
Information Alert in Biological Sequence Databases

by

Georgia Adamopoulou

A thesis submitted in fulfillment of the
requirements for the degree of

Master of Computer Engineering

Technical University of Crete

Department of Electronic and Computer Engineering

Laboratory for Programming and

Intelligent Systems Engineering

1

Contents

1 Introduction 9
1.1 Overview . 9
1.2 Organization of the dissertation 11

2 Related Work 12
2.1 IDS and Textual information . 12

2.1.1 The SIFT Information Dissemination System 12
2.1.2 The Distributed Information Alert System DIAS 14

2.2 IDS and Biological information 15
2.2.1 Swiss-Shop . 15
2.2.2 The Sequence Alerting Server 18

2.3 Summary . 19

3 Querying Sequence Databases 20
3.1 Sequence Comparison . 20
3.2 Sequence Comparison and Molecular Biology 26

3.2.1 A fundamental process in molecular biology 26
3.2.2 Global vs. Local Alignment 28

3.3 Algorithms for Sequence Alignment 29
3.4 Efficient Algorithms for Sequence Comparison in Large Sequence

Databanks . 35
3.4.1 Publicly available sequence databases 35
3.4.2 BLAST: Efficient similarity searches in large sequence data-

banks . 37
3.5 Summary . 50

4 Trading Space for Time in BLAST 52
4.1 Introduction . 52
4.2 The Method SeedsIndex . 53

4.2.1 Description . 53
4.2.2 Database Sequences Data Structures 53
4.2.3 An Example . 57

4.3 Experimental Evaluation . 60

2

4.3.1 Settings . 60
4.3.2 Varying The Number Of Long Standing Queries 61

4.4 Using SeedsIndex in an Information Alert Scenario 63
4.5 Summary . 64

5 Implementation of BioAlert, an Information Alert System 65
5.1 Data Model and Query language 65

5.1.1 Syntax . 66
5.1.2 Semantics . 69

5.2 System description . 69
5.2.1 Functionalities . 70
5.2.2 The Algorithm . 70

5.3 System organisation . 74
5.4 BioAlert vs. Swiss-Shop . 78
5.5 Technical details . 80
5.6 Summary . 80

6 Concluding Remarks 81
6.1 Future Work . 82

3

List of Figures

1.1 A high level view of an information dissemination system 11

2.1 A Swiss-Prot entry . 16

3.1 Snapshot of computing the dynamic programming table for two
sequences. A match costs +2 whereas a gap and a mismatch cost -1. 30

3.2 Computing the alignment . 31
3.3 A segment of the alignment graph 33
3.4 Pseudo-code for dynamic programming algorithms for computing

global alignments . 34
3.5 Pseudo-code for dynamic programming algorithms for computing

local alignments . 34
3.6 BLAST terms . 39
3.7 An illustration of the BLAST search algorithm 40
3.8 An illustration of the BLAST search algorithm 43
3.9 Word list generation for DNA sequence 44
3.10 Pseudo-code for the compilation of the word list 45
3.11 Word list generation for protein sequence 46
3.12 Pseudo-code for the hit extension 51

4.1 The Hash Table for the Brute Force algorithm of the example . . 55
4.2 The Hash Table for the SeedsIndex algorithm 57
4.3 Pseudo-code for the construction of the HT in SeedsIndex method 58
4.4 Pseudo-code for the matching process in SeedsIndex method . . . 58
4.5 Effect of the number of long standing queries in matching time . . 62
4.6 Memory usage for the two algorithms during the matching procedure 63

5.1 A document in the Swiss-Prot style 68
5.2 An example of the profile tree constructed by the tree algorithm. 72
5.3 Pseudo-code of the algorithm for adding a profile in BioAlert . . . 73
5.4 Pseudo-code of the algorithm for the matching procedure of BioAlert 75
5.5 Pseudo-code of the algorithm for the text matching 76
5.6 BioAlert organisation . 77
5.7 BioAlert’s main page. 78

4

5.8 Specifing a long-standing query in BioAlert. 79
5.9 Viewing profiles in BioAlert. 79

5

List of Tables

2.1 Line types and codes of a Swiss-Prot entry 17

3.1 The four kinds of of bases found in DNA molecules 21
3.2 The twenty amino acids commonly found in proteins 22
3.3 GenBank divisions . 36
3.4 A catalogue with some of the existing specialized databases 37
3.5 The BLAST Family Programs . 39
3.6 Similarity matrix . 50

4.1 Calculation of the hash values for the DNA sequence CCCTAACG-
TACCTTGGAA . 55

4.2 Calculation of the hash values for database sequence with database
identifier p1 . 58

4.3 Calculation of the hash values for database sequence with database
identifier p2 . 59

5.1 A set of profiles and their identifying prefixes 71

6

To Mum and Dad

7

Acknowledgements

I would like to thank everyone who contributed to the fulfillment of this thesis
and first of all my supervisor Dr. Manolis Koubarakis for his precious advice and
his guidance. I would also like to thank the group of Bridgemap and especially
Dr. George Kotoulas for his explanations about biological processes and terms
and his patience to my continuous questions when I was trying to figure out the
needs of molecular biology related to informatics. Without his help molecular
biology would be so confusing to me...

I owe many thanks to my friends and the research group of the Intelligence lab
Christos, Paraskeui, Thodoris and Stamatis for their solidarity. The moments we
spent altogether except that made my living in Chania a memorable experience
gave me the courage to continue.

I am also very grateful to Athena and her family for their support. I will remember
plenty of wonderful moments I spent with them.

Finally, I would like to thank Petros for his presence as a friend and good listener
especially at these last months before the presentation of this work.

8

Chapter 1

Introduction

An unprecedented wealth of data is being generated by genome sequencing projects
and other experimental efforts to determine the structure and function of biolog-
ical molecules. The demands and opportunities for interpreting this data are
expanding more than ever. Bioinformatics is the development and application
of computer methods for management, analysis, interpretation and prediction,
as well as for the design of experiments [30]. This is the area where this work
belongs to.

1.1 Overview

The latest decades we have noticed a blast in molecular biology. This great
development is sealed by sequencing the complete human genome. This is only
one of the genomes of organisms that have been sequenced all these years.

The genome of more and more organisms is under study. This means that
large-scale sequencing is taking place everyday in genomic laboratories all over
the world. Consequently, a huge amount of information is produced very rapidly.
Moreover, this quantity of information becomes available in the web, leading to
an unpredictable and rapid increase of available information. This information
is crucial for the scientific research of biologists but if they want to use this
information, they have to cope with both the problem of information overload
and the problem of being continually informed of new information.

One solution to this problem is the use of techniques from selective dissem-
ination of information. The idea of selective information dissemination is that
users express their desire and preferences for information by posting profiles or
long-standing queries to a computer system. The system then informs the user
about any incoming information matching his/her profile.

The same idea is implemented by an information alert scenario where users
actually receive alerts whenever any incoming information matching to their in-
terests. Thus, in this work we will use the terms information dissemination and

9

information alert interchangeably.
A high level view of such a system is shown in Figure 1.1 as it is presented

in [37]. We notice that the figure presents an information dissemination scenario
in the context of a distributed peer-to-peer (P2P) agent architecture. In this
scenario users utilize their end-agents to post profiles or documents (expressed
in some appropriate language) to some middle-agents. End-agents play a dual
role: they can be information producers and information consumers at the same
time. The P2P network of middle-agents is the “glue” that makes sure that
published documents arrive at interested subscribers. To achieve this, middle-
agents forward posted profiles to other middle-agents using an appropriate P2P
protocol. In this way, matching of a profile with a document can take place at a
middle-agent that is as close as possible to the origin of the incoming document.
Profile forwarding can be done in a sophisticated way to minimize network traffic
e.g., no profiles that are less general than the one that has already been processed
are actually forwarded.

Although there is plenty of research on distributed agent architecture [36,
14, 13] as well as implemented systems [25, 38], at the first step the emphasis
was given on systems making use of a single central middle-agent. Such an
architecture we propose for the alert system that we describe in Chapter 5.

This dissertation concentrates on the problem of information dissemination
focusing mainly on the view of molecular biology. We were motivated by the study
of both the algorithms of sequence comparison and the information dissemination
systems to end up to this work with the following contributions:

• We developed a variation of the BLAST algorithm that trades space for
time. The main idea is the use of alternative techniques in order to reduce
the running time of the algorithm. Specifically, we make use of indexing
methods in one part of the algorithm to achieve a faster and more efficient
way of matching. After the implementation of the variation we propose,
we evaluate it experimentally using real genomic data part of which come
from of the European project Bridgemap [2]. Apart from the evaluation we
also compare it to the original BLAST algorithm.

• We designed and implemented BioAlert, an information alert system for
biologists that allows the specification of long-standing queries on textual as
well as sequence data of protein databases. Such a service is provided by the
Swiss-Prot database which is named Swiss-Shop [8]. Although our system
works using the weekly updates of Swiss-Prot, as Swiss-Shop does, it differs
from that service in the way that offers more functionality to users. Users
can specify long-standing queries either on textual or on sequence data, as
they did using Swiss-Shop, but now they can also specify queries on both
type of data. This kind of conjunctive query functionality is not offered
in Swiss-Shop. In our system we provide this functionality by combining
algorithms implementing the two different types of search. For the textual

10

end-
agent

 middle
agent

middle
agent

middle
agent middle

agent

document

document

profile

document

document

end-
agent

end-
agent

end-
agent

end-
agent

profile

document

Figure 1.1: A high level view of an information dissemination system

search we use the data model and algorithms presented in [38, 36] that rely
on the Boolean model from Information Retrieval.

1.2 Organization of the dissertation

This dissertation is organized as follows. In Chapter 2 we briefly present two well-
known to the biologists and representative for our work services and two textual
information dissemination systems. In Chapter 3 we discuss some fundamental
concepts and techniques of computational biology that we use in this thesis.
In the same chapter we also present some algorithms for sequence comparison,
the most basic operation in computational biology. In Chapter 4 we study an
algorithm that we propose for sequence comparing and which is a modification
of the popular algorithm used in BLAST. In Chapter 5 we present the BioAlert
system we implemented. Finally, in Chapter 6 we present our conclusions and
the future work possibilities.

11

Chapter 2

Related Work

This chapter is a discussion of information dissemination systems (IDS) and a
presentation of some representative ones. We distinguish two categories of sys-
tems according to the kind of data they handle. In the first category we have
systems that handle textual information while in the second category we include
systems that handle biological information. In the following sections we present
two representative systems from each category.

2.1 IDS and Textual information

We present the SIFT and DIAS information dissemination systems explaining in
a few words their main characteristics.

2.1.1 The SIFT Information Dissemination System

The Stanford Information Filtering Tool (SIFT) is an information dissemination
system that was originally presented in [38]. It evolved to become a commercial
system and was used for the dissemination of Usenet articles. It was daily serving
up to 18400 users and 80000 profiles.

Let us see a short description of how it works. A user submits his queries
or profiles via a web interface or via email and receives notifications by email.
Since it was based on a client-server model a main server was responsible to store
the profile database and to alert the users for the documents matching their
profiles. The matching procedure was done under either the Boolean model or
under the Vector Space model (VSM) but not under both of them. In order to
improve efficiency, SIFT employs various methods using inverted indices while
the overall design and implementation targets efficiency and matching speed. An
interesting characteristic of SIFT is the incorporation of a similarity threshold
for the matching procedure under VSM. Thus, users are notified only for those
documents whose similarity under VSM is above the specified similarity thresh-

12

old. Under Boolean model, the matching procedure is straightforward since the
similarity threshold is not applied.

Let us give an example for a better understanding. Although SIFT supports
both the Boolean and the VSM model for queries, its query language is not as
expressive as others [23, 12, 25] since the documents and queries are represented
by free text. Under both models the user specifies words or set of words that he
wants to be included or to be excluded from the documents he will receive. The
following example makes it more understandable.

Example 1 Let us consider the Swiss-Prot entry shown in Figure 2.1 to be our
document.

• A query in SIFT under the Boolean model would be “membrane protein not

homo-sapiens”. That query matches our document since the word “mem-
brane” and the word “protein” are included in the document and the word
“homo-sapiens” is not included.

• The queries under the VSM model are also written in natural language and
are represented as vectors, where each entry indicates the importance of the
term in the search. For example we have the query:

Q = < (“meningitidis”, 0.97), (“Neisseria”, 0.9), (“genome”, 0.56) >

In this query, term “meningitidis” has weight 0.97, “Neisseria” has 0.9,
“genome” has 0.56 and all others that are not listed have a zero weight.
The document is also represented as vector containing the weight assigning
to each term. The weight of a term indicates how statistically important it
is. In our case part of the vector for our document could be:

D = < 0.65, 0.78, 0, 0.45, . . . >

In this document the first term has weight 0.65 while the third term is
not contained in this document. Apart from the query, the user specifies a
similarity threshold. We measure the similarity between the document and
the query using a formula which is based on the weights of the corresponding
terms and is presented in [38]. The user will be notified only if the computed
similarity is above the specified similarity threshold.

Although SIFT was originally based on a client-server model, distributed ver-
sions have also been studied.

13

2.1.2 The Distributed Information Alert System DIAS

DIAS [25] is an information dissemination system that targets, just like Hermes
[14], the dissemination of digital library information.

The architecture of DIAS is based on a peer-to-peer network of agents like the
one shown in Figure 1.1. An information provider publishes documents through
a so called resource agent. A user of the system utilizes an end-agent through
which he can connect to the middle agent network and send his profiles or receive
notifications about documents. The middle agents of the main P2P network
communicate with each other and with resource agents as well as end-agents.
A resource agent has the mission to collect the information from an information
provider and upload it to the rest of the network. Middle agents are the ones that
store the profiles posted by end-agents agents and perform the matching of the
profiles and documents posted by resource agents. After the process of matching,
middle agents send notifications to the end-agents representing the users that
submitted the matching profiles.

DIAS supports a subset of the expressive data language AWP and AWPS pre-
sented in [23, 37]. Moreover, specialized filtering algorithms are used to perform
matching. Some of them are presented in [37] and some latest ones in [12]. In
the following lines we try to explain the the AWP data model and the document
schema that are used in DIAS giving examples. According to the AWP data
model a document schema is consisted by a set of attribute-value pairs. The
attributes are used to encode information such as title, author, description and
so on. They differ relatively to the document’s context. The value of each at-
tribute is a finite-length string of a vocabulary V . The context of our examples
comes from biology so the attributes and their value will use terms with biological
interpretation.

Example 2 Let us consider the Swiss-Prot entry shown in Figure 2.1 to be our
document over the set of attributes that are presented in Table 2.1.

The query language under the AWP schema uses the operator =, having the
known interpretation and w, with the interpretation “contains”.

Example 3 The following are some queries in AWP using the schema of docu-
ment of Example 2:

KW = “Serine protease”,
CC w (Belongs ∧ (UPF0324 ≺[0,2] family”)),

(RA w (Nelson ≺[0,4] Peterson))∧
(RT = “Complete genome of Neisseria”)

The first query is satisfied or matches a document if and only if the KW at-
tribute has the exact value “Serine protease”. The second query is satisfied a
document is and only if the CC attribute contains the word “Belongs” and the

14

words “UPF0324”, “family” with at least zero and at most 2 words between
them. Finally the third query matches a document if and only if the attribute
OC contains the names “Nelson” and “Peterson” with either zero or at most 4
words in between and the attribute RT has the exact value “Complete genome
of Neisseria”. Thus, the first query is not satisfied by the document of Figure 2.1
while the other two are satisfied by the same document.

A newer system called P2P-DIET that offers more functionality than DIAS
has been developed by our group and is available at http://www.intelligence.
tuc.gr/p2pdiet/. Recent papers on P2P-DIET include [19, 20, 18].

2.2 IDS and Biological information

We discuss Swiss-Shop, which is an existing system closely related to the one
we implemented as a fulfilment of this thesis, and The Sequence Alerting Server,
which is currently not operational.

2.2.1 Swiss-Shop

Swiss-Shop [8] is an alert service that is developed and is hosted by the ExPASy
proteomics1 server of the Swiss Institute of Bioinformatics (SIB) [5]. The purpose
of its development is to allow a biologist to automatically obtain new sequence
entries of the Swiss-Prot database relevant to his fields of interest before the
actual database release.

Swiss-Prot [7] is a protein sequence database which provides a high level of
annotation, a minimal level of redundancy and high level of integration with other
databases. It is part of UniProt2 Knowledgebase [9] with TrEMBL database3 to
be the other part. Swiss-Prot database consists of sequence entries which are
composed of different line types, each with their own format. Each entry is
structured in such a way so as to be usable by both the human readers and
computer programs. A sample sequence entry is shown in Figure 2.1. As we
see, each line begins with a two-character line code, which indicates the type of
data contained in the line, followed by three blanks. The current line types and
line codes and the order in which they appear in an entry are shown in Table
2.1. We notice some line types occur many times in a single entry, while others
are optional. Each entry must begin with an identification line and end with
a terminator line. Moreover, the explanations, descriptions, comments are in
ordinary English and wherever needed, there are symbols familiar to molecular

1The qualitative and quantitative comparison of proteomes under different conditions to
further unravel biological processes [3].

2Universal Protein Resource.
3A computer-annotated supplement of Swiss-Prot that contains all the translations of EMBL

nucleotide sequence entries not yet integrated in Swiss-Prot.

15

ID YJ79_NEIMB STANDARD; PRT; 338 AA.
AC Q9JXM0;
DT 01-OCT-2004 (Rel. 45, Created)
DT 01-OCT-2004 (Rel. 45, Last sequence update)
DT 01-OCT-2004 (Rel. 45, Last annotation update)
DE Hypothetical UPF0324 membrane protein NMB1979.
GN OrderedLocusNames=NMB1979;
OS Neisseria meningitidis (serogroup B).
OC Bacteria; Proteobacteria; Betaproteobacteria; Neisseriales;
OC Neisseriaceae; Neisseria.
OX NCBI_TaxID=491;
RN [1]
RP SEQUENCE FROM N.A.
RC STRAIN=MC58 / Serogroup B;
RX MEDLINE=20175755; PubMed=10710307;
RA Tettelin H., Saunders N.J., Heidelberg J., Jeffries A.C., Nelson K.E.,
RA Eisen J.A., Ketchum K.A., Hood D.W., Peden J.F., Dodson R.J.,
RA Nelson W.C., Gwinn M.L., DeBoy R., Peterson J.D., Hickey E.K.,
RA Haft D.H., Salzberg S.L., White O., Fleischmann R.D., Dougherty B.A.,
RA Mason T., Ciecko A., Parksey D.S., Blair E., Cittone H., Clark E.B.,
RA Cotton M.D., Utterback T.R., Khouri H., Qin H., Vamathevan J.,
RA Gill J., Scarlato V., Masignani V., Pizza M., Grandi G., Sun L.,
RA Smith H.O., Fraser C.M., Moxon E.R., Rappuoli R., Venter J.C.;
RT "Complete genome sequence of Neisseria meningitidis serogroup B strain
RT MC58.";
RL Science 287:1809-1815(2000).
CC -!- SUBCELLULAR LOCATION: Integral membrane protein (Potential).
CC -!- SIMILARITY: Belongs to the UPF0324 family.
CC --
CC This SWISS-PROT entry is copyright. It is produced through a collaboration
CC between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC the European Bioinformatics Institute. There are no restrictions on its
CC use by non-profit institutions as long as its content is in no way
CC modified and this statement is not removed. Usage by and for commercial
CC entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC or send an email to license@isb-sib.ch).
CC --
DR EMBL; AE002546; AAF42307.1; -.
DR PIR; D81020; D81020.
DR TIGR; NMB1979; -.
DR InterPro; IPR004630; Cons_hypoth698.
DR Pfam; PF03601; Cons_hypoth698; 1.
DR TIGRFAMs; TIGR00698; Cons_hypoth698; 1.
KW Complete proteome; Hypothetical protein; Transmembrane.
FT TRANSMEM 5 23 Potential.
FT TRANSMEM 33 55 Potential.
FT TRANSMEM 62 84 Potential.
FT TRANSMEM 94 116 Potential.
FT TRANSMEM 123 145 Potential.
FT TRANSMEM 155 177 Potential.
FT TRANSMEM 222 239 Potential.
FT TRANSMEM 254 273 Potential.
FT TRANSMEM 280 302 Potential.
FT TRANSMEM 312 334 Potential.
SQ SEQUENCE 338 AA; 36806 MW; BC160B75713BEEA5 CRC64;
 MNTRPFYFGL IFIAIIAILA NYLGNTDFSH HYHISALIIA ILLGMAIGNT IYPQFSTQVE
 KGVLFAKGAL LRTGIVLYGF RLTFGDIADV GLNAVVTDAI MLISTFFFTA LLGIRYLKMD
 KQLVYLTGAG CSICGAAAVM AAEPVTKAES HKVSVAIAVV VIFGTLAIFT YPLFYTWSQH
 LINAHQFGIY VGSSVHEVAQ VYAIGENIDP IVANTAVISK MIRVMMLAPF LLMLSWLLTR
 SNGVSENTSH KITIPWFAVL FIGVAIFNSF DLLPKELVKL FVEIDSFLLI SSMAALGLTT
 QASAIKKAGL KPFVLGILTY LWLVVGGFLV NYGISKLI
//

Figure 2.1: A Swiss-Prot entry

16

Line code Content Occurrence in an entry
ID Identification Once; starts the entry
AC Accession number(s) Once or more
DT Date Three times
DE Description Once or more
GN Gene name(s) Optional
OS Organism species Once or more
OG Organelle Optional
OC Organism classification Once or more
OX Taxonomy cross-reference(s) Once or more
RN Reference number Once or more
RP Reference position Once or more
RC Reference comment(s) Optional
RX Reference cross-reference(s) Optional
RG Reference group Once or more (Optional if RA line)
RA Reference authors Once or more (Optional if RG line)
RT Reference title Optional
RL Reference location Once or more
CC Comments or notes Optional
DR Database cross-references Optional
KW Keywords Optional
FT Feature table data Optional
SQ Sequence header Once

(blanks) Sequence data Once or more
// Termination line Once; ends the entry

Table 2.1: Line types and codes of a Swiss-Prot entry

biologists. Finally, we must refer that for standarization purposes the format of
Swiss-Prot follows as closely as possible that of the EMBL Nucleotide Sequence
Database.

Swiss-Shop service performs searches on the current biweekly updates of
Swiss-Prot. The searches can be either sequence/pattern-based or keyword-based.

Keyword-based search

A keyword-based search searches the database entries for the user defined key-
words on the fields with the line codes AC, OS, OG, OC, RA, DE, CC, KW, DR
and FT of Swiss-Prot. The user specifies the fields that are interesting to him
and give the keywords for each of them. An entry satisfies the keyword-based
search if and only if that entry contains the user-specified keywords of all the
fields, meaning that the fields are conjunctive to each other. Moreover, the user

17

may define more than one keywords for one filed. These keywords are interpreted
as a disjunction. We now give an example.

Example 4 Let us consider the database entry that is shown in Figure 2.1 and
the following keyword-based searches:

RA w “V enter”,
(DR w “PIR”) ∧ (OS w “meningitidis”),

(DR w (“PIR” ∨ “TIGR”) ∧ (AC = “Q9JXMO”),
(DR w “InterPro”) ∧ (OC w “Bacteria”)

We use the operators equals (=) and contains (w) with the same interpretation
as in the AWP model of DIAS. The first three searches are satisfied by that entry
while the last one is not because the keyword “Bacteria” is not contained to the
field OC.

Sequence/pattern-based search

A sequence or pattern-based search is also supported. The new protein sequences
of the biweekly update are searched against the sequence or the pattern which the
user provides. The search is either a BLAST search or a scan with the provided
pattern. Instead of the raw protein sequence itself you can enter the Swiss-Prot
identification (ID) or the Swiss-Prot accession number (AC) of the sequence if
it has been submitted to Swiss-Prot. Similarly, instead of your own pattern in
PROSITE4 format you can provide the AC number or the PROSITE ID. In both
cases, the user receives a list of the new sequences.

Swiss-Shop informs the users by sending an email to them. The email is sent
either every time a search is run even if there are no Swiss-Prot entries matching
the query or only when there are matching the query entries. The user has also
the option to set the date until when his query will be active. Moreover, the
service provides the users with the capability to set the degree of detail that
they want to receive the results. Thus, they can receive the complete Swiss-prot
entries or a short report containing information from some Swiss-Prot lines or
just a list of Swiss-prot accession numbers.

2.2.2 The Sequence Alerting Server

The Sequence Alerting Server [16] is an alerting server with a WWW interface
which was developed by EMBL. It informs users with query sequences in database
searches about new entries in protein databases related to their query.

4PROSITE [6] is a database of protein families and domains. It consists of biologically
significant sites, patterns and profiles that help to reliably identify to which known protein
family a new sequence belongs.

18

Let us describe how it works. The server regularly compares users’ subscribed
sequences to the new entries in all the public protein databases by using BLAST
programs, as they are shown in Table 3.5. The non-redundant protein database,
called nrdb, is used by the server against to which the users’ queries are searched.
Since nrdb database contains every publicly available protein sequence once, the
user does not worry for the multiple appearances of the same sequence in the
different protein databases. The nrdb is built up every day at EMBL from the
swissprot, pdb, trembl, pir, genpept and wormpept databases. Users
submit their query sequences to the server via a WWW interface and these are
searched daily against a new subset of nrdb, so as users to be kept informed about
new entries in protein databases related to their queries.

This service is a reliable tool which is user friendly and does not require any
software to be installed locally except a web browser. Its main advantage is that
the searches are performed against the most complete database nrdb. It can be
found in the web address http://www.bork.embl-heidelberg.de/alerting/

but it is currently not working and the users are suggested to use the Swiss-Shop
service.

2.3 Summary

In this chapter we presented four different information dissemination systems.
Two of them were designed to handle textual data while the other two are alert
services focused on molecular biologists’ interests. An extensive description was
given to the Swiss-Shop service from which our system, BioAlert, was inspired.
We started with general information about this service and continued with a
description of the functionalities it provides through a web interface. We also
discussed the format of the entries of Swiss-Prot database and focused on the
two different types of search that are supported.

19

Chapter 3

Querying Sequence Databases

This chapter is an introduction to some basic ideas of computational biology as
they will be explored in this thesis. The chapter is important to be understood by
readers that have no biological background. At first, we present the most basic
operation in computational biology and our work, sequence comparison, while the
rest of the chapter deals specifically with searching sequence databases.

We explain sequence comparison in much detail, giving definitions, examples
and the basic algorithms. We focus on querying sequence databases that is an
important issue in this thesis and present two most popular algorithms that are
used by biologists all over the world.

3.1 Sequence Comparison

The major operation in computational biology is sequence comparison. It is the
most important manipulation and is the basis for many other, more complex
manipulations, such as large DNA sequencing. We can define it informally as
finding which parts of the sequences are alike and which parts differ. Regarding
sequence comparison, we deal with two terms that are often used in computational
biology. One is sequence similarity and the other sequence alignment. The first
one gives a measure of how similar the sequences are while the second one is a way
of placing one sequence above the other in order to make clear correspondence
between similar characters or substrings from the sequences [34].

We start presenting some basic and formal definitions for sequence comparison
in computational biology. Our definitions are from the book [15] (in some cases
verbatim!).

An alphabet is a finite set of letters. An alphabet will usually be denoted
by the letter Σ possibly with a subscript. In this section we will deal with
two alphabets: ΣDNA and Σamino. ΣDNA is a set of four letters (A, T, C,G)
representing the kinds of bases found in DNA molecules. Table 3.1 gives the
names of these bases. Σamino is a set of twenty letters representing the twenty

20

Letter code Name
A Adenine
T Thymine
C Cytosine
G Guanine

Table 3.1: The four kinds of of bases found in DNA molecules

amino acids typically found in proteins. The elements of set Σamino are given in
Table 3.2 together with their 3-letter codes and names.

Let us now define the concept of sequence which is fundamental in our work.

Definition 1 A sequence s of length n over alphabet Σ is a total function s:
{1,2,...,n}→ Σ. A DNA sequence is a sequence from the alphabet ΣDNA. A
protein sequence is a sequence from the alphabet Σamino.

In other words, a sequence is an ordered succession of characters drawn from
an alphabet Σ. For each sequence s, s(i) denotes the i-th character of s while its
length will be denoted by |s|. If the length of a sequence is 0, then we say that
we have an empty sequence that will be denoted by ε.

Example 5 The succession of nucleotides

GATCGGAATAG

is a DNA sequence of length 11 with s(1)=G, s(2)=A, s(3)=T, and so on while
this succession of amino acids

GDVEKGKKIFVQKCAQCHTV

represents a protein sequence of length 20.

According to the definition and the examples a sequence is actually a string.
Thus, these two terms are often used as synonyms in biological literature. But
although, the sequence and the string are synonyms, the terms substring and
subsequence have different meanings. The following definitions and the example
make the difference clear.

Definition 2 Let s be a string over an alphabet Σ. A substring t of s is a string
s[i..j] that starts at position i and ends at position j of s.

Definition 3 Let s be a sequence of length n over an alphabet Σ. A subsequence
t of s is specified by a list of indices i1 < i2 < i3 < ... < ik, for some k ≤ n. The
subsequence specified by this list of indices is the sequence s(i1)s(i2)s(i3)...s(ik).

21

One letter code Three-letter code Name
A Ala Alanine
C Cys Cysteine
D Asp Aspartic Acid
E Glu Glutamic Acid
F Phe Phenylalanine
G Gly Glycine
H His Histidine
I Ile Isoleucine
K Lys Lysine
L Leu Leucine
M Met Methionine
N Asn Asparagine
P Pro Proline
Q Gln Glutamine
R Arg Arginine
S Ser Serine
T Thr Threonine
V Val Valine
W Trp Tryptophan
Y Tyr Tyrosine

Table 3.2: The twenty amino acids commonly found in proteins

22

In other words, a subsequence can be obtained from sequence s by removal of
some characters. So, a subsequence need not consist of contiguous characters of
sequence s whereas a substring of string s is formed by consecutive characters
of s. Thus, a substring is always a subsequence, but not all subsequences of a
sequence s are substrings of s. Moreover, one sequence has many subsequences
while the empty sequence ε is a subsequence of every sequence. Let us see an
example.

Example 6 The succession of nucleotides

CGAGTTCCCCGAGGTGTACG

represents a DNA sequence s of length 20.

CGAGTTCCCCGGGGG is a subsequence of the previous sequence

while

CGAGTTCCCCGAG is both a substring and a subsequence of s.

Let us now define the concepts of sequence alignment and sequence similarity
which are fundamental in computational biology and this work.

Definition 4 Let s1 and s2 be two sequences. An alignment α between s1 and
s2 is obtained by first inserting spaces (or gaps) in chosen positions, either into
or at the ends of s1 and s2 so that they become equal in size, and then placing
the two resulting sequences one above the other so that every character in either
sequence is opposite a unique character or a unique space in the other sequence
and every space in either sequence is opposite a unique character in the other
sequence. A global alignment is an alignment that involves the entire sequences.
A local alignment is an alignment that involves substrings of the sequences.

In other words, “it is a way of placing one sequence above the other in order
to make clear correspondence between similar characters or substrings from the
sequences”[34]. The alignment between two sequences makes sense only when the
two sequences have the same length, otherwise you can not have a correspondence
between similar characters or not. Due to the different length of sequences, we
insert spaces in arbitrary locations along the sequences so that they end up with
the same size. Spaces can be inserted in both the beginning and the end of the
sequences. The restriction, according to definition 4, is that each space in one
sequence must be aligned with a character in the other and not with a space. Let
us see an example.

Example 7 The following are global alignments between two sequences.
For the two DNA sequences GACGGATTAG and GATCGGAATAG an align-

ment is

23

GA-CGGATTAG
GATCGGAATAG

For the DNA sequences GCTGAACG and CTATAATC an alignment is

GCTGA-A–CG
–CT-ATAATC

a second one is

- - - - - - GCTGAACG
CTATAATC - - - - - -

and another one is

GCTG-AA-CG
-CTATAATC-

Definition 5 Let s1, s2 be two sequences over an alphabet Σ, and Σ′ be Σ with
the added character ‘-’ denoting a space. Then, for any two characters x, y in
Σ′, s(x,y) denotes the score (or value) obtained by aligning character x against
character y.

Definition 6 Let α be an alignment between two sequences s1, s2. Now, let s′1,
s′2 denote the sequences after the chosen insertion of spaces, and l the equal length
of the two sequences s′1, s′2 in α. The score (value) of alignment α is defined as
∑l

i=1 s(s′1(i), s′2(i)).

According to the above definition, the score of an alignment α is obtained by
summing the score contributed by each pair. The score of each pair is defined
beforehand in scoring matrices.

Definition 7 A pairwise scoring matrix over an alphabet Σ, is a matrix that
defines the pairwise scores between the characters of the alphabet Σ.

Let us now see an example that illustrates the computation of the score of an
alignment between two sequences.

Example 8 We consider the DNA alphabet ΣDNA and let the pairwise scores
over this alphabet be defined in the following matrix:

s A T C G -
A 1 -1 -1 -1 -2
T -1 1 -1 -1 -2
C -1 -1 1 -1 -2
G -1 -1 -1 1 -2
- -2 -2 -2 -2 -2

24

Now, we compute the score for each of the four alignments of Example 7 and
we have:
1+1+(-2)+1+1+1+1+(-1)+1+1+1 = 6
-2+1+1+(-2)+1+(-2)+1+(-2)+(-1)+(-1) = -6
-2+(-2)+(-2)+(-2)+(-2)+(-2)+(-1)+1+(-2)+(-2)+(-2)+(-2)+(-2)+(-2) = -24
-2+1+1+(-1)+(-2)+1+1+(-2)+1+(-2) = -4

The scoring matrix used in this example and many others penalize mismatches
and inserted spaces by assigning a negative value to them while assign greater
than or equal to zero values to characters of the alphabet that match. In this
way, they emphasize the matches. So, using such scoring systems, the alignment
with as large a score as possible, has as many characters as possible that match.
Consequently, the similarity between the two sequences is high enough. This is a
way to measure the similarity between the two sequences. We continue with the
formal definition of the sequence similarity.

Definition 8 Given a pairwise scoring matrix over the alphabet Σ′, the global
similarity of two sequences s1 and s2 is defined as the score of the alignment α of
s1 and s2 that is maximum over the space of all possible alignments. This is also
called the optimal global alignment score of s1 and s2.

Definition 9 Given two sequences s1 and s2 and a scoring scheme ρ, the opti-
mal global alignment between s1 and s2 is the alignment with the optimal global
alignment score over the scoring scheme ρ.

It is possible that more than one alignment has the same maximum score. So,
the optimal alignment between two sequences may not be unique. Moreover, the
optimal alignment is not the same for different scoring schemes. Each scoring
scheme gives a different ranking of the alignments, depending on how match
scores compare to mismatch and space scores. The following example illustrates
how the score of an alignment depends on the used scoring scheme.

Example 9 We assume the following scoring scheme:

s A T C G -
A 5 -1 -3 -3 0
T -1 5 -3 -3 0
C -3 -3 5 -1 0
G -3 -3 -1 5 0
- 0 0 0 0 -5

Now, let us compute the score of the different alignments of the DNA se-
quences of Example 7 and compare it with the score that was computed using

25

another scoring scheme in Example 8.

The score for the first alignment is 0+5+5+0+5+0+5+0+(-3)+(-1) = 16
while it was -6. For the second one it is 0+0+0+0+0+0+(-3)+5+0+0+0+0+0+0
= 2 while it was -24. For the third one it is 0+5+5+(-3)+0+5+5+0+5+0 = 22
while it was -4. The last alignment has the maximum total score in both cases
and this is the optimal alignment for the two sequences. So, the two sequences
have similarity of -4 over the first scoring scheme and 22 over the second one.
The second scoring scheme resulted to a higher value because the score of matches
and the inserted spaces is higher in this scoring scheme than in the other, 5 and
0 is greater than 1 and -2 respectively, although the mismatches contribute to the
sum with a greater negative value.

Many scoring matrices have been suggested for both protein and DNA se-
quences [11, 17, 33]. Which scoring scheme is used depends on the application.

3.2 Sequence Comparison and Molecular Biol-

ogy

In this section we discuss the importance of sequence comparison in molecular
biology and compare the global to local alignment.

In the first subsection we explain why sequence comparison is a fundamental
process in molecular biology by presenting the first fact of biological sequence
analysis and several examples as well. In the second subsection we compare the
two kinds of alignment and since each kind is suitable for different applications,
we present some examples that illustrate this difference.

3.2.1 A fundamental process in molecular biology

Sequence comparison is fundamental in molecular biology because in biomolecular
sequences (DNA, RNA, amino acid sequences), high sequence similarity usually
implies significant functional or structural similarity. This is called the first fact
of biological sequence analysis [15].

According to the first fact of biology, comparing sequences and finding high
similarity implies that there is functional similarity between them and if one of
them is a sequence with identified functionality then we extract precious informa-
tion for the other sequence. This is crucial in molecular biology and genetics since
life is based on duplication and modification of molecular structures. The same
or related molecular structures just like proteins, DNA regulatory sequences and
others, are shared among the organisms. Not only are the molecular structures
shared among the organisms but this is so common that there is enormous redun-
dancy and as Doolittle says in [32] “The vast majority of extant proteins are the

26

result of a continuous series of genetic duplications and subsequent modifications.
As a result, redundancy is a built-in characteristic of protein sequences, and we
should not be surprised that so many new sequences resemble already known
sequences.” Thus, it is not surprising that the same genes that work in flies work
in humans as well. So, the genomes of two very different organisms might have
regions that are quite similar. Consequently, due to the first fact of biological
analysis and the duplication and modification of molecular structures among the
species, sequence comparison is extremely indispensable for biologists. it is es-
sential to compare a new sequence against all the existing sequences in search of
similarities.

Let us, now, describe the standard practice that is globally applied by the
biologists when they study the genome of an organism that have not been stud-
ied yet. At the first step, the gene is cloned and sequenced. After its DNA
sequence is obtained, it is translated into an amino acid sequence. In the next
step, they search for similarities between the translated protein sequence and a
protein database. The resulted sequence similarities imply functional or struc-
tural similarities, thus the researchers gain useful knowledge that guides their
work afterwards.

Let us now present a simple categorization of some common problems in
sequence comparison and their correspondence in the computational biology field,
as they are presented in [34].

1. Let us say that we have two sequences over the same alphabet, both about
the same length (tens of thousands of characters). We know that the se-
quences are almost equal, with only a few isolated differences such as inser-
tions, deletions, and substitutions of characters. The average frequency of
these differences is low, say, one each hundred characters. We want to find
the places where the differences occur.

This problem may appear when the same gene is sequenced by two different
labs and they want to compare the results, or when we are looking for typing
errors.

2. We have two sequences over the same alphabet with a few hundred char-
acters each. We want to know whether there is a prefix of one which is
similar to a suffix of the other. If the answer is yes, the prefix and the suffix
involved must be produced. Another case of the same problem is to have
several hundred sequences that must be compared each one against all). In
addition, we know that the great majority of sequence pairs are unrelated,
that is, they will not have the required degree of similarity.

These kind of problems appear in the context of fragment assembly in
programs to help large-scale DNA sequencing.

3. We have two sequences over the same alphabet with a few hundred char-
acters each. We want to know whether there are two substrings, one from

27

each sequence, that are similar. Another case of the same problem is to
have one sequence that must be compared to thousands of others, instead
of only two sequences.

This problem occurs in the context of searches for local similarities using
large sequence databases.

To be more specific, we give a real case example from [15]. Considering the
above three cases of problems, this belongs to the third one. It actually proves
why database search is so essential for biologists. The problem is referred to as the
first complete DNA sequence of a free-living organism [31]. The sequencing re-
vealed a total of 1734 coding regions. Each of those sequences was translated into
one or more amino acid sequences and used to search for similar sequences in the
protein sequence database Swiss-Prot. The search resulted to high similarity for
1007 of the genes. The match was so unambiguous that the specific biochemical
function deduced for each one. These deductions were made possible by linking
Swiss-Prot, the database under search, to Riley database where protein sequences
are stored divided up into 102 biochemical roles. So, the biochemical function
for 1007 of 1734 genes was specified via comparisons between the derived protein
sequences and the protein sequences of a database whose biochemical roles were
already specified in detail.

3.2.2 Global vs. Local Alignment

As it was discussed in the previous section, duplications and modifications are
common in proteins and DNA sequences. There are many regions that are quite
similar and others that are repeated not only in the genome of a distinct organism
but also among the organisms. Thus, organisms share pieces of the same infor-
mation while they modify others through evolution. So, when comparing two
related biosequences (let us say two proteins that belong to the same family) we
find that the alignment between the entire sequences is very poor although there
are regions that are very similar. In other words, while there may be little global
similarity between related sequences, there are usually strong local similarities.
So, there are cases where local similarity is meaningful whereas global similarity
is even misleading. For example, let us consider long DNA sequences. When
we want to compare long fragments of DNA sequences that are unknown, global
similarity will give misleading results since only some internal sections may be
related. Local alignment is appropriate in locating these sections. Another appli-
cation that illustrates the meaningfulness of global alignments is the comparison
of proteins which belong to very different protein families. Proteins are made
up of the same structural or functional subunits (motifs). These subunits are
common in proteins even if the proteins belong to different families. Searching
for these subunits local alignment must be used since global alignment involves
the entire length of the sequences being compared. An example is the proteins

28

that are encoded by homeobox genes1. These genes show up in a wide variety
of species, from frogs to humans and flies. The proteins that they encode are
very different in species except a region, called the homeodomain, where there is
identity in alignments up to 95%. Local alignment is also useful in detection of
conserved characters of related proteins. A global alignment is not helpful since
we are searching only some particular isolated characters in high similarity and
not the entire sequence. An example is the family of serine proteases where a
few isolated, conserved amino acids characterize the family [15].

Although local alignment is the most appropriate method for comparing pro-
teins from different protein families, in [39], is pointed out that there is extensive
global similarity between protein sequences that are related by strong local sim-
ilarity. Thus, global alignment can be used in protein comparisons as well as
in exposing important biological commonalities [26]. For example, the protein
cytochrome c has almost the same length in most organisms that produce it. So,
a relationship between two cytochromes from any two different species over the
entire length is expected. Another case that illustrates the effectiveness of global
alignments is when we are trying to deduce evolutionary history by examining
protein sequence similarities and differences. In this case again, proteins of the
same family are compared and differences or similarities in their entire length
must be located so an alignment that involves their entire length is required thus
the global alignment is the appropriate method to be used.

3.3 Algorithms for Sequence Alignment

Let us now discuss some algorithms for sequence alignment. The simplest way
to compute the similarity between two sequences is to generate all the possible
alignments between the two sequences and to choose the one with the highest
score. The best alignment will also have been found. This idea results in an
algorithm that is so slow that is forbidden for implementation. Another idea is
to use dynamic programming. We are going to present some basic points of this
technique, that is widely applicable in computational biological problems. Much
more details you can find in many places e.g., [27].

Dynamic programming is an algorithmic technique that has been used in
many algorithms that solve optimization problems. It finds the best solution by
breaking the original problem into smaller instances of the same problem (sub-
problems). It solves all the subproblems storing at the same time the intermediate
solutions in a table and then it chooses the sequence of the best solutions among
all the solutions from the table.

Let us now see how dynamic programming is used to obtain optimal alignment
between two sequences. Firstly, we consider the case of global alignment.

1http://homeobox.biosci.ki.se/

29

j 0 1 2 3 4 5
i C A T G T

0 0 -1 -2 -3 -4 -5
1 A -1 -1 1 0 -1 -2
2 C -2 1 0 0 -1 -2
3 G -3 0
4 C -4
5 T -5
6 G -6

Figure 3.1: Snapshot of computing the dynamic programming table for two se-
quences. A match costs +2 whereas a gap and a mismatch cost -1.

Global Sequence Alignment Let S = s1...sn and T = t1...tm be two se-
quences with length n and m, respectively. We want to find an optimal global
alignment between them. We recall that s(x, y) is the score of the alignment
of character x with character y according to the Definition 5, while s(x,−) and
s(−, y) are the scores of the alignment of one character of each sequence with a
space from the other. We will also use V (i, j) to denote the optimal alignment
score of prefixes S[1...i] and T [1...j] (0 ≤ i ≤ n, 0 ≤ j ≤ m).

Dynamic programming has three steps: the recurrence relation, the tabular
computation and the traceback. We will explain each one in turn.

1. The recurrence relation is a recursive relationship between the value of
V(i,j) and values of V with index pairs smaller than i, j. So, for the score
V of the optimal global alignment we have the recurrence relation:

V (i, j) =

0 if i = 0 and j = 0
V (i− 1, j) + s(S(i),−) if i > 0 and j = 0
V (i, j − 1) + s(−, T (j)) if i = 0 and j > 0

max

V (i− 1, j − 1) + s(S(i), T (j))
V (i− 1, j) + s(S(i),−)
V (i, j − 1) + s(−, T (j))

if i > 0 and j > 0

(3.1)

Considering the optimal alignment of S1...i and T1...j , the recurrence relation
describes the three possibilities that there are in any alignment:

• Aligning Si with Tj. In this case, the score is equal to the score of
aligning i− 1 characters of S with j− 1 characters of T plus the score
s(Si, Tj) of aligning Si with Tj. Thus, the score is V(i-1,j-1)+s(Si,Tj).

• Aligning Si with a space character in sequence T. In this case, the
score is equal to the score of aligning the i − 1 characters of S with
j characters of T plus the score s(Si,-) of aligning Si with a space.
Thus, the score is V(i-1,j)+s(Si,-).

30

j 0 1 2 3 4 5
i C A T G T

0 0 ←-1 -2 -3 -4 -5
1 A ↑-1 -1 ↖1 0 -1 -2
2 C -2 ↖ 1 0 ↖ 0 -1 -2
3 G -3 ↑ 0 ↖ 0 -1 2 1
4 C -4 -1 ↖ -1 ↑ -1 ↑ 1 1
5 T -5 -2 -2 ↖1 0 ↖ 3
6 G -6 -3 -3 0 ↖ 3 ← 2↑

There are three possible paths that represent alignments that give the highest score.

These are:

1. -C-ATGT
ACGCTG-
with score: -1+2-1-1+2+2-1 = 2

2. -CA-TGT
ACGCTG-
with score: -1+2-1-1+2+2-1 = 2

3. CATG-T-
-ACGCTG
with score: -1+2-1+2-1+2-1 = 2

Figure 3.2: Computing the alignment

31

• Aligning Tj with a space character in sequence S. This case is similar
to the previous one. Thus, the score is V(i,j-1)+s(-,Tj).

2. The second step of dynamic programming is to use the recurrence relations
to compute the score of the optimal alignment. This is done using a tabular
bottom-up computation. According to this, we compute the score V(i,j)
for all possible values of i and j. We start from smaller values of i, j and
increase them. We store these values in a dynamic programming table of
size (n+1)*(m+1). Figure 3.1 depicts the snapshot of the dynamic pro-
gramming table for the sequences S=ACGCTG and T=CATGT. The score
of the optimal global alignment will be the value V(n,m), since the entire
length of the sequences is involved.

3. Once the values have been computed, the alignment has to be extracted
and this is the third step. In order to obtain the alignment, we follow the
pointers that have been established in the cells of the table as values are
computed. When the value of the cell (i, j) is computed, a pointer is set for
this cell that points to cell that its value was used to the computation of
the value of the current cell. It is possible more than one pointer (and up
to three, since three are the possibilities) to be set from a cell. If we follow
the path of pointers from cell (n,m) to (0,0), then we will get the optimal
global alignment. Figure 3.2 depicts the dynamic programming table of
Figure 3.1. It is totally filled in with the values and the pointers have been
set. As you can notice, there are three ways to reach cell (0,0) starting
from cell (n,m) and following the pointers. Thus, there are three paths,
each of which represents an alignment that gives the highest score. These
three alignments and their score are depicted in the same figure. One can
notice that each horizontal and vertical edge in the path specifies a space
inserted into one of the sequences while a diagonal edge specifies either a
match or a mismatch.

Except tables, weighted graphs are useful to represent dynamic program-
ming solutions. They are called alignment graphs and they are weighted directed
acyclic graphs. Each cell of the dynamic programming table corresponds to a
node of the directed graph. The weight of each edge is the score computed ap-
plying the recurrence relation 3.1, as depicted in Figure 3.3. The alignment is
again a path from node (0,0) to node (n,m) while the alignment score is the total
weight of the edges along the path. The goal is to find the path from node (0,0)
to node (n,m) with the highest weight (heaviest path).

In Figures 3.4 and 3.5, the dynamic programming algorithm is presented for
the global and local alignment problem, respectively. In both cases it is taken
from [40].

32

s (, T(j+1))

s (S(i+1),) s (S(i+1), T(j+1))

Figure 3.3: A segment of the alignment graph

Local Sequence Alignment In local alignment the task is to find and extract
a pair of regions one from each of the two sequences, that exhibit high similarity.
So, we search for alignment that begin and end at any position of the sequences.
A formal definition of the problem follows.

Definition 10 Given two sequences S and T, find substrings a and b of S and T,
respectively, whose similarity (optimal global alignment value) is maximum over
all pairs of substrings from S and T. The value of an optimal local alignment is
denoted by V’. [15]

Comparing the pseudocode of the two algorithms of Figures 3.4 and 3.5,
we notice that there are small differences between them although they solve
different problems. The recurrence relation is modified to contain a zero-term
and whenever the score becomes negative, it is initialized to zero. This allows
the alignments to start at any position of the sequences when the score becomes
negative. In local alignment the common scoring systems mark negatively the
mismatches and the gaps whereas the matches are given positive value. Thus,
a positive score means more matches and consequently higher local similarity.
Since the local alignment can end at any position, as the values are computed
and saved in the table the best score, that is actually the highest, is saved at each
step. At the end when the table is filled up, the best score is reported as the local
similarity score. The cell that corresponds to best score, let say (i2, j2), is the one
at which the local alignment ends. The local alignment of the two sequences is
found by backtracing the pointers, that are set again, from the cell (i2, j2) until
a cell (i1, j1) is reached that has score zero.

Time Complexity Let us see now how much time these dynamic programming
algorithms take. The time required in both kind of alignments is the same.
The dynamic programming table for two sequences of length n and m can be
constructed in O(nm) time, in both cases. The V (i, j) needs four comparisons
and three arithmetic operations per cell to be computed. Hence, each cell needs
a constant number of comparisons and arithmetic operations to be filled in and

33

V (0, 0)← 0
for j ← 1 to m do

V (0, j)← V (0, j − 1) + s(−, T (j))
for i← 1 to n do {

V (i, 0)← V (i− 1, 0) + s(S(i),−)
for j ← 1 to m do

V (i, j)← max[V (i− 1, j − 1) + s(S(i), T (j)), V (i− 1, j)+
s(S(i),−), V (i, j − 1) + s(−, T (j))]

}
write ‘Global similarity score is’ V(n,m)

Figure 3.4: Pseudo-code for dynamic programming algorithms for computing
global alignments

best← 0
for j ← 1 to m do

V (0, j)← 0
for i← 1 to n do {

V (i, 0)← 0
for j ← 1 to m do

V (i, j)← max[0, V (i− 1, j − 1) + s(S(i), T (j)), V (i− 1, j)+
s(S(i),−), V (i, j − 1) + s(−, T (j))]
best← max(V (i, j), best)

}
}
write ‘Local similarity score is’ best

Figure 3.5: Pseudo-code for dynamic programming algorithms for computing
local alignments

34

since there are O(nm) cells in the table the total time required is O(nm). Once
the table has been computed, the search for the optimal alignment can also be
found in O(nm) time, in both cases.

3.4 Efficient Algorithms for Sequence Compar-

ison in Large Sequence Databanks

The sequencing of nucleic acids and proteins has started for decades but only in
the last years, that the technology made it possible, large-scale sequencing started
to take place. Up to now, the genome of many organisms has been sequenced
and this remains to be done for many others. Among the results that this great
scale of sequencing caused is the creation of large centralized databanks. The
importance of sequence similarity searching that is concluded by the first fact of
biological sequence analysis, that is explained in Section 3.2.1, in combination
with the existence of these databanks led to the need of efficient algorithms for
querying these data banks that store large quantities of genomic data produced
by labs all over the world. In this section we give a categorization of the existing
databases and right after this we present the most popular program for database
search giving details of its algorithm.

3.4.1 Publicly available sequence databases

We distinguish two categories of sequence databases depending on what type of
sequence, DNA or protein, they store. Thus, we speak about DNA archives and
protein sequence archives. GenBank is one of the DNA archives, that stores all
DNA sequences that are made public. It was maintained at the Los Alamos
National Labs (LANL), but it is now maintained by the National Center for
Biotechnology Information (NCBI)2 at the National Library of Medicine (NLM),
which is part of the National Institutes of Health (NIH) in the USA. It is split
into smaller, discrete divisions, that can be seen in Table 3.3. The European
Molecular Biology Library (EMBL) is another large DNA archive. It is main-
tained by EBI (European Bioinformatics Institute)3. Like GenBank it is also
spilt into several divisions, each of which differs by the amount of sequences and
by the quality of the data. More information about EMBL can be obtained from
its home page4. The DNA DataBase of Japan (DDBJ)5 and the Genome Se-
quence DataBase (GSDB)6 also exist. The GSDB is a new DNA database, which
was created by a project of the National Center for Genome Resources (NCGR)

2http://www.ncbi.nlm.nih.gov/
3http://www.ebi.ac.uk/
4http://www.ebi.ac.uk/embl/
5http://www.ddbj.nig.ac.jp/
6http://scop.wehi.edu.au/gsdb/gsdb.html

35

Division Code Description
PRI Primate sequences
ROD rodent sequences
MAM other mammalian sequences
VRT other vertebrate sequences
INV invertebrate sequences
PLN plant, fungal, and algal sequences
BCT bacterial sequences
RNA structural RNA sequences
VRL viral sequences
PHG bacteriophage sequences
UNA unannotated sequences
EST EST sequences (expressed sequence tags)
PAT patent sequences
STS STS sequences (sequence tagged sites)
GSS GSS sequences (genome survey sequences)
HTG HTGS sequences (high throughput genomic sequences)

Table 3.3: GenBank divisions

supported by the Department of Energy (DOE). As a result of the International
Nucleotide Sequence Database Collaboration, all the DNA archives, mentioned
above, share information between them updating one another periodically. Re-
garding the protein sequence archives, the Protein Information Resource (PIR)7

in the United states and the Swiss-Prot8 in Europe are the major ones. Unlike
PIR, Swiss-Prot provides high level annotations including description of pro-
tein function. Recently, PIR-International9 together with EBI and SIB (Swiss
Institute of Bioinformatics)10 have joined in a common effort to establish the
UniProt (United Protein Databases), the central resource of protein sequence
and function. Except the aforementioned databases, there are also plenty of oth-
ers, specialized databases. Each of them is specialized in a particular area. For
example, some store sequences about a particular organism or a cell type, others
record all mutations and differences (polymorphisms) that have been discovered
in a set of genes, some store information on particular biological functions while
others follow specialized terminology and taxonomic style that are particular to
a subfield of biology. Moreover, other differ in the way the data are stored and
the kind of retrieval service they offer. Table 3.4 gives the names, the website
and a small description of some of these most popular databases. Pointers to a

7http://pir.georgetown.edu/
8http://www.ebi.ac.uk/swissprot/
9http://pir.georgetown.edu/pirwww/aboutpir/collaborate.html

10http://www.isb.sib.ch

36

Database Name Characterization
Prosite Database of protein families and domains

http://www.expasy.ch/prosite
FLYBASE A Database of the Drosophila Genome

http://flybase.bio.indiana.edu/
RHdb A collection of raw data used in constructing radiation hybrid maps

http://www.ebi.ac.uk/RHdb/
CD40Lbase A collection of clinical and molecular data on CD40 ligand defects

leading to X-linked Hyper-IgM syndrome
http://us.expasy.org/cd40lbase/

SBASE A collection of protein domain sequences collected from the literature,
from protein sequence databases and from genomic databases
http://hydra.icgeb.trieste.it/ kristian/SBASE/

ENZYME Repository of information relative to the nomenclature of enzymes
http://us.expasy.org/enzyme/

EPD Eukaryotic Promoter Database.
It provides information about eukaryotic promoters available in the
EMBL Data Library
http://www.epd.isb-sib.ch/

REBASE Restriction Enzyme Database.
It is a collection of information about restriction enzymes, methylases,
the microorganisms from which they have been isolated,
recognition sequences, cleavage sites, methylation specificity,
the commercial availability of the enzymes and references
http://www.neb.com/rebase

Table 3.4: A catalogue with some of the existing specialized databases

large number of databanks organized in categories can be found in [4].

3.4.2 BLAST: Efficient similarity searches in large sequence
databanks

The dynamic programming algorithms for computing the similarity and the op-
timal alignment between two sequences, that we have presented so far, are too
slow for searching large databases hence their use is forbidden. To overcome this
problem, one of the three following approaches are applicable.

1. The implementation of the dynamic programming algorithms in hardware.
In this case they will be executed faster but the high cost of this approach
makes it unaffordable.

37

2. Using parallel hardware, the distribution of the problem to a number of
processors and the integration of the results. This method is also expensive
and not widely acceptable.

3. The implementation of algorithms using heuristic methods that work much
faster than the original dynamic programming.

One of the two most popular heuristic methods for detecting sequence similarities,
which are widely applicable, is presented in this section. The first method that
was developed is FASTA (short for “fast-all”) [29, 24] and after this BLAST(short
for Basic Local Alignment Search Tool) [10].

Both are based on the following observations:

• The nucleotide or residue substitutions appear much more often that the
insertions and deletions between two sequences.

• There is the ability to preprocess the database.

• Homologous sequences11 contain a lot of segments with matches and sub-
stitutions. These segments can be the starting points for further searching
that will probably conclude in high similarity.

BLAST The ideas in BLAST were developed by S. Altschul, W. Gish, W.
Miller, E. Myers and D. Lipman in 1990 [10] with purpose to increase the speed
of the FASTA program [24]. The acronym BLAST refers not to a single program
but to a family of programs. Each of them is suitable for a different problem
domain but they all use the BLAST algorithm. Table 3.5 presents the name and
the description of all the programs that are members of BLAST family.

What BLAST actually does is to find regions of high similarity in alignments
without gaps between a query sequence and the database sequences, evaluated
by a scoring matrix. Before we go on to present the algorithm in detail, we define
some fundamental terms.

Definition 11 Given two strings S1 and S2, a segment pair is a pair of equal-
length substrings of S1 and S2, aligned without spaces (gaps). A locally maximal
segment pair is a segment pair whose alignment score (without gaps) would de-
crease either by expanding or shortening the segments on either side. A maximal
segment pair (MSP) in S1, S2 is a segment pair with the maximum score over all
segment pairs in S1,S2. A high scoring segment pair (HSP) in S1, S2 is a locally
maximal segment pair with score over a threshold.

Figure 3.6 graphically represents the terms just defined.
Let Q be the query sequence which will be compared against a database in

search of similarities. In the following paragraphs when we use the term database,

11The sequences that are very similar because they have a common evolution origin.

38

Program Name Description
BLASTN compares a nucleotide query sequence against a nucleotide

sequence database
BLASTP compares an amino acid query sequence against a protein

sequence database
BLASTX compares the six-frame conceptual translation products

of a nucleotide query sequence (both strands) against a
protein sequence database

TBLASTN compares a protein query sequence against a nucleotide
sequence database dynamically translated in all six reading
frames (both strands)

TBLASTX compares the six-frame translations of a nucleotide
query sequence against the six-frame translations of a
nucleotide sequence database

Table 3.5: The BLAST Family Programs

�

� � �
17

locally maximal
segment pair

� �
maximal segment pair

(MSP)

Threshold Score S2=19

Query
Sequence Q

Database
Sequence

high scoring segment pair
(HSP)

Alignment
Score

21

Alignment
Score

24

Alignment
Score

� � �

� � �

Figure 3.6: BLAST terms

39

SLAALLNKCKT ACDEQRLVNQWIKQPLMDKNRIEERLNLVEA

TLASVLDVTVT gCDESRMLKRWL gCnERDTRVLLERQQTICA

Query:

Database sequence:

Locally maximal
segment pairs

22 2531 29Scores

Threshold score
S2=26MSP

HSP

Figure 3.7: An illustration of the BLAST search algorithm

we refer just to a large set of catalogued sequences. In other words, database for
us will be a collection of sequences and nothing more. BLAST first finds all the
database sequences that when compared with the query sequence Q contain HSPs
(locally maximal segment pairs with score over a threshold), then evaluates the
statistical significance of any matches that were found and finally reports only
those that satisfy a user-selectable threshold of significance E. The statistical sig-
nificance threshold E for reporting database sequence matches should be thought
as the upper bound on the expected frequency of chance occurrence of an HSP
within the context of the entire database search [35]. For the evaluation of the
statistical significance of the HSPs the algorithm uses the statistical method of
Karlin and Altschul [21, 22]. The score value that corresponds to the value of the
statistical significance of the threshold E represents the score at which a single
HSP would by itself satisfy the significance threshold E and is denoted by the
capital letter S. Figure 3.8 represents the BLAST strategy visually and as one
can notice, multiple HSPs can be detected between the query sequence Q and a
database sequence.

Before we start describing the steps of the algorithm, let us give a list of
the program’s inputs. We present only the parameters that are accepted by all
programs of BLAST family and characterize the algorithm itself. Thus, BLAST
take as inputs:

• A query sequence Q User’s query is accepted in FASTA format. However, the
BLAST web pages of NCBI also accept input sequences which are defined
by their NCBI Accession number, or their GI in GenBank.

• A database DB The user can select one of the existing databases found at ftp
sites of several institutes and laboratories, as they presented in subsection
3.4.1, or can use his own database. The sequences of the database must

40

located in a single text file and follow the FASTA format and before their
use they must be preprocessed using the suitable program.

• E The statistical significance threshold that must be satisfied by the matches
(HSPs) that were found in order the database sequences corresponding to
these matches are reported. It is a Real valued parameter having range
0 < E ≤ 1000 and default value 10.

• S The score at which a HSP would satisfy E. Its default value is calculated
from the value of E, either the default one or the user-defined one, if it has
not been set on the command line.

• E2 The The statistical significance threshold that must be satisfied by a
MSP to be considered a HSP. It should be thought as the expected number
of HSPs that will be found when comparing two sequences of the same
length. Its default value is 0.15.

• S2 The threshold score at which a MSP is defined as HSP. It should be
thought as the expected score for MSP between two sequences. Its default
value is calculated from the value of E2 if it has not been set on the command
line.

• W The length of the short words that are identified in the query sequence
Q that either match12 or satisfy some positive-valued threshold score T 13

when aligned with a word of the same length in a database sequence.

• T The word score threshold for generating all words of length W that yield
a score of at least T when aligned with some word of length W from the
query sequence Q.

• X The quantity by which the alignment score must fall off from its maximum
achieved value so as the extension stops. It is a positive integer and its
default value depends on the type of BLAST program.

Parameters related with sequence lengths and computed in purpose of ob-
taining more accurate statistical significance estimates:

• Y The effective length of the query sequence Q, measured in residues. Its
default value is the actual length of the query sequence.

• Z The effective length of the database, measured in residues. Its default
value is the actual length of the query sequence.

12in case of DNA sequences
13in case of protein sequences

41

More about how the effective lengths are computed and how the affect the
statistical significance of the matches can be found in the program’s manual
[35].

Parameters related with the output:

• H It regulates the display of a histogram of the expected frequency of chance
occurrence of the database matches found. In its default value, which is
zero, no histogram is displayed. On the contrary, if H is set to a non-zero
value then a histogram will be displayed.

• V The maximum number of databases sequences for which one-line descrip-
tions will be reported. Only positive values are valid and its default value
is 500.

• B The maximum number of database sequences for which high-scoring seg-
ment pairs will be reported. Only positive values are valid and its default
value is 250.

There tens of other parameters more of which are highly depended on the type
of program executed. We just refer two of them that are used by the blastn

program; the one that we study in this work. These are:

• M The score for a pair of matching residues. It must be a positive integer.

• N The penalty score for a pair of mismatching residues. It must be a
negative integer.

Let us now describe the steps of the algorithm in more detail. In order to find
locally maximal segment pairs the three following steps have to be executed:

1. Compilation of a word list using the query sequence Q only

2. Search for “hits” in the database according to the word list

3. Extension of the hits

Depending on what type of sequences are compared (DNA or protein) the par-
ticular steps of the algorithm have differences, as it is described in the following
lines. In the case of protein sequences the construction of the word list differs
from the case of DNA sequences. The other two steps are the same in either case
(protein or DNA).

42

Figure 3.8: An illustration of the BLAST search algorithm

43

A G T A C G T A G C T A G A C A A T G G C A T T

ATGGCATT
last

CGTAGCTA
5th

Figure 3.9: Word list generation for DNA sequence

First step: compilation of a word list In this first step a list of length-w
substrings of query sequence Q is generated. These length-w substrings are called
w-mers or words in BLAST. In the case of a DNA sequence, the list contains
all the contiguous substrings of length w of the query sequence Q. The length
of the word list depends on both the length of the sequence and the length w

of each substring (word). If L is the length of the sequence and w the length of
the substrings, then the generated word list will contain L − w + 1 words. So,
increasing w decreases the word list size and conversely decreasing w increases it.
The following example illustrates the word list computation of a DNA sequence
while Figure 3.10 presents the pseudo-code for it.

Example 10 Let

AGTACGTAGCTAGACAATGGCATT

be the query DNA sequence with length L = 24 and w = 8 the length of each
substring (word). The word list contains all the L − w + 1 = 24 − 8 + 1 = 17
contiguous substrings of length 8 with
AGTACGTA to be the first word,
GTACGTAG the second,
TACGTAGC the third etc. and
ATGGCATT the last one.
Figure 3.9 represents the whole procedure visually.

In the previous example, the value of parameter w was 8. This value is not
standard but it varies between 8 to 12 in case of DNA sequences. The default
value of w used by the program blastn that perform nucleotide comparisons
is 11. This means that in this case the program is restricted to find sequences
that share at least an 11-mer stretch of 100% identity with the query. Under
the random sequence model proposed by Karlin and Altschul [21], stretches of
11 consecutive matching residues are unlikely to occur merely by chance even
between only moderately diverged homologs. If better sensitivity is needed, one
should use a smaller value for w.

A more complex strategy14 is applied for the compilation of the word list
in case of protein sequences. In this case a threshold value t is set, a scoring

14The same idea is used in Myers’s sublinear matching method [28].

44

function WordList (query sequence Q, length w) {
if (Q is a DNA sequence) then

index=1;
while index ≤ length(Q)− w + 1 do

read the w next characters
store them as an entry to the list
index++;

end while

end if

}

Figure 3.10: Pseudo-code for the compilation of the word list

matrix is chosen and the value of w is set as before. In this case the value of
w is set to a lesser value than in case of DNA sequences. In particular, w is
set to 3 or 4 for proteins sequences. Its default value is 3 for the programs that
perform amino acid comparisons (blastp, blastx, tblastn and tblastx). Let
us now describe the way the word list is generated for protein sequences. For each
w-length substring a in query sequence Q, all possible w-length strings b of the
alphabet Σamino are constructed. Each of them is aligned to current substring a

and its similarity score is computed. A chosen scoring matrix is utilized for the
computation of the similarity score. If the score is at least t, then the string b is
included in the word list, otherwise it is excluded and we go on with the next.
At the end, the word list contains all the w-length words from alphabet Σamino

whose alignment score with a is greater than or equal to threshold t. This step is
repeated for each w-length word of the query. The final word list is the union of
all word lists corresponding to w-length words. The following example illustrates
the whole procedure.

Example 11 Let Q be the protein query sequence

KNRIERACDEKQPLMD

with length L = 16 and w = 4 the length of each word. We also set the threshold t

to be 17 and the scoring matrix we use is PAM12015. For each 4-length substring
of Q, we construct the words that align to the current 4-length substring with an
alignment score above 17.

Let us consider ACDE, the 4-length substring of Q, which is located at the
seventh place of the protein sequence. The construction of the words can be done
either by directed substitutions of the letters or the exhaustive try of all the possi-
bilities. Since trying all the possibilities is slow, a more efficient way can be used

15PAM120 belongs to the family of PAM amino acid scoring matrices and is provided in the
BLAST software distribution.

45

K N R I E R A C D E K Q P L M DProtein Query Sequence:

Threshold score
t = 17

1st letter substitution

ACDE 22 (3+9+5+5)

Alignment score

iCDE 18 (-1+9+5+5)
vCDE 19 (0+9+5+5)
eCDE 19 (0+9+5+5)
dCDE 19 (0+9+5+5)
nCDE 19 (0+9+5+5)
tCDE 20 (1+9+5+5)
sCDE 20 (1+9+5+5)
pCDE 20 (1+9+5+5)
gCDE 20 (1+9+5+5)

mCDE 17 (-2+9+5+5)
kCDE 17 (-2+9+5+5)
qCDE 18 (-1+9+5+5)

etc...

3rd letter substitution in
combination with 1st

position : gCnE 17 (1+9+2+5)

etc...etc...

2nd letter substitution : AsDE 13 (3+0+5+5)

etc...

Neighborhood words

rejected

(PAM120)

query word

Figure 3.11: Word list generation for protein sequence

and this is the directed letter substitutions. According to this, we substitute each
character of w-length substring of Q to all acceptable amino acids, that result to
an alignment score above the threshold t. In order to save time in substitutions,
we must have the scoring matrix ordered in descendent order. If we do so, we
stop substituting the rest of amino acids whenever the alignment score falls below
the threshold. Since the matrix is ordered, the rest of the amino acids will re-
sult to a lower score. Having the substitutions of each character ordered, we now
construct the w-length string directed by the score of these in respect to thresh-
old 4. A portion of the word list for the substring ACDE is presented in Figure
3.11. Following the same way, similar lists are constructed for all the 4-length
substrings of the query sequence Q. The total word list consists of all the words
of these lists.

In this way, short words of length w are identified in the query sequence that
either match or satisfy some positive-valued threshold score t when aligned with
a word of the same length in the database sequence. The score threshold t is
referred to [10] as the neighborhood word score threshold and the list of words
generated as neighborhood. Let us now see how the neighborhood word score
threshold t influences the sensitivity and the speed of the algorithm. If the value
of t is low, the alignment score of the words is low, then more words are contained

46

in the list since the alignment score is low, thus the word list size is increased
and consequently the search needs more time to be completed hence the program
runs slower. On the other hand, the sensitivity of the search is improved since
there are more words in the list and consequently there are more candidates that
result in locally maximal segment pairs and HSPs. Conversely, increasing the
value of t decreases the word list size and the word hits number and finally the
likelihood of detecting HSPs but increases the speed of the algorithm. The value
of t that is used in applications is calculated at run-time from the composition
and the length of the query sequence and the scoring matrix employed on which
is highly depended. Experience tell us that for “best” values of w and t there are
typically about 50 words in the list for every residue in the query sequence.

More about the calculation of t for particular applications can be found in
[35], a detailed manual about BLAST and on the website of NCBI [1].

Second step: search the database for “hits” according to the word list
After the word list generation, the database sequences are searched for all the
exact occurrences of the words in the word list. Any word in the list found to be
located in a database sequence is called a “hit” and it is possible to be part of a
HSP between the query sequence and the database sequence that was found in.
Thus, these word hits act as seeds for initiating searches to find HSPs containing
them. In the BLAST programs the search for word hits is actually implemented
by the use of a deterministic finite state automaton (DFA) but an index can also
be used as it is also mentioned in the original paper for BLAST [10]. We recall
that this step is common in either case (DNA or protein) and describe these two
approaches.

Using a deterministic finite state automaton (DFA)
The DFA takes as input the database sequences and recognizes the words

of the word list. Such a DFA works as follows. It reads the characters of the
sequence and makes a proper transition according to the character that was read
and its current state. A state transition table has been calculated which tells
what state to go to based on the next character in the sequence. If a transition
lead us to a state that is a final state then a word has been recognized.

Using a hash table
In this case a hash table is constructed with as many entries as the number

of all possible words of w letters in either the alphabet ΣDNA or the alphabet
Σamino. In its ith entry this table contains a list of all the occurrences in the
query sequence of the ith word. Consequently, as we scan the database, each
database word leads us to the corresponding hits. Because the size of this hash
table is typically large, the original paper of BLAST [10] prefers to use the DFA
solution.

47

Third step: extension of the hits Once the database has been scanned and
the hits have been found, each one of the hits is extended to a locally maximal
segment pair. The extension of each hit is done in both directions along each
sequence and is terminated when the accumulated score of the hit under extension
stops increasing and falls a certain amount X below the maximum score achieved
for shorter extensions, or when the score goes to zero or below, or when we reach
the end of either sequence. The score of a hit may increase or decrease since the
scoring matrices include negative values so the score may go to zero or below. The
aforementioned strategy for the extensions has been followed in earlier versions of
BLAST [10] and it is also followed by us in this work. In more recent versions the
extensions are terminated as long as the score continues to increase. After the
end of the extension, the score of the (locally) maximal segment pair is checked
against a predefined cut-off score S2. If it is above S2, then it is a HSP. After
that the statistical significance evaluation of its score follows and only if the score
satisfies the user-selectable threshold E, the match is reported. In the following
lines we explain the extension procedure in more detail while the pseudocode for
it is presented in Figure 3.12.

After the hit has been found and the starting positions in both the query
sequence and the database sequence have been located, the first thing we compute
is the diagonal to which this hit belongs. The diagonal is defined as the difference
of the starting position x of the word in the database sequence and the starting
position y in the query sequence.

Example 12 As an example let us consider the word “ATT” that has been rec-
ognized to be part of the query sequence

11 . . .CATTGAGTTC. . . 20

starting at position 12 and part of the database sequence

131 . . .GGACATTAAC. . . 140

starting at position 135. In this case, the diagonal of this hit will be 135−12 = 123.

All words starting at positions x, y which have the same difference x− y of their
starting positions belong to the same diagonal. The diagonal and the position
where the hit extension ends in the query sequence are stored in an array. After
the computation of the diagonal, we search the data structure for an entry that
stores the same value with the one just computed. Finding one means that there
is at least one hit that has been extended previously and belongs to this specific
diagonal. Since, a locally maximal segment pair is typically much longer than a
single hit, it is likely that multiple hits have the same diagonal. It is also possible
that the starting position of a hit is part of another hit already extended. That is
why, after we have found that the hit under examination belongs to a diagonal for
which an extension has been done, we must compare the starting position of the

48

hit, that is about to be extended, to the ending position of the previous extended
hit for that diagonal. If the position of the hit under examination comes before the
other’s, meaning that the hit is part of the already extended one, it is rejected
and no extension takes place for that hit. If it does not, the extension starts
immediately and after its completion the position of the query sequence where
the extension ends, is saved overwriting the position of the previous extended hit
for this specific diagonal. If we had not found any entry of the data structure
which stores the same value of diagonal with the one just computed, we do start
the extension, but now, when the extension ends, we store a new entry to the
structure since there is no other for this diagonal. This entry stores the values
of the diagonal and the position at the query sequence where the extension ends.
When the extension comes to an end, the new locally maximal segment pair is
stored. Part of the information stored for an HSP contains:

• The score of the hit after the extension.

• The length of the extended hit.

• The position of the query sequence where the extension started.

• The position of the database sequence where the extension started.

• A pointer to the next entry.

Due to the consecutive words that may be hits, a HSP may include other
HSPs or may be included by other HSPs. Thus, when a new HSP is stored, we
search among the list of the existing HSPs looking for overlaps. If we do not find
one, we just add the current HSP in the list. If we find one or more overlaps, we
overwrite the first overlap with the new HSP and discard all the others from the
list. The discarded HSPs are saved in a different list.

Regarding the scoring schemes exploited to compute the similarity scores, in
the case of protein sequences the same scoring matrix that was utilized in word
list generation is utilized again. As for the case of DNA sequences, the scoring
scheme that is commonly used is depicted in Table 3.6 and gives a positive value
to matches and a negative one to mismatches. This table has been set to be the
default one for the application program blastn while BLOSUM62 matrix is the
default for the application programs that compare protein sequences (blastp,
blastx, tblastn, tblastx).

Let us now see how the speed and the sensitivity of the algorithm are af-
fected when the parameter X varies. We remind the reader that it represents the
maximum decay of the alignment score under which the extension of a hit stops.
Increasing X, results to lower alignment scores for the segment pairs increasing
the number of MSPs that are detected so the possibility an HSP to be overlooked
decreases. But consequently, the run time of the algorithm also increases since

49

A T G C
A 5 -4 -4 -4
T -4 5 -4 -4
G -4 -4 5 -4
C -4 -4 -4 5

Table 3.6: Similarity matrix

now the extensions take more time to stop. On the contrary there is no or little
variation to the sensitivity of the algorithm.

We now give details and present the relation between the parameters E,S,E2,S2

of the algorithm. We remind to the reader that E is the statistical significance
threshold for reporting the sequence matches while S is the score of an HSP which
satisfies the statistical significance threshold E. Respectively, S2 is the thresh-
old score at which a MSP is considered to be a HSP while E2 is the statistical
significance threshold that must be satisfied by a MSP to be considered a HSP.
In both cases, the statistical significance E or E2 that corresponds to the score
S or S2 is calculated according to the method proposed by Karlin and Altschul
[21, 41] and it is given by the equation

E = KNe−λS (3.2)

where E is the statistical significance of either a HSP or a MSP having score S; K

and λ are Karlin-Altschul parameters; N is the product of the query and database
sequence lengths. More details can be found at BLAST manual [35]. S and E are
both another measure of how sensitive a BLAST search is. If a search is sensitive,
even the less significant HSPs will be reported, these that have higher probability
of chance occurrence. Since the lower statistical significance HSPs correspond to
low values for S, a sensitive search supposes low values for S. Conversely, an
insensitive search make use of high value for S. If a search is insensitive then
only the highly significant HSPs are reported.

3.5 Summary

In this chapter we presented some basic ideas of computational biology and we
concentrated on presenting the most basic operation, sequence comparison. We
presented definitions and algorithms while we focused on the algorithm of most
popular program’s family of searching similarities in genomic databases.

In the next chapter we present, implement and evaluate an algorithm for the
second part of algorithm presented in Section 3.4.2 of Chapter 3.

50

function HitExtension (HitList hit) {
for each hit do

diag = computediagonal(hit);
if (diag exists) then

if (diag.ending position ≤ hit.starting position)then

do extension();
diag.ending position = ending position;
SaveHSP();

end if

else

return, no extension takes place;
end if

else

do extension();
diag.ending position = ending position;
SaveHSP();

end else

end for

}

function do extension (Distance X, database sequence DBs, query sequence Q) {
for both directions do

while (we have not reach the end of either of the sequences) do

ch1 = read the next character ∈ DBs

ch2 = read the next character ∈ Q

if (ch1 != ch2) then

current-score = computescore(ch1,ch2);
if (current-score ≥ X) then

continue;
else

break;
end if

current-score = computescore(ch1,ch2);
if (current-score > 0) then

Score = Score + current-score;
current-score = 0;
update the starting position and the ending position

end if

end while

end for

}

Figure 3.12: Pseudo-code for the hit extension

51

Chapter 4

Trading Space for Time in
BLAST

After Chapter 3 where fundamental biological concepts were introduced and the
most popular sequence comparison algorithms were presented, in this chapter we
propose a variation of BLAST algorithm which can also be used in an Information
Alert scenario, as it is discussed in Section 4.4.

4.1 Introduction

In Section 3.4.2 we studied in detail the most popular similarity search algorithm
in molecular biology, BLAST. In this chapter we propose a variation of it. We
were motivated by the use of indexing methods to reduce the running time of the
algorithm while accepting an increase in the memory usage.

As we discussed in Section 3.4.2, the BLAST algorithm is divided in three
distinct steps. We adopt the algorithmic idea of the first and third step, that
is the compiling of the word list and the extension of the hits, while we modify
the algorithm of the second step, the way of finding the words’ exact matches, in
order to apply it to our requirements. Now we explain how our proposal differs
from the BLAST algorithm. In both cases we have a query sequence Q that must
be compared against a set of sequences S. According to BLAST, Q is compared
to each sequence separately, meaning that each one of the three steps of BLAST
are applied sequentially. On the other hand, in our case, the first step is applied
to all sequences of S beforehand. Thus, the second step, the word matching, is
executed for the query sequence Q and all the sequences of the set S and not
for one by one sequence of S. The third step, the extension, takes place after the
end of the second one and is executed sequentially as before except if we make
use of parallel processing. In other words, we organize the word lists of all the
sequences of set S in such a way so as to find efficiently the matches between all
of them and the query sequence Q.

52

In the rest of the chapter, we present our proposed method, giving details
about the data structures and the algorithm, the experimental evaluation of it
and finally we discuss how our algorithm could be used in an Information Alert
scenario.

4.2 The Method SeedsIndex

4.2.1 Description

The strategy of SeedsIndex method is the preprocessing of a database of se-
quences, so as when the query sequence comes, the search will not be time con-
suming. The method’s preprocessing utilizes an index over the word lists of the
database sequences and not over the word list of the query sequence, as a brute
force method would do. When the query sequence comes, its own word list is
compiled. There is no need for storage space for this, since the matching process
starts as soon as each word is generated. During the matching process, as it is
presented in Figure 4.4, a Hash Table (HT) is probed for all the words of the
query sequence one by one. If the slot of HT is empty, then we do not have a
match, meaning that this word is not contained in any of the database sequences,
otherwise, we have a match. In case of a match, the location of the word in the
query sequence is saved in an auxiliary structure attached to the HT. When the
matching procedure is over, the extension of the hits takes place. The exten-
sion algorithm is identical to the one that is used by the first version of blastn
and was presented in Figure 3.12. All the aforementioned data structures are
described in detail in the following paragraphs.

4.2.2 Database Sequences Data Structures

To facilitate the matching process, SeedsIndex uses a hash table (HT) to store the
compiled words of all the database sequences. This hash table uses words as keys
and its size is constant and equal to the number of all possible words of w letters.
Thus, the hash table will have either 4w entries for DNA sequences1 or 20w entries
for protein sequences2, w is the length of the compiled words. The usual value of
w varies between 8 to 12 for nucleotides and between 3 to 4 for amino acids, thus
the hash table will have up to 412 (412=67, 108, 864) entries or 204(=160, 000)
depending on the type of sequence. The slots of HT can be either empty or point
to a linked list depending on the existence of the words in the word lists of the
database sequences. This linked list, called PSL (ProfileSequenceLocations) list,

1There are 4 different options since we have 4 kinds of nucleotides.
2There are 20 different options since we have 20 kinds of amino acids which construct the

proteins.

53

saves the locations of the word in the sequence for each database sequence. A
detailed description of it follows in the next paragraphs.

The hash function, we use, assigns a unique number to each entry. We describe
such a function assuming that we have a DNA sequence. In this case, we assume
that each one of the 4 nucleotides (A,C,T,G) corresponds to a number from 0 to
3. We also assume that w = 4 and a1a2a3a4 is a word of the word list. Then, the
hash function is given by the following equation:

f ′(v1, v2, v3, v4) = [(v1 · 4 + v2) · 4 + v3] · 4 + v4 (4.1)

where v1, v2, v3, v4 is the assigned number to each letter. This hash function
constructs a number by shifting the 2 bits of the number, corresponding to each
letter, to the left and adding the next one until the number of 2w bits is formed.
This number corresponds to an entry of the hash table; it is actually the index of
the hash table. Consequently, that hash function assigns each word to a distinct
entry of the hash table, meaning that we have one to one correspondence. An
example that illustrates the use of the hash function and the hash table follows.

Example 13 Let us assume that we have the following DNA sequence:

CCCTAACGTACCTTGGAA

We compile the word list of this sequence and calculate the hash value of each
word in the word list, according to the pre-described hash function. The hash
function corresponds each nucleotide to an integer from 0 to 3. In the example,
we assume that A corresponds to 0, C to 1, G to 2 and T to 3. We also consider
that word length is 3. The word list and the calculated hash values according to
equation 4.1 are shown in Table 4.1. The hash table for this sequence is shown
in Figure 4.1. All the words of the word list are stored in the entries of the hash
table that are indicated by their hash value. For instance, the fifth word of the
word list AAC has hash value 1 and it is found at the entry of the hash table
that has index 1. Each slot points to a linked list where the locations of the words
in the sequence are stored. So, the AAC word starts at location 5 of the query
sequence while the word CCT is found twice in the sequence in locations 2 and
11. Thus, the list for them has two elements.

As it is described in Section 4.2.1, in case of a match, the location of the
matched word of the query sequence is saved in an auxiliary structure attached
to the HT. This data structure is a linked list, called NSL (NewSequenceLoca-
tions)list. A detailed description of it follows in the next paragraphs.

The PSL and NSL lists

Given a word w
′

of the word lists of the database sequences, the element of PSL
list saves:

54

position word corresponding ints hash value
1 CCC 1 1 1 21
2 CCT 1 1 3 23
3 CTA 1 3 0 28
4 TAA 3 0 0 48
5 AAC 0 0 1 1
6 ACG 0 1 2 6
7 CGT 1 2 3 27
8 GTA 2 3 0 44
9 TAC 3 0 1 49
10 ACC 0 1 1 5
11 CCT 1 1 3 23
12 CTT 1 3 3 31
13 TTG 3 3 2 62
14 TGG 3 2 2 58
15 GGA 2 2 0 40
16 GAA 2 0 0 32

Table 4.1: Calculation of the hash values for the DNA sequence CCCTAACG-
TACCTTGGAA

Hash Table

0

1

2

23

63

AAA

AAC

AAG

TTT

CCT

5

2 11

Positions of word CCT
in new sequence

Position of word AAC
in new sequence

Figure 4.1: The Hash Table for the Brute Force algorithm of the example

55

1. the number of the database sequence to which word w
′

belongs

2. a list of all the locations in the database sequence where word w
′

is located,
because the same word may appear multiple times in a sequence.

Each element of PSL list saves the locations for a specified database sequence. So,
the PSL list will have as many elements as the number of the database sequences
to which the word appears. Moreover, each slot of HT points to a PSL list if and
only if the correspondent to that slot word belongs to one or more word lists. For
example, if a word appears in four different database sequences in six different
locations in the three first sequences and in just one location in the fourth, then
the PSL list will have 4 nodes, one for each database sequence. The three nodes
will have a list of six nodes for the six locations of the word in the sequences
while the last one will have a list of one node.

The element of NSL list saves:

1. all the locations in the query sequence where word w
′

is located.

So, the NSL list will have as many elements as the number of locations where the
word appears in the query sequence.

Now, we give some details about the insertion of a new node for each of the two
lists. Because PSL list is an auxiliary data structure of the HT, its construction
is part of the HT’s construction. Figure 4.3 presents the pseudo-code for both
the construction of the hash Table HT and the PSL lists. For each word in the
word list of each database sequence, a node of PSL list is inserted or an existing
one is updated storing the new location. According to the pseudo-code, the word
list of each database sequence is built and then the HT is probed for each word
of the list. If the word, let us say, w is found in the HT, then the function
UpdatePSLlist() is called. Finding the word w in HT means that w is either part
to more than one sequence or appears to the same sequence more than once. The
function UpdatePSLlist() checks the PSL list to find if a node for that database
sequence has already been saved. Finding one means that word w is located more
than once in that database sequence. In this case, a new node is inserted to the
list that saves the locations. Finding no node for that database sequence in the
PSL list means that word w belongs to some of the previous sequences except the
current one. In this case, a new node of PSL list is created and inserted to the
list. If the word w is not found in the HT, then the function InsertNewPSLNode()
is called. Not finding the word w in HT means that w does not belong to any
of the previous examined sequences, so there is not a PSL list linked to that slot
of HT. In this case, function InsertNewPSLNode() creates the first node of the
PSL list and links the list to the HT slot. Thus, if a slot of HT does not point
to any structure, then we infer that the word that corresponds to that slot does
not belong to any database sequence.

The NSL list is constructed during the matching process as it is shown in the
pseudo-code of the matching process presented by Figure 4.4. The HT is probed

56

P1

2 11NSL

PSL

4 5

P2

10

8 91

P2

1

P1

AAA

AAC

AAG

TTT

CCT

Hash Table

1

2

23

63

0

PSL

PSL

Figure 4.2: The Hash Table for the SeedsIndex algorithm

for each word of the word list of the query sequence . If the word is found, we
have a match and function InsertNewNSLNode() is called. This function creates
and inserts a new node to the NSL list that stores the words’ locations in the
query sequence. Thus, there is no need to use a separate data structure that
will store the information of the matches, since these are stored in the NSL list.
When the execution of the matching procedure finishes, some of the slots of HT
will point to both lists. The words that correspond to that slots are the matched
ones. Having stored all the information needed for the next step of the algorithm
in the PSL and NSL lists we are ready to go on with the execution of it.

4.2.3 An Example

Now that we have described the data structures, an example that illustrates how
the SeedsIndex proceeds follows. Let us assume that we have the three following
DNA sequences:

• p1: TTTCCTGGTCCTA

• p2: AAATCCTAAAAC

• Q : CCCTAACGTACCTTGGAA

The first two sequences are database sequences with database identifiers p1 and
p2, respectively. The third one is our query sequence Q.

According to SeedsIndex method, we create a hash table for the database
sequences. For both sequences we compile their word list and calculate the hash
value of each word in the word list, according to the pre-described hash function

57

function constructHT (number of database sequences num) {
for each database sequence q do

wordlist = BuildWordList(w)
for each word w ∈ wordlist do

probe HT with w
if found then

UpdatePSLlist(w, location)
else

InsertNewPSLNode(w, location)
end if

end for

end for

}

Figure 4.3: Pseudo-code for the construction of the HT in SeedsIndex method

function Match (query sequence Q, hash table HT) {
for each word w ∈ word list(Q) do

probe HT with w
if found then

InserNewNSLNode(location, w)
end if

end for

}

Figure 4.4: Pseudo-code for the matching process in SeedsIndex method

position word correspondent ints hash value
1 TTT 3 3 3 63
2 TTC 3 3 1 61
3 TCC 3 1 1 53
4 CCT 1 1 3 23
5 CTG 1 3 2 30
6 TGG 3 2 2 58
7 GGT 2 2 3 43
8 GTC 2 3 1 45
9 TCC 3 1 1 53
10 CCT 1 1 3 23
11 CTA 1 3 0 28

Table 4.2: Calculation of the hash values for database sequence with database
identifier p1

58

position word correspondent ints hash value
1 AAA 0 0 0 0
2 AAT 0 0 3 3
3 ATC 0 3 1 13
4 TCC 3 1 1 53
5 CCT 1 1 3 23
6 CTA 1 3 0 28
7 TAA 3 0 0 12
8 AAA 0 0 0 0
9 AAA 0 0 0 0
10 AAC 0 0 1 1

Table 4.3: Calculation of the hash values for database sequence with database
identifier p2

4.1. As in example 13, we consider that each word has 3 letters. The word lists
of each sequence and the calculated hash values are shown in Table 4.2 and Table
4.3. After we have calculated the hash value of each word of the word list, as
described above, we create the hash table. The hash table of our example is shown
in Figure 4.2. For each word in the word lists of the two database sequences, we
store the database id and the position of each one to the correspondent entry of
the hash table. For example, we consider the first word of the word list of the
first sequence, the TTT. This has the hash value 63. This means that we store its
position and the database identifier in the sixty third entry of the hash table. As
it is shown in Figure 4.2 a node of PSL list stores the database identifier p1 and
a list storing the position of TTT in the p1 sequence, in the example the position
1. It is possible the same word to appear more than once in the sequence, as
the word TCC does. It appears in positions 3 and 9 of the first sequence. In such
a case, we store both positions in a list of the same PSL node. Such a case is
the word AAA in the hash table. It is located in positions 1, 8 and 9 of the p2

sequence. Moreover, if we have many database sequences, then it is likelihood
the same word to belong to more than one database sequences or to all of them,
as the word CCT does. It is a member of two word lists. In such a case, we store
all the database identifiers and the correspondent positions in separate nodes of
PSL list as it is shown in Figure 4.2.

After we have constructed the hash table and whenever the query sequence
comes, we are ready to search which words of the word list of the query sequence
Q are also words of the database sequences. The word list of the query sequence is
presented in Table 4.1. As each word of the query sequence is generated, we access
the correspondent entry of the hash table that is indicated by the hash value of
that word. For example generating the second word for the query sequence, that
is the word CCT, it corresponds to hash value 23, we access the twenty-third entry

59

of the hash table and read that this word belongs to the sequences with database
identifiers p1 and p2 and it is located to the fourth and tenth position of the first
sequence and to the fifth position of the second sequence. So, the position of
this word is added to the NSL list and will be examined by the third step of the
algorithm. Thus as it is also presented by Figure 4.2, the NSl list corresponding
to CCT word has two nodes storing 2 and 11 meaning that these are the two
positions of the query sequence where the CCT is located.

4.3 Experimental Evaluation

Having presented our algorithm, we now move to the experiment evaluation and
the comparison to the original BLAST algorithm.

4.3.1 Settings

The algorithm described in Section 4.2 was implemented in C, and all the exper-
iments were run on a PC, with a Pentium III 1.7GHz processor, with 1GB RAM,
running Linux. The time shown in the graphs is elapsed time in milliseconds and
no other processes were run on the PC during the experiments. For each of our
conducted experiments we followed a standard procedure described below.

We considered the case of DNA sequences and we implemented our algorithm
and the other two steps of BLAST algorithm, as they described in Section 3.4.2, to
handle DNA sequences. Thus, we made ourselves familiar with the source code of
the blastn program, the one of the BLAST family’s programs that handles DNA
sequences exclusively. For the comparison of our method against the second step
of the original BLAST algorithm we used the 1.4 Version of blastn belonging to
the WU-BLAST of Washington University. We downloaded the source code of
the 1.4 version and properly modified it being able to calculate the running time
of the second step of the algorithm.

The data that we used to conduct our experiments were real genomic DNA
sequences. We selected the Fugu cDNA database that contains 47036 sequences
to be used as the long standing queries. For the query sequences we made use of
the 100 EST sequences of seabream that were produced by Mr. Bargelloni for the
purposes of the European project Bridgemap3. The fugu cDNA sequences are
saved in a single text file in FASTA format while the EST sequences of seabream
are saved in separate text files following the same FASTA format.

Having decided on these, we populate the data structures of the algorithm,
load the query sequence into main memory and run each algorithm. All the
experiments are run five times and the results are averaged to eliminate any
fluctuations in the time measurements. Note that when we refer to the matching
time of a query sequence against a database of sequences we mean only the time

3http://www.bridgemap.tuc.gr

60

needed by the algorithm to discover which words of the query sequence are also
words of the database sequences. This time does not include the time needed to
upload the sequences from the secondary storage to the main memory, or the time
to construct the index for the database sequences. Moreover, when we refer to
the memory usage of the algorithms we mean the memory space needed by each
algorithm to discover which words of the query sequence are also words of the
database sequences. For our algorithm this memory space includes the memory
needed for the construction of the hash table and the other data structures. For
the BLAST algorithm this memory space equals to the memory consumed by the
automaton.

4.3.2 Varying The Number Of Long Standing Queries

We evaluated our algorithm under different number of database sequences mea-
suring the first time the memory usage and the second time the matching time
for both algorithms. The experiments were carried out using up to 47036 se-
quences from the cDNA library as the long standing queries and some of the 100
sequences as the query ones.

Matching Time

As we can see in Figure 4.5 both algorithms are linear to the number of database
sequences, however SeedsIndex seems to be faster. Due to the use of an index
structure for all the words of the database sequences, we observe that the time for
the matching procedure, the second step of BLAST, is reduced to a considerable
quantity and does not exceed 1 millisecond. We also observe that SeedsIndex
seems to be independent to the number of the database sequences. This happens
because as the number of database sequences increases, the total number of words
also increases but the number of the distinct words remains constant since their
number is finite.

Memory Usage

The main objective of this experiment was to compare the two algorithms, our
SeedsIndex algorithm and the original BLAST algorithm, in terms of memory
usage and make up our minds which of two is finally worth of using. The exper-
iment was carried out with the same kind and number of data as the previous
experiment.

In Figure 4.6, we can see that both algorithms are linear to the number of
database sequences with the original BLAST algorithm to make use of consid-
erably less quantity of memory space and to be independent to the number of
database sequences. This is because the only memory space it needs is the one

61

Matching Time

0

200

400

600

800

1000

0 10000 20000 30000 40000 50000

Num of long standing queries

T
im

e
(m

s)

Blast

SIndex

Figure 4.5: Effect of the number of long standing queries in matching time

for the construction of the automaton. We remind, at this point, that the algo-
rithm constructs the automaton that recognizes the words of the query sequence.
Because the construction of the automaton happens while reading the query se-
quence, it does not need extra memory space to save the word list of the query
sequence. The needed memory space for the automaton depends on the size of
the automaton which, in turn, depends on the size of the word list, which as we
described in 3.4.2 depends on the word size w. Moreover it is highly depended on
the sequence composition. If the same nucleotides are sequentially repeated, we
end up with multiple appearances of the same word in different positions, so the
size of the automaton is smaller. As for the SeedsIndex algorithm, it needs con-
siderably more memory space than the BLAST algorithm due to the construction
of the hash table and all the appropriate data structures, described in subsec-
tion 4.2.2. We must observe that as the number of database sequences increases,
due the constant size of hash table only the secondary data structures, that save
information about the words, are populated. Thus, as the number of database
sequences increases the memory space needed decreases since the secondary data
structures make use of less memory space.

SeedsIndex vs original BLAST

Comparing the results of the two experiments, we conclude that if time is in
great importance we have to use more memory space and follow the algorithmic
approach of SeedsIndex. On the other hand if we are not concerned about time,
then the original BLAST algorithm is the best choice since it spends less mem-
ory. If we think that nowadays memory space is quite cheap to be bought, our
approach of SeedsIndex seems to be useful.

62

Memory Usage

0
50

100
150
200
250
300
350
400

0 10000 20000 30000 40000 50000

Num of long standing queries

M
em

o
ry

 s
p

ac
e

(M
B

s)

SIndex
Blast

Figure 4.6: Memory usage for the two algorithms during the matching procedure

4.4 Using SeedsIndex in an Information Alert

Scenario

Now that we have finished describing our proposed algorithm, we describe a whole
information alert scenario where our algorithm could also be used.

Let us assume that a geneticist studies the genome of an organism. After he
has cloned and sequenced the DNA of that organism, he has tens of sequences
representing segments of the whole genome of the organism. His purpose is to
identify the functionality of these sequences and locate their physical positions
on the genome. That’s why before anything else, he compares these sequences
to public genomic databases looking for others with similarities and identified
functionality. If the search results to great similarity with sequences of already
studied organisms, then precious information can be extracted for the under study
organism. If it does not, it is likely that the non informative search of today
might be informative in the near future, due to the great amount of sequences
that become publicly available almost every week. Consequently, it is crucial for
the geneticist to be informed of anything new that concerns his study. Under
an information alert scenario, the researcher will be alerted as soon as a new
sequence becomes known and only if the comparison against his set of sequences
results in a satisfying similarity. The similarity that is satisfying can be different
for each sequence and is determined by him. Concluding, the user will be alerted
if and only if a higher percentage of similarity than the given one comes up, even
for just one of the sequences.

An information alert scenario can be implemented through a system, the
graphical representation of which is shown in Figure 1.1. We remind that each
user will submit a profile to the system setting his preferences and requirements.

63

In our case, this profile will contain the set of sequences and the minimum sim-
ilarity percentage that satisfies the user’s criteria for each of them. Moreover,
because we search for similarity among sequences, we can use the SeedsIndex al-
gorithm 4.2 as the search algorithm. In such a case the database sequences will
correspond to the set sequences of all of users’ profiles while the query sequence
will correspond to any new incoming sequence that becomes known to the system.

4.5 Summary

In this chapter we have presented in detail the main memory algorithm SeedsIn-
dex. We have also evaluated this algorithm experimentally using real genomic
data and compared to the original BLAST algorithm. Finally, we described an
information alert scenario where SeedsIndex could be used.

64

Chapter 5

Implementation of BioAlert, an
Information Alert System

After the previous chapter and the discussion of our proposed algorithm for se-
quence comparison, we continue with this chapter where we present an alert
system specialized to be used by biologists. As we discussed in Chapter 1, biolo-
gists have to cope with the problem of the great quantity of information available
and the problem of being informed of that new information, something that is
crucial for their research. An alert system focused on biologists’ needs can be
a good solution to these problems. Thus, we implemented such a system which
was named BioAlert and is part of the European genomic project Bridgemap [2].

In the first part of this chapter we present the data model and the query
language which was defined for that system. The second part is dedicated to the
system itself, presenting a detailed description of its implementation.

We must note that in the following sections we make use of the terms document
and profile1 as they are used in the system DIAS discussed in Section 2.1.2. These
terms correspond to Swiss-Prot entries and user preferences respectively.

5.1 Data Model and Query language

In this section we present the data model and the query language for our system
following the formal approach of [12, 23, 25]. This data model is based on free
text and on attributes or fields with finite-length strings as values. Formally,
the meaning of free text is captured by the concepts of text value and sequence
value which are defined. The query language is based on the Boolean model of
Information Retrieval (IR) and it offers the comparison operators “contains” and
“similar” on the attribute values.

1The term query can also be used because in an information alert setting, a profile is simply
a long-standing query. Thus, in this chapter we will use these terms interchangeably.

65

5.1.1 Syntax

We assume that we have a finite alphabet Σ. A word is a finite non-empty sequence
of letters from Σ. We also assume the existence of an infinite set of words called
the vocabulary and denoted by V .

Definition 12 A text value s of length n over vocabulary V is a total function
s : {1, 2, . . . , n} → V.

In other words, a text value s is a finite sequence of words drawn from the
vocabulary V . For each text value s, s(i) denotes the i-th element of s while its
length (i.e., its number of words) will be denoted by |s|. Text values can be used
to represent finite-length strings consisting of words separated by blanks.

Example 14 In all the examples, our vocabulary will be the vocabulary of the
English language. The string

The human genome almost is complete

can be represented by a text value s of length 6 over the English vocabulary with
s(1) = The, s(2) = human etc. The text value “human genome” is included in
s.

In order to define the concept of sequence value, we assume the existence of
the alphabet Σamino, a finite set of twenty letters representing the twenty amino
acids found in proteins, as it is shown in Table 3.2.

Definition 13 A sequence value s of length n over alphabet Σamino is a total
function s: {1,2,...,n}→ Σamino.

In other words, a sequence value is an ordered succession of characters drawn
from an alphabet Σamino. For each sequence value s, s(i) denotes the i-th charac-
ter of s while its length will be denoted by |s|. If the length of a sequence value
is 0, then we say that we have an empty sequence value that will be denoted by
ε.

Example 15 The succession of amino acids

GDVEKGKKIFVQKCAQCHTV

is a sequence value of length 20.

Let us assume that we have a finite set of attributes called the attribute
universe, which will be denoted by A. In our case the attributes will come from
the namespaces of biological applications. Specifically, they will come from the
attributes of the entries of Swiss-Prot database. In Section 2.2.1 a representative
entry of Swiss-Prot was discussed.

66

For our queries we use two types of operators. The first one is the contains
operator. It is denoted by the symbol w and is applied to text values. A formula
that uses the contains operator is an expression of the form A w s, where A is an
attribute and s is a text value. The second operator is the operator of similarity,
that will be denoted by the symbol ∼. A similarity formula is an expression of
the form A ∼ t, where A is an attribute and t is a sequence. The similarity
operator is used to capture the concept of similarity between the sequences as it
is defined in Section 3.1 of Chapter 3.

A document d is a set of attribute-value pairs (A, t) where A ∈ A, t is either a
text value over V or a sequence value over Σamino, and all attributes are distinct.
In our case a document will be an entry of the Swiss-Prot database.

Example 16 An example of a document is presented in Figure 5.1.

A query is a conjunction of the form

A1 w s1 ∧ . . . ∧ An w sn ∧ An+1 ∼ t

where each Ai ∈ A, each si is a text value, each t is a sequence value and w, ∼
are the contains and similarity operators respectively.

Example 17 The following formula is a query:

ORGANISM CLASIFICATION w “Bacteria; ” ∧

DESCRIPTION w “Trypsin− like protease precursor” ∧

SEQUENCE DATA ∼ “MLTV TTLV QL MKRTLAV GAV ALAAV SLQPG

TATAGPAPVV GGTRAAQGEF PFMVRLSMGC

GGALYTQQIV LTAAHCVSGS GNNTSITATA

GVVDLNSSSA IKVKSTKVLQ APGYNGKGKD

WALIKLAKPI NLPTLKIADT KAYDNGTFTV

AGWGAAREGG GQQRYLLKAN VPFVSDASCQ

SSYGSDLVPS EEICAGLPQG GVDTCQGDSG

GPMFRRDNNN AWIQVGIVSW GEGCARPNYP

GVYTEVSTFA AAIKSAAAGM”

A second one is:

Species w “Homo sapiens; ” ∧

Description w “Trypsin− like protease precursor”.

67

ID TRYP_STREX STANDARD; PRT; 260 AA.
AC P80420; Q6U1K3;
DT 01-NOV-1995 (Rel. 32, Created)
DT 01-OCT-2004 (Rel. 45, Last sequence update)
DT 01-OCT-2004 (Rel. 45, Last annotation update)
DE Trypsin-like protease precursor (EC 3.4.21.-).
GN Name=tlp;
OS Streptomyces exfoliatus (Streptomyces hydrogenans).
OC Bacteria; Actinobacteria; Actinobacteridae; Actinomycetales;
OC Streptomycineae; Streptomycetaceae; Streptomyces.
OX NCBI_TaxID=1905;
RN [1]
RP SEQUENCE FROM N.A.
RC STRAIN=SMF13;
RA Lee D.H., Kim Y.-H., Kim I.S., Lee K.J.;
RT "Role of trypsin-like protease on morphological differentiation of
RT Streptomyces exfoliatus SMF13.";
RL Submitted (SEP-2003) to the EMBL/GenBank/DDBJ databases.
RN [2]
RP SEQUENCE OF 39-58.
RC STRAIN=SMF13;
RX MEDLINE=95291424; PubMed=7773379;
RA Kim I.S., Lee K.J.;
RT "Physiological roles of leupeptin and extracellular proteases in
RT mycelium development of Streptomyces exfoliatus SMF13.";
RL Microbiology 141:1017-1025(1995).
CC -!- FUNCTION: Involved in mycelium differentiation.
CC -!- SIMILARITY: Belongs to peptidase family S1.
CC --
CC This SWISS-PROT entry is copyright. It is produced through a collaboration
CC between the Swiss Institute of Bioinformatics and the EMBL outstation -
CC the European Bioinformatics Institute. There are no restrictions on its
CC use by non-profit institutions as long as its content is in no way
CC modified and this statement is not removed. Usage by and for commercial
CC entities requires a license agreement (See http://www.isb-sib.ch/announce/
CC or send an email to license@isb-sib.ch).
CC --
DR EMBL; AY380806; AAQ88430.1; -.
DR MEROPS; S01.101; -.
DR InterPro; IPR001254; Peptidase_S1.
DR PROSITE; PS50240; TRYPSIN_DOM; 1.
DR PROSITE; PS00134; TRYPSIN_HIS; 1.
DR PROSITE; PS00135; TRYPSIN_SER; 1.
KW Direct protein sequencing; Hydrolase; Serine protease; Signal;
KW Zymogen.
FT SIGNAL 1 34 Potential.
FT PROPEP 35 38 Activation peptide.
FT CHAIN 39 260 Trypsin-like protease.
FT ACT_SITE 75 75 Charge relay system (By similarity).
FT ACT_SITE 120 120 Charge relay system (By similarity).
FT ACT_SITE 209 209 Charge relay system (By similarity).
FT DISULFID 60 76 By similarity.
FT DISULFID 179 194 By similarity.
FT DISULFID 205 234 By similarity.
FT CONFLICT 39 39 V -> R (in Ref. 2).
FT CONFLICT 49 49 E -> N (in Ref. 2).
FT CONFLICT 53 54 MV -> QQ (in Ref. 2).
SQ SEQUENCE 260 AA; 26593 MW; 9B56032D44F8490B CRC64;
 MLTVTTLVQL MKRTLAVGAV ALAAVSLQPG TATAGPAPVV GGTRAAQGEF PFMVRLSMGC
 GGALYTQQIV LTAAHCVSGS GNNTSITATA GVVDLNSSSA IKVKSTKVLQ APGYNGKGKD
 WALIKLAKPI NLPTLKIADT KAYDNGTFTV AGWGAAREGG GQQRYLLKAN VPFVSDASCQ
 SSYGSDLVPS EEICAGLPQG GVDTCQGDSG GPMFRRDNNN AWIQVGIVSW GEGCARPNYP
 GVYTEVSTFA AAIKSAAAGM
//

Figure 5.1: A document in the Swiss-Prot style

68

5.1.2 Semantics

Let us now define the semantics of the above query language in our setting. We
start by defining when a document satisfies a query.

Definition 14 Let D be a document schema, d a document over D and φ a
query over D. The concept of document d satisfying query φ (denoted by d |= φ)
is defined as follows:

1. If φ is of the form A w s then d |= φ iff there exists a pair (A,V) ∈ d and
s is contained in V.

2. If φ is of the form A ∼ t
′

then d |= φ iff there exists a pair (A, t) ∈ d and
the the global of t and t

′

as computed by the BLAST algorithm is greater
than 0.

3. If φ is of the form ¬φ1 then d |= φ iff d 6|= φ1.

4. If φ is of the form φ1 ∧ φ2 then d |= φ iff d |= φ1 and d |= φ2.

5. If φ is of the form φ1 ∨ φ2 then d |= φ iff d |= φ1 or d |= φ2.

Example 18 The first query of Example 17 is satisfied by the document of Ex-
ample 16 while the second one is not satisfied.

5.2 System description

Now that we have presented the data model and its corresponding query language
and before we give details about system’s implementation we give a description
of the system and discuss the algorithm that is used.

Our goal is to build an alert system where users express their desire for infor-
mation by posting profiles or long-standing queries to the system and the system
informs them whenever the incoming information satisfies their profile. Such
systems for information dissemination have been studied and implemented (e.g.,
SIFT [38], Hermes [14] and DIAS [25]).

In our case we cope with textual information however part of this information
is genomic sequences, as they are presented in Section 3.1. BioAlert has been
implemented to combine the algorithms for the text filtering and the algorithms
for sequence comparing, explained in Chapter 3. A definition for the filtering
problem as it arises in textual information dissemination systems is as follows:
Given a database of profiles db and an incoming document d, find all profiles q ε

db that match d.
Before we continue we must remind the reader that our current implementa-

tion of BioAlert is based on a related service, which is called Swiss-Shop [8] and
was presented in Chapter 2.

69

5.2.1 Functionalities

Let us now give a brief description of the functionalities that our system sup-
ports. Each user may pose his desire for information to the system. This user’s
requirement is called a profile. A user may have more than one profiles posed to
the system and there is not a maximal number of profiles that a user can pose to
the system. Apart from the addition of new profiles, a user has the capability to
remove any obsolete profiles from the system as well as to list his own profiles.

Let us see now what pieces of information compose a profile. A profile is
composed by the text part and/or the sequence data part. A keyword based
search is performed on the text part while a sequence based search is performed
on the sequence data part. The text part is separated in attributes and for
each of them one or more keywords are given by the user. The attributes are
conjunctive to each other. This means that a profile will match to the new
incoming information if and only if the words of all of the attributes are contained
to the new information. Due to the fact that our implementation is based on
Swiss-Prot database [7], the sequence data are proteins and the attributes of the
text part correspond to the fields of a Swiss-Prot entry. The format which follows
a Swiss-Prot entry was presented in Section 2.2.1 of Chapter 2.

On the contrary to the profiles that a user poses to the system, the new
incoming information is retrieved by the system itself. In our implementation
the new incoming information is the entries of the latest update of the Swiss-
Prot database. As soon as we have new information a search is performed by
the system. The users are alerted as soon as a search has been performed and if
and only if the search resulted to matches between his/her profiles and the new
incoming information.

5.2.2 The Algorithm

Now that we have given a description of our system and described its function-
alities, we discuss the algorithm that we use.

Because our system handles both textual and biological information, we first
present the algorithm used for each kind of information involved and then we
present the algorithm, that we designed and implemented, and which combines
the other two algorithms.

Algorithm for the Text Part

For the text part we chose to use one of the four algorithms that was studied
and implemented in [36]. It is named Tree and it is the main memory version
of one of the algorithms that were originally developed in SIFT [38]. Tree

algorithm introduces a trie-like data structure for profile storage in order to
exploit the similarities between the profiles during filtering. On the following

70

Profile Identifying prefix
P1: (a,b) (a,b)
P2: (a,d) (a,d)

P3: (a,d,e) (a,d,e)
P4: (b,f) (b)

P5: (c,d,e,f) (c)
P6: (d,f,g) (d)
P7: (d,f,g) (d)

Table 5.1: A set of profiles and their identifying prefixes

lines we present how the algorithm works verbatim from [36] and we start by
presenting some definitions first.

Definition 15 Let p be a profile (w1,w2,. . .,wk) of k words, and 0 ≤ i < k. The
(w1,w2,. . .,wi) is called a prefix of p with (wi+1,. . .,wk) its corresponding postfix.

Definition 16 Let P be a set of profiles. A prefix (w1, w2, . . . , wi) identifies a
profile p in P if i = k or if there is no other profile in P, except those identical
to p, that have (w1, w2, . . . , wi) as a prefix. The shortest prefix that identifies a
profile is called the identifying prefix of that profile.

As profiles arrive from subscribing users, TREE organises their identifying
prefixes into a profile tree. The root of the profile tree (level 0) corresponds to
the empty prefix. A node n at level i corresponds to a prefix σ = (w1, w2, . . . , wi)
of some identifying prefixes. All prefixes identical to σ are represented by this
node n. Its children are nodes corresponding to prefixes (w1, w2, . . . , u) of some
identifying prefixes (where u is a word). In Figure 5.2 we present an example of
a profile tree which corresponds to the profiles of Table 5.1. As the Figure 5.2
presents, each node has attached a linked list of profile identifiers of which σ is
the identifying prefix and a second linked list of words that form the postfix of
the identifying profiles. To speed up the search, a hash table is used to index
the children of the root of the profile tree. Thus, a profile tree T is actually
implemented as a forest where pointers to the root nodes of all trees rooted at
level 1 are stored in a hash table called the root hash table of T.

As a document comes along, the profile tree is searched in a breadth-first way
to discover all matching profiles. More details can be found in [36].

Tree algorithm follows one of the three existing and classical Information
Retrieval models, the Boolean model. The other two are the vector and the
probabilistic model, while there are other numerous alternatives for each type.
We must note that the above models refer to the text context of a document.
However, there are other models that refer to the structure of a written text. We
mention some words for the boolean model, verbatim from [36]. The boolean

71

Profile Set

P1: (a,b)
P2: (a,d)
P3: (a,,d,e)
P4: (b,f)
P5: (c,d,e,f)
P6: (d,f,g)
P7: (d,f,g)

a

e

c

d

b

d

b P1

()

P2

()
P3

()
P4

(f)

P5

(d,e,f)

P6,P7

(f,g)

Profile Tree

Figure 5.2: An example of the profile tree constructed by the tree algorithm.

model considers that index terms are present or absent in a document. Index
term is a word whose semantics are considered to capture the main theme of a
document. Thus, a document is described by a set of representative keywords
called index terms. Because some terms capture a documents’s content better
than others, we have introduced the meaning of weight. Weight is a number which
quantifies the importance of an index term for describing a document’s content.
As a result, the index term weights are all assumed to be binary. A query is com-
posed of index terms linked by three connectives: not, and, or. Thus a query is a
conventional boolean expression which can be representative as a disjunction of
conjunctive vectors. A similarity of a document to a query is defined as the match
of the query vector keyword values with the corresponding document vector val-
ues. The above mentioned similarity function outputs one, if there is relevance
between the document and the query relevance or zero otherwise. There is no
notion of a partial match to the query conditions, so the boolean model is more
of a data model than an information retrieval model. In [23],[25] sophisticated
models and query languages for textual information dissemination are proposed.
The more sophisticated data model AWPS and its corresponding language, is an
attribute-based model which uses linguistically motivated concepts such as word
and not arbitrary strings, and allows boolean and proximity queries along with a
“similarity” operator based on the vector space model. The latest query language
proposed by the same group can be found published in [12].

As we remarked the text part of profiles supports attributes. However, Tree

algorithm does not follow an attribute-based model, but instead the Boolean
model as described above. Consequently, we adjusted our implementation to
take care of this incompatibility. Because each attribute is conjunctive to others,
we apply the tree algorithm to each attribute independently, as we explain in
Section 5.2.2. Finally, we combine the results conjunctively in order to have the
final result. Thus, a profile matches a text if and only if all the attributes matches
the text.

72

function AddProfile (list AttributeList, UserInfo ui) {
Profile p;
int i, attrNum;
p = setProfileCharacteristics();
attrNum = AttributeList.length;
for each attribute attr ∈ AttributeList except attr seqdo

TREEInsertProfile(p, ui, i, attrNum);
i++;

end for

if attribute seq != NULL then

insertSeq();
end if

}

Figure 5.3: Pseudo-code of the algorithm for adding a profile in BioAlert

Algorithm for the Sequence Part

For the sequence part, we use the BLAST algorithm as the sequence comparison
algorithm. A detailed presentation for this algorithm can be found in Section
3.4.2. We must note that for our implementation we downloaded and installed
the latest version of the stand-alone version of the algorithm which is distributed
by NCBI2.

As we discussed we have protein sequences so we need and call the blastp
program. We also use the formatdb program to get the database ready so as
to be used by blastp program. Moreover, all the sequences that we handle are
stored in FASTA format. This format is supported by BLAST. We compare
each sequence against a database of protein sequences. This database of protein
sequences is constituted by the protein sequences that each user pose to the
system with his profile. Just one protein sequence is submitted with each profile
and it is called profile sequence. So, we accumulate all the profile sequences and
these constitute the database against which a BLAST search will be run. Thus,
each time a new profile is posed to the system, the protein sequence is added to
the database and this is formatted with formatdb.

The general Algorithm

Now that we presented the two algorithms, we present the algorithms for adding a
profile and the matching procedure for BioAlert service. In Figure 5.3 the pseudo-
code of adding a profile to BioAlert is shown. As one can notice, the function
takes as input a list with the attribute values (AttributeList) of the profile, that
will be added, and some user information (ui) of the user that owns that profile.

2National Center for Biotechnology Information

73

For each text attribute the TREEInsertProfile function is called which adds the
specified attribute value to a tree-like structure according to Tree algorithm.
Consequently, we have as many tree-like structures as the number of attributes
supported by our service. In each tree-like structure the Tree algorithm is
applied while they are not organized or stored in a distinct data structure. In
this way, we implement an attribute-based model using an algorithm that follows
the boolean model.

If the user’s profile contain a protein sequence, and consequently the attribute
seq has been set, the function insertSeq is applied to that sequence attribute seq.
This function adds the protein sequence, that the user submits, to a file in FASTA
format and suitably formats it so as to be ready to be used by BLAST.

In Figure 5.4 the pseudo-code of the matching algorithm of BioAlert is pre-
sented. We notice that we have three main categories concerning the profiles.
We have the profiles that contain only textual information (onlyText), these that
contain only biological information (onlySeq), that is protein sequences, and those
that contain both (bothTextSeq). In case that we have profiles that contain textual
information, we apply the matching procedure which follows the tree algorithm
and is described in subsection 5.2.2. This is coded by the function matchText and
its pseudo-code is presented in the Figure 5.5. In case that we have profiles that
contain only protein sequences, we just run a BLAST search against them and
the new incoming sequences. In the third case that we have profiles that contain
both kind of information, we run both blast search and the text matching. The
final result arises from the conjunction of the two results. Finally, in each case
the users that have to be notified are notified by sending them an email.

The function matchText does the actual matching. It accepts as input the
document Doc for which the matching will be done. Its output is a list of the
profiles that match that document. For each attribute the TREEMatch function
that applies the tree matching algorithm is called. Because each attribute is
conjunctive to others, the final list contains only those profiles for which matches
have been found for all of their attributes. This is what the last two for loops
implement.

5.3 System organisation

Now that we have presented the data model and the query language and we
have given a detailed description of the system itself and the used algorithm, we
continue with a presentation of its high level organisation by presenting some
basic modules of it. Finally, we discuss some technical issues.

A high level view of the internal organisation of BioAlert is shown in Figure
5.6. As we can see, a GUI mediates between the user and the system forwarding
the demands of the former to the latter and messages from the system to the user.
There is also a number of modules which represent the supported functionalities.

74

function match (Document doc) {
list onlySeq, onlyText, bothTextSeq;
list matchedProfiles, finalList;
if onlySeq != null then

for each profile sequence q ∈ onlySeq do

res = Blast(q, newSeqs, p);
notifyUser(q.emailAddress, res);

end for

end if

if onlyText != null || bothTextSeq != null then

matchedProfiles = matchText(doc);
if onlyText != null then

finalList = matchedProfiles - (profiles ∈ bothTextSeq);
for each profile p ∈ finalList do

notifyUser(p.emailAddress);
end for

end if

if bothTextSeq != null then

finalList = matchedProfiles - (profiles ∈ onlyText);
res = Blast(doc.seq, finalList.seqs);
finalList = finalList ∧ res;
for each profile p ∈ finalList do

notifyUser(p.emailAddress);
end for

end if

end if

}

Figure 5.4: Pseudo-code of the algorithm for the matching procedure of BioAlert

75

function matchText(Document Doc) {
list res, MatchedProfiles;
int matchedAttr;
for each attribute attr do

matches = TREEMatch(Doc);
addTo(res, matches);

end for

for each entry of profile sequence q ∈ res do

updateProfile(q, matchedAttr++);
end for

for each profile sequence q do

if q.matchedAttr == q.AttrNum then

addTo(MatchedProfiles, q);
end if

end for

return MatchedProfiles;
}

Figure 5.5: Pseudo-code of the algorithm for the text matching

Connect/disconnect This module refers to the user’s opportunity to connect
or to disconnect to or from the system. While a user is connected to the
system, can use the rest the functionalities. When he finishes and desires
to terminate the connection, he selects the functionality of disconnection.

Add a new profile The users have the capability to pose profiles to the system.
Because of the two parts of a profile, a profile parser is responsible to
separate the text data from the sequence data and save them in different
data structures. We referred these structures in Section 5.2.2 when we
presented the algorithms we used.

Create new user account When a user wants to connect and use the system
for the first time, he must create an account. He defines the information
that the system requires as well as a password and a user name that are
unique. All these information is stored in a data structure and are available
any time the user tries to connect to the system.

List all the existing profiles for a user This functionality provides the users
with a list of all of their profiles posed to the system. Having that list, they
are capable to edit it by adding or removing profiles from it.

Remove an existing profile Each user has the capability to remove any obso-
lete profiles. These profiles are actually filtered out from the final answer

76

user info

GUI

connect/disconnect
module

create new user
account module

view profiles
module

remove a profile
module

add a new profile
module

parser

textual
profiles

sequence
data profiles

outcoming
alert

messages

incoming
information

parser

new text
info

new seq

textual filtering
module

sequence
filtering module

answer compiler

BioAlert architecture

Figure 5.6: BioAlert organisation

77

Figure 5.7: BioAlert’s main page.

list.

Although all the above capabilities are user-initiative, the functionality to alert
the users is not. As we can see in Figure 5.6, the incoming information after a
parsing is separated in textual and sequence data and queued for the filtering
procedure. Only when both processes have been terminated, the final answer list
is compiled. Having the final answer list, the users are alerted by email.

Before we continue with a comparison of the system and the existing service
of Swiss-Shop, we present some screen-shots of BioAlert. In Figure 5.7 the main
page of BioAlert is depicted. In Figures 5.8, 5.9 the form for specifying a profile
and a list showing the user’s profiles are presented respectively.

5.4 BioAlert vs. Swiss-Shop

In this section we present how our system BioAlert differs from Swiss-Shop ser-
vice. Both of them are services that allow the specification of long-standing
queries on textual as well as sequence data of the same protein database. The
protein database of Swiss-Prot is used by the systems because its entries are
annotated very well. Apart from the sequence data of proteins, descriptions,
comments, cross-references to other databases and many other information are
given. So, it is meaningful to search on textual as well as sequence data. This
functionality is supported by both systems. In both systems, a user can specify

78

Figure 5.8: Specifing a long-standing query in BioAlert.

Figure 5.9: Viewing profiles in BioAlert.

79

a long-standing query where he will specify a protein given its sequence data or
he will specify keywords. In the first case only the entries with similar proteins
to the specified one are searched while in the second case only the entries that
contain that keywords are searched. For the textual searches we use a simple
query language that supports the functionality we want. Other more expressive
languages such as these ones that are presented in [12, 37] can replace it.

However, the main difference of our system to Swiss-Shop is that our system
permits both textual and sequence similarity searches to be involved to the spec-
ification of the same query. Users set queries where they search database entries
which they match or contain the specified textual data and at the same time
the protein sequence is similar to the specified one. In this way, users are able
to specify more complex queries and receive meaningful and more informative
answers.

We continue and present some technical details about the system.

5.5 Technical details

BioAlert system described in Section 5.2 was implemented in Java and it runs on a
PC, with a Pentium II 1.3GHz processor, with 256 MB RAM running Windows
XP. The interface is implemented using JavaServerPages technology. For that
reason the latest version of Tomcat sever has been installed. Because of the
mails that are sent to the users, a mail server, called Free SMTP Server, has also
been installed. The stand-alone version of the latest BLAST algorithm has also
been installed. Because the tree algorithm that we used has been implemented
in C, we used JNI technique in order to integrate and call it from Java. Finally,
our implementation makes use of JavaBeans and Servlet technology so as to make
the whole system to work.

5.6 Summary

In this chapter we discussed in detail BioAlert, the alert system that we imple-
mented. We presented the data model and the query language we used as well
as the algorithm we implemented. A high level organisation of the system and
the functionality supported by it was also presented. Finally, we discussed imple-
mentation issues as the technologies that we used for the system’s development.

80

Chapter 6

Concluding Remarks

Now that this dissertation has come to an end, let us summarise our main achieve-
ments. We distinguish two parts of our work. In the first part, we focused our
attention on sequence comparison, the fundamental operation in computational
biology, while in the second part we concentrated on the problem of information
dissemination focusing mainly on the view of molecular biology.

We started this work with a presentation of related systems which study the
problem of information dissemination either on textual information or on the
view of molecular biology.

We continued with a detailed and complete introduction to some molecular
biology’s meanings and terms. We presented definitions and examples as a helpful
guide for a computer scientist. Having defined the basic terms that we use in this
work, we presented basic algorithms for sequence comparison and we concentrated
on the algorithm of BLAST which is also the most popular one. We proposed
a variation of that algorithm that trades space for time. To prove our case we
continued with a experimental evaluation of it and a comparison to the existing
original algorithm. We designed a realistic scenario under which our algorithm
and the original one were run using real genomic data which come from of the
European project Bridgemap [2]. After several measurements that we made on
the running time and the memory space for both algorithms, we made useful
conclusions. The major one states that you have to spend a significant amount
of memory space if you want to decrease the running time of the algorithm
significantly.

In the second part, we put our focus on the problem of information dissemina-
tion. We designed and implemented an alert service for molecular biologists that
deals with both textual and sequence data. Our system allows the specification
of long-standing queries on textual as well as sequence data of protein databases.
A very similar service was presented in Section 2.2.1 of Chapter 2. However, our
system offers more functionality to users as it was stated in Section 5.4. Users
specify long-standing queries either on textual or on sequence data, as they did
using Swiss-Shop, but now they can also specify queries on both types of data.

81

Moreover, we presented in detail the data model, the query language and the
algorithm that we used for the implementation of our system.

6.1 Future Work

As for the alternative sequence comparison, we can address its implementation
for the case of protein sequences, too. Since the original algorithm is implemented
to work using more than one processors, it can be designed carefully to work as
a multiprocessor algorithm.

Concerning the implementation of the alert system, it can be extended to
use other databases apart from Swiss-Prot. There are also several improvements
that can be implemented such as editing and deleting the profiles from the data
structures of the algorithm. Moreover, the use of other models than the boolean
one can be used to implement such a service which will support a more expressive
language. Such models and languages have been proposed by our laboratory as
you can read in [23, 25]. Finally, such a service would be interesting to be
implemented in terms of a P2P system [19, 18, 20].

82

Bibliography

[1] BLAST Home page. http://ncbi.nlm.nih.gov/BLAST/.

[2] Bridgemap website. http://www.bridgemap.tuc.gr.

[3] http://au.expasy.org/proteomics def.html.

[4] http://cbr-rbc.nrc-cnrc.gc.ca/srs6bin/cgi-bin/wgetz?-page+top+-
id+4looq1l3ccg.

[5] http://www.isb-sib.ch/.

[6] Prosite website. http://au.expasy.org/prosite/.

[7] Swiss-prot website. http://au.expasy.org/sprot/.

[8] Swiss-shop home page. http://au.expasy.org/swiss-shop/.

[9] Uniprot website. http://www.expasy.uniprot.org/index.shtml.

[10] Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers, and
David J. Lipman. Basic Local Alignment Search Tool. Journal of Molecular
Biology, 215(3):403–410, 1990.

[11] D. L. Brutlag, J. P. Dautricourt, S. Maulik, and J.Relph. Improved sensi-
tivity of biological sequence database searches. Computer Applications in
Biosciences, 6:237–45, 1990.

[12] M. Koubarakis C. Tryfonopoulos and Y. Drougas. Filtering Algorithms for
Information Retrieval Models with Named Attributes and Proximity Op-
erators. In Proceedings of the 27th Annual ACM SIGIR Conference, July
25-July 29, Sheffield, United Kingdom 2004.

[13] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Achieving scalability and
expressiveness in an internet-scale event notification service. In Proceed-
ings of the 19th ACM Symposium on Principles of Distributed Computing
(PODC’2000), pages 219–227, 2000.

83

[14] D. Faensen and L. Faulstish and H. Schweppe and A. Hinze and A. Stei-
dinger. Hermes- A Notification Service for Digital Libraries. In Proceed-
ings of theJoint ACM/IEEE Conference on Digital Libraries (JCDL ’01).
Roanoke, Virginia, USA, 2001.

[15] Dan Gusfield. Algorithms on strings, trees, and sequences: computer science
and computational biology. Cambridge University Press, 1999.

[16] Hedvig Hegyi, Jen-Mai Lai, and Peer Bork. The Sequence Alerting Server -
a new WEB server. CABIOS APPLICATIONS NOTE, 13(6):619–620, 1997.

[17] S. Henikoff and J. G. Henikoff. Amino acid substitution matrices from pro-
tein blocks. Proc. Natl. Academy Science, 89(10):915–19, 1992.

[18] S. Idreos and M. Koubarakis. P2P-DIET: Ad-hoc and Continuous Queries
in Peer-to-Peer Networks using Mobile Agents. In 3rd Hellenic Conference
in Artificial Intelligence, volume 3025, pages 23–32, Samos, Greece, May 5-8
2004.

[19] S. Idreos, M. Koubarakis, and C. Tryfonopoulos. P2P-DIET: An Extensible
P2P Service that Unifies Ad-hoc and Continuous Querying in Super-peer
Networks. In Proceedings of the ACM SIGMOD/PODS 2004 Conference.,
Maison de la Chimie, Paris, France, June 13-18, 2004.

[20] Stratos Idreos, Manolis Koubarakis, and Christos Tryfonopoulos. P2P-
DIET: One-Time and Continuous Queries in Super-peer Networks. In Pro-
ceedings of the IX International Conference on Extending Database Technol-
ogy (EDBT04). In LNCS , volume 2992, pages 851–853, Heraklion, Crete,
Greece, March 14-18, 2004.

[21] S. Karlin and S. F. Altschul. Methods for assessing the statistical significance
of molecular sequence features by using general scoring schemes. Proc. Natl.
Academy Science, 87:2264–68, 1990.

[22] S. Karlin and S. F. Altschul. Applications and statistics for multiple high-
scoring segments in molecular sequences. Proc. Natl. Academy Science,
90:5873–77, 1993.

[23] M. Koubarakis, C. Tryfonopoulos, P. Raftopoulou, and T. Koutris. Data
models and languages for agent-based textual information dissemination. In
Proceedings of the 6th International Workshop on Cooperative Information
Agents (CIA2002), volume Lecture Notes in Computer Science, 2002.

[24] D. J. Lipman and W. R. Pearson. Rapid and sensitive protein similarity
searches. Science, 227:1435–41, 1985.

84

[25] M. Koubarakis and T. Koutris and C. Tryfonopoulos and P. Raftopoulou.
Information Alert in Distributed Digital Libraries: The Models, Languages
and Architecture of DIAS. In Proceedings of the 6th European Conference on
Digital Libraries (ECDL2002), volume 2458 of Lecture Notes in Computer
Science, page 527, 2002.

[26] M. McClure and T. Vasi and W. Fitch. Comparative analysis of multiple
protein-sequence alignment methods. Mol. Biol. Evolution, 11:571–92, 1994.

[27] E. W. Mayers and W. Miller. Optimal alignments in linear space. Computer
Applications in Biosciences, 4(1):11–17, 1988.

[28] E. W. Myers. A sublinear algorithm for approximate keyword searching.
Algorithmica, 12:345–74, 1994.

[29] W. R. Pearson and D. J. Lipman. Improved tools for biological sequence
comparison. Proc. Natl. Academy Science, 85:2444–2448, 1988.

[30] Pierre Baldi and Soren Brunal. BIOINFORMATICS: The machine learning
approach. The MIT Press, second edition edition.

[31] R. D. Fleischmann and M. D. Adams and O. White and R. A. Clayton and
E. F. Kirkness and A. R. Kerlavage and C. J. Bult and J. F. Tomb and B. A.
Dougherty and J. M. Merrick, et al. Whole-genome random sequencing and
assembly of Haemophilus influenzae Rd. Science, 269(496):496–512, 1995.

[32] R. F. Doolittle. Searching through sequence databases. In R. F. Doolittle,
editor, Methods in Enzymology Vol. 183. Molecular Evolution: Computer
Analysis of Protein and Nucleic Acid Sequences, pages 99–110. Academic
Press, New York, 1990.

[33] R. Schwarz and M. Dayhoff. Matrices for detecting distant relationships. In
M. Dayhoff, editor, Atlas of Protein Sequences, pages 353–58. Natl. Biomed.
Res. Found., 1979.

[34] J. C. Setubal and J. Meidanis. Introduction to Computational Molecular
Biology. PWS Publishing Company, 1997.

[35] SunOS5.5. BLAST Manual Pages, 1995.

[36] Theodoros Koutris. Textual Information Dissemination in Distributed Agent
Systems: Architectures and Efficient Filtering Algorithms. Master’s thesis,
Technical University of Crete, Greece., 2003.

[37] C. Tryfonopoulos. Agent-Based Textual Information Dissemination: Data
Models, Query Languages, Algorithms and Computational Complexity. Mas-
ter’s thesis, Technical University of Crete, Greece., 2002.

85

[38] T.W. Yan and H. Garcia-Molina. The SIFT information dissemination sys-
tem. ACM Transactions on Database Systems, 24(4):529–565, 1999.

[39] W. R. Pearson. Effective protein sequence comparison. In R. F. Doolittle,
editor, Methods in Enzymology Vol. 266. Computer Methods for Macromolec-
ular Sequence Analysis, pages 227–58. Academic Press, New York, 1996.

[40] W. R. Pearson. Protein sequence comparison and Protein evolution. Tutorial
- ISMB2000, 2001.

[41] Warren J. Ewens and Gregory R. Grant. Statistical Methods in Bioinfor-
matics: An Introduction. Springer, 2001.

86

