

Επέκταση Μεταβλητού Μεγέθους στην
Αρχιτεκτονική Αναγνώρισης Προτύπων

HashMem

Διπλωματική Εργασία

Άγγελος Αρελάκης

Πολυτεχνείο Κρήτης
Τμήμα Ηλεκτρονικών Μηχανικών & Μηχανικών Υπολογιστών

Εργαστήριο Μικροεπεξεργαστών και Υλικού (MHL)

Επιτροπή:

Αναπληρωτής Καθηγητής Διονύσιος Πνευματικάτος (Επιβλέπων)
Καθηγητής Απόστολος Δόλλας

Επίκουρος Καθηγητής Ιωάννης Παπαευσταθίου

ΧΑΝΙΑ, ΙΟΥΛΙΟΣ 2006

Ευχαριστίες

Αρχικά, θα ήθελα να εκφράσω την ευγνωμοσύνη μου στον επιβλέπων καθηγητή κ.

Διονύσιο Πνευματικάτο για την πολύτιμη βοήθεια του, τις συμβουλές του και την

καθοδήγηση του. Επίσης θα ήθελα να τον ευχαριστήσω για την άριστη συνεργασία

που είχαμε.

Θα ήθελα επίσης να ευχαριστήσω τους καθηγητές κ. Διονύσιο Πνευματικάτο, κ.

Απόστολο Δόλλα, κ. Ιωάννη Παπαευσταθίου για το σημαντικό ρόλο που έπαιξαν στη

ζωή μου έτσι ώστε να ασχοληθώ με το Hardware.

Επιπλέον, είμαι ευγνώμων στο Διονύση Ευσταθίου για την πολύτιμη βοήθεια του

όταν έκανα τα πρώτα βήματα στο Hardware κατά τη διάρκεια των σπουδών μου.

Επίσης θα ήθελα να ευχαριστήσω τον κ. Μάρκο Κιμιωνή για την βοήθεια του. Πολλά

ευχαριστώ σε όλα τη μέλη του εργαστηρίου για τη βοήθεια και τη συμπαράσταση

τους.

Τέλος θα ήθελα να ευχαριστήσω θερμά τους γονείς μου και την αδερφή μου για την

αμέριστη συμπαράσταση που μου έδειξαν και το συγκάτοικο μου για την υπομονή

του. Πολλά ευχαριστώ επίσης στους φίλους μου Σωτηρία και Γιώργο για την

υποστήριξη και υπομονή τους.

στους γονείς μου και την αδερφή μου, Στέλλα…

Σύνοψη

Ως ανίχνευση εισβολέων ορίζεται η διαδικασία ανίχνευσης ενός εχθρικού

πακέτου (σε ένα δίκτυο) το οποίο προσπαθεί να αποκτήσει μη επιτρεπτή πρόσβαση

σε ένα ξένο υπολογιστή. Υπάρχει μια πληθώρα μεθόδων για την ανίχνευση

εισβολέων, όπως για παράδειγμα συστήματα επιθεώρησης (inspecting systems),

firewalls, router logs και άλλα. Τα συστήματα ανίχνευσης εισβολέων σε ένα Δίκτυο

(Network Intrusion Detection Systems - NIDS) έχουν σχεδιαστεί να επιθεωρούν την

κίνηση του Δικτύου και να ψάχνουν για γνωστά patterns.

Σε αυτήν την εργασία επεκτείνεται η αρχιτεκτονική αναγνώρισης προτύπων

HashMem ώστε να επιτρέπεται η αποθήκευση patterns μεταβλητού μεγέθους σε μία

μόνο μνήμη μειώνοντας τον απαιτούμενο αριθμό μνήμων και συγκριτών. Η

HashMem είναι μία αρχιτεκτονική αναγνώρισης προτύπων για ανίχνευση εισβολέων

τύπου SNORT η οποία βασίζεται σε μνήμες. Χρησιμοποιεί συναρτήσεις τύπου

κυκλικής αναφοράς (Cyclic Redundancy Check - CRC) για να καθορίσει μια

μοναδική διεύθυνση στην οποία είναι αποθηκευμένο ένα pattern. Στη συνέχεια το

pattern αυτό στέλνεται σε ένα συγκριτή και συγκρίνεται με την είσοδο σε περίπτωση

που μοιάζουν. Με αυτήν την επέκταση βελτιώνουμε την πυκνότητα των μνημών

(αυξάνεται ο αριθμός των αποθηκευμένων patterns στο συνολικό αριθμό

καταχωρήσεων) και μειώνουμε την απαραίτητη λογική για συναρτήσεις CRC και

συγκριτές.

Αυτές οι βελτιώσεις επιτρέπουν στην V-HashMem να αποθηκεύσει το νεότερο

σύνολο κανόνων του SNORT χρησιμοποιώντας περίπου την ίδια μνήμη με τη

HashMem και με πολύ χαμηλό κόστος (~0.06 LCs/ character). Το κόστος λογικής

για κάθε χαρακτήρα, είναι σχεδόν μια τάξη μεγέθους μικρότερο από το κόστος

λογικής άλλων μελετών και το Throughput περίπου 2.5 Gbps. Η αρχιτεκτονική

μεταβλητού μεγέθους χρησιμοποιεί μονο-θύρες μνήμες και συνεπώς επιτρέπεται και

η ταυτόχρονη επεξεργασία 2 χαρακτήρων ανά κύκλο χρησιμοποιώντας τις δίθυρες

μνήμες της τεχνολογίας FPGA και επιπλέον λογική. Με αυτήν την βελτιστοποίηση η

αρχιτεκτονική V-HashMem επιτυγχάνει σχεδόν διπλάσιο Throughput (περίπου 5

Gbps). Τέλος, επεκτείνουμε την αρχιτεκτονική V-HashMem ώστε να συμπεριλάβει

το πεδίο Header-ID έτσι ώστε να υποστηρίζεται η δυνατότητα για header matching,

χαρακτηριστικό το οποίο λείπει από τη HashMem και πολλές άλλες έρευνες.

Contents

1 Introduction 13

2 Network Intrusion Detection Systems (NIDS) 16

2.1 SNORT Network Intrusion Detection System 17
2.2 Software and Hardware – based NIDS 19

3 The Variable-Length HashMem (V-HashMem) Structure 23

 3.1 The HashMem Architecture 23
 3.1.1 Basic Architecture 23

 3.1.2 Architecture for very short patterns 25
 3.1.3 The HashMem Architecture handles very long patterns 25

 3.2 V-HashMem Architecture – The Idea 26
 3.2.1 Hash Function Generation 27
 3.2.2 Dealing Prefix Conflicts 27
 3.2.3 Comparators 28

 3.3 V-HashMem Structure 28
 3.3.1 Basic V-HashMem Structure 29
 3.3.2 V-HashMem Structure for long patterns 30

 3.4 Summary 34

4 Variable – Length HashMem Architecture (V-HashMem) 35

 4.1 Basic V-HashMem datapath 35

 4.1.1 How V-HashMem handles very short patterns 35
 4.1.2 CRC generation 36
 4.1.3 Basic V-HashMem datapath – Design and Implementation 41
 4.2 Glue Logic 41
 4.2.1 The Idea 42
 4.2.2 Special Cases 42
 4.2.3 Glue Logic – Design and Implementation 45
 4.3 Final V-HashMem Architecture – Implementation and Evaluation 47

5 Evaluation and Comparison with Related Work 51

5.1 Area and Memory Utilization 52
5.2 Performance Evaluation 58
5.3 Total Evaluation and Results 59
5.4 Comparing V-HashMem Architecture with HashMem Architecture 59
5.5 Comparing V-HashMem Architecture with other Related Works 64

6 Conclusions and Future Work 75

References 78

List of Tables

Table 3.1: Number of Patterns in each structure. 29

Table 4.1: How many character we use to feed the CRC generator in each structure.36
Table 4.2: The Input width for the CRC of each structure in each level. 37
Table 4.3: Area cost per structure and Total Area Cost of the basic V-HashMem. 40
Table 4.4: How many memory blocks are used for the implementation of the Pattern
Memory, for each structure and for the total implementation of basic V-HashMem. 40
Table 4.5: How many memory blocks are used for the implementation of the Pattern
Memory, for each structure and for the total implementation of basic V-HashMem. 40
Table 4.6: Total Area and Memory Cost for the Basic V-HashMem Architecture. 41
Table 4.7: Kind of Pattern. 42
Table 4.8: Previous Struct. 42

Table 5.1: The Area cost in Logic Cells (LCs) for each and every structure of the V-
HashMem Architecture. 53
Table 5.2: The Area Cost for every Component of the V-HashMem Architecture and
the Total Area Cost of the final implementation of the V-HashMem Architecture for
processing Throughput (TH) 1 and 2 characters per cycle. 54
Table 5.3: How many memory blocks are used in order to implement the Pattern
Memories of V-HashMem. 54
Table 5.4: How many memory blocks are used for the implementation of the Pattern
Memory, for each structure and for the total implementation. 55
Table 5.5: Pattern Memory’s Utilization. 56
Table 5.6: Utilization for the Exception Memories. 56
Table 5.7: Area and Memory Utilization for 3 different devices for both
implementations of V-HashMem Architecture within or without improvements. 57
Table 5.8: Frequencies and the TH for V-HashMem Architecture with one and two
input characters (8 and 16 input bits respectively) for 3 different device families. 58
Table 5.9: Table with total results for the V-HashMem Architecture for Input 1 and 2
characters. 59
Table 5.10: V-HashMem Architecture compared with HashMem Architecture on the
width of CRC generators and Comparators. 60
Table 5.11: Summary Table. Results for any evaluation metric for every design. 73

List of Figures

Figure 2.1: Combined Content, Offset and Depth Rule. 18
Figure 2.2: Patterns Distribution of SNORT rule-set of April 2005. 18

Figure 3.1: One of the 15 subsystems the HashMem Architecture consists of. 24
Figure 3.2: The HashMem Architecture for pattern widths 3 to 16 characters. 24
Figure 3.3: The HashMem Architecture for short patterns (one and two character). 26
Figure 3.4: Final HashMem Architecture. 26
Figure 3.5: Patterns Distribution in every structure. This proposal was rejected. 30
Figure 3.6: New grouping of patterns to avoid conflicts. 29
Figure 3.7: Number of patterns per structure before and after partitioning. 33
Figure 3.8: Patterns’ Distribution in each structure in the final V-HashMem. 34

Figure 4.1: How V-HashMem handles very short patterns. 36
Figure 4.2: CRC generation for an 8-character input. 37
Figure 4.3: How Index Memory is used. 39
Figure 4.4: One part of the Basic V-HashMem Datapath. 39
Figure 4.5a: Multi – level Tree – like structure. 43
Figure 4.5b: A two – level Tree- like structure. 43
Figure 4.6: Reverse Tree – like structure. 44
Figure 4.7: Combination of Tree and Reverse Tree – like structures. 44
Figure 4.8: Special List Structure. 44
Figure 4.9: Glue Logic Datapath. 46
Figure 4.10: Match Priority of the structures. 46
Figure 4.11: Final V-HashMem Architecture. 48
Figure 4.12: Part of the V-HashMem Architecture for doubled processing throughput
(2 input characters processing throughput per cycle). 49
Figure 4.13: Header Classification Circuitry which was proposed by B. Dimopoulos,
G. Papadopoulos and D. Pnevmatikatos. 50

Figure 5.1: Metrics and Formulas for the evaluation of the system. 52
Figure 5.2: How much area is used by every component of the total 2084 Logic Cells
of V-HashMem Architecture. 57
Figure 5.3a: Comparing V-HashMem with the best HashMem over LCs/char. 62
Figure 5.3b: Comparing V-HashMem with the best HashMem over Frequency using
VirtexIIpro Device Family. 62
Figure 5.4: Comparing V-HashMem with the best HashMem over Throughput. 62
Figure 5.5: Comparing V-HashMem with the best HashMem over PEM. 63
Figure 5.6: Comparing V-HashMem with the best HashMem over PEM/m. 63
Figure 5.7: Comparing V-HashMem with the Bloom Filters over LCs/char. 65
Figure 5.8: Comparing V-HashMem with the Bloom Filters over Frequency. 65
Figure 5.9: Comparing V-HashMem with the Bloom Filters over TH. 66
Figure 5.10: Comparing V-HashMem with the Bloom Filters over PEM. 66
Figure 5.11: Comparing V-HashMem with the Bloom Filters over PEM/m. 66
Figure 5.12: Comparing V-HashMem with the RDL+ROM over LCs/char. 67
Figure 5.13: Comparing V-HashMem with the RDL+ROM over Frequency. 68
Figure 5.14: Comparing V-HashMem with the RDL+ROM over Throughput. 68

Figure 5.15: Comparing V-HashMem with the RDL+ROM over PEM. 68
Figure 5.16: Comparing V-HashMem with the RDL+ROM over PEM/m. 69
Figure 5.17: Comparing V-HashMem with the PHmem over LCs/char. 70
Figure 5.18: Comparing V-HashMem with the PHmem over Frequency. 70
Figure 5.19: Comparing V-HashMem with the PHmem over Throughput. 71
Figure 5.20: Comparing V-HashMem with the PHmem over PEM. 71
Figure 5.21: Comparing V-HashMem with the PHmem over PEM/m. 71

Chapter 1

Introduction

The widespread use of Internet is obvious in the last decades. Millions of people

are using it every day, since it has improved their life. It is considered as the biggest

library; the communication is rapid through it and since the middle 90’s it has been

used for shopping. However, many threats lie in the background and are ready to

attack Internet users taking advantage of the vulnerabilities of operating systems.

Furthermore, very often more than one computer are connected on the same network

as there are many advantages, such as the use of one peripheral device by many

computers (printer), sharing of the same Internet Connection, easy transfer of data

between different computers, etc, making the protection from these threats more

complex. The solution came with the construction of Firewalls.

 The Firewall is defined as a piece of hardware or a software program which

functions in a networked environment to prevent some communications forbidden by

the security policy, analogous to the function of firewalls in building construction.

The firewall has the basic task of controlling traffic between different zones of trust.

Typical zones of trust include the Internet (a zone with no trust) and an internal

network (a zone with high trust). The ultimate goal is to provide controlled

connectivity between zones of differing trust levels through the enforcement of a

security policy and connectivity model based on the least privilege principle.

However, total reliance on the firewall tool, may provide a false sense of security.

Very often we hear people say: “We have a firewall in place and therefore our

network must be secure”. This is a myth which has been generated especially by

firewall marketing companies to more efficiently promote their goods. The firewall

does not work alone as it is not a panacea. Human intervention is also required to

decide how to screen traffic and “instruct” the firewall to accept or deny incoming

packets. It is de facto a complex and sensitive task. Just a single security policy rule

established for the wrong reasons can lead to a system being vulnerable to outside

14 Chapter 1 – Introduction

attackers. Once must also remember, that a poorly configured firewall may worsen the

system’s effective immunity to attacks. For these reasons Intrusion Detection Systems

are used. They are the first line of defence (behind firewalls).

For purposes of simplicity we can say that Intrusion Detection System is a system

that detects burglary attempts. If one wishes to compare to a home anti-burglary

system, firewalls perform the role of door and window locks. These types of locks

will stop the majority of burglars but sophisticated intruders may circumvent security

devices that protect an intended target i.e. a home. Therefore, most people use a

combination of sophisticated locks with alarm systems. An IDS performs the role of

such an alarm system.

Furthermore, networks evolved all the time as a result their speed is increased and

consequently it is easier for malicious packets to come in. NIDS (Network IDS)

prevent these malicious packets from entering the computer system, since they

perform deep packet inspection in order to verify that it is not a known threat. That is

another reason why NIDS are very important for the protection. Many NIDS have

been constructed either on Software either on Hardware.

A Hardware – based NIDS and more specifically an FPGA – based NIDS is the

Variable – Length HashMem architecture. The idea was to extend the HashMem

architecture to allow storing of variable-length patterns in a single memory structure,

reducing the number of required memory structures and comparators. HashMem is a

memory based, exact pattern matching architecture for SNORT-like intrusion

detection. It uses CRC-style functions to determine a unique location for a possible

match and then matches the input against the pattern stored in the specified memory

location. By this extension, we improve the density of the memories and reduce the

necessary logic for CRC functions and comparators. V-HashMem architecture was

implemented in XILINX FPGAs like VirtexIIpro, Virtex4 and Spartan3. Also, it fits

comfortably in small or medium FPGAs since a few tens of memory blocks and about

0.06 Logic Cells per character are finally used.

This dissertation is organized as follows: In chapter 2 we are discussing about

Network Intrusion Detection Systems in more detail and about SNORT intrusion

detection system. In chapter 3, we describe HashMem Architecture in short and then

the procedure we follow to determine the final structure of V-HashMem Architecture.

In chapter 4, we describe the V-HashMem Architecture (Design and Implementation)

and make further improvements. In addition, in chapter 5 we evaluate our system and

15 Chapter 1 – Introduction

give to the readers results about the performance, the cost and the utilization of our

design. In the same chapter, we compare our work with HashMem as well as with

other related works. Finally in chapter 6 we give our conclusions and suggest some

issues for future work.

Chapter 2

Network Intrusion Detection Systems (NIDS)

Intrusion Detection is one of the hottest areas in the information security

landscape. Intrusion Detection is defined as the act of detecting a hostile network

packet which is attempting to gain unauthorized access. A number of popular methods

are used to detect intruders, such as inspecting systems, firewalls and router logs for

hostile or unusual activities. Although, these methods are helpful, they become

difficult, if not possible, to perform on a daily basis.

The roots of modern-day intrusion detection systems lie in the Intrusion Detection

Expert System (IDES) and Distributed Intrusion Detection System (DIDS) models

that were developed by the U.S. Department of Defense in the late 80s and early 90s

[22]. These were some of the first automated systems to be deployed. Today, most

intrusion detection systems are designed with the same goal: to help automate the

process of looking for intruders. This can be as simple as the real-time parsing of

firewall logs looking for port scans, or as complex as applying inspection routines to

raw network traffic looking for buffer overflow attempts.

There are basically two models of Intrusion Detection Systems: 1) network-based

intrusion detection systems (NIDS) and 2) host-based intrusion detection systems

(HIDS). Many other intrusion detection models do exist but the above two are the

most important.
Network – based Intrusion Detection Systems (NIDS) are designed to inspect

network traffic and look for known attack patterns or “signatures”. They perform this

task by examining each and every packet that traverses the monitored network

segment. In short, NIDS are looking for a substring within a stream of data carried by

network packets. If they find this substring, they identify those network packets as

vehicles of an attack. On the other hand, HIDS require agents to be installed in all

monitored systems. They monitor system logs for basic events (i.e. failed login

attempts) and kernel messages for activities that might be interpreted as hostile.

17 Chapter 2 – Network Intrusion Detection Systems

One of the most appealing aspects of the NIDS model is that NIDS devices are

passive. In most cases, the rest of the systems do not even know that they are there.

Even better, deploying NIDS devices do not require the involvement of system

administrators, a resource that becomes a stumbling point for large HIDS

deployments.

In this chapter we will discuss about SNORT and Software and Hardware – based

NIDS.

2.1 SNORT Network Intrusion Detection System

There are a great number of open source IDS solutions in the community that are

worth investigating. The best and the most popular of them is SNORT NIDS, which

was created by Marty Roesch, and is capable of performing real-time traffic analysis

and packet logging on IP networks. It can perform protocol analysis, content

searching/matching and can be used to detect a variety of attacks and probes, such as

buffer overflows, stealth port scans, OS fingerprinting attempts, and much more.

SNORT is often considered to be the Linux of the Intrusion Detection Field. It touts a

very active development community, a wide set of signatures and a large base of

deployed users. Recent advances in both the rules language and detection capabilities

offer the most flexible and accurate threat detection available, making Snort the

"heavyweight" champion of intrusion prevention.

Snort uses a flexible rules language to describe traffic that it should collect or

pass. It has three primary uses. It can be used as a straight packet sniffer like tcpdump,

a packet logger (useful for network traffic debugging, etc), or as a full blown network

intrusion prevention system. Snort rules are powerful, flexible and relatively easy to

write, so new rules to detect the latest malware may be written by everyone very

easily. In these rules a keyword modifier can be added based on what kind of search

the rule writer want to do. Some of these keywords are:

• Depth: the depth keyword allows the rule writer to specify how far into a

packet Snort should search for the specified pattern.

• Offset: the offset keyword allows the rule writer to specify where to start

searching for a pattern within a packet.

18 Chapter 2 – Network Intrusion Detection Systems

• Distance: the distance keyword allows the rule writer to specify how far into

a packet Snort should ignore before starting to search for the specified

pattern relative to the end of the previous pattern match. This can be thought

of as exactly the same thing as depth except it is relative to the end of the

last pattern match instead of the beginning of the packet.

• Within: the within keyword is a content modifier that makes sure that at

most N bytes are between pattern matches It is designed to be used in

conjunction with the distance rule option.

An example which combines the first 2 options (Depth and Offset) is shown in figure

2.1. The keyword content is the most important because it allows the user to set rules.

Figure 2.1: Combined Content, Offset and Depth Rule. The rule says: Skip the first 4 bytes,
and look for cgi-bin/phf in the next 20 bytes.

0

20

40

60

80

100

120

140

160

Number of
Patterns

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

Patterns' length [characters]

SNORT rule-set April 2005
Patterns Distribution

Figure 2.2: Patterns Distribution of SNORT rule-set of April 2005. There are also some
patterns longer than 58 characters which are not shown in this figure. The number of them is
5, one per each category of the following categories (based on character length): 61, 62, 80,
107, and 122. Finally, somebody can notice that most of patterns have length in the range
from 1 to 16 characters. This notice is very important and it is used in chapter 3.

19 Chapter 2 – Network Intrusion Detection Systems

Each Snort rule can contain header and content fields. The header part contained

information about protocol, source and destination IP addresses and port. The content

part contains substrings that may exist in packets’ payload. In this work we used the

SNORT rule-set [20] of April 2005 which contains 2187 rules or 33613 characters.

Patterns’ Distribution of these patterns is shown in Figure 2.2.

If we look at Figure 2.2 we notice that most of patterns are in the range 4 to 16

characters long. Notice that we selected patterns’ length 17 as the “border” between

the short and the long strings because the number of patterns after the border is very

small. This notice is very important and we use it in chapter 3.

2.2 Software and Hardware – Based NIDS

Many software and hardware – based NIDS have been designed the last years. In

software – based NIDS, software pattern matching algorithms are used based on

SNORT rule-set. However, the most important problem of software – based NIDS is

the slow throughput and slow performance. Through the years, many improvements

have been done. One of these improvements was Boyer-Moore algorithm which

improved the performance at 200% to 500% but generally, for a few hundred Mbps

the software – based NIDS became a serious bottleneck in networks’ speed as a result

hardware accelerators are necessary to process packets in real time or near real time.

On the other hand, Hardware – based NIDS can be used to overcome the

problems of low speed and low throughput. NIDS have been designed in FPGAs as

well as in ASIC. In ASIC systems, patterns are stored in large memory blocks and

determine whether there is pattern matching or not using integrated design machines.

In addition, in these systems the update to support new rule-sets is a hard procedure

since memories have to be reloaded with new data without having the capability of

upgrading the search engine in case the kind of rules changed. This approach is very

expensive and furthermore their performance is not impressive. However, they

achieve much better throughput than Software – Based NIDS.

Hardware – based NIDS with the FPGA approach can be a significant alternative.

FPGA are reconfigurable and moreover achieve very good performance and

throughput comparing to Software – Based NIDS or Hardware – Based NIDS with the

20 Chapter 2 – Network Intrusion Detection Systems

ASIC approach. Since FPGAs are reconfigurable the entire machine can be changed

as a result any update can be done. The only constraint is to keep the interface

unchanged. However, this procedure can be very hard since the whole machine is

changed but it is rather easy when a small change occur in an updating. There are

many FPGA – based architectures, such as NFAs and DFAs based on regular

expressions, regular CAM, Hashing, etc.

The most common FPGA approach is regular expression using NFAs (Non

Deterministic Finite Automata) and DFAs (Deterministic Finite Automata). Regular

Expression is a string that describes a set of strings, according to certain syntax rules.

Regular Expressions could be the following:

• ab (a followed by b)

• a* (one, zero, or more a)

• a+ (one or more a)

• a/b (a or b)

• ε (empty)

DFA is a finite state machine in which for a state and for a specific input there is a

deterministic next state. On the other hand NFA is, again a finite state machine (the

node is a state and the edge is a character or the empty which is symbolized by ε), but

there could be multiple next stages. For instance, if we are in state, say, 5 and the

input is B the next state could be either 7 or 10. It is similar to a tree-like structure.

Basically, the main difference between DFAs and NFAs is that in the first ones there

is exactly one next state for a possible input while in the second there could be

multiple next states for one given input. It is easy to design an NFA but the

implementation is complex in contrast with DFA in which design is difficult but

implementation is easy.

Generally, finite automata are usually restricted in their operating frequency by

the amount of combinational logic for state transitions. Also, the use of parallelism

(processing multiple bytes or characters per cycle) is in general difficult in finite-

automata implementations that are built with the implicit assumption that the input is

checked one byte at a time. One proposed solution to this problem is the usage of

21 Chapter 2 – Network Intrusion Detection Systems

packet-level parallelism where multiple pattern matching subsystems operating in

parallel can process more than one packet.

The first hardware implementation was introduced by Floyd and Ullman in 1982,

implemented in PLA [15]. Then Sidhu and Prassanna [16] introduced regular

expressions and Nondeterministic Finite Automata (NFAs) for finding matches to a

given regular expression. Their primary goal was to minimize the time needed in

order to construct an NFA. They achieved about 58 to 94 MHz frequency for a single

regular expression using the Virtex Device Family.

Then, Franklin, Carver and Hutchings [17] expanded on Sidhu et al. work. Their

primary goal was to cover the maximum number of expressions and for that reason

they used regular expressions with more complex rules and meta-characters. They

managed to include up to 16,000 characters requiring 2.5-3.4 logic cells per matching

character. They achieved about 100 MHz for Virtex Device Families.

Finally, Clark and Schimmel [18] developed a pattern matching coprocessor that

supports the entire SNORT rule-set using NFAs. Their primary objective was to have

small area cost. In order to achieve it they used centralized decoders instead of

character comparators for the NFA state transitions. They can match over 1,500

patterns (17,537 characters) and achieved 100 MHz frequency having total throughput

0.8 Gbps in a Virtex-1000 device having one character processing throughput. Later

[9] they expanded their work and allowed more than one characters processing

throughput. Their detailed results proved that NFAs and predecoding can produce low

cost designs with higher performance, compared to DFAs and simple bruteforce

approaches.

Another FPGA-based approach is CAMs and Discrete Comparators. One

approach was introduced by Gokhale, et al. [6]. They used a CAM to implement

SNORT rules. Their hardware can serve a total throughput of 2 Gbps in a VirtexE

device. Cho, Navab and Mangione-Smith [19] presented an architecture of pattern

matching using discrete comparators. They were the first to use 4 parallel comparators

for every pattern in order to exploit parallelism and process 4 bytes of packet data

every clock cycle. They used an Altera EP20K device and achieved a frequency of

90MHz, achieving 2.88 Gbps throughput.

A very good approach was also introduced by Sourdis et al [5]. They, firstly,

reduced the area cost of character matching using (i) character pre-decoding before

22 Chapter 2 – Network Intrusion Detection Systems

their comparison in the CAM line, (ii) efficient shift register implementation using the

SRL16 Xilinx cell. Then they achieve high operating frequencies by (iii) using fine

grain pipelining for faster circuits and (iv) decoupling the data distribution network

from the processing components. Their results show that for matching more than

18,000 characters (the entire SNORT rule set) their implementation requires an area

cost of less than 1.1 logic cells per matched character, achieving an operating

frequency of about 375 MHz (3 Gbps) on a Virtex2 device. When using quad

parallelism to increase the matching throughput, the area cost of a single matched

character is reduced to less than one logic cell for a throughput of almost 10 Gbps.

Finally, another FPGA-based approach is Hashing in which the input stream enter

a Hash function and the result is a pointer to a possible match. V-HashMem

Architecture is based on this idea. Also, many other works have been based on this

idea, such as HashMem by Papadopoulos et al.[2], Bloom Filters by Dharmapurikar et

al [4, 8], PHmem by Sourdis [3] et al and others which are described in more detail in

the paragraph Related Work of the chapter 5.

Chapter 3

The Variable-Length HashMem (V-HashMem) Structure

In this chapter, we describe in short the HashMem Architecture which was

designed and implemented by George Papadopoulos and Dionisios Pnevmatikatos [2].

Then, we describe the idea on which V-HashMem Architecture is based and the

special issues of V-HashMem approach. Finally, we describe the procedure we

followed in order to design the basic V-HashMem structure.

3.1 The HashMem Architecture

Before starting the description of the V-HashMem architecture lets refresh our

memories about the HashMem architecture [2]. The HashMem pattern matching

Architecture is a SNORT accelerator architecture based on the idea that a simple hash

function of the input can generate a set of sparse but distinct addresses for the search

patterns. This address is used as a “pointer” to a possible matching string, and

compares that to the input to determine the final match signal.

3.1.1 Basic Architecture

The HashMem Architecture consists of 14 subsystems, one for each character

length from the range 3 to 16 characters. Each one subsystem looks like the system of

figure 3.1.

24 Chapter 3 – Variable Length HashMem Structure

Figure 3.1: One of the 14 subsystems the HashMem Architecture consists of.

The number of stored patterns in each sub-system is smaller than 256 and the width of

each of them is the number of its characters multiplied by 8 (each ASCII character is

8 bits). So patterns of each length can be stored in a Pattern Memory of 256 entries

(the shortest memory block of Xilinx FPGAs has 512 entries). Furthermore it was

found experimentally that a 12-bit polynomial is a simple polynomial for SNORT

patterns. A 12-bit polynomial means that the pattern memory must consist of 4096

entries and consequently the utilization of the memory is less than 2.5%. That is the

reason why an Indirection (Index) Memory is used. Indirection Memory is basically a

pointer memory which uses the 12-bit address that CRC generator generates and feeds

an 8-bit address into the Pattern Memory achieving very good utilization of the

Pattern Memory.

Thus, the input stream is fed into the CRC generator which generates a 12-bit

address. Indirection Memory “transforms” the 12-bit address into an 8-bit address and

feeds the Pattern Memory. The output of Pattern Memory is compared to the properly

delayed input stream for a match. However, since any given character of the input

stream can be the last character of a pattern of arbitrary width, system of figure 3.1 is

replicating once for each of the different pattern widths for the range 3 to 16

characters. The resulting architecture is shown in figure 3.2.

Figure 3.2: The HashMem Architecture for pattern widths 3 to 16 characters

25 Chapter 3 – Variable Length HashMem Structure

3.1.2 Architecture for Very Short Patterns

SNORT rule-set also contains very few patterns of one or two characters. These

patterns consist of very few bits making the CRC calculation overkill. The

architecture which handles these patterns is shown in figure 3.3. For the patterns of a

single character a LookUp Table (LUT) of 256 entries is used. The input byte is used

directly as an address to access the LUT, which is initialized with ‘1’ in the addresses

that represent the search patterns.

The two characters patterns are less than 64, thus allowing an encoding with 6

bits. Based on this observation, a recoding function in the unused bits of the single

character lookup table is added, recoding the 8 bits input into a 7 bit code. The most

significant bit represents a single character match and the rest 6 bits are the encoded

value of the half part of dual-byte patterns. Then, each encoded part is stored in a

register and after the appropriate delay of the first encoded part, the two input recoded

characters, which amount to 12 bits, address a 4Kx1 lookup table to determine any

two-character match. Each of these two lookup tables uses one memory block and a

minimal amount of logic for the pipeline delay.

Figure 3.3: The HashMem Architecture for short patterns (one and two character)

3.1.3 The HashMem Architecture handles very Long Patterns

SNORT rule-set contains, finally, few long patterns in a range from 17 to 122

characters. These patterns require small but very wide memories. For example, there

is only one pattern of 122 characters and its width is 976 bits:

Pattern Width = Number of characters * 8 bits/character

26 Chapter 3 – Variable Length HashMem Structure

This pattern would require 28 “512x36” memory blocks. In addition, it would require

high-cost CRC generators and comparators making their design inefficient for this

case.

The idea was to split these wide patterns in smaller pieces, store them in the

Pattern Memories of the basic HashMem Architecture updating the Indirection

Memories, reuse logic and add extra glue-logic to combine the partial matches into

the complete match. The final HashMem architecture is shown in Figure 3.4.

Figure 3.4: Final HashMem Architecture. In this figure it is shown a short example of a wide
pattern matching. The wide pattern has only 7 characters but it was chosen only for reasons
of clarity and brevity. Wide patterns are in the range from 17 to 122.

3.2 V-HashMem Architecture – The Idea

Variable-Length HashMem (V-HashMem) Architecture is an extension of

HashMem Architecture and it is based on the idea that it is advantageous to store the

search patterns of different lengths in a single memory structure. If this is possible,

then we need fewer memory structures, i.e. less memory, as well as fewer CRC

generators and comparators, i.e. less logic. The V-HashMem targets exactly these

factors. However, this extension raises the following issues that have to be addressed.

• Hash function generation: HashMem uses all L characters of the input to hash

the address of the possible match. If we allow for several lengths, how do we

know how many characters to use for the hash calculation?

27 Chapter 3 – Variable Length HashMem Structure

• Dealing with Prefix Conflicts: In HashMem, all patterns of L characters are

stored in one Memory. Is it possible to store all patterns of different lengths in the

same memory or there are prefix conflicts and how do we deal with?

• Comparators: Similar to the previous issue, how do we know how many

characters to match between the input and the stored pattern?

3.2.1 Hash Function Generation

The first issue we have to address is how many characters we must use to feed the

CRC generator. The hashed value is just a pointer to a possible match since the

comparator determines if there is a match or not. Thus, we can use the minimum

length of the stored patterns in the structure to feed the CRC generator as long as the

CRC generator produces a distinct value for every single input. For example, if we

have a structure that holds patterns of 5, 6 and 7 characters long, we can feed the CRC

generator with 5 characters as long as the result of this function is unique for every

single pattern which is stored in this structure.

If this is successful, not only do we not care about how many characters have

each stored pattern but also we use less CRC generators and especially the narrower.

3.2.2 Dealing with Prefix Conflicts

Although storing variable-length patterns in a memory structure is clearly

beneficial, it is not always possible. In 3.2.1, we said that we use the minimum length

of the stored patterns in a structure to feed the CRC generator as long as the hash

value is unique for every single pattern. The minimum length of the stored patterns in

a structure is basically named as prefix.

A conflict rises when stored patterns in one structure have the same prefix

because different patterns are mapped in the same position in the memory. Assume

that we have a structure that holds patterns of 3, 4 and 5 characters long. We feed the

CRC generator with a prefix of 3 characters of all stored patterns to find the address in

the memory. Patterns like “abc” and “abcd” as well as patterns like “abcd” and abcf”

28 Chapter 3 – Variable Length HashMem Structure

or “abcdr” and “abceh” cannot be in the same structure because we use the prefix

“abc” to map the pattern to a memory address but in every case both strings are

mapped into the same position. If we observe the first case again we can say that it is

not a real problem because any input matching ”abcd” also matches ”abc” so there

will be a reported match but we have to find a way to solve the other cases.

3.2.3 Comparators

Another problem is how many characters to match between the input and the

stored pattern. We do not know in advance which input characters may match which

pattern length, but we do know in advance the length of each of the search patterns we

are looking for. So, it is a good idea to encode this information in the memory and use

it during the comparison. The best way encoding pattern’s length is to add Don’t Care

bits between the characters of the stored pattern. Of course, we do not add Don’t Care

bits in the characters of the prefix as it is matched always and does not need marking.

For example, if we have a structure where patterns of 3 to 5 characters long are stored

we add Don’t Care bit before the 4th and the 5th character as they are optional.

By adding these bits, stored pattern is a little wider than before as a result we have

a small increase in the memory as well as in the cost of the comparator.

3.3 V-HashMem Structure

The HashMem Architecture consists of 14 similar subsystems, supporting

patterns of a length range 3 to 16 and the other patterns by reusing logic and memory.

As one begins the design of V-HashMem many questions are raised. For instance:

Are we going to construct subsystems supporting all the patterns without reusing logic

and memory? If not, after which length are we going to reuse logic and memory and

how do we group the patterns in each variable length subsystem? Is there any other

conflict except the one that is mentioned in paragraph 3.2.2?

29 Chapter 3 – Variable Length HashMem Structure

3.3.1 Basic V-HashMem Structure

As it is mentioned before, Variable-Length HashMem is based on the idea that

multiple patterns of different lengths are stored in a single memory structure. It is easy

to decide that the patterns which are stored in the same memory structure must have

close lengths. Then, we must find a way to decide which patterns we are going to

group in the same memory structure.

SNORT rule-set contains many patterns in a range from 1 to 122 characters. We

saw the Patterns Distribution in Figure 2.2. Since our goal is not only to use less

memory structures than HashMem but also with a good utilization, we will try to

group the patterns of different lengths in the same memory so that to achieve the best

utilization.

Firstly, we group the patterns as it is shown in Table 3.1 in order to achieve the

goal which is mentioned before.

Structures Number of Patterns
3-5 271
6-8 268
9-11 339
12-14 350
15-17 213

Table 3.1: Number of Patterns in each structure. We put patterns of length 18-20 or 18-21
together but the number of them was 133 and 164 respectively which is not a good memory
utilization.

We select patterns’ length 17 as the “border” between the short and the long strings

because the number of patterns after the border is very small and we have to put

patterns of no close lengths together in order to achieve a satisfactory utilization.

Furthermore, the width of the memory will be very wide and many memory blocks

will be required for its implementation. For example, if we put the patterns, which

have lengths 18, 19 and 20, together they are only 133 (Figure 3.5) and this is not a

good utilization of the memory. Also, the memory’s width will be 20 * 8 = 160 and

this requires 5 memory blocks.

30 Chapter 3 – Variable Length HashMem Structure

271 268

339 350

213

133

0
50

100
150
200
250
300
350

Number of
Patterns

3-5 6-8 9-11 12-14 15-17 18-20

Structures

Patterns Distribution in every structure

Figure 3.5: Patterns Distribution in every structure. This proposal was rejected because using
as a border the number of 20 characters and not the number of 17 characters we have an
additional memory structure, the 18-20 memory structure, in which the number of patterns is
very small and we do not achieve satisfactory memory utilization. Furthermore the memory’s
width is 160 bits; as a result 5 memory blocks are required for this memory structure.

Then, we have to check these groups for the conflict that is mentioned in 3.2.2.

For that reason, a software programme designed in C was used. The number of

conflicts was great and we have to find another grouping. The new grouping is shown

in Figure 3.6 and there are no conflicts. Also the memory utilization is satisfactory.

3.3.2 V-HashMem Structure for Long Patterns

We managed to group the patterns which have lengths between 3 to 17 characters.

Now we have to find a way to break the long patterns and put them in the structures

which are shown in Figure 3.6.

31 Chapter 3 – Variable Length HashMem Structure

169

251

327

385

303

0

50

100

150

200

250

300

350

400

Number of
Patterns

3 - 4 5 - 7 8 - 10 11 - 13 14 - 17

Structures

Patterns Distribution in each Structure

Figure 3.6: New grouping of patterns to avoid conflicts. No conflicts were found.

First of all, we have to decide in how many parts we will break each pattern. We

don’t care if the partial patterns, the fragments, have the same length but we do care

that each pattern will be broken into the minimum possible parts in order to reduce the

possible time to glue them and report the final match (small overhead). A simple

algorithm was designed and used to break the long patterns into shortest ones

fulfilling the above requirements. The steps of the algorithm are:

1. Initialization of Number of Parts to 2.

2. Number of characters is divided with Number of Parts. The result is the

number of characters of the current part.

3. The number of characters of the current part is subtracted from the number

of characters.

4. Reduce the Number of Parts by a factor of 1.

5. Follow steps 2 – 4 for all the parts until Number of Parts become zero.

6. Check if there is any part that consists of more than 17 characters (the
longest fragment must have at most 17 characters) and report.

7. If the 6th step is true add one to the Number of Parts, initialize again

Number of Characters with number of characters of the long pattern and
follow again the steps 2 – 7. Otherwise, report the results.

32 Chapter 3 – Variable Length HashMem Structure

Then we use the results of the above algorithm and divide every pattern of the

current pattern group using a simple script written in Python. An example is always

useful to better comprehend the concept. Assume that we have a pattern that consists

of 48 characters. Using the above algorithm we have:

The number of parts is initialized to 2. The number of characters is 48. We follow step

2 and the result is 24. This is the number of characters of the first part. Following step

3 we subtract this number from 48 and the result is 24. We also subtract 1 from the

number of parts, following step 4. We follow again steps 2 – 4 and we have 2 parts of

24 characters. We check the number of characters of the first part and we observe that

the number of characters is greater than 17. We add one to the number of parts (3 is

now), we initialize number of characters with 48 again and we follow again steps 2 to

7.

Following step 2, the number of characters of the first part is 16. We make the

subtraction 48 – 16 and 32 is the number of characters now. We also reduce the

number of parts by 1 and the new number of parts is 2. Following again step 2, we

divide the number of characters (32) with the number of parts (2). The number of

characters of the second part is 16, and the number of parts is 1. Following again steps

2 – 4, the third part has 16 characters and there are no other parts left. Following step

6, none of the parts is longer than 17 characters as a result (step 7) the algorithm

reports the results which are: 1st part: 16 characters, 2nd part: 16 characters, 3rd part: 16

characters.

Following the procedure we described before, we broke all patterns longer than

17 characters. Then, we select the fragments and we put them in the structures which

are shown in Figure 3.6. The number of patterns before and after the partitioning is

shown in Figure 3.7.

33 Chapter 3 – Variable Length HashMem Structure

169
169

251
332

327

477
385

813

303

807

0

100

200

300

400

500

600

700

800

900

Number of
strings

3 - 4 5 - 7 8 - 1
0

11 - 1
3

14 - 1
7

Structures

Number of strings per structure before and after
partitioning

number of strings before
partitioning
number of strings after
partitioning

Figure 3.7: Number of patterns per structure before and after partitioning. In structures 3-4,
5-7, 8-10 the new number of patterns is still smaller than 512 while in structures 11-13 and
14-17 we have about 130% increase in the number of patterns.

After putting all fragments in the structures we had to check them again for

conflicts following the procedure we followed in paragraph 3.3.1. It resulted to a great

amount of conflicts in each structure. We have to find a new and better structure

which removes the conflicts regardless of the SNORT rule-set we use.

The idea is to have overlapping structures or to have more than one same length

structures in the V-HashMem. For example, assume that we have two overlapping

structures: 5-10 and 8-13. The conflicts for patterns which have length 8, 9 or 10

characters can be removed by moving one of the patterns who create the conflict from

structure e.g. 5-10 to 8-13. By this technique we solve many conflicts in which a

couple of patterns have the same prefix. There are also few cases in which the patterns

that create a conflict are more than two, usually three. In these cases, we just remove

34 Chapter 3 – Variable Length HashMem Structure

the conflict by letting one pattern in the current structure, moving the second to

another structure, deleting the third one and re-breaking the long string, in which the

third one was a part, again randomly. The distribution of patterns in each structure in

the final V-HashMem is shown in Figure 3.8.

169

372

509

715

456
345

0
100
200
300
400
500
600
700
800

Number of
Patterns

3-4 5-10
8-13

11-13
14-17A

14-17B

Structures

Patterns Distribution in each structure

Figure 3.8: Patterns’ Distribution in each structure in the final V-HashMem. The Patterns’
Distribution which is shown in this figure is the final and it is after solving not only the
conflicts we mentioned before but also all some other conflicts we found and we are talking
about them in the next chapter.

3.4 Summary

In this chapter, we described in short the HashMem Architecture. Then we

presented the idea on which V-HashMem was based and we tackled the issues

concerning the CRC generators, the comparators and prefix conflicts. Finally, we

presented to the reader the steps we followed to design the V-HashMem structure.

Chapter 4

Variable – Length HashMem Architecture (V-HashMem)

In this chapter we describe the design of the basic V-HashMem Datapath. Then,

we describe Glue Logic and after these issues we describe the design and

implementation of the final V-HashMem Architecture. At the end of the chapter we

introduce 2 improvements in order to make our design more efficient.

4.1 Basic V-HashMem Datapath

 In this paragraph we describe how to design the Basic V-HashMem Datapath

based on what we have already mentioned in chapter 3. At first, we describe the

design of V-HashMem for the very short patterns, then the design of each component

(CRCs, memories, etc) and finally we present the basic V-HashMem Architecture.

4.1.1 How V-HashMem handles Very Short Patterns

SNORT rule-set contains very few patterns of one or two characters as we

mentioned in paragraph 3.1.2. V-HashMem handles 1-character long patterns in

exactly the same way as HashMem. However, there is a slight difference about how

V-HashMem handles 2-character long patterns comparing to the HashMem.

Two-character patterns in the SNORT rule-set of April 2005 are more than 64 but

less than 128. We use the same idea as HashMem but we recode the 8 input bits into

an 8-bit code from which the most significant bit is a single-character match and the

other 7 is the encoded value of the half part of dual-byte patterns. Again after the

appropriate delay the two input recoded characters amount now to 14 bits, address to a

16Kx1 lookup table. This approach does not increase the memory block requirements

comparing to HashMem since the shortest (smallest width) primitive memory block is

36 Chapter 4 – Variable - Length HashMem Architecture (V-HashMem)

16Kx1 (For Dual byte Pattern LUT) and the widest 512x36 (For Single Byte Pattern

LUT). Figure 4.1 shows how V-HashMem handles one and two characters patterns.

Figure 4.1: How V-HashMem handles very short patterns.

4.1.2 CRC generation

A CRC generator transforms the input data into other data using a specific

polynomial. In paragraph 3.2.1, we said that we use the minimum length of the stored

patterns in the structure to feed the CRC generator. In table 4.1, it is shown how many

characters we use to feed the CRC generator in each structure.

Structure CRC's input width [bytes]
3-4 3
5-10 5
8-13 8
11-13 11

14-17 14
Table 4.1: How many character we use to feed the CRC generator in each structure. A
character is one byte.

Since wide CRC generators have a high cost, we implement full CRC generators

for inputs’ lengths 3, 4, 5 and 6 characters (bytes). For inputs longer than 7 characters

we break the input stream into shorter ones and feed the existing CRC generators.

Then, we glue their result and feed another CRC generator. For example, if we have

an input of 8 characters we break it into 2 pieces (e.g. 4 characters each one) and we

feed each piece into a 4-byte CRC generator. All the 12-bit results of every CRC are

concatenated and the result is fed into a 3-byte CRC generator. This is shown better in

Figure 4.2.

37 Chapter 4 – Variable - Length HashMem Architecture (V-HashMem)

Figure 4.2: CRC generation for an 8-character input.

The width of the output of the CRC generator affects the length of the memory of

each structure and consequently its cost, since the output of the CRC generator is used

as an address to access the memory. For that reason, we want CRC generator to have

the minimum output width. Minimum output width means that we use polynomial of

small degree. On the other hand, the maximum the degree the better mapping of

patterns in the memory. Taking into account these parameters we resulted that the best

polynomial’s degree is 12 for the all the patterns, except the patterns which are in the

structure 3 – 4 where we use degree 11 and for the patterns which are in the structure

11 – 13 where degree 13 is used. In the table 4.2 it is shown clearly how many bytes

have the CRC generators in each structure.

Structure CRC's input width [bytes]
1st level CRC's
input width [bytes]

2nd level CRC's
input width [bytes]

3-4 3 3 no
5-10 5 5 no
8-13 8 5, 3 3
11-13 11 6, 5 3
14-17 14 3, 3, 4, 4 6

Table 4.2: In this table, it is shown the Input width for the CRC generator of each structure in
each level. In structure 11 – 13 we use polynomial with degree 13 only for the 2nd level CRC
generator. For the CRC of the 1st level we use 12th degree polynomial.

Using a programme which was constructed by George Papadopoulos [2] we

produce efficient CRC polynomials for the CRC generators we mentioned in Table

38 Chapter 4 – Variable - Length HashMem Architecture (V-HashMem)

4.2. This programme specifies the best CRC polynomial for the specific patterns. If

there is no polynomial which produces distinct addresses for every single input

pattern this programme will specify the CRC polynomial which creates the least

conflicts. We removed those conflicts by just moving one of the patterns which

participate in the conflict from one structure to another. The number of patterns which

created every conflict does not overcome 2.

Using these polynomials we generate the CRC generators (XOR-based) with

Easics tools [21]. Then, we pipelined each CRC generator to achieve better 1)

throughput and 2) cycle time.

4.1.3 Basic V-HashMem Datapath – Design and Implementation

V-HashMem Architecture, just as HashMem, has Index Memories in order to

achieve better utilization in the pattern memory (this is described better in paragraph

3.1.1). Usage of Index Memories has another very important advantage: when we are

storing the patterns in the Pattern Memory, we can put each pattern wherever we

want. Then we initialize the Index Memory based on the calculated CRC values and

the locations of the patterns in the pattern memory. This is shown in Figure 4.3. We

described in the paragraph 4.2.2 how we use this property.

Based on what we have said until now, we design and implement V-HashMem

datapath. The datapath which is shown in Figure 4.4 does not include all the structures

but only the 3-4 and 5-10 structures because all structures have been designed in the

same way, except structure 14 – 17. Structure 14 – 17 consists of two structures: 14 –

17A and 14 – 17B but we use one CRC generator for both of them because firstly it is

the same for both structures and secondly only one of them will report a match for a

specific input.

The input string is inserted into a long shift register, which has one byte

(character) width, once per cycle. The smallest length of the input (based on the

structure) is fed into the CRC generator. Then, the output of the CRC generator is

used to access the Index Memory and take the Pattern Memory’s Address which we

use to find the pattern. Then we send the pattern and the appropriately delayed

39 Chapter 4 – Variable - Length HashMem Architecture (V-HashMem)

packet’s string into the variable comparator which determines whether there is a

match or not. This implementation has a single-byte processing throughput per cycle.

Figure 4.3: How Index Memory is used. CRC address is used to access the Index Memory.
Then data of Index Memory (Pattern Address) is used to access the Pattern Memory.

Figure 4.4: One part of the Basic V-HashMem Datapath. In this datapath, it is shown clearly
that the smallest length of the input (based on which is the smallest length of the patterns of
the current structure) is fed into the CRC generator. In addition, the variable comparators
take into account the Don’t Care bits for the variable portion (4th character of the first one
and 6-10 characters for the second) for the comparison.

The area and memory cost (Index and Pattern Memory Cost) for the

implementation of the Basic V-HashMem Datapath is shown in Table 4.3, Table 4.4

and Table 4.5 respectively. In these tables the cost is shown for each and every

40 Chapter 4 – Variable - Length HashMem Architecture (V-HashMem)

structure of the basic V-HashMem Datapath. In this implementation we use the

SNORT rule-set of April 2005 which contains 2187 rules or 33613 characters.

Structure Area Cost [Logic Cells (LC)]
3-4 88
5-10 126
8-13 164
11-13 120
14-17 308
Total 806

Table 4.3: Area cost per structure and Total Area Cost of the basic V-HashMem.

Pattern Memory Cost

Structure
Number
of Entries Width[bits] Number of memory blocks

3-4 512 33 1
5-10 512 85 3
8-13 512 109 4
11-13 1024 106 6
14-17A 512 139 4
14-17B 512 139 4
Total 22

Table 4.4: In this table it is shown how many memory blocks are used for the implementation
of the Pattern Memory, for each structure and for the total implementation of basic V-
HashMem.

Index Memory Cost

Structure
Number
of Entries Width[bits] Number of memory blocks

3-4 2048 9 1
5-10 4096 9 2
8-13 4096 9 2
11-13 8192 10 5
14-17A 4096 9 2
14-17B 4096 9 2
Total 14

Table 4.5: In this table it is shown how many memory blocks are used for the implementation
of the Index Memory, for each structure and for the total implementation of basic V-
HashMem.

The pattern memories of all the structures except structure 11 – 13 are

implemented using the shortest and simultaneously widest memory block of Xilinx

512x36. The number of memory blocks in these cases depends clearly on the width of

the pattern memory of each structure. On the other hand, in structure 11 – 13 we use

41 Chapter 4 – Variable - Length HashMem Architecture (V-HashMem)

the 1024x18 memory block because we need 1024 entries for the implementation of

the pattern memory and we use 6 blocks because pattern memory’s width is 106.

 For the index memories we use longer memory blocks but with a small width.

For example, the index memories of the structures 5 – 10 or 8 – 13 are implemented

using the 2048x9 memory block 2 times for each structure putting them vertically. We

could also use the 4096x4 memory block but you can understand that this would

require 3 memory blocks (we would place them horizontally) of it, since these index

memories have 9 bits width. We can easily understand that Xilinx offer many choices

about how to use the memory blocks of the FPGA.

Finally, in the Table 4.6 we present the total Area and Memory Cost for the basic

V-HashMem, and calculate the logic cost per character as well.

Basic V-HashMem Architecture

Area Cost [LC] 806
Memory Cost [Memory blocks] 36
Logic Cells/ Character 0.02

Table 4.6: Total Area and Memory Cost for the Basic V-HashMem Architecture.

4.2 Glue Logic

In the previous paragraphs we have described the basic V-HashMem

Architecture. We have described how the patterns are stored in the memories of V-

HashMem and how a pattern matching, if it exists, is reported. Until now, V-

HashMem Architecture reports a match, if it exists, but it does not mention what kind

of match it is. We have to extend the current V-HashMem Architecture so that after

the fragments are matched in the regular memory structures, custom glue logic will

combine the partial match signals to determine whether the entire wide pattern was

actually found in the input. Determining the actual match involves delaying the partial

match signals appropriately to indicate the actual position of the partial pattern in the

overall input. This technique has been also used in HashMem Architecture.

In the following paragraphs, we describe the idea on which Glue Logic is based.

Then we describe some special cases on which Glue Logic is not working properly

and what we have done in order to face them. Finally, we implement Glue Logic.

42 Chapter 4 – Variable - Length HashMem Architecture (V-HashMem)

4.2.1 The Idea

Given the number of wide patterns (624 patterns wider than 18 characters), using

a per fragment solution as in HashMem is inefficient. Instead we used an addressing

convention that places fragments in consecutive locations, so that when the first

fragment of a wide string is located say at location x, the expected location of the

subsequent fragment is already known to be at location x+1. Then we compare the

delayed expected address to the address of the second fragment and determine the

match. Since this rule holds for all fragments of all patterns, the cost of the approach

is to add one to the address and broadcast it (appropriately delayed) to all memory

structures for future inspection.

In addition, it is useful to know what kind of pattern we have (fragment or not and

what kind of fragment: first, medium or last), since we report only the non fragment

and the last fragment. It is also useful to know in which memory structure the

previous fragment is stored provided that the fragment exists. We encode this piece of

information into 2 and 3 bits respectively and store it into every memory structure.

This encoding is shown in True Tables 4.7 and 4.8. This piece of information is useful

when the address is broadcasted (see paragraph 4.2.3).

Previous Structure

5-10 000
8-13 001
11-13 010
14-17 011
8-13 or 14-17 100
11-13 or 14-17 101

Kind of Pattern
Non Fragment 00
First Fragment 01
Medium Fragment 10
Last Fragment 11

Table 4.7: Kind of Pattern.
 Table 4.8: Previous Struct.

4.2.2 Special Cases

With the previous idea we implement a great amount of fragments. However,

there are patterns that when broken down to fragments create “strange” structures.

These structures are:

 Tree – like structures

 Reverse Tree – like structures

43 Chapter 4 – Variable - Length HashMem Architecture (V-HashMem)

 Special List structures

First of all, we will discuss about Tree – like structures like the ones that are

shown in Figure 4.5a and Figure 4.5b. Consider the case of two patterns “abcdef” and

“abcxyz”. A match of “abc” followed by a match of either “def” or “xyz” is a full

match. This fan-out structure deviates from the +1 rule. This situation is relatively

rare (178 patterns that form 41 trees in our rule set), and we solved it by adding a

small exception memory in parallel to each pattern memory. In our example we would

place the “abc” and “def” fragments in locations x and x + 1. Then we would place the

“xyz” fragment at another location y and place the entry x + 1 in location y in the

exception memory, indicating that a match at location y after matching location x + 1

is a full match.

Figure 4.5a: Multi – level Tree – like structure.

Figure 4.5b: A 2-level Tree – like
structure. Most of tree cases are like
this one.

The other case is the Reverse Tree – like structure and it is shown in Figure 4.6.

In this case we put the common fragment in a position say x and all the other different

fragments in a position x-1, using +1 rule. However, in some cases two or more

different fragments may be in the same memory structure as a result they cannot be

stored in the same position x-1. In these cases, we just move the fragments into

another memory structure, removing this conflict.

There are also some cases which are a combination of tree and reverse tree like

structures like the one that is shown in Figure 4.7. Since these cases are a combination

of the cases we mentioned before we face them by dividing them into known cases.

44 Chapter 4 – Variable - Length HashMem Architecture (V-HashMem)

Figure 4.6: Reverse Tree – like structure.

Figure 4.8: Special List Structure.

Figure 4.7: Combination of Tree and
Reverse Tree – like structures. We
separate these cases into known cases and
manage them using the techniques we
showed.

Finally, we have some cases which create special list structures. These structures

are like the one is shown in Figure 4.8. These structures are simple lists in which the

first or an intermediate node is both fragment and non-fragment and we have to report

the match if it exists. Since these cases are very few (6 cases) we put these patterns

into known positions and if we have a match we report it independently of being a

first or an intermediate part of a long pattern.

45 Chapter 4 – Variable - Length HashMem Architecture (V-HashMem)

4.2.3 Glue Logic – Design and Implementation

In the previous paragraphs, we described how we handle the fragments. We

proposed our ideas and now we are ready to design the Glue Logic. The block

diagram of Glue Logic is shown in Figure 4.9.

We use the output data from the Index Memory to access the Pattern Memory as

we described in paragraph 4.1.3. We also use some bits of this data to determine (tree

decoder) whether there is a tree-like case (Mux output is the Exception Memory’s

Output) or not (Mux output is the Data from Index Memory). The patterns of one

structure which create Tree-like cases are placed into a certain zone (consecutive

places) of the pattern memory. The id of this zone is compared with the input of the

Tree Decoder. The number of bits of this id is not standard as it depends on the

Structure (5-10, 8-13, etc) because the “size” of each zone depends on the number of

the patterns which create Tree-like cases in each structure. The remaining bits of the

output data of Index Memory are used in order to access the Exception Memory.

The Mask Decoder determines which broadcasted address to use based on the

saved information in Memory (Bits of Structure of Previous Fragment). The Control

Signal of the Mask Decoder depends on the kind of the pattern. If we have a non

fragment the output of the Mask Decoder must be zeros since there is nothing to be

glued. In any other case the control signal has a value 1.

We also use a 2-input OR gate after the first comparator. If we did not put this

gate, we would never report a match when we have a non partial pattern because the

output of the 4-input OR gate would be zero. For that reason, we put this 2-input OR

gate so that when we have a non partial pattern the output of the 4-input OR must be

one independently of the comparators. On the other hand, in any other case it will be

zero and the report will depend on the comparators. In addition, we report a match

when there is a match and it is either a non partial pattern or the last fragment and that

is the reason why we use this XNOR gate. True Table 4.7 shows exactly why we use

an XNOR gate. Moreover, we broadcast the address only when we have a first or an

intermediate fragment and there is also a match. In any other case we broadcast zeros

and that is the reason why these registers are cleared not only by reset but also by

other signals, like match and the kind of pattern. The last comparator is used to face

46 Chapter 4 – Variable - Length HashMem Architecture (V-HashMem)

the Special List – like cases. Only in these cases and when there is a match we report

it independently of the kind of pattern and the output of the other logic.

Figure 4.9: Glue Logic Datapath. We use the data from Index Memory to access the Pattern
Memory as we described before. We also use it to access the Exception Memory. The Mask
Decoder determines which broadcasted address to use based on the saved information in
Memory (Bits of Structure of Previous Fragment). The Control Signal of the Mask Decoder
depends on the kind of the pattern. If we have a non fragment the output of the Mask Decoder
must be zeros since there is nothing to be glued. As it is mentioned before we report a match
when there is a match and it is a non partial pattern or the last fragment and that is the
reason why we use this XNOR gate. Finally, we broadcast the address only when we have a
first or intermediate fragment and there is a match. In any other case we broadcast zeros.

After implementing the Glue Logic we pipelined it in order to achieve better

cycle time. The duration of Glue Logic is about 10 cycles. Of course some signals are

used few cycles after their creation and for that reason they are delayed appropriately

using shift registers. Also, the broadcasting addresses are delayed appropriately before

47 Chapter 4 – Variable - Length HashMem Architecture (V-HashMem)

they are fed into the comparators. The area cost is 948 slices taking into account all

the appropriate delays. The exception memories are implemented using the distributed

memories of Xilinx which do not use memory blocks but logic and this logic cost is

included in the area cost we mentioned before. However, we need to use slightly more

memory blocks than these of table 4.4 since we put the extra bits in the pattern

memories. We present the final memory and area cost in the next chapter (Evaluation

and Results).

4.3 Final V-HashMem Architecture – Implementation and

Evaluation

After completing the implementation of Glue Logic we have to replicate it and

put it in every single structure except the 3-4 structure as it does not contain any

fragment. Also, the V-HashMem Architecture consists of 5 structures and every

single structure can report a match. For that reason we construct a priority encoder

and determine the final match from all the matches. In the Figure 4.10, we show

which structure has the biggest priority to determine the final match.

Structure

3-4
5-10
8-13

11-13
14-17

Priority

Figure 4.10: Match Priority of the structures

In Figure 4.11, we show one part of the Final V-HashMem Architecture. We do

not show the whole V-HashMem Architecture since every single structure except the

structure 3-4 are similar. Structure 3-4 does not contain any fragment as a result Glue

is not needed. In this figure we also show how we report a long pattern match after

gluing its fragments’ matching signals. Also, the structure 14-17 is slightly different

than the others as we mentioned in previous paragraphs as it consists of the 2 sub-

48 Chapter 4 – Variable - Length HashMem Architecture (V-HashMem)

structures: 14-17a and 14-17b. We put the Glue Logic in both sub-structures and since

only one of them can report a match we choose the right one using a multiplexer.

The final area and memory cost as well as the performance of the V-HashMem

Architecture are shown in the next chapter (Evaluation and Results). Finally, we have

to mention that the above architecture has a single – byte (character) processing

throughput per cycle. We can increase it and have a two – byte (character) processing

throughput per cycle but this requires duplicating of the area since we have to use

dual port memories, two CRC generators, two variable comparators and two pieces of

Glue Logic per structure. The V-HashMem Architecture (only the 3-4 structure) with

two input byte processing throughput per cycle is shown in Figure 4.12.

Figure 4.11: Final V-HashMem Architecture. In this figure, we show only one part of the
Final V-HashMem because the other structures are like these of Figure 3.18. Only structure
3-4 is different because it does not contain any fragment as a result Glue Logic is not needed.

In this figure, we notice that we feed the CRC generators with 2 input streams at

offsets 0 and 1 per cycle. Then, each output of the Index Memory is used to access the

49 Chapter 4 – Variable - Length HashMem Architecture (V-HashMem)

Pattern Memory and each output of Pattern Memory is sent to a Variable Comparator

which makes the comparison between the input stream, for offset 0 and 1, and the

output of the Pattern Memory. Then each comparator’s output is sent to a Glue Logic

component to report the match or not. It is clear that by this improvement we almost

double the throughput but we need to duplicate the area as a result the area cost is

doubled.

Finally, we investigated the support for header matching information. A complete

SNORT-like NIDS system combines two pieces of information: header matching with

payload scan. It is easy to see that payload scan is by far the most difficult and

complex task, since header matching generally involves merely equality or range

matching on fixed numeric fields.

input

Struct 3-4

CRC

Index
Mem

Pattern
Mem

Comparator

CRC

Port A

Port A

Port B
Port B

Comparator

Glue
Logic

Glue
Logic

Figure 4.12: In this figure, it is shown a part of the V-HashMem Architecture for doubled
processing throughput (2 input characters processing throughput per cycle). However, we
have to duplicate all the logic components (CRCs, comparators and Glue Logic) and use dual
port memories. That means, that we have to double the area cost in order to achieve this
doubled processing throughput.

However, payload scanning should consider the header matching information and

report matches only when the combined check of header and pattern are found. To

include this functionality, we can add a Header Group ID field along with the search

pattern in the pattern memories. This ID will determine the set of search patterns that

50 Chapter 4 – Variable - Length HashMem Architecture (V-HashMem)

are compatible with the current packet header. Earlier research of Dimopoulos et al

[1] indicates that the snort rules can be classified into ~300 groups, which can be

encoded with 9 bits. Upon arrival of a new input packet, the header matching circuitry

performs its tests and provides the Header-ID to the V-HashMem sub-system. The

pattern checking occurs as described earlier, but to report a match the comparators

also test the Header-ID field for equality with that of the incoming packet. This test

suppresses false positive answers when the search pattern is not compatible with the

header of the packet. The additional cost of this feature is the memory bits to store the

Header-ID and the additional comparator logic.

Of course, a complete system would also add the cost of header classification into

the header group identifiers. This system could be like the one which is shown in

Figure 4.13. The header data of a packet is inserted into the Header field extractor

which performs header delineation, and field separation. In header classification, only

six of all the possible header fields are necessary: source and destination IP address

and ports, the protocol type and the ICMP type.

Figure 4.13: Header Classification Circuitry which was proposed by B. Dimopoulos et al [1].

The six header fields are forwarded to the rule set comparator module. The output

of this module is a bitmask indicating all possible matching rules. The matches are

strictly prioritized based on T-Gate (software which was proposed by Dimopoulos et

al [1]) and SNORT. Therefore, the rule match indications are fed to a priority encoder

to identify the most significant matched rule and to provide its encoding along with

the packet data to the next processing level. We have to mention that the cost of the

Header classification will not be included in our measurements in the next chapter.

Chapter 5

Evaluation and Comparison with Related Work

In chapters 3 and 4 we presented the V-HashMem Architecture. We presented the

idea on which V-HashMem Architecture is based and then we described the design

process and the implementation of it. Also, we proposed an idea in order to improve

the throughput of it and another one to support Header matching. Now, we have to

evaluate it and present the area cost as well as the performance and the throughput.

These values will give us a clear view of the quality of our design. Furthermore we

will compare our design with other related works.

First of all, we evaluate our system using the SNORT rule-set of April 2005

which contains 2187 rules or 33613 characters. We used Xilinx ISE 7.1i in order to

implement our design and ModelSim in order to verify its correct functionality. The

device families we used are VirtexIIpro, Spartan3 and Virtex4 and the device speeds

are -7, -5 and -12 respectively. After completing the implementation we measure the

area cost and the performance using the synthesis and place and route tools of ISE.

Before starting the evaluation of our design and present the results we will give

some information to the readers about the metrics we use in order to evaluate our

system. The metric we used to measure the area cost is the number of Logic Cells.

The number of Logic Cells is the number of the Reported Slices multiplied by a

factor of 2. Another metric which is based on the number of the measured Logic Cells

is the number of Logic Cells per character. This number is the ratio of the number of

Logic Cells and the total number of characters of the rule-set and it is a very useful

metric since it shows how many logic cells we use in order to match a single

character.

Furthermore we use some metrics in order to measure the speed of our design.

Using Xilinx ISE synthesis tools we measure the Performance (Operating

Frequency) of the system. Multiplying this Frequency with the input bits to the

system per cycle we calculate the Throughput. Throughput is used widely by most

52 Chapter 5 – Evaluation and Comparison with Related Work

researchers in order to evaluate their research. Moreover, we use another metric in

order to combine the speed and area cost of our design. This metric is called

Performance Efficiency Metric (PEM) and is also used by all researchers. PEM is

the ratio of performance over the area cost or, in other words, the ratio of Throughput

over the number of Logic Cells per Character. Finally, as our first goal was to reduce

the number of the required Memory Blocks reducing the area cost and keeping the

same the Performance we use another metric, PEM/m which shows clearly the

efficiency of our design according to all the parameters we mentioned. In the

following figure (Figure 5.1) we show all the metrics we use.

This chapter contains, at first, area and memory evaluation and utilization. Then

we evaluate the Performance of our system. At paragraph 5.3 we evaluate V-

HashMem Architecture again but combining Area, Memory and Performance results.

Finally, we compare our implementation with related work.

Figure 5.1: In this figure, the metrics we use for the evaluation of our system are shown. Also,
the formulas which give these metrics are also shown.

5.1 Area and Memory Evaluation

In chapter 4 we presented some first results on memory and area cost. Then, we

described the design of the glue logic. In addition, we completed our design by adding

the FIFO, from which the input stream is coming, and the priority encoder, which

determines the final reported match and the broadcasted address. In the next tables we

are going to show the area cost for every structure of the V-HashMem Architecture.

53 Chapter 5 – Evaluation and Comparison with Related Work

First of all, the area cost for every structure of the V-HashMem Architecture is

shown in Table 5.1. Tree Logic contains the Exception Memory, the Tree Decoder

and a MUX (Figure 4.9). Special List Logic contains a comparator, an AND gate, an

OR gate and the appropriate delays (bottom of Figure 4.9) and +1 rule Logic contains

all the remaining Logic of Figure 4.9.

Area Cost per Structure (Logic Cells)

Structure
CRC
Generators Comparators

Tree
Logic

"+1 rule”
Logic

Special List
Logic

3-4 62 26 0 0 0
5-10 64 62 30 80 10
8-13 82 82 44 90 20
11-13 46 74 90 90 10
14-17 108 200 160 160 20
Total 362 444 324 420 60

Table 5.1: This table shows the Area cost in Logic Cells (LCs) for each and every structure of
the V-HashMem Architecture. Tree Logic contains the Exception Memory, the Tree Decoder
and a MUX (Figure 4.9). Special List Logic contains a comparator, an AND gate, an OR gate
and the appropriate delays (bottom of Figure 4.9) and “+1 rule” Logic contains all the
remaining Logic of Figure 4.9.The cost for the CRC generators and the Comparators is the
same before and after the adding of Glue Logic. Notice that Glue Logic is the sum of Tree
Logic, Special List Logic, +1 rule Logic and the appropriate delays for the broadcasting
addresses. For structure 3-4 we observe that there is no Tree Logic, “+1 rule” logic or
Special List Logic Cost because this structure does not contain fragments as a result there is
no Glue Logic.

 The cost for the CRC generators and the Comparators is the same before and

after the adding of Glue Logic. Notice that Glue Logic is the sum of Tree Logic,

Special List Logic, “+1 rule” Logic and the appropriate delays for the broadcasting

addresses. The last one is not shown in the Table 5.1. In the next table (Table 5.2) we

are showing the total area cost for every component that is contained in the V-

HashMem Architecture as well as the Total Area Cost of the final implementation of

it. The medium column shows the Area Cost for processing Throughput 1 character

per cycle. At the end of chapter 4 we proposed an improvement of V-HashMem

Architecture in order to increase the Throughput by increasing the processing

Throughput from one byte (character) to two bytes (2 characters) per cycle. This

improvement almost doubles the required Area Cost as every single component must

be duplicated except FIFO as it was shown also in Figure 4.12. Adding Header-ID

matching, we have to add 80 and 160 LCs, which is the cost of the Header

comparators, for 1 input character and 2 input characters per cycle respectively.

54 Chapter 5 – Evaluation and Comparison with Related Work

Area Cost

Component
Processing Throughput:
1 character per cycle.

Processing Throughput:
2 characters per cycle.

CRC
generator 362 724
Comparator 444 888
FIFO 250 250
Glue Logic 948 1896
Priority Mux 80 160
Total 2084 3918

Table 5.2: Total Area Cost for every Component of the V-HashMem Architecture and the
Total Area Cost of the final implementation of the V-HashMem Architecture for processing
Throughput (TH) 1 and 2 characters per cycle.

Regarding Memory, we showed in chapter 4 the memory cost for the basic V-

HashMem Architecture but this is not the final memory cost since we put 5 extra bits

in the Pattern Memories in order to encode significant information about the kind of

the Pattern and the source structure of a previous fragment as it is mentioned in

paragraph 4.2.1. In Table 5.3 and 5.4 we show how many memory blocks are used in

the final implementation for the Pattern Memories and Index Memories respectively.

Pattern Memory Cost

Structure Entries Width(bits) Number of memory blocks
Header
ID

3-4 512 33 1 +1
5-10 512 90 3 +0
8-13 512 114 4 +0
11-13 1024 111 7 +0
14-17A 512 144 4 +1
14-17B 512 144 4 +1
Sum 23 +3

Table 5.3: In this table, it is shown how many memory blocks are used in order to implement
the Pattern Memories of V-HashMem. Comparing this Table with Table 4.4 we notice that the
number of memory blocks in the final implementation is only increased from 22 to 23 memory
blocks.

Comparing Table 5.3 with Table 4.4 we notice that the number of memory blocks

in the final implementation is only increased from 22 to 23 memory blocks. We have

only this small increase because the maximum width of the Memory Blocks of all the

pattern memories except the one of structure 11-13 was enough to accept the adding

of the 5 extra bits. In structure 11-13 we just add another memory block. Regarding

the memory blocks which are used for the implementation of the Index Memories we

55 Chapter 5 – Evaluation and Comparison with Related Work

mention that the cost is the same as it is shown also in Table 4.5. Furthermore, there is

an amount of 2 additional memory blocks for the implementation of the very short

strings (of one or two characters). So, the total number of Memory Blocks we used in

order to implement the memories of our design is 39. Taking also into account the

Header support, the stored Header IDs make the pattern memories wider. Some

memories have spare bits and can accept this extension while other do not; overall,

storing the Header-ID along with the patterns requires an additional 3 memory blocks

(Table 5.3), a small price for the increased functionality. Finally, we will not describe

why we used this number of memory blocks for the implementation of Index and

Pattern Memories since it was described in much detail in paragraph 4.1.3.

Index Memory Cost

Structure
Number
of Entries Width[bits] Number of memory blocks

3-4 2048 9 1
5-10 4096 9 2
8-13 4096 9 2
11-13 8192 10 5
14-17A 4096 9 2
14-17B 4096 9 2
Total 14

Table 5.4: In this table it is shown how many memory blocks are used for the implementation
of the Pattern Memory, for each structure and for the total implementation.

We evaluated our implementation and we exported the results for the area cost.

Before evaluating our design about the Performance lets see which is the area and the

memory utilization since it is also an important factor of the efficiency of our

implementation.

Firstly, in Table 5.5 we show the memory utilization for the Pattern Memories of

the V-HashMem Architecture. Observing this Table we can notice that we achieve a

satisfactory utilization except for the memory structure 3-4 in which the utilization is

modest.

56 Chapter 5 – Evaluation and Comparison with Related Work

Pattern Memory

Structure Number of Patterns Memory Utilization (%)
3-4 169 33
5-10 372 72.6
8-13 509 99.4
11-13 715 69.8
14-17A 456 89
14-17B 345 67.3

Table 5.5: In this table it is shown the Pattern Memory’s Utilization. Looking at this Table we
notice that we achieve very satisfactory memory utilization. Only for the memory structure 3-
4 memory utilization is modest but we cannot do something better as the patterns which are
stored are neither so short nor so long to handle them either on the way we handled patterns
of 1 or 2 characters or on the way we handled long patterns.

In Table 5.6 we show the memory utilization for the Exception Memory which

was suggested in order to solve the Tree – Like structures. According to this table we

also achieve very good utilization. Finally, Exception Memories are not used in the

Structure 3-4 because this structure does not contain any fragment. The exception

memory was constructed using the Distributed Memories of Xilinx, which do not use

memory blocks but logic. We choice to use Distributed Memories and not block

memories because the number of Data, as it is shown in Table 5.6, is very small. If we

used block memories we would use 5 times the memory block 512x36 and achieve

12% utilization in the best case (14-17B).

Exception Memory

Structure Number of Data Memory Utilization (%)
5-10 3 18.8
8-13 21 65.6
11-13 58 60.4
14-17A 33 51.2
14-17B 63 49.2

Table 5.6: In this table it is shown the Utilization for the Exception Memories. Looking at
this Table we notice that we achieve very satisfactory memory utilization.

In addition, in Figure 5.2 we show the Area Utilization of V-HashMem

Architecture and we notice that Glue Logic takes up about the half of the used Area of

it while CRC generators and the Comparators take up 17% and 21% of the total used

Area.

57 Chapter 5 – Evaluation and Comparison with Related Work

17,3
21,3

12

45,5

3,9

0
5

10
15
20
25
30
35
40
45
50

Percentage

CRC ge
ne

rat
or

Com
pa

rat
or

FIFO

Glue
 Lo

gic

Prio
rity

 M
ux

Components of V-HashMem

Area Utillization (%)

Figure 5.2: In this Figure, it is shown how much area is used by every component of the total
2084 Logic Cells of V-HashMem Architecture. Figure 5.2 would be similar if we calculated
the utilization of the Area for processing Throughput 2 characters per cycle.

To analyze Device Area and Memory Utilization we used three different devices

of the same Device family VirtexIIpro to implement the design, within and without

the improvement we mentioned in the last paragraph of chapter 4. Table 5.7 shows

this Device Area and Memory Utilization for the above cases. Observing Table 5.7,

we can notice that V-HashMem Architecture within or without the improvement can

fit in a device of medium size as well as a small device.

 Device Area Utilization (%) Device Memory Utilization (%)

Devices

Processing
throughput
1 character/cycle

Processing
throughput
2 characters/cycle

Processing
throughput
1 character/cycle

Processing
throughput
2 characters/cycle

VirtexIIpro 7 21.1 39.8 84.1 84.1
VirtexIIpro
20 11.2 21.1 42.1 42.1
VirtexIIpro
30 7.6 14.3 27.2 27.2

Table 5.7: In this Table, we show the Area and Memory Utilization for 3 different devices for
both implementations within or without improvements.

We will give the area and memory cost, using the metrics we mentioned in the

introduction of this chapter, after the performance evaluation on a summary table

(Table 5.9).

58 Chapter 5 – Evaluation and Comparison with Related Work

5.2 Performance Evaluation

For our implementation we used 3 different Device families: VirtexIIpro,

Spartan3 and Virtex4 and measured the Frequency of the system. Then we calculated

Throughput and the results are shown in Table 5.8.

 Frequency (MHz) Throughput (Gbps)
Device
Family Input bits: 8 Input bits:16 Input bits: 8 Input bits:16
VirtexIIpro 320.146 ~309 2.56 ~4.95
Spartan3 190.387 ~176 1.52 ~2.82
Virtex4 346.021 ~340 2.77 ~5.44

Table 5.8: In this table the Frequencies and the TH for V-HashMem Architecture with one
and two input characters (8 and 16 input bits respectively) for 3 different device families are
shown.

These results are for specific devices of each Device Family. We used the

devices: xc2vpx20, xc3s3000 and sc4vsx35 for the device families VirtexIIpro,

Spartan3 and Virtex4 respectively. All these devices have medium size. In addition,

we measured the Frequencies using the modes Advanced 1.90 2005-01-22, Advanced

1.35 2005-01-22 and Preview 1.52 2005-01-22 of Place and Route tool of Xilinx ISE

for the device families VirtexIIpro, Spartan3, Virtex4 respectively.

According to table 5.8, using VirtexIIpro for the implementation with 1 input

character processing throughput (without the improvement) we achieve a very good

Throughput, near 2.5 Gbps. Also for Virtex4 Device family, which is faster and better

than VirtexIIpro, we achieve Frequency 346.021MHz for the same implementation.

On the other hand, Frequency and Throughput for both implementations on Spartan3

Device Families are not impressive. But we do have an explanation for these results:

Spartan3 Device Families have generally low speed in comparison with other Device

Families, such as VirtexIIpro and Virtex4 and are really cheap and have low energy

consumption.

59 Chapter 5 – Evaluation and Comparison with Related Work

5.3 Total Evaluation and Results

In Table 5.9, we present the total results for V-HashMem Architecture with 1 and

2 input characters (meaning without or within the improvement) using also all the

metrics we mentioned at the introduction of this Chapter.

V-HashMem Architecture: Area, Memory and Performance Evaluation

Num of
Patterns

Patterns
Chars LCs LCs/char

Mem
Blocks
(kbits)

Frequency
(MHz)

TH
(Gbps) PEM PEM/m

Input
Char
1 2187 33613 2084 0.06

39
(648.32) 320 2.560 42.66 22.45

Input
Chars
2 2187 33613 3918 0.11

39
(648.32) 309 4.948 44.98 23.67

Table 5.9: Table with total results for the V-HashMem Architecture for Input 1 and 2
characters. This Table contains the results for all the metrics which were mentioned in the
introduction of Chapter 5.

Looking at Table 5.9, we notice that for the first approach we achieve Frequency

320 MHz and Throughput 2.560 Gbps using only 2084 Logic Cells or 0.06 LCs per

character. On the other hand, for 2 input characters (doubled processing throughput)

although we achieve slightly lower performance (309 MHz), we almost doubled the

Throughput (4.948 Gbps). To achieve this we needed to use Dual port Memories and

duplicated components for each memory structure as a result the Area Cost almost

doubled. Furthermore, Performance Efficiency Metric is better in the second approach

than the one of the first approach. Finally, if we consider the fact that we stored a

really great number of patterns using only 39 memory blocks, using about 20% and

40% of the total area of a small FPGA and achieving Frequencies 320MHz and 309

MHz for both approaches we can say that V-HashMem Architecture is a very

efficient design.

5.4 Comparing V-HashMem Architecture with HashMem

Architecture

60 Chapter 5 – Evaluation and Comparison with Related Work

In the previous paragraphs we evaluated V-HashMem Architecture in order to see

how efficient our design is. However, this is not enough. It is very crucial to compare

our work with other related works. At first we are going to compare V-HashMem

Architecture with HashMem Architecture which was designed and implemented by

George Papadopoulos and Dionisios Pnevmatikatos [2].

As we described in chapter 3, HashMem Architecture contains 14 memory

structures where patterns from 3 to 16 characters length are stored. Also there is one

memory structure where very short patterns (of one or two characters) are stored

there. Finally, patterns longer or equal 17 characters are broken into shorter strings

and are stored in the existed memory structures. Extra glue logic is used to combine

the matching signals of the partial patterns in order to report the final long match. The

main difference of HashMem Architecture and V-HashMem Architecture is that the

in the first one every single memory structure contains patterns of the same length

while in our design patterns of different but close lengths are stored in the same

memory.

In V-HashMem Architecture, the resulting structures use a total of 74 character

comparators, compared to 150 in HashMem, a 50% improvement, and require 5 CRC

generators with a total of 41 character input, compared to 150 character input for

HashMem as it is shown in Table 5.10.

 V-HashMem Width (characters)
Structures CRC generator Comparators
3-4 3 4
5-10 5 10
8-13 8 13
11-13 11 13
14-17 14 34
Total 41 74

HashMem 150 150
Table 5.10: V-HashMem Architecture compared with HashMem Architecture on the width of
CRC generators and Comparators.

Given the observation that in HashMem CRC generation and comparators

account for 32% and 42% of the logic respectively, there is the potential for

considerable logic savings (in the order of 40%), despite using the newer SNORT

rule-set with 70% more characters. On the other hand, the newer rule-set also includes

61 Chapter 5 – Evaluation and Comparison with Related Work

many more wide strings that have glue logic overhead, reducing the potential

improvement.

The memory usage of our V-HashMem configuration is also depicted in tables

5.4 and 5.5. As we said, 23 memory blocks are needed for pattern storage and 14 for

index memories. In addition to these memories we need another 2 memory blocks to

match the very narrow 1 and 2 character patterns. This leads to a total of 39 memory

blocks. The best HashMem configuration used 31 memory blocks but to store

significantly fewer patterns and using both memory read ports. This best HashMem

approach, which is named as “HashMem + Reuse + Share + Small CRCs”, is an

improved version of the HashMem we described in Chapter 3. In this approach, the

memory is partitioned in two independent portions. The “upper” portion is used for

patterns of width X and the other is used for patterns of widths Y (usually X+1). This

approach was possible because of 1) the low density of the indirection memory and

pattern memory in the HashMem Architecture and 2) that Xilinx memories are dual

ported. However, in this approach they could not increase the processing throughput

from one to two characters per cycle since both ports of memory are used now.

Table 5.1 shows the area cost of each sub-system of our V-HashMem

architecture. We break down the cost into (a) the character FIFOs that accumulate the

characters for the CRC generators and the comparators, (b) CRC generators, (c)

comparators, (d) glue logic for partial matches, and (e) final address and match

reporting circuitry (priority encoder). The total calculated logic cost is 2086 Logic

cells, or a cost of ~0.06 LCs/character (Table 5.9). This corresponds to a per character

improvement of 50% over the unoptimized HashMem. In Figures 5.3 – 5.6 we

compare the two approaches of V-HashMem Architecture with the best HashMem

Architecture over 5 parameters.

62 Chapter 5 – Evaluation and Comparison with Related Work

0.062

0.11

0.15

0
0,02
0,04
0,06
0,08

0,1
0,12
0,14
0,16

LCs/character

V-HashMem
Processing

Throughput 1
char/cycle

V-HashMem
Processing

Throughput 2
chars/cycle

HashMem Best
Approach

Figure 5.3a: Comparing V-HashMem with the best HashMem over LCs/char.

339

290
295
300
305
310
315
320
325
330
335
340

Frequency (MHz)

320

309

V-HashMem
Processing

Throughput 1
char/cycle

V-HashMem
Processing

Throughput 2
chars/cycle

HashMem Best
Approach

Figure 5.3b: Comparing V-HashMem with the best HashMem over Frequency using
VirtexIIpro Device Family.

2.56

4.948

2.712

0
0,5

1
1,5

2
2,5

3
3,5

4
4,5

5

Throughput
(Gbps)

V-HashMem
Processing

Throughput 1
char/cycle

V-HashMem
Processing

Throughput 2
chars/cycle

HashMem Best
Approach

Figure 5.4: Comparing V-HashMem with the best HashMem over Throughput.

63 Chapter 5 – Evaluation and Comparison with Related Work

42
45

18

0
5

10
15
20
25
30
35
40
45

PEM

V-HashMem
Processing

Throughput 1
char/cycle

V-HashMem
Processing

Throughput 2
chars/cycle

HashMem Best
Approach

Figure 5.5: Comparing V-HashMem with the best HashMem over PEM.

24
22

0

5

10

15

20

25

PEM/m
6

V-HashMem
Processing

Throughput 1
char/cycle

V-HashMem
Processing

Throughput 2
chars/cycle

HashMem Best
Approach

Figure 5.6: Comparing V-HashMem with the best HashMem over PEM/m.

Looking at figures 5.3b and 5.4 we observe that although HashMem Architecture

achieves better Frequency than both approaches of V-HashMem Architecture, the

second approach of V-HashMem Architecture achieves almost doubled Throughput.

Looking at Figure 5.5, we notice that both approaches of V-HashMem Architecture

achieve more than doubled PEM. Furthermore, looking at Figure 5.6, we notice that

PEM/m in both approaches of our design is 3 or 4 times better than PEM/m of

HashMem, even though we use 8 memory blocks more. The combination of these

results and the low area cost per character in comparison with the one of the

HashMem Architecture taking into account also that the rule-set we use contains 70%

more characters than the rule-set which was used in HashMem approach shows

clearly that V-HashMem Architecture is more efficient than the HashMem

Architecture (best approach).

64 Chapter 5 – Evaluation and Comparison with Related Work

5.5 Comparing V-HashMem Architecture with Related Works

In the recent years many pattern matching architectures have been proposed

specifically for accelerating a SNORT-like NIDS using FPGAs. The architectures

differ in the approach (finite automata or CAM-like), in their internal organizations,

and obviously in their cost-performance tradeoffs [6, 7, 8, 9, 10, 11, 12, 13, 3, 4, 5].

These works strive for lower cost, at the same or better performance. V-HashMem is

based on two ideas: (i) the use of simple hashing to summarize the multiple input bits

(also used in Bloom filters [8, 4]), and (ii) the use of memories to provide exact match

with fewer gates (also used by Cho et al. [10, 11], Sourdis et al. [3]).

The use of Bloom filters for pattern matching has been proposed by

Dharmapurikar for low cost pattern matching [4, 8]. Bloom filters are very elegant in

representing set membership, but suffer two potential drawbacks: (i) they require

multiple hash functions and memories, and (ii) they give an approximate match

answer since they allow false positives. Solutions to these limitations exist but at

additional cost. In this architecture, it may be possible that a total amount of 420000

characters can be stored. However, the stored patterns can only be between 2 and 26

characters long. On the other hand, V-HashMem Architecture uses fewer hash

functions and eliminates the false positives by exactly defining the intrusion pattern

using two-level memories. Furthermore, the number of stored patterns is only 33613

characters. This is the SNORT rule-set of April 2005 and the length’s range of the

stored patterns is not kept between 2 and 26 characters but between 1 and 122

characters. Also, V-HashMem Architecture can be easily updated to include even

more patterns without significant overhead in area cost and with little increase in

memory cost.

In figures 5.7 to 5.11, we compare V-HashMem Architecture with Bloom Filters

over the same parameters used for the comparison between V-HashMem Architecture

and HashMem Architecture. Looking at these figures we notice that both approaches

of V-HashMem Architecture achieve about 5 times better Frequency, about 5 and 10

times for first and second approach respectively better throughput and about 7 times

better PEM than the ones in Bloom Filters. Of course, the performance of VirtexE

2000 which was used for the implementation of Bloom Filters is worse than

65 Chapter 5 – Evaluation and Comparison with Related Work

VirtexIIpro but not worse than 35%. So the slowest V-HashMem Architecture is

210% faster than Bloom Filters. On the other hand, we achieve better area cost using

the first approach but worse using the second approach in comparison to with Bloom

Filters.

0.062

0.11

0.09

0

0,02

0,04

0,06

0,08

0,1

0,12

LCs/character

V-HashMem
Processing

Throughput 1
char/cycle

V-HashMem
Processing

Throughput 2
chars/cycle

Bloom Filters

Figure 5.7: Comparing V-HashMem with the Bloom Filters over LCs/char.

320 309

63

0
50

100
150
200
250
300
350

Frequency (MHz)

V-HashMem
Processing

Throughput 1
char/cycle

V-HashMem
Processing

Throughput 2
chars/cycle

Bloom Filters

Figure 5.8: Comparing V-HashMem with the Bloom Filters over Frequency.

66 Chapter 5 – Evaluation and Comparison with Related Work

2.56

4.948

0.502

0
0,5

1
1,5

2
2,5

3
3,5

4
4,5

5

Throughput
(Gbps)

V-HashMem
Processing

Throughput 1
char/cycle

V-HashMem
Processing

Throughput 2
chars/cycle

Bloom Filters

Figure 5.9: Comparing V-HashMem with the Bloom Filters over Throughput.

4543

0
5

10
15
20
25
30
35
40
45

PEM

6

V-HashMem
Processing

Throughput 1
char/cycle

V-HashMem
Processing

Throughput 2
chars/cycle

Bloom Filters

Figure 5.10: Comparing V-HashMem with the Bloom Filters over PEM.

37

0
5

10
15
20
25
30
35
40

PEM/m

2422

V-HashMem
Processing

Throughput 1
char/cycle

V-HashMem
Processing

Throughput 2
chars/cycle

Bloom Filters

Figure 5.11: Comparing V-HashMem with the Bloom Filters over PEM/m.

67 Chapter 5 – Evaluation and Comparison with Related Work

Finally, PEM/m in Bloom Filter is 1.5 times better than ours. However, if they

used the implemented number of characters and not the number of characters their

system was able to store the PEM/m would become much lower and possibly worse

than ours.

Another approach (RDL+ROM) was proposed by Cho and Mangione-Smith [10].

They used a CAM to match short patterns and to match unique prefixes of longer

search patterns. They choose the CAM width so as to provide unique prefix signals

for each possible match. The match signals for all prefixes are then encoded to

provide a memory address where the candidate suffixes are stored. The remaining

input is compared against the expected suffix, and the result is the overall match for

the pattern. Their approach offers very good memory density and low gate count. The

cost of this approach however increases if the patterns have many and long common

prefixes.

0,062
0,11

0,38

0
0,05
0,1

0,15
0,2

0,25
0,3

0,35
0,4

LCs/character

V-HashMem
Processing

Throughput 1
char/cycle

V-HashMem
Processing

Throughput 2
chars/cycle

RDL+ROM

Figure 5.12: Comparing V-HashMem with the RDL+ROM over LCs/char.

68 Chapter 5 – Evaluation and Comparison with Related Work

190 176

238

0

50

100

150

200

250

Frequency (MHz)

V-HashMem
Processing

Throughput 1
char/cycle

V-HashMem
Processing

Throughput 2
chars/cycle

RDL+ROM

Figure 5.13: Comparing V-HashMem with the RDL+ROM over Frequency.

2.816

0

0,5

1

1,5

2

2,5

3

Throughput
(Gbps)

1.9
1.52

V-HashMem
Processing

Throughput 1
char/cycle

V-HashMem
Processing

Throughput 2
chars/cycle

RDL+ROM

Figure 5.14: Comparing V-HashMem with the RDL+ROM over Throughput.

25 25

5

0

5

10

15

20

25

PEM

V-HashMem
Processing

Throughput 1
char/cycle

V-HashMem
Processing

Throughput 2
chars/cycle

RDL+ROM

Figure 5.15: Comparing V-HashMem with the RDL+ROM over PEM.

69 Chapter 5 – Evaluation and Comparison with Related Work

13 13

6

0
2
4
6
8

10
12
14

PEM/m

V-HashMem
Processing

Throughput 1
char/cycle

V-HashMem
Processing

Throughput 2
chars/cycle

RDL+ROM

Figure 5.16: Comparing V-HashMem with the RDL+ROM over PEM/m.

In figures 5.12 to 5.16 we compare V-HashMem Architecture with RDL+ROM

approach using Spartan3 Device Family. Looking at figure 5.12 we use much fewer

LCs per character in both approaches than RDL+ROM. As long as Performance is

concerned, RDL+ROM achieves much better Frequency than V-HashMem

Architecture but observing figure 5.14 we notice that the second approach of V-

HashMem Architecture achieves much better Throughput than RDL+ROM. Finally,

PEM and PEM/m are about 400% and 100% respectively better than the ones of

RDL+ROM approach making V-HashMem Architecture more efficient than

RDL+ROM considering also that the stored characters in V-HashMem are about 60%

more than the ones in RDL+ROM.

 The final comparison will be done with Perfect Hashing which is similar to

HashMem and was proposed by Sourdis et al. [3]. Sourdis et al have used a

centralized memory based pattern matching, where the memory location is selected

using a perfect hashing of selected input bits. This approach shares many of the

advantages of HashMem, and achieves even better memory usage but at a higher logic

cost.

In figures 5.17-5.21 we compare V-HashMem Architecture with PHmem over the

parameters we used in the previous comparisons. Looking at figure 5.17 in each and

every approach we achieve much better area cost per character. On the other hand,

Frequency and Throughput in PHmem in both cases is better than the ones of V-

HashMem Architecture. Also in both cases, less memory blocks are used in PHmem

70 Chapter 5 – Evaluation and Comparison with Related Work

than ours but the stored patterns were 60% less than the ones in V-HashMem. Finally,

comparing PEM and PEM/m for the first approach between the 2 architectures we

notice that V-HashMem Architecture is better by a factor of 7 and 10 respectively

than PHmem. Also, and for the second approach in V-HashMem these values are 5

and 8 times better than the ones of PHmem.

0.062

0.45

0.11

0.65

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

LCs/character

V-HashMem
1 input char

PHMem 1
input char

V-HashMem
2 input chars

PHMem 2
input chars

Figure 5.17: Comparing V-HashMem with the PHmem over LCs/char.

280
290
300
310
320
330
340
350
360
370

Frequency
(MHz)

320

361

309

358

V-HashMem 1
input char

PHMem 1
input char

V-HashMem 2
input chars

PHMem 2
input chars

Figure 5.18: Comparing V-HashMem with the PHmem over Frequency.

71 Chapter 5 – Evaluation and Comparison with Related Work

2.56
2.886

4.948

5.734

0

1

2

3

4

5

6

Throughput
(Gbps)

V-HashMem 1
input char

PHMem 1
input char

V-HashMem 2
input chars

PHMem 2
input chars

Figure 5.19: Comparing V-HashMem with the PHmem over Throughput.

4543

0
5

10
15
20
25
30
35
40
45

PEM

9
6.4

V-HashMem 1
input char

PHMem 1 input
char

V-HashMem 2
input chars

PHMem 2 input
chars

Figure 5.20: Comparing V-HashMem with the PHmem over PEM.

24

0

5

10

15

20

25

PEM/m

22

2.32 3

V-HashMem 1
input char

PHMem 1
input char

V-HashMem 2
input chars

PHMem 2
input chars

Figure 5.21: Comparing V-HashMem with the PHmem over PEM/m.

72 Chapter 5 – Evaluation and Comparison with Related Work

Until now, we compared V-HashMem Architecture with similar designs. Other

approaches are the DCAM which was proposed by Sourdis et al.[5], DCAM by

Baker and Prassana [12, 13] and Non Deterministic Finite Automata (NFA) by Clark

et al. [9]. The results of these approaches are shown in Table 5.10. DCAM [5] by

Sourdis et al achieves better Frequency and Throughput but worse Area cost per

character and PEM than V-HashMem. Generally, it is considered as the best FPGA-

based intrusion detection architecture but it supports 86% less patterns’ characters

than V-HashMem Architecture. On the other hand, DCAM, which was proposed by

Baker and Prassana, has two approaches: Unary-based and Tree-based. Both

approaches of this design not only achieve less Frequency and Throughput than V-

HashMem Architecture but they also use much more area cost per character. Finally,

NFA achieve worse Frequency than V-HashMem Architecture but it achieves a very

large Throughput (about 7 Gbps) since the input bits are 32. This approach, also, has

very much area cost per character and it supports much less patterns’ characters than

V-HashMem Architecture. Finally, these approaches do not use any memory block.

In conclusion, V-HashMem Architecture achieves the best PEM comparing with

every related work we mentioned before. Also, it achieves the same or better

Frequency and Throughput comparing with the most designs. Finally, V-HashMem

Architecture used the less Area than any other design even though the stored patterns’

characters are in most cases 70% more than the ones of the other approaches and this

is the strong advantage of V-HashMem Architecture.

Detailed Comparison between the Designs over Area, Memory and Performance Parameters

Design
Input
bits

Patterns'
Chars LCs LCs/char

Mem Blocks
(kbits)

Frequency
(MHz)

Throughput
(Gbps) PEM PEM/m Device

8 2084 0.062 320 2.56 42.66 22.45
16 3918 0.11 ~309 ~4.95 44.98 23.67

VirtexIIpro
20

8 2084 0.062 190.387 1.52 21.98 11.4
16 3918 0.11 ~176 ~2.82 24.68 12.8

Spartan3
3000

8 2084 0.062 346.021 2.77 44.64 23.49
V-HashMem

 16

33613

 3918 0.11

648

 ~340 ~5.44 49.45 26.02

Virtex4
35

Best HashMem 8 2759 0.15 558 339 2.71 18.3 6.11
VirtexIIpro
7

HashMem unoptimized 8 2632 0.14 1188 333 2.66 18.86 2.96
HashMem unoptimized 16

18636
 5219 0.28 1188 322 5.15 18.4 2.89

VirtexIIpro
20

Bloom Filters 8 420000 36720 0.09 629 63 0.50 5.58 37.24
VirtexE
2000

RDL+ROM 8 20800 >8000 >0.38 162 238 1.9 <5 <6.42
Spartan3
1000

PH-mem 8 9426 0.45 576 361 2.88 6.4 2.32

PH-mem 16
20911

 13554 0.65 612 358 5.73 8.85 3.02

Virtex2
1000

DCAM by Sourdis et al 8 18036 17538 0.97 0 335 2.68 2.75 Undefined
Virtex2
3000

DCAM by Baker and Prassana (Unary-
based) 8 19584 8056 0.41 0 185 1.49 3.62 Undefined
DCAM by Baker and Prassana (Tree-
based) 8 19584 6340 0.32 0 237 1.90 5.86 Undefined

Virtex2pro
100

Virtex2
8000 NFA by Clark et al 32 17537 54890 3.13 0 219 7.00 2.24 Undefined

Table 5.11: Summary Table. In this Table we summarize the results for any evaluation metric for every design we mentioned in this chapter.

Chapter 6

Conclusions and Future Work

In this work we extended the HashMem Architecture which is an FPGA-based

Network Intrusion Detection System. NIDS monitor the incoming packets on the

network and compare some specific packets’ data with known threats which are

stored in a database. In our work, we store the patterns of different but close lengths in

a single memory structure achieving low area and memory cost. We use the reuse

technique which was firstly proposed in HashMem Architecture, with which we break

the long patterns into shorter ones and reuse the already existent memory structures.

In order to report a long pattern matching we combine the partial matching signals

and report the final match. For this work, we used the SNORT rule-set, which is one

of the most famous NIDS.

To this end we have achieved savings in the logic cost, while retaining the

memory use at levels comparable to that of HashMem despite the 70% larger rule-set.

This is a clear indication of the scaling abilities of the overall HashMem approach.

The efficiency of V-HashMem is especially evident in the logic area cost per search

pattern character (~0.06 LCs/char) and in the expected PEM rating, which about

doubled compared to HashMem, and is the highest as we saw in the previous chapter.

In addition, another important discovery was that as the SNORT rule-set progresses,

new and more difficult rules are included. In our case, the difficulty stems from the

fact that very wide patterns increase the cost of glue logic considerably, since some of

them, when broken into shorter ones, created tree-like structures. Furthermore, as V-

HashMem Architecture exactly defines the intrusion pattern, we eliminate false

positives from which many other related works suffer.

We evaluated our system and we proposed two ideas in order to improve it and

make it more efficient. Firstly, we proposed the idea improve the throughput of the

system but the impact was to almost double the area cost, using dual port memories

76 Chapter 6 – Conclusions and Future Work

(same number of memory blocks). Which of the two approaches is better depends on

what kind of system we would like to have.

The second idea, which was proposed, was about the support for header matching

information. We found that it is possible at the cost of three extra memory blocks and

about 80 logic cells for the necessary logic. This is a very small cost compared to the

increased accuracy of the pattern matching subsystem. Of course, a complete system

would also add the cost of header classification into the header group identifiers, but it

was not included in our measurements.

Other potential challenges for the future include regular expressions. Also it

would be very interesting to implement some of the options we described in the

paragraph 2.1 (distance, within, etc). Another interesting idea for future work in order

to improve the efficiency of V-HashMem is to pipeline the memories since the critical

path of V-HashMem Architecture is in the memories.

These improvements lead closer to an efficient FPGA implementation of a NIDS

system. We believe that such a successful system will rely on memory to store the

patterns, and that the HashMem architecture with the proposed variable length

extensions is a very competitive approach.

References

[1] V. Dimopoulos, G. Papadopoulos, and D. Pnevmatikatos, “On the importance of
header classification in hw/sw network intrusion detection systems,” in Proceedings
of the 10th Pan-Hellenic Conference on Informatics (PCI), November 11-13, 2005.

[2] G. Papadopoulos and D. Pnevmatikatos, “Hashing + memory = low cost, exact
pattern matching,” in Proceedings of the 15th International Conference on Field
Programmable Logic and Applications, 2005.

[3] I. Sourdis, D. Pnevmatikatos, S. Wong, and S. Vassiliadis, “A reconfigurable
perfect-hashing scheme for packet inspection,” in Proceedings of the 15th
International Conference on Field Programmable Logic and Applications, 2005.

[4] M. Attig, S. Dharmapurikar, and J. Lockwood, “Implementation results of bloom
filters for string matching,” in Proceedings of the 12th IEEE Symposium on Field-
Programmable Custom Computing Machines, April 2004.

[5] I. Sourdis and D. Pnevmatikatos, “Pre-decoded CAMs for efficient and high-speed
nids pattern matching,” in Proceedings of the 12th IEEE Symposium on Field-
Programmable Custom Computing Machines, April 2004.

[6] M. Gokhale, D. Dubois, A. Dubois, M. Boorman, S. Poole, and V. Hogsett,
“Granidt: Towards gigabit rate network intrusion detection technology,” in
Proceedings of the 12th International Conference on Field Programmable Logic and
Applications, 2002.

[7] J. Moscola, J. Lockwood, R. P. Loui, and M. Pachos, “Implementation of a
content-scanning module for an internet firewall,” in Proceedings of the 11th IEEE
Symposium on Field-Programmable Custom Computing Machines, April 2003.

[8] S. Dharmapurikar, P. Krishnamurthy, T. Spoull, and J. Lockwood, “Deep Packet
Inspection using Bloom Filters,” in Hot Interconnects, August 2003, stanford, CA.

[9] C. R. Clark and D. E. Schimmel, “Scalable parallel pattern matching on high-
speed networks,” in Proceedings of the 12th IEEE Symposium on Field-
Programmable Custom Computing Machines, April 2004.

[10] Y. H. Cho and W. H. Mangione-Smith, “Deep packet filter with dedicated logic
and read only memories,” in Proceedings of the 12th IEEE Symposium on Field-
Programmable Custom Computing Machines, April 2004.

[11] ——, “Programmable hardware for deep packet filtering on a large signature
set,” in First Watson Conference on Interaction between Architecture, Circuits, and
Compilers (P=ac2), 2004.

79 References

[12] Z. K. Baker and V. K. Prasanna, “Automatic synthesis of efficient intrusion
detection systems on FPGAs,” in Proceedings of the 14th International Conference
on Field Programmable Logic and Applications, August 2004.

[13] ——, “Time and area efficient reconfigurable pattern matching on FPGAs,” in
Proceedings of FPGA ’04, 2004.

 [14] H. Song and J. Lockwood, “Multi-pattern signature matching for hardware
network intrusion detection systems,” in Proceedings of IEEE Globecom 2005,
November 28 - December2, 2005.

[15] R.W. Floyd and J.D. Ullman. The compilation of regular expressions into
integrated circuits. In Journal of ACM, vol. 29, no. 3, pages 603–622, July 1982.

[16] R. Sidhu and V. K. Prasanna. Fast regular expression matching using FPGAs. In
IEEE Symposium on Field-Programmable Custom Computing Machines, April 2001.

[17] R. Franklin, D. Carver, and B. Hutchings. Assisting network intrusion detection
with reconfigurable hardware. In IEEE Symposium on Field-Programmable Custom
Computing Machines, April 2002.

[18] C. R. Clark and D. E. Schimmel. Efficient reconfigurable logic circuit for
matching complex network intrusion detection patterns. In Proceedings of 13th
International conference on Field Programmable Logic and Applications, September
2003.

[19] Young H. Cho, Shiva Navab, and William Mangione-Smith. Specialized
hardware for deep network packet filtering. In Proceedings of 12th International
Conference on Field Programmable Logic and Applications, 2002.

[20] SNORT official web site: http://www.snort.org

[21] EASICS tools web site: www.easics.com

[22] Anonymous. Maximum Security, 3rd Edition.

http://www.snort.org/
http://www.easics.com/

	Ευχαριστίες
	Σύνοψη
	Contents
	1 Introduction 13
	5 Evaluation and Comparison with Related Work 51
	6 Conclusions and Future Work 75
	List of Tables
	List of Figures

	Chapter 1

