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Abstract 
 

This thesis is a part of team effort to implement a real-time, low cost wireless 

communication system through analog FM, capable of reliable data transmission. Due 

to the simple hardware, most of the signal processing is performed in software, which 

makes the WFTP versatile since it allows easy integration of any digital signal 

processing methods and algorithms. Consequently, the system is broken into several 

modules that are assigned to each member of the team, thus team management and 

smooth cooperation were key factors for the design and development of this 

prototype.
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1 The Wireless FTP Communication System 

1.1  Introduction 

The objective of this project was to design and develop a software modem combined 

with appropriate low cost and commonly used hardware that shall be mainly used for 

simple file transfer between two personal computers. The actual wireless data transfer 

is achieved through an analog FM radio link using an FM transmitter and receiver 

while the digital to analog (D/A) and A/D conversion is performed through PC 

compatible sound cards. The remaining operations like modulation, encoding etc… 

are handled by software. The lack of a single transceiver unit in both ends, due to 

budget restrictions, restricts the wireless communication to be only from the 

transmitter to the receiver thus, in order to develop a closed loop system an existing 

wired network configuration is used. Therefore, the general components of the WFTP 

communication system consist of: 

 

• PC as server 

• PC as client 

• Server software 

• Client software 

• FM transmitter 

• FM receiver  

• Wired network infrastructure 

 

The following figure (Fig 1.1) depicts a general block diagram of the WFTP 

components configuration. Notice that the wired network of choice is the Ethernet 

since the range of the radio link is 10 to 15 meters at most, but in case a stronger 

transmitter is used, any available data communication link will suffice.  
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Figure 1.1:  An abstract WFTP system configuration. 

  

The subsequent sections provide a description of the main supported features of our 

system regarding the software – signal-processing capabilities, the intergraded 

hardware specifications and usage, while the last section presents a complete 

description of the WFTP system design and operation.  

1.2 WFTP Software features  

The WFTP software performs the digital signal processing routines except digital to 

analog (D/A) or analog to digital (A/D) conversion. Although software implemented 

systems of such scale luck in operation speed, they provide an extremely versatile and 

configurable platform. The WFTP software consists of the following general sets of 

procedures that are common in any digital communication system: 

 

• Data segmentation and assembly 

• Modulation, Demodulation and Detection 

• Error Control Coding and Decoding 

• Interleaving 

• Channel Estimation and Equalization 

• Cyclic Redundancy Check (CRC) 

• Synchronization 

• Phase Recovery 

• Automatic Repeat Request (ARQ) 
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The versatility of the WFTP software derives from the fact that for each discrete 

procedure several schemes, algorithms or protocols can easily be integrated, swapped, 

removed or modified on the fly while the extended parameterization of each unit 

offers a highly configurable system. The remainder of this section presents an 

overview of each stage, the functionality and the possible alternative implementations 

supported by the WFTP prototype.  

 

1.2.1 Data segmentation and assembly 

In any communication system, the first stage is the processing of the input 

information and its conversion to binary data streams of some fixed length referenced 

as binary data segments. The inverse process, the data assembly is performed at the 

last stage of the receiver after the redundant information has been removed.  

 

The WFTP system can be used in open loop configuration, without ARQ and CRC, 

for evaluation purposes or in closed loop when used for reliable file transfer (ftp). 

Consequently, the binary data streams should be generated randomly, for the first 

case, or originate from actual data files, for the latter. To cover both operation modes 

the WFTP supports randomized binary data streams creation and simple file 

decomposition. 

 

 
Figure 1.2:  Segmentation & assembly operations. 

 

Furthermore, another aspect of WFTP system is the usage of training sequences for 

frame alignment, symbol clock recovery, adaptive channel equalization or estimation 

and phase recovery. This procedure is also supported.  The binary training stream can 
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either be imported or randomly generated. Note that it must be the same for every data 

segment and is usually set after the system’s first initialization. 

1.2.2 CRC 

The Cyclic Redundancy Check is a powerful error detection algorithm. The WFTP 

system uses the CRC-16. It is applied on the binary data stream producing a 16-bit 

frame check sequence (FCS) witch is concatenated at the end of the data stream (fig. 

1.3). From this stage on, the data segment is enriched with additional information 

until it forms a possibly much larger sequence, referenced as data packet. The receiver 

applies the CRC to the received data packet, after it has been converted to binary 

form, decoded and de-interleaved, producing a 16-bit binary sequence. The new FCS 

is then compared with the encapsulated FCS within the packet. If they differ then the 

packet is considered corrupted and is discarded. 

 

 
Figure 1.3: CRC-16 generated frame check sequence. CRC covers both data information and 

control bits. 
 

Use of CRC is optional for the open loop system configuration but it is necessary for a 

closed loop system. 

 

1.2.3 Error Control Coding 

Error control coding, or widely referenced as Forward Error Correcting codes 

(FECC), is a method of real time error correction or error reduction at the far end 

receiver, while no return channel is required as in the case of CRC. The concept is 

based on adding systematic redundancy at the transmit end of a link such that errors 

caused by the transmission medium can be corrected at the receiver end by means of a 

decoding algorithm. The amount of redundancy is dependent on the type of code 

selected and the level of error correction capability desired. 

 

Forward error correction uses channel coding which can be broken down into two 

broad categories of codes: convolutional codes and block codes. The WFTP software 
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includes non-systematic convolutional coders paired with hard decision Viterbi 

decoder with available code rates ranging from ¼ to ¾, while for the second category; 

BCH, Reed Solomon and Hamming coding are also available. Finally, FEC is applied 

on the data packet including the control information bits and the CRC checksum 

(FCS). The use of FECC is optional. 

1.2.4 Interleaving 

Interleaving is the process of systematic reshuffling of the binary data stream, 

encoded or not. The data packet is partitioned in blocks and then it is rearranged. 

Interleaving is especially useful when burst errors occur which limit or prohibit the 

error correction process. Since consecutive blocks are separated, the bit errors can be 

considered independent at the receiver and the burst errors do not propagate to the 

neighboring symbols. Thus, using FECC it is possible to correct a long error burst, 

which might have destroyed all the information in the original block, at the expense of 

additional delay of the deinterleaving process. Although there is a great range of 

interleaving algorithms the WFTP supports random and matrix block interleaving of 

variable block length. Interleaving is also optional, but in any case is highly 

recommended. 

1.2.5 Automatic Repeat Request (ARQ) 

ARQ is another error correction scheme such as FEC but its operation relies on the 

request of retransmission of a corrupted packet. An error detection algorithm is 

necessary. There are three variants of ARQ: 

 

• Stop and wait ARQ 

• Continuous or selective ARQ 

• Go Back N ARQ 

 

The last two schemes require a pipelined infrastructure, or full duplex operation, 

which in our case is unrealizable due to the Matlab platform and the nature of the 

sound card handlers. Therefore, the only possible solution provided is the Stop ‘n wait 

ARQ. Finally, the ARQ is implemented over an Ethernet link utilizing the UDP 

protocol.  
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1.2.6 Modulation, Demodulation and detection 

The modulation is the last stage of the transmitter where the resulting packet from the 

previous stages and the addition of a training sequence, is converted into waveforms – 

symbols that convey the binary information. Note that the modulated symbols are 

sampled sequences of baseband analog carriers. The actual digital to analog 

conversion is performed through the PC sound card and it is fed to the FM transmitter 

through the line out port. 

 

The detection (or correlation detection) is the second stage of the receiver processor, 

where the sampled received data, from the PC sound cards Line in port, is converted 

into a sequence of complex symbols. Also, note that the training sequence is separated 

from the data frame. The received frame after this stage is further processed 

(equalized etc…), and is fed into the demodulator that will convert it into binary form. 

 

The modulation/ demodulation schemes supported by the WFTP include: 

• M-ary Quadrature Amplitude Modulation (M-QAM) 

• M-ary Phase Shift Keying (M-PSK)  

• M-ary Pulse Position Modulation (M-PPM).  

 

The QAM modulation scheme is also covered in depth in chapter 2. 

1.2.7 Synchronization 

The synchronization unit of the WFTP system is the interface between the hardware 

and the software part of the receiver. Usually synchronization is used for symbol 

clock recovery; however, for the WFTP system its function is twofold. The first role 

is channel activity detection and handshaking, necessary to establish a communication 

attempt or data reception. The second role is to isolate the received frame, which in 

fact is symbol clock recovery. This process is also referred to as framing. 

Nevertheless both operations rely on the same principles; the use of known sequences 

at the transmitter and receiver, pattern matching and thresholding, so it is reasonable 

to share the same structure. The synchronization is covered thoroughly in chapter 4. 
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Handshaking can also be performed through the ARQ where the transmitter informs 

the receiver though simple UDP messaging but the incurred delays are unpredictable 

due to the nature of UDP. However, it remains as an option. 

1.2.8 Channel Estimation and Equalization 

The communication systems channel impulse response is time varying. In order to 

combat the channel distortion adaptive structures are the best choice. Channel 

equalizers depend on estimating an inverse channel impulse response or the channel 

itself. WFTP supports the following linear recursive equalizers: 

 

• Least Mean Squares (LMS) 

• Recursive Least Squares (RLS) 

• Constant Modulus Algorithm (CMA) 

 

LMS and RLS are initialized using the training sequence to readapt to the varying 

channel response while the CMA belongs to the family of blind equalizers. 

 

In addition, WFTP also supports the non-linear MMSE Viterbi Equalizer based on the 

Viterbi algorithm (VA). Unlike the LMS and RLS, the VE needs an estimation of the 

channel impulse response, provided by the Least Squares solution, as referenced in 

Chapter 3. 

 

1.2.9 Phase Recovery 

Phase recovery uses the training sequence to apply a linear transformation on the 

received data frame. In a constellation diagram, the added phase results in a rotation 

and as a result simple geometric N-dimensional transformation can restore the 

original phase. Phase recovery is also optional. 
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1.3 WFTP Equipment 

The equipment of the WFTP communication system consists mainly of two personal 

computers, a low power FM transmitter, a radio receiver and a dipole antenna. 

 

 
Figure 1.4: The WFTP prototype communication system 

 

 
Figure 1.5:  FM transmitter & radio receiver 

 

The FM transmitter and the antenna are built from members of the team, while the 

wide band communications receiver (ALINCO Dj-X3) was recommended by out 

advisor, Mr. N. Sidiropoulos.   

 

FM transmitter specifications: 

• Power supply voltage: DC4.5 V ~ DC12 V 

• Frequency Range: 88 MHz ~ 108 MHz  

• Output power 1 W @ 12V 

• Half wave dipole antenna (also see fig.1.6). 
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Remark: The casing of the transmitter should consist of a conductive metal or grid to 

provide a faraday globe. In addition, the casing, the transmitter and the antenna must 

be grounded. Often the casing acts as a common ground contact. 

 

 
Figure 1.6: Dual branch half wave dipole antenna schematic. 

 

The dipole antenna schematic is depicted in figure 1.6. Note that a single branch is 

sufficient, but a generic 2 branch setup emphasized the requirements and 

specifications. In addition the antenna metrics are configured at the minimum 66cm 

for transmission at 107.9 MHz but with larger lengths the transmitter is tuned at lower 

frequencies. Consideration should also be given at the cable fastening on the antenna 

branches where it should be in direct contact with the aluminum dipoles. 

 

Wide Band Communications Receiver specifications: 

 

• RX frequency range: 0.1 ~ 1300MHz 

• Antenna impedance: 50Ω 

• Battery voltage: DC3.6V ~ DC6V 

• External power source: DC4.5V ~ 16V 

• Freq. stability: ± 5PPM (-10oC ~ +60oC) 
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• RX sensitivity: less than 0db @ [FM] 30~500 MHz 

• Stereo output 

 

The last major component is the sound card, which is usually part of any personal 

computer. However, it is useful to post a set of specifications for this hardware as 

well.  

 

Sound card specifications: 

• 24-bit Analog-to-Digital conversion of analog inputs at 96KHz sample rate 

• 24-bit Digital-to-Analog conversion of digital sources at 96KHz 

• 16-bit and 24-bit recording with sample rates of 8~96KHz 

• Line level out (Front/ Side/ Rear/ Center/ Subwoofer) 

• Line In 

• AC97 compliant 

• Signal-to-noise Ratio < 100dB  

• Frequency Response at -3dB <50Hz ~ 40KHz 

 

 
Figure 1.7:  Typical PCI soundcard. 

 

Note that in case the sound card supports multi-channel output only the Front line out 

port is connected to the FM transmitter audio signal port (fig 1.5). In addition, Line In 

port or auxiliary (Aux) Line In is necessary for stereo recording from a radio receiver. 

 

Figures 1.8 and 1.9 illustrate the receiver and transmitter as well as the system 

assembly. Notice, though, that the selected power supply of the FM transmitter is 

provided by batteries instead of a transformer. The reason is that the transformer 

introduces scramble hum due to the frequency (50Hz ~ 60Hz) of the AC current. 
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Figure 1.8: Receiver 

 

 
Figure 1.9: Transmitter 
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1.4 WFTP Design and Operation 

The scope of this section is to provide a complete presentation of the WFTP 

communication system architecture, involving both hardware and software 

configuration and system operation.  

1.4.1 Data link Design  

Recall, from the introductory section, that the major components of the WFTP are the 

radio hardware, the personal computers and the related software. In particular, since 

the hardware setup is self-explanatory, we are interested in the software. To begin 

with, the software sub-modules at the receiver and the transmitter are grouped into 

four main modules witch run as processes using the Matlab platform. These are the: 

• Transmitter Unit 

• Transmitter Server 

• Receiver Unit 

• Processor Unit    

 

The Transmitter Unit module incorporates all the sub-processes that operate on the 

data from the packet creation to data modulation and transmission through the sound 

card. The transmitter server is the UDP based Stop and Wait ARQ interface. The 

Receiver Unit consists of the sub-modules that handle negotiation and 

synchronization operations as well as the implementation of the ARQ interface at the 

receiver, while the Processor Unit is responsible for filtering, demodulation etc… of 

the received packet. The implementation of these modules defines the data link 

architecture and, subsequently, the communication system architecture. To be more 

specific, we are faced with two scenarios regarding the main processes interaction, the 

full and half duplex data link operation.  

 
Figure 1.10:  Main software units and their sub-modules. 
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1.4.1.1 Full Duplex design 

 

 
Figure 1.11: Full duplex configuration. The common storage could be visualized as a binary data 

packet buffer. Note also that each process is autonomous and operate in parallel. 
 

In the first scenario, depicted in figure 1.11, the Receiver Unit and the Processor Unit 

become two different processes sharing common memory. With this configuration, 

the system becomes pipelined or full duplex meaning that while the receiver accepts 

incoming packets, the processor will also operate on the previously received packets. 

In this manner, Go Back N or Selective ARQ can be applied. This also means that the 

transmitter will also operate continuously and its processes must run in parallel. 

Therefore, both options require multiple instances of the Matlab platform to be active 

in each PC. However, due to the intensity of the digital signal processing operations 

as well as the audio operations are CPU and memory intensive and a single processor 

cannot handle that load. The solution of course is to use multi processor machines or 

PC clusters, which we lacked.   

1.4.1.2 Half-Duplex Design 

Since a full duplex data link cannot be applied, the remaining solution is to use half-

duplex link, illustrated in figure 1.12, where both main functions of the receiver and 

the transmitter execute in series. Under these limitations, the applicable ARQ is the 

Stop and Wait that may be simple, but inefficient due to the long dead timing periods 

where the receiver and the transmitter remain inactive. 
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Figure 1.12:  Half duplex configuration. Note that only one active process is permitted. 

 

1.4.2 The WFTP Packet structure 

The WFTP communication is packet based. A packet is the package where the 

exchanged information is encapsulated, enriched with redundant information used by 

the receiver to identify, extract, reconstruct and deliver the transmitted information. A 

WFTP binary data packet, illustrated in figure 1.13, consists of four fields: 

 

• Data segment: The original information is partitioned in blocks of binary 

data, the useful information, which can be encoded or/and interleaved. It 

includes the CRC sequence. 

• Header: Contains information about the sender and the recipient, such us IP 

address, the packet number, the binary stream and position the data segment 

belongs etc. However, Stop and Wait ARQ delivers in order and only one 

acknowledged packet at a time, thus packet numbering is unnecessary. In 

addition, the current WFTP does not support multi-user communication so the 

IP addresses are fixed. Under these conditions, the Header can be omitted.  

 

Training
sequence CRCData segmentHeader

 
Figure 1.13:  Binary packet fields. 

   

• CRC segment: 16-bit checksum (FCS) of the current data partition (prior 

encoding or interleaving).   
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• Training sequence:  Predefined sequence, known at the receiver and 

transmitter, used for synchronization, equalization and phase recovery. It does 

not undergo any operation other that modulation prior transmission.  

1.4.3 WFTP Software structure and operation 

The main software modules presented in the preceding section 1.4.1, consist of sub-

modules or sub-processes, each implementing a specific stage of the software defined 

WFTP modem. The system configuration is controlled by a main unit, the 

SystemSetup module. Instead of module-by-module description, a schematic 

representation is much more helpful. Figure 1.14, illustrates the entire modem 

structure and the configurable parameters regarding each part of the WFTP system.  

 

 
Figure 1.14:  Block diagram of the WFTP system. 
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When the WFTP is used for file transfer, the first stage is to load the selected file and 

convert it to set of binary streams. Note that the number of resulting blocks from the 

file segmentation equals the number of packets eventually transmitted. Keep in mind 

that the training sequence, independent of the data stream, is generated at the same 

stage at the first initialization of the system or when the length is reset. Each data 

segment is stored in memory, which, in our case, is a structured file. The CRC stage 

operates on the data stream generating a 16-bit checksum (FCS), appended in the data 

sequence. The new binary sequence (data and FCS), goes through the Encoder 

module. Depending from the system configuration related with this stage, the 

resulting encoded sequence is much larger since it contains redundant information for 

error correction. The following Interleaver does not affect the packet length, just 

“reshuffles” the input stream. The last stage at the transmitter software is the 

Modulator. Prior the reforming of the binary data to symbols, the training sequence is 

concatenated at the head of the data stream, shaping the packet. The final form of the 

modulated sequence consists of digital waveforms of duration TS samples. These steps 

cover the creation of the transmitted packet. For convenience, all the packets are 

precomputed and stored. Prior each transmission the corresponding packet is simply 

loaded from a database and then outputted through the line out port of the sound card.  

The output of the sound card is fed into the FM transmitter who handles the 

frequency up conversion and analog FM modulation. Down conversion and FM 

demodulation are achieved by the radio receiver who also feeds the received analog 

signal in the corresponding sound card line in port. The sound card records, samples, 

and quantizes the input signal with the same frequency used in the transmitter, Fs.  

 

The data transmission, explained so far, is a simple process; when the packet is ready, 

it is driven into the sound card interface. In the same manner, the receiver initiates a 

data reception session, but since the transmitter and receiver are independent, the 

latter must be notified of any data activity. The problem is solved through negotiation. 

The interface between the sound card and the software, at the receiver end, is the 

Synchronizer unit. The synchronizer controls the recording process, initiating data 

reception after a successful negotiation or handshake (see chapter 4), and isolates the 

transmitted packet, the part of the signal that carries the useful information, from the 

recorded sequence. The frame detection is achieved using the training sequence, 

known at both ends also at the Synchronizer. The isolated frame is then passed 
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through a signal demodulator who converts the sampled signal into complex 

representation regardless the modulation scheme used at the transmitter (except 

PPM). The Equalizer Unit filters the detected sequence to invert the distortion 

introduced by the systems channel while the phase shifting that can also occur is 

removed though a linear transformation at the Phase Recovery unit. The filtered data 

packet, without the training sequence, is then demodulated (symbol detector – 

Demodulator Unit) to produce a binary data stream. The binary data packet must be 

deinterleaved (Deinterleaver unit) and decoded (Decoder unit). The resulting bit 

stream contains the transmitted data bit stream and the 16-bit CRC checksum. Even 

though decoding performs error correction, the result is not guaranteed to be error 

free. A possibly corrupted packet is identified by the CRC unit.  

 

The above short description summarizes the main operation of the WFTP software 

defined radio. The subsequent sections refer to specific parts of the WFTP 

communication system that could be considered as transparent concerning the 

software operation.  

1.4.4 Stop and Wait ARQ 

The implemented ARQ relies on the CRC error detection and simple messaging using 

the UDP protocol over Ethernet. The operation of the stop ‘n wait ARQ is 

summarized in some simple steps: 

1. Packet and acknowledgement numbering requires only one bit (0/1). 

2. The transmitter (Transmitter Unit) sends PACK0 and enters the server mode 

for a specific amount of time – the timeout period. During this state the 

transmitter waits for a reply from the receiver (Receiver Unit) with the same 

number (ACK/NACK0). If a timeout occurs or a NACK message is received 

then the same packet is retransmitted. If a positive acknowledgement is 

received (ACK0) with the same numbering, then it loads and transmits the 

next packet PACK1. 

3. The receiver checks each packet (Processor Unit - CRC) and transmits a 

corresponding message through UDP (as a client) with the same numbering 

ACK0/1 for correct packet or NACK0/1 for corrupted one. 

4. Duplicate packets or responses are discarded. 
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1.4.5 Audio Playback & Audio Recording 

The hardware interface between the receiver and transmitter software is the sound 

card that performs analog to digital and digital to analog conversions respectively. In 

practice the transmission is performed with audio playback using the wavplay matlab 

function while the reception though audio recording and the wavrecord function. The 

input and output is a baseband sampled waveform, as described in section 1.4.3. Even 

though this selection substantially limits the overall hardware complexity, however it 

has some serious drawbacks. 

 

The sound card, as a digital device, accepts (playback) and outputs (recording) vectors 

with amplitudes limited in the range of [-1, 1]. If the modulated signal exceeds these 

limits it is simple chopped, thus normalization should be performed prior 

transmission. The side effect is that it limits the symbol energy or the signals power 

degrading the noise immunity capabilities of our system.    

 

Another significant drawback is that the maximum playback and recording sampling 

frequency is limited to 96 KHz at maximum supported by only modern sound cards. 

This implies that we the minimum propagation delay is approximately 96msec. To 

emphasize on the transfer time (playback time) consider the transmission of a packet 

of 10kbits modulated with 4-PSK (M=4), symbol period Ts=10 samples and playback 

frequency Fs=96 KHz. The transfer time is given as the ratio of the samples of the 

modulated packet and the Fs: 

 

10000*10. 0
log 2( ). 2*96000

bits
transfer S

S

Nt T
M F

= = ≈ .5sec  

 

The transfer time is also associated with the recording timing period at the receiver; 

witch is adjusted dynamically based on the previous relation. Unfortunately these 

operations import random delays during their initiation due to memory and resources 

management of the operating system. Therefore the recording period during 

transmission is set as where ttransfer safet t+ safe is a timing constant ranging from 0.1 to 

0.5 seconds depending on the handshaking configuration. 
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1.4.6 Handshaking 

Handshaking informs the receiver that a communication session has initiated or 

terminated. Since both ends are independent the receiver must know when to start 

recording. This is achieved by the transmission of a wake up signal prior each packet. 

The Receiver Unit monitors the channel for small periods for this pattern. When the 

receiver accepts this specific pattern, starts to record for a specific amount of time 

which is dynamically configured based on the system settings.  The termination of the 

session is performed though a UDP message transmitted from the Transmitter Unit 

notifying the Receiver Unit that the last packet was transmitted. Note that 

implemented WFTP protocol is connectionless thus, a session must be set for each 

transmission. 
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1.5 Executive Summaries 

The design and development of the WFTP communication system prototype was a 

team effort where each member was assigned with the development and evaluation of 

one or more specific modules. The team members and their associated contribution 

are: 

 

Iliakis Evangellos. Vangelis was assigned primarily with the development and 

evaluation of the convolutional coding and Viterbi decoding. In addition he 

implemented the modules for CRC and PSK modulation as well as the UDP based 

Stop and Wait ARQ. 

 

Kardaras Georgios.  His primary responsibility was the implementation of the Block 

Coding modules and the PPM modulation scheme. He also contributed the Block 

Interleaving/ Deinterleaving modules. 

 

Kokkinakis Chris. He was assigned with the implementation and evaluation of the 

RLS, LMS and CMA equalizers. 

 

Mpervanakis Markos. Mark was assigned with the development of the Viterbi 

Equalization and QAM modulation scheme. Moreover he implemented the Frame 

Synchronization and Handshaking modules. He also contributed to the overall system 

structure design and assembly of the software modules developed by the team to a 

completely operating and highly configurable application. 

 

The WFTP Team. The team as a collective contributed with brainstorming and 

solutions to overcome the obstacles that emerged. However, the most important part 

was the support we all needed at difficult times. 
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2 Quadrature Amplitude Modulation 

2.1 Introduction 

This chapter is concerned with the M-ary QAM modulation; and its counterpart, the 

demodulation scheme, as is implemented and integrated in our communication system 

referred to as the FM wireless FTP prototype. To begin with, a theoretical perspective 

of QAM is presented followed by practical implementations in order to make the 

transition from theory to practice as smooth as possible. Finally, experimental results 

are presented through real time simulation of the prototype using the current 

modulation scheme. 

2.2 QAM Modulator 

As indicated, briefly, in the previous chapter; the modulator is the interface that maps 

a sequence of binary data into a set of corresponding signal waveforms suitable for 

transmission through a communication system. The QA modulator consists of several 

distinct parts – processes that handle the mapping from bits to symbols, energy 

normalization of the constellation and finally the generation of suitable waveforms 

which will be transmitted through a sound card to an FM transmitter.  

 

2.2.1 Mapping 

2.2.1.1 Background 

M-QAM signals are obtained by simultaneously impressing two separate k-bit 

symbols, on two quadrature carriers, cos2πft and sin2πft. The corresponding signal 

waveforms may be expressed as: 

 
2( ) Re[( ) ( ) ], 1,2,..., ,0

( ) cos 2 ( )sin 2

cj f t
m mc ms T

mc T c ms T c

s t A jA g t e m M t T
A g t f t A g t f t

π

π π
= + = ≤
= +

≤
 (2.1) 

 

where Amc and Ams are the information bearing amplitudes of the quadrature carriers 

and gT(t) the is signal pulse [6 pg. 400]. 

 



It’s obvious from the above equation that until the signal is to be transmitted we need 

not consider with neither pulse shaping nor carrier multiplexing. It’s also apparent 

that the baseband equivalent signal-space representation can be expressed as complex 

or Cartesian coordinates of 2 independent quadrature components, in-phase (I) and 

quadrature (Q) corresponding to x and y axis, respectively: 

 

 , 1, 2...,m mc mss A jA m M= + =  (2.2)  

 

Several constellation diagrams have been proposed for QAM transmission over 

Gaussian channels. However, the three constellations shown in figure 2.1 are often 

preferred. The essential problem is to maintain a high minimum distance between 

points whilst keeping the average power required for the constellation to a minimum. 

Calculation of minimum distance and average power is a straightforward geometric 

procedure and has been performed by Proakis [6] on a range of constellations. The 

results show that the square constellation is optimal for Gaussian channels. For the 

remaining of this chapter the discussion will be restricted to square and generally 

orthogonal constellations. 

 

 
Figure 2.1: Examples of Type I, II, and III QAM constellations. 
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2.2.1.2 Orthogonal Constellations 

The most obvious constellation diagrams are the orthogonal, if each symbol carries 

odd number of bits, and the square, provided an even number of bits. Orthogonal 

constellations are implemented by keeping the minimum Euclidean distance, between 

each message point, constant. To design the constellation, the first step is to 

implement a lookup table –matrix that directly maps k bits into symbols. Recall from 

the previous paragraph, that a symbol can be represented as  

 ( ,IQ mc mss A A )=  (2.3) 

So the first step is to define a set of discrete values –amplitudes, for each of the in-

phase (Amc) & quadrature (Ams) components. The k bits are distributed independently 

to each symbol component (Amc, Ams) to k1 & k2 bits respectively providing L1=2k1 

and L2=2k2 possible values. The range of each component, then, is defined as: 

 

  (2.4) 1 1 1

2 2 2

{(2 1 ), 1,2..., }
{(2 1 ), 1,2..., }

mc

ms

A m L m
A m L m L

= − − =

= − − =
1

2

L

where  

 

2

1

2

1

1 2

1 2

2

2

2

k

k

k

L

L
k k k

M L L

=

=
+ =

= =

 (2.5) 

 

The resulting L1xL2 of the (Amc, Ams) element matrix is then: 

 

1 2

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

( 1, 1) ( 3, 1) ( 1, 1)
( 1, 3) ( 3, 3) ( 1, 3)

( , )

( 1, 1) ( 3, 1) ( 1, 1)

ij ic js

L xL

L L L L L L
L L L L L L

s A A

L L L L L L

− + − − + − − −⎡ ⎤
⎢ ⎥− + − − + − − −⎢ ⎥= =
⎢ ⎥
⎢ ⎥− + − + − + + − − +⎣ ⎦

 (2.6). 

 

For example the constellation matrix of a 16-QAM is: 

4 4

( 3,3) ( 1,3) (1,3) (3,3)
( 3,1) ( 1,1) (1,1) (3,1)

( , )
( 3, 1) ( 1, 1) (1, 1) (3, 1)
( 3, 3) ( 1, 3) (1, 3) (3, 3) x

x y

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥− − − − − −
⎢ ⎥− − − − − −⎣ ⎦
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The resulting square constellation is depicted in the scatter plot of figure 2.2. 

 

Figure 2.2: 16 QAM constellation. 
 

2.2.1.3 Bit Mapping 

Having created the constellation matrix, or in other words, specified the signal 

amplitudes discrete range, remains the mapping of binary data to symbols. This 

procedure requires 3 steps (Fig. 2.3); a serial to parallel bit-stream conversion, coding 

(specifically Gray coding) witch is optional and finally the corresponding symbol 

assignment through the lookup table (constellation matrix).    

 
 

 
Figure 2.3: Bit mapping process.

 

The incoming binary data stream is passed through a parallel converter of appropriate 

width (k or log2 (M) bits where M is the QAM size). The data are then passed through 

an optional logic block which converts them to the equivalent gray coded codeword. 
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This is achieved using the following logic equations or the equivalent logic circuit of 

fig. 2.4: 

 

1 1

2 1 2

1 2

1 2 2

1

...

:[ ... ]
: ( )
: ( )

N

N N

N N N

N N N

N

F MSB
F MSB XOR Bit
F Bit XOR Bit

F Bit XOR LSB
where
word Bit Bit Bit Bit Bit
Bit MSB most significant bit
Bit LSB less significant bit

− −

− − −

− −

=
=

=

=

1

          (2.7) 

 
Figure 2.4: Binary to Gray converter 

 

The gray coded word is then split, assigning k1 bits as index to the first dimension of 

the lookup table, and k2 bits for the second. For example, consider the previous 

example of the 16-QAM. The parallel converter will buffer 4 bits and then feed a 4bit 

codeword to the Gray converter. The result is also a 4 bits wide binary word which is 

split to half, assigning the 2 MSB bits as the Amc index and the remaining 2 LSB bits 

to the Ams or vice versa. It’s easier to understand the indexing process by converting 

the binary indexes (00, 10 etc.) to their decimal equivalent value. Figure 2.5 displays 

both binary and decimal indexing while figure 2.6 shows the resulting mapping of 

4bit words to symbols. Of course the indexing method analyzed so far is the same 

whether Gray coding is used or not.  

 

 

00 01 10 11

00 ( 3,3) ( 1,3) (1,3) (3,3)
01 ( 3,1) ( 1,1) (1,1) (3,1)
10 ( 3, 1) ( 1, 1) (1, 1) (3, 1)
11 (

0 1 2 3
0
1
2
3 3, 3) ( 1, 3) (1, 3) (3, 3)

mc

ms decimal
binary A
A

⇔⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥− −⎢ ⎥
⎢ ⎥− − − − − −
⎢ ⎥

− − − − − −⎢ ⎥⎣ ⎦

 

Figure 2.5: Lookup table indexing. If a binary word is 0011 then 
its Gray equivalent is 0010 so the indexing is [00 10] = [-3 1] = 

[Amc, Ams]. 
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Figure 2.6: 4-bit data mapping using the lookup table of Fig 2.5. 

 

2.2.1.4 Implementation 

The most important and complicated unit of the Mapper is the constellation matrix. 

The process of converting each binary word to its equivalent gray code could be an 

easy task in hardware but from a programming style approach; it’s redundant since it 

can be integrated with the lookup table. Prior the implementation analysis let’s set 

some definitions which shall be used throughout this section (also see equation 2.5): 

 
• Nb: number of bits. 

• ND: number of symbols ND=Nb/k. 

• : Constellation matrix of size LC 1xL2. 

•  : In-phase components vector of size Ni Dx1. 

• : Quadrature components vector of size Nq Dx1. 

 

The concept of integrating the Gray mapping process is to achieve the same results 

through immediate indexing. Reordering the lookup table in a consistent way will 

provide the solution. For example, interchanging the last 2 columns & rows of the 

matrix depicted in Fig.2.5 will result in a gray coded matrix (Fig 2.7) that provides the 

same results. Borrowing a term from digital design the resulted matrix is a Karnaugh 
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map [7 pg. 325]. The invert process of retrieving the binary word using the symbols is 

just a matter of reconfiguring the look up table. 

 
 

00 01 11 10

00 ( 3,3) ( 1,3) (3,3) (1,3)
01 ( 3,1) ( 1,1) (3,1) (1,1)
11 ( 3, 3) ( 1, 3) (3, 3) (1, 3)
10 ( 3, 1) ( 1, 1) (

0 1 3 2
0

3, 1) (1,

1
3
2 1)

( )

decimal
binary

a

⎡ ⎤
⎢ ⎥

⎥⎢
⎢ ⎥− −
⎢ ⎥− −⎢ ⎥
⎢ ⎥− − − − − −
⎢ ⎥

− − − − − −⎢ ⎥⎣ ⎦

      

00 01

00 ( 3,3) ( 1,3) (3,3) (1,3)
01 ( 3,1) ( 1,1) (3,1) (1,1)

( 3, 3) ( 1, 3) (3, 3) (1, 3)
(

0 1 2 3
0
1

3, 1) ( 1, 1) (3, 1) (1,

10 11

10 2
11 3 1)

( )

decimal
binary

b

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥− −⎢ ⎥
⎢ ⎥− − − − − −
⎢ ⎥

− − − − − −⎢ ⎥⎣ ⎦

 

Figure 2.7: Reordered constellation matrices, (a) is the reordered map of Fig 2.6, while (b) is the 
final Gray coded, lookup table. 

 

The operations described so far are applied to blocks of data, in a “packaging” fashion 

so it’s most appropriate to express the Bit mapping process likewise. From figure 2.3, 

a data stream (packet) of Nb bits enters a converter that splits the stream into chunks 

of k bits each. The latter are used as indexes of a lookup table which, in the end, 

outputs the corresponding symbols. 

 
 

(1) (1)

( ) ( )

2

0111...
[100101...110] ... ...

...1001
b

D D

D D

serial
to mc mskbit
words indexing

N
N N

mc msN xk lookuptable N x

A A

A A

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎢ ⎥⎢ ⎥⎯⎯⎯→ ⎯⎯⎯→ ⇒⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦
 

Figure 2.8:  Mapping process of data blocks. 

 

2.2.2 Modulation 

Recall from the previous chapter that the output port is the Line Out of a PC sound 

card. This imports two restrictions; first the output modulated data must be a 

waveform (sampled signal), and last but not least the waveforms amplitude must be 

bounded within the range of [-1, 1].  

 

    A typical digital QAM modulator is depicted in fig. 2.9. After the modulation 

amplitudes have been generated through the bit mapping process, digital to analog 

conversion is required followed by pulse shaping prior the frequency up conversion. 
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Figure 2.9: Standard QAM modulator. 

 

Let’s ignore the pulse shaping and frequency change for now and concentrate on the 

fact that QAM modulated signals consist of two orthogonal components. Since the 

frequency change is handled by the FM transmitter, the only consideration is to create 

a sampled equivalent waveform witch can be transmitted through the sound card. 

Under these assumptions the entire process of the QAM modulation can be integrated 

with the pulse shaping by selecting two orthogonal pulses reaching the modified 

modulator of fig. 2.10 that happens to be the same for the PSK module. 

 

 
Figure 2.10: Modified QAM modulator. 

 

2.2.2.1 Implementation   

The mapping process, as implemented in the previous section, provides the symbols 

that carry the information bits. Since the information data are processed by blocks the 

output consist of two vectors I and Q of the consecutive components (Aic, Ais) of each 

symbol Si, respectively. Prior the analysis of the implementation it’s useful to set 

some definitions: 

• ND: number of bits per information block. 
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• N: number of samples per basis function ( )y n . 

• M: QAM size. 

• Ns: number of symbols. 2/ log ( )S DN N M=  

• S: information bearing symbol. [ ]m mc ms mc msS A jA or S A A= + = . 

• Amc: in phase component of symbol at time m. 

• Ams: quadrature component. 

• 1 2,y y : sampled orthogonal ( 1 2 0T =y y ) basis functions of size Nx1. 

• :vector of in-phase components,  1DN xi 1 2[ ..., ..., ]
D

T
c c mc N cA A A A=i

• :vector of in-phase components,    1DN xq 1 2[ ..., ..., ]
D

T
s s ms N sA A A A=q

 

A single modulated waveform (also transmitted) at time m is defined as: 

 

  (2.8) 1 2( ) ( ) ( ) , 1,2...,m mc mstr n A y n A y n n N= + =

 

Relation (2.8) is expressed in vector notation as: 

 

  (2.9) 
S

T
N xN = +1Tr iy qy T

2

 

Note that the basis functions are produced using the Gram – Schmidt procedure [6]. 

Each row of the matrix Tr is a modulated waveform, of N samples, that can finally be 

transmitted. The following figures (2.11, 2.12) represent the modulation process of a 

15 bits data stream using 8-QAM and 20 samples per symbol. The output of the 

mapper module consists of 5 symbols, each bearing 3 bits of information. The second 

figure depicts the modulator output using as basis functions y1, y2: 
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Figure 2.11: Up sampled bit mapper output for an 8-QAM modulator. The dotted line represents 

the in-phase component, while the dashed line the quadrature. For the duration of each (N=20 
samples), the corresponding symbol is also noted (s1 etc…).  
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Figure 2.12: 8-QAM modulator output. The basis waveforms are modulated by the symbols of 
Fig 2.9. The output per time interval of N=20 samples, is also annotated for ease of comparison. 
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2.2.2.2 Energy Normalization 

The previous section provided a compatible way to transmit the modulated data. 

Recall that the second restriction of this system is that the output must remain 

bounded at [-1 1] amplitudes. Levels above these values are literally chopped witch 

means immediate loss of information. Another problem that could occur, is when the 

peak amplitude levels are too low, for example [-0.2 0.2], resulting to a faint signal 

more acceptable to noise or other distortions. Both cases are dealt through means of 

waveform scaling, or energy normalization as will be made clear shortly. 

 
A first example of a waveform that exceeds the maximum amplitude level constraint 

is that of Fig 2.12, higher QAM levels can have more severe loss at the Line Out port, 

as Fig 2.13 demonstrates. 
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Figure 2.13: 32-QAM modulated signal, with sampling frequency 20 samples/ symbol, 

and the cropped version that occurs due to hardware limitations. 
   

 To circumvent this issue, the obvious solution is to scale the waveform amplitudes to 

acceptable levels. In addition, since the symbols of the orthogonal constellations must 

have equal minimum distances, the scaling should be uniform. Removing the last 

constrain could offer better performance but at a higher complexity to both transmitter 

and receiver. Considering the uniform case, the scaling factor is: 
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 max_ limit 1
| _ | | _

scale
|peak level peak level

= =                     (2.11)   

where max_limit the maximum output amplitude and peak_level the absolute 

maximum modulated signal amplitude. Due to symmetry peak positive and negative 

levels are equal in absolute value. Applying the scaling factor, the equivalent 

modulated and scaled signal (depicted in Fig 2.14) is: 
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1 2
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( . ) ( . )

m mc ms

mc ms
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Figure 2.14: Normalization of a 32 QAM modulated signal. 

 
Scaling can also be useful when the signal is weak. This case occurs for high 

sampling frequencies due to normalization side effects of the Gram – Schmidt 

method. Higher sampling frequencies downgrade the transfer rate performance, since 

they increase the transmission time, but never the less, can be useful due to the 

increased resolution of the transmitted symbols. Figure 2.15 represents this case for 

N=100 samples using 4 - QAM. The procedure is the exact but with the difference 

that the signal is in fact amplified. 
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The result (2.12) allows the scaling to be implemented along with the construction of 

the constellation, in other words in the bit mapping module. So a revised form of the 

equation (2.4) that will also consider the output normalization is: 

 

1 1 1 1

2 2 2 2

:

{(2 1 ) , 1,2..., }
{(2 1 ) , 1,2..., }

m c

m s

d scaling factor

1

2

A m L d m L
A m L d m L

= − − =
= − − =     (2.13) 

 
The average energy of the constellation is: 
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2 2

1 1

1 || || || || , 1, 2...,
M M
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dE ds s m
M M= =

= = =∑ ∑ M  (2.14)  

 

Eventually, scaling results to symbol energy normalization, either increasing the 

transmitted energy, when d>1 or the opposite, when d<1. Further references to the 

effects of the energy normalization are left to the demodulation section of this chapter. 
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Figure 2.15: 4 QAM modulated and boosted signal. 
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2.2.2.3 Implementation 

Currently the system supports 3 different ways of normalization: 

 Average energy normalization: 
  

If the desired mean energy output is Ed then the scaling factor (d) is 

d

av

Ed
E

=               (2.15) 

 
 Peak energy or peak power normalization: 

 
Defines the maximum symbol energy Epeak: 

 2arg max {|| || }
peak

m m

E
d

s
=  (2.16) 

 Automated:  
 

The automated normalizing method implements the process discussed at the 

previous paragraphs and does not require user input. A necessary step is to 

calculate a priori the maximum possible amplitude of a generated modulated 

signal.  

Define the matrix IQ as [ ] 2Mx
=IQ Ac As and peak_level the peak amplitude 

of all possible modulated waveforms. Then: 

  
2

_ max .
xN

peak level
⎧ ⎫⎡ ⎤⎪ ⎪= ⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

1

2

y
IQ

y
                         (2.17) 

where M the QAM size , y1, y2 the basis functions and N the number of 

samples of the basis functions. It actually implements all possible occurrences 

of equation (1.8). The scaling factor then is d=1/peak_level. The resulting 

peak level depends on three factors, as can be observed from relation (1.17); 

the constellation or QAM size (M), the basis functions (y1, y2) and the 

sampling frequency (N) used to generate the discrete set of basis functions. 

Note that the third method optimizes mean and peak energy in to a maximum 

allowed limit as mentioned previously. 
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If the constellation matrix (1.6) is defined as C, then the scaling is straightforward as 

Cn = d*C, where Cn the new elements matrix or lookup table. Figures 2.16 present 

the resulted constellations for each operation. 
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Figure 2.16: (a) Mean energy normalization to Eav=1. 
(b) Peak normalization to Epeak=1. (c) Automated 
normalization to maximum allowed peak / mean 
energy. The star like marker represents the default 
symbols of a 16 – QAM constellation and the dotted, 
the normalized. 
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2.3 QAM Demodulator   

The demodulator is, as its name implies, the inverse process of the modulator. Prior 

this stage the sampled received signal goes through the FM receiver, the sound cards 

Line in port, frame synchronization and possibly, equalization. For the purposes of 

this section, it’s assumed that the communication channel is simply AWGN, meaning 

that the previous stages are performing perfectly. It consists of two discrete parts or 

modules. These are, in order, the signal demodulator and the symbol detector. The 

demapper is implemented within the symbol detector and is the invert process of 

mapping thus it shall not be treated as a discrete process.  

2.3.1 Signal Demodulator 

2.3.1.1 Case 1: AWGN channel 

The signal demodulator module, simply extracts the information from the carrier 

signal which for this first step is a symbol, as defined previously. To conform to the 

previously used notation, one instance (x) of the received signal Rx shall be: 

 

 
( ) ( ) ( ) , 1, 2... : /

(.):
Rx n Tx n v n n N and N samples T
v white gaussian noise

= + =
 (2.18)  

 

For this stage, there are 2 implementations thought the literature, the correlation 

demodulator and the matched filter demodulator. Although they are equivalent, our 

implementation matches the design of the correlation demodulator [5&10]. 

 
Recall that the transmitted signal Rx is in fact a linearly weighed sum of the 

orthogonal basis functions ,1 2y y . In fact each instance of the received signal goes 

through a bank of cross-correlators that compute the projection of Rx(n) onto the basis 

functions, as illustrated in fig. 2.17. The result of each correlator is a noisy estimate of 

the in-phase and quadrature components (see Fig 2.19 below).  
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1

N

n =
∑

1

N

n =
∑

 
Figure 2.17: Correlation demodulator, where v1, v2 are the noise components. 

 

2.3.1.2 Case 2: ISI 

Previously, was assumed that the signal has already been equalized prior the 

correlation, but that is not always the case. In fact, due to speed problems of the LMS 

and RLS equalizers for large packets, i.e. 100KB, the correlators precede the 

equalization stage, therefore reducing substantially the execution and convergence 

timing requirements.  Considering the channel (joint responses of sound card, FM 

transmitter, RF channel, FM receiver and sound card input) as linear FIR of L length 

then the received signal is: 

     

 1
0

1

0
1

( ) ( )* ( ) ( ) , 1, 2...

:{ }

,

x x

L
k k

L

x x k x k x x Ix Qx
k

R n T n h n v n n N
or
h h

r h s h s v where r r jr

−
=

−

−
=

= + =

= + + = +∑

 (2.19) 

 

The last relation is the output from the correlator where each component is a weighted 

sum of previous transmitted symbols –short termed ISI. 

   

2.3.1.3 Implementation 

Consider that the received signal is in fact a sequence of ND noisy transmitted 

modulated waveforms:  

 

 ( ) ( ) ( ), 1, 2..., 1, 2...,x x DR n T n v n for x N and n N= + = =  (2.20) 
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The process of correlation with a bank of basis functions that “extracts” the noisy 

components: 

  (2.21) 
1

( ) ( ), 1, 2
N

xk xk k k x
n

r s v y n R n k
=

= + = =∑
 

Using vector notation: 

 1 2[ ( ) ( ) ( ) ]
DNxN ND

R n R n R n=R  (2.22) 

 1 1 2D

T
xN j= +r Ty R y R  (2.23) 

 

So the resulting vector is the complex representation of each received symbol.  

Figure 2.18 illustrates a part of a 4 QAM modulated signal, transmitted trough an 

AWGN channel and the correlator outputs. Note that the process is the same for the 

2

Tr

nd case of ISI presence, although the results will differ (Fig. 2.19) until ISI is 

removed. 
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Figure 2.18: Received waveform and correlator output for simple AWGN channel. 
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2.3.2 Symbol Detector 

 

Symbol detection sums up the process of estimating the transmitted symbol based on 

the observation vector r (eq. 2.23).  For the case of simple AWGN channel or when 

the ISI is removed through equalization, therefore memoryless modulation signals, the 

optimum detector is the symbol by symbol detector. In the presence of memory the 

optimum detector is the Maximum Likelihood Sequence Estimator. The latter is 

examined in Chapter 3, under the scope of the Viterbi equalizer. 

 
The decision rule is based upon finding the symbol that is closest in distance to the 

received vector r, referred to as minimum Euclidean distance detection. The distance 

metrics for any orthogonal modulation scheme are: 

 

  (2.24) 
2

2

1
( , ) ( ) , 1, 2...,m k mk

k
D r s m

=

= − =∑r s M

 

which divide the constellation into decision regions making the process of estimation 

quite straightforward.  

 

The resulting error probability for m-ary QAM modulation schemes: 

 

 
2

2

,

/ 21

2

311 1 2 1 ,
( 1)

( )

av
M av bit av

o

t

x

EP Q E
M NM

Q x dte
π

−

⎡ ⎤⎛ ⎞⎛ ⎞= − − − =⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠⎢ ⎝ ⎠⎣

= ∫

kE
⎥⎦  (2.25) 

 

In the case of Gray coded modulation, assuming that only one bit error occurs per 

symbol, which is the most likely form of error, the probability of bit error: 

 ,
1 , log (M biterr MP P k
k

= = 2 )M  (2.26) 
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(a) 

 
(b) 

Figure 2.19:  Symbol (a) and bit (b) error rates of M-ary QAM versus bit SNR. 
 

2.3.2.1 Implementation 

The detector is implemented in block form, performing estimation per packets. 

Therefore, to be consistent with the previous stage, the input to the detector is a vector 

of all received symbols (r) for each transmitted packet. Then the metrics are 

calculated using the matrix(S) and the symbol which gives the minimum distance is 

considered the most probable.  

 

1 1

D D

I q
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xI xq

N I N q
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r jr

r jr

⎡ ⎤+
⎢ ⎥
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⎢ ⎥= +⎢ ⎥
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⎢ ⎥
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1 1

1 1

1 1

...

D

c s Mc Ms

c s Mc Ms

c s Mc Ms N xM
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A jA A jA

+ +⎡ ⎤
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⎢ ⎥
⎢ ⎥+ +⎣ ⎦

S

where x denotes t the xth transmitted symbol and S is formed from the set of all 

possible symbols {Amc+jAms}, m=1,2…M. 

Each element of the distance vector D of size NDxM: 
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1 1 1 1 1
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2 1 2 1 2 2

2 2
1

2 2 2 2
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Finally the index of the minimum per row of the matrix D is retrieved and used as 

pointer to a modified lookup table (inverse lookup table (LT)), like a sorted version of 

the constellation matrix, to retrieve the corresponding bits. 

 

 
{ : arg min ( ( , ))}

_ _ (
x m

)x x

index m x m
binary word inverse LT index

=
=

D
 (2.27) 
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3 Viterbi Equalization 

3.1 Introduction 

The second chapter presented the optimum symbol-by-symbol detector, under the 

scope of quadrature amplitude demodulation and memoryless signals. However, when 

the communication channel induces memory, meaning that consecutive symbols are 

interdependent, optimality is achieved when the decisions of the detector are based on 

observations of received symbols sequences, over multiple signaling intervals. 

Therefore, it is necessary to readapt the channel model, to include the intersymbol 

interference (ISI). Afterwards, we present briefly the maximum likelihood sequence 

detector and its implementation, the Viterbi algorithm in more depth. Finally, the 

derived Viterbi equalizer structure is presented.  

 

3.2 CHANNEL MODEL 

The channel generally is the medium through the information travels until it reaches 

its destination. In previous chapters, we assumed that it is simply AWGN. That is not 

entirely true, although for various modulation schemes can be considered as such 

since ISI effects are not severe. Recall, also, that for the purposes of this project, the 

WFTP prototype, the channel impulse response is the joint responses of each 

intermediate stage from the sound cards line out until the line in:  

 

 [ ( )* ( )* ( )* ( )* ( )]i LO tr c re LI tc f t f t f t f t f t iT==  (3.1)       

 

where T is the symbol interval. 

 
Figure 3.1: The data transmission system. 

 

Let us consider as the discrete time channel the combined result of each stage until the 

correlators output. Then, the resulted system model is depicted below. 
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Figure 3.2: Discrete-time channel model. 

 

From now on, we concentrate on the discrete time model of figure 3.2, which satisfies 

the following assumptions: 

 

• The channel h is linear. 

• W is Gaussian with zero mean and σ2 variance. 

• Each source symbol ix  can take one of the m integer values 0, 1…, m-1 

independently with equal probability, where m is the alphabets size.   

 

Now we can define the notation used throughout this chapter. Let h be the channel 

impulse response of length L=v+1, where v is the channel memory length or 

equivalently the number of interfering symbols. Let x be the source symbol sequence 

of length l. Denote z and w as the received symbol sequence and noise sequence, 

respectively, each of length l+v-1. Also, define y as the transmitted symbol sequence. 

Besides, define x  as the estimated symbol sequence and  the corresponding 

transmitted symbol sequence. By definition we have that z=y + w and y=h*x. Each 

transmitted symbol is then: 

y

 
1

v

i o j i
j

y h h x j−
=

= +∑  (3.2) 

where the second term is the induced ISI. 

 

 
Figure 3.3: Finite state machine (FSM) model.  
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The above equation, allows us to describe the channel as a finite-state machine 

(FSM), as shown in figure 3.3.  Regarding the stored elements as the state of the FSM, 

each transmitted symbol can be treated as the output due to a specific state transition. 

Letting the state sequence at time i as { }is s= , where 1 2( , ..., )i i i i vs x x x− − −=  then, the 

transmitted symbol 1( , )i i iy s s +=  is solely determined by the state transition . 

Also, note that the state  depends on the previous state 

1( , )i is s +

is 1is −  and the current source 

symbol ix  that enters the FSM. 

 

3.3 MAXIMUM LIKELIHOOD SEQUENCE ESTIMATION 

In the receiver, only the received sequence z can be observed. Decision on which one 

of many permissible source sequences being transmitted is based on probabilistic 

argument. Denote X as the set of all possible source sequences. We want to maximize 

the a posteriori probability P(x|z) for all x in X. This maximum a posteriori (MAP) 

rule minimizes the error probability in detecting the whole sequence, and is thus 

optimum in this sense. A receiver detecting signals using the MAP rule is referred to 

as a MAP receiver. 

Under the condition that all source sequences are equi-probable (i.e. the a priori 

probability P(x) is the same for all x in X), maximizing P(x|z) is equivalent to 

maximizing P(z|x). This is termed the maximum likelihood (ML) rule. A receiver 

detecting signals using the ML rule is referred to as a ML receiver or a MLSE. Note 

that the MLSE can be treated as a special case of the MAP receiver. Since the source 

sequence and the state sequence are one-to-one correspondent and the noise terms wi 

are independent, the log likelihood function 

 , (3.3) 1 1ln ( | ) ln ( | ) ln ( | , ) ln ( ( , ))i i i i i i
i i

P z x P z s P z s s P z y s s+ += = = −∑ ∑

where 1( , )i iy s s +  is the transmitted symbol corresponding to the state transition 

( ). As the noise components are independent and Gaussian, the joint probability 

density of the noise sequence w is  

1,i is s +

22

2 22 2
2

1( ) ( ) ( ) ,
2

ii
ww

i
i i

p w p w e e
ι

σ σ

πσ

− −
∑

= = = Κ∏ ∏              (3.4) 
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where K is a constant. Therefore, it is only needed to minimize the 

, which is the Euclidean distance between the received and the 

possible output of the FSM.  

22 (i i
i i

w z y= −∑ ∑ )i

1

]

 

3.4 THE VITERBI ALGORITHM  

A brute force approach to the problem of MLSE is to enumerate all valid source 

sequences. This would require  calculations, each of squaring operations and 

additions. Thus, is unacceptable as the computational time increases 

exponentially with the sequence length . 

m

2 −

 

Algorithms that are more efficient can derive through the representation of a channel 

as a finite state machine. Usual representation of FSM is with state diagrams. An 

alternate representation is with the trellis diagrams. For example, figures 1.4 (a) and 

(b) illustrates the state and trellis diagrams respectively of a binary PAM system with 

channel impulse response . Note that state is defined as (0 1[ ] [1 0.5Th h h= = is 1ix − ) 

and each transition ( 1,i is s + ) is associated with a 

weight 1 0 1 1( , ) 0.5i i i i i i 1y s s h x h x x x+ −= + = + − . 

 

 
(a) 

 
(b) 

Figure 3.4: (a) State diagram of the channel h= (1, 0.5) for binary transmission. (b) One stage of 
the corresponding trellis diagram. 

 

Since the trellis can be regarded as a graph, from now on, a state is called a node, a 

transition from predecessor node to its successor, or generally between nodes, is 

called a branch and a state sequence is called a path. The weight associated with each 

branch is termed branch metric and the accumulated weight associated with a path is 

termed as path metric. 
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The criterion in MLSE is minimized to the calculation of the Euclidean distance 

 thus, is defined as the branch metric for each branch  of the 

trellis. We can find the shortest path, the one with the minimum path metric, by 

computing the branch metrics stage-by-stage. Each node has m incoming branches, 

except a few stages in the beginning or the end of the trellis diagram, due to the 

advent of a new source symbol in the FSM. Of the m incoming branches, only the one 

connected with the minimum partial path metric is retained, forming the survivor 

path. Partial paths associated with the other m-1 incoming branches are discarded 

since the shortest path must contain the survivor path if it goes through that node. 

Therefore, the number of survivor paths is the same as the number of nodes at each 

stage,  where v is the channels memory length. After all stages of the trellis have 

gone through, the resulting shortest path corresponds to the maximum likelihood 

sequence.   

2
1| ( , )i i iz y s s +− |

i

1( , )i is s +

vm

 

The details of how the VA calculates the shortest path are best demonstrated with an 

example. Consider a binary transmission with channel impulse response 

 of v=2 and m=2. The number of possible states is mTh =[1 0.8 0.3] v = 4, with each 

state being a sequence of length v of source symbol combinations, S= {00, 01, 10, 

11}. The state diagram illustrates the valid transitions, driven by the current source 

symbol and the associated weights ( /ix y ).  For the trellis diagram, assume that the 

observed sequence at the receiver is z = [0.8, 0.5, 1.2, 0.6]. The starting state is 

assumed to be the s0 = 00 or that 1 20, 0x x− −= = . The weight of each branch is the 

branch metric and the path metric is shown inside each node. The solid lines represent 

the survivors and the bold lines the resulting shortest path. 

 
 

 

 

 

Figure 3.5: State transition diagram for binary 
transmission xm:{0,1}, for m = 0,1 and channel 

impulse response  Th =[1 0.8 0.3]
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Figure 3.6: VA algorithm for channel impulse response  and received 

sequence z . 

Th =[1 0.8 0.3]

 = [0.8, 0.5, 1.2, 0.6]

 

The process calculating the path metrics stage-by-stage is the forward evolution of the 

algorithm. Having reached an end, starts the back propagation where the optimum 

path and accordingly the most probable, in the ML sense, sequence is estimated. Even 

though the trellis diagram could be calculated using trees; simpler but more efficient 

structures avoid the costs of storing pointers and can be implemented much easier. For 

the purposes of this chapter, we shall analyze two main structures / matrices used to 

store only required information.  

 

The first is a container for the path metrics. Notice, though, that at each stage only the 

metrics of the previous are required. Therefore, denote the path costs matrix . 

The first column stores the old metrics while the second the new. At the next stage, 

the most recent calculated become the old etc..., until the end where only the new 

values are needed. The PC is indexed through the states in some proper form (binary 

or decimal representation), for example, using the example of figure 3.6 for the 

stages  and regarding as survivor the 00 state, the new 

value is stored . 

2vm x
PC

, 1i i + (00)( 00
ioldc s= =PC ,1)

1

(00)( 00,2)
i news c
+

= =PC
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Notice that we need to know during the back propagation (backward stage) the 

sequences of nodes that lead to the shortest node or equivalently the nodes of the 

shortest path. These nodes are of course the survivors at each stage. Therefore, denote 

the survivor matrix or map, ( 1)vm x l−M  indexed the same way as the costs matrix. 

Each element is the survivor node si-1 at stage i for node si. For example, from figure 

3.6 the surviving node of state is  whilst for  is  and the matrix is 

updated as M(00,2)=00 , M(00,3)=01 correspondingly. Thus, each row consists of 

surviving nodes that point to states 00, 01, 10 and 11. Both matrices are depicted in 

figure 3.7 with values corresponding to the trellis of figure 3.6. 

(00)
2s (00)

1s
(00)
3s (01)

2s

        

PC (costs matrix)  Map 

Si OLD NEW  Si i=1 i=2 i=3 

00 0.62 0.52  00 00 10 01 

01 0.27 1.2  01 10 11 11 

10 1.22 0.52  10 00 01 01 

11 1.2 1.71  11 10 10 10 

 1 2      

 

Figure 3.7: PC and Map structures at the final stage of the VA of figure 3.6. 

 

The first step of back propagation is to select the node with the minimum path metric. 

Afterwards the map is accessed in order to derive the optimum path: 

 

,min

1,min ,min

2,min 1,min

1,min 2,min

min{ (:, )}
( , 1)
( , 2

...
( ,1)

i

i i

i i

S PC NE
S M S i
S M S i

S M S

−

− −

=

= −

=

=

)

W

−    (3.5) 

 

The initial state is anyway known so it does not need to be stored or retrieved. For our 

example, there are two possible estimated sequences of transmitted source 

symbols (1,1,0,1) (1,1,0,0)x or= . In general, when the path metrics are equal, the 

decision is taken in random. 
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Let us look at the algorithms complexity. In general, there are states per stage of 

totally  stages. Assuming that the branch metrics are precomputed then one 

multiplication, one addition and m-1 binary comparisons are needed for each node. 

Thus, the time complexity of the VA is 

vm

1( vO m )+  operations per detected symbol but it 

is increasing linearly with rather than exponentially. Its main disadvantage though is 

the huge storage it requires. Each survivor path requires bits and each 

metric p bits resulting in a space complexity of bits. For large 

channel memory or symbol alphabet, result to prohibitive memory requirements. 

Besides, the incurred detection delay of the entire sequence could be undesirable. 

Therefore, some modifications must be made in order to make VA more practical.   

2log ( )v m

2( log ( ) 2 )vm v m p+

 

A first approach is to reduce the trellis search depth to a manageable one; δ, called the 

truncation depth. Applying the truncation depth, a decision on input symbols ix δ− are 

made at time . After the decision path history before or at that time are discarded and 

the next stage is computed. Such modified algorithm is called the truncated VA or 

TVA. Note that the time complexity is not affected. The exact performance 

degradation due to the truncation is analytically intractable and is normally found by 

experimentation. However if δ is large enough the performance loss is negligible. 

Figure 3.8 shows the TVA with truncation depth Notice that the node associated with 

the shortest survivor is released and all path history at or before time is retained 

without recalculation. In this way only the path information involving the last stage is 

computed. 

i

i

 

In all examples, the initial state was arbitrarily chosen to be the state 00. This usually 

is not the case as the data segment follows a training sequence. Therefore, to create a 

known past and to “lead”, at the same time, the first steps of the VA we inject a 

sequence into the data stream to be used as a preamble, known also to the algorithm, 

avoiding erroneous start-ups that could propagate. In the same manner, we also use a 

terminating sequence or postamble.  Usually for the sake of simplicity, the length of 

both sequences is the same, ranging from 4 to 10 symbols maximum. 

 

 3-51



 
(a) 

 

 

 

 
(b) 

Estimated
symbols

Si= 00

Si= 01

Si= 10

Si= 11

Zi

i = 2

1.6

0.58

0.2

0.18

0.25

0.25

0.04

0.64

0.09

1.2

1

1.87

0.62

0.27

1.22

1.2

0.52

1.2

0.52

1.71

0.04

0.66

0.25

0.25
0.09

0.49

0

1

0.5

0

i = 3 i = 4

 
(c) 
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Figure 3.8: The truncated Viterbi Algorithm with truncation depth of 2 is applied to the example 

of figure 3.6, the estimated symbols are: (a) 0 1x = , (b) 1 1x = , (c) 2 0x = , (d) . 3 0x =
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3.5 Viterbi Equalizer 

The Viterbi equalizer is in fact the combination of a channel estimator unit and the 

Viterbi algorithm usually the truncated implementation depicted in figure 3.9. 

 

( )ĥ m

 
Figure 3.9: Viterbi Equalizer block diagram 

 

In wireless applications the channel is time varying so the channel estimator is an 

adaptive algorithm such as RLS or LMS. The estimation is based on the training 

sequence ahead of the data segment performed at a symbol rate meaning that instead 

of operating on the received sampled training signal, it uses the symbol outputs from 

the correlator. The accuracy of the estimated channel taps, feedbacked to the VA 

detector unit, depends on the length of the training data, and the channel length. 

Another important issue is the speed the channel changes, since the estimation will 

not be valid for all the data sequence.  

 

However, due to that the receiver operates in a block basis the channel estimation is 

performed though implementing direct LS estimation [10]. The channel coefficients 

are provided by the solutions of the Least Squares equations implemented in block 

form:  

1 2

1 2

[ ... ]

[ , ... ]

T
N

T
N

y y y received symbols vector

d d d training symbols vector

=

=

y

d  

Then the least squares solution of L taps and channel estimation is: 

 †( )H H
LS =h A A A y  (3.6) 

where A is the toeplitz matrix of the training symbols: 
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1

1

1 1

...

...

...

L

LxN L

N L

d d

d d
+ −

+ −

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

A   . 

The indexes H, denote the Hermitian and Penrose Moore pseudo inverse operations 

respectively.  

†

 

3.6 PERFORMANCE EVALUATION 

The scope of this section is to evaluate parameters or algorithms through simulation 

or experimentation. The goal is to either eliminate or limit the range of values of 

involved parameters as well as to identify possible dependencies and finally to 

estimate the impact each unit causes when applied to the system. For this part, the 

inspection shall begin from the channel estimation units and their timing requirements 

and afterwards the Viterbi Equalizer is evaluated. 

 

3.6.1 Channel Estimation 

The first part evaluates both estimators for both channel and sequence lengths versus 

SNR though Monte Carlo simulation. The channel is generated randomly while the 

additive noise is white Gaussian. The performance metric is the mean square error of 

the estimated channel impulse response ( h ) and the original applied to the training 

data ( c ): 

 

2
2

1

1

|| ||_ :

:

Mx

Mx

c hchan mse h estimated channel
L

c channel

−
=  (3.7) 

 

The second metric comprises of the execution time for various channel and training 

sequence lengths. The simulation results are illustrated in figures 3.10 (a) and (b) 

respectively.  
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Figure 3.10: (a) Mean square error of the channel and the estimated versus the SNR for channel 
length L=10. (b) Timings of LS algorithm for channel lengths up to 32 taps and sequences of 100, 

1000 and 5000 4-QAM modulated symbols. 
 

The simulation proves that the estimation is dependent of the training sequence 

length, as always suspected; however, what remains to be seen is the equalization 

performance of the VA using the estimated channel response feedback from the LS 

unit. Finally, figure (b) shows that the delay the estimator adds to the receiver is quite 

small, meaning that large training sequences will not cause noticeable overall 

performance degradation due to processing delay of the LS estimator. 

 

3.6.2 Viterbi Equalizer 

The Viterbi equalizer is implemented using the TVA referenced previously due to 

memory limitations. Therefore, the parameters under consideration are the traceback 

length (Tblen), channel impulse response length (L) and the size of the training 

sequence (N). The quality performance metric is the symbol error rate while the speed 

performance is, as always, given by the execution time. Due to its time complexity 

though, it is prudent to analyze the time delay prior the error rate for the latter results 

to be of any practical usage. Figures 3.11(a), (b) translate the theoretic complexity of 

VA to timing requirements relative to the application platform (Matlab). Notice that 
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the alphabet is consisted of a 4-QAM constellation, thus m=4, while the sequence’s 

length is measured in bits. 
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Figure 3.11: (a) Time delay with respect to sequence length (in kbits) and channel length (L), for 
m=4 (4-QAM) and traceback length (Tblen) 20 stages.  (b) Time delay versus channel length (L). 
  

Figure 3.11(a) illustrates the TVA’s time complexity as time delay versus the data 

size and the estimated channel’s length, while 3.11(b) emphasizes the exponential 

delay impact of channels with length L > 5. To keep the analysis simple we use as 

common ground the resulting total number of nodes-states per stage, affected by both 

estimated channel impulse response length (L) and the size of the alphabet (m), which 

is a power of 2. Thus the total nodes per stage expressed likewise are: 

 

  (3.8) 1 log2( )2L
nodes

v mN m −= =

 

Figure 3.11(a) confirms the linear relation of VA and input sequences length and 

provides the time needed for the add-compare-select and memory access operations 

per node, which is approximately 1μsec with the current hardware. The choice of 

trace back length theoretically does not reduce the total time of equalization of a 

sequence but in a pipelined system limits the delay per symbol estimation to 

seconds. Unfortunately, the receiver structure cannot operate in such 

continuous mode thus we sustain the full delay of sequence equalization. Practically 

610len nodesTb N −
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though, it limits the memory usage so it can be entirely performed in the much faster 

physical memory (RAM), limiting the virtual memory access, providing a great 

improvement over large sequences.  

  

Figure 3.11(b) clearly states that the incurred delay for is unacceptable and 

prohibits the use of Viterbi Equalization if the resulting states per stage exceed that 

limit. Also, note that the maximum is 2

122nodesN >

16 nodes. Any combination of ISI length and 

alphabet size beyond that limit completely depletes the memory needed to store just 

each stage or requires more than 2GB of either physical or virtual space. Therefore, 

we set a strict upper bound of the possible number of nodes per stage to 

 

  (3.9) 12max 2nodesN =

 

To overcome, we can either select modulation schemes with small alphabets or /and 

truncate the estimated channel to an acceptable length when possible. 

 

Having defined a set of parameters to allow a realizable application of the TVA, we 

can now proceed with evaluation of the equalizer. Implicated parameters are the 

estimated channel, the length of ISI, the traceback length as well as the modulation 

scheme.  
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4 Synchronization 

4.1 Introduction 

In a wireless communication system, there is the problem of generally detecting a 

signal and some essential characteristics for reliable data transmission. 

Synchronization techniques can be used for clock recovery, which attempts to 

synchronize the receiver clock with the transmitter’s symbol rate clock, and for 

“waking up” the receiver, causing an interrupt so that reception can be initiated. 

Specifically, for this wireless prototype, transmission is achieved through playback, 

while reception, through recording; therefore, there are unpredictable delays in both 

operations due to the nature of these processes (memory management, threading 

etc…).  The following paragraphs present two techniques, implemented in this 

prototype to trace the incoming activity inside a hostile environment and control the 

aftermath of delay. 

 

4.2 Framing – Packet detection 

Clock recovery, in a broader sense, helps to detect the recorded sequence –packet 

inside a larger sampled signal of unknown delay, by searching for a known sequence, 

a specific pattern. The source of the delay is of non-importance. For this purpose, 

each data stream is injected with a sounding sequence, followed by actual data. Since 

it is adding a frame of symbols, the process is also referred to as framing. The receiver 

scans for this sequence by performing an autocorrelation and the sampling point that 

the maximum correlation occurs is deemed the correct, from which the modulated 

data follow (fig. 3.1). This header is also used for training channel estimators or 

equalizers, so for the rest of the chapter it will be referred to as the training sequence. 

For the same reason, also, the training sequence is a fixed number of bits of multiple 

time slots, randomly chosen in order to produce a strong auto correlated peak and 

provide enough training information. It is important to note that no assumptions are 

made regarding the channel meaning that it should perform regardless of the 

distortion; it is caused either by simple additive noise or due to channel memory (ISI) 

as well. Figure 3.1 illustrates a packet –the transmitted sequence, inside a larger one, 

the recorded. Being able to identify where the training frame starts or ends, is the key 
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to retrieving the transmitted packet and operating on it. The margins prior and after 

the packet are caused by early and prolonged recording respectively, of tsafe seconds 

combined. Therefore, the recorded sequence has a length of packet transmission time 

plus a safety margin of tsafe seconds.   

 

 
Figure 4.1:  The packet at the receiver. 

 

Let us make some definitions witch will be used throughout this chapter. The packet 

prior to transmission is measured in bits while after modulation, in samples or in 

symbols. It consists of three fields, the training sequence witch, as mentioned before, 

is concatenated with the data stream, the data stream and finally the CRC, that is used 

for error checking and is standard 16 bits wide.  The notation for each field’s size in 

bits is , ,train data crcB B B respectively. The sampling and transmission frequencies are 

but quite often are equal, so only  is used implying this equality, and the 

symbol frequency

,S TF F SF

symbolF  as samples per modulated symbol. Therefore if M is the 

modulations size, then the size of a packet in samples is: 

 

 
2 2log ( ) log ( )

data crcpacket train
packet symbol symbol

B B B BN F
M M

+ +
= = F  (4.1) 

 

The excess samples of the received frame are:  

 excess S safeN F t=  (4.2) 

Thus, a frame is consisted of frame packets excessN N N= +  samples.  

 

Having defined some crucial parameters lets see how the position of the packet can be 

determined. Correlation calculates the similarity of two sequences, possibly shifted in 

time, thus it is a simple form of pattern matching. Because the known sequence shall 
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be compared with a larger sequence, cross correlation will be used. Cross-correlation 

in discrete time is a function of the time shift (lag) between two sequences that for our 

case are the known training sequence (d) and the received (rx): 

 

 
0

1( ) [ ] [ ]
frameN

du
k

R j d k u k
T =

j= +∑  (4.3) 

 

The cross correlation function is maximized when the most similar sequence is found. 

Recall that matched filtering also produces similar results thus can also be used, 

providing as filter the known training sequence but flipped: 

 

 [ ] [ ]* [ ]trainr n u n d N n= −  (4.4) 

 

 
Figure 4.2:  Proposed synchronizer. 

 

In our implementation, matched filtering is used and the output is squared. The index 

of the maximum outcome is considered the end of the training sequence. This is 

simply the position of the training sequence inside the packet increased by a delay due 

to factors previously mentioned. Figure 3.3 illustrates the synchronizer of figure 3.2 in 

action. Knowing the length of the training sequence, it is a simple process to extract 

the entire packet from the received frame. 
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Figure 4.3: Sequence detection using matched filtering. 

 

 

4.3 Handshaking  

In most communication systems, such as TCP/IP, in order to initiate a data transfer, 

some kind of negotiation must take place, so that the transmitter will know the 

receiver’s status and contrarily. The process of initiation a conversation among the 

host and a client is referred to as handshaking. In our WFTP prototype, the transmitter 

and receiver front-end is a PC sound card (line in, line out respectively). Therefore, as 

mentioned before (section 1-8), both processes require a timing period prior their 

initialization and furthermore, the receiver must continuously monitor for any 

communication activity because there are no other means of doing so.  

 

The nature of the recording, however, does not allow constant large chunks of info 

due to resource draining (memory and CPU), thus only small timing intervals are 

acceptable. Prior the transmission of a packet, the transmitter sends some pulses of 

equal duration. After this step, it starts transmitting. The receiver on the other hand, 

should detect this kind of activity and will start receiving or “wake up”. The rest of 

the conversation, (acknowledgement etc…) is handled through wired protocols such 

as UDP, discussed at Chapter 1.  For the communication to succeed the receiver must 

be able to recognize these patterns as a negotiation attempt; otherwise the packet will 

be lost. Consequently the problem is twofold; the receiver has to be able to distinguish 

the handshaking pulses from noise, otherwise will result to “false alarms”, and to 
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actually record them, since each monitoring time-slot is followed by a delay due to 

buffer purging, initialization and data processing.  

 

The solution to recognizing the negotiation pulses is to use the pattern-matching 

module -the synchronizer, developed before. The differences are that the used 

sequences must be shorter, and thresholding is used for identification. The second 

problem is treated by transmitting the same sequence multiple times, so the receiver 

will identify at least some of them. Beyond a threshold of identified pulses, the 

receiver will enter the state of packet reception. Unfortunately negotiating prior to 

transmission imports a fixed delay, depending on the pulse train duration, and the 

ratio of the transmitted versus to the required to be identified, thus leading to a 

tradeoff between accuracy and delay. 

 

 
Figure 4.4:  Handshaking events representation. 

 

Figure 3.4 illustrates the actions of the receiver and the transmitter. The negotiation 

attempts on behalf of the transmitter consist of N identical linear swept-frequency 

signal pulses of equal duration (fig. 3.5). The distinct gaps represent the system 

delays mentioned before, which in general are considered as processing time slots of 

duration . The receiver scans for the transmitted pulses periodically for time 

slots. Finally, the ratio of transmitted vs. required is simply denoted as ( ) and 

referred to as negotiation ratio. These are the crucial parameters for this part of this 

system, which are examined in the following sections in order to derive specific 

guidelines and parameter settings.  

pulset

proct monitort

/ reqN N
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Figure 4.5:  (a) depicts a chirp signal and its autocorrelation. (b) Chirp pulse of 0.01 sec and the 

resulting “wake up” pulse train of 0.04 sec. 
 

4.4 Performance analysis 

The evaluation is limited to the negotiation sub-system since frame detection or 

alignment depend on the length of the training sequence witch in turn is defined 

mostly by the equalizers. Suffice to note, although, that the detection error for 

sequences of 100 bits or more is smaller that 10-6 meaning that detection errors are 

caused only by negotiation delays or other system malfunctions.  

 

The performance metrics are limited to the negotiation failure (failed attempts) versus 

the negotiation ratio ( ) for various pulse periods ( ). Since the delays must 

be kept at a minimum, at least when possible, the monitoring period is set to 0.05 

seconds, as is the minimum Matlab can achieve. The experiments are performed at 

sampling frequencies (Fs) 44.1 KHz and 88.2 KHz, while the threshold is the 10 to 20 

percent of the squared pulse energy ( ). 

/ reqN N pulset

2(0.1 ~ 0.2) | |pulseE

 

The results of the experiments depicted in figures 3.6 (a) to (d), provide with useful 

deductions regarding the parameters presented through this chapter as well as useful 

guidelines which are applied in the final setup of the WFTP prototype. Let us present 

the derived observations in respect with the involved parameters.  
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Figure 4.6:  Failure rate versus negotiation ratio. Note that the legends refer to the chirp 

pulse period, therefore a pulse train burst of N periods takes N*tpulse seconds. Plots (a) 
and (b) refer to 44.1KHz and ratios (N/1) and (N/2) respectively, while (c), (d) to 

88.2KHz. 
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Chirp period ( ) pulset

The chirp wave period affects both the resolution of the wake up signal thus its 

resilience to interference and the possibility of the receiver to record it. The 

experiments reveal that period of 40msec and sampling frequency of 44 KHz provides 

adequate pulses that can easily be identified.  The mismatch error illustrated in figure 

3.6 can easily derive from the fact that the receiver monitors periodically for 50msec 

after witch follows a processing time interval. If the handshake attempt falls into this 

time slot, it will be ignored or only a part of it will be recorded. Too short pulses, like 

10msec, are most affected, as well as those of duration much larger than the 

monitoring period, like 100msec, since a maximum of 50% at best can be recorded. 

Therefore, the most reasonable solution lies within the range of 10msec to 40msec. 

This conclusion can also derive from figure 3.4 in the previous section.  

 

Negotiation Ratio ( ) / reqN N

Recall that the negotiation ratio denotes the number of chirp signal periods 

transmitted; versus the successful identifications the receiver must accomplish prior 

entering the state of packet reception.  Clearly the higher the ratio the most likely is to 

be detected.  Of course, that also affects the induced delay prior each transmission. 

Therefore, more appropriate metrics for comparison would be the error rate in 

conjunction with the total duration, noted in figure 3.4 where . For 

ratios of (N/1), best performance is achieved with a period of 10msec and ratio 5/1 

adding a maximum delay (worst case scenario) of additional 40msec. The same 

applies when the playback frequency is 88.2 KHz, but with slightly worst results due 

to the increased processing delay. To even lower the probability of identification 

failure and that of a false alarm scenario, ratios of N/2 are best suited but at a higher 

cost in delay. Consequently, from figures 3.6(b) and 3.6(d), ratios of (10/2) at 10msec 

and 44.1/88.2 KHz provide best results with maximum delay of 80msec, although a 

ratio (6/2) with pulse period of 40msec could also be selected at slower machines or 

when the host happens to operate under heavy load. The latter is a common case 

during successive transfers thus is preferred to combat unexpected system behavior 

without any loss of performance. 

negotiation pulset N= t
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