPE p = /a/b[c/d//e][g//e/f]// * / * /e/f whose XPE-tree is 

depicted in Figure 4.2. The set of substrings of p includes abg, bcd, ef and b; on the 

other hand, abge, gef, and bef are not substrings of p, since they involve an 

intermediate element name (i.e., e) that is not prefixed by “/”. There are two kinds of 

 36 
 



useful substring decompositions, minimal [9] and simple [9], which are used to 

enchase the filtering performance. In the next two sections we describe thoroughly 

these decompositions.  

 

4.2.1 Minimal Decomposition 
A minimal decomposition [9] S of p contains only substrings which have the maximal 

length (si ->maxlength ). In other words, there does not exist another longer substring sj 

in S that contains si. Obviously a minimal decomposition of p is unique, since it 

comprise the smallest possible number of substrings among all possible                

decompositions of p. Figure 4.3a shows the minimal decomposition Sa for XPE p, 

where each dashed region encloses a path of nodes defining a substring containing in 

Sa. The choice of minimal decomposition in the XTrie index has two important 

advantages [9]:  

 

• Lower space, due to fewer index probes since longer substrings (in minimal 

decomposition) have a lower probability being matched in the input XML 

document. 

• Best performance, thus the cost of each index probe is generally lower with 

minimal decompositions (fewer XPEs associated with a longer substring). 

 

On the other hand, the choice of minimal decomposition can result problems when 

checking for an ordered match of our XPE-tree with a streaming XML document. As 

an example, consider the minimal decomposition Sa = <abcd, e ,abg, ef, ef> of the 

XPE p and the XML document tree D in Figure 4.2, where the numeric subscripts  

denote the preorder traversal of the document elements through the SAX parsing 

interface. Clearly, p matches D in the unordered matching model. But in the ordering 

matching model (which is used in our implementation of XTrie), the matching of the 

substrings containing in the substring decomposition of p must has an order that 

enables the positional constraints between each matching substring and its “parent”. 

For example, to correctly detect a matching of ef, the element e must be matched at 

exactly three levels below where the element b in abcd (or abg) is matched. The 

problem with this example is that the matching of ef (after f6 is parsed in D) occurs

 37 
 



Figure 4.3 : Minimal and Simple XPE decompositions 

 

before the matchings of both abcd and abg and, therefore, there is no matching 

occurrence of either of these substrings to enable checking the positional constraints 

for ef. This happens because, the substring ab appears only as a prefix of substrings 

abcd and abg, and not as an explicit substring in the decomposition of p. It is obvious, 

to avoid such problems, [9] uses a substring decomposition that enables the positional 

constraints in the XPE-tree. Thus, there is a need to enrich the minimal decomposition 

of an XPE so that it “takes note” of the branching nodes in the XPE-tree. This can be 

accomplished using another type of substring decomposition, the simple XPE 

decomposition [9]. 

 

4.2.2 Simple Decomposition 
The simple decomposition S of an XPE p consists of two sequences S1 and S2 [9], 

where:   

 

1. S1 is the minimal decomposition of p.  

2. S2 consists of one substring s for each branching node υ in p’s XPE-tree, 

such that s is the maximal substring in p with υ as its last node and s is not 

already listed in S1. 

 
 

 

38 



Figure 4.4 : Substring tree for Sb

 

Consider again the example for the XPE p in Figure 4.2, where the simple 

decomposition Sb of p depicted in Figure 4.3b. Note that Sb simply adds the substring 

ab (b is a branching node) to the minimal decomposition Sa. In addition, note that, for  

a single-path XPE (there isn’t branching nodes), its simple decomposition is equal to 

its minimal decomposition. 

 

4.3 Substring-Trees 
Every substring in the substring decomposition (minimal, simple or other) of an XPE 

p can be organized into a unique rooted tree. This tree called substring-tree [9] of p.  

Let S = < s1, s2, · · · , sn > denote the simple decomposition of p corresponding 

to the sequence of paths P = < p1, p2, · · · , pn > in the XPE-tree of p . Then, the 

substring-tree of p is constructed as follows [9]: 

  

1. The root substring is s1. 

2. For each substring si ∈ S, i > 1, the parent substring of si is sj (or                                 

equivalently, si is the child substring of sj), if the last node of pj (among all 

the paths in P) is the nearest ancestor node of the last node of pi. 

3. The ordering among sibling substrings is based on their ordering in S. 

 

As an example, Figure 4.4 shows the substring-tree for the simple decomposition Sb 

of p. To continue, we must mention some important notions [9] of the substring-trees: 

 

 39 
 



• Substring Rank [9]: the rank of si substring is k if si is the kth child of its parent 

substring; the rank of the root substring is 1. For example, in Figure 4.4 the 

ranks of abg and ef (child of abg) are 2 and 1 respectively. 

• Leaf substring [9]: a substring that has no child substrings. For example, in 

Figure 4.4, the substrings e, ef, and ef are leaf substrings. 

• Substring relative level [9]: let V denote the set of nodes in pi that are not in pj. 

Let x = ∑  , where relLevel(υ
∈V k

k
l

υ k) = [lk, uk]. Then, the relative level of si 

denoted by relLevel(si) = [x, ∞] (a range) if { }kV u
k ∈υmax  = ∞. Else, denoted 

by relLevel(si) = [x, x] (exact value). Figure 4.4 shows the relative-level 

annotations for the nodes in the substring-tree. 

 

4.4 Matching with Substrings 
[9] extends the definition of matching for XPE nodes to substrings. Consider an XML 

document tree D and an XPE p with XPE tree T and simple decomposition < s1, 

s2, · · · , sn > corresponding to the sequence of paths P = < p1, p2, · · · , pn >. Suppose 

p matches D; i.e., there is a node mapping f from the nodes in T to those in D. [9] 

defines the substring matching as follow: 

 

Definition: [9] si matches at a node d in if f(υ) matches at d in D, where υ is the last 

node of pi. We use f(si) = υ to denote a matching of si at node υ under the node 

mapping f. We say that there is a matching of si at level l in D if si matches at some 

node at level l in D. 

 

Clearly, to fully match p, [9] needs to find a matching for each of the substrings of p 

such that the positional constraint, defined by p between each substring and its parent, 

is satisfied.  

As the nodes in D are parsed in a pre-order traversal (by the SAX parser [33]), 

the ordered matching of p in D also progresses incrementally following a pre-order 

traversal of the substring tree of p such that each substring si is matched before si+1. 

Thus, to determine if p matches D, [9] needs to keep track of the partial matchings [9] 

of p in D. However, since [9] is interested only in whether or not p matches D and not 

 40 
 



in the actual number of match occurrences, partial matchings of p that are redundant 

[9] should be ignored in order to improve the effectiveness of the filtering process. 

The next two sections define the notions of partial and redundant matchings. 

 

4.4.1 Partial and Complete Matching 
The partial matching [9] is a basic notion of the XTrie indexing scheme and can be 

defined as follow: 

 

Definition: [9] there is a partial matching of substring si at a node d in D if the last 

node of pi matches at d in D.  

 

[9] represent a partial matching by its node matching f that maps nodes from T to 

nodes in D.  

 

Definition: [9] there is a complete matching of p in D if there is a partial matching of 

sn  the last substring in substring decomposition of p) at some node in D. 

 

4.4.2 Redundant Matching 
Another important notion which play key role for the efficiency of XTrie filtering 

mechanism, is the redundant matching [9]. Its formally definition is: 

 

Definition: [9] a partial matching of si at node d in D, where d is the kth node in the 

pre-order traversal of D, is defined to be a redundant matching if for each XML 

document D’ (that is equivalent to D for the first k nodes) that matches p under a 

mapping f with f(si) = d, there exists an alternative mapping f’ that also defines a 

complete matching of p but with f’(si) ≺ pre d.  

 

As an example, consider the Figure 4.5, where the simple decomposition of p is < a, b, 

c, bd >. Note that the blue colored nodes in XML tree indicate the partial matchings 

of the substrings in the substring tree. In the other hand the red colored nodes indicate 

the redundant matchings. There are two redundant matchings: 

 41 
 



Figure 4.5 : Partial and redundant matching example 

 
• (R1), the partial matching of substring c at the c node under the node f. 

• (R2), the partial matching of substring b at the second b node under the node a. 

 

Informally, a partial matching of a substring si is redundant if there already exists a 

preceding partial matching of si such that ignoring the later partial matching would 

not affect the correctness of deciding whether or not p matches D [9]. To achieve an 

efficient filtering (reducing the overhead of book-keeping operations) of documents 

with XPEs, [9] must detect and ignore the redundant substring matches. For that 

reason, [9] introduces the notion of subtree-matchings [9]. 

 

4.5 Subtree Matching 
[9] extends the notion of substring-matching to the subtrees [9]. A formal definition 

of the subtree-matching is: 

 

Definition: [9] a node mapping f is said to define a subtree-matching of si if f defines 

a partial matching of each descendant of si. 

 

Actually, f captures a matching that includes the entire XPE subtree rooted under si. 

As an example, consider again the substring tree in Figure 4.2, and assume that a 

 42 
 



Figure 4.6 : Example of redundant matching 

 

partial matching of the substring ef (whose parent substring is abg) has just been 

detected. This implies that there is a subtree-matching for each of the following four 

substrings: abcd, abg, e and ef itself. Also, referring to the two redundant matchings 

(R1) and (R2) in Figure 4.5, the partial matching of substring c in (R1) is redundant 

because there already exists a subtree-matching of its ancestor substring b, while the 

partial matching of substring b in (R2) is redundant because there already exists a 

subtree-matching of the substring b itself. Thus, [9] can detect redundant matchings 

by keeping track of subtree-matchings for the various substrings. Another, more 

formally definition of the redundant matching is: 

 

Definition: [9] a partial matching of si (defined by a mapping f) is redundant if there 

exists another partial matching of si (defined by a mapping f’) such that:  

1. F’(si) ≺ pre f(si) 

2. there exists an ancestor substring sa of si such that:  

I. f’(sa) = f(sa)  

II. f’ defines a subtree-matching of the child substring of sa whose 

subtree contains si. 

 

To illustrate the above subtree-based conditions for redundant matchings, consider the 

example in Figure 4.6, where two node mappings, f and f’, are shown for matching a 

substring-tree with (six substrings) to an XML document (with seven nodes). Suppose 

that the node d6 in the XML document has just been parsed and it matches the

43 



Figure 4.7 : Subtree-based conditions for redundant matchings 

 

substring s3. By the subtree-based conditions, the partial matching of s3 at d6 (defined 

by f) is redundant because there already exists an earlier partial matching of s3 at  d3 

(defined by f’) which is part of a subtree-matching (a subtree-matching of s3 itself), 

where both f’ and f map s2, the parent substring of s3, to the same node d2. The XML 

document trees in Figure 4.7b illustrates why [9] needs the condition f’(sa) = f(sa) in 

definition for redundant matchings. Without this condition on sa, the partial matching 

of substring b to the circled b node would have been incorrectly considered to be 

redundant (it’s not redundant because, ignoring the latter partial matching of substring 

b would not affect the correctness of deciding whether or not p matches D) since there 

is subtree-matching of substring b at an earlier b node. The XML document tree in 

Figure 4.7c illustrates why [9] needs the condition that there be a subtree-matching at 

the child substring of sa (as opposed to at some descendant substring of sa) whose 

subtree contains si. If the weaker condition is used, then the partial matching of 

substring c to the circled c node would have been incorrectly regarded as redundant 

(it’s not redundant for the same reason as before), since there is a subtree-matching of 

substring c at an earlier c node and also, there exist an ancestor substring (a) of 

substring c such that f’(a) = f(a). 

 

4.6 Summary 
In this chapter we presented some important definitions about the basic features which 

are used in XTrie. We explained how an XPE can be represented as a rooted tree and 

44 



match an XML document. Moreover, we described the mechanisms for decomposing 

XPEs into substrings [9], and explained how these substrings can be organized into 

substring-trees [9]. Finally, we discussed some important concepts for matching based 

on substring-trees. In the next chapter we present in detail, the XTrie index structure 

and algorithms [9]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 45 
 



 

 

 

 

Chapter 5 

 
5 XTrie Structure and Indexing Scheme 
 

In this chapter, we present the XTrie indexing scheme for filtering XML documents 

based on XPEs. Moreover, we explain step by step all the algorithms in the XTrie 

scheme. Also, we explain how the XTrie mechanisms can deal with XPEs containing 

attributes and/or text data. We continue by presenting two maintenances of XTrie for 

XPE insertions [9] and deletions [9]. Finally, we discuss an optimized variant (Lazy) 

[9] of XTrie and explain in detail how the matching algorithms work. 

 

5.1 The Index Structure 
In this section we present two basic components of the XTrie index and explain their 

functionality. Let P = {p1, p2, · · · , pn} denote the set of XPEs being indexed, and S 

denote the set of distinct substrings derived from all the simple decompositions of the 

XPEs in P. The XTrie index consists of two key components:  

 

1. Trie [9] (denoted by T): constructed on S to facilitate detection of substring 

matchings in the input XML data.  

2. Substring-Table [9] (denoted by ST): that stores information about each 

substring of each XPE in P. The information in ST is used to check for partial 

matchings. 

 

 46 
 



 
Symbol Description 
P Set of XPEs being indexed. 
S Set of distinct substrings from the simple decompositions 

of all the XPEs in P. 
|pi| Number of substrings in the simple decomposition of pi.
si,j jth substring in a decomposition of XPE pi.
Lmax Maximum number of levels in XML document. 
label(N) Label of trie node N in XTrie. 
a(N) Substring pointer of trie node N in XTrie. 
β(N) Max-suffix pointer of trie node N in XTrie. 

 

 

 

 

 

 

Table 5.1 : XTrie basic notations 

 
We now describe each of these two XTrie components in detail (using the notions in 

table 5.1), and present an example of XTrie index. 

 

5.1.1 The Substring-Table 
The substring-table ST contains one row for each substring of each indexed XPE; i.e., 

there are ∑ ∈Pp
p  rows in ST with each row corresponding to some si,j (denoting the 

jth substring in the decomposition of pi). The substrings derived from the same 

expression are stored in consecutives rows. [9] uses the symbol ri,j to denote the row 

in ST that corresponds to substring si,j. Finally, the rows representing the same 

substring are held into linked lists. Thus we have |S| disjoint blocks in ST, one for 

each of these lists. 

The information for each substring is held in one row. After examining the overall 

structure of ST, we focus to the structure of its rows. Each row is a tuple containing 

five fields: 

 

• ParentRow [9]: an integer denoting the row in ST that contains the parent 

substring of this substring of si,j (ParentRow = 0 if si,j is a root substring). 

• RelLevel [9]: obviously the relative level of si,j (i.e., relLevel(si,j)). 

• Rank [9]: the rank of si,j in the ordering of the children of its parent substring. 

• NumChild [9]: is the total number of child substrings of si,j. 

 
 

 47 
 



Figure 5.1 : An XTrie example 

 

• Next [9]: is a “pointer” for a singly linked list, is the row number of the next 

tuple in ST that belongs to the same logical block as the current row. If the 

current row is the last row in the linked list, then Next = 0. 

 

5.1.2 The Trie 
The Trie [9] T is a rooted, node and edge-labeled tree. It is constructed from S 

(distinct substrings). Each edge is labeled with an element name, while each node N is 

associated with a label, label(N) [9]. That label is formed by the concatenation of 

every edge label that belongs in the path from the root of T to N. By this, [9] ensures 

that:  

 

1. For each s ∈ S, there is a unique node N in T such that label(N) = s. 

2. For each leaf node N in T, label(N) ∈ S.  

 

Each node in T has two special pointers apart of those to its children nodes: 

 

• The Substring pointer [9] (denoted by α(N)): points to some row in ST (i.e., 

α(N) is  a row number) determined as follows: if label(N) ∈ S, then α(N) 

points to the first row of the linked list associated with substring label(N); 

otherwise, α(N) = 0. 

 48 
 



 

• The Max-suffix pointer [9] (denoted by β(N)): points to some internal node in 

T and its purpose is to ensure the correctness of the matching algorithm. 

Specifically, β(N) = N’ if label(N’) is the longest proper suffix of label(N) 

among all the internal nodes in T; if N’ does not exist, then β(N) points to the 

root node of T. 

 

As an example, Figure 5.1 depicts the XTrie index structures for a set of four XPEs P 

= {p1, p2, p3, p4} with their respective simple decompositions: 

 

1. p1 = //a/a/b/c/*/a/b with  S1 = <aabc, ab> 

2. p2 = /a/b[c/e]/*/b/c/d with  S2 = <ab, abce, bcd> 

3. p3 = /a/b[c/*/d]//b/c with  S3 = <ab, abc, d, bc> 

4. p4 = //c/b//c/d/*/*/d  with  S4 = <cb, cd, d> 

 

The number within each trie node N in Trie, as shown in Figure 5.1, represents the 

node’s identifier, and the values of α(N) and β(N) are shown to the left and right of N, 

respectively. Figure 5.1 also depicts the corresponding substring table with the rows 

clustered in the order of the XPEs in P. 

 

5.2 The XTrie Matching Algorithm 
The XTrie indexing scheme [9] is designed to support on-line filtering of streaming 

XML data and is based on the SAX [33] event-based interface that reports parsing 

events. Figure 5.3 depicts the search procedure for the XTrie, which accepts as input 

an XML document D and an XTrie index (ST, T), processes the parsing events 

generated by D, and returns the identifiers of all the matching XPEs in the index. 

The algorithm accepts an XML document and an XTrie index (ST and T) to 

produce a set of identifiers indicating the matched XPath expressions. The basic steps 

are first to detect matching substrings using T and then examine the rows in ST that 

refer to this substring in order to check if this match is non-redundant. [9] needs some 

kind of dynamic information for the latter process, as ST contains only static 

 49 
 



information. For that purpose [9] introduces two more structures, arrays B [9] and C 

[9]. B and C are 2-dimensional arrays of size |ST| × Lmax, where Lmax is the maximum 

number of levels in the input document. In the next to sections we present those arrays 

and explain how they work. 

 

5.2.1 B-array 
The first array B [9] is an integer-array such that B[ri,j, l] = n, n > 0, if there is a non- 

redundant matching of si,j (represented by a node mapping f) at level l such that the nth 

child substring of si,j is the leftmost child substring of si,j for which a subtree-matching 

has not yet been detected (i.e., f defines a subtree-matching of the (n − 1)th
 child 

substring of si,j ). Intuitively, B[ri,j, l] records the rank of the next child subtree of si,j 

that we need to match for this non-redundant occurrence of si,j at level l. Thus, we 

know that an XPE pi matches the input document when B[ri,1, l] = m + 1 for some 

value of l, where m is the number of child substrings of the root substring si,1. Each 

B[ri,j, l] is initialized to 0, and is incremented to 1 after a non-redundant matching of 

si,j at level l is detected. As more substring matchings are detected, the value of B[ri,j, l] 

is incremented from n to n + 1, n ≥ 1, when there is a subtree-matching of the nth child 

substring of si,j. The value of B[ri,j, l] is reset to 0 when the end-tag corresponding to 

the start-tag at level l is parsed. 

 

5.2.2 C-array 
The second array C [9] is a bit-array that is used to ensure that sibling substrings 

match along distinct branches for an ordered matching. Each entry C[ri,j, l] 

corresponds to a matching of the substring si,j at level l, and is initialized with a value 

of 0. Whenever the value of B[ri,j, l] is incremented to some value k > 1, indicating 

that a subtree-matching of the (k − 1)th child substring of si,j has been detected, C[ri,j, l] 

is set to 1. C[ri,j, l] is then reset back to 0 right before the next document node at level 

l is to be parsed (i.e., when an end-tag corresponding to a start-tag at level l is parsed 

in the input XML document). Informally, a value of C[ri,j, l] = 1 indicates that the 

nodes parsed in the input document are along the same branch as the one that matched 

the (k − 1)th child substring of si,j; therefore, any matching of the kth child substring of

 50 
 



Figure 5.2 : Propagation of subtree-matchings example 

  

si,j (with si,j matching at level l) detected during this period can not be considered a 

valid partial matching. 

 

5.2.3 Detect non-redundant Matchings 
To understand how the arrays B and C are used to detect non-redundant matchings, 

suppose that a matching of substring si,j at level l has been detected, and si,j is the nth 

child substring of si,k. This matching is a partial matching of si,j if there exists a 

matching of si,k at level l’ such that [9]: (1) C[ri,k, l’] has a value of 0; (2) l − l’ ∈ 

relLevel(si,j) (i.e., the positional constraint between si,j and si,k is satisfied); and (3) 

B[ri,k, l’] ≥ n (i.e., we have subtree-matchings for at least the n−1 left-siblings of si,j 

rooted at si,k). If, in addition, the value of B[ri,k, l’] is exactly n, then this partial 

matching is non-redundant; otherwise, [9] has already discovered a subtree-matching 

for si,j, so the current matching is redundant and can safely be ignored. Note that since 

both B and C are large sparse arrays, their implementation can be optimized to

51 



Start 
Tag 

Changes to B array after processing start tag 

g  
a B[a, 2] = 1 
b B[b, 3] = 1 
b B[b, 4] = 1 
e  
c B[c, 6] = 1, B[b, 4] = 2 
d B[bd, 5] = 1, B[b, 4] = 3, B[a, 2] = 2, B[b, 3] = 3 
h  
c Redundant matching of c since B[b, 3] is greater than the rank of c. 
b Redundant matching of b since B[a, 2] is greater than the rank of b. 
f B[af, 3] = 1, B[a, 2] = 3, complete matching of p. 

Table 5.2 : Execution trace of changes to B array for the matching of p on D in Figure 4.1 

 

minimize space (e.g., using linked lists).  In order to understand how the B array is 

used to detect non redundant matchings we present two concrete examples: 

 

• Example 1 [9]: consider the substring-subtree (consisting of substrings s1 to s8) 

in Figure 5.2a, which shows a partial matching of s5. A shaded node for si 

means that there is a partial matching of si; and for notational convenience, 

assume that the partial matching of si (1 ≤ i ≤ 6) is at some node at level li of 

some XML document. The number to the right of each node si represents its 

B[si, li] value. For instance, in Figure 5.2a, the B array value for s2 is equal to 2 

since only its first child substring (i.e., s3) is part of a subtree-matching. 

Subsequently, when a partial matching of s6 is detected, as shown in Figure 

5.2b, it also trivially follows that there is a subtree-matching of s6 since s6 is a 

leaf substring. In order to correctly maintain the B array values, we need to 

propagate information about the subtree-matching of s6 up to its parent 

substring (i.e., s4) to indicate that a subtree-matching has been detected for its 

second child substring. This update propagation (indicated by an up arrow 

from s6 to s4 in Figure 5.2b) therefore increments s4’s B array value by one to 

3, which in turn indicates that there is a subtree-matching of s4. Consequently, 

[9] needs to further propagate the update upwards to s2 and increment its B 

array value by one to 3. The update propagation stops at this point since there 

52 



is no subtree-matching of s2. Given the updated B array values in Figure 5.2b, 

it is clear that a subsequent partial matching of s4 would be considered 

redundant since B[s2, l2] is now greater than the rank of s4. For a similar reason, 

a subsequent partial matching of either s3, s5, or s6 is also considered 

redundant. Figures 5.2c and d, show how the B array values are updated after a 

partial matching of s7 and s8, respectively.  

• Example 2 [9]: Table 5.2 depicts an execution trace of the changes to the B 

array when matching XPE p against the XML document D in Figure 4.1. The 

second column of the table describes the changes to the B array after 

processing the start tag indicated in the first column. For instance, after the 

first c node in D is parsed, a partial matching of c, which is also a subtree-

matching, is detected; and this is propagated to its parent substring b resulting 

in updates to both B[c, 6] and B[b, 4]. 

 

5.2.4 Details of Matching Algorithm 
Eager XTrie uses three algorithms for matching XPEs over an XML document. These 

algorithms are:   

 

• SEARCH [9] (depicted in Figure 5.3): begins by initializing the search node N 

to be the root node of the trie T (Step 6). For each start-tag t encountered, if 

there is an edge out of N with the label t (to another trie node N’ in T), the 

search continues on node N’. For each trie node N’ visited, a matching 

substring (corresponding to label(N’)) is detected if α(N’) ≠ 0; in this case, 

Algorithm MATCH-SUBSTRING [9] is invoked to process the matching 

substring using the substring table ST. Furthermore, for each trie node N’ 

visited, algorithm also needs to check for other potential matching substrings 

that are suffixes of label(N’); this is achieved by using the max-suffix pointer 

(i.e., β(N’)) in Step 17. On the other hand, if there is no edge out of a node N 

with the current tag t, this means that the concatenation of label(N) and t is not 

a matching substring. Therefore, algorithm needs to check for other potential 

matching substrings, which are formed by the concatenation of some suffix of 

label(N) and t, by using the max-suffix pointer in Step 11. For each end-tag t

 53 
 



Figure 5.3 : Algorithm to search XTrie 

 

encountered (corresponding to some start-tag at level l), the run-time 

information B is updated by resetting B[r, l] to 0 for all rows r (Step 19), and 

the search node is re-initialized to its previous location before the tag t was 

encountered (Step 20). This is achieved by using an array Node to keep track 

of the location of the search node at each document level (Step 13).  

• MATCH-SUBSTRING [9] (shown in Figure 5.4): is invoked when a substring 

s (matching at level l) is detected. The algorithm checks for non-redundant 

matchings of s, updates the run-time information B, and returns the identifiers 

of all the matching XPEs that have s as their last substring. More specifically, 

the algorithm iterates through each instance of s in ST (i.e., each row in the 

linked list associated with s) to check for non-redundant matchings of s. There 

are two scenarios for the instance of the matching substring (say si,j) 

corresponding to row r. For the special case where si,j is a root substring 

(Steps 5-9), if its positional constraint is satisfied (Step 6), then the matching 

is a partial matching (and obviously non-redundant, since it is a root substring), 

and B[r, l] is updated to 1 (to indicate that we can start looking for matchings

54 



Figure 5.4 : Algorithm to process a matched substring 

 

of child subtrees). If, in addition, si,j is a leaf substring, then we have a 

matching of pi (Step 9). For the general case where si,j is a non-root substring 

(Steps 10-15), if there is a non-redundant matching of si,j (Step 11), then B[r, l] 

is updated to 1. If, in addition, si,j is a leaf substring, then Algorithm 

PROPAGATE-UPDATE [9] is called to update the run-time information arrays 

B and C, and check for a matching of the full XPE pi. We should point out that, 

since [9] is not interested in finding multiple matches of the same XPE, [9] 

eliminates unnecessary processing and checking in MATCH-SUBSTRING for 

XPEs that have already been matched. This can be easily achieved by using a 

bit-mask (consisting of one bit per XPE). 

• PROPAGATE-UPDATE [9] (depicted in Figure 5.5) is used to implement such 

“update propagations” and correctly update both B and C whenever a non-

redundant subtree-matching of some non-root substring (si,j matching at level l 

corresponding to row r in ST) is detected. The algorithm iterates through each 

matching of si,j ’s parent substring (at level l’ ∈ [l’min, l’max]) and updates its B 

and C entries if the matching forms a non-redundant matching of si,j. If this

55 



Figure 5.5 : Algorithm to update run-time information arrays and detect complete matchings 

 

matching is also a subtree-matching for the parent substring of si,j (Step 13), 

then there are two cases to consider. If the parent substring is a root substring 

(Step 14), then [9] has found a matching of pi; otherwise, [9] recurs the update 

propagation of the B and C entries for the ancestor substrings of si,j as well 

(Step 17). The algorithm returns true if a matching of pi has been detected; 

otherwise, if it is possible to have multiple matchings of the parent substring 

of si,j (i.e., relLevel(si,j) = [lmin, ∞] for some lmin), then, to avoid any subsequent 

redundant matchings of descendants of si,j, the algorithm updates the B entries 

of all the earlier matchings of si,j (Steps 19 to 22), and returns false. 

 

56 



5.2.5 Theoretical Space and Time Complexity 
The space requirement [9] of the XTrie index is dominated by the total number of 

substrings in P; that is, the space complexity is O ( )∑ =

P

i ip
1

, where |pi| denotes the 

number of substrings in the simple decomposition of pi. To analyze the search-time 

complexity, let P denote the length of the longest root-to-leaf path in the trie T, let L 

denote the maximum length of a linked list in ST (i.e., the number of distinct 

occurrences of any substring), and let H denote the maximum height of a substring-

tree [9]. The worst-case time complexity of Algorithm PROPAGATE-UPDATE is 

O(H Lmax) [9]. Since Algorithm MATCH-SUBSTRING makes at most L calls to 

Algorithm PROPAGATE-UPDATE, the complexity of Algorithm MATCH-

SUBSTRING is O(L H Lmax) [9]. For each start-tag in the input document, Algorithm 

SEARCH makes at most P calls to Algorithm MATCH-SUBSTRING; thus, the 

worst-case complexity of processing each start-tag in an input document is O(P L H 

Lmax) [9]. Finally, it is easy to see that processing an end-tag takes O(|ST|) time; thus, 

the overall (worst-case) time complexity of processing each tag in an input XML 

document is O(max{P L H Lmax , |ST|}) [9]. 

 

5.3 Attributes and Text Data 
So far, our discussion of XTrie has been limited to XPEs that do not refer to any 

attributes or text data. In this section, we explain how XTrie can be easily extended to 

handle those features.  

To handle XPEs with attributes, [9] needs to extend the substring-table ST with 

an additional column, Attribute [9], which is a pointer to a list of attributes (including 

any predicates) associated with the elements in a substring. For example, consider the 

XPE p = /a[@name][@address]/b[@cost ≤ 500]/c[d], where element a must have two 

attributes “name” and “address”, and element b must have an attribute “cost” with a 

value of no more than 500. The simple decomposition of p consists of three substrings: 

s1 = ab, s2 = abc, and s3 = abd. Let r1, r2, and r3 denote the rows in ST that correspond 

to s1, s2, and s3, respectively. Then, the Attribute value of row r1 points to a linked list 

consisting of two entries with information about the attributes associated with the 

elements a and b. (Note that this information will not be repeated in rows r2 and r3 to 

 57 
 



avoid redundancy). In addition, since both elements c and d are not associated with 

any attributes, their values for Attribute is a null value representing an empty attribute 

list. By keeping track of the attributes (and their values if any) associated with the 

elements as they are parsed in an input XML document, the additional constraints on 

attributes can be easily verified for each matching substring. Thus, a matching for a 

substring s is considered to be a partial matching of s if all the attribute constraints 

associated with s are also satisfied. 

Note that predicates that involved text values are handled in a similar manner as 

described for predicates involving attributes; where the substring-table is extended 

with an additional column, Text [9], which is a pointer to a list of predicates on the 

text values associated with the elements in a substring. Essentially, [9] uses the SAX 

parser to generate a single event for each start-element tag which consists of the 

element name, all the attributes specified in the start-element tag, and any text value 

enclosed after the start-element tag. In this way, any predicates associated with an 

element can be checked after its start-element event is reported by the SAX parser. 

 

5.4 Maintenance 
In this section, we present the maintenance algorithms for XTrie. First we present the 

maintenance of the max-suffix pointers in the trie T. Then we continue by presenting 

two maintenance algorithms, one for XPE insertions and one for XPE deletions. 

 

5.4.1 Reverse Trie 
One approach to efficiently maintain max-suffix pointers is to build an auxiliary 

suffix trie structure Trev [9] on the set of reversed substrings so that for each node N in 

T, there exists an unique node N’ in Trev such that label(N) = reverse(label(N’)). By 

enhancing Trev with special node pointers γ(.) so that γ(N’) points to its associated 

node in T (i.e., γ(N’) = N iff label(N) = reverse(label(N’))), the max-suffix pointer 

value of a node N in T can be determined easily by traversing Trev using 

reverse(label(N)): if N’ is the last node reached by reverse(label(N)) in Trev, and N’’ is 

the closest ancestor node of N’ that has a non-null value for γ(.), then β(N) is given by 

γ(N’’).  

 58 
 



The auxiliary structure Trev is basically a suffix trie on the set of reverse 

substrings in S; i.e., Trev is a trie on the set {s’ | s ∈ S, s’ is a suffix of reverse(s)}. The 

nodes in T and Trev are related by the following invariant condition: for each node N in 

T, there exists a unique node N’ in Trev such that label(N) = reverse(label(N’)). [9] 

explicitly maintains this association between the nodes in T and Trev by enhancing Trev 

with additional pointers as follows: for each node N’ in Trev, [9] maintains a special 

pointer, denoted by γ(N’), that points to the node N in T (if it exists in T) such that 

label(N) = reverse(label(N’)); otherwise, γ(N’) is initialized to a null pointer value. 

Note that for the root node N’root of T’, γ(N’root) points to the root node of T. Given 

Trev, the max-suffix pointer value of a node N in T, β(N), can be easily computed as 

follows. Let P =< N’1 ,N’2 , · · ·,N’k > denote the unique path of nodes in Trev 

beginning from the root node N’1 down to some node N’k such that label(N’k ) = 

reverse(label(N)). Then, the value of β(N) is given by γ(N’i ), where N’i (1 ≤ i < k) is 

the bottom-most node in P (excluding node N’k ) that has a non null pointer value. 

Note that such a node always exists since γ(N’1 ) points to the root node of T. 

 

5.4.2 Insertions 
This section presents an algorithm [9] (shown in Figure 5.6) to update XTrie and the 

auxiliary structure Trev when a new set of XPEs Pnew is to be added. The maintenance 

algorithm to handle insertion of new XPEs consists of three main phases. 

The first phase expands T with new nodes (if required) and updates ST with a 

new entry for each substring in the simple decomposition of each new XPE. The 

second phase expands Trev with new nodes if new nodes have been inserted into T 

during the first phase, and updates their γ(.) pointer values; this phase also updates the 

max-suffix pointers of some of the existing nodes in T. Finally, the third phase 

updates the max-suffix pointers of the new nodes that were added to T in the first 

phase. We now elaborate on the details of these three phases.  

In the first phase (Steps 1 to 11), for each substring s in the simple 

decomposition of each new XPE, we traverse T using s to first check if there exists a 

node N in T such that label(N) = s. If not, an appropriate path of new nodes is inserted 

into T so that a leaf node in T is reachable using s. A new entry corresponding to s is 

also inserted into the substring table ST. The α(.) pointer values are updated

 59 
 



Figure 5.6 : Algorithm for insertion of a set of XPEs 

 

appropriately, while the β(.) are simply initialized to point to the root node of T at this 

point. 

In the second phase (Steps 12 to 23), [9] updates Trev to maintain the invariant 

condition for the newly inserted nodes in T. Therefore, for each newly inserted node N 

in T, [9] traverses Trev using reverse(label(N)) to check if there exists a node N’ in Trev 

such that label(N) = reverse(label(N’)). There are two possible cases. In the first case, 

if N’ does not exist in Trev, then an appropriate path of new nodes (with leaf node N’) 

is inserted into Trev so that label(N) = reverse(label(N’)). The γ(.) pointer values for 

the newly inserted nodes in Trev are updated appropriately. In the second case, if N’ 

already exists in Trev, then it is necessary that γ(N’) has a null pointer value (otherwise, 

60 



it would imply that node N already exists in T contradicting the fact that N is a newly 

inserted node in T); thus, what remains to be done is to simply update γ(N’) to point to  

N. Since there might be some existing nodes in T whose max-suffix pointer values 

were initialized to γ(N’), we therefore need to update the max-suffix pointer values of 

such nodes to point to N instead. This update is performed in Steps 20 to 23. The set 

of nodes in Trev associated with the affected nodes in T are represented by the set 

Nodemax; i.e., for each node N’’ ∈  Nodemax, [9] needs to update the max-suffix 

pointer of the node pointed to by γ(N’’). Note that the number of such affected nodes 

is bounded by the branching degree of node N’ in Trev.  

Finally, the third phase (Steps 24 to 26), updates the max-suffix pointers for the 

newly inserted nodes in T as described in the previous section. 

 

5.4.3 Deletions 
This section presents an algorithm [9] (shown in Figure 5.7) to update XTrie when an 

existing XPE p is to be deleted. The maintenance algorithm consists of two main 

phases. The first phase deletes the appropriate entries in the ST that correspond to the 

substrings in the simple decomposition of p; nodes in T that have become “useless” as 

a result of the changes in ST are also deleted. The second phase deletes nodes in Trev 

that have become “useless” and also updates those max-suffix pointers in T that are 

now pointing to non-existing nodes as a consequence of the nodes deleted in the first 

phase.  

In the first phase (Steps 1 to 11), for each substring s in the simple 

decomposition of p, we delete the corresponding entry to s in ST by navigating to T 

via Trev; that is we first traverse Trev using reverse(s) to reach a node N’ in Trev and 

then navigate to its associated node N in T using γ(N’). The reason for this indirect 

navigation is because we need to “take note” of node N’ in Trev (by marking that node) 

if the node N in T is deleted. Note that a node N in T will be deleted if has become 

“useless”; i.e., N has become a leaf node and the value of α(N) has become a null 

pointer value. In order to efficiently ensure that all the useless nodes in T are deleted, 

[9] needs to visit these to-be-deleted nodes in a bottom-up manner; otherwise, [9] 

would have missed deleting an internal node that later becomes a useless leaf node. 

For this reason, [9] iterates through the to-be-deleted substrings in descending order

 61 
 



Figure 5.7 : Algorithm for XPE deletion 

 

of their lengths by first sorting them into the sequence Ssort. For each node in T that is 

deleted, its associated node in Trev is marked for further processing in the second 

phase.  

The second phase (Steps 12 to 23) begins once all the relevant entries in ST and 

useless nodes in T have been deleted. The purpose of this phase is to delete useless 

nodes in Trev and update the max-suffix pointers in T using the updated Trev. For each 

deleted node N in T, [9] first navigates to its associated marked node N’ in Trev. Node 

N’ is deleted from Trev if N’ is a leaf node; otherwise, [9] updates γ(N’) to a null 

pointer value. The updating of the affected max-suffix pointers in T, which is 

performed in Steps 15 to 19, is similar to the procedure described earlier for the 

second phase in algorithm INSERT-XPE [9]. 

 

62 



5.5 Lazy XTrie Optimization 
In this section, we describe an optimization for XTrie. This optimization is based on a 

“lazy” XTrie variant [9] that aims to further reduce the number of unnecessary index 

probes. The XTrie variant that we have presented so far (referred to as Eager XTrie) 

probes the substring-table ST for every matching substring detected in the input 

document. The optimized Lazy XTrie variant tries to reduce the number of 

unnecessary index probes by postponing the probing of the substring-table ST so that 

ST is probed for a matching substring s only if s appears as a leaf substring in some 

XPE; otherwise, Lazy XTrie only updates information about the level at which s is 

matched in the input document. In this section, we explain the main differences 

between the lazy and eager variants of XTrie and present the matching algorithms 

used by Lazy XTrie.  

An important consequence of this optimization is that the order in which 

substring matchings are processed in Lazy XTrie follows a bottom-up approach as 

opposed to Eager XTrie which follows the pre-order traversal of the XPEs substring-

tree. To illustrate this difference, consider again the substring-tree in Figure 5.2. For 

Eager XTrie, the order of the partial matchings for the substrings follow the sequence 

s1, s2, · · ·, s8. On the other hand, for Lazy XTrie, it first processes the matching of the 

leaf substring s3 and then propagates upwards to process the matchings of substrings 

s2 and s1 (if they exist). Next, it detects and processes the matching of the second leaf 

substring s5 followed by an upward propagation to process the matching of s4 (if it 

exists). The remaining substrings (which are all leaf substrings) are detected and 

processed in the order s6, s7, and s8. Thus, Lazy XTrie does not always immediately 

check if a matched substring constitutes a partial matching, but only does so in a 

bottom-up manner when the matched substring is a leaf substring. This difference in 

operation introduces a number of structural and algorithmic differences between 

Eager and Lazy XTrie.  

Structurally, Eager and Lazy XTrie are almost equivalent except for the 

following three differences. First, since Lazy XTrie only probes the substring-table 

when the matched substring s is some leaf substring, we need to “remember” all the 

matched substrings that have been detection prior to the matching of a leaf substring.

 63 
 



Figure 5.8 : Algorithm to search lazy XTrie 

 

For this book-keeping, we maintain an additional data structure, denoted by M, which 

is a (|S| × Lmax) bit-array such that M[i, l] is set to 1 if and only if the substring s is 

matched at level l of the input document, where i ∈ [1, |S|] represents the identifier of 

s. For ease of access to the substring identifiers, [9] explicitly stores the substring 

identifiers in a new attribute, denoted by SID [9], in the substring-table such that 

ST[ri,j].SID is the identifier of the substring si,j. Second, in order to ensure that the 

substring-table is only probed for a matching leaf substring, [9] needs to distinguish 

between leaf and non leaf substrings. This is achieved by simply negating the values 

of α(N) in the trie if label(N) does not correspond to a leaf substring. Finally, unlike in  

Eager XTrie, where there are |S| linked lists in ST (with one list per distinct substring 

S); Lazy XTrie has only |Sleaf | linked lists in ST, where Sleaf = {s ∈ S | s is a leaf

64 



Figure 5.9 : Algorithm to process a matching substring in lazy XTrie 
 

substring in some XPE}; with one linked list for each substring in Sleaf such that a row 

ri,j in ST belongs to a linked list for substring s if and only if si,j is a leaf substring of pi 

and si,j = s. Thus, many of the rows in ST would not belong to any linked list at all.  

Algorithmically, the main search algorithm [9] for Lazy XTrie is almost 

equivalent to that for Eager XTrie (in Figure 5.8) except that it now records 

occurrences of all matched substrings and probes the substring-table only when the 

matched substring is a leaf substring. However, checking if a matched substring s 

constitutes a partial matching in Lazy XTrie is more complex than in Eager XTrie due 

to the bottom-up approach of processing matched substrings in Lazy XTrie. In 

contrast to Eager XTrie, where the B array information about the ancestor substrings 

of a matched substring s have already been properly initialized to be used for 

processing s, this is not necessarily the case in Lazy XTrie. In particular, if s is the 

first child substring of its parent substring s’, then the B array information on s’ has 

not been initialized and we first need to determine that there is a partial matching of s’ 

itself, which might in turn lead to further propagation up the chain of ancestor 

substrings. 

Moreover, Lazy XTrie uses the following algorithms for matching XPEs over an 

XML document. These algorithms are:   

 

• LAZY-MATCH-SUBSTRING [9] (shown in Figure 5.9) is called to iterate 

through each instance of s in the indexed substrings via the linked list 

associated with s when a matching leaf substring s is detected; the input

65 



Figure 5.10 : Auxiliary algorithm to process a matching substring in lazy XTrie 

 

parameter r refers to the first row in the substring-table that corresponds to s. 

For each matching substring si,j ∈  Sleaf (matching at level l and 

corresponding to row r in ST), Algorithm MATCH-SUBSTRING-SUB [9] is 

invoked. 

• MATCH-SUBSTRING-SUB [9] (shown in Figure 5.10) is invoked to check if 

this matching is a partial matching of si,j and, if so, whether it also completes 

66 



the matching of pi. The algorithm returns one of the following three status 

values: completeMatch if there is a matching of pi, partialMatch if there is a 

partial matching of si,j at level l, or noMatch otherwise. The input parameter 

subpatternMatch is a Boolean variable indicating whether or not there is a 

matching of the subpattern rooted at si,j (with si,j matching at level l); and the 

input parameter childSubpatternMatch is a Boolean variable indicating 

whether or not there is a matching of the subpattern rooted at the most recently 

detected child substring of si,j. For the non-trivial case where si,j is a non-root 

substring, the algorithm checks if the matching of si,j at level l is a partial 

matching by iterating through each possible level l’ for which the parent 

substring of si,j (corresponding to row r’ in ST) can be matched (i.e., l − l’ ∈ 

ST[r].RelLevel) in Steps 13 to 27. There are three possible cases to consider. In 

the first case, if B[r’, l’] > ST[r].Rank, then the matching is a redundant 

matching of si,j and it can be ignored. In the second case, if B[r’, l’] = 

ST[r].Rank, then the matching is a non-redundant matching of si,j; in addition, 

if the matching is also a subtree-matching of si,j (Step 16) PROPAGATE-

UPDATE (in Figure 5.5) is invoked to check if this leads to subtree-matchings 

of the ancestor substrings of si,j and possibly a complete matching of pi. In the 

third and final case, where B[r’, l’] < ST[r].Rank, we have two possible sub-

cases to consider. If B[r’, l’] > 0, then there exists at least one preceding 

sibling substring of si,j that has not been matched yet, which implies that the 

matching of si,j is not a partial matching and can therefore be ignored. 

Otherwise, if B[r’, l’] = 0, then in order for the matching of si,j to be a partial 

matching, it is necessary that there is a partial matching of the parent substring 

of si,j at level l’ and si,j is its first child substring. Therefore, a recursive call to 

Algorithm MATCH-SUBSTRING-SUB is made in Step 24 to check if there is 

a partial matching of its parent substring at level l’. Depending on the status of 

the matching of si,j, its B entry is updated accordingly in Steps 28 to 38. 

 
5.6 Summary 
In this chapter, we presented the XTrie indexing scheme for filtering XML documents 

based on XPEs. Also, we explained in detail all the algorithms which are used by 

 67 
 



XTrie. We explained how the XTrie can deal with XPEs containing attributes and/or 

text data. We continued by presenting two maintenances of XTrie, one for XPE 

insertions [9], and one for XPE deletions [9]. Finally, we presented an optimized 

variant (Lazy) [9] of XTrie and the differences from the eager variant. In the next 

chapter, we present the XTrie architecture and implementation, giving the basic data 

structures and their attributes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 68 
 



 

 

 

 

Chapter 6 

 
6 System Architecture and Implementation 
 
In Chapter 4 and 5, we gave in detail the basic concepts of the XTrie system and we 

presented several important definitions. Also, we explained how the matching 

algorithm works. In this chapter, we present our XTrie implementation and the basic 

structure of every part of the system’s architecture.  

 

6.1 XTrie Architecture 
The XTrie system consists of 6 separated parts as shown in Figure 6.1. Each one has a 

specific functionality. Every part takes one input and returns a modified output. The 

output of each part is the input of the next part in the architecture. These parts are: 

 

• XPath parser: It takes as an input an XPath expression and parses it into a 

sequence of location steps. Every location step has a tag, operator and a 

sequence of zero or more filters (attributes, text or other XPath expression). 

• XPE tree constructor: It takes the location steps produced by the XPath parser 

and constructs the XPE tree. Also, it finds the relative level [9] of every node 

in the XPE tree.  

• Substring tree constructor: It takes the XPE tree and finds the simple 

decomposition [9] of the XPE. Then it constructs the substring tree [9] using 

the simple decomposition. Further, it finds the relative level [9], rank [9],

 69 
 



Figure 6.1 : The XTrie Architecture 

 

number of children [9] and the parent [9] of every substring in the substring 

tree. 

• XTrie Index builder: It constructs the Trie [9] and the Substring Table [9] 

using the substring tree.  

• XML parser (SAX based): It parses an arriving XML document and generates 

parsing events when it sees a start tag, an and tag and data internal of an 

element node.  

• Matching algorithm: It takes as an input the XTrie structure and the SAX-

based event produced by the XML document parser and returns the identifiers 

of the matching XPEs with the XML document. 

 

6.2 XTrie Implementation 
We have implemented the XTrie system in Java [23] using the Sun Java SDK version 

1.4 [22]. Now we will describe in detail the structure and the methods of every part in 

the XTrie architecture. 

 

6.2.1 XPath Parser 
The XPath parser takes an XPE and produces several location steps. Each step 

consists of a tag, an operator and zero or more filters. The filter is in form of id name

70 



Figure 6.2 : Location steps produced by the XPath parser 

 

op const in case we have attribute or text comparisons. Also, a filter could contain a 

relative XPE to the context node.  Thus, we have three kinds of filters: 

 

• Text: where is in form of text() text op const. 

• Attribute: where is in form of @attribute attribute-name op const. Note that, 

in this case, the op and const are optional. 

• Relative XPE: where is in form of tag operator *filter. 

 

As an example, consider the following XPath expression:  

 

/Song[Title[text()=’MoonChild’]/Duration[@minutes<20][@seconds>10]/Encoding[@type]] 
 

Our XPath parser takes this XPE as input and produces the location steps in Figure 

6.2. The /Song [Title [text()=’MoonChild’] /Duration[@minutes<20] [@seconds>10] 

/Encoding [@type]] location step has a filter with the relative path 

Title[text()=’MoonChild’] /Duration [@minutes<20] [@seconds>10] /Encoding[@type]. 

The /Title[text()=’MoonChild’] location step has a text filter with value ‘MoonChild’. 

The /Duration [@minutes<20] [@seconds>10] location step has two attribute filters. 

The first has an attribute name minutes with value smaller than 20 and the second 

filter has an attribute name seconds with a value greater than 10. Finally the location

71 



Figure 6.3 : (a) XPE Tree node structure and (b) XPE Tree 
 
step /Encoding[@type] has an attribute filter with attribute name type. Note that, in this 

case, there isn’t any attribute comparison with some value. 

 

6.2.2 XPE Tree Constructor 
The XPE tree constructor takes the location steps from the XPath parser and 

constructs the XPE tree. The structure of the XPE tree node is depicted in Figure 6.3a. 

The XPE tree node has 6 fields: 

 

• operator: is the operator of the location step (/ or //). 

• tag: is the element name of the location step. 

• filters: is a Vector which contains all the text and attribute filters of the 

location step. 

• numOfWildcards: is an integer with the number of wildcard operators that 

prefix the operator of the location step. 

• relLevel[ ]: is the relative level of node. 

• child: is a pointer to a Vector of the node’s children.  

 

The XPE tree constructor takes the location steps in Figure 6.2, produced by the 

XPath parser, and constructs the XPE tree in Figure 6.3b. 

 

72 



Figure 6.4 : (a) Substring Tree node structure and (b) Substring Tree 

 
6.2.3 Substring Tree Constructor 
The substring tree constructor takes the XPE tree and creates the simple substring 

decomposition of the XPE and constructs the substring tree. Figure 6.4a, depicts the 

fields of the substring tree node: 

 

• xpeID: is an integer with the identifier of the XPE. 

• numOfChilds: is an integer with the number of substring children.  

• rank: is an integer with the position of the substring node on its fathers Vector 

child. 

• parentNode: is an integer with the node number of its father substring. 

• nodeNum: is the number of the node. 

• Substring: is a Vector which contains the substring name of the node. 

• relLevel: is the relative level of the substring node. 

• attributeList: is a LinkedList which contains the attribute and text filters of 

every substring node (e.g. contains all the filters of every element in the 

substring). 

• child: is a pointer to a Vector containing the children of the substring node. 

 

 73 
 



Figure 6.5 : (a) Trie node structure and (b) ST Row structure 

 
The substring tree constructor takes the XPE tree, as depicted in Figure 6.3b, in order 

to find the substring decomposition and constructs the substring tree, as shown in 

Figure 6.4b. The numbers next to the substring relative level are: number of children, 

rank, XPE identifier, parent node number and node number respectively. 

 

6.2.4 XTrie Builder 
The XTrie builder consists of two components: a) the Trie constructor and b) the 

Substring Table constructor. The Trie is a rooted tree. Figure 6.5a, shows the fields of 

the Trie node: 

 

• nodeNum: is the number of the node. 

• Label: is the element name of the node. 

• subStringPtr: is a pointer to some row in the substring table. 

• maxSuffixPtr: is a pointer to an internal node. 

• prevSibling: is a pointer to the previous node. 

• nextSibling: is a pointer to the next node. 

• firstChild: is a pointer to the child node. 

• Parent: is a pointer to the father node. 

 

 74 
 



 

Figure 6.6 : The input XPE set 

 
On the other hand, the substring table is a linked list of substring rows. The substring 

row shown in Figure 6.5b consists of 10 fields: 

 

• SubString: is a Vector containing the substring of the simple XPE 

decomposition. 

• SID: is the substring identifier. 

• xpeID: is an integer with the identifier of the XPE. 

• ParentRow: is the row number of the substring’s father node in the substring 

tree. 

• RelLevel: is an array with the relative level of the substring. 

• Rank: is an integer with the position of the substring in its father Vector child. 

• NumChild: is the number of the substring children in the substring tree. 

• Next: is an integer with the row number corresponding to the same substring. 

• Attribute: is a linked list which contains the attribute filters of the substring. 

• Text:  is a linked list which contains the text filters of the substring. 

 

As an example to see how the XTrie builder works, consider the four XPath 

expressions, shown in Figure 6.6, as an input for the XTrie system. The XTrie builder 

constructs the Trie and the Substring Table, as depicted in Figure 6.7. Every node in 

Trie consists of the substring pointer [9], the element name, the node number and the 

max suffix pointer [9] respectively. Every row in the substring table contains the row 

number of the substring, the XPE identifier, the row number of the parent substring, 

the relative level of the substring, the rank, the number of substring’s children, the

 75 
 



Figure 6.7 : The Trie and the Substring Table produced by XTrie builder 

 

 next pointer, the substring name and the attribute/text filters of the substring 

respectively. 

 

6.2.5 XML Document Parser 
The XML document parser takes an XML document and sends parsing events to the 

XTrie index. We have used SAX v2 [33] interface shipped in Sun Java package [23]. 

The followings are SAX 2 handler interfaces: 

 

• public void startDocument ().This notifies the start of XML document. The 

SAX parser will invoke this method at the beginning of the document; there 

will be a corresponding endDocument event when the parser has finished the 

parsing of the document. 

• public void startElement (String uri, String localName, String qName, 

Attributes attributes).This notifies the start of an element. The SAX parser will 

invoke this method at the beginning of every element in the XML document; 

there will be a corresponding endElement event for every startElement event 

(even when the element is empty). All of the element's contents will be 

reported in order, before the corresponding endElement event. It uses uri as 

the namespace of the XML document, localName as the local name (without 

76 



prefix), qName as the qualified name (with prefix), and attributes as the 

specified or defaulted attributes.  

• public void characters (char[] ch, int start, int length). The parser will call this 

method to report each chunk of character data. The parser may return all 

contiguous character data in a single chunk, or it may split the returning data 

into several chunks; however, all of the characters in any single event must 

come from the same external entity so that the locator provides useful 

information. It uses XML documents character data from ch array, using start 

as the start position in the array and length as the number of characters to read 

from the array. 

 

6.2.6 XTrie Matching Algorithms 
We have implemented two algorithms for the XPE matching over streaming XML 

documents. These algorithms are: 

 

• Eager XTrie algorithm [9]. 

• Lazy XTrie algorithm [9]. 

 

Figure 6.8a shows the attributes which are used by the Eager XTrie algorithm. These 

attributes are: 

 

• STsize: is the total number of rows in the substring table. 

• Lmax: is the maximum depth of the XML document. 

• NumOfXPEs: is the total number of XPEs being indexed. 

• B: is an integer array used by the matching algorithm to detect redundant 

matchings. 

• C: is a bit array used by the matching algorithm to detect redundant matchings. 

• R: is a Vector which contains the identifiers of the matched XPEs. 

• Node: is a Vector which contains the Trie nodes that match an XML element. 

• N: is the current Trie node. 

• l: is the current document level.  

 77 
 



Figure 6.8 : The XML Document as input of the XTrie system 

 

• XMLattributes: is a Vector which contains the attributes of an XML element 

given by the SAX parser. 

• XMLtext:  is a Vector which contains the enclosed text of an XML element 

given by the SAX parser.  

• id: is the current XPE identifier. 

 

The attributes used by the Lazy XTrie algorithms, as shown in Figure 6.7b, are similar 

to those used by the Eager XTrie. Moreover, Lazy XTrie uses two more attributes: 

 

• Ssize: is the total number of rows in the substring table containing only distinct 

substrings. 

• M: is a bit array used for the bookkeeping of the matched substrings. 

 

The matching algorithm takes as an input the XTrie structure (Eager or Lazy) and the  

SAX events (element, attributes, text) produced by the XML document parser. Then it 

uses the attributes which are described before and returns the identifiers of the 

matched XPEs over the XML document. 

 

 

 

 78 
 



Figure 6.9 : The output of the XTrie system 

 
Now we can see a final example on how the XTrie system works. The XTrie 

system takes as an input the set of XPEs in Figure 6.6 and an XML document, shown 

in Figure 6.8, and produces the output as shown in Figure 6.9. (The only matched 

XPE in this example is the /Song//Encoding[@type = ”Mpeg1-Layer 3”]). 

 
6.3 Summary 
In this chapter, we presented the parts of the XTrie architecture and we described in 

detail the data structures and their functionality of our implementation. Then, we gave 

some examples to show how the XTrie system works. In the final chapter, we give 

our conclusions and discuss our suggestions to further work on the XTrie system.   

 

 

 

 

 79 
 



 

 

 

 

Chapter 7 

 
7 Conclusions and Future work 
 
In this chapter, we present our conclusions and summarize our work in this 

dissertation. Also, we discuss how our work can be extended to support more features 

and how the XTrie indexing scheme can be used by data-share systems. 

 

7.1 Concluding Remarks and Summarizing 
In this work, we dealt with the problem of filtering streaming XML documents with 

XPath expressions. The main goal was to implement the XTrie structures and 

algorithms for efficient XML filtering. The XTrie [9] system, provides efficiency and 

scalability, has low space requirements and offers high throughput. Those features 

make it especially attractive for large scale distributed systems over the internet such 

as publish/subscribe systems. 

Initially, we made an introduction in the area of publish/subscribe systems and 

we presented the XPE retrieval problem [9].  

Moreover, we described the existing types of data models and their query 

languages and focused on XML data model and XPath query language. We explained 

why SAX [33] parser is better than DOM [41] for XML data streams filtering. 

Furthermore, we presented the XML DTD [42] and how can be used for the validity 

of the XML documents. Also, we presented the basic features of the XML syntax and 

we described the basic fragment of XPath used by XTrie. 

 80 
 



Then, we discussed some alternative systems for XML processing. We made a 

distinction between the systems for XML filtering from those for XML (streaming 

and non-streaming) querying. We discussed some of their advantages and 

disadvantages according to XTrie. Moreover, we referred to several other systems 

related with the XML streaming problem. 

We presented some important definitions about the basic features used by XTrie. 

We explained how an XPE can be represented as a rooted tree and match an XML 

document [9]. Further, we described the mechanisms for decomposing XPEs into 

sequences of XML element names (i.e., substrings), and explained how these 

substrings can be organized into substring-trees [9]. Then, we continued by discussing 

some important concepts of matching based on substring-trees [9].   

We described in detail the XTrie index structure and matching algorithm [9] for 

the ordered matching model. We explained how the Trie [9] and the Substring table [9] 

can be used for effective matching over a streaming XML document. Moreover, we 

explained step by step all the algorithms [9] in the XTrie indexing scheme. Also, we 

discussed an optimized variant [9] of XTrie and explained how the matchings 

algorithms work. We continued by presenting two maintenances [9], one for XPE 

insertions into the XTrie structure and one for XPE deletions from the XTrie structure. 

Finally, we presented our implementation in detail giving the structures and the 

algorithms written in Java [23]. We continued by presenting the basic steps of the 

XTrie model: 

 

• Parse the XPath expression. 

• Organize the XPath nodes in a tree and find the relative level of every node. 

• Find the simple decomposition of the XPEs with a preorder traversal of the 

XPE tree. 

• Decompose XPath tree in substring tree and find the relative level, the rank 

and the number of children of every node. 

• Construct the Trie and the Substring table. 

• Parse the XML document with the SAX [33] parsing interface. 

 81 
 



• Run the matching algorithm (lazy or eager) using the events produced by the 

SAX parser and return the identifiers for the matched XPEs over the XML 

document.   

 

7.2 Future Work 
In this dissertation we implemented the XTrie model which solves the problem of 

filtering XML documents with XPath expressions. The fragment of XPath 

expressions used by XTrie is limited, so it can be extended to support more features of 

the XPath recommendations [46], such us aggregation functions [46] (sum, count, avg 

etc.), reverse axes [46] (preceding-sibling and forward-sibling), position functions [46] 

(pos() and last()), composite XPEs [9] (Boolean combinations of two or more XPEs) 

and absolute path expressions in predicates [9] (this implementation of XTrie supports 

only relative path expressions in predicates). Moreover our implementation of the 

XTrie indexing scheme supports only the ordered matching model. Thus, it can be 

extended to handle unordered matchings [9] and hybrid matchings [9] (combination 

of ordered and unordered matchings). 

On the other hand, we can extend our work by implementing a simple service-

client system, running in a network, which can use the XTrie model. This system, on 

top of the service, could run a file sharing application giving to the users the ability of: 

 

• Publish their files (as XML documents) so that other users may see and 

download them. 

• Query the system (with XPath expressions) to search for files on the whole 

network. 

• Subscribe with a profile (written in XPath). 

 

In addition, we could use the XTrie model in more complex file sharing systems. 

For example, we can use XTrie over distributed peer-to-peer systems such as P2P-

DIET [20]  (which has been implemented in the Technical University of Crete), 

SIENA [8] and more. 

 

 82 
 



 

 

 

 

Bibliography 

 
[1] Aguilera, M.K., Strom, R.E., Sturman, M., Astley, D.C., Chandra, T. D. 

Matching events in a content-based subscription system. In Proceedings 

ACM (PODC), Atlanta, Ga., USA, pages 53–61, 1999. 

[2] Altinel, M., Franklin, M.J. Efficient filtering of XML documents for selective 

dissemination of information. In Proceedings VLDB, pages 53–64, 2000. 

[3] Avila-Campillo, I., Raven, D., Green, T., Gupta, A., Kadiyska, Y., Onizuka, 

M., and Suciu, D. An XML Toolkit for Light-weight XML Stream 

Processing. http://www.cs. washington.edu/homes/suciu/XMLTK/, 2002. 

[4] Avnur, R. and Hellerstein, J. M. Eddies: Continuously Adaptive Query 

Processing. In the 19th ACM SIGMOD International Conference on 

Management of Data, pages 261-272, 2000. 

[5] Barton, C. M., Charles, P. G., Goyal, D., Raghavachari, M., Josifovski, V., 

and Fontoura, M. F. Streaming XPath Processing with Forward and 

Backward Axes. In the 18th International Conference on Data Engineering, 

2003. 

[6] Becker, O., Cimprich, P., and Nentwich, C. Streaming Transformations for 

XML. http://www.gingerall.cz/stx, 2002. 

[7] Carney, D., Cetintemel, U., Cherniack, M., Convey, C., Lee, S., Seidman, G., 

Stonebraker, M., Tatbul, N., and Zdonik, S. Monitoring Streams: A New 

 83 
 

http://www.cs. washington.edu/homes/suciu/XMLTK/
http://www.gingerall.cz/stx


Class of Data Management Applications. In Proceedings of the 28th 

International Conference on Very Large Data Bases, pages 215-226, 2002. 

[8] Carzaniga, A., Rosenblum, D.S, Wolf, A.L. Design and evaluation of a wide-

area event notification service. ACM Trans. Computer Systems, 19(3):332–

383, 2001. 

[9] Chan, C. Y., Felber, P., Garofalakis, M. N., and Rastogi, R. Efficient 

Filtering of XML Documents with XPath Expressions. In the 18th 

International Conference of Data Engineering, pages 235-244, 2002. 

[10] Chandra, A. K., Kozen, D. C., and Stockmeyer, L. J. Alternation. Journal of 

the ACM (JACM), 28(1):114-133, 1981. 

[11] Chen, J., DeWitt, D. J., Tian, F., and Wang, Y. NiagaraCQ: A Scalable 

Continuous Query System for Internet Databases. In the 19th ACM SIGMOD 

international conference on Management of data, pages 379-390, 2000 

[12] Cherniack, M., Balakrishnan, H., Balazinska, M., Carney, D., Cetintemel, U., 

Xing, Y., and Zdonik, S. Scalable Distributed Stream Processing. In the First 

Biennial Conference on Innovative Database Systems, 2003. 

[13] Diao, Y., Fischer, P., and Franklin, M. J. YFilter: Efficient and Scalable 

Filtering of XML Documents. In the 18th International Conference of Data 

Engineering, pages 341-344, 2002. 

[14] Diaz A.L., Lovell D. XML Generator. http://www.alphaworks.ibm.com/tech/ 

xmlgenerator, 1999. 

[15] Feng Peng and Sudarshan S. Chawathe. XSQ: A Streaming XPath Engine. 

Technical Report CS-TR-4493 (UMIACS-TR-2003-62). Computer Science 

Department, University of Maryland, College Park, Maryland 20742, 2003. 

[16] Fernandez, M. and Simeon, J. Galax. http://db.bell-labs.com/galax/, 2002. 

[17] Gottlob, G., Koch, C., and Pichler, R. Efficient algorithms for processing 

XPath queries. In Proceedings of the International Conference on Very Large 

Data Bases (VLDB), Hong Kong, China, 2002. 

 84 
 

http://www.alphaworks.ibm.com/tech/ xmlgenerator
http://www.alphaworks.ibm.com/tech/ xmlgenerator
http://db.bell-labs.com/galax/


[18] Green, T. J., Miklau, G., Onizuka, M., and Suciu, D. Processing XML 

streams with Deterministic Automata. In the 9th International Conference on 

Database Theory, Siena, Italy, pages 173-189, 2003. 

[19] Hoffmann, C. M. and O'Donnell, M. J. Pattern matching in trees. Journal of 

the ACM (JACM), 29(1): 68-95, 1982.  

[20] Idreos, S. P2P-DIET: A query and notification service based on mobile 

agents for rapid implementation of P2P applications. Technical report TUC-

ISL-01-2003, Intelligent Systems Laboratory, Dept. of Electronic and 

Computer Engineering, Technical university of Crete, June 2003. 

[21] Intel netStructure XML accelerators. http://www.intel.com/netstructure/ 

products/xml_accelerators.htm, 2000.  

[22] Java 2 SDK Home Page. http://java.sun.com/j2se.  

[23] Java Sun Home Page. http://java.sun.com.  

[24] Katz, H. XQEngine. http://www.fatdog.com, 2002. 

[25] Kay, M. H. SAXON: an XSLT processor. http://saxon.sourceforge.net/, 2002. 

[26] Kilpel, P. Tree matching problems with applications to structured text 

databases. Ph.D. thesis, Dept. of Computer Science, University of Helsink, 

1992. 

[27] Knuth D.E. The art of computer programming: sorting and searching, vol. 3, 

2nd edn. Addison Wesley, Reading, Mass., USA, 1998. 

[28] Lakshmanan, L. V. and Sailaja, P. On Efficient Matching of Streaming XML 

Documents and Queries. In the 8th International Conference on Extending 

Database Technology, Prague, Czech Republic, pages 142-160, 2002. 

[29] Liu, L., Pu, C., and Tang, W. Continual Queries for Internet Scale Event-

Driven Information Delivery. Knowledge and Data Engineering, 11(4): 610-

628, 1999.  

 85 
 

http://www.intel.com/netstructure/ products/xml_accelerators.htm
http://www.intel.com/netstructure/ products/xml_accelerators.htm
http://java.sun.com/j2se
http://java.sun.com/
http://www.fatdog.com/
http://saxon.sourceforge.net/


[30] Liu, L., Pu, C., and Tang, W. Webcq-detecting and delivering information 

changes on the web. In the 9th International Conference on Information and 

Knowledge Management, pages 512-519, 2000. 

[31] Ludascher, B., Mukhopadhayn, P., and Papakonstantinou, Y. A Transducer-

Based XML Query Processor. In the 28th International Conference on Very 

Large Data Bases, Hong Kong, China, pages 227-238, 2002. 

[32] Madden, S. and Franklin, M. J. Fjording the Stream: An Architecture for 

Queries over Streaming Sensor Data. In the 18th International Conference of 

Data Engineering, 2002. 

[33] Megginson, D. SAX: a simple API for XML. http://www.megginson.com/ 

SAX/, 2002. 

[34] Miklau, G. and Suciu, D. Containment and Equivalence for an XPath 

Fragment. In the 21st ACM SIGACT-SIGMOD-SIGART Symposium on 

Principles of Database Systems, Madison, Wisconsin, pages 65-76, 2002. 

[35] Olteanu, D., Kiesling, T., and Bry, F. An Evaluation of Regular Path 

Expressions with Qualifiers against XML Streams. Tech. Rep. PMS-FB-

2002-12, Institute for Computer Science, Ludwig-Maximilians University, 

Munich, May 2002. 

[36] Plale, B. and Schwan, K. dQUOB: Managing Large Data Flows by Dynamic 

Embedded Queries. In the 9th IEEE International Symposium on High 

Performance Distributed Computing, Pittsburgh, Pennsylvania, pages 263-

270, 2000. 

[37] Segall, B., Arnold, D., Boot, J., Henderson, M., Phelps, T. Content-based 

routing with Elvin4. In AUUG2K, Canberra, Australia, 2000. 

[38] Segoufin, L. and Vianu, V. Validating Streaming XML documents. In the 

21st ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database 

Systems, Madison, Wisconsin, pages 53-64, 2002.  

[39] SQL Home Page. http://www.microsoft.com/sql. 

 86 
 

http://www.megginson.com/ SAX/
http://www.megginson.com/ SAX/
http://www.microsoft.com/sql


[40] Tucker, P. A., Maier, D., and Sheard, T. Applying punctuation schemes to 

queries over continuous data streams. Bulletin of the Technical Committee on 

Data Engineering, IEEE Computer Society, 26(1):33-40, March 2003. 

[41] W3C Document object model (DOM) level 1 specification 1.0, 2nd edn., 

http://www.w3.org/TR/REC-DOM-Level-1/, 2002. 

[42] W3C Extensible markup language (XML) 1.0, 2nd edn., http://www.w3.org/ 

TR/REC-xml/, 2000. 

[43] W3C Home Page. http://www.w3.org. 

[44] W3C Hyper Text Markup Language (HTML) 4.0, http://www.w3.org/TR/ 

WD-html40/, December 1997. 

[45] W3C SGML. http://www.w3.org/Markup/SGML/, 1999. 

[46] W3C XML path language (XPath) 1.0, http://www.w3.org/TR/xpath/, 1999. 

[47] W3C XSL Working Group. XSL Transformations (XSLT) 2.0. W3C 

Working Draft, W3C, http://www.w3.org/TR/xslt20/, April 2002. 

[48] Widom, J. The starburst active database rule system. IEEE Transactions of 

Knowledge and Data Engineering, 8(4):583-595, August 1996. 

[49] Zdonik, S., Stonebraker, M., Cherniack, M., Cetintemel, U., Balazinska, M., 

and q, H. B. The aurora and medusa projects. Bulletin of the Technical 

Committee on Data Engineering, IEEE Computer Society, 26(1): 3-10, March 

2003. 

 

 87 
 

http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/ TR/REC-xml/
http://www.w3.org/ TR/REC-xml/
http://www.w3.org/
http://www.w3.org/TR/ WD-html40
http://www.w3.org/TR/ WD-html40
http://www.w3.org/Markup/SGML/
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xslt20/

	Introduction
	Overview
	Contributions of the Dissertation
	Organization of the Dissertation

	Background
	Data Models and Query Languages
	Structured Data Model
	Unstructured Data Model
	Semi-structured Data Model

	eXtensible Markup Language (XML)
	XML Data
	DTD
	Well-Formedness and Validity
	XML Tree

	XPath Language
	XPath Expressions (XPE’s)

	XML Parsers
	Document Object Model (DOM) Parser
	Simple API for XML (SAX) Parser

	Summary

	Related work
	Streaming vs. non-streaming XML Data
	Systems for Filtering Streaming XML Data
	Systems for Querying XML Data
	Streaming XML Data
	Non-streaming XML Data

	Other Systems
	Summary

	XPE Decompositions and Matchings
	XPE-Tree and XPE Matching
	Substring Decompositions
	Minimal Decomposition
	Simple Decomposition

	Substring-Trees
	Matching with Substrings
	Partial and Complete Matching
	Redundant Matching

	Subtree Matching
	Summary

	XTrie Structure and Indexing Scheme
	The Index Structure
	The Substring-Table
	The Trie

	The XTrie Matching Algorithm
	B-array
	C-array
	Detect non-redundant Matchings
	Details of Matching Algorithm
	Theoretical Space and Time Complexity

	Attributes and Text Data
	Maintenance
	Reverse Trie
	Insertions
	Deletions

	Lazy XTrie Optimization
	Summary

	System Architecture and Implementation
	XTrie Architecture
	XTrie Implementation
	XPath Parser
	XPE Tree Constructor
	Substring Tree Constructor
	XTrie Builder
	XML Document Parser
	XTrie Matching Algorithms

	Summary

	Conclusions and Future work
	Concluding Remarks and Summarizing
	Future Work


