
Technical University of Crete

SIMULINK Identification Model
for

M.A.P. Kinase Cascade

Diploma Thesis in Systems Biology

From

Giotis Thomas

Supervisor:
Prof. E. Christodoulou

Examining Committee:
Prof. M. Zervakis

Prof. Dr. E. Georgiou

October 2005

Contents



1 Introduction

2 Biological Background
2.1 DNA – Proteins

2.1.1 Genes And Their Relation With DNA
2.1.2 Replication Of The DNA
2.1.3 Usage Of Genetic Information
2.1.4 Proteins And Their Role In The Cell

2.2 Cells As I/O Systems
2.3 Signaling Pathways

2.3.1 The Reason Of Their Creation
2.3.2 Definition – Specification Of Their Role
2.3.3 Phosphorylation In Signaling Pathways
2.3.4 Signaling Pathways And Cancer Diseases
2.3.5 Kinds Of Signaling Pathways

3 Systems Biology
3.1 History
3.2 Characteristics
3.3 Modeling And Simulation
3.4 Modeling Techniques

3.4.1 Example:  Modeling  of Ras/Raf-1/MEK/ERK
Signal Transduction Pathway

4 MAPK Cascade
4.1 Functioning Of MAPK Pathways
4.2 Models
4.3 Reaction Kinetics

4.3.1 Mass Action Law
4.3.2 Enzyme Kinetics

4.4 Simulation Using SIMULINK
4.5 Steady-State Properties
4.6 Ultrasensitivity In The MAPK Cascade

5 Conclusions

Appendix
A.1 Model According To Huang And Ferrell
A.2 Parameters



A.3 Reactions
A.4 Differential Equations Using Explicit Kinetics

References

1    Introduction



Cells  are  able  to  receive  many  different  chemical  signals  from  their
surrounding,  and  have  the  capability  to  react  to  signal  pattern  in  an
appropriate  way.  The  signals  are  processed  by  the  intracellular  signaling
network,  which  is  mainly  constructed  by  proteins  which  react  with  each
other.  In  the  past,  many  different  modules  of  this  network  have  been
identified and qualitatively studied [HARTWELL ET AL. 99]. Recently, the
“Era of Pathway Quantification” [KOSHLAND 98] began, with simulation
of signaling networks and quantitative measurement of reaction rates. Beside
bacterial chemotaxis, calcium oscillations, and cellcycle control, the MAPK-
cascade,  a three molecule module present in all eucaryotes,  has become a
model  system  for  quantitative  analysis  of  signaling  pathways
[LAUFFENBURGER 00]. This module is of special interest, because it is
well characterized and many reaction parameters are estimated. Moreover, it
plays  a  significant  role  in  the  so  called  RAS  pathway,  which  has  high
influence on cell growth and cell survival. 

Several  methods  of  modeling  intracellular  signal  transduction  have
appeared:  reaction  systems  using  ordinary  differential  equations
[KHOLODENKO  ET  AL.  97],  stochastic  models  [GILLESPIE  77,
GIBSON & MJOLSNESS 00],  Petrinets [HOFESTÄDT & THELEN 98],
neural networks [BRAY 95], rule based systems [BRUTLAG ET AL. 91],
and  Boolean  networks  [THIEFFRY  &  ROMERO  99,  THOMAS  &
KAUFMAN 01]. In this thesis, the published model of MAPK according to
Huang and Ferrell [HUANG & FERRELL 96] is investigated by modeling
the reaction dynamics with ordinary differential equations. 

In chapter 2, the biological background of our subject is introduced. We
discuss  about  DNA,  proteins,  cells  and  finally  we  focus  on  signaling
pathways and the importance of their role. Chapter 3 introduces a new era in
sciences, Systems Biology, showing its characteristics, the way of modeling
and a common example. In chapter 4, MAPK cascade is discussed, which is
actually the subject of this thesis. We explain its functioning, we present the
models found in the literature, we show how someone can work on MAPK
using  explicit  kinetics,  and  how  we  implemented  this  model  using
SIMULINK of Matlab. The presentation of the steady-state properties of the
model leads as to its ultrasensitivity. After our conclusions in chapter 5, in
the Appendix there can be found the parameters used in my implementation
of  the  model,  the  reactions  of  the  model  and  the  ordinary  differential
equations.



2 Biological Background

The development of multicellular organisms makes it necessary to have
mechanisms for communication between cells. The organized structure and



ability to maintain different tissues in these organisms is mainly due to the
fact that these cells can communicate with each other [KRAUSS 97]. The
basis  for  intercellular  communication  is  that  the  cells  can  receive  and
compute stimuli  reaching the cell  membrane,  which  is called intracellular
signaling. In this chapter we also discuss about DNA and proteins since they
are the basis for a better understanding of biological issues. 

2.1 DNA – Proteins[CLARK & RUSSELL 00]

2.1.1 Genes And Their Relation With DNA

The fundamentals of modern genetics were laid when Mendel found that
hereditary information is made up of discrete fundamental units which we
now call genes. The discovery that atoms are made of subatomic particles
ushered in the nuclear age. Similarly, the realization that genes are made up
of molecules that obey the laws of chemistry has opened the way both to a
deeper  understanding  of  life  and  to  its  artificial  alteration  by  genetic
engineering.
     The unit of heredity is known as a gene. Each gene is responsible for a
single inherited property or characteristic of the organism. Certain properties
of higher organisms, such as height or skin color, are due to the combined
action of multiple genes. Consequently, in these cases there is a gradation of
the  property.  Such  multi-gene  characteristics  at  first  caused  a  lot  of
confusion and they are still difficult to analyze, especially if more than two
or three genes are involved.
     Genes are made of  DNA, or deoxyribonucleic acid. Each gene is found
in  linear  order  and  is  a  major  component  of  structures  known  as
chromosomes.  Each  chromosome  has  some  accessory  protein  molecules
which help maintain its structure and is an exceedingly long single molecule
of DNA. The DNA of the chromosome is divided into segments. Many of
these segments are actual genes. In front of each gene is a regulatory region
of DNA involved in switching the gene ‘on’  or ‘off’.  Between genes are
spacer  regions  of  DNA often referred to as intergenic  regions.  DNA is a
polymer (molecule of similar repeating units which are linked together by a
common bonding mechanism) made up of a linear arrangement of subunits
known  as  nucleotides  (the  subunits  from  which  DNA  is  built).  Each
nucleotide has three components: a phosphate group, a sugar and a nitrogen-
containing  base  (alkaline  chemical  substance,  in  particular  the  cyclic
nitrogen compounds found in DNA and RNA).



     In DNA, the sugar is always
deoxyribose. The different types
of  nucleotide  differ  only  in  the
nature of the nitrogen-containing
base.  In  DNA  there  are  four
alternative  bases:  adenine,
thymine,  guanine  and  cytosine.
When  writing  out  genetic
information  these  bases  are
abbreviated by convention to: A,
T,  G  and  C.  The  phosphate
groups  and  the  deoxyribose
sugars  form  the  backbone  of

each strand of DNA. The bases are joined to the deoxyribose and stick out
sideways. A single strand of DNA is shown in the next scheme.

     

     To understand how nucleotides are joined, we must clarify the situation
by numbering the carbon  atoms  of  the sugar molecule.  The next  scheme
shows the convention for numbering nucleotides. 

                                

Nucleotides  are  joined  by  linking  the  phosphate  on  the  5’  end  of  the
deoxyribose of one to the 3’ position of the next, as it’s shown.   
       



                           

In practice, DNA is normally found as a double stranded molecule. Not only
is DNA double stranded, but the two separate strands are wound around each
other in a helical arrangement. This is known as the double helix.

Double helix

     In double stranded DNA, the bases of one strand are paired with the bases
in the other strand. Adenine (A) in one strand is always paired with thymine
(T) in the other and guanine (G) is always  paired with cytosine (C).  The
bases A and G are referred to as the purine bases as they contain a double
ring structure known as a purine ring. The other two bases, C and T, are the
pyrimidine bases,  since they contain  a single,  pyrimidine ring.  Each base
pair consists of one double size purine base paired with a smaller pyrimidine
base. So, although the bases themselves differ in size, all of the allowed base
pairs are the same width. This is necessary to allow them to fit neatly into
the double helix.
     In double stranded DNA each base pair  is held together  by linkages
known as hydrogen bonds.  The A – T base pair has two hydrogen bonds
and the G – C base pair is held together by three. Hydrogen bonds are very
weak, but since a molecule of DNA usually contains millions of base pairs,
the added effect of millions weak bonds is strong enough to keep the two
strands  together.  The  hydrogen  bonding  in  DNA  base  pairs  uses  either



oxygen  (O)  or  nitrogen  (N),  giving  three
alternative  arrangements.  In  each  case  the
hydrogen (H) is held
between  the  other
two  atoms  and
serves  to  link  them
together.   Before
hydrogen  bonds
form  and  the  bases
pair  off,  the
hydrogen atom is found attached to one or

the other of the two bases, as it’s shown with complete lines in the scheme
below.  During base pairing,  the hydrogen binds to an atom of the second
base (dashed lines).

2.1.2 Replication Of The DNA

     Since each cell needs a complete set of genes,  it is necessary for the
original  cell  to duplicate its genes before dividing.  Because the genes are
made  of  DNA  and  make  up  the  chromosomes,  this  means  that  each
chromosome must be accurately copied. Upon cell division, both daughter
cells will receive identical sets of chromosomes, each with a complete set of
genes.
     In molecular terms this means that the DNA of the original, or mother,
cell  is  duplicated  to  give  two  identical  copies.  This  process  is  known  as
replication.  Upon cell  division each of the descendants  gets one complete
copy  of the DNA. The original  genes of  the mother cell are on a double



stranded DNA molecule so the first step in replication is to separate the two
strands of the DNA double helix.
     The next step is to build a complementary strand on each of the two
original strands. Since A only pairs with T, and since G only pairs with C,
the  sequence  of  each  strand  dictates  the  sequence  of  its  complementary
strand.  We  now  have  two  double  stranded  DNA  molecules,  both  with
sequences identical to the original one. One of these daughter molecules has
the original left strand and the other daughter has the original right strand.
This  is known as semi-conservative replication since each of the progeny
conserves half of the original DNA molecule.
     Because the two strands forming a DNA molecule are held together by
hydrogen bonding and twisted around each other to form a double  helix,
they cannot simply be pulled apart. Worse still, the DNA inside a cell is also
supercoiled to pack it into a small space. Before separating the strands, both
the supercoils and the double helix must be unwound.
     This  is  done in  two  stages.  First  the  supercoils  are unwound  by an
enzyme  known  as  DNA  gyrase.  The  gyrase  cuts  both  strands  of  double
stranded DNA to give a double stranded break. However, it keeps hold of all
of the cut ends.  The two halves of the gyrase then rotate relative to each
other and the ends are rejoined. This untwists the supercoils. Each rotation
costs  the  cell  a  small  amount  of  energy.  Once  the  supercoils  have  been
untwisted,  the  double  helix  is  unwound  by  the  enzyme  DNA  helicase.
Helicase does not  break the DNA chains;  it simply disrupts  the hydrogen
bonds holding the base pairs together.
     The  two  separated  strands  of  the  parental  DNA  molecule  are
complementary to each other. Consequently all of their respective bases are
capable of pairing off and binding to each other. In order to manufacture the
new strands, the two original strands, despite their desire to cling together,
must somehow be kept apart. This is done by means of a special ‘divorce’
protein which binds to the unpaired single stranded DNA and prevents the
two parental  strands  from getting  back together.  This  is  known  as single
strand protein or SSB.



               

     The critical issue in replication is the base pairing of A with T and of G
with C. Each of the separated parental strands of DNA serves as a template
strand  for  the  synthesis  of  a  new  complementary  strand.  The  incoming
nucleotides for the new strand recognize their partners by base pairing and
so are lined up on the template strand. 

     

     Actually, things are a bit more complicated. Although hydrogen bonding
alone would match bases correctly 99 percent of the time, this is not good
enough. The enzyme that links the nucleotides, known as DNA polymerase
III  or  Pol  III  can  also  sense  if  bases  are  correctly  paired.  If  not,  the
mismatched base pair is rejected. The nucleotides are then joined together by
the enzyme.  This DNA polymerase has two subunits.  One of these is the
synthetic subunit and is responsible for manufacturing new DNA. The other
subunit is shaped like a doughnut and slides up and down like a curtain ring
on  the  template  strand  of  DNA.  This  ‘sliding  clamp’  subunit  binds  the
synthetic subunit to the DNA.



     

About  synthesis,
nucleotides,  as  we’ve
already  said,  have  three
components: a phosphate
group,  a  sugar  and  the

base. In DNA the sugar is deoxyribose, and is joined to the base at position
1’  and  to  the  phosphate  group  at  position  5’.   The  carbon  atoms  of  the
deoxyribose sugar are numbered with prime marks to distinguish them from
those  of  the  base  which  have  plain  numbers.  When  a  new nucleotide  is
added it  is  joined,  via  its own  phosphate  group  on  position  5’  to  the  3’
position as indicated by the arrow. New DNA strands always start at the 5’
end and grow in the 3’ direction. In fact, all nucleic acids, whether DNA or
RNA, are always made in the 5’ to 3’ direction. However, DNA is normally
double  stranded,  and  it  happens  that  the  two  strands  run  in  opposite
directions; that is, if one goes 5’ to 3’ then its complementary partner will
run from 3’ to 5’. The strands are said to be antiparallel.

     Since DNA is always made in the 5’ to 3’ direction, and since the two
strands of double helical DNA are antiparallel, this means that during DNA
replication the two new strands must be synthesized in opposite directions.
Because of this, one strand is made continuously and is referred to as the
leading strand and the other strand can only be made in short segments and
is  known  as  the  lagging  strand.  As  the  two  new  strands  of  DNA  are
synthesized, two double helical DNA molecules are produced, each with one



old and one new strand. Once replication fork has moved past, the double
stranded DNA molecule automatically rewinds into a helix.

                      

2.1.3 Usage Of Genetic Information

During the day-to-day life of a cell, working copies of the genes are used.
The DNA molecule that carries the original copy of the genetic information
is regarded as sacred and is not used as a direct source of instructions to run
the cell.  Genetic  information  can  be carried by two kinds of nucleic acid
molecules, DNA or RNA. The working copies of genes are made of RNA,
or ribonucleic acid, which is very similar in chemical structure to DNA. The
particular type of RNA molecule that carries genetic information from the
genes  into  the  rest  of  the  cell  is  known  as  messenger  RNA,  usually
abbreviated to mRNA. The transfer of information from DNA to messenger
RNA is known as transcription.
     For a gene to be transcribed, the DNA, which is double stranded, must
first be pulled apart temporarily. Then a molecule of single stranded RNA is



made.  This  is  the  messenger  RNA  and  it  has  a  base  sequence  which  is
complementary to that of the DNA strand used as a template. 
     There are two related kinds of nucleic acid (DNA) and ribonucleic acid
(RNA). The first difference between them is that in DNA the sugar is always
deoxyribose,  whereas  in  RNA  the  sugar  is  ribose,  as  it’s  shown  in  the
scheme below. As its name suggests, deoxyribose has one less oxygen atom
than ribose. It is this initial difference which gives the D in DNA versus the

R in RNA! The second difference is
that in RNA, the base thymine (T) is
replaced by the closely related base
uracil (U) (next scheme).  Wherever
you find thymine  in DNA, you get
uracil  in  RNA.  Hence,  uracil  in
RNA and thymine  in DNA convey
the same genetic information. So, if
you  include  RNA  with  DNA,  the
genetic  alphabet  has five letters (A,  C,  G,  T and U).  The third and final
difference  between  DNA and  RNA is that  DNA is double  stranded (ds),
whereas RNA is normally single stranded (ss). Thus, when a gene made of
dsDNA is transcribed into an RNA message, only one of the strands of DNA
is  copied.  The  sequence  of  the  RNA  message  is  complementary  to  the
template strand of the DNA upon which it is synthesized.  Apart from the
replacement  of thymine  in DNA with uracil  in RNA,  this  means  that  the
sequence  of  the  new  RNA  molecule  is  identical  to  the  sequence  of  the
coding strand of DNA, the one not actually used during transcription.
     RNA is made by an enzyme called RNA polymerase. This enzyme binds
to the DNA at the start of a gene and opens the double helix. It then goes on
to manufacture an RNA message.  The region where RNA polymerase binds
is known as the promoter. Once sigma has found a promoter and the RNA



polymerase  has
successfully  bound
to  it,  the  sigma
subunit  drops  off.
The remaining part
of  bacterial  RNA
polymerase, known
as the core enzyme,
then  makes  the
mRNA,  The  DNA

double helix is opened up and a single strand of RNA is generated using one
of the DNA strands as a template for matching up the bases. 

      Proteins have an important role in the synthesis of messenger RNA.
There are activator  proteins  which  help  turn genes on,  but  there are also
proteins that can turn genes off. Historically, these negative regulators were
actually discovered first, they are known as repressors and they work in a
similar way to activators except they have the opposite effect.

2.1.4 Proteins And Their Role In The Cell

Proteins are biological polymers that carry out most of the cell’s day-to-
day  functions.  Some  proteins  are  merely  structural  or  take  part  in  cell
movement,  others  help  take  up  nutrients,  others  generate  energy  and  yet
others carry out biochemical reactions, including the synthesis of nucleotides
and their assembly into nucleic acids.
     Molecules whose primary role is to carry information (nucleic acids like
DNA and  messenger  RNA)  are  basically  linear  molecules  with  a  regular
repeating  structure.  Molecules  that  form cellular  structures or have  active



roles carrying out reactions are normally folded into three-dimensional (3-D)
structures.  These  include  both  proteins  and  certain  specialized  RNA
molecules (rRNA and tRNA).
     Proteins are made from a linear chain of monomers, known as amino
acids, and are folded into a variety of complex 3-D shapes. A chain of amino
acids is called a polypeptide chain.  The difference between a polypeptide
chain  and  a  protein  is  that  some  proteins  consist  of  more  than  one
polypeptide chain. We can subdivide proteins into four main categories:
1) structural proteins,
2) enzymes,
3) regulatory proteins,
4) transport proteins.
     Structural proteins are found making up many subcellular structures. The
flagella with which bacteria swim around, the microtubules used to control
traffic flow inside cells of higher organisms, the fibers inside a muscle cell,
and the  outer  coats  of  viruses  are some few examples  of  structures  built
using proteins.
     Enzymes are proteins that carry out chemical reactions. An enzyme first
binds  another  molecule,  known  as  its  substrate,  and  then  performs  some
chemical  operations  with  it.  Some  enzymes  bind  only  a  single  substrate
molecule; others may bind two or more, and react them together to make the
final product. In any case, the enzyme needs an active site, a pocket or cleft
in the protein, where the substrate binds and the reaction occurs. The active
site is produced by folding up the polypeptide chain correctly so that amino
acid residues that were spread out at great distances in the linear chain now
come together and will cooperate in the enzyme reaction. 
     The most  famous enzyme in
molecular  biology  is  β-
galactosidase, encoded by the lacZ
gene of the bacterium Escherichia
coli. This  enzyme  is  so  easy  to
assay  that  it  is  widely  used  in
genetic  analysis.  The  natural
substrate  of  β-galactosidase is the
sugar  lactose,  made  by  linking
together  the  two  simple  sugars,
glucose and galactose. There is not
much  else  to  do  with  lactose
except  to  split  it  into  these  two
simpler sugars, so that is exactly what β-galactosidase does.



     Analogs are molecules resembling natural substances well enough to fool
the enzymes that use them. Some analogs bind but do not react and simply
block the active site and inhibit  the enzyme.  Such analogs  are known  as
competitive inhibitors  since they  complete  with  the true substrate  for  the
attention of the enzyme. Other analogs do react. β-galactosidase splits many
molecules  in  which  galactose  is  linked  to  something  else.  We  can  take
advantage  of  this  by  giving  it  ONPG  (ortho-nitro-phenyl-galactoside),
which consists of ortho – nitrophenol linked to galactose. When ONPG is
split, we get galactose, which is colorless, and ortho – nitrophenol, which is
bright yellow. Using ONPG allows us to monitor the level of β-galactosidase
by measuring the appearance of the yellow color. Similarly, X-gal is split by
β-galactosidase into a blue dye and galactose.
     Although regulatory proteins and transport proteins are not enzymes, they
also  bind  other  molecules  and  so  they  also  need  ‘active  sites’  to
accommodate these.
     Regulatory proteins vary enormously. Many of them can bind both small
signal molecules and DNA. The presence or absence of the signal molecule
determines whether or not the gene is switched on.
     Transport proteins are found mostly in biological membranes where they
carry material from one side to the other. Nutrients, such as sugars, must be
transported into cells of all organisms, whereas waste products are deported.
Multicellular  organisms  also  have  transport  proteins  to  carry  materials
around the body. An example is hemoglobin, which carries oxygen in blood.
     To function properly many proteins need extra components, cofactors or
prosthetic  groups,  which  are  not  themselves  proteins.  Many  proteins  use
single  metal  atoms  as  cofactors;  others  need  more  complex  molecules.
Strictly speaking, prosthetic groups are fixed to a protein, whereas cofactors
are free  to  wander  around  from protein  to
protein;  however,  the  terms  are often  used
loosely.  A  protein  without  its  prosthetic
group  is  referred  to  as  an  apoprotein.  For
example,  oxygen  carrier  proteins  such  as
hemoglobin  have  a  cross-shaped  cofactor
with a central  iron atom,  called heme.  The
heme  is  bound  in  the  active  site  of  the
apoprotein,  in  this  case  globin,  and  so  we
get hemoglobin.   Oxygen binds to the iron
atom at the center of  the heme and the hemoglobin  carries it  around the
body.  Prosthetic  groups  are  often  shared  by  more  than  one  protein;  for
example, heme is shared by hemoglobin and by myoglobin, which receives
oxygen and distributes it inside muscle cells.



2.2 Cells As I/O Systems[SONTAG 04]

One  may  view  cell  life  as  a  collection  of  “wireless  networks”  of
interactions among proteins, RNA, DNA and smaller molecules involved in
signaling  and  energy  transfer.  These  networks  process  environmental
signals, induce appropriate cellular responses, and sequence internal events
such as gene expression, thus allowing cells and entire organisms to perform
their basic functions.

Research in molecular biology, genomics, and proteomics has provided,
and will  continue to produce,  a wealth  of  data  describing the elementary
components of such networks, as well the mapping of intra and inter-cellular
signaling networks. The genome encodes, through a particular ordering of
the four possible (A,T,C,G) bases in its DNA sequence, a parts list for the
proteins  that  are  potentially  present  in  every  cell  of  a  given  organism.
Genomics  research  has  as  its  objective  the  complete  decoding  of  this
information, both the parts common for a species as a whole as well as the
cataloging of differences among individual members. The shape of proteins
is what  largely determines their function,  and thus the elucidation of their
three-dimensional structure is a goal of proteomics research. Proteins, which
interact  with  each other through lego-like fitting of  parts in lock and key
fashion,  are the primary components  of living things.  Among other roles,
they form receptors that endow the cell with sensing capabilities, actuators
that make muscles move (myosin, actin), detectors for the immune response,
enzymes that catalyze chemical reactions, and switches that turn genes on or
off. They also provide structural support and help in the transport of smaller
molecules,  as well as in directing the breakdown and reassembly of other
cellular elements such as lipids and sugars. (An intermediate link between
genetic information and the proteins that DNA encodes for is RNA. Until
recently,  RNA  was  not  believed  to  be  a  direct  player  in  cell  control
mechanisms,  but  research  into  microRNA  conducted  within  the  past  two
years is forcing a complete rethinking of their role.) Massive amounts of data
are  being  generated  by  genomics  and  proteomics  projects,  facilitated  by
sophisticated  genetic  engineering  tools  (gene  knock-outs  and  insertions,
PCR),  and  measurement  technologies  (green  fluorescent  protein,
microarrays, FRET), and there is a widely recognized need to organize and
interpret these data.

The control and systems-theory paradigm of input/output systems, built
out of simpler components that are interconnected according to certain rules,



is  a  most  natural  one  in  this  context.  Cells  receive  external  information
through inputs that may be physical (UV or other radiation, mechanical, or
temperature)  as  well  as  chemical  (drugs,  growth  factors,  hormones,
nutrients),  and their measurable outputs include chemical  signals  to other
cells, the movement of flagella or pseudopods, the activation of transcription
factors, and so forth. Each cell can be though of, in turn, as composed of a
large number of subsystems, involved in processes such as cell growth and
maintenance, division, and death. Indeed, an important theme in the current
molecular biology literature [HARTWELL ET AL. 99, LAUFFENBURGER
00]  is  the  attempt  to  understand  cell  behavior  in  terms  of  cascades  and
feedback interconnections of elementary “modules”.

As a simple illustration,  consider  the diagram shown  in Chapter  4,
Figure  1,  extracted  from  the  paper  on  cancer  research  [HANAHAN
&WEINBERG  00],  which  describes  the  wiring  diagram  of  the  growth
signaling circuitry of the mammalian cell. Of course, such a figure leaves out
a  lot  of  information,  some  known  but  omitted  for  simplicity,  and  some
unknown: much of the system has not been identified yet, and the numerical
values of most parameters as well as the functional forms of interactions are
only  very  approximately  known.  However,  data  is  being  collected  at  an
amazing rate and better and better models are being constantly obtained.

Many of the natural systems-theoretic questions that one would normally
pose for such a system are precisely those that leading biologists are asking,
if sometimes in a different language: What is special about the information-
processing  capabilities,  or  input/output  behaviors,  of  such  networks,  and
how does  one  characterize  these  behaviors?  How  do  the  different  signal
transduction pathways interact? How does one find the forms of reactions,
and values of parameters (identification,  reverse engineering)? Once these
forms of reactions are known, how does one estimate time-varying internal
states, such as the concentrations of proteins and other chemical substances,
from input/output experiments (observer problem)? What subsystems appear
repeatedly?  Where  lie  the  main  sensitivities  affecting  robustness  of  the
system?  What  is  the  reason  that  there  are  cascades  and  feedback  loops?
More generally, what can one say, if anything, about stability, oscillations,
and  other  dynamical  properties  of  such  complex  systems?  In  addition  to
analysis questions, there are, of course, also synthesis ones, dealing with the
control of cellular systems through drugs or genetic modifications. However,
the fact is that the field of Systems Biology, as we will see with more details
in Chapter 3, is still in its infancy, and a major and long-term research effort
will continue toward the solution of the above types of problems.



2.3 Signaling  Pathways

2.3.1 The Reason Of Their Creation

Advancements  in  molecular  biology,  genomics  and  proteomics  have
yielded a wealth of information regarding the underlying molecular basis of
cancer. While the precise nature and mechanisms that underlie this disease
are  not  known,  a  well-established  body  of  scientific  evidence  has
demonstrated that  signaling  pathways,  and communication  between them,
are  critical  to  the  genesis  and  proliferation  of  cancer.  Based  on  these
advancements,  the  concept  of  “personalized  medicine”  has  emerged,
promising  the  ability  to  develop  and  administer  specifically  targeted
treatments  for  specific  types  of  cancer  in  specific  individuals.  While  the
potential  this  approach  holds  for  the  treatment  of  cancer  remains  strong,
current  prognostic  and  diagnostic  methods  have  not  proven  effective  in
identifying,  profiling  and  targeting  the  most  appropriate  patient  sub-
populations to enable the consistent link between treatment and patient that
the personalized medicine approach promises.
     With the recent deciphering of the Human Genome, research in the area
of  pharmacogenomics  is  expanding  rapidly.  Complementing
pharmacogenomics is a growing need to both quantify and measure a broad
range of protein targets and activation events in normal and diseased cells. In
both cases,  scientists are working to correlate the expression of a gene or
protein  with  a particular  disease in the hope  of  using this  information  to
develop  new  and  more  effective  targeted  treatments.  While  researchers
conduct both gene and protein analysis to gain a more comprehensive profile
of  tumor  cell  activity,  only  through  an  understanding  of  the  protein
interactions  taking  place  on  a  tumor  cell’s  surface  and  in  its  internal
pathways,  can  targeted  treatments  be  both  developed  and  delivered  with
optimal effectiveness. While gene analysis may someday predict what can
happen, proteins provide more direct insight into what is actually occurring
within the cells and signaling pathways.
     Protein targets may be found within a cell, secreted from a cell or on a
cell surface and may be associated,  or interact with,  many other proteins.
Analysis of several protein targets and their interactions is necessary to gain
a complete understanding of a particular tumor’s biology, and hence the type
of targeted treatment that can be used to treat it.[ACLARA 04]



2.3.2 Definition - Specification Of Their Role

Signal  transduction  is  a  means  by  which  one  cell  communicates  with
another and to external stimuli. The communication between the two cells
involves  a  molecular  messenger  (ligand)  from  the  sender  and  a  site
(receptor) on the cell membrane that receives the signal. When the signal is
received, it is passed along and the message is communicated from the outer
cell surface to the cell’s nucleus. A signaling pathway transmits information
through a cell via a series of steps involving assembly and disassembly of
protein-protein complexes.

     Messages can be healthy or harmful. For example, some messages might
be used by the immune system to increase the amount of white blood cells
needed to stop an infection. In other cases, signals may cause cells to store
materials  such  as  fatty  acids,  which  is  healthy  in  moderation,  but  when
uncontrolled,  can  lead  to  obesity.  In  all  cells,  some  level  of  growth
(signaling)  is  normal  and  a  part  of  the  regular  cell  cycle.  It  is  the
overexpression,  or  overactivation  of  these  signals  –  or  the  failure  to
counterbalance or block those signals – that leads to uncontrollable growth
(i.e.  cancer).  Signaling  cascades  regulate  cell  growth,  differentiation  and
survival as a function of complex extracellular triggers. Cancer results from
a dysregulation of such processes. Hence, the rationale for carrying out basic



research in signaling cascades and cell biology is that this will eventually
lead to new approaches  to  prevention,  diagnosis  and treatment  of  human
cancer.  The  post-genomic  era  will  enable  the  delineation  of  complex
signaling  pathways  and  disclose  the  intricate  interactions  between  DNA
repair, replication, transcription, chromatin dynamics, cell cycle progression
and apoptosis.
     Identifying a signaling pathway  is just the first,  crucial  step towards
understanding a specific disease. Activation or inhibition of a pathway leads
to a change in the amount or location of specific protein complexes. While
genetic  knowledge  is  important,  understanding  the  protein  interactions
occurring within these pathways is critical to determining both the specific
disease and how the pathway is activated. A key reaction of cellular signal
processing is provided by reversible protein phosphorylation, catalyzed by a
variety of protein kinases. Using protein kinase A (Kinzel) as paradigm, the
mechanism  of  protein  phosphorylation  is  studied  at  atomic  resolution  to
develop ATP-competitors which block specific protein kinase sites. The
existence  of  ecto-protein  kinases  and  their  substrates  shows  that
phosphorylation serves as a powerful tool to inhibit growth of transformed
cells and the underlying mechanism is characterized. Protein kinase CK2 has
important roles in regulation of the cell cycle. The regulation of mammalian
CK2 is examined by promoter analysis  as well  as by identifying proteins
binding to CK2 tetramers. Protein kinase C (PKC) isoenzymes regulate cell-
specifically  cell  growth  and differentiation  and are potential  mediators  of
tumor-promoters.[NIEHRS & BIRCHMEIER 05]

2.3.3 Phosphorylation In Signaling Pathways

As we’ve already said, phosphorylation is the main key for the pathway’s
activation.  It  is  defined as  the process  of  adding  a phosphate  group to  a
molecule. This often activates the molecule by altering its shape or charge
and allows  it  to  participate  in a  chemical  reaction. The  activity  of  many
proteins  is  regulated  by  phosphorylation  of  hydroxyl  containing  residues
(serine,  threonine,  tyrosine)  by  various  protein  kinases. In  eukaryotes,
protein  phosphorylation  is  probably  the  most  important  regulatory  event.
Many enzymes and receptors are switched "on" or "off" by phosphorylation
and  dephosphorylation.  Phosphorylation  is  catalyzed  by  various  specific
protein kinases, whereas  phosphatases dephosphorylate. An example of the
important role that phosphorylation plays is the p53 tumor suppressor gene,



which—when active—stimulates transcription of gene that suppress the cell
cycle, even to the extent that it undergoes apoptosis. However, this activity
should be limited to situations where the cell is damaged or  physiology is
disturbed. To this end, the p53 protein is extensively regulated. In fact, p53
contains more than 18 different phosphorylation sites.[IRUSTA ET AL. 02]
     P53, also known as  TP53 or  tumor protein is a  gene that  codes for a
protein that  regulates  the  cell  cycle and  hence  functions  as  a  tumor
suppressor.  It  is  very  important  for  cells  in  multicellular  organisms to
suppress  cancer. P53 has been described as "the guardian of the  genome",
referring to its role in conserving stability by preventing genome mutation.
The name is due to its molecular mass: it is in the 53 kilodalton fraction of
cell proteins.
 

Human p53 protein bound to a short DNA fragment.  Protein atoms are
represented as sticks, the DNA helix is in spacefill mode.

     Upon  the deactivating  signal,  the protein  becomes  dephosphorylated
again and stops working.  This is the mechanism in many forms of  signal
transduction, for example the way in which incoming light is processed in
the light-sensitive cells of the retina.
     The network underlying phosphorylation can be very complex. In some
cellular  signalling  pathways,  a  protein  A  phosphorylates  B,  and  B
phosphorylates  C,  but  A  also  phosphorylates  C  directly,  and  B  can
phosphorylate D, which may in turn phosphorylate A. More particular,  in
signaling  pathways,  receptor  tyrosine  kinases  (RTKs)  are transmembrane
proteins  that  regulate  numerous  aspects  of  cell  physiology  including



proliferation and survival.  Binding of a soluble ligand to the extracellular
domain  of  these  receptors  typically  induces  receptor  dimerization  and
transphosphorylation  of  the  cytoplasmic  catalytic  domain.  This  tyrosine
phosphorylation  stimulates  the  intrinsic  tyrosine  kinase  activity  of  the
receptor and generates binding sites for signaling proteins containing SH2
domains.  Although  ligand-induced dimerization  is an important  trigger of
receptor  activation,  receptor  activity  is also subject  to additional  levels of
regulation. For example, the cytoplasmic juxtamembrane region of receptor
tyrosine kinases, which is located between the transmembrane domain and
the kinase domain, has been implicated in regulation of receptor enzymatic
activity.[WIKIPEDIA]

2.3.4 Signaling Pathways And Cancer Diseases

After a quarter century of rapid advances, cancer research has generated a
rich  and  complex  body  of  knowledge,  revealing  cancer  to  be  a  disease
involving dynamic changes in the genome. The foundation has been set in
the discovery of mutations that produce oncogenes with dominant  gain of
function and tumor suppressor genes with recessive loss of function;  both
classes  of  cancer  genes  have  been  identified  through  their  alteration  in
human and animal cancer cells and by their elicitation of cancer phenotypes
in experimental models.
     Several  lines of  evidence  indicate  that  tumorigenesis  in humans  is a
multistep process and that these steps reflect genetic alterations that drive the
progressive  transformation  of  normal  human  cells  into  highly  malignant
derivatives. Many types of cancers are diagnosed in the human population
with  an  age-dependent  incidence  implicating  four  to  seven  rate-limiting,
stochastic events.  Pathological  analyses  of a number of organ sites reveal
lesions that appear to represent the intermediate steps in a process through
which cells evolve progressively from normalcy via a series of premalignant
states into invasive cancers.
     Most  cancer,  if  not  all,  have  acquired  the  same  set  of  functional
capabilities  during  their  development,  albeit  through  various  mechanistic
strategies, as it’s shown in the next scheme. Normal cells require mitogenic
growth signals  (GS) before they can move from a quiescent  state into an
active  proliferative  state.  These  signals  are  transmitted  into  the  cell  by
transmembrane receptors that bind distinctive classes of signaling molecules:
diffusible  growth  factors,  extracellular  matrix  components,  and  cell-to-



celladhesion/interaction  molecules.  To our knowledge,  no  type  of  normal
cell can proliferate in the absence of such stimulatory signals. Many of the
oncogenes in the cancer catalog act by mimicking normal growth signal in
one way or another.
     Dependence on growth signaling is apparent when propagating normal
cells  in  culture,  which  typically  proliferate  only  when  supplied  with
appropriate  diffusible  mitogenic  factors  and a proper  substratum for  their
integrins. Such behavior contrasts strongly with that of tumor cells, which
invariably  show  a  greatly  reduced  dependence  on  exogenous  growth
stimulation. The conclusion is that tumor cells generate many of their own
growth signals, thereby reducing their dependence on stimulation from their
normal  tissue  microenvironment.  This  liberation  from  dependence  on
exogenously  derived  signals  disrupts  a  critically  important  homeostatic
mechanism  that  normally  operates  to  ensure  a  proper  behaviour  of  the
various cell types within a tissue.
     

Acquired GS autonomy  was  the first of  the six  capabilities  to be clearly
defined  by  cancer  researchers,  in  large part  because of  the  prevalence  of
dominant  oncogenes  that  have been found to modulate it. Three common
molecular strategies for achieving autonomy are evident, involving alteration
of extracellular growth signals, of transcellular transducers of those signals,
or of intracellular circuits that translate those signals into action. While most
soluble mitogenic growth factors (GFs) are made by one cell type in order to



stimulate  proliferation  of  another—the  process  of  heterotypic  signaling—
many cancer cells acquire the ability to synthesize GFs to which they are
responsive,  creating  a  positive  feedback  signaling  loop  often  termed
autocrine  stimulation.  Clearly,  the  manufacture  of  aGF  by  a  cancer  cell
obviates  dependence  on  GFs  from  other  cells  within  the  tissue.  The
production  of  PDGF  (platelet-derived  growth  factor)  and  TGFa  (tumor
growth  factor  a)  by  glioblastomas  and  sarcomas,  respectively,  are  two
illustrative examples.
     The cell surface receptors that transduce growth stimulatory signals into
the  cell  interior  are  themselves  targets  of  deregulation  during  tumor
pathogenesis. GF receptors, often carrying tyrosine kinase activities in their
cytoplasmic  domains,  are  overexpressed  in  many  cancers.  Receptor
overexpression  may  enable  the  cancer  cell  to  become  hyperresponsive  to
ambient  levels  of GF  that  normally  would  not  trigger  proliferation.  For
example,  the  epidermal  GF  receptor (EGF-R/erbB)  is  upregulated  in
stomach,  brain,  and  breast  tumors,  while  the  HER2/neu  receptor  is
overexpressed  in  stomach  and  mammary  carcinomas.[HANAHAN
&WEINBERG 00]
     Lung cancer is the most frequent cause of cancer-related death in men
and  women  and  accounts  for  approximately  more  than  a  million  deaths
yearly worldwide. NSCLCs (non-small cell lung cancer) constitute 75% of
primary  lung  cancers  and  are  comprised  of  large-cell  undifferentiated
carcinomas,  epidermoid  carcinomas,  and  adenocarcinomas  including
bronchoalveolar  lung cancers.  Nearly 65% of NSCLCs exhibit  significant
heterogeneity,  with  45%  containing  both  adeno  and  squamous  features.
Phosphatidylinositol 3-Kinase/PTEN/Akt Kinase Pathway is strongly related
with  this  kind  of  disease,  having  an  important  role  in  Tumor  Necrosis
Factor-related Apoptosis-inducing Ligand-induced Apoptosis in Non-Small
Cell  Lung  Cancer  Cells.  Apoptosis  is  the  programmed  cell  death  and  is
involved in  the  maintenance  of  tissue homeostasis  in  normal  physiology.
The  process  of  apoptosis  has  to  be  strictly  controlled,  as  excessive  or
diminished  apoptosis  may  contribute  to  various  pathological  conditions.
[DJERBI 03] A reduced propensity to undergo cell death may for instance
promote  the  development  and/or  progression  of  cancer  or  autoimmune
syndromes. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand
(TRAIL)/APO-2L  is  a  member  of  the  TNF  superfamily  of  signaling
pathways and has been shown to have selective antitumor activity. TRAIL
does  not  induce  apoptosis  in  some  non-small  cell  lung  cancer  (NSCLC)
cells. These cells are resistant to TRAIL because of the phosphatidylinositol
3_-kinase  (PI3-K)-dependent  activation  of  Akt/protein  kinase  B.  The
expression  of  phospho-Akt  varies  at  the  functional  level  but  not  at  the



mRNA level in NSCLC cells. Akt induces cell survival in NSCLC cells by
blocking  the  Bid  cleavage,  upstream  of  cytochrome  c  release  in  the
mitochondrial-dependent  apoptotic  pathway.  The  use of  PI3-K inhibitors,
Wortmannin  or  LY-294002,  down-regulates  the  active  Akt  and  reverses
cellular resistance to TRAIL. In addition, genetically altering Akt expression
by transfecting dominant negative Akt, sensitizes NSCLC cells to TRAIL.
Conversely, transfection of constitutively active Akt into cells that express
low, constitutively active Akt, increases TRAIL resistance. Alternate to this
approach, transfection with PTEN, a lipid phosphatase, promotes sensitivity
to TRAIL, whereas a PTEN mutant (PTEN-G129E) at the catalytic site is
inactive  in dephosphorylating  active Akt.  Furthermore,  the loss  of  PTEN
activity or overexpression of PI3-K-dependent Akt/protein kinase B activity
promotes  the  survival  of  NSCLC  cells.  Modulation  of  Akt  activity  by
combining  pharmacological  drugs  or  genetic  alterations  of  the  Akt
expression induces cellular responsiveness to TRAIL. Thus, TRAIL can be
used to treat NSCLC-resistant cells when combined with agents that down-
regulate Akt activity.[KARTHIKEYAN & RAKESH 02]
     Moreover,  studies  of  inherited  cancer  syndromes  have  implicated
numerous  signaling  pathways  in  colorectal  carcinogenesis,  but  the
relationship  between  these  pathways  remains  poorly  understood.  A  new
mouse  model  of  juvenile  polyposis  syndrome  identifies  a  molecular
mechanism for clonal  epithelial cell expansion and links several pathways
with  an  established  role  in  polyposis.  Intestinal  polyps  arise  from  single
epithelial precursor cells by clonal expansion of their progeny. An increase
in the population of affected daughter cells occurs through multiplication of
affected  intestinal  crypts  and  spreading  of  cells  over  the  unaffected
neighbouring crypts. Classically,  intestinal polyps are categorized into two
classes  based  on  histology.  Adenomatous  polyps  are neoplasms  showing
clonal  expansion  of  dedifferentiated  epithelial  cells  and  are  considered
precursors  to  adenocarcinomas.  Hamartomatous  polyps,  in  contrast,  are
lesions in which expansion of epithelial cells coincides with expansion of
other  mucosal  cell  types.  Unlike  adenomatous  polyps,  epithelial  cells  in
hamartomatous polyps seem to differentiate normally and are not necessarily
neoplastic in nature, although secondary adenomatous transformation does
occur in these polyps. Juvenile polyposis syndrome (JPS) is a rare autosomal
dominant  syndrome  characterized  by  development  of  multiple
hamartomatous polyps throughout the gastrointestinal  tract. Some families
with JPS carry mutations in the genes encoding the BMP receptor BMPR1A
and its signaling intermediate SMAD4. As BMP signaling has been shown
to regulate apoptosis of intestinal epithelial cells, mutations in BMP pathway
components  could  interfere  with  programmed  cell  death,  resulting  in  the



epithelial  overgrowth observed in JPS. But the mechanism underlying the
increase in the rate of crypt fission in JPS remains unknown. The mice had
hamartomatous polyps  similar to those seen in individuals with JPS, with
amplification of epithelial precursor cell members and an increased rate of
crypt  fission.  The  authors  were  focused  on  the  molecular  mechanism
underlying this precursor cell expansion and observed that both phosphatidyl
inositol 3 (PI3) kinase-Akt and β-catenin-T-cell factor (TCF) signaling seem
to occur exclusively in intestinal stem cell (ISC). They further showed that,
in BMPR1A-negative polyps, the number of ISCs is greatly increased. That
was a kind of proof about the linking between these three pathways and the
regulating ISC expansion.[GIJS 04]
    Furthermore, techniques have been described that allow mechanical forces
to be applied to specific cell surface receptors, such as integrins, via the use
of micron-scale magnetic particles coated in specific ligands or antibodies.
There  were  investigations  about  the  potential  of  using  magnetic  particle
based  techniques  to  mechanically  condition  cells  via  the  activation  of
specific mechanotransduction pathways. The result was that the magnet field
alone had no effect on either cell type. The presence of magnetic particles in
the absence of an applied magnetic field also had little effect  on calcium
signalling, although there was a slight increase in the percentage of cells
exhibiting Ca2+ transients compared to normal cells. Both osteoblasts and
bone marrow stromal cells exhibited increased levels of calcium activity in

response to magnetic loading. There were
however  significant  differences  in  both
the  background  levels  of  spontaneous
calcium activity and the characteristics of
magnetically  stimulated  calcium
responses  between  the  different  cell
types. Bone marrow stromal cells 

Ca2+ trace from hBMSc exposed to magnetic loading.
Magnet applied between yellow arrows. Image every
2 sec.

typically  responded  with  a  single  Ca2+  transient  whereas  responsive
osteoblast  cells  demonstrated  both  single  and  oscillating  Ca2+  transients.
Time  to  onset  of  response  was  also  found  to  vary  between  cell  types.
[HUGHES ET AL. 03]
     Finally, intense investigation into the molecular basis of angiogenesis is
rapidly  revealing  novel  signaling  pathways  involved  in  the  generation  of
new vasculature. These range from elucidation of the mechanism by which
hypoxia  initiates  expression  of  a  proangiogenic  gene  repertoire  via  the
hypoxia-inducible  transcription  factors  (HIFs)  to  molecular  pathways
involved in extra-  and intracellular signaling during new vessel formation.
Extracellular pathways include those of the Notch/delta, ephrin/Eph receptor



and  roundabout/slit  families,  and  intracellular  pathway  members  of  the
hedgehog and sprouty families. Angiogenesis has been a topic of vigorous
research for more than a decade, a situation stimulated by the discovery of
key angiogenic  growth  factors vascular endothelial  growth  factor  (VEGF)
and basic and acidic fibroblast growth factors. There have been many recent
reviews on the processes involved in angiogenesis and its role in cancer and
as a therapeutic target, focused on more recently described pathways of the
past two to three years,  particularly those initially identified in embryonic
vascular development and differentiation. These pathways are important in
normal and pathological angiogenesis (development of blood vessels from a
preexisting vasculature) and also in vasculogenesis (development  of blood
vessels from progenitor cells).[BICKNELL & HARRIS 04]

2.3.5 Kinds Of Signaling Pathways

There are several kinds of signaling pathways, depending on the way of
their activation and the type that they interact to the cell. Some of them are
shown below:

 Signaling Pathways Activated by VEGF:



VEGF  regulates  several  endothelial  cell  functions,  including
proliferation, differentiation, permeability, vascular tone, and the production
of  vasoactive  molecules.  Upon  ligand  binding,  the  receptor  tyrosines  are
phosphorylated, allowing the receptor to associate with and activate a range
of signaling molecules, including phosphatidylinositol 3-kinase (PI3K), Shc,
Grb2,  and the phosphatases  SHP-1 and SHP-2.  VEGF receptor  activation
can induce activation of the MAPK cascade via Raf stimulation leading to
gene expression and cell proliferation,  activation of PI3K leading to PKB
activation and cell survival, activation of PLC-g leading to cell proliferation,
vasopermeability,  and angiogenesis.[JUO ET AL. 99],[JIMENEZ ET AL.
99]

 Fas Signaling Pathway:

Fas/APO-1/CD95  (36  kDa)  is  a  member  of  the  tumor  necrosis  factor
(TNF) receptor superfamily, a family of transmembrane receptors that also
includes the p75 neurotrophin receptor, TNF-R1, and a variety of other cell
surface  receptors.  Fas  has  been  shown  to  be  an  important  mediator  of
apoptotic cell death, as well as being involved in inflammation. Binding of
the  Fas  ligand  (Fas-L)  induces  trimerization  of  Fas  in  the  target  cell
membrane.[HUANG ET AL. 99] Activation of Fas causes the recruitment of
Fas-associated protein with death domain (FADD) via interactions between
the  death  domains  of  Fas  and  FADD.  Procaspase  8  binds  to  Fas-bound
FADD via interactions between the death effector domains (DED) of FADD
and pro-caspase 8 leading to the activation of caspase 8. Activated caspase 8
cleaves (activates) other procaspases, in effect beginning a caspase cascade
that ultimately leads to apoptosis. Caspases cleave nuclear lamins,  causing
the  nucleus  to  break  down  and  lose  its  normal   structure.  Fas-induced
apoptosis  can  be  effectively  blocked  at  several  stages  by  either  FLICE-
inhibitory protein (FLIP), by Bcl-2, or by the cytokine response modifier A
(CrmA).[WANG ET AL. 00]

 The p53 Signaling Pathway:



The  tumor-suppressor  protein  p53  exhibits  sequence-specific  DNA-
binding,  directly  interacts  with  various  cellular  and  viral  proteins,  and
induces cell cycle arrest in response to DNA damage. In response to signals
generated by a variety  of  genotoxic  stresses,  e.g,  UV irradiation  or DNA
damage, p53 is expressed and undergoes post-translational modification that
results in its accumulation in the nucleus. The p53-dependent pathways help
to  maintain  genomic  stability  by  eliminating  damaged  cells,  either  by
arresting them permanently or through apoptosis. For example, g-irradiation
activates p53 to turn on the transcription of p21CIP1, that, in turn, binds to
and  inhibits  cyclin-dependent  kinases,  causing  hypophosphorylation  of
retinoblastoma (Rb),  thus preventing  the release of  E2F and blocking the
G1-S transition. Some of the cellular effects of p53 can be blocked by the
deregulated expression of c-Myc, Bcl-2,  or E2F. p53 activity is controlled
through an autoregulatory loop involving Mdm2. The binding of Mdm2 to
p53 targets  p53 for degradation  and inhibits p53-induced cell-cycle arrest
and apoptosis.[GU ET AL. 00],[KING & CIDLOWSKI 98]

 Signaling Pathway of TGF-b:

TGF-b regulates growth and proliferation of cells, blocking the growth of
many different cell types. The TGF-b receptor includes Type I and Type II
subunits  that  are  serine-threonine  kinases  that  signal  through  the  SMAD
family of proteins. Binding of transforming growth factor ß (TGF-b) to its
cell  surface  receptor  Type  II  leads  to  the  phosphorylation  of  the  Type  I
receptor by Type II. The Type I receptor is then able to phosphorylate and
activate  the  Smad2  protein.  Smad2,  in  combination  with  Smad4,  is
translocated to the nucleus where the activated Smad complex recruits other
transcription factors (TF) that together activate the expression of target genes
that mediate the biological  effects of TGF-b. Some of the activated target
genes  stimulate  tumorigenesis,  while  others  suppress  tumorigenesis.
[KAWABATA & MIYAZONO 99],[WRANA 98]

 TNF Signaling Pathway:



When bound to tumor necrosis factor (TNF), the TNF receptor (TNFR)
(55  kDa)  transduces  growth  regulatory  signals  into  the  cell.  TNF  is
mitogenic  in normal  cells;  however,  TNF initiates programmed cell death
(PCD)  or apoptosis  in  transformed  cells  causing  DNA fragmentation  and
cytolysis.[PLUMPE  ET  AL.  00]   Functional  studies  have  identified  a
conserved  region  within  the  receptor,  termed  the  death  domain  (DD),  a
protein-protein interaction motif that is necessary to transmit the apoptotic
signal. The TNF-induced survival pathway is mediated by the transcription
factor NF-kB. Activation of NF-  kB occurs via phosphorylation of I  kB at
Ser32  and  Ser36,  resulting  in  the  dissociation  and  subsequent  nuclear
localization of active NF- kB. Recent studies have demonstrated that cells in
which the NF- kB signaling pathway is blocked are more likely to undergo
apoptosis  in response to TNF.  Therefore,  the availability of NF-  kB may
play a critical role in the ability of TNF to act as an apoptosis-inducer and
anti-tumor agent.[PIMENTEL-MUINOS & SEED 99],[SCHWANDER ET
AL. 98]

 The JAK/STAT Signaling Pathway:

A  wide  variety  of  extracellular  signals  activate  the  STAT  (signal
transducers  and  activators  of  transcription)  class  of  transcription  factors.
Many cytokines,  lymphokines, and growth factors signal through a related
superfamily of cell surface receptor tyrosine kinases that are associated with
and  activate  Janus  kinases  (JAKs).  Ligand-induced  dimerization  of  the
receptor  induces  the reciprocal  tyrosine  phosphorylation  of  the  associated
JAKs, which,  in turn, phosphorylates tyrosine residues on the cytoplasmic
tail of the receptor. These phosphorylated tyrosines serve as docking sites for
the Src Homology-2 (SH-2) domain of the STAT protein, and JAK catalyzes
the tyrosine phosphorylation of the receptor-bound STAT.[WAKIOKA ET
AL. 99] Phosphorylation of STAT at a conserved tyrosine residue induces
SH-2-mediated homo-  or heterodimerization,  followed by translocation of
the STAT dimer to the nucleus. STAT dimers bind to specific DNA response
elements in the promoter region of target genes to activate gene expression.
APS (adaptor molecule containing pleckstrin homology and SH-2 domains)
can inhibit the JAK- STAT pathway by binding to the cytoplasmic domain
of  the  receptor  where  it  is  phosphorylated  (activated)  by  JAK.  Activated
APS binds to c-Cbl and blocks STAT activation.[SCHINDLER 99] 



 The Mitogen-activated Protein Kinase (MAPK) Cascades:

Several  MAPK  cascades  have  been  identified  in  mammalian  cells,
including the extracellular signal-related kinase pathways (ERK1/2,  ERK5)
and  the  stress  activated  kinase  pathways  (JNK/SAPK,  p38  MAPK).
[LOWES ET AL. 02] These pathways are linked to many G protein-linked
cell surface receptors and receptor tyrosine kinases. Thus, most cytokines,
growth  factors,  hormones,  and  neurotransmitters  can  selectively  activate
these cascades via receptor activation of intracellular second messengers. All
MAPK  pathways  operate  through  sequential  phosphorylation  events  to
phosphorylate transcription factors and regulate gene expression. They can
also phosphorylate  cytosolic  targets to regulate intracellular  events.  These
cascades  are  implicated  in  the  regulation  of  cellular  proliferation,
differentiation,  development,  cell  cycle,  and  transmission  of  oncogenic
signals.[TAMURA ET AL. 02],[SEGER & KREBS 95] In this thesis I will
focus on MAPK cascades as you will see on Chapter 4.

3 Systems Biology

Systems theory or systems science has never managed to achieve widespread
and independent  status  in curricula,  departments,  and journals  but  instead
acts as an umbrella for a number of research activities across the physical
and engineering sciences. Now, with revolutionary developments in the life
sciences, there is renewed interest in systems thinking. In this chapter,  we
survey opportunities and challenges for the application of systems theory to
biology in the postgenomic era—a new area of research also referred to as
Systems Biology.

3.1 History



Although  generally  considered  to  be  a  new  area  of  research,  systems
biology is not without history, and as early as the 1960s the term was used to
describe  the  application  of  systems  and  control  theory  to  biology
[WOLKENHAUER  01].  At  the  time,  Mesarovic  wrote:  “In  spite  of  the
considerable interest and efforts, the application of systems theory in biology
has not  quite lived up to expectations.  ...  one of the main reasons for the
existing lag is that systems theory has not been directly concerned with some
of the problems  of  vital  importance  in biology.”  Today,  scientists  in this
field are motivated by the availability of experimental  data,  including,  for
example,  DNA microarray time series,  and interdisciplinary collaborations
are widely supported.  In fact,  the importance of interdisciplinary research
and close collaborations between biologists and physical scientists is evident
in the many multidisciplinary research centers that are being built around the
world, gently forcing researchers to interact by confining them into purpose-
built housing. Mesarovic further suggested that progress could be made by
more  direct  and  stronger  interactions  of  biologists  with  system scientists:
“The real advance in the application of systems theory to biology will come
about only when the biologists start asking questions which are based on the
system-theoretic  concepts  rather than using these concepts  to represent  in
still another  way the phenomena which are already explained in terms of
biophysical  or  biochemical  principles.  ...then  we  will  not  have  the
‘application  of engineering principles to biological  problems’  but  rather  a
field of Systems Biology with its own identity and in its own right.”
Molecular characterization has led to very accurate spatial representations of
cellular components, and biochemical modeling has been the main approach
to studying  cellular  processes.  However,  the  future lies  in  extending  this
knowledge  to  observations  at  higher  organizational  levels.  There  are few
examples  of  a concerted effort  to “translate” biological  representations  of
gene  expression  and  regulation  into  the  language  of  the  system  scientist
[KREMLING ET AL. 00], [KITANO], and all indications are that the field
is going to provide the vital interface between basic cell biology, physiology,
and biotechnological applications such as in metabolic engineering.

Systems biology has new technologies available to generate data from
the genome,  transcriptome,  proteome,  and metabolome,  in addition to the
physiome.  However,  while  bioinformatics  is  usually  associated  with  vast
amounts of data available in databases, the systems-biological description of
cellular processes often suffers from a lack of data.

3.2 Characteristics



Systems Biology is an emerging field expected to have major impact on
the  future  of  biological  and  medical  research.  It  aims  at  system-level
understanding of biological processes employing mathematical analysis and
computational  tools  to  integrate  the  information  content  obtained  in
experimental  biology.  In  order  to  generate  accurate  descriptions  of  the
interaction  and operation  of  different  components  and  to  understand  at  a
quantitative  level  the  relationship  among  genotype  and  phenotype  it  was
necessary  to  develop  a  research  environment  in  which  experimental  and
theoretical scientists work together. Hence, there have been an integration of
experimental  research  with  efforts  to  generate  and  optimize  computer
models of cellular networks and processes. This integration represents a real
challenge for researchers in the future. In particular, in order to describe the
dynamic operation of biological systems, the generation of quantitative data,
time courses and spatial  information  were needed.  In fact,  generating  the
data to answer questions such as “Which proportion of protein X is located
in compartment Y at time Z” or “How many molecules of metabolite A are
present  in  compartment  B”  constituted  a  true  experimental  challenge.
Therefore,  Systems Biology will encompass the development  of tools and
approaches to generate such data. This type of information will help to better
understand diseases and hence Systems Biology will become an integral part
of drug target identification and drug design.

Generally,  we  can  define  Systems  Biology  as  having  the  three  basic
characteristics:

 Multidisciplinary  research  with  a  close  interaction  between
experimental  research  (biology,  chemistry,  physics…)  and
mathematical  modelling  and analysis  (mathematics,  bioinformatics,
engineering…).

 Generation and iterative improvement of mathematical models, which
describe  realistically  cellular  networks  or  dynamic  biological
processes. Models have the ability to elucidate systems properties and
to predict the outcome of perturbations.

 Where  possible  use  of  existing  and  generation  of  novel  data,  in
particular quantitative data,  time courses and spatial  information of
high definition.

Analyzing  these  characteristics,  as  we  are going  to  do  below,  makes
clear the importance of Systems Biology creation. Functional genomics, i.e.
global approaches on gene and protein expression, metabolomics as well as
interaction of  cellular  components,  is generating huge amounts  of  data at
increasing pace. Bioinformatics is required to evaluate and organize the data
and make them available to researchers. The yeast community is realizing



that it studies an incredibly complex network of interconnecting pathways
and  processes.  In  order  to  interpret  the  maltitude  of  data  in  terms  of
biological functionality, i.e. networks and processes (systems), mathematical
models  are  required.  Such  models  should  be  realistic  descriptions  or
“replicas” of the biological system. The models should be able to elucidate
system properties and assist phrasing of hypotheses for experimental studies
and predict the outcome of (even subtle) perturbations, such as mutations or
drug effects. Therefore, mathematical models are tools for data interpretation
and experimental planning as well as being a vehicle for exploring insights
on fundamental principles behind biological systems.

In  order  for  the  models  to  describe  dynamics  of  cellular  processes
realistically, such as flow of metabolites or information through pathways,
quantitative data, time courses and spatial information is required. Assessing
the  information  available  on  even  the  best  studied  cellular  system,  S.
cerevisiae,  most  data are of  the “yes/no” character,  i.e.  qualitative.  Those
have  been  useful  to  define pathways  and  describe  functions  but  they  are
largely inadequate to describe processes. To obtain quantitative data and to
capture subtle changes is trivial in some instances (such as relative levels of
certain  metabolites,  proteins,  mRNA)  but  in  many  cases  a  technological
challenge (quantification of absolute levels of biomolecules,  for instance).
However,  quantitative  differences,  i.e.  if a protein kinase is 30% or 60%
“on”,  may  make  a  major  difference  in  cell  behavior  and  drug  effects.
Ultimately,  we  would  like  to  be  able  to  measure  (or  predict)  AIMS-4D
(Amount,  Interactions,  Modifications,  Spatial  movements  at  each  XYZ+T
coordinate)  for  every  component.  For  these  reasons  we  need  to  advance
technology to assess quantitative data.

     



The use of mathematical models is part of an important transition that
is  already  occurring  in  biological  research:  moving  from  description  to
understanding. Much of genetic and molecular data describe a system but do
not  explain  why,  for instance,  a specific feedback loop is implemented or
why  the  system  is  robust  against  a  certain  mutation.  Modelling  helps
providing a logical  explanation  and in many instances is the only way to
discover such regulatory features in the first place.
     Understanding biological systems is crucial for understanding diseases.
Hence,  one  of  the  major  promises  of  Systems  Biology  is  to  help
understanding  how  diseases  alter  biological  processes,  identify  the
appropriate drug targets, and circumvent feedback control and robustness in
drug development and to design the appropriate treatment for the individual
patient.
     Systems Biology operates as collaboration between experimentalists from
different disciplines such as molecular biology, chemistry and physics on the
one  hand  and  bioinformaticians,  computer  scientists,  mathematicians  and
engineers on the other to generate and improve models iteratively,  and to
explore  fundamental  principles.  To  achieve  such  collaboration,
interdisciplinary projects, networks and even institutes are being formed all
over the world. The yeast community has the expertise, excellence and the
capacity  to  form  an  interdisciplinary  network  of  Systems  Biology.  The
Network is needed to instrumentalize such an effort and provide the platform
to integrate data acquisition, data generation, modelling and recursive model
optimization. [HOHMANN ET AL. 04]

3.3 Modeling And Simulation

     
In  the  physical  sciences,  besides  theoretical  and  experimental  studies,

modelling and simulation has emerged as the third indispensable approach
because not  all  hypotheses  are amenable  for confirmation  or rejection  by
experimental observations. In biology, researchers are facing the same or
maybe even worse situation. On one hand experimental study is unable to
produce enough data for theoretical interpretation; on the other hand, due to
data insufficiency,  theoretical research cannot provide substantial  guidance
and insights for experimentation. Therefore, computational modelling takes
a  more  important  role  in  biological  research  by  integrating  experimental
data, facilitating theoretical hypotheses, and addressing what if questions.



Biological modelling is both old and new. Having its genesis in the
physical  sciences  and  engineering,  it  has  a  history  of  several  decades.
However, due to the distinctive differences between biological systems and
physical systems, biological modelling comes with additional challenges and
calls for new strategies and tools.  To model  biological systems at various
levels  i.e.,  molecular,  cell,  tissue  and  organ,  different  strategies  and
techniques  are  needed.  In  this  paper,  we  briefly  review the  evolution  of
challenges, strategies, and methods of biological modelling, with a focus on
molecular  networks  because,  with  the  increasingly  large  sequence
repositories, physiomics, rather than genomics or proteomics, will emerge as
the new focus of biomedical research. Revealing how individual genes and
proteins  are  organized  into  networks  and  how  molecular  networks
temporally and spatially evolve in cells to perform different functions will
raise new challenges in systems biology.

Modelling  and  simulation  appeared  on  the  scientific  horizon  much
before  the  emergence  of  molecular  and  cellular  biology.  Early  on  the
objective of  modelling  was  to explore  the features of  complex biological
systems  that  we  treates  as  black  boxes  e.g.,  heart,  brain,  and  circulation
system, a concept borrowed from physical sciences and engineering. In such
a scenario, the main challenge was to understand and predict the behavior of
a  system  without  knowing  the  microscopic  details.  Typical  questions
included  how  pathological  ECG  waveforms  as  signatures  of  the  WPW
syndrome (Wolf-Parkinson-White syndrome) were formed. The strategy was
to reproduce observed phenomena at high level with simplified description
of  internal  structures.  Though  inferring  the  microscopic  details  was
necessarily the major goal, one needed to model the behavior of the system
as  a  whole  and  utilize  this  understanding  in  clinical  practice.  A  shining
example  include  the  inverse  modelling  of  cardioelectrical  and
cerebroelectrical  activity,  whose  simulation  results  were  used  to  improve
diagnosis of heart and brain diseases. [PAWAN ET AL. 04]

To understand the role of modelling in biological systems, it is useful
to give an example on cell-cell interactions. Suppose we had a catalog of all
the gene sequences, how they translate to make proteins, and which proteins
interact  with  each other.  Further,  assume we know the way  in which  the
protein backbones fold—whether into sheets, helices, or other shapes with
differing properties. For several reasons, we would not be able to put them
into a functionally meaningful framework simply from the data.

First,  all  proteins  undergo  post-translational  modification  that  adds
side  chains  like  sugars  to  make,  for  example,  glycoproteins—important
constituents  of  cell  membranes.  These  additions  influence  the  shape  and
properties of proteins and hence their function and behavior.  Further,  just



because two proteins can interact in principle does not mean that they do so
in real cells. Also, metabolic processes synthesize many small, functionally
important  molecules.  For  example,  many  neurotransmitters  are  made  by
cells,  not  translated  from  RNAs.  Biological  systems  are  so  enormously
complicated that, however much we learn about them, it will be impossible
to create a full simulation based on complete understanding.

Thus,  a  bottom-up,  data-driven  strategy  will  not  work.  We  cannot
build an understanding of biological systems from an understanding of the
components  alone.  We must  seek  other  approaches.  Modeling  lies  at  the
heart  of  systems  biology.  We  can  use  experimental  information  to  build
models  at  different  biological  scales,  integrating  them  to  create  an
orchestrated  assemblage  ranging  from  gross  models  of  physiological
function through detailed models that build directly on molecular data. As
the scheme below shows, in principle these models should span from DNA
and  gene  expression  to  intracellular  networks,  to  cell-to-cell  and
transmembrane signals, and through to the organ level. Tenuously, we might
eventually construct such models at the organism level.

Building models in systems biology.  The models should span from DNA
and  gene  expression  to  Intracellular  networks  to  cell  to  cell  and
transmembrane signals and through to the organ level.

Scientists  thus  introduced  two  key  concepts  for  systems  biology,
methodologies  forced  by  the  peculiar  complexity  of  biological  systems.
First, they acknowledge the importance of simplification because biological
complexity requires them to model, not simulate. Second, they acknowledge
the importance of both modularity and the integration of modules. Biological
complexity  requires  them  to  break  their  systems  into  manageable
components,  but  it  also  requires  them  to  reassemble  them  because



behaviours  can  emerge that  they  cannot  understand  from the components
alone.

The resulting models can provide coarse-grained prediction,  be used
as a scaffold for our emerging understanding of the data, identify gaps in our
biological knowledge, and, if the models are good, predict new behaviours
that we can explore experimentally. Iteration between model and experiment
provides the key to ensuring that models are realistic. Given that researchers
may need a different technique to study each component, it is difficult if not
impossible to undertake physiological studies of whole systems in which the
individual components are monitored simultaneously.

To map out  the systems  biology space  more systematically,  and to
identify the computational challenges more precisely, we used the high-level
information  model  shown  below,  as  a  general  representable  model.  The
metamodel is presented using a stripped-down entity relationship modelling
convention.

Systems biology metamodel, presented using entity-relationship modelling.
This  model  identifies  key  concepts  in  systems  biology  and  their
relationships.

Our information model has three overlapping regions, each representing
a key concern in systems biology and consisting of several components:

 construction—the model, compound model, scheme, constraints, and
view components;



 analysis—the  model,  context,  engine,  interpretation,  and  ground
components; and

 validation—the  model,  aspect,  observation,  assumptions,  and
interpretation components.

Models represent aspects, a term that denotes a coherent set of properties
or phenomena of biological interest. The aspect anchors the model in the real
world.  We  establish  a  correspondence  through  an  ontology,  an  explicit
formal  specification  of  how to  represent  the  objects,  concepts,  and other
entities  assumed  to  exist  in  the  biological  domain  being  studied  and  the
relationships  that  hold among  them.  The model  and appropriate  elements
must then be linked to elements in the ontology.

Assumptions condition  or  determine  the  relationship  between  models
and the aspects they represent.  Assumptions underpin model  construction,
constitute the rationale for the model, and must be precisely documented and
connected to the model for it to have meaning beyond the immediate use to
which it has been put.

Experimental  biologists  make  observations about  phenomena  of
biological  interest.  Classically,  these  observations  are  used  to  validate
interpretations  derived  from  models.  Commonly,  however,  models  yield
interpretations  that  prompt  further  observations  or,  when  compared  with
observations,  question  the  validity  of  the  assumptions.  Researchers
document the observations in the scientific literature and in data resources
associated with the experiments.

Models,  once instantiated,  yield  interpretations  through analysis.  This
can  be  a  dynamic  simulation  process  or  a  static  mathematical  reasoning
process. The engine that both encompasses and executes a model determines
the  analytic  process.  Researchers  can  analyze  the  same  model  in  many
different  ways  using  different  procedures.  The  engine  thus  conditions  an
interpretation.  We  must  precisely  specify  the  engine  to  anchor  the
interpretation. In short, defining the model is insufficient—we must define
how  we  use  the  model.  Analysis  can  require  significant  computational
resources.

Context is the data required to produce a model instance—it is the input
to the model. Researchers could derive a context from observation, as in the
straightforward case where experimental results provide a  ground for data
supplied to a model. In an alternative and somewhat more complex case, one
model yields interpretations  that  constitute the context  for  another  model.
From an informational standpoint, we need to track the contexts supplied to
the  model  and  associate  them  with  the  interpretations  to  which  they
correspond. To maintain validation integrity, we must also track the context
elements through their grounds.



Models  are  constructed  in  different  languages,  or  representation
schemes, each appropriate to the expression of and reasoning about different
sets of properties. No universal language for systems biology can capture the
many different phenomena we seek to explore.

We present these schemes through  views defined as projections on the
underlying  scheme.  Modelling  schemes  relate  to  each  other  through
constraints that  define  what  it  means  for  models  in these  schemes  to be
consistent with each other. Most schemes for modelling in the large provide
a compositional mechanism that researchers can use to compose models and
construct larger-scale compound models.

Generally, three basic points should always be determined:
 defining and managing the views, languages, and constraints;
 providing  the  means  for  checking  the  constraints  and  devising

modelling schemes with sound compositional mechanisms; and
 managing models that may not be consistent with each other, either

across schemes or across scales.
This  complex  picture  excludes  two  key  dimensions,  however.  Models

may  be  produced  in  different  versions  over  time  and by  different  teams.
Disagreements  can  arise  and  observations  can  be  contested.  Different
researchers may generate models in different versions and configurations.
These unpredictable factors mean that systems biology is unlikely to produce
a set of canonical models. Rather, a complex ecology of models embedded
within  a  framework  that  enables  debate  and  collaboration  among
contributors  will  arise.  Ultimately,  our  objective  might  include
individualized models that account for variations in physiology, rather than
generic models of biological phenomena. [FINKELSTEIN ET AL. 04]

3.4 Modeling Techniques

     
Biologists and mathematicians together formulated realistic mathematical

models of metabolic and regulatory networks including intrinsic spatial non-
homogeneity.  Depending  on the cellular  phenomenon  considered,  models
and methods of appropriate temporal and spatial scales were developed and
then applied as models  in the form of ordinary differential  equations  and
methods  for  system  reduction;  multi-adaptive  computational  methods  for
partial  differential  equations  (PDEs)  for  moderate  spatial  and  temporal
variability  within  a  cell  or  an  organelle;  particle  models  describing  the
interaction  of  individual  molecules  and  computational  methods  for  the



evaluation of the dynamic behaviour; and methods for integration of these
different approaches into a single simulation.

The first issue involved in molecular level modelling is to effectively and
faithfully describe molecular activity or to formalize a model.  There have
been  many  different  methods  and  tools;  each  one  developed  to  meet
different requirements. Here follows a presentation of the strengths and the
limitations of some popular techniques:

 Boolean  Network:  As  a  highly  abstracted  method  for  molecular
network  description,  Boolean  network  focuses  on  revealing  the
overall, global property of large networks, especially gene regulatory
networks. A Boolean network has the following features:

1) State of a system at time t+1 is determined by Boolean rules based on its
current state and input.
2)  Systems  undergo  deterministic  state  transition  path  and  produce
predictable behaviour.
3) Small, local perturbations produce small, local effect only.

Apparently,  simplicity  comes with  both  the strength  and weakness.
Deterministic  dynamic  properties  of  large systems,  such as  attractors  and
stable attractor basin, can be easily expressed with Boolean network. Even in
a  small  network  as  shown  below,  there  are  a  point  attractor  (attractor
consisting of only one fix state) 1   2   3   3 and a dynamic attractor
(attractor oscillating among several states) 1  2  3.

Example - Small Boolean Network

     Despite  the  feasibility  of  using  attractors  to  describe  cell  fate
determination  in  embryonic  development,  in  reality,  both  simplicity  and
determinism are absent.  Due to  the combinatorial  control  of  transcription
and the existence of enhancers and silencers the gene expression is complex,
timely  and  precise.  Thus,  instead  of  ON/OFF  states,  genes  often
differentially  express  themselves  during  development,  forming  protein



gradients in tissues that guide cell differentiation. In many cases, especially
single  cell  environment,  intrinsic  and  extrinsic  stochasticity  exists.  When
proteins are included, Boolean network is apparently more unsuitable. So far
we  have  not  seen  any  practical  model  built  with  this  method,  reflecting
another shortcoming.  To overcome the first drawback, a generalized form,
multi-value logical network, maybe a better choice.

 Rule-based Systems: Rule-based systems have been well studied and
widely  applied  in  computer  science.  Some  important  issues,  like
consistency and completeness of the rule system have been studied in
depth. As early as 1990s, it was used in biological modelling. A rule-
based system consists of a set of objects, a set of facts on the objects
declaring their properties, and a set of rules, conditions and actions on
them, e.g.:

IF (AND (condition1) (condition2))
          THEN (action1)
ELSE (action2)

An  obvious  advantage  of  rule-based  system  is  its  flexibility:  nearly
everything can be described with rules. In artificial intelligence applications,
rule-based systems are often equipped with an inference engine to deduce
conclusions automatically based on different triggering conditions. To avoid
erroneous  and  conflicting  conclusions,  a  precondition  for  such  applying
rules is that they should be consistent and complete. However, in very large
systems,  to prove and to maintain consistency and completeness is a very
difficult task, thus leaving many open questions. On the other hand, when a
system  is  complex,  especially  in  terms  of  hierarchy,  heterogeneity  and
evolution, rule description may be very inefficient. In our opinion in many
situations rule-based description can be used as a strategy embedded in or
combined with other methods,  instead of as an independent and exclusive
method.

 Ordinary Differential Equations (ODE): In contrast to the Boolean
and rule-based methods, ODE description has been practically used in
many quantitative models. The general form of an ODE model can be
written as

where i = 1,2,…,N 
xi,1 < i  < n  are states of molecular species.

     In  a  molecular  network  model,  an  ODE  equation  is  built  for  each
molecule  x  quantitatively  describing  its  relationship  with  all  relevant



molecules and solving all equations simultaneously. There have been several
platforms  for  ODE  based  modelling.  Among  them  are  Gepasi  E-CELL,
Virtual Cell, which share a number of features in common e.g., for chemical
reactions simulation. Tools of mathematical analysis like metabolic control
analysis and linear stability analysis of steady state,  and parameter  fitness
have also been implemented. However, though metabolic reactions can be
simulated by these tools, signalling activities may not be well supported.
     Furthermore, signaling networks are non static and undergo evolution.
Thus,  modelling  of  the  context  dependent  cellular  processes  merits  a
different approach. A typical example is Presenilin, a protein responsible for
cleaving  Notch/Delta  complex,  can  selectively  cleave  a  large  group  of
membrane proteins in different contexts. Thus, to describe its behaviour with
ODEs is infeasible, because: 

 the biochemical equation would be very complex, and
 with  the  addition  of  a  new  gene  or  protein  into  the  model  many

equations must be rewritten, an arduous work that greatly slows down
the modeling process itself.

Another  example  of  genes  with  complex  function  is  the  Notch  gene,
which takes part in intercellular communication processes. The semantics or
function of its interaction with other proteins depends on its partners and the
timing of interaction.  In addition,  in any practical  model,  to get complete
quantitative  data  on  gene  and  protein  activity,  such  as  the  rate  of
transcription, translation, and degradation of proteins, is extremely difficult.
Thus, only small or medium sized models have been reported. [PAWAN ET
AL. 04]

3.4.1 Example: Modeling of
Ras/Raf-1/MEK/ERK Signal
Transduction Pathway[WOLKENHAUER ET
AL. 03]

     
The Ras/Raf-1/MEK/ERK module in Figure 4 is a ubiquitously expressed
signaling pathway that conveys mitogenic and differentiation signals from
the cell membrane to the nucleus [YEUNG ET AL. 00],[CHO ET AL. 03].
This kinase cascade appears to be spatially organized in a signaling complex
nucleated by Ras proteins. The small G protein Ras is activated by many
growth  factor  receptors  and  binds  to  the  Raf-1 kinase  with  high  affinity



when activated. This induces the recruitment of Raf-1 from the cytosol to the
cell  membrane.  Activated  Raf-1  then  phosphorylates  and  activates
MAPK/ERK  kinase  (MEK),  a  kinase  that  in  turn  phosphorylates  and
activates  extracellular  signal  regulated  kinase  (ERK),  the  prototypic
mitogen-activated protein kinase (MAPK). 

     

Activated ERKs can translocate to the nucleus and regulate gene expression
by the phosphorylation of transcription factors. This kinase cascade controls
the  proliferation  and  differentiation  of  different  cell  types.  The  specific
biological  effects are crucially dependent on the amplitude  and  history of
ERK activity. The adjustment of these parameters involves the regulation of
protein interactions within this pathway and motivates a systems biological
study.  Figures  5  and  6  describe  the  “circuit  diagrams”  of  the  biokinetic
reactions for which a mathematical model is used to simulate the influence
of ligand variations on the pathway

                                     

Signal  transduction  pathways  can  be represented as  sequences  of  enzyme
kinetics  reactions  which  turn  a  substrate  S  into  a  product  P  via  an



intermediate complex SE and regulated by an enzyme E. The rate by which
the enzyme-substrate complex SE is formed is denoted by k1. The complex
SE holds two possible outcomes in the next step. It can be dissociated into E
and S with a rate constant  k2 or it can further proceed to form a product  P
with a rate constant k3. It is required to express the relations between the rate
of catalysis and the change of concentration for the substrate, the enzyme,
the complex, and the product. Based on this reaction kinetics [ROBERT &
TOM 01],  we first consider a basic modeling block of signal transduction
pathways.

                              



This basic modeling block is illustrated in Figure 5 and can be described by
the following set of nonlinear ordinary differential equations:
                                                           

                      

From these we have

Hence we can describe the basic reaction module by two nonlinear equations
subject  to  two  algebraic  conditions.  In  general,  for  a  given  signal
transduction  system,  the  whole  pathway  can  be  modeled  by  a  set  of



nonlinear  differential  equations  and  a  set  of  algebraic  conditions  in  the
following form:

                                        

where m(t) = [m1(t), m2(t), … , mp(t)], k(t) = [k1(t), k2(t), … , kq(t)], p is the
number  of  proteins  involved in the pathway,  q  is the required number  of
parameters, and j ε {1, ... , J} with the number of algebraic conditions J<p.

Parameter  estimation  is  widely  regarded  as  a  major  problem  in
dynamic pathway modeling [BOCK 81], [HEGGER ET AL. 98]. A simple
method first discretizes the nonlinear differential equations into algebraic 



difference equations that are linear with respect to the parameters and then
solve  the  transformed  linear  algebraic  difference  equations  to  obtain  the
parameter  values at  each  sampling  time point.  We can  then  estimate  the
required parameter values by employing curve fitting, calculation of steady
state  values,  and  regression  techniques.  For  this  purpose  of  parameter
estimation, the previous equations are transformed into

                                        

and  this  can  be  further  transformed  into  a  set  of  algebraic  difference
equations by approximating the differential operator vector g via a difference
operator vector h as

                             

where r depends on the order of approximation. Without loss of generality, k
(t) can be approximated by k since most of the signal transduction systems
can  be  regarded  as  slowly  time  varying  systems  compared  with  the
measurement windows in time scale. Hence we have

                               

which implies the parameter estimates based on time course measurements.



The entire model,  as shown in Figure 6,  is constructed in this way,
leading  to  what  usually  becomes  a  relatively  large  set  of  differential
equations for which parameter values have to be identified. As illustrated in
Figure  7,  in  the  estimation  of  parameters  from  western  blot  data,  the
parameter estimates usually appear as a time dependent profile since the time
course  data  include  various  uncertainties.  However,  since  the  signal
transduction system itself can be considered as time invariant, the estimated
parameter profile should converge to a constant value at steady state. Figure
7 illustrates this estimation procedure.

If a reasonable model is constructed, this can then be used in a variety
of ways to validate and generate hypotheses, or to help experimental design
[CHO ET AL. 03],  [CHO ET AL. 02]. Based on the mathematical model
illustrated in Figure 6 and the estimated parameter values as, for example,
obtained  using  a  discretization  of  the  nonlinear  ordinary  differential
equations (as illustrated in Figure 7), we can perform simulation studies to
validate the signal transduction mechanism as illustrated in Figure 5 and also



to analyze the signal transduction system with respect to the sensitivity for
the  ligand  (via  simulation  of  variable  initial  conditions)  as  illustrated  in
Figure 9.



4 MAPK Cascade

Mitogen-activated  protein  kinase  (MAPK)  cascades  represent  a
biological  module,  or  subcircuit,  which  is  ubiquitous  in  eukaryotic  cell
signal  transduction  processes  [HUANG  &  FERRELL  96,
LAUFFENBURGER  01,  WIDMANN  ET  AL.  99]  and  is  a  critical
component  of  pathways  involved  in  cell  proliferation,  differentiation,
movement, and death. They are activated by diverse stimuli (cytokines, 

Figure 1:  Part  of the signal  transduction  network  in human cells.  The
pathways  shown are known to play a role  in cancer  development.  This
thesis  focusses  on  one  module  involved  in  this  network,  the  mitogen-
activated protein kinase (MAPK) cascade. It is part of the growth factor
signaling path,  shown on the left  side  of  this  picture.  The core  of  this
module  containers  three  protein  kinases,  RAS/RAF  (MAPKKK),  MEK
(MAPKK)  and MAPK.  This  module  is mainly  activated  by the receptor
tyrosine kinase (RTK) via son of sevenless (SOS) protein.  Figure taken
from [HANAHAN&WEINBERG 00].



growth factors, neurotransmitters, hormones, cellular stress, cell adherence),
and  their  outputs  drive  different  cellular  responses,  including  DNA
transcription.

4.1 Functioning Of MAPK Pathways

The  MAPK  cascade  motif  appears  in  different  forms  in  distinct
organisms from yeast to humans, and even in any given cell, and different
MAPK cascades involve different chemicals, but their basic architecture is
conserved. A MAPK pathway is a three-component  module,  consisting of
three  kinases  that  establish  a  sequential  activation  pathway  comprising  a
MAPK  kinase  kinase  (MKKK),  a  MAPK  kinase  (MKK),  and  the  final
MAPK  itself  [WIDMANN  ET  AL.  99].  (A  kinase  is  an  enzyme  that
catalyzes  the transfer  of  phosphate  groups  from a highenergy  phosphate-
containing molecule, such as ATP or ADP, to a substrate.) The diagram in
Figure  2  illustrates  one  standard  biological  model  for  this  process.  The
output  of  the  system  is  represented  by  the  “activated”  form  of  MAPK,
denoted as MAPK** in the 

diagram. The precise meaning of this “activation” need not concern us here,
but we remark that MAPK must be phosphorylated on both a threonine and



tyrosine  residue  for  its  activation,  a  dual  phosphorylation  catalyzed  by
activated-MKK.  The  concentration  MAPK**(t)  of  this  activated  form  is
controlled by the amount MKK**(t) of activated MKK present at any given
time. (The intermediate MAPK*(t) corresponds to a partially-activated form
of  MAPK,  where  only  one  phosphorylation  has  taken  place.)  A  reverse
reaction  of  dephosphorylation  takes  place  as  well,  not  controlled  by
activated MKK, but controlled by a phosphatase (an enzyme that removes
phosphate  groups),  whose  concentration  is assumed to be constant  in  the
time  scale  being  studied.  Similarly,  the  concentrations  of  partially  and
completely activated MKK's are controlled by the concentration of activated
MKKK. The input u to the complete subsystem represents the concentration
of a different kinase (e.g. PKC) or of a small GTP-binding protein (like in
the RAS pathway, see Figure 2.2), that phosphorylates, and hence activates, 



MKKK. This three-step cascade is present in all eukaryotes and has a wide
range of functions in signal transduction, such as stressresponse, cellcycle-
control, cellwallconstruction, osmosensing, growth and differentiation. 

But  why  does  the  module  have  three  steps?  It  is  obvious  that  one
possible function is to generate high amplification. Another role of the three
steps might be to generate a switchlike response [HUANG& FERRELL 96].
This seems reasonable, since the MAPK module is used for many important
decisions  in  cells.  Moreover,  Asthagiri  and  Laufenburger  argue  that  the
integral of activated MAPK** over time may serve as a reasonable metric
for  the  output  rather  than  the  steady  state  of  the  system  [ASTHAGIRI
&LAUFFENBURGER 01]. In this case, the MAPK cascade can work as a
feedback  controller  capable  to  adapt  to  different  stimuli.  Such  a  robust
adaptation has been demonstrated in bacterial chemotaxis [YI ET AL. 00].
Furthermore,  the  three  steps  might  be  used  to  integrate  many  inputs,  as
known in osmosensors [WIDMANN ET AL. 99].

4.2 Models[BLUTHGEN 02]

Huang  and  Ferrell  [HUANG  & FERRELL  96]  developed  a  model  to
describe MAPK activation in Xenopus oocytes, and focused on the role of
the MAPK cascade in allornone decisions [FERRELL &XIONG 01]. Their
model is shown in Figure 2.3 on the right hand side. The stimulus in this
model  is  a  hypothetical  enzyme  E1.  This  model  shows  a  pronounced
amplification from the stimulus (in the order of tenth of nM) to the response
(in the order of µM). Parameters and ODEs of this model can be found in the
appendix. Moreover, in a recent article Ferrell proposed, that there might be
a positive feedback loop to produce ultrasensitivity, which is not included in
his model. Within a large model of second messenger cascades in neurons,
Bhalla and Iyengar [BHALLA & IYENGAR 99] also consider the MAPK
module, which is shown on the left side of Figure 2.3. It has a negative feed
back loop via doublephosphorylation of  the MAPKKK (RAF).  Moreover,
RAF is only active in a complex with GTP bound RAS. Here PKC serves as
an input. However, they focus on properties of a large network rather than
on features of  small  modules  like the MAPK cascade.  A rather  different
model is described by Asthagiri  and coworker [ASTHAGIRI  ET AL. 00,
ASTHAGIRI & LAUFFENBURGER 01],  where they included a negative
feedback  loop,  and showed that  the  MAPK cascade  can  show adaptative
behavior.  These  papers  do  not  consider  the  double  phosphorylation,  but



focus on the desensitization of the receptor. Kholodenko [KHOLODENKO
00]  developed  a  model  with  a  negative  feedback  loop,  which  can  cause
oscillations  in the concentration  of  activated  MAPK**.  He used a  model
which was very similar to the Huang/Ferrell model [HUANG & FERRELL
96].  He included a negative feedback loop acting upstream of MAPKKK
with  an  adiabatic  approach  by  reducing  the  stimulus  activity  by  the
concentration  of  activated  MAPK.  In  this  model  it  was  shown,  that  a
combination of ultrasensitivity and negative feedback can cause oscillations.

4.3 Reaction Kinetics[BLUTHGEN 02]



In order to construct a model of the MAPKcascade, the reaction kinetics
has  to  be  discussed.  I  am  going  to  introduce  the  mass  action  law  as  a
fundamental  concept  of  kinetic  modeling  and  the  Michaelis Menten
mechanism, where the enzymatic modification of a substrate can be broken
down into simple reactions, which can be described by the mass action law.
Furthermore, the MichaelisMenten equation will be introduced.

4.3.1 Mass Action Law

Two main types of reactions can be distinguished:
unimolecular reactions

(4.3.1)
and bimolecular reactions

(4.3.2)

Higher order reactions  such as (A+B+C   P) are extremely rare,  if they
occur at all [CORNISHBOWDEN 99].

If  diffusion  is  fast  compared  to  time  scales  of  the  reaction,  the
concentration of reactants can be assumed to be homogenous. In this case,
the reaction rate becomes obviously proportional to the molar concentration
of the reactant in unimolecular reactions. It is proportional to the product of
the concentration of reactants in bimolecular reactions, because the collision
probability of both reactants should be proportional to either concentration.
Moreover, if one of the reactants is fixed (for example to the cell wall), this
changes the constant  of proportionality (also called rate constant),  but not
the  bilinear  dependency  between  the  rate  of  the  reaction  and  the
concentration [KHOLODENKO ET AL. 00].

The  linear  or  bilinear  dependency  of  the  reaction  rate  on  the
concentration  is  called  the  mass  action  law.  The  rate  constant  for  a
unimolecular  reaction  has  the dimension  of  (1/time),  and for  bimolecular



reaction (1/concentration) x (1/time). Concentrations are measured in molar
(M):

(4.3.3)

Unimolecular  reactions  are  also  called  firstorder  reaction,  while
bimolecular  reactions  are  called  secondorder  reaction.  In  some  cases,  the
reaction rates are independent of the concentration of reactants (for example
when enzymes are saturated, see GoldbeterKoshland switch [GOLDBETER
& KOSHLAND 81]). These reactions are called zeroorder reactions.

4.3.2 Enzyme Kinetics

Enzymatic  reactions  can  be  deduced  to  basic  bi-  and  unimolecular
reactions:

(4.3.4)

In the first step, enzyme E binds reversibly with substrate A, and in a
second step, the enzyme releases the modified substrate P. The second step is
assumed  to  be  irreversible.  This  is  a  reasonable  assumption  for
phosphorylation,  because phosphorylation consumes energy in the form of
ATP  and  it  cannot  be  reversed,  once  the  ADP  is  released.  And  also
dephosphorylation can be modeled by this, because the phosphorylated state
of a protein is on a energetically higher level,  therefore the probability of
returning to the phosphorylated state is very small.

The  reaction  scheme  (4.3.4)  is  called  MichaelisMenten  mechanism
[CORNISHBOWDEN 99]. The rates for the three reactions (v1, v2, v3) are:

E + A  EA  :  v1 = α[E][A] (4.3.5)

E + A  EA  :  v2 = d[EA] (4.3.6)

EA  E + P  :  v3 = V[EA] (4.3.7)  

where [E], [A] and [EA] are the concentrations of enzyme E, substrate A,
and enzymesubstrate complex EA. a, d and V are rate constants. Thus, there



are  two  unimolecular  and  one  bimolecular  reactions.  The  ordinary
differential equations for this system are given by:

d[A]/dt = v2 – v1 (4.3.8)

d[EA]/dt = v1 – v2 – v3 (4.3.9)

d[E]/dt = v2 + v3 – v1 (4.3.10)

d[P]/dt = v3 (4.3.11)

with the initial conditions:

[E](t=0) = [Etot] (4.3.12)

[A](t=0) = [Atot] (4.3.13)

[P](t=0) = 0 (4.3.14)

[EA](t=0) = 0 (4.3.15)

Given the two conservation laws for the molar concentrations,

[Etot] = [E] + [EA] (4.3.16)

[Atot] = [A] + [EA] + [P] (4.3.17)

the system can be reduced to two equations:

d[EA]/dt = α[A]([Etot] – [EA]) – d[EA] – V[EA] (4.3.18)

d[A]/dt = -α([Etot] – [EA])[A] + d[EA]
(4.3.19)

The MichaelisMenten equation can be derived in case that the amount
of  enzymesubstrate  complex  is  in  pseudo  steadystate  (d[EA]/dt  =  0).
Collecting terms in [EA] and rearranging leads to:



(4.3.20)

Conventionally,  a  parameter  called  MichaelisMenten  constant  km is
introduced, 

km = (d + V)/α, (4.3.21)

with the dimension of a concentration,  and the parameter V is called Vmax.
Introducing these parameters, the steadystate of [EA] can be written as:

(4.3.22)

The rate of production of P is given by:



(4.3.23)

Equation (3.23) is known as MichaelisMenten equation. 

The  MichaelisMenten  equation  is  linearly  dependent  on  the
concentration of the enzyme,  while the rate of the reaction saturates  as a
function of substrate. Maximum velocity is given by Vmax[Etot], and half of
this is reached at [A] = km. The velocity for small concentration of A 
([A] << km) is given by v = (Vmax/km)[Etot][A] (see figure 3.1). 

A  timescale  for  approaching  the  pseudo  steadystate  can  be  easily
derived if [A] is large compared to the enzyme concentration. In this case,
the concentration of A may be treated as a constant,  and equation (4.3.18)
can be integrated [CORNISHBOWDEN 99]:

(4.3.24)

Thus, the pseudo steadystate is reached in the timescale of

(4.3.25)

Another more detailed analysis of the steadystate is made by Schnell
and Mendoza [SCHNELL &MENDOZA 97]: Assuming that [A] >> [Etot],
the timescale is estimated as

(4.3.26)

(4.3.27)

Furthermore,  they  also  estimate  the  time  for  the  change  of  the  substrate
concentration as



(4.3.28)

(4.3.29)

Therefore, the ratio of the two timescales is given by:

(4.3.30)

A more  general  conditon  for  the  pseudo  steadystate  assumption  is
given by Segel (see [SCHNELL & MENDOZA 97]):

(4.3.31)

Therefore,  the  steadystate  assumption  is  reasonable,  if  the  enzyme
concentration  is  small  compared  to  the  concentration  of  the  substrate.  A
problem might occur, if an enzyme acts in different reactions. In this case,
the two  conservation  equations  (4.3.16)  and (4.3.17)  are no  longer  valid.
Nevertheless, if the saturation of the enzyme is small, they might be a good
approximation, because the concentration of bound enzyme is small.

In this thesis, I simulated the model by Huang and Ferrell [HUANG &
FERRELL 96]. The ordinary differential equations for the concentrations of
the molecules in the MAPK cascade can be found in the appendix, as well as
the reaction parameters taken from [HUANG & FERRELL 96], which were
not changed in order my work to be comparable to published results.

4.4 Simulation Using SIMULINK

After  modeling  the  MAPK  Cascade  with  differential  equations,  we
created the SIMULINK model based on these equations. Each subcircuit in



the  model  corresponds  to  one  differential  equation;  totally  we  have  22
equations and subcircuits. In Figures 4.4.1 and 4.4.2 we suggestively present
the implementation  for the equations referred to the concentrations  of the
input activating enzyme E1 and the double phosphorylated MAPK**.

Figure  4.4.1:  Implementation  in  SIMULINK  for  the  differential
equation  d[E1]/dt = -α1[KKK][E1] + d1[E1_KKK] + V1[E1_KKK],
referred to the concentration of the input activated enzyme E1.

Figure  4.4.2:  Implementation  in  SIMULINK  for  the  differential
equation d[K**]/dt = V9[KK**_K*] – α10[K**][KS] + d10[KS_K**],
referred to the concentration of the double phosphorylated MAPK**.
By simulating this SIMULINK implementation, we can find the steady-

state of the three kinases (MAPK**, MAPKK** and MAPKKK*) involved
in  the  MAPK  cascade  module  for  the  model  according  to  Huang/Ferrell
[HUANG  &  FERRELL  96],  as  a  function  of  the  concentration  of  the
activating  enzyme  E1.  The results  are shown  in Figures 4.4.3,  4.4.4  and
4.4.5 respectively.



Figure 4.4.3: Steady-state activation of MAPK**.
  Concentrations in μM



Figure 4.4.4: Steady-state activation of MAPKK**.
  Concentrations in μM



Figure 4.4.5: Steady-state activation of MAPKKK*.
  Concentrations in μM

4.5 Steady-State Properties

The steadystate stimulusresponse curve in intracellular signaling is called
ultrasensitive,  if  it  is  sigmoidal.  This  means  that  relative  changes  in  the
stimulus cause small relative changes in the response at a low stimulus, but
high changes at higher stimuli.  It is believed that  ultrasensitivity  plays an
important  role in  intracellular  signaling,  because  it  can  reduce noise  and
convert  gradual  stimuli  into  allornon  decisions  [GOLDBETER  &
KOSHLAND 81, FERRELL 96].

4.6 Ultrasensitivity In The MAPK Cascade



The steadystate of the double phosphorylated MAPK** as a function of
the concentration of the enzyme which phosphorylates MAPKKK serves as
a stimulusresponse function of the system. The plot of this function for the
model  according  to  Huang/Ferrell  [HUANG&  FERRELL  96]  shows  that
this inputresponsecurve is sigmoidal (see Figure 4.4.3).

Furthermore,  when  plotting  the  steadystate  of  the  active  forms
MAPKKK*  and  MAPKK**  as  a  function  of  the  MAPKKK  activating
enzyme,  the  curve  for  MAPKKK*  is  not  sigmoidal  and  the  curve  of
MAPKK** is strongly sigmoidal. 

If the concentration of enzymesubstratecomplex is negligible,  the three
steps of the cascade are well separated, and the stimulusresponsecurve of the
entire cascade can be treated as a threestep chain of functions:

   MAPK**(Input) = MAPK**(MAPKK**(MAPKKK*(Input)))       (4.6.1)

Therefore, one can analyze each layer of the cascade separately and
study the steadystates of the active form for the three kinases as a function of
the activating kinase.

We saw before the steady-state activation of the three kinases involved in
the  MAPK  cascade  module  for  the  model  according  to  Huang/Ferrell
[HUANG  &  FERRELL  96].  It  is  interesting  to  see  also  how  do  these
concentrations change in time, with a stable input (for our example I chose
[E1]  = 0.0003μM as  proposed in  [HUANG  & FERRELL  96]),  after  our
implementation of the model in Matlab (Figure 4.6.1 for MAPK**, Figure
4.6.2 for MAPKK** and Figure 4.6.3 for MAPKKK*):



Figure 4.6.1: f(t,MAPK**)



Figure 4.6.2: f(t,MAPKK**)



Figure 4.6.3: f(t,MAPKKK*)

It is obvious that after a short time the concentrations reach to a stable
value, and that the time they need to do so, although it is not the same for
each kinase, does not vary sensibly.

5 Conclusions



In  this  thesis  stimulusresponse  curves  of  the  mitogenactivated  protein
kinase  (MAPK)  cascade  (published  model  by  Huang/Ferrell  [HUANG  &
FERRELL 96])  are investigated.  It  is proven that  the sigmoidality  of  the
stimulusresponsecurves  is  a  result  of  the  doublephosphorylation  and
saturation of the enzymes acting in the second and third layer of the cascade.
We  know  that  if  we  add  a  negative  feedback  loop  (see  model  by
Bhalla/Iyengar  [BHALLA  &  IYENGAR  99]),  the  cascade  shows
oscillations.  If the stimulusresponsecurves of the layers in the cascade are
not too sigmoidal, the oscillations are damped and have been interpreted as
adaptation, which seems to have physiological relevance and which has been
experimentally  observed.  It  is  known  from  the  literature  that  a  strong
sigmoidal stimulusresponsecurve may lead to sustained oscillations, due to
the delay in the signal transduction [KHOLODENKO 00]. The physiological
relevance of sustained oscillations in the MAPKcascade is debated, and there
is no experimental evidence yet [KHOLODENKO 00].

For future work, the effect of fluctuations of the concentrations might
be studied. It will get important when more about the total concentrations
and the phosphatase activities is known. Additionally, the effect of scaffold
molecules might be of interest [PAWSON & SCOTT 97] because they are
predicted  to  reduce  the  ultrasensitivity  of  the  stimulusresponsecurve
[LEVCHENKO ET AL. 00].

To resume, it can be argued that the highly conserved MAPKcascade
is a “multipotent” module in eukaryotic signal transduction. It may act as a
(irreversible) switch, a signal amplifier and an integral feedback controller.
The function of the MAPKcascade depends on the context, therefore the role
of MAPKcascade might be different in different organisms, developmental
stages and pathways. If the MAPKcascade will be considered in a model of
a whole pathway including receptor and transcription, it might be useful to
investigate experimentally the role of the cascade and afterwards develop a
simplified model of the cascade in order to keep the numbers of equations
and parameters small.

Appendix



In order to keep variable names short, MAPK is abbreviated as K. An S
at  the  end  indicates  phosphotases,  wherever  it  is  neccessary,  a  hyphen
indicates a complex. 

Stars show the phosphorylation states.

A.1 Model According To Huang And Ferrell

Figure A.1

A.2 Parameters

                 Total Concentration [μΜ]



               Protein       H/F
         Input-enzyme     0.0003
           MAPKKK      0.003
            MAPKK        1.2
              MAPK          1.2
                  E2     0.0003
     MAPKK-Phosphatase     0.0003
       MAPK-Phosphatase       0.12
Table A.2.1: Concentrations taken from

                                     [HUANG &FERRELL 96]

                             Vmax [1/min]
                     Reaction     H/F
        MAPKKK  MAPKKK*     150
        MAPKKK  MAPKKK*     150
           MAPKK  MAPKK*     150
           MAPKK  MAPKK*     150
         MAPKK*  MAPKK**     150
         MAPKK*  MAPKK**     150
             MAPK  MAPK*     150
             MAPK  MAPK*     150
           MAPK*  MAPK**     150
           MAPK*  MAPK**     150

                Table A.2.2: Vmax values taken from
                                     [HUANG &FERRELL 96]

                               km [μM]
                     Reaction     H/F
        MAPKKK  MAPKKK*      0.3
        MAPKKK  MAPKKK*      0.3
           MAPKK  MAPKK*      0.3
           MAPKK  MAPKK*      0.3



         MAPKK*  MAPKK**      0.3
         MAPKK*  MAPKK**      0.3
             MAPK  MAPK*      0.3
             MAPK  MAPK*      0.3
           MAPK*  MAPK**      0.3
           MAPK*  MAPK**      0.3

               Table A.2.3: km values taken from
                                     [HUANG &FERRELL 96]

A.3 Reactions

From the MAPK model according to Huang and Ferrell shown in Figure
A.1, we have the following reactions:

KKK + E1  KKK.E1  KKK* + E1 (A.3.1)

KKK* + E2  KKK*.E2  KKK + E2 (A.3.2)

KK + KKK*  KK.KKK*  KK* + KKK* (A.3.3)

KK* + KKS  KK*.KKS  KK + KKS (A.3.4)

KK* + KKK*  KK*.KKK*  KK** + KKK* (A.3.5)

KK** + KKS  KK**.KKS  KK* + KKS (A.3.6)

K + KK**  K.KK**  K* + KK** (A.3.7)

K* + KS  K*.KS  K + KS (A.3.8)

K* + KK**  K*.KK**  K** + KK** (A.3.9)

K** + KS  K**.KS  K* + KS (A.3.10)



A.4 Differential  Equations  Using  Explicit
Kinetics

The parameters αn, dn and Vn were chosen in order to fulfill the km and Vmax

values in Tables A.2.3 and A.2.2:

αn  = Vn(1+r)/km,n (A.4.1)

dn = rVn (A.4.2)

Vn = Vmax,n (A.4.3)

The ratio of d and Vmax(r) was chosen as 4 as in [HUANG & FERRELL 96].

We can notice from Tables A.2.2 and A.2.3 that the values of km and Vmax

are the same for each one of the ten reactions.  So,  it is obvious from the
equations A.4.1, A.4.2 and A.4.3 that we have: 
α1 = α2 =…= α10 = α, 
d1 = d2 =…= d10 = d and 
V1 = V2 =…= V10 = V.

Finally, the ODEs for our model are the following:

d[KKK]/dt = -α1[KKK][E1] + d1[E1_KKK] + V2[E2_KKK*] (A.4.4)

d[E1]/dt = -α1[KKK][E1] + (d1+V1)[E1_KKK] (A.4.5)

d[E1_KKK]/dt = α1[KKK][E1] – (d1+V1)[E1_KKK] (A.4.6)

d[KKK*]/dt = V1[E1_KKK] – α2[KKK*][E2] + d2[E2_KKK*]
   - α3[KK][KKK*] + (d3+V3)[KKK*_KK]
   - α5[KK*][KKK*] + (d5+V5)[KKK*_KK*] (A.4.7)

d[E2]/dt = -α2[KKK*][E2] + (d2+V2)[E2_KKK*]
(A.4.8)

d[E2_KKK*]/dt = α2[KKK*][E2] – (d2+V2)[E2_KKK*]
(A.4.9)



d[KK]/dt = -α3[KK][KKK*] + d3[KKK*_KK] + V4[KKS_KK*]
(A.4.10)

d[KKK*_KK]/dt = α3[KK][KKK*] – (d3+V3)[KKK*_KK] (A.4.11)

d[KK*]/dt = V3[KKK*_KK] – α4[KK*][KKS] + d4[KKS_KK*]
                     -α5[KK*][KKK*] + d5[KKK*_KK*] + V6[KKS_KK**]

(A.4.12)

d[KKS]/dt = -α4[KK*][KKS] + (d4+V4)[KKS_KK*]
 -α6[KK**][KKS] + (d6+V6)[KKS_KK**] (A.4.13)

d[KKS_KK*]/dt = α4[KK*][KKS] – (d4+V4)[KKS_KK*] (A.4.14)

d[KKK*_KK*]/dt = α5[KK*][KKK*] – (d5+V5)[KKK*_KK*]
(A.4.15)

d[KK**]/dt = V5[KKK*_KK*] – α6[KK**][KKS] + d6[KKS_KK**]
  -α7[K][KK**] + (d7+V7)[KK**_K] – α9[K*][KK**]
  +(d9+V9)[KK**_K*] (A.4.16)

d[KKS_KK**]/dt = α6[KK**][KKS] – (d6+V6)[KKS_KK**] (A.4.17)

d[K]/dt = -α7[K][KK**] + d7[KK**_K] + V8[KS_K*] (A.4.18)

d[KK**_K]/dt = α7[K][KK**] – (d7+V7)[KK**_K] (A.4.19)

d[K*]/dt = V7[KK**_K] – α8[K*][KS] + d8[KS_K*]
       -α9[K*][KK**] + d9[KK**_K*] + V10[KS_K**] (A.4.20)

d[KS]/dt = -α8[K*][KS] + (d8+V8)[KS_K*] – α10[K**][KS]
        +(d10+V10)[KS_K**] (A.4.21)

d[KS_K*]/dt = α8[K*][KS] – (d8+V8)[KS_K*] (A.4.22)

d[KK**_K*]/dt = α9[K*][KK**] – (d9+V9)[KK**_K*] (A.4.23)

d[K**]/dt = V9[KK**_K*] – α10[K**][KS] + d10[KS_K**] (A.4.24)



d[KS_K**]/dt = α10[K**][KS] – (d10+V10)[KS_K**] (A.4.25)
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