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Abstract

We study the problem of continuous relational query processing in Internet-
scale overlay networks realized by distributed hash tables. We concentrate on
the case of continuous two-way equi-join queries. Joins are hard to evaluate in
a distributed continuous query environment because data from more than one
relations is needed, and this data is inserted in the network asynchronously.
Each time a new tuple is inserted, the network nodes have to cooperate to
check if this tuple can contribute to the satisfaction of a query when combined
with previously inserted tuples. We propose a series of algorithms that initially
index queries at network nodes using hashing. Then, they exploit the values
of join attributes in incoming tuples to rewrite the given queries into simpler
ones, and reindex them in the network where they might be satisfied by existing
or future tuples. We present a detailed experimental evaluation in a simulated
environment and we show that our algorithms are scalable, balance the storage
and query processing load and keep the network traffic low.



Chapter 1

Introduction

We are interested in the problem of relational query processing in wide-area
networks such as the Internet and the Web. This is an important research
area with applications to e-learning [50], P2P databases [34], monitoring [32]
and stream processing [47]. We envision large P2P overlay networks where
information is inserted and stored in the form of relational tuples and is queried
with SQL queries. Each node keeps a fraction of the total data tuples. Tuples
of a given relation can be distributed among various nodes. In this thesis we
concentrate on continuous relational query processing and present algorithms
for continuous two-way equi-join queries. Join queries have traditionally been
the study of many query optimization efforts. Distributed evaluation of join
queries is very challenging, mainly due to the fact that data from different parts
of the network have to be combined to answer a query. We consider this thesis
to be our first step in contributing to the vision of relational P2P databases: a
set of unified protocols that will fully support SQL over P2P networks.

Current work on continuous relational queries has mostly emphasized sys-
tem design and query evaluation for the centralized case [66, 44, 17, 47, 57].
Recent papers [27, 32] and the present thesis study continuous relational query
processing in its natural habitat dictated by target applications: distributed,
Internet-scale environments realized by technologies building on distributed hash
tables (DHTs) [60]. The only system so far that implements join algorithms on
top of DHTs is PIER [34] but this is done only for the case of one-time queries.
The case of continuous join queries is a different one and cannot be captured
by the algorithms presented in [34]. PeerCQ is another interesting system pro-
posed for continuous queries over DHTs [27]. PeerCQ does not consider the
relational data model and the SQL query language, and assumes that data is
not stored in a DHT but is kept locally in external data sources. In PeerCQ,
the DHT infrastructure is nicely utilized to achieve a good distribution of the
responsibilities for monitoring external data sources and evaluating queries. To
the best of our knowledge, this thesis is the first one that presents algorithms for
continuous relational join queries on top of DHTs where DHT nodes are fully
utilized to store data tuples and run collaborative query processing protocols.
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1.1 Contributions

The contributions of this thesis are the following. We present four distributed
algorithms for evaluating continuous two-way equi-join queries over DHTs. In
our algorithms, when a node poses a continuous query, the query is indexed
somewhere in the network and waits for incoming tuples. As new tuples are
inserted, the network nodes cooperate to deliver a notification to the node that
posed the query. All algorithms in the thesis use a two-level indexing mechanism
to index queries and tuples. In the first level, nodes use attribute names prefixed
by relation names to index a query or a tuple. In the second level, nodes utilize
attribute values in order to achieve a better load distribution. The two-level
indexing mechanism is exploited by a two-phase query evaluation algorithm.

The emphasis of our algorithms is twofold. We try to distribute the load
of evaluating continuous join queries to as many nodes as possible and, at the
same time, keep the cost in terms of overlay hops low. We show the tradeoff
between achieving load distribution and performing query evaluation with as
little network traffic as possible. Each algorithm we studied offers a particular
way to resolve this tradeoff, and it might be appropriate for applications with
relevant characteristics. One of our technical contributions is the introduction
of appropriate metrics for capturing individual node load and total system load
in our environment.

The challenges presented by continuous query processing should not be un-
derestimated. When the number of installed queries increases, the total query
processing load and network traffic created by incoming tuples increases as well.
Similarly, when the rate of incoming tuples in a given time window increases, a
higher amount of installed queries will be triggered, leading to a higher query
processing load and network traffic. Our simulations show that our algorithms
are scalable to such changes. Even when these changes take place simultane-
ously, our algorithms manage to distribute the query answering load gracefully
among existing nodes. Another aspect of scalability is also clearly demonstrated
in our work. When the overlay network grows, query processing becomes easier
since new nodes relieve other nodes by taking a portion of the existing workload.

The experiments we present use Chord [60] as the underlying DHT, due to
its relative simplicity, and appropriateness for equi-join queries. However, our
ideas are DHT-agnostic: they will work with any DHT extended with the APIs
we define. Recent distributed data structure proposals such as [20, 54, 37] that
can handle equality queries and range queries efficiently can also be extended
to handle two-way join queries (with equality or other comparison operators) in
a straightforward way using our approach.

1.2 Organization of the thesis

The organization of the thesis is as follows. In Chapter 2 we generally discuss
about DHTs and we briefly describe Chord and our proposed extensions to the
Chord API. Chapter 3 gives our assumptions regarding system and data model.
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Chapter 4 discusses alternative indexing and query evaluation algorithms. It
also explains how notifications are stored and delivered and discusses optimiza-
tions while in Chapter 5 we present a detailed experimental evaluation. Chapter
6 discusses related work and finally, Chapter 7 concludes the thesis.
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Chapter 2

Structured Overlay
Networks

In this chapter we give a general description of the new generation of structured
overlay networks, called distributed hash tables (DHTs). We describe in detail
the Chord overlay network that we use to build our algorithms and then we
present a simple API that we have designed and implemented on top of Chord
to achieve more efficient routing of messages.

2.1 Distributed Hash Tables

The success of P2P protocols and applications such as Napster and Gnutella
motivated researchers from the distributed systems, networking and database
communities to look more closely into the core mechanisms of these systems
and investigate how these could be supported in a principled way. This quest
gave rise to a new wave of distributed protocols, collectively called distributed
hash tables [60, 53, 55, 2, 33, 48, 7]. DHTs are structured P2P systems. DHTs
attempt to solve the following look-up problem:

Let X be some data item stored at some distributed dynamic net-
work of nodes. Find data item X.

The core idea in all DHTs is to solve this look-up problem by offering some
of form of distributed hash table functionality: assuming that data items can
be identified using unique numeric keys, DHT nodes cooperate to store keys
for each other (data items can be actual data or pointers). Implementations of
DHTs offer a very simple interface consisting of two operations:

• put(ID, item). This operation inserts item with key ID and value item
in the DHT.

• get(ID). This operation returns a pointer to the DHT node responsible
for key ID.

9



Figure 2.1: An example of a network

Although the DHTs available in the literature differ in their technical details,
all of them address the following central questions:

• How do we map keys to nodes? Keys and nodes are identified by a binary
number. Keys are stored at one or more nodes with identifiers “close” to
the key identifier in the identifier space.

• How do we route queries for keys? Any node that receives a query for
key k, returns the data item X associated with k if it owns k, other-
wise it forwards k to a node with identifier “closer” to k using only local
information.

• How do we deal with dynamicity? DHTs are able to adapt to node joins,
leaves and failures and update routing tables with little effort.

In the rest of this section we give a short description of Chord and of the
API that we created on top of Chord.

2.2 The Chord DHT protocol

Each node n in the network owns a unique key, denoted by Key(n). For example,
this key can be created by the public key of the node and/or its IP address.
Each item i also has a key, denoted by Key(i). For example, in a file-sharing
application, where the items are files, the name of a file can be the key (this is
an application-specific decision). In our case the items are queries and tuples
and keys are determined in ways to be explained later.

Chord uses a variation of consistent hashing [38] to map keys to nodes. In
the consistent hashing scheme each node and data item is assigned a m-bit
identifier where m should be large enough to avoid the possibility of different
items hashing to the same identifier (a cryptographic hashing function such as
SHA-1 can be used). Each node n is assigned an identifier, denoted by id(n),
that is computed by hashing its key Key(n). Similarly, each item i is assigned
an identifier, denoted by id(i), by hashing Key(i). Identifiers are ordered in an
identifier circle (ring) module 2m i.e., from 0 to 2m − 1. Figure 2.1 shows an
example of an identifier circle with 64 identifiers (m = 6) but only 10 nodes.

Keys are mapped to nodes in the identifier circle as follows. Let Hash be
the consistent hash function used. Key k is assigned to the the first node which
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is equal or follows Hash(k) in the identifier space. For example in the network
shown in Figure 2.1, a key with identifier 8 would be stored at node N8. In
other words, key k is assigned to the node whose identifier is the first identifier
clockwise in the identifier circle starting from Hash(k). This node is called the
successor node of identifier Hash(k) and is denoted by successor(Hash(k)).
We will often say that this node is responsible for key k. In our example, node
N32 would be responsible for all keys with identifiers in the interval (21, 32].

If each node knows its successor, a query for locating the node responsible for
a key k can always be answered in O(N) steps where N is the number of nodes
in the network. To improve this bound, Chord maintains at each node a routing
table, called the finger table, with at most m entries. Each entry j in the finger
table of node n, points to the first node s on the identifier circle that succeeds
identifier Hash(Key(n))+2j−1. These nodes (i.e., successor(Hash(Key(n))+
2j−1) for 1 ≤ j ≤ m) are called the fingers of node n. Since fingers point
at repeatedly doubling distances away from n, they can speed-up search for
locating the node responsible for a key k. If the finger tables have size O(log N),
then finding a successor of a node n can be done in O(log N) steps with high
probability [60].

To simplify joins and leaves, each node n maintains a pointer to its prede-
cessor node i.e., the first node counter-clockwise in the identifier circle starting
from n. When a node n wants to join a Chord network, it finds a node n′ that
is already in the network using some out-of-band means, and then asks n′ to
help n find its position in the network by discovering n’s successor [61]. Every
node runs a stabilization algorithm periodically to learn about nodes that have
recently joined the network. When n runs the stabilization algorithm, it asks its
successor for the successor’s predecessor p. If p has recently joined the network
then it might end-up becoming n’s successor. Each node n periodically runs
two additional algorithms to check that its finger table and predecessor pointer
is correct [61]. Stabilization operations may affect queries by rendering them
slower (because successor pointers are correct but finger table entries are inac-
curate) or even incorrect (when successor pointers are inaccurate). However,
assuming that successor pointers are correct and the time it takes to correct
finger tables is less than the time it takes for the network to double in size, one
can prove that queries can still be answered correctly in O(log N) steps with
high probability [61].

To deal with node failures and increase robustness, each Chord node n main-
tains a successor list of size r which contains n’s first r successors. This list is
used when the successor of n has failed. In practice even small values of r are
enough to achieve robustness [61]. If a node chooses to leave a Chord network
voluntarily then it can inform its successor and predecessor so they can modify
their pointers and, additionally, it can transfer its keys to its successor. It can be
shown that with high probability, any node joining or leaving a Chord network
can use O(log2 N) messages to make all successor pointers, predecessor pointers
and finger tables correct [60].
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2.3 Extensions to the Chord API

In this section we present the API we use to build our algorithms. It is a simple
extension of the standard API of the Chord protocol to support routing features
that are repeatedly used by our algorithms.

To facilitate message sending between two nodes we will use the function
send(msg, I) to send message msg from some node to node Successor(I), where
I is a node identifier. Function send() is similar to Chord function lookup(I)
[60] with msg piggy backed, and costs O(logN) overlay hops for a network of N
nodes. When function send(msg, I) is invoked by node n, it works as follows.
Node n contacts node n′, where id(n′) is the greatest identifier contained in the
finger table of n, for which id(n′) ≤ I holds. Upon reception of a send() message
by a node x, I is compared with id(x). If id(x) < I, then node x just forwards
the message by calling send(msg, I) itself. If id(x) ≥ I, then x processes msg
since it is the intended recipient.

Our algorithms also require that a node is capable of sending the same
message to a group of nodes. This group is created dynamically (i.e., each time
a tuple insertion or a query submission takes place), so multicast techniques for
DHTs such as [8] are not applicable. The obvious way to handle this over Chord
is to create k different send() messages, where k is the number of different nodes
to be contacted, and then locate the recipients of the message in an iterative
fashion using O(k log N) messages. We have implemented this algorithm for
comparison purposes.

We have also designed and implemented function multiSend(msg,L), where
L is a list of k identifiers, that can be used to send message msg to the k elements
of L in a recursive way. It is used to send msg to nodes n1, n2, ..., nk such as that
nj = Successor(Ij), where 1 ≤ j ≤ k. When function multiSend() is invoked by
node n, it works as follows. Initially n sorts the identifiers in L in ascending order
clockwise starting from id(n). Subsequently n contacts n′, where id(n′) is the
greatest identifier contained in the finger table of n, for which id(n′) ≤ head(L)
holds, where head(L) is the first element of L. Upon reception of a multiSend()
message, by a node x, head(L) is compared with id(x). If id(x) < head(L), then
node x just forwards msg by calling multiSend() again. If id(x) ≥ head(L), then
node x processes msg since this means that it is one of the intended recipients
contained in list L (in other words, x is responsible for key head(L)). Then x
creates a new list L′ from L in the following way. x deletes all elements of L that
are smaller or equal to id(x), starting from head(L), since node x is responsible
for them. In the new list L′ that results from these deletions, we have that
id(x) < head(L′). Finally, node x forwards msg to node with identifier head(L′)
by calling multiSend(msg,L′). This procedure continues until all identifiers are
deleted form L. The cost for contacting all k nodes is again O(k log N) but the
recursive approach has in practice a significantly better performance than the
iterative method as we show in Section 5.

Function multiSend() can also be used as, multiSend(M,L), where M is a
set of k messages and L is a set of k identifiers. For each Lj , the function will
deliver message Mj to Successor(Lj) as in the previous paragraph.
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2.4 Summary

In this chapter we outlined the key ideas of current structured overlay networks.
More precisely we presented the Chord DHT protocol which is the DHT protocol
used to present our algorithms. We also introduced an API to enhance the rout-
ing capabilities of DHTs with respect to specific requirements of our algorithms.
In the next chapter we present the assumption regarding the architecture of the
network and the supported data model.

13



Chapter 3

System model and data
model

In this chapter we describe in detail the architecture of the network we assume.
We provide details regarding the role of the various nodes that participate in
the overlay and we also discuss the data model and query types supported by
the algorithms we propose in this thesis.

3.1 Network Architecture

We assume an overlay network where all nodes are equal, as they run the same
software and they have the same rights and responsibilities. Nodes are organized
according to the Chord DHT protocol and are assumed to have synchronized
clocks. In practice, nodes will run a protocol such as NTP [10] and achieve accu-
racies within few milliseconds. Each node can insert data and pose continuous
queries. Each time new data is inserted the network nodes cooperate to create
notifications and notify nodes that have inserted relevant queries. A high level
view of the network architecture is shown in Figure 3.1.

3.2 Data model and Query Language

In this thesis data is described using the relational data model and is inserted
in the system in the form of data tuples. As in PIER [34], different schemas can
co-exist but schema mappings are not supported. Continuous queries are formed
using the SQL query language. We consider the case of two-way equi-joins i.e.,
SQL queries of the form:

Select R.A1, . . . , R.Aκ, S.B1, . . . , S.Bλ

From R,S
Where α = β

14



Figure 3.1: An example of a network

where R and S are relations with schemas R(A1, . . . , Aν) and S(B1, . . . , Bµ),
1 ≤ κ ≤ ν, 1 ≤ λ ≤ µ and α is an expression (e.g., arithmetic, string) involving
only attributes of R and possibly constants, and β is an expression involving
only attributes of S and possibly constants.

We distinguish two types of queries depending on the form of α and β. If α
and β involve a single attribute of R and S (e.g., Ai and Bj respectively) and
equality α = β has a unique solution over dom(Ai) × dom(Bj) then we say q
is of type T1. If any of α or β involve more than one attributes of R and S
then we say q is of type T2. We show how to evaluate such queries without first
transforming them to simple equi-joins using generalized projection.

Each tuple t has a time parameter called publication time, denoted by
pubT (t), representing the time that the tuple was inserted into the system.
In addition, each query q has a time parameter, called insertion time, denoted
by insT (q) that shows the creation time of q. A tuple t can trigger a query
q iff pubT (t) ≥ insT (q) i.e., only tuples inserted after a query was posed can
trigger it. Whenever the Where clause of a query is satisfied, an answer is com-
puted and this is the notification sent to the query subscriber. Each query q
has a unique key, denoted by Key(q), that is created from the key of the node
n that poses it, by concatenating a positive integer to Key(n). Like [34], we
assume a “best-effort” semantics for query evaluation and leave all the handling
of failures, partitions etc. to the underlying DHT.

Example. Consider an e-learning network such as EDUTELLA where nodes
join the network for the purposes of sharing learning material [19]. Let us assume
the learning material consists of research papers that are inserted in the overlay
once they are published. Each paper can be described by a set of tuples using
the following simple schema:

Document(Id, T itle, Conference,AuthorId), Authors(Id, Name, Surname)

The following query asks that its subscriber be notified whenever author
Smith publishes a new paper:

Select D.T itle, D.Conference

15



From Document as D, Authors as A
Where D.AuthorId = A.Id and A.Surname = Smith

3.3 Summary

In this chapter we described the assumed architecture of our overlay network.
We presented the data model and the query types that our current algorithms
support. We also described the time semantics, i.e., when a new tuple can
trigger an already indexed query. In the next chapter we continue with a detailed
description of our algorithms.
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Chapter 4

Algorithms

In this chapter we present a detailed description of our algorithms for evalu-
ating two-way equi-join queries. First we motivate our general design goals by
presenting a few naive solutions that tend to collect the query processing load
to a small part of the network. Then we continue with the description of the
four algorithms and examples. Finally, we also introduce a set of optimizations
that can be applied to all algorithms to improve the generated network traffic
and load distribution.

4.1 Two-level indexing

One of the main challenges when designing a distributed query processing algo-
rithm is to generate as little load as possible in the network and to distribute
this load fairly among existing nodes. Assume a continuous two-way join query
with the join condition R.B = S.E. The goal is to index the query in such a
way, so that when new tuples are inserted, the query and the tuples will meet
to create notifications. Indexing a query amounts to storing the query at one or
more nodes of the overlay. We could index queries to a globally known node or
set of nodes, but this would eventually overload these nodes. In a P2P environ-
ment we want as many nodes as possible to contribute some of their resources
(storage, cpu, bandwidth, etc.) for achieving the overall network functionality.
The resource contribution of each node will obviously depend on its capabilities,
its gains from participating in the network etc. In this thesis we make the sim-
plifying assumption that all nodes are equivalent and can contribute to query
evaluation in identical ways.

We choose to index a query using identifiers that are related to the query.
This is a useful property since a tuple that should trigger a query q, is also
related to the query q, for example, they both refer to the same relation. In this
way, it is easy to make an incoming tuple meet the appropriate queries without
any global knowledge or broadcasting.

The difficulty with join queries is that a join condition, like the one in our ex-
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ample, gives us little flexibility. For example, let us consider the simpler case of
continuous select-project queries with a Where clause of the form R.B = value.
In this case, we can simply assign the query to the successor node x of the
identifier Hash(R + B + value). We use the operator + to denote the con-
catenation of string values. Relevant tuples will arrive at x in the same way,
and we have to worry only for skewed values regarding load distribution. With
this solution to select-project queries in mind, how do we index a query with
a join condition like R.B = S.E? One way could be to index the query to the
successor nodes x1 and x2 of the identifiers Hash(R) and Hash(S) respectively.
Incoming tuples could then be indexed according to their relation name, and
some kind of communication is required between x1 and x2 to create notifica-
tions. The problem with such a solution is that the query processing load is
gathered to a small subset of the set of network nodes, i.e., to as many nodes as
the number of distinct relations in the schema. This means that as the network
size grows, the network utilization (i.e., the percentage of nodes participating
in query processing) drops. The next logical step is to also use the attribute
names in the indexing scheme i.e., x1, x2 can be the successor nodes of the
identifiers Hash(R + B) and Hash(S + E) respectively. Now we can expect a
better distribution of the query processing load but again the total number of
nodes contributing to query processing is limited (bounded by the total number
of attributes in the schema).

Another approach would be to index a join query according to an expression
combining the two join attributes, i.e., to the successor node of Hash(R.B+S.E)
for our example. However, new tuples would have to reach all pair combinations
of the attributes of different relations of the schema, to guarantee completeness.
Although evaluating locally a query is now very easy since we have the two
relations in one node, the main disadvantage of this method is again the fact
that the number of nodes that are responsible for query processing is bounded;
this time by the possible join pairs.

All the previous solutions have the disadvantage that only a subset of the set
of network nodes sustain the total query processing load. As with select-project
queries we would like to use the various values that the join attributes can take
in order to distribute this load. However, these values are not known at the
time that the query is inserted but are revealed to us as tuples arrive. The
algorithms we propose exploit this fact by using the values in incoming tuples
that trigger a query in order to distribute the query processing load.

The four algorithms we will present are based on a two-level indexing mech-
anism to index queries and tuples. In the first level (attribute level) nodes use
the names of attributes prefixed by their relation names to index a query or a
tuple. In the case of a query, those attributes are among the ones involved in
the join condition. In the second level of indexing (value level), nodes utilize
attribute values in order to achieve a better load distribution. A high level
description of the indexing and query processing algorithms we present is as
follows. To pose a query q, a node indexes q at the attribute level where q is
stored waiting for tuples to trigger it. When a node wants to insert a tuple,
it indexes the tuple both at the attribute and at the value level. As tuples of
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Figure 4.1: Inserting a tuple of a binary relation

the involved relations are inserted at the attribute level, the indexed queries are
triggered, rewritten and reindexed at the value level according to the values of
their join attributes in the incoming tuples. More precisely, one of the two join
attributes is replaced in the join condition by its value in the incoming tuple.
In this way, the join query is reduced to a simple select-project query that en-
ters in the network (reindexing) and waits to be triggered. Thus, a single join
query q is evaluated by multiple nodes that share the query processing load at
the value level by evaluating the multiple select-project queries that have been
created from different values of the join attributes. Our algorithms result in
the allocation of two roles to network nodes: the role of query rewriters and
the role of query evaluators. A node can play both, one or none of these roles
depending on the queries and tuples that are present in the network, and the
node’s position in the identifier space.

The four algorithms we propose can be classified into two categories accord-
ing to how query indexing takes place. We present one algorithm that uses
one of the two join attributes to index a query (single-attribute indexing) and
three algorithms that use both join attributes (double-attribute indexing) so as
to exploit the possibility to achieve a better query processing load distribution.

We continue our presentation by explaining how tuples are indexed in our
proposal. Sections 4.3, 4.4 and 4.5 discuss how join queries are indexed and
how nodes react upon receiving a new tuple in order to trigger the appropriate
queries.

4.2 Tuple indexing

Our tuple indexing protocol is a variation of hash partitioning. Assume a relation
R over h attributes and a node x1 that wants to insert a new tuple t. Let
{A1, A2, ...., Ah} be the attributes in t with values {v1, v2, ...., vh} respectively.
For each Ai, x1 computes the following two identifiers:

AIndexi = Hash(R + Ai)
V Indexi = Hash(R + Ai + vi)
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When the value of an attribute is numeric (e.g., an integer), this value is also
treated as a string. For each Ai, tuple t will be indexed twice: once according
to AIndexi at the attribute level, and once according to V Indexi at the value
level. Thus a set I of 2h identifiers is created by node x1. For each AIndexi,
x1 creates a message al-index(t, Ai). Similarly for each V Indexi, x1 creates a
message vl-index(t, Ai). Attribute Ai is included in the messages so that node
x2 that receives t can tell which attribute was used to index t to x2 (used for
local processing); this attribute will be denoted by IndexA(t). Thus, a set M
of 2h messages is created and x1 calls function multiSend(M, I) to index t in
2h ∗ O(logN) overlay hops. A complete example of inserting a tuple is shown
in Figure 4.1.

The way a node reacts, upon receiving a tuple, depends on the algorithm and
on the indexing level that the tuple was received. These details will be discussed
in Sections 4.3, 4.4 and 4.5 where we describe query indexing algorithms and
how they are used to evaluate continuous two-way equi-join queries. In general,
a tuple is never stored at the attribute level, it just triggers the queries indexed
at a node. At the value level, a node may store a tuple or not, and may try to
trigger locally stored queries or not depending on the algorithm.

4.3 The single-attribute index algorithm

Let us now describe our first algorithm, the single-attribute index algorithm
(SAI). To pose a query q of type T1, a node n indexes q by one of the two join
attributes at the attribute level. Node x that receives q, stores it locally and
when tuples that trigger q arrive at x, x rewrites and reindexes q to nodes that
are capable to create notifications at the value level.

4.3.1 Indexing a query at the attribute level

Indexing a query q at the attribute level proceeds as follows. First, node n
chooses one of the join attributes of q which will be used to index q. For
the moment, we assume that this choice is random; more detailed criteria are
discussed in Section 4.3.6. We call this attribute the index attribute of q and the
relation that it belongs to the index relation of q, and denote them by IndexA(q)
and IndexR(q) respectively. The remaining join attribute is called the load
distributing attribute of q and its relation the load distributing relation of q,
denoted by DisA(q) and DisR(q) respectively. As we will see below, the values
of attribute DisA(q) of relation DisR(q) will be used to distribute the query
processing load generated during the evaluation of q, hence our terminology.

Then, node n creates the identifier AIndex that determines the node that
the query will be indexed to. This is done as follows:

AIndex = Hash(IndexR(q) + IndexA(q))

Notice that this identifier is calculated exactly in the same way as an AIndex
identifier of a tuple which means that future tuples of relation IndexR(q) will
meet the query q at the attribute level.
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Then, node n creates the message msg = query(q, Id(n), IP (n)). Argu-
ments Id(n) and IP (n) are used when delivering notifications back to n (see
Section 4.6). Finally, node n calls the function send(msg,AIndex) to index q at
the attribute level with complexity O(logN).

Node Successor(AIndex) that receives msg is called the rewriter of q. The
rewriter node of q stores q in the local attribute-level query table (ALQT ) and
waits for tuples to trigger it. The role of a rewriter node is not to compute the
join itself, but to distribute the load of computing joins, creating notifications
and delivering them. Each query has one rewriter and all queries with the same
index attribute have the same rewriter.

4.3.2 Handling tuple insertions at the attribute level

In SAI, an incoming tuple is indexed both at the attribute and at the value level
according to the protocol of Section 4.2. We will first describe what happens at
the attribute level.

Assume a node x that receives a tuple t at the attribute level with the
message al-index(t, IndexA(t)). Node x searches its ALQT for queries that
are triggered by t. The result is a set of k join queries. Since these queries were in
the local ALQT , node x is their rewriter node. For each query qi, node x owns
information on one of the two relations needed to compute the join, namely
on IndexR(qi). This information is the new tuple t. Another node has to be
contacted then, where tuples of relation DisR(qi) are stored or are expected to
arrive. Since qi is an equi-join query, the only suitable tuples are the ones where
the value of DisA(qi) satisfies the join condition of qi after IndexA(qi) has been
replaced with its value in t. If valDA(qi, t) is that value, then this node is the
successor node of the following identifier:

V Index(qi) = Hash(DisR(qi) + DisA(qi) + valDA(qi, t))

Notice that the way this identifier is calculated is similar to how a V Index
identifier of a tuple is calculated which means that tuples that are indexed at the
value level will meet the query. So this node has the rest of the tuples needed
to evaluate the join due to how tuples are indexed at the value level. We call
this node the evaluator of the query for the value valDA(qi, t). A query q has
as many evaluators, as the distinct values of attribute IndexA(q).

Let us now discuss what a rewriter sends to an evaluator. Each query qi is
rewritten according to the incoming tuple t. The resulting query q′i will produce
the same notifications, when sent to an evaluator, as if t and qi had both arrived
there. To create q′i, each attribute of IndexR(qi) in the Select and Where clause
of qi, is replaced by its corresponding value in t. Assume the query Select R.A,
S.B From R, S Where R.C = S.C which is triggered at the attribute level by
a tuple S(3, 4, 7). The rewritten query will be Select R.A, 4 From R Where
R.C = 7. Thus, the original query is reduced to a simple select-project query
which will be send (reindexed) at the Successor(Hash(R + C +′ 7′)).

In this way, the rewriter node x rewrites all k triggered queries and for
each rewritten query q′i it creates a message join(q′i). Thus, a set M of k
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messages and a set I of k V Index identifiers are created. Then, node x calls
the multiSend(M,I) function to reindex the rewritten queries at the value level
which costs k ∗O(logN) overlay hops.

4.3.3 Processing rewritten queries at the value level

We will now discuss how a node x at the value level reacts upon receiving a
rewritten query q′ with a join(q′) message. Assume that q′ was created by
query q when tuple t of relation IndexR(q) arrived at the attribute level. First,
x has to check whether it locally stores any matching tuples of DisR(q) so as
to create notifications, i.e., tuples that were inserted in the network after q.

In addition, node x has to remember the fact that q′ arrived in order to be
able to create notifications in the future, when more tuples of DisR(q) arrive.
Thus, x stores q′ in its value-level query table (V LQT ). This last step is neces-
sary only if this is the first time that x receives q′ whereas if there is already a
same query q′ stored at x, then x need only to store the information related to
tuple t.

Whether a rewritten query is already stored or not can be easily determined
using the unique keys of the queries. As we have already discussed each query
q has a unique key, denoted by key(q). A rewritten query q′ of q has a different
key than key(q). This new key is calculated at the time that q is triggered at
the attribute level by t to create q′ as follows. If A1, A2, ..., Al are the attributes
of IndexR(q) in the Select clause of q, then the key of the rewritten query is
Key(q′) = Key(q) + v1 + v2 + ... + vl + valDA(q, t), where vj is the value of Aj

in the tuple t that triggered q for j = 1, 2, ..., l. In this way, , an evaluator x will
store a new rewritten query if no rewritten query with the same key has ever
arrived to n. If there is a query q′ with the same key, then only pubT (t) is stored
along with q′. The time information is necessary when creating notifications.
The way keys are created for rewritten queries guarantees that two rewritten
queries will have the same key if they are created from the same query q but by
different tuples that have the same value for IndexA(q).

4.3.4 Handling tuple insertions at the value level

Let us now see what happens as tuples arrive at the value level where they meet
rewritten queries that have been reindexed. Assume a node x that receives a
tuple at the value level with a message vl-index(t, IndexA(t)). First, node x
checks if there is any rewritten query q′ in its V LQT that is triggered by the
new tuple. For each triggered query a notification is created.

In addition, tuple t is also stored in the local value-level tuple table (V LTT ).
Storing tuples at the value level is necessary for the completeness of SAI. As an
example assume the following series of events: (a) a query q is indexed, (b) a
tuple t of DisR(q) is inserted and stored at node x (at the value level), and (c)
a tuple of IndexR(q) is inserted causing query q to be rewritten and reindexed
to x. If t is not stored at x then a notification will be lost.
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Figure 4.2: An example with SAI
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A complete example with SAI is shown in Figure 4.2. Events take place
from left to right, i.e., initially query q is indexed and then tuples arrive. For
readability, only the steps that affect query q are shown. Notice that while in
Step 3 a notification is created by a tuple that meets a rewritten query at the
value level, in Step 5 the opposite happens.

4.3.5 Local query indexing and grouping

Since a large number of queries are expected to be similar, i.e., reference the same
relations, all queries that have equivalent join condition are grouped together
at each rewriter and evaluator node. Equivalence is easy to determine during
parsing for queries of type T1. Grouping queries is useful for minimizing the
local computation cost and the network cost. Similar queries are triggered in a
single step. In addition, reindexing can also be done with only one message for
multiple queries since for the same incoming tuple all similar queries will require
the same evaluator. Locally tuples and queries are stored in hash table based
data structures. Let us shortly describe this data structures that are designed
so as to efficiently handle incoming requests.

The ALQT that is used by rewriter nodes to store queries at the attribute
level, is a two level hash table. At the first level, queries are indexed according to
their index attribute while at the second level the string values of join conditions
are used as keys. In this way, each time a new tuple arrives at a rewriter node,
the index attribute of the tuple is used to find all triggered queries in one step
using the first level of the local ALQT . At the second level queries are grouped
according to their join condition so it is then easy for the rewriter node to handle
(rewrite/reindex) all the triggered queries by avoiding redundant operations for
multiple queries in the same group.

At the value level evaluators nodes maintain the V LQT which is a two level
hash table used to store the rewritten queries that these nodes receive. At
the first level rewritten queries are indexed according to their load distributing
attribute, while at the second level according to the value that this attribute
must take so as to satisfy their join condition. In this way, when a new tuple
arrives at an evaluator node, the rewritten queries that are possible to match
the new tuple can be found in one step at the first level of the local V LQT using
the index attribute of the new tuple. Then with one step again we can retrieve
all rewritten queries that require for their load distributing attribute the value
that the index attribute of the new tuple has.

Similarly, each evaluator node maintains the V LTT to store tuples at the
value level and has a similar structure with the V LQT . It is a two level hash
table where tuples are indexed at the first level according to their index at-
tribute (the attribute used to index a tuple at a specific evaluator node) and
at the second level according to the value of this attribute in the tuple. In this
way, an incoming rewritten query at an evaluator node can be easily evaluated
by reaching initially the possible matching tuples at the first level using the
load distributing attribute of the rewritten query and then the value that this
attribute must take is used at the second level to find the matching tuples.
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4.3.6 Choosing the index attribute

Let us now discuss parameters that can affect the choice of the index attribute
in SAI. We observe that this choice determines which node will be the rewriter
and which nodes will be the evaluators of a query. We can see this choice from
two different perspectives with the following corresponding performance metrics
that are affected: (a) the total network traffic and (b) the distribution of load
among evaluator nodes.

Network traffic. A rewriter of a query q rewrites and reindexes q each time
a tuple of relation IndexR(q) is inserted. Thus, by indexing a query according
to the attribute that belongs to the relation with the lowest rate of tuple arrival,
we will decrease network traffic since less less queries will be triggered, rewritten
and reindexed. It is easy to find and maintain this information. Each node x
can keep track of the total number of tuples that have arrived to x in the
last time window. Then, any node can simply ask the two possible rewriter
nodes before indexing a query for the rate that tuples arrive. In this way, the
decision of where to index a query is adapted to the data already collected
by the appropriate rewriters when a query is inserted. The same observation
stands for queries that are highly selective, i.e., SQL queries with a Where clause
which contains a join condition conjoined with a highly selective predicate (e.g.,
R.A = S.B ∧S.C = 10). In this case, nodes should also keep track of the values
of attributes as tuples arrive.

Distribution of load among rewriter nodes. The choice of the index
attribute can also affect the distribution of load in evaluator nodes. A join
attribute with highly skewed values will result in loading a small portion of the
evaluators of the query. Thus, when distribution of load is important, the join
attribute with the more uniform distribution should be chosen.

Another observation is that since we are dealing with equi-join queries, there
will be pairs of values for the join attributes that satisfy the join condition.
Thus, the join attribute with the smaller value range defines the maximum
number of possible value pairs that satisfy the join condition, or in other words
the maximum number of evaluators that may create notifications. Choosing the
attribute with the higher value range will unnecessarily generate evaluators that
possibly some of them will never create notifications. Rewriters can also discover
and maintain this information as described above. However, this observation
is not as important as the previous two in terms of network traffic and load
distribution so it should be taken into account if the two join attributes are
equal in terms of the previous metrics.

The two metrics mentioned in the previous paragraphs are mutually inde-
pendent. In our experiments, where we assume a highly skewed distribution for
all attributes, we use the first metric and always choose as join attribute the one
with the lower rate of incoming tuples. We also show the effect of the different
choice strategies in SAI’s behavior.
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4.4 The double-attribute index algorithms

In this section we introduce the double-attribute index (DAI) algorithms. The
motivation behind the DAI algorithms is to achieve a distribution of the query
processing load which is better than the one achieved by SAI. In SAI rewriter
nodes distribute the query processing load by assigning rewritten queries to a
multitude of evaluators. In the DAI algorithms we go even further and take
advantage of the possibility of indexing an input query twice at the attribute
level, once for each join attribute. This leads to having two rewriters per query
and thus a better load distribution than in SAI where there is only one rewriter
per query.

The DAI algorithms are based on the same two-level indexing principle of
SAI. First, the input query is indexed at the attribute level at rewriter nodes
where it waits for tuples to trigger it. When a matching tuple arrives, a rewriter
node will rewrite and reindex the query at the value level where evaluator nodes
will compute the join. But here there is a difference! If we evaluate the rewritten
queries exactly as in SAI, we will end up creating duplicate notifications because
there are two rewriters per input query. In Figure 4.3 we give an example of this
situation. In Step 3, the same notification is created twice: once when query
q′′ is reindexed and once when tuple t2 arrives at node N3. Thus, to avoid
creating duplicate notifications, we have a choice to make at the value level.
Will evaluators create notifications when they receive rewritten queries or when
they receive new tuples? We present two alternative algorithms (one for each
option): the DAI algorithm where notifications are created by evaluators when
rewritten queries arrive (DAI-Q), and the DAI algorithm where notifications
are created at evaluators when tuples arrive (DAI-T).

4.4.1 Common steps in all DAI algorithms

Upon insertion, a query is indexed twice at the attribute level. For example,
consider a query q with the join condition R.B = S.E. The query is indexed
once with R.B and once with S.E as index attribute to the successor nodes
of Hash(R + B) and Hash(S + E) respectively. This takes place using the
multiSend() function in 2 ∗O(logN) hops.

We will use the notation qL (respectively qR) to refer to a query q when it is
indexed with respect to the left (respectively right) attribute of a join condition.
Using our notation, we now have the following equalities:

DisR(qL) = IndexR(qR), DisR(qR) = IndexR(qL),
DisA(qL) = IndexA(qR) and DisA(qR) = IndexA(qL)

In all DAI algorithms, new tuples are indexed both at the attribute and at
the value level as in SAI. Similarly, an indexed query is triggered, rewritten
and has its evaluator computed at the attribute level exactly as in SAI. The
rest of the query processing algorithm (i.e., how a rewritten query is processed
at evaluator nodes, how evaluators react upon receiving tuples at the value
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Figure 4.3: Duplicate notifications
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level, etc.) is different for algorithms DAI-Q and DAI-T and is discussed in the
following sections.

4.4.2 The DAI-Q algorithm

In DAI-Q, once an evaluator node receives a rewritten query, it tries to evaluate
it against locally indexed data tuples and create notifications. An evaluator does
not store the rewritten queries that it receives since incoming tuples will not
try to create notifications. This is necessary to avoid creating duplicate notifi-
cations when tuples of DisR(qL) are inserted. Since DisR(qL) = IndexR(qR),
those insertions will trigger qR at its rewriter node. On the contrary, when
an evaluator receives a new tuple at the value level, it stores it locally so that
it is available when rewritten queries arrive, but it does not try to create any
notifications (there are no stored rewritten queries).

4.4.3 The DAI-T algorithm

In DAI-T, notifications are created when evaluators receive tuples at the value
level. Thus, in contrast with DAI-Q, evaluators do not need to store tuples
but need to store rewritten queries. An important motivation behind DAI-T is
that since rewritten queries are stored at evaluators, a rewriter does not need to
reindex the same rewritten query more than once at the value level. This results
to a huge performance gain for DAI-T compared to the rest of the algorithms,
since after the rewritten queries (for a given input query) have been distributed
to the appropriate evaluators, no intercommunication is needed between the
attribute and value level. This leads not only to a decrease in the total network
traffic but also to a significant decrease in the total query processing load that
is created when evaluators receive and process rewritten queries.

A complete example of DAI-T in operation is shown in Figure 4.4. Observe
that when similar tuples are inserted (after Step 3), notifications are created
without extra messages except the ones used to index a tuple. Moreover, com-
pared to SAI, the notifications are created by N3 and N4, whereas in SAI only
N3 or only N4 would create the notifications depending on what index attribute
has been chosen.

4.5 The DAI-V algorithm

The algorithms presented so far are capable of processing queries of type T1 but
not queries of type T2. Let us see why by considering the following query q :

Select R.A, S.D
From R,S
Where 4 ∗R.B + R.C + 8 = 5 ∗ S.E + S.D ∗ S.F

In queries of type T2 such as q, we have multiple candidates for the role of the
index attribute. Assuming that the choice of index attribute is made randomly,
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Figure 4.4: An example with DAI-T
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let us consider what happens when q is triggered by a tuple at the attribute level.
Unlike queries of type T1, queries of type T2 give rise to rewritten queries with an
arbitrary equality in the Where clause e.g., the equality 5∗S.E +S.D∗S.F = 25
if a tuple t of R with values R.B = 4 and R.C = 9 is inserted and triggers query
q. Indexing of such linear equalities can be done using geometric data structures
but, in general, queries of type T2 will contain arbitrary functions so geometric
data structures is not an option we would like to consider further. Instead,
we introduce a new double-attribute indexing algorithm that is different from
previous DAI algorithms in how rewriters create the V Index identifiers that
lead to evaluators. This algorithm has been especially designed for queries of
type T2 and covers queries of type T1 as well. Now V Index identifier creation is
based on the value that the left- or right-hand side of the join condition takes.
Thus, our new algorithm is denoted by the acronym DAI-V.

Let q be a query on relations R1 and R2 indexed using attribute IndexR(qL)
of relation R1 and attribute IndexR(qR) of relation R2. Rewriters x1 and x2

respectively receive the query. In DAI-V tuples are indexed only at the attribute
level. When a tuple t1 of R1 arrives at rewriter node x1, qL is triggered. Then x1

creates the identifier V Index(qL) = valJC(qL, t1), where valJC(qL, t1) is the
value that is computed by substituting values from the tuple t1 in the attribute
expression appearing in the R1 part of the join condition. The corresponding
evaluator is x = Successor(Hash(V Index(qL))). After computing V Index, a
message join(q′L, t′1) is created by x1 and sent to the evaluator node, where q′L
is the rewritten qL and t′1 is the projection of t on the attributes needed for the
evaluation of the join. Once an evaluator receives a join message, it matches
the rewritten query against the locally stored data tuples to create notifications,
and then stores t′1 locally. The rewritten query is not stored.

Similarly, a future tuple t2 of relation R2, will arrive at x2 where it triggers
qR and this results in creation of q′R. The evaluator is the successor node of
V Index(qR) = valJC(qR, t2). When valJC(qR, t2) = valJC(qL, t1), then we
get to the same evaluator node where t′1 has been stored. There, q′R meets the
stored tuple t′1 and a notification is created.

Let us give an example of DAI-V in operation using query q defined above.
q will be indexed at the attribute level at node x1 according to one of the
attributes in the left part of the join condition and at node x2 according to one
of the attributes in the right part (e.g., R.B and S.E). Then, if a tuple t1 of
R with values R.B = 4 and R.C = 9 is inserted it will arrive at x1. t1 will be
projected on attributes A,B and C to obtain tuple t′, and t′ will be reindexed
and stored at Successor(Hash(′25′)) since valJC(q, t1) = 25. All future tuple
insertions of S that give the value 25 to the right part of the join condition
of q will also be indexed to Successor(Hash(′25′)) together with the rewritten
instances of q that will use tuple t′1 to compute the result.

DAI-V uses only values to reindex rewritten queries. Thus, we expect that
the previous algorithms that use values prefixed with join attribute names will
distribute better the query processing load. On the other hand, for the same
reason, DAI-V is expected to create less traffic since queries can be grouped
more easily without having the restriction of having the same load distributing
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attribute. In the experiments section we compare the algorithms to present
these different behaviors under a variety of scenarios.

A natural extension of DAI-V would be to calculate the evaluator identifier
as follows: V Index(qL) = Key(q) + valJC(qL, t1). Notice that the key of
the query is prefixed to the value that the join condition must take to create a
notification. This slight difference will allow DAI-V to have as good distribution
of the query processing load as the rest of the algorithms while being able to
evaluate a more expressive class of queries. However, this extension will create
large amounts of network traffic depending on the number of queries that are
indexed in the network, since a rewriter would have to rewindex each triggered
query to a different evaluator, namely there would be no opportunity to group
rewritten queries. Experiments that we have contacted in a 104 node network
with 105 indexed queries showed that when using keys DAI-V can create more
traffic each time a new tuple is inserted in the network approximately by a factor
of 250.

We have now completed the presentation of our algorithms. Table 4.1 com-
pares the four algorithms presented by contrasting the exact sequence of steps
in each one.

4.6 Delivering notifications

An evaluator x may create one or more notifications and use either the send()
or multiSend() function respectively to deliver them. If more than one notifi-
cations are created for the same receiver, they are grouped in one message. A
notification contains the results of a triggered query, namely the appropriate
tuples (projected if necessary) along with time information about when those
tuples were inserted in the network. Node x can contact the node n that posed
a triggered query q by using its IP address (IP (n)) or its unique key (Key(n)).
The former requires only one overlay hop, but is applicable iff n is online and on
the same IP address. The later option is used when n is either on a different IP
address or off-line, and the notification is delivered to Successor(Id(n)). If n is
online but on a different IP address then n = Successor(Id(n)) since Key(n)
is always the same thus Id(n) = Hash(Key(n)) is always the same too. In this
case n sends its new IP to x once it receives the notification. If n is off-line,
then the notification is stored to n′ = Successor(Id(n)), where n′ 6= n. When
n reconnects, it will receive all data related to Id(n) including the missed noti-
fications. This is due to the fact that according to the Chord protocol when a
nodes n joins a network, it receives from its successor all data related to Id(n).
Naturally the ability to receive stored notifications is application dependent,
and we plan to exploit it in e-learning scenarios [19].
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Table 4.1: A comparison of all algorithms
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4.7 Optimizations

In this section we present optimizations that enable us to decrease network traffic
and achieve better load balancing. The techniques presented are applicable to
all algorithms.

4.7.1 The join fingers routing table

We introduce the join fingers routing table (JFRT ) in order to make the cost of
inserting a new tuple and evaluating queries less expensive in terms of overlay
hops. This cost is c1 + c2 for each attribute of a new tuple where c1 is the
cost to index a tuple, namely c1 = O(logN) for DAI-V and c1 = 2 ∗ O(logN)
for the other algorithms. The term c2 = e ∗ O(logN) is the cost to distribute
the rewritten queries from a rewriter to their evaluators and e is the number
of distinct combinations of load distributing attributes and join conditions in
the triggered queries; thus this is the cost to reach the evaluators that compute
the joins. c2 is the largest part of the cost c1 + c2 and we can reduce it down
to e in the following way. Each time a rewriter x communicates with a new
evaluator n, it saves IP (n) and the V Index identifier that leads to n, in the
local JFRT which is a hash table that uses the V Index identifiers as keys. Each
entry for an identifier id contains the IP address of the Successor(id). The next
time the rewriter needs to reindex a query with the same V Index, it can do it
in one hop. This way, the cost becomes c1 + f + (e − f) ∗ O(logN), where f
are the evaluators found in JFRT and can be reached in one hop. The term
(e − f) ∗ O(logN) represents the cost to reach the evaluators not found in the
routing table. Ideally this cost will be reduced down to c1 + f if e = f and will
remain almost constant as the network size N grows.

JFRT is applicable to all algorithms, even to DAI-T where rewriters do
not reindex the same rewritten query more than once. For example, assume a
rewriter x that when a tuple t is inserted, it rewrites q1 to q′1 and indexes q′1 to
the evaluator node n = Successor(Hash(DisR(q1)+DisA(q1)+valDA(q1, t))).
From there on, all incoming tuples that trigger q1, do not cause q1 to be rein-
dexed if the rewritten query that is created is the same with the query q′1.
Thus in this case there is no use of JFRT . On the contrary, when a query
q2 that has the same distributed attribute with q1 is indexed to x after t ar-
rived, JFRT can save hops. When a tuple t′ that triggers q2 arrives to x and
valDA(q2, t

′) = valDA(q1, t) then n is the evaluator node and can be reached
in one hop.

The space requirements are minimal, i.e., each entry costs 32 bit for the
IP address of the evaluator plus another 128 bit for the corresponding V Index
identifier. Thus, we have a total of 160 bits for each entry or 20 bytes.

4.7.2 Balancing the load at the attribute level

As discussed in Section 4, the reason we choose to have two levels of indexing is
for distributing the query processing load. But notice that nodes at the attribute
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Figure 4.5: Moving an identifier

level get more hits than those at the value level. For example, a request to index
a query under R.B will appear more often than a request to reindex a query
under R.B+v, where v is a value that R.B can take. For a database schema of k
relations where each relation ri has ai attributes there will be at most

∑k
i=1 ai

rewriter nodes. We can distinguish two types of load that a (rewriter) node
suffers at the attribute level: the rewriter storage (RS) load and the rewriter
filtering (RF ) load. The RS load of a node n is defined as the total number of
queries that are indexed to n. The more queries a rewriter has, the more effort
it has to put into rewriting and reindexing operations. The RF load of a node
n is defined as the total number of tuples that n receives at the attribute level
in a time window. The more tuples a rewriter receives, the more times it has to
search its ALQT to trigger, rewrite and reindex queries.

In this section we show how we can significantly improve load distribution
at the attribute level through replication of queries at the attribute level. We
will use DR to denote the degree of replication (DR ≥ 1). For example, if
DR = 3 then when a node indexes a query q at the attribute level under R.B,
instead of indexing q only according to the identifier rid1 = Hash(s), where
s = R+B, it also indexes q according to the identifiers rid2 = Hash(s+ s) and
rid3 = Hash(s + s + s). rid1, rid2 and rid3 are called replication identifiers
with successor nodes n1, n2 and n3 respectively. In this way, the query is
replicated DR times and instead of having one rewriter it has DR. Then, when
any node x wants to index a tuple t of R at the attribute level under R.B,
instead of sending t directly to n1, according to the protocol of Section 4.2,
x chooses randomly among n1, n2 and n3. Thus, n1, n2 and n3 share the RF
load that initially only n1 suffered while all of them suffer the same RS load.
In the absence of collisions there will be at most DR ∗

∑k
i=1 ai rewriter nodes

and distinct replication identifiers. The cost we pay for having more rewriters
is more overlay hops when indexing queries at the attribute level, and more
storage load at the network. In both cases costs are raised by a factor of DR.

As we show in the experiments section, when DR grows beyond a certain
point, a number of nodes become responsible for more than one replication
identifiers. Each replication identifier loads a node with RS and RF load. We
can overcome this problem by allowing each node to be responsible for at most
z replication identifiers in the spirit of [39], i.e., rewriters will change their
identifiers, namely their position on the identifier circle. Assume a node n that
receives a query at the attribute level because of the replication identifier rid1.
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If n is already a rewriter for queries because of a replication identifier rid2,
where rid2 6= rid1, then it moves its identifier (Id(n)) between rid1 and rid2.
After that, n is not responsible any more for both rid1 and rid2. An example
is shown in Figure 4.5.

In the experiments section we show that this replication scheme eliminates
the extra cost that rewriters initially suffered and we evaluate both approaches.
In our experiments we use z = 1.

4.8 Summary

In this chapter we presented a detailed description of the four algorithms we
propose for evaluating continuous two-way equi-join queries on top of structured
overlay networks. We presented two classes of algorithms the single index class
and the double index class that is indented to achieve a better query processing
load distribution. We also discussed a set of optimization strategies that can be
applied to all algorithms to bring down the total network traffic created when
evaluating join queries and to improve the distribution of the query processing
load. In the next chapter we present a detailed experimental evaluation of the
algorithms when varying various parameters that can affect performance.
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Chapter 5

Experiments

In the previous section we presented in detail our algorithms. In this chapter
we experimentally evaluate the performance of the four algorithms. Initially we
evaluate the simple API that we proposed in Section 2.3. Then we discuss how
various parameters affect the total network traffic that is created, for example,
the JFRT and the number of indexed queries. Then we continue by evaluating
the optimization strategy for load balancing at the attribute level and then we
present how the total load created by each algorithm is affected by the rate of
incoming tuples and the number of indexed queries. Finally, we compare the
algorithms in terms of load distribution.

5.1 General set-up of the experiments

We implemented a Chord simulator in Java on top of which we developed our
algorithms. We synthetically create tuples and queries as follows. We assume
a database schema S that consists of 50 relations numbered from 1 to 50. This
is a likely scenario in an Internet-wide setting with a multitude of information
sources (having a smaller number of relations does not affect our techniques
or results in any way). Each relation consists of 10 attributes. Each attribute
Aj of a relation ri takes values from the domain {1, 2, ..., 104}. There are two
classes of relations, the small and the big ones. Big relations are used to model
relations with a higher rate of tuple arrivals than small ones. Unless stated
otherwise, the ratio between the arrival rate of tuples of big and small relations,
denoted as bos (big over small) is 10. In order to create a tuple of a relation
in the small class, we choose randomly a relation between 1 and 25 and we
assign values to its attributes. The values of attributes are skewed with a Zipf
distribution of θ = 0.9. For the relations of the big class, we do the same with
relations 26 to 50. In our experiments, we create queries of type T1 as follows.
We randomly select one relation from the big class and one relation from the
small class. Then we randomly select two attributes, one from each relation, to
be the join attributes.

36



Figure 5.1: Recursive vs. iterative design for the multiSend function

5.2 Evaluation of the API

In our first experiment we demonstrate the performance of the recursive and
the iterative implementations of the multiSend() function of our API. The mul-
tiSend() operation is used in many of the steps of our algorithms, for example,
when indexing a triple, when reindexing multiple rewritten queries etc. so it is
critical to have a good design and implementation choice to avoid creating huge
amounts of network traffic.

We set up this experiment as follows. First we create a network of N nodes.
We choose randomly one of the nodes to be the sender that uses the multiSend()
function to deliver a message to multiple receiver nodes. These receivers will
be the successor nodes of k different identifiers (randomly chosen). We present
results for k = 103 k = 2 ∗ 103 and k = 3 ∗ 103 and for different network sizes
from N = 104 up to N = 105.

In Figure 5.1 we show the results. Each point in the graph is averaged over
a thousand runs. We observe that the recursive implementation has half the
cost of the iterative one for all different k values. This is because the iterative
implementation repeatedly creates traffic though the same nodes by initiating
all the messages from the sender node while the recursive implementation avoids
this traffic. In addition, both implementations have a slight increase in number
of hops as the network size grows which is logical to happen due to the DHT
routing infrastructure that requires O(logN) hops for each lookup operation.
Recall that both implementation have a theoretical cost of k ∗O(logN) hops.

Finally, both implementations have a similar increase rate, e.g., twice more
hops are needed when doubling the identifiers to look up. The advantage of
the recursive implementation becomes more important as the receivers grow.
For example, for k = 3 ∗ 103 and N = 104, the iterative implementation needs
27422 hops compared with only 11991 for the recursive one, leading to a gain of
more than 15000 hops. In all our experiments form here on we use the recursive
implementation.
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(a) Effect of the JFRT in network traffic as more
tuples are indexed

(b) Local storage cost of the JFRT as more tuples
are indexed

Figure 5.2: Traffic cost and JFRT effect

5.3 Network traffic and JFRT effect

In this experiment we compare all algorithms in terms of overlay hops they need
and demonstrate the effect of JFRT as the network is being trained with tuple
insertions. We set up this experiment as follows. We create a network of 104

nodes and install 105 queries. Then we train JFRTs with a varying number
of incoming tuples. After each training phase, we insert another 1100 tuples
(100 from the small class and 1000 from the big one) and count (a) the average
number of overlay hops needed to index one tuple and evaluate existing queries
and (b) the average size of JFRT s. To count JFRT size, the sum of the size of
all JFRT s in the network is averaged by the number of rewriter nodes. For our
schema, we have 500 rewriters (see Section 4.7). Note that algorithms DAI-Q
and DAI-T have the same JFRT size after having received the same tuples in
a given network, due to having the same query indexing steps at the attribute
level.

Figure 5.2(a) presents the number of hops needed to evaluate all join queries
when one tuple arrives in different instances of the network. Let us first con-
centrate on the JFRT effect. We observe that the number of hops is decreasing,
as the number of indexed tuples increases. This is because as more tuples are
inserted more queries are triggered, rewritten and reindexed, which makes the
JFRT on each rewriter node to store more information and be able to decrease
the cost of the next tuple insertion. The point 0 on the x-axis has the highest
cost, since it represents the cost to insert a tuple when the JFRT s are empty.
With the highest number of indexed tuples, the cost to insert one more tuple
is significantly reduced for all algorithms. However, we observe that the cost is
reduced more quickly during the first tuple insertions, to reach a state where
additional JFRT training causes only a small reduction in message cost while
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at the same time the average JFRT size (Figure 5.2(b)) keeps growing. This
means that a node can stop training its JFRT after this point and retrain it
periodically.

When comparing the different algorithms we observe that initially when the
JFRTs are empty (point 0), SAI has a cost lower by a factor of 7 compared to
DAI-T and DAI-Q algorithms. This is mainly a result of the fact that in SAI
queries are indexed only under attributes of the small relations and since such
tuples arrive with a lower frequency rewriters in SAI have less reindexing oper-
ations to initiate. Recall that reindexing is the main operation that generates
network traffic in our algorithms. However, we observe that as more tuples are
inserted and train the JFRTs, SAI’s advantage is diminished. The frequency
of inserted tuples is the reason again. The JFRT s are trained with a smaller
pace in SAI because less queries are triggered (at the attribute level) compared
to DAI-T and DAI-Q algorithms. The role of the JFRT is to reduce the cost of
the reidexing operations so the DAI-T and DAI-Q algorithms manage to reduce
their cost. Especially algorithm DAI-T has an advantage since the rewriters in
DAI-T do not reindex the same rewritten query more than once. The differ-
ence observed between DAI-Q and DAI-T as the network is trained with tuple
insertions is due to this fact since the rest of the steps in both algorithms are
quite similar. This property allows DAI-T to have a similar performance with
SAI and even outperform it for the cases where more than 3 ∗ 104 have arrived.
Finally, algorithm DAI-V has even lower requirements regarding network traf-
fic, since it is cheaper by a factor of 3 compared to SAI. This is due to how
rewriters in DAI-V reindex triggered queries where only the required value is
used to calculate the V index identifier without using attribute names. In this
way it is more possible to group triggered queries that may do not have exactly
the same join conditions and use only one message to reindex them.

In Figure 5.2(b) we show the average JFRT size for each algorithm. We see
that in SAI the cost is a lot smaller than in DAI-Q/DAI-T algorithms which
is because of two reasons: in SAI a rewriter has less queries, and also queries
in SAI are triggered only by relations of the small class which arrive with a
lower frequency. Both this reasons result in that less queries are triggered at
the attribute level in SAI and since triggered queries at the attribute level feed
the JFRTs, the average JFRT size in SAI is a lot smaller. Finally, algorithm
DAI-V has a significantly lower JFRT cost which because the same evaluator
is required for all triggered queries that require the same value for their join
condition no matter the name of the involved attributes, so a rewriter node
does not have to initiate more messages as we saw in the previous paragraphs
and keeps less identifiers in the JFRT that lead to the evaluators.

Experiments with uniform distribution for the values of attributes lead to
similar results as above, except that for all algorithms the decrease rate in
number of hops was smaller (i.e., we needed longer training phases) and JFRT s
were larger by a factor of 4.

In addition, experiments where the query grouping features where not acti-
vated lead to a much higher network traffic cost for all algorithms since multiple
messages where sent to the same (or towards the same destination). For exam-
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(a) Effect in network traffic as indexed queries
are increased

(b) Effect in the JFRT storage cost as indexed
queries are increased

Figure 5.3: Effect of the number of indexed queries in network traffic

ple, in order to filter one tuple with algorithm DAI-Q, without grouping we
needed on average 7 ∗ 103 hops when the JFRTs are not in use compared to
103 when queries are grouped. When the JFRTs are activated the difference is
smaller, i.e., 2 ∗ 103 hops are needed without grouping compared to 300 with
grouping. Thus, query grouping and the JFRT routing table bring down the
network traffic cost for DAI-Q approximately by a factor of 25.

5.4 Varying the number of indexed queries

In this experiment we demonstrate the effect in network traffic of the number
of queries that are indexed. We set up this experiment as follows. We create a
network of 104 nodes where we insert Q queries. Then we insert 40K tuples to
train the JFRTs. Then we count the number of hops needed for each algorithm
to insert one tuple and evaluate all existing queries. We repeat this procedure for
the same network and set of tuples but for different number of queries, namely
we start from Q = 8 ∗ 103 and each time we double Q until Q = 128 ∗ 103.

In Figure 5.3 we show the results for each algorithm. A first observation
is that all algorithms except DAI-V need more hops to insert one tuple as the
number of indexed queries increases. DAI-Q is affected more by increasing the
number of indexed queries than the rest of the algorithms. SAI and DAI-T are
less affected for example they need 10 more hops on average to index one tuple
with 128 ∗ 103 indexed queries than with 8 ∗ 103 queries. This happens because
these two algorithms avoid a large portion of the reindexing operations that
DAI-Q has to perform. Recall that in SAI queries are triggered at the attribute
level only by tuples of the small relation that arrive with a lower frequency while
in DAI-T a rewriter never reindexes the same rewritten query more than once.
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(a) Effect in network traffic (b) Effect in the JFRT storage cost

Figure 5.4: Comparison of the various index attribute selection strategies in SAI

Finally, algorithm DAI-V remains unaffected both in terms of network traffic
and JFRT cost. This is because of the way that queries are reindexed which is
depended on values.

5.5 Evaluating the index attribute choice in SAI

In this experiment we compare the various alternative strategies for choosing the
index attribute in SAI with respect to network traffic. We implemented three
strategies regarding the frequency of inserted relevant tuples to a query. In the
first strategy, denoted as highF , the index attribute of a query is chosen to be
the one that refers to the relation that has the highest frequency of incoming
tuples. In the second strategy, denoted as LowF , we choose the index attribute
that belongs to the relation with the lower rate of incoming tuples. The third
strategy, called random, chooses randomly the index attribute of a query.

We set up this experiment as we did for our second experiment. We create
a network of 104 nodes where we insert 105 queries. Then we insert 40K tuples
(with bos = 10) to train the JFRTs in four equal phases. After each training
phase, we insert another 1100 tuples (100 from the small class and 1000 from
the big one) and for each strategy we count (a) the average number of overlay
hops needed to index one tuple and evaluate existing queries and (b) the average
size of JFRT s.

In Figure 5.4(a) we show the hops needed to insert one tuple and evaluate
existing join queries for each different strategy. As it was expected choosing the
index attribute from the relation with the lower rate of incoming tuples out-
performs the other two strategies since less queries are triggered and reindexed
on average each time a new tuple arrives. Initially, when the JFRTs are empty
the LowF strategy is better by a factor of 7. Then as JFRTs are trained a
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big portion of this advantage is lost since after 40K tuples have arrived LowF
is still better, but this time by a factor of 3. However for the other strate-
gies this improvement comes with the cost of maintaining the JFRTs since as
we see in Figure 5.4(b) the average JFRT size is significantly higher for LowF
and random, for example, the JFRTs are approximately 8 times bigger than
in LowF after 40K tuples have arrived. Thus the LowF strategy is not only
better in terms of network traffic but also it has the lower storage cost for the
JFRT routing table as shown in Figure 5.4(b) since it is populated with entries
with a lower frequency. The random strategy has a slightly higher cost than
HighF both in terms of network traffic and storage cost of the JFRT. Regarding
network traffic, this happens because by choosing randomly the index attribute
the algorithm looses the opportunity to group triggered queries (with the same
index and distributed attributes) and send them in one message. For the same
reason the JFRT cost in random is also higher.

5.6 Effect of the bos ratio

In this experiment we measure the effect in network traffic and in JFRT storage
cost of the ratio between the number of tuples in big and small relations. We
set up this experiment as follows. We create a network of 104 nodes where we
insert 105 queries, and then 40K tuples to train the JFRTs. Then we count
the number of hops needed to insert one tuple and evaluate all existing queries.
We repeat this procedure for various bos ratios from bos = 1 up to bos = 99.

In Figure 5.5(a) we show the hops needed to insert one tuple as bos increases.
A first observation is that DAI-Q and DAI-V are not affected significantly as
bos increases. However when the bos ratio becomes 9 or bigger they decrease the
necessary hops to insert and filter one tuple. This happens because the JFRTs
are better trained for the tuples with the higher rate of incoming tuple allowing
cheaper reindexing operations. Also since tuples of the big relation arrive high
q higher frequency as bos increases, these tuples tend to create similar rewritten
queries also with a higher frequency which means that the JFRTs can be used
more by all the DAI algorithms. With bos = 1, DAI-T has a clear advantage
over SAI since in DAI-T the same rewritten query is not reindexed more than
once. As expected, SAI reduces significantly the necessary hops as bos increases
since tuples of the small relation arrive with a lower frequency so less queries
are triggered. As bos increases higher than 9, SAI and DAI-T perform similarly.

In Figure 5.5(b) we show the average storage cost for the JFRT as bos
increases. This graph also explains the behavior of the algorithms regarding
necessary hops in the previous graph. We observe that all algorithms decrease
the average JFRT cost as bos increases. For SAI the reason is simple as in SAI
queries are indexed based on attributes of the small relations. As relevant tuples
arrive with a lower frequency, rewriters in SAI have to make less rewriting and
reindexing operations which also means that the JFRTs are populated less often.
For the DAI algorithms the reason is exactly the opposite since as tuples of the
big relations arrive with a higher frequency rewriters in DAI algorithms make
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(a) Effect in network traffic (b) Effect in local storage cost of the JFRT

Figure 5.5: Effect of varying the bos ratio

more rewriting operations and populate more frequently the JFRTs. However
more and more similar tuples arrive that create queries that have been already
created which means that they need an already known evaluator (who’s IP is
already stored in the JFRT). Thus for this cases no new entry is required in the
JFRT. In this way the DAI algorithms also decrease the JFRT cost, however
with a smaller pace than that of the SAI algorithm.

5.7 Evaluation of the replication scheme

In this experiment we demonstrate the effect of our replication scheme at the
attribute level. We also evaluate the technique of moving identifiers of rewriter
nodes on the Chord ring so as to better balance the total load created at the
attribute level to all the rewriter nodes. We set up this experiment as follows.
We create a network of 5 ∗ 104 nodes and we insert 105 queries. Then we insert
5∗105 tuples and count the RF and RS load per rewriter node. We do that for
various DR values and we show results with and without moving identifiers.

In Figure 5.6 we measure the RF load with and without moving identifiers
for DR = 1 to DR = 100. Note that the RF load is independent of the
algorithm used since it is created by an incoming tuple at the attribute level
that always forces a rewriter node to search for triggered queries in its local data
structures. This step is common for all algorithms. On the x-axis of the graphs
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(a) Without moving identifiers (b) When moving identifiers

Figure 5.6: Effect of the replication scheme in filtering load distribution

in Figure 5.6 nodes are ranked starting from the node with the highest filtering
load. The y-axis represents the cumulative filtering load, i.e, each point (a, b) in
the graph represents the sum of filtering load b for the a most loaded rewriters.
In Figure 5.6 we see the case where identifiers do not move. As DR increases, a
higher number of rewriters share the same total filtering load; for example, an
increase by a factor of 100, results in 66 times more rewriter nodes. In addition,
as DR grows the heaviest nodes suffer less load. Thus, the simple replication
scheme has a significant effect in improving the filtering load distribution at
the attribute level. In Figure 5.6(b), we see what happens when we force the
rewriter nodes to move their identifiers on the Chord ring in such a way that
they are responsible for at most one replication identifier. We achieve a better
load distribution by forcing more rewriter nodes to share the same total load.

Figure 5.7 shows the RS load per rewriter for DR = 10 and DR = 100.
We show only one curve for all the DAI algorithms, since they all have the
same RS load per rewriter, for the same network and set of queries. This is
because they all index queries at the attribute level in the same way. The RS
load of a rewriter node is independent of the incoming tuples since it represent
the number of indexed queries in a rewriter node. Without moving identifiers
(Figure 5.7(a)), we observe that not only more rewriters have to store queries but
also the RS load per rewriter is growing as DR becomes bigger. For example in
the heaviest node stored 60 queries with DR = 10 while for DR = 100 it stores
150. Thus in order to decide a good value for DR, we have to face the tradeoff of
improving the RF load distribution while increasing the RS load per rewriter.
On the other hand, when we force rewriters to be responsible for at most one
replication identifier (Figure 5.7(b)), we see that the RS load per rewriter is
not growing with DR since it is distributed to more nodes. What happens is
that even more rewriter nodes are forced to be responsible for the replicated
queries. For example, in the case of DAI for DR = 100 we see that without
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(a) Without moving identifiers (b) When moving identifiers

Figure 5.7: Effect of the replication scheme in storage load distribution

moving identifiers the total number of rewriter nodes sharing the RS load is
approximately 32 ∗ 103 nodes, while when rewriters change their identifiers this
number id 47 ∗ 103.

Since indexing of tuples at the attribute level is not affected by the values
that attributes take, the results of this experiment hold for any value distribu-
tion.

Experiments with a lower ratio of total big over total small relations naturally
resulted in a better filtering load distribution without affecting the storage load
distribution.

5.8 Total load created

The previous experiment measured the load incurred by a node when this node
plays the role of a rewriter (i.e., works at the attribute level). In this experiment,
we measure the load incurred by nodes while playing the role of evaluators (i.e.,
working at the value level). We introduce two new metrics to quantify this
load: the evaluator filtering load (or EF load) and the evaluator storage load
(or ES load). For an evaluator node n, EF load is the sum of two quantities:
the number of rewritten queries that arrive at n and are checked to see whether
they match any stored tuples, plus the number of tuples that arrive at n and are
checked to see whether they satisfy any stored rewritten queries. Similarly, the
ES load of n is the sum of two quantities: the number of rewritten queries plus
the number of tuples stored at n. The previous definitions are general enough
to cover all algorithms. For example, in DAI-T where tuples are not stored at
the value level, the ES load of a node is only the number of stored rewritten
queries. Similarly in DAI-Q where only tuples are stored at the value level, the
ES load of a rewriter is only the number of stored tuples.
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(a) Increasing the number of indexed queries (b) Increasing the number of incoming tuples

Figure 5.8: Effect of window size and installed queries in total evaluator filtering
load

This experiment demonstrates the scalability of our algorithms in terms of
EF and ES load generated in the network as the number of tuples or queries
increases. We set up this experiment as follows. In a network of 104 nodes,
we first install Q queries and T tuples. Then we measure the total ES and
EF load created in the network. The base values are Q = 4K and T = 4K.
Then we repeat this procedure while increasing the number of queries to Q =
8K, 16K, 32K and then the number of tuples to T = 8K, 16K, 32K. The degree
of replication is DR = 100 and the ratio of big to small relations is 10. The
results are shown in Figures 5.8, 5.9.

In Figure 5.8 we show the total EF load created in the network. We observe
that when increasing the number of queries (Figure 5.8(a)), DAI-T is not affected
at all since in DAI-T an evaluator only performs a filtering operation upon
receiving tuples. This is a significant advantage of DAI-T which means that it
can scale up to any number of indexed queries by keeping stable the total EF
load created in the network as long as the rate of incoming tuples also remains
stable. All the other algorithms are affected when increasing queries and the EF
load is increased. SAI has the smallest increase rate which is because less queries
are triggered at the value level to be rewritten and produce EF load at the value
level with a reindexing operation. DAI-Q and DAI-V outperform all others when
the ratio of total number of tuples over total number of indexed queries is 0.25
or bigger, since these two algorithms force an evaluator to perform a filtering
operation only upon receiving a rewritten query and not upon receiving a tuple.

In Figure 5.8(b) we show how the total EF load that created in the network
is affected by increasing the rate of incoming tuples. The first observation is
that SAI and especially DAI-T that proved to be more stable when we increased
the number of indeed queries are now heavily affected by the increased number
of incoming tuples. On the contrary DAI-Q and DAI-V appear to have a similar
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(a) Increasing the number of indexed queries (b) Increasing the number of incoming tuples

Figure 5.9: Effect of window size and installed queries in total evaluator storage
load

performance as before. These two algorithms force an evaluator to perform a
filtering operation only upon receiving a rewritten query and not upon receiving
a tuple and can outperform SAI and DAI-T by a factor of 6.

Figure 5.9 measures the total ES load created in the network. When we
increase the number of installed queries (Figure 5.9(a)), we observe that DAI-Q
is not affected at all since an evaluator in DAI-Q never stores a rewritten query.
So this time DAI-Q is most scalable algorithm in terms of storage load since it
will not be affected by the number of installed queried as long as tuples arrive
with a steady rate. Again SAI has the smallest increase rate, while this time
DAI-T and DAI-V are the best as long as the ratio of total number of tuples to
the total number of installed queries is 0.25 or bigger, since these two algorithms
do not store tuples at the value level. This is better seen when we increase the
number of tuples (Figure 5.9(b)). For example, in the case of 32K tuples, DAI-T
and DAI-V are better by a factor of 14 compared to DAI-Q and SAI.

5.9 Load distribution

In the previous experiment we showed the behavior of the algorithms regarding
the total load that they create in the network. In this experiment we compare
the algorithms presented in this thesis in terms of distributing the various types
of load among nodes of the network. Load distribution was one of our basic
goals when designing the algorithms since in a distributed environment good
load distribution properties will allow a network to be scalable to large numbers
of incoming data (queries or tuples) by exploiting in the best possible way the
available sources (nodes) in the network.

We define the total filtering load (or TF load) of a node n as the sum of the
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(a) Total filtering load distribution (b) Total storage load distribution

Figure 5.10: TF and TS load distribution comparison for all algorithms

RF load and the EF load of n. Similarly, we define the total storage load (or
TS load) of a node n as the sum of the RS load and the ES load of n. In this
section we will show how our algorithms manage to distribute these two types
of load in various cases.

For comparison reasons we have also implemented the two simple algorithms
that we discussed for in Section 4. We will use the query q with a join condition
R.B = S.E to shortly describe these two algorithms. The first one, called
Naive1, assigns q to the nodes x1 and x2 that are successors of the identifiers
Hash(R) and Hash(S) respectively. Then incoming tuples are indexed only
to one node according to the name of the relation that they belong to. Each
node that receives a tuple it stores it locally. So when node x1 receives a tuple
of R, rewrites q to q′ (in the same way as we do in our algorithms) and sends
the rewritten query to x2 to meed the rest of the tuples necessary to create a
notification. Node x2 matches q′ against the locally stored tuples trying to create
a notification. The rewritten query is not stored by x2. The second algorithm,
called Naive2, follows exactly the same procedure with the difference that now
x1 and x2 are the successors of the identifiers Hash(R + B) and Hash(S + E)
respectively.

We set up this experiment as follows. We create a network of 104 where we
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insert 105 queries. Then we insert 5 ∗ 104 tuples and we count the total TF and
TS load incurred by each node for each different algorithm.

In Figure 5.10, we graph the TF and TS load distribution. We use these two
graphs mainly to compare the two simple algorithms with our four algorithms.
For readability reasons we only show the 250 more loaded nodes. In Figure
5.10(a) we see the filtering load per node where we observe that with the two
simple algorithms the heaviest nodes incur significantly more load when com-
pared with any of our algorithms. For example, the heaviest nodes in Naive1

are loaded with 104 times more load than in DAI-T. A similar observation also
holds for the case of the storage load per node graphed in Figure 5.10(b). As
expected both for the filtering and the storage load, the Naive2 algorithm has a
better distribution than that of the Naive1 since attribute values are also used
but our algorithms have a clear advantage since they also use the values of the
join attributes in incoming tuples to distribute the load. Each one of our algo-
rithms distributes the different types of load in a different way. Having made
the claim that all our algorithms outperform the simple solutions we continue
in this section to compare our algorithms for various scenarios.

In Figure 5.10(a) we see the filtering load distribution for the two level index-
ing algorithms. A first observation is that DAI-V behaves a lot differently than
the rest of the algorithms. This is because of the way that rewritten queries
are reindexed in DAI-V by using only the values of join attributes. The rest
of the algorithms that also use the name of the load distributing attribute of a
query manage to force more nodes to take part in the query processing proce-
dure (i.e., 9000 nodes compared to approximately 3000 in DAI-V). Now when
we comparing the two double attribute indexing algorithms, DAI-Q and DAI-
T, we see that they use a similar portion of the network for query processing.
However, DAI-Q loads the nodes with more load by a factor of 100 compared
to DAI-T to do the same job. This is explained by the fact that in DAI-T the
evaluator nodes perform filtering operations only upon receiving a tuple at the
value level. On the contrary, in DAI-Q evaluators perform filtering operations
upon receiving rewritten queries at the value level. Each new tuple will reach 10
nodes/evaluators at the value level if it consists of 10 attributes so in DAI-T 10
nodes try to filter the tuple. On the attribute level it will also reach 10 rewriter
nodes but each rewriter node will forward rewritten queries to more than one
evaluators so in DAI-Q there will be more than 10 evaluators performing filter-
ing operations (depending on triggered queries). In algorithm SAI evaluators
perform filtering operations both upon receiving a tuple and a rewritten query.
However, at the attribute level queries are only triggered by tuples of the small
relations so this is why SAI loads the nodes with more load than DAI-T but
with less load than DAI-Q. Thus, clearly algorithm DAI-T outperforms the
other algorithms by using a large portion of the overlay and loading it with less
load.

In Figure 5.10(b) we show the storage load distribution for the two level
indexing algorithms. The observations are quite similar. Algorithm DAI-V uses
a smaller portion of the overlay. This time algorithm DAI-T is the one that
loads the network nodes with more load which is because evaluators in DAI-T
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(a) Total filtering load distribution (b) Total storage load distribution

Figure 5.11: Total filtering and total storage load distribution comparison for
the two level indexing algorithms

store the rewritten queries that they receive. On the contrary, DAI-Q loads the
nodes with far less load while SAI lies somewhere in the middle. The behavior
of the algorithms regarding storage load distribution is explained by the same
reasons that we used in the previous paragraph. DAI-T stores rewritten queries
at the value level while DAI-Q stored only tuples.

In this way, deciding which algorithm is the best is application and sources
depended. If filtering load distribution is more important then DAI-T is the best
algorithm while if storage load distribution is needed then DAI-Q is the best.
But keep in mind that DAI-Q is a lot more expensive than DAI-T regarding
network traffic. Finally, SAI offers a solution that compromises between storage
and filtering load distribution.

5.10 Parameters that affect load distribution

In the previous experiment we compared our algorithms with the more simple
solution in terms of load distribution and we discussed the differences of the
algorithms. In this experiment we will show how various parameters affect load

50



Figure 5.12: Effect in filtering load distribution of increasing the frequency of
incoming tuples

distribution. We will show that our algorithms are scalable (a) to increasing the
number of indexed queries, (b) to increasing the frequency of incoming tuples
and (c) to increasing the size of the network. The first two cases result in that
more total load is created in the network. We will show that our algorithms
keep distributing this extra load to the available nodes. For the third case
of a larger network, we will show that our algorithms use the new nodes in
the query processing procedure, thus there are more nodes sharing the same
total load. Finally, we show the effect of the value range of join attributes
in load distribution. For space reasons we will show only the filtering load
distribution which also reflects the way that storage load distribution is affected
when combined with the results in the previous experiment.

We set up this experiment as follows. We create a network of 104 where
we insert 105 queries. Then we insert 104 tuples and we count the total TF
load incurred by each node for each different algorithm. Then we do the same
for 3 ∗ 104 and for 50 ∗ 104 tuples to observe what happens as the number of
tuples increases. For the second part of the experiment where we want to see
the effect of increasing the number of indexed queries, we load the network with
3 ∗ 104 queries. Then we insert 5 ∗ 104 tuples and count the TF load incurred
by each node for each different algorithm. We do the same for 5 ∗ 104 and for
105 indexed queries. Finally, in order to observe the effect of network size, we
use 105 indexed queries and 5 ∗ 104 incoming tuples in a network of 104 nodes
which is increases to 3 ∗ 104 and then to 5 ∗ 104 nodes.

In Figure 5.12 we show the filtering load distribution for SAI, DAI-Q and
DAI-T while increasing the frequency of incoming tuples in a time window. As
more tuples arrive, more filtering load is created in the network since the new
tuples result in more triggering and reindexing operations. As we see in Figure
5.12 the algorithms manage to distribute the extra load nicely (as they did for
the smaller frequencies). For all algorithms we see that even more nodes are
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Figure 5.13: Effect in filtering load distribution of increasing the number of
indexed queries

Figure 5.14: Effect in filtering load distribution of increasing the network size

forced to contribute in query processing as the frequency increases. For example,
in DAI-T there where approximately 6 ∗ 103 nodes out of 104 participating in
query processing when there where 104 incoming tuples while there where 9∗103

nodes when the frequency increased to 5 ∗ 104 tuples in a time window. Also by
comparing the algorithms we observe that DAI-T loads the network nodes with
less load for the case of the 5 ∗ 104 tuples than SAI and DAI-Q do for the case
of 104 tuples.

In Figure 5.13 we show the filtering load distribution for SAI, DAI-Q and
DAI-T while increasing the number of indexed queries. Increasing this para-
meter results in that more load is created in the network since more queries
are triggered each time a new tuple arrives. We see in Figure 5.13 that all al-
gorithms distribute this load in the same way as they did for smaller numbers
of indexed queries. It is important to notice that DAI-T does not increase the
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(a) SAI (b) DAI-Q (c) DAI-T

Figure 5.15: Effect in filtering load distribution of increasing the network size
for the most loaded nodes

total load and thus nodes are loaded with exactly the same load even though
the indexed queries are increased. This is because in DAI-T filtering operations
happen only when new tuples arrive. Again DAI-T loads the network nodes
with less load for the case of 105 queries than SAI and DAI-Q for the case of
104 queries. We also observe that for SAI and DAI-Q the increase in filtering
load incurred per node is smaller than what we observed when we increased the
frequency of incoming tuples. This is because new tuples cause filtering opera-
tions both at the attribute and at the value level while more queries can cause
filtering operations only at the value level while being reindexed. In addition,
we observe that when we increased the frequency of incoming tuples the algo-
rithms forced more nodes to contribute in query processing which did’t happen
when we increased queries. This is because a new tuple can include a new value
for a join attribute of a query and thus cause a rewritten query to be reindexed
to a new evaluator.

In Figure 5.14 we show the filtering load distribution for SAI, DAI-Q and
DAI-T while increasing the network size. We observe that all algorithms tend
to distribute the total load to more nodes. For example in DAI-Q there were
8 ∗ 103 sharing the total query processing load in a network of 104 nodes, while
when the network size increased to 5∗104 there are 26∗103 more nodes sharing
the same load. In this way as new nodes arrive the already existing nodes are
relieved from a portion of the load that they incur. n Figure 5.15 we also show
what happens for the most loaded nodes since this is not so obvious in Figure
5.14. We see that when the network size is increased for all algorithms the
most loaded nodes incur less load. The remaining load is distributed to the new
nodes.

In Figure 5.16 we show how the above parameters affect the load distribution
in DAI-V. First we observe that by increasing the number of indexed queries
we increase the total load but the load distribution is not improved which is
because the rewritten operations in DAI-V are only affected by the values of
incoming tuples. When the rate of incoming tuples is increased more nodes
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(a) Varying the rate of incoming
tuples

(b) Varying the number of in-
dexed queries

(c) Varying the network size

Figure 5.16: Effect in filtering load distribution of DAI-V of increasing the
network size, queries or tuples

tend to contribute in query processing. The same stands for the case when we
increase the network size as a result of the fact that a node may be responsible
for more than one identifiers. Naturally when new nodes come in they become
responsible for part of those identifiers.

Experiments with a less skewed data distribution lead to a better load dis-
tribution for all algorithms as it was expected. In such a setting the value range
of attributes has a more crucial role since a higher value range can significantly
improve all kinds of load distribution especially for DAI-V.

5.11 Summary

The experimental evaluation presented in this chapter showed the strengths
and weaknesses of the four algorithms. SAI outperforms the other algorithms
in terms of overlay hops by taking advantage of indexing with respect to the
attribute of the relation with the lowest rate of incoming tuples. DAI-T exhibits
similar performance when JFRT is in use. With respect to load balancing, one
has to choose the algorithm that suits one’s scenario, trading network hops for
better load distribution. DAI-T represents a good alternative when network
hops and filtering load are scarce resources, while DAI-Q should be the choice
when storage load distribution is more important. DAI-V has the advantage
that it creates less network traffic but on the other hand it does not use all the
available resource/nodes in the network. In the next chapter we discuss related
work.
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Chapter 6

Related work

In the previous chapter we experimentally evaluated the proposed algorithms
under various parameters. In this chapter we discuss related work. Our work
shares common ground with a number of research areas including distributed
databases, P2P databases, stream processing, continuous query processing and
publish subscribe systems. In the rest of this section we briefly survey these
research areas.

6.1 Distributed and Parallel Databases

The database community has done a lot of work in the area of distributed and
parallel databases. A large portion of this work is nicely surveyed in [40, 22, 74].

The work on hash-based join algorithms for shared-nothing parallel database
architectures is most relevant to our work [62]. For example, papers [49, 58, 21]
study the problem of evaluating join queries in multiprocessor environments. In
this work the authors to try to parallelize the join operation mainly through
hash-based algorithms in an environment where multiple processors are avail-
able. There is no common memory usage between these processors. This
strongly resembles our scenario where we want to distribute the query processing
load in a distributed environment of nodes that share nothing.

Mariposa [63] is one of the most well known distributed database systems
and probably the most ambitious attempt to scale to thousands of nodes. The
authors based their work on different assumptions from what had happened
up to this point in the area of distributed databases. Most importantly they
took into account the fact that not all nodes in a network are equal in terms
of available resources (cpu, storage, network connection etc.) and the fact that
data should be able to move from one node to another easily without requiring
heavy operations. All this should happen without global coordination while at
the same time the network should adapt its behavior according to current status.
Most of these issues still remain open research subjects in distributed systems
research which proves how important was the introduction of the Mariposa
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system. The approach of [63] was to adopt a microeconomic approach for query
and storage processing. Each Mariposa node has an account in the Mariposa
network bank. When a user poses a query, it has a budget and the system should
solve the query without exceeding this budget. Then nodes bid to answer pieces
of the query. Nodes advertise the services that they provide. A server node can
enter the network by buying data items from other nodes (to be able to answer
relevant queries) and can leave the network by selling the data items that it
owns. The authors argue that adopting such an economic paradigm simplifies
their attempt to avoid global coordination.

Another well known distributed database system is LH* [43]. The authors
introduce the notion of the scalable distributed data structure (SDDS) which
shares a lot with the underline ideas of current structured overlay networks in
the sense that a SDDS is maintained in a distributed way even in the presence of
node connections, disconnections or failures without centralized coordination.
LH* is mainly proposed for distributed maintenance and processing of RAM
files. A RAM file, used by more than one clients, is distributed to more than
one server nodes. Clients can insert files and pose queries. When a server has
no more storage space sends data to other servers (split operation) and in this
way the network (of servers) is extended.

Distributed database systems like the ones we shortly described are the base
for today’s research. However, this time the assumptions are different, i.e.,
there is no distinction between client and server nodes. In addition, with the
advent of highly distributed applications on top of the WWW there is the need
that the overlay network should be able to scale to tens of thousands of nodes
that insert data and pose queries. There is a number of new challenges in such
distributed environments like locality of data and nodes, handling malicious
nodes and requests and being able to adapt dynamically to sudden loss of data
and routing paths due to nodes leaving the network without notifying first.
Of course to all this we should add the ability to evaluate SQL queries where
the contributions of this thesis are. There is a broad space of applications
that this research aims to, that goes beyond the distributed database scenario
where multiple database servers handle client requests. But at the same time
this research requires distributed database features like being able to answer
complex SQL queries over data that are distributed to the network and running
parallel operations to multiple nodes.

6.2 P2P Databases

This paper is also closely related with work in the new area of P2P DBMS
[11, 29, 34]. Currently, one can distinguish two orthogonal directions of re-
search in this area: work that emphasizes semantic interoperability of peer
databases [11, 29] and work that attempts to push the capabilities of current
database query processors to new large-scale Internet-wide applications by uti-
lizing DHTs [34]. Our work belongs to the latter direction and emphasizes
the processing of continuous queries on top of DHTs. Previous work in this
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area has emphasized algorithms for various kinds of queries [26, 30, 67] or the
construction and evaluation of real systems [34, 45].

In [34] the system PIER is presented. This is the first attempt to tackle
complex SQL queries on top of a structured DHT network. This work is very
closely related to ours since the authors make the same assumptions. All nodes
are equal, they are organized under a DHT protocol (the CAN protocol), while
data are inserted in the network in the form of data tuples. Then nodes can
pose complex SQL queries. The authors present already known algorithms in the
area of distributed databases that have been adapted to suit the DHT scenario.
Each tuple is inserted in the network by hashing the tuple’s unique resource
id. Then in order to evaluate an equi-join query all nodes of the overlay have
to be contacted to see if they store relevant tuples. The broadcasting step is
necessary since the way tuples are inserted does not allow us to now where all
tuples with a specific value for a given attribute of a given relation are. After
the broadcasting step, a variation of the symmetric hash join algorithm is used.
Each node concatenates the values of the join attributes in the tuples that it
stores and sends the tuples to the node that is responsible for the identifier that
is computed by hashing this string. In this way, multiple nodes will receive and
evaluate the join. However, large amounts of traffic are generated mainly due
to the broadcasting step. The authors argue that it is possible to improve this
by using semi-joins and bloom filters and present experiments that verify their
claims. Finally, the authors discuss a number of interesting issues related to P2P
databases, i.e., relaxed consistency and organic scaling. A highly distributed
environment is very difficult to guarantee ACID transactions, thus the authors
argue that we should provide best-effort results. In addition, the network should
scale organically, i.e., according to current requests, network size etc. without
having any restrictions like assigning responsibilities to a specified set of nodes
that cannot be extended.

6.3 Continuous Queries and Stream Processing

Database research on continuous queries has its origins in the paper [66] and
systems OpenCQ [44] and NiagaraCQ [17]. These papers offer centralized so-
lutions to the problem of continuous query processing. More recently, con-
tinuous queries have been studied in depth in the context of monitoring and
stream processing with various centralized [47, 16, 57] and distributed propos-
als [27, 18, 1, 5, 6, 59, 32].

To the best of our knowledge, PeerCQ [27] is the first detailed proposal for
processing continuous queries on top of DHTs that has been published before
this work. PeerCQ does not concentrate on the relational data model and the
SQL query language. The authors assume that data are not stored in a DHT
but are kept locally at external data sources (e.g., web sources). In PeerCQ, the
DHT infrastructure is nicely utilized to achieve a good distribution of monitoring
and evaluating responsibilities. A continuous query q in PeerCQ is a quintuple
(id, src, item, cond, query, stop), where id is an identifier, src is the information
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source to be monitored, item is the item of interest on this source, cond is
the condition that may trigger q, query is the query to executed whenever q
is triggered and stop is the time after which q is terminated. PeerCQ assumes
that peers are heterogeneous and uses a sophisticated model of peer capabilities
to distribute continuous queries to evaluator peers while maintaining good load
balance and system throughput. It would be interesting to extend our work with
the model of peer capabilities proposed by PeerCQ to be able to deal gracefully
with peer heterogeneity.

[6] is another recent paper that is closely related to our work. [6] considers
distributed equi-join evaluation in wide-area networks consisting of many het-
erogeneous hosts. [6] concentrates on network locality (i.e., proximity of hosts)
and data locality (i.e., closeness in the data values and frequencies of these data
values) with the objective of optimizing the delay of output tuples. Thus the
techniques sketched in [6] are complementary to the techniques of this paper.
In the DHT setting that we consider, it would make sense to investigate the
applicability of locality-aware DHTs such as Tulip [3] to tackle the questions
of [6]. This is something we plan to do in the future in the context of project
Evergrow where Tulip is also been developed. In a similar manner, [5] shows the
benefits of using the locality-aware DHT Tapestry [75] to implement distributed
operator placement for continuous query processing of data streams.

[59] is another recent paper that considers distributed query optimization in
stream overlay networks and points out differences with distributed query opti-
mization. It also discusses a query optimization framework that integrates the
phases of query plan generation and operator placement traditionally considered
separately in distributed database querying.

Finally, [32] is another recent paper that makes the case for distributed
triggers in the context of wide-area monitoring applications. Like [6] and [59],
this paper presents many interesting ideas but implementation and evaluation
of these ideas is left to future work.

6.4 Pub/Sub Networks

Most of the work on pub/sub in the database literature has its origins in the
paper [25] that coined the term selective dissemination of information (SDI).
Their preliminary work on the system DBIS appears in [9]. Another influential
system is SIFT [71, 72] where publications are documents in free text form and
queries are conjunctions of keywords. SIFT was the first system to emphasize
query indexing as a means to achieve scalability in pub/sub systems [71]. Later
on, similar work concentrated on pub/sub systems with data models based on
attribute-value pairs and query languages based on attributes with comparison
operators (e.g., Le Subscribe [24], the monitoring subsystem of Xyleme [51]
and others). [13] is also notable because it considers a data model based on
attribute-value pairs but goes beyond conjunctive queries – the standard class
of queries considered by other systems [24]. More recent work has concentrated
on publications that are XML documents and queries that are subsets of XPath
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or XQuery (e.g., XFilter [46], YFilter [23], Xtrie [15] and xmltk [28]). All these
papers discuss sophisticated filtering algorithms based on indexing queries.

In the area of distributed systems and networks various pub/sub systems
have been developed over the years. Researchers have utilized here various data
models based on channels, topics and attribute-value pairs (exactly like the
models of the database papers discussed above) [14]. The latter systems are
usually called content-based because attribute-value data models are flexible
enough to express the content of messages in various applications. Work in this
area has concentrated not only on filtering algorithms as in the database papers
surveyed above, but also on distributed pub/sub architectures [4, 14]. SIENA
[14] is probably the most well-known example of system to be developed in this
area. SIENA uses a data model and language based on attribute-value pairs and
demonstrates how to express notifications, subscriptions and advertisements in
this language. From the point of view of this paper, a very important contri-
bution of SIENA is the adoption of a P2P model of interaction among servers
(super-peers in our terminology) and the exploitation of traditional network al-
gorithms based on shortest paths and minimum-weight spanning trees for rout-
ing messages. SIENA servers additionally utilize partially ordered sets encoding
subscription and advertisement subsumption to minimize network traffic. The
core ideas of SIENA have recently been used in the pub/sub systems DIAS [41]
and P2P-DIET [35, 42, 36] but now the data models utilized were inspired from
Information Retrieval. DIAS and P2P-DIET have also emphasized the use of
sophisticated subscription indexing at each server to facilitate efficient forward-
ing of notifications [70]. In some sense, the approach of DIAS and P2P-DIET
puts together the best ideas from the database and distributed systems tradition
in a single unifying framework. Another important contribution of P2P-DIET
is that it demonstrates how to support by very similar protocols the traditional
ad-hoc or one-time query scenarios of standard super-peer systems [73] and the
pub/sub features of SIENA.

With the advent of distributed hash-tables (DHTs) such as CAN [53], CHORD
[60] and Pastry [55], a new wave of pub/sub systems based on DHTs has ap-
peared. Scribe [56] is a topic-based publish/subscribe system based on Pastry
[55]. Hermes [52] is similar to Scribe because it uses the same underlying DHT
(Pastry) but it allows more expressive subscriptions by supporting the notion
of an event type with attributes. Each event type in Hermes is managed by
an event broker which is a rendezvous node for subscriptions and publications
related to this event. Related ideas appear in [64] and [65].

Meghdoot [31] is a recent pub/sub system implemented on top of a CAN-
like DHT [53]. Meghdoot supports an attribute-value data model and offers
new ideas for the processing of subscriptions with range predicates (e.g., the
price is between 20 and 40 Euros) and load balancing. A P2P system with a
similar attribute-value data model that has been utilized in the implementation
of a publish-subscribe system for network games is Mercury [12]. Two other
recent proposals on publish/subscribe using DHTs is DHTrie [69] and LibraRing
[68]. These works use the same data models with P2P-DIET and concentrate
on publish/subscribe functionality for information retrieval and digital library
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applications.
The query languages of these systems are based on attribute-operator-value

comparisons, thus they are not directly comparable with our work.

6.5 Summary

In this chapter we discussed related work that has been done in the context
of distributed databases, P2P databases, stream processing, continuous query
processing and publish subscribe systems. In the next chapter we briefly con-
clude the thesis and discuss possible future work directions.
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Chapter 7

Conclusions and future
work

We studied the problem of evaluating continuous two-way equi-join queries over
structured overlay networks. Complex query evaluation in P2P databases is
currently an open and challenging research area. We evaluated four alternative
algorithms with emphasis in distributing the query processing load and mini-
mizing network traffic. We show that our algorithms outperform more simple
solutions and we extensively compare them under various scenarios. To be able
to achieve a good load distribution, our algorithms are based on a two-level in-
dexing scheme where a query is initially indexed according to its join attributes
and then as matching tuples arrive, the query is rewritten using the values of
the join attributes in the new tuples and is indexed in different network nodes
by using the values of the join attributes in the new tuples. Each alternative
algorithm we present shows a different behavior in terms of network traffic cre-
ation and load distribution in the various scenarios we discuss. In this way, we
do not propose a perfect algorithm but we provide an extensive discussion and
an exhaustive experimental comparison that presents these differences.

The algorithms proposed in this thesis are the base for a series of algorithms
we are currently working on for evaluating continuous multi-way join queries.
The notion of initially indexing a query according to the join attributes and
then distributing the load of evaluating the queries according to the values
of incoming tuples can be applied directly to the case of multi-way joins too.
In such an algorithm, the query could be initially indexed according to one
attribute of each distinct relation in the join condition. Rewriters could work
as described in any of our algorithms. The main difference is that at the value
level evaluators will forward their results to an even deeper level where they will
meet partial results of the other join pairs. At the moment we experiment with
various alternatives of these technics.

In future work, we also plan to take into account network locality by ex-
ploiting locality-aware DHTs. We would also like to consider other types of

61



continuous queries expressed in SQL, for example top-k queries and alternative
tuple placement strategies.
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