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Σύνοψη 
 
 
 

Ως ανίχνευση εισβολέων ορίζεται η διαδικασία ανίχνευσης ενός εχθρικού 

πακέτου (σε ένα δίκτυο) το οποίο προσπαθεί να αποκτήσει μη επιτρεπτή πρόσβαση 

σε ένα ξένο υπολογιστή. Υπάρχει μια πληθώρα μεθόδων για την ανίχνευση 

εισβολέων, όπως για παράδειγμα συστήματα επιθεώρησης (inspecting systems), 

firewalls, router logs και άλλα. Τα συστήματα ανίχνευσης εισβολέων σε ένα Δίκτυο 

(Network Intrusion Detection Systems - NIDS) έχουν σχεδιαστεί να επιθεωρούν την 

κίνηση του Δικτύου και να ψάχνουν για γνωστά patterns.  

Σε αυτήν την εργασία επεκτείνεται η αρχιτεκτονική αναγνώρισης προτύπων 

HashMem ώστε να επιτρέπεται η αποθήκευση patterns μεταβλητού μεγέθους σε μία 

μόνο μνήμη μειώνοντας τον απαιτούμενο αριθμό μνήμων και συγκριτών. Η 

HashMem είναι μία αρχιτεκτονική αναγνώρισης προτύπων για ανίχνευση εισβολέων 

τύπου SNORT η οποία βασίζεται σε μνήμες. Χρησιμοποιεί συναρτήσεις τύπου 

κυκλικής αναφοράς (Cyclic Redundancy Check - CRC) για να καθορίσει μια 

μοναδική διεύθυνση στην οποία είναι αποθηκευμένο ένα pattern. Στη συνέχεια το 

pattern αυτό στέλνεται σε ένα συγκριτή και συγκρίνεται με την είσοδο σε περίπτωση 

που μοιάζουν. Με αυτήν την επέκταση βελτιώνουμε την πυκνότητα των μνημών 

(αυξάνεται ο αριθμός των αποθηκευμένων patterns στο συνολικό αριθμό 

καταχωρήσεων) και μειώνουμε την απαραίτητη λογική για συναρτήσεις CRC και 

συγκριτές.   

Αυτές οι βελτιώσεις επιτρέπουν στην V-HashMem να αποθηκεύσει το νεότερο 

σύνολο κανόνων του SNORT χρησιμοποιώντας περίπου την ίδια μνήμη με τη 

HashMem και με πολύ χαμηλό κόστος (~0.06 LCs/ character). Το κόστος λογικής  

για κάθε χαρακτήρα, είναι σχεδόν μια τάξη μεγέθους μικρότερο από το κόστος 

λογικής άλλων μελετών και το Throughput περίπου 2.5 Gbps. Η αρχιτεκτονική 

μεταβλητού μεγέθους χρησιμοποιεί μονο-θύρες μνήμες και συνεπώς επιτρέπεται και 

η ταυτόχρονη επεξεργασία 2 χαρακτήρων ανά κύκλο χρησιμοποιώντας τις δίθυρες 

μνήμες της τεχνολογίας FPGA και επιπλέον λογική. Με αυτήν την βελτιστοποίηση η 

αρχιτεκτονική V-HashMem επιτυγχάνει σχεδόν διπλάσιο Throughput (περίπου 5 

Gbps). Τέλος, επεκτείνουμε την αρχιτεκτονική V-HashMem ώστε να συμπεριλάβει 

το πεδίο Header-ID έτσι ώστε να υποστηρίζεται η δυνατότητα για header matching, 

χαρακτηριστικό το οποίο λείπει από τη HashMem και πολλές άλλες έρευνες.  
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Chapter 1 
 
Introduction 
 
 
 

The widespread use of Internet is obvious in the last decades. Millions of people 

are using it every day, since it has improved their life. It is considered as the biggest 

library; the communication is rapid through it and since the middle 90’s it has been 

used for shopping. However, many threats lie in the background and are ready to 

attack Internet users taking advantage of the vulnerabilities of operating systems. 

Furthermore, very often more than one computer are connected on the same network 

as there are many advantages, such as the use of one peripheral device by many 

computers (printer), sharing of the same Internet Connection, easy transfer of data 

between different computers, etc, making the protection from these threats more 

complex. The solution came with the construction of Firewalls. 

   The Firewall is defined as a piece of hardware or a software program which 

functions in a networked environment to prevent some communications forbidden by 

the security policy, analogous to the function of firewalls in building construction. 

The firewall has the basic task of controlling traffic between different zones of trust. 

Typical zones of trust include the Internet (a zone with no trust) and an internal 

network (a zone with high trust). The ultimate goal is to provide controlled 

connectivity between zones of differing trust levels through the enforcement of a 

security policy and connectivity model based on the least privilege principle.  

However, total reliance on the firewall tool, may provide a false sense of security. 

Very often we hear people say: “We have a firewall in place and therefore our 

network must be secure”. This is a myth which has been generated especially by 

firewall marketing companies to more efficiently promote their goods. The firewall 

does not work alone as it is not a panacea. Human intervention is also required to 

decide how to screen traffic and “instruct” the firewall to accept or deny incoming 

packets. It is de facto a complex and sensitive task. Just a single security policy rule 

established for the wrong reasons can lead to a system being vulnerable to outside 
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attackers. Once must also remember, that a poorly configured firewall may worsen the 

system’s effective immunity to attacks. For these reasons Intrusion Detection Systems 

are used. They are the first line of defence (behind firewalls). 

For purposes of simplicity we can say that Intrusion Detection System is a system 

that detects burglary attempts. If one wishes to compare to a home anti-burglary 

system, firewalls perform the role of door and window locks. These types of locks 

will stop the majority of burglars but sophisticated intruders may circumvent security 

devices that protect an intended target i.e. a home. Therefore, most people use a 

combination of sophisticated locks with alarm systems. An IDS performs the role of 

such an alarm system.  

Furthermore, networks evolved all the time as a result their speed is increased and 

consequently it is easier for malicious packets to come in. NIDS (Network IDS) 

prevent these malicious packets from entering the computer system, since they 

perform deep packet inspection in order to verify that it is not a known threat. That is 

another reason why NIDS are very important for the protection. Many NIDS have 

been constructed either on Software either on Hardware. 

A Hardware – based NIDS and more specifically an FPGA – based NIDS is the 

Variable – Length HashMem architecture. The idea was to extend the HashMem 

architecture to allow storing of variable-length patterns in a single memory structure, 

reducing the number of required memory structures and comparators. HashMem is a 

memory based, exact pattern matching architecture for SNORT-like intrusion 

detection. It uses CRC-style functions to determine a unique location for a possible 

match and then matches the input against the pattern stored in the specified memory 

location. By this extension, we improve the density of the memories and reduce the 

necessary logic for CRC functions and comparators. V-HashMem architecture was 

implemented in XILINX FPGAs like VirtexIIpro, Virtex4 and Spartan3. Also, it fits 

comfortably in small or medium FPGAs since a few tens of memory blocks and about 

0.06 Logic Cells per character are finally used.  

This dissertation is organized as follows: In chapter 2 we are discussing about 

Network Intrusion Detection Systems in more detail and about SNORT intrusion 

detection system. In chapter 3, we describe HashMem Architecture in short and then 

the procedure we follow to determine the final structure of V-HashMem Architecture. 

In chapter 4, we describe the V-HashMem Architecture (Design and Implementation) 

and make further improvements. In addition, in chapter 5 we evaluate our system and 
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give to the readers results about the performance, the cost and the utilization of our 

design. In the same chapter, we compare our work with HashMem as well as with 

other related works. Finally in chapter 6 we give our conclusions and suggest some 

issues for future work.  

                         



 
 
 
Chapter 2 
 
Network Intrusion Detection Systems (NIDS) 
 
 
 

Intrusion Detection is one of the hottest areas in the information security 

landscape. Intrusion Detection is defined as the act of detecting a hostile network 

packet which is attempting to gain unauthorized access. A number of popular methods 

are used to detect intruders, such as inspecting systems, firewalls and router logs for 

hostile or unusual activities. Although, these methods are helpful, they become 

difficult, if not possible, to perform on a daily basis.  

The roots of modern-day intrusion detection systems lie in the Intrusion Detection 

Expert System (IDES) and Distributed Intrusion Detection System (DIDS) models 

that were developed by the U.S. Department of Defense in the late 80s and early 90s 

[22]. These were some of the first automated systems to be deployed. Today, most 

intrusion detection systems are designed with the same goal: to help automate the 

process of looking for intruders. This can be as simple as the real-time parsing of 

firewall logs looking for port scans, or as complex as applying inspection routines to 

raw network traffic looking for buffer overflow attempts.  

There are basically two models of Intrusion Detection Systems: 1) network-based 

intrusion detection systems (NIDS) and 2) host-based intrusion detection systems 

(HIDS). Many other intrusion detection models do exist but the above two are the 

most important.  
Network – based Intrusion Detection Systems (NIDS) are designed to inspect 

network traffic and look for known attack patterns or “signatures”. They perform this 

task by examining each and every packet that traverses the monitored network 

segment. In short, NIDS are looking for a substring within a stream of data carried by 

network packets. If they find this substring, they identify those network packets as 

vehicles of an attack. On the other hand, HIDS require agents to be installed in all 

monitored systems. They monitor system logs for basic events (i.e. failed login 

attempts) and kernel messages for activities that might be interpreted as hostile.   



17                                                 Chapter 2 – Network Intrusion Detection Systems 

One of the most appealing aspects of the NIDS model is that NIDS devices are 

passive. In most cases, the rest of the systems do not even know that they are there. 

Even better, deploying NIDS devices do not require the involvement of system 

administrators, a resource that becomes a stumbling point for large HIDS 

deployments.  

In this chapter we will discuss about SNORT and Software and Hardware – based 

NIDS.  

 
 
 
2.1 SNORT Network Intrusion Detection System 
 
 

There are a great number of open source IDS solutions in the community that are 

worth investigating. The best and the most popular of them is SNORT NIDS, which 

was created by Marty Roesch, and is capable of performing real-time traffic analysis 

and packet logging on IP networks. It can perform protocol analysis, content 

searching/matching and can be used to detect a variety of attacks and probes, such as 

buffer overflows, stealth port scans, OS fingerprinting attempts, and much more. 

SNORT is often considered to be the Linux of the Intrusion Detection Field. It touts a 

very active development community, a wide set of signatures and a large base of 

deployed users. Recent advances in both the rules language and detection capabilities 

offer the most flexible and accurate threat detection available, making Snort the 

"heavyweight" champion of intrusion prevention. 

Snort uses a flexible rules language to describe traffic that it should collect or 

pass. It has three primary uses. It can be used as a straight packet sniffer like tcpdump, 

a packet logger (useful for network traffic debugging, etc), or as a full blown network 

intrusion prevention system. Snort rules are powerful, flexible and relatively easy to 

write, so new rules to detect the latest malware may be written by everyone very 

easily. In these rules a keyword modifier can be added based on what kind of search 

the rule writer want to do. Some of these keywords are: 

• Depth: the depth keyword allows the rule writer to specify how far into a 

packet Snort should search for the specified pattern.  

• Offset: the offset keyword allows the rule writer to specify where to start 

searching for a pattern within a packet.  
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• Distance: the distance keyword allows the rule writer to specify how far into 

a packet Snort should ignore before starting to search for the specified 

pattern relative to the end of the previous pattern match. This can be thought 

of as exactly the same thing as depth except it is relative to the end of the 

last pattern match instead of the beginning of the packet.  

• Within: the within keyword is a content modifier that makes sure that at 

most N bytes are between pattern matches It is designed to be used in 

conjunction with the distance rule option. 

 
An example which combines the first 2 options (Depth and Offset) is shown in figure 

2.1. The keyword content is the most important because it allows the user to set rules.  

 
Figure 2.1: Combined Content, Offset and Depth Rule. The rule says: Skip the first 4 bytes, 
and look for cgi-bin/phf in the next 20 bytes. 
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from 1 to 16 characters. This notice is very important and it is used in chapter 3. 
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Each Snort rule can contain header and content fields. The header part contained 

information about protocol, source and destination IP addresses and port. The content 

part contains substrings that may exist in packets’ payload. In this work we used the 

SNORT rule-set [20] of April 2005 which contains 2187 rules or 33613 characters. 

Patterns’ Distribution of these patterns is shown in Figure 2.2.   

If we look at Figure 2.2 we notice that most of patterns are in the range 4 to 16 

characters long. Notice that we selected patterns’ length 17 as the “border” between 

the short and the long strings because the number of patterns after the border is very 

small. This notice is very important and we use it in chapter 3.   

 
 
 
2.2 Software and Hardware – Based NIDS 
 
 

Many software and hardware – based NIDS have been designed the last years. In 

software – based NIDS, software pattern matching algorithms are used based on 

SNORT rule-set. However, the most important problem of software – based NIDS is 

the slow throughput and slow performance. Through the years, many improvements 

have been done. One of these improvements was Boyer-Moore algorithm which 

improved the performance at 200% to 500% but generally, for a few hundred Mbps 

the software – based NIDS became a serious bottleneck in networks’ speed as a result 

hardware accelerators are necessary to process packets in real time or near real time.  

On the other hand, Hardware – based NIDS can be used to overcome the 

problems of low speed and low throughput. NIDS have been designed in FPGAs as 

well as in ASIC. In ASIC systems, patterns are stored in large memory blocks and 

determine whether there is pattern matching or not using integrated design machines. 

In addition, in these systems the update to support new rule-sets is a hard procedure 

since memories have to be reloaded with new data without having the capability of 

upgrading the search engine in case the kind of rules changed. This approach is very 

expensive and furthermore their performance is not impressive. However, they 

achieve much better throughput than Software – Based NIDS.  

Hardware – based NIDS with the FPGA approach can be a significant alternative. 

FPGA are reconfigurable and moreover achieve very good performance and 

throughput comparing to Software – Based NIDS or Hardware – Based NIDS with the 
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ASIC approach. Since FPGAs are reconfigurable the entire machine can be changed 

as a result any update can be done. The only constraint is to keep the interface 

unchanged. However, this procedure can be very hard since the whole machine is 

changed but it is rather easy when a small change occur in an updating. There are 

many FPGA – based architectures, such as NFAs and DFAs based on regular 

expressions, regular CAM, Hashing, etc.  

The most common FPGA approach is regular expression using NFAs (Non 

Deterministic Finite Automata) and DFAs (Deterministic Finite Automata). Regular 

Expression is a string that describes a set of strings, according to certain syntax rules. 

Regular Expressions could be the following:  

 

• ab (a followed by b) 

• a* (one, zero, or more a) 

• a+ (one or more a) 

• a/b (a or b) 

• ε (empty) 

 

DFA is a finite state machine in which for a state and for a specific input there is a 

deterministic next state. On the other hand NFA is, again a finite state machine (the 

node is a state and the edge is a character or the empty which is symbolized by ε), but 

there could be multiple next stages. For instance, if we are in state, say, 5 and the 

input is B the next state could be either 7 or 10. It is similar to a tree-like structure. 

Basically, the main difference between DFAs and NFAs is that in the first ones there 

is exactly one next state for a possible input while in the second there could be 

multiple next states for one given input. It is easy to design an NFA but the 

implementation is complex in contrast with DFA in which design is difficult but 

implementation is easy.  

Generally, finite automata are usually restricted in their operating frequency by 

the amount of combinational logic for state transitions. Also, the use of parallelism 

(processing multiple bytes or characters per cycle) is in general difficult in finite-

automata implementations that are built with the implicit assumption that the input is 

checked one byte at a time. One proposed solution to this problem is the usage of 
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packet-level parallelism where multiple pattern matching subsystems operating in 

parallel can process more than one packet.  

The first hardware implementation was introduced by Floyd and Ullman in 1982, 

implemented in PLA [15]. Then Sidhu and Prassanna [16] introduced regular 

expressions and Nondeterministic Finite Automata (NFAs) for finding matches to a 

given regular expression. Their primary goal was to minimize the time needed in 

order to construct an NFA. They achieved about 58 to 94 MHz frequency for a single 

regular expression using the Virtex Device Family.  

Then, Franklin, Carver and Hutchings [17] expanded on Sidhu et al. work. Their 

primary goal was to cover the maximum number of expressions and for that reason 

they used regular expressions with more complex rules and meta-characters. They 

managed to include up to 16,000 characters requiring 2.5-3.4 logic cells per matching 

character. They achieved about 100 MHz for Virtex Device Families.  

Finally, Clark and Schimmel [18] developed a pattern matching coprocessor that 

supports the entire SNORT rule-set using NFAs. Their primary objective was to have 

small area cost. In order to achieve it they used centralized decoders instead of 

character comparators for the NFA state transitions. They can match over 1,500 

patterns (17,537 characters) and achieved 100 MHz frequency having total throughput 

0.8 Gbps in a Virtex-1000 device having one character processing throughput. Later 

[9] they expanded their work and allowed more than one characters processing 

throughput. Their detailed results proved that NFAs and predecoding can produce low 

cost designs with higher performance, compared to DFAs and simple bruteforce 

approaches. 

 

Another FPGA-based approach is CAMs and Discrete Comparators. One 

approach was introduced by Gokhale, et al. [6]. They used a CAM to implement 

SNORT rules. Their hardware can serve a total throughput of 2 Gbps in a VirtexE 

device. Cho, Navab and Mangione-Smith [19] presented an architecture of pattern 

matching using discrete comparators. They were the first to use 4 parallel comparators 

for every pattern in order to exploit parallelism and process 4 bytes of packet data 

every clock cycle. They used an Altera EP20K device and achieved a frequency of 

90MHz, achieving 2.88 Gbps throughput. 

A very good approach was also introduced by Sourdis et al [5]. They, firstly, 

reduced the area cost of character matching using (i) character pre-decoding before 
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their comparison in the CAM line, (ii) efficient shift register implementation using the 

SRL16 Xilinx cell. Then they achieve high operating frequencies by (iii) using fine 

grain pipelining for faster circuits and (iv) decoupling the data distribution network 

from the processing components. Their results show that for matching more than 

18,000 characters (the entire SNORT rule set) their implementation requires an area 

cost of less than 1.1 logic cells per matched character, achieving an operating 

frequency of about 375 MHz (3 Gbps) on a Virtex2 device. When using quad 

parallelism to increase the matching throughput, the area cost of a single matched 

character is reduced to less than one logic cell for a throughput of almost 10 Gbps. 

 

Finally, another FPGA-based approach is Hashing in which the input stream enter 

a Hash function and the result is a pointer to a possible match. V-HashMem 

Architecture is based on this idea. Also, many other works have been based on this 

idea, such as HashMem by Papadopoulos et al.[2], Bloom Filters by Dharmapurikar et 

al [4, 8], PHmem by Sourdis [3] et al and others which are described in more detail in 

the paragraph Related Work of the chapter 5. 



 
 
 
Chapter 3 
 
The Variable-Length HashMem (V-HashMem) Structure 
 
 
 

In this chapter, we describe in short the HashMem Architecture which was 

designed and implemented by George Papadopoulos and Dionisios Pnevmatikatos [2]. 

Then, we describe the idea on which V-HashMem Architecture is based and the 

special issues of V-HashMem approach. Finally, we describe the procedure we 

followed in order to design the basic V-HashMem structure.  

 
 
 
3.1 The HashMem Architecture 
 
 

Before starting the description of the V-HashMem architecture lets refresh our 

memories about the HashMem architecture [2]. The HashMem pattern matching 

Architecture is a SNORT accelerator architecture based on the idea that a simple hash 

function of the input can generate a set of sparse but distinct addresses for the search 

patterns. This address is used as a “pointer” to a possible matching string, and 

compares that to the input to determine the final match signal. 

 
 
 
3.1.1 Basic Architecture 
  

The HashMem Architecture consists of 14 subsystems, one for each character 

length from the range 3 to 16 characters. Each one subsystem looks like the system of 

figure 3.1.  
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Figure 3.1: One of the 14 subsystems the HashMem Architecture consists of. 
 
 
The number of stored patterns in each sub-system is smaller than 256 and the width of 

each of them is the number of its characters multiplied by 8 (each ASCII character is 

8 bits). So patterns of each length can be stored in a Pattern Memory of 256 entries 

(the shortest memory block of Xilinx FPGAs has 512 entries). Furthermore it was 

found experimentally that a 12-bit polynomial is a simple polynomial for SNORT 

patterns. A 12-bit polynomial means that the pattern memory must consist of 4096 

entries and consequently the utilization of the memory is less than 2.5%. That is the 

reason why an Indirection (Index) Memory is used. Indirection Memory is basically a 

pointer memory which uses the 12-bit address that CRC generator generates and feeds 

an 8-bit address into the Pattern Memory achieving very good utilization of the 

Pattern Memory. 

Thus, the input stream is fed into the CRC generator which generates a 12-bit 

address. Indirection Memory “transforms” the 12-bit address into an 8-bit address and 

feeds the Pattern Memory. The output of Pattern Memory is compared to the properly 

delayed input stream for a match. However, since any given character of the input 

stream can be the last character of a pattern of arbitrary width, system of figure 3.1 is 

replicating once for each of the different pattern widths for the range 3 to 16 

characters. The resulting architecture is shown in figure 3.2. 

 

 
Figure 3.2: The HashMem Architecture for pattern widths 3 to 16 characters 
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3.1.2 Architecture for Very Short Patterns 
 
 

SNORT rule-set also contains very few patterns of one or two characters. These 

patterns consist of very few bits making the CRC calculation overkill. The 

architecture which handles these patterns is shown in figure 3.3. For the patterns of a 

single character a LookUp Table (LUT) of 256 entries is used. The input byte is used 

directly as an address to access the LUT, which is initialized with ‘1’ in the addresses 

that represent the search patterns.  

The two characters patterns are less than 64, thus allowing an encoding with 6 

bits. Based on this observation, a recoding function in the unused bits of the single 

character lookup table is added, recoding the 8 bits input into a 7 bit code. The most 

significant bit represents a single character match and the rest 6 bits are the encoded 

value of the half part of dual-byte patterns. Then, each encoded part is stored in a 

register and after the appropriate delay of the first encoded part, the two input recoded 

characters, which amount to 12 bits, address a 4Kx1 lookup table to determine any 

two-character match. Each of these two lookup tables uses one memory block and a 

minimal amount of logic for the pipeline delay.  

 

 
Figure 3.3: The HashMem Architecture for short patterns (one and two character) 
 
 
 
3.1.3 The HashMem Architecture handles very Long Patterns 
 

SNORT rule-set contains, finally, few long patterns in a range from 17 to 122 

characters. These patterns require small but very wide memories. For example, there 

is only one pattern of 122 characters and its width is 976 bits: 

 
Pattern Width = Number of characters * 8 bits/character  
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This pattern would require 28 “512x36” memory blocks. In addition, it would require 

high-cost CRC generators and comparators making their design inefficient for this 

case.  

The idea was to split these wide patterns in smaller pieces, store them in the 

Pattern Memories of the basic HashMem Architecture updating the Indirection 

Memories, reuse logic and add extra glue-logic to combine the partial matches into 

the complete match. The final HashMem architecture is shown in Figure 3.4.  

 

 
Figure 3.4: Final HashMem Architecture. In this figure it is shown a short example of a wide 
pattern matching. The wide pattern has only 7 characters but it was chosen only for reasons 
of clarity and brevity. Wide patterns are in the range from 17 to 122.  
 
 
 
3.2 V-HashMem Architecture – The Idea 
 
 

Variable-Length HashMem (V-HashMem) Architecture is an extension of 

HashMem Architecture and it is based on the idea that it is advantageous to store the 

search patterns of different lengths in a single memory structure. If this is possible, 

then we need fewer memory structures, i.e. less memory, as well as fewer CRC 

generators and comparators, i.e. less logic. The V-HashMem targets exactly these 

factors. However, this extension raises the following issues that have to be addressed.  

 
• Hash function generation: HashMem uses all L characters of the input to hash 

the address of the possible match. If we allow for several lengths, how do we 

know how many characters to use for the hash calculation? 
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• Dealing with Prefix Conflicts: In HashMem, all patterns of L characters are 

stored in one Memory. Is it possible to store all patterns of different lengths in the 

same memory or there are prefix conflicts and how do we deal with?  

 
• Comparators: Similar to the previous issue, how do we know how many 

characters to match between the input and the stored pattern? 

 
 
 
3.2.1 Hash Function Generation 
 
 

The first issue we have to address is how many characters we must use to feed the 

CRC generator. The hashed value is just a pointer to a possible match since the 

comparator determines if there is a match or not. Thus, we can use the minimum 

length of the stored patterns in the structure to feed the CRC generator as long as the 

CRC generator produces a distinct value for every single input. For example, if we 

have a structure that holds patterns of 5, 6 and 7 characters long, we can feed the CRC 

generator with 5 characters as long as the result of this function is unique for every 

single pattern which is stored in this structure.  

If this is successful, not only do we not care about how many characters have 

each stored pattern but also we use less CRC generators and especially the narrower.   

 
 
 
3.2.2 Dealing with Prefix Conflicts 
 
 

Although storing variable-length patterns in a memory structure is clearly 

beneficial, it is not always possible. In 3.2.1, we said that we use the minimum length 

of the stored patterns in a structure to feed the CRC generator as long as the hash 

value is unique for every single pattern. The minimum length of the stored patterns in 

a structure is basically named as prefix.  

A conflict rises when stored patterns in one structure have the same prefix 

because different patterns are mapped in the same position in the memory. Assume 

that we have a structure that holds patterns of 3, 4 and 5 characters long. We feed the 

CRC generator with a prefix of 3 characters of all stored patterns to find the address in 

the memory. Patterns like “abc” and “abcd” as well as patterns like “abcd” and abcf” 
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or “abcdr” and “abceh” cannot be in the same structure because we use the prefix 

“abc” to map the pattern to a memory address but in every case both strings are 

mapped into the same position. If we observe the first case again we can say that it is 

not a real problem because any input matching ”abcd” also matches ”abc” so there 

will be a reported match but we have to find a way to solve the other cases. 

 
 
    

3.2.3 Comparators 
 
 

Another problem is how many characters to match between the input and the 

stored pattern. We do not know in advance which input characters may match which 

pattern length, but we do know in advance the length of each of the search patterns we 

are looking for. So, it is a good idea to encode this information in the memory and use 

it during the comparison. The best way encoding pattern’s length is to add Don’t Care 

bits between the characters of the stored pattern. Of course, we do not add Don’t Care 

bits in the characters of the prefix as it is matched always and does not need marking. 

For example, if we have a structure where patterns of 3 to 5 characters long are stored 

we add Don’t Care bit before the 4th and the 5th character as they are optional. 

By adding these bits, stored pattern is a little wider than before as a result we have 

a small increase in the memory as well as in the cost of the comparator. 

 
 
 
3.3 V-HashMem Structure 
 
 

The HashMem Architecture consists of 14 similar subsystems, supporting 

patterns of a length range 3 to 16 and the other patterns by reusing logic and memory. 

As one begins the design of V-HashMem many questions are raised. For instance:  

Are we going to construct subsystems supporting all the patterns without reusing logic 

and memory? If not, after which length are we going to reuse logic and memory and 

how do we group the patterns in each variable length subsystem? Is there any other 

conflict except the one that is mentioned in paragraph 3.2.2? 
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3.3.1 Basic V-HashMem Structure 
 
 

As it is mentioned before, Variable-Length HashMem is based on the idea that 

multiple patterns of different lengths are stored in a single memory structure. It is easy 

to decide that the patterns which are stored in the same memory structure must have 

close lengths. Then, we must find a way to decide which patterns we are going to 

group in the same memory structure.  

SNORT rule-set contains many patterns in a range from 1 to 122 characters. We 

saw the Patterns Distribution in Figure 2.2. Since our goal is not only to use less 

memory structures than HashMem but also with a good utilization, we will try to 

group the patterns of different lengths in the same memory so that to achieve the best 

utilization.  

Firstly, we group the patterns as it is shown in Table 3.1 in order to achieve the 

goal which is mentioned before.  

 
Structures Number of Patterns 
3-5 271
6-8 268
9-11 339
12-14 350
15-17 213

Table 3.1: Number of Patterns in each structure. We put patterns of length 18-20 or 18-21 
together but the number of them was 133 and 164 respectively which is not a good memory 
utilization.  
 
 
We select patterns’ length 17 as the “border” between the short and the long strings 

because the number of patterns after the border is very small and we have to put 

patterns of no close lengths together in order to achieve a satisfactory utilization. 

Furthermore, the width of the memory will be very wide and many memory blocks 

will be required for its implementation. For example, if we put the patterns, which 

have lengths 18, 19 and 20, together they are only 133 (Figure 3.5) and this is not a 

good utilization of the memory. Also, the memory’s width will be 20 * 8 = 160 and 

this requires 5 memory blocks.   
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Figure 3.5: Patterns Distribution in every structure. This proposal was rejected because using 
as a border the number of 20 characters and not the number of 17 characters we have an 
additional memory structure, the 18-20 memory structure, in which the number of patterns is 
very small and we do not achieve satisfactory memory utilization. Furthermore the memory’s 
width is 160 bits; as a result 5 memory blocks are required for this memory structure. 
 
 

Then, we have to check these groups for the conflict that is mentioned in 3.2.2. 

For that reason, a software programme designed in C was used. The number of 

conflicts was great and we have to find another grouping. The new grouping is shown 

in Figure 3.6 and there are no conflicts. Also the memory utilization is satisfactory. 

 
 
 
3.3.2 V-HashMem Structure for Long Patterns 
 
 

We managed to group the patterns which have lengths between 3 to 17 characters. 

Now we have to find a way to break the long patterns and put them in the structures 

which are shown in Figure 3.6.  
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Figure 3.6: New grouping of patterns to avoid conflicts. No conflicts were found. 
 

 
First of all, we have to decide in how many parts we will break each pattern. We 

don’t care if the partial patterns, the fragments, have the same length but we do care 

that each pattern will be broken into the minimum possible parts in order to reduce the 

possible time to glue them and report the final match (small overhead). A simple 

algorithm was designed and used to break the long patterns into shortest ones 

fulfilling the above requirements. The steps of the algorithm are: 

1. Initialization of Number of Parts to 2. 
 
2. Number of characters is divided with Number of Parts. The result is the 

number of characters of the current part. 
 
3. The number of characters of the current part is subtracted from the number 

of characters. 
  

4. Reduce the Number of Parts by a factor of 1. 
 

5. Follow steps 2 – 4 for all the parts until Number of Parts become zero. 
 

6. Check if there is any part that consists of more than 17 characters (the 
longest fragment must have at most 17 characters) and report.  

 
7. If the 6th step is true add one to the Number of Parts, initialize again 

Number of Characters with number of characters of the long pattern and 
follow again the steps 2 – 7. Otherwise, report the results.    
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Then we use the results of the above algorithm and divide every pattern of the 

current pattern group using a simple script written in Python. An example is always 

useful to better comprehend the concept. Assume that we have a pattern that consists 

of 48 characters. Using the above algorithm we have: 

 

The number of parts is initialized to 2. The number of characters is 48. We follow step 

2 and the result is 24. This is the number of characters of the first part. Following step 

3 we subtract this number from 48 and the result is 24. We also subtract 1 from the 

number of parts, following step 4. We follow again steps 2 – 4 and we have 2 parts of 

24 characters. We check the number of characters of the first part and we observe that 

the number of characters is greater than 17. We add one to the number of parts (3 is 

now), we initialize number of characters with 48 again and we follow again steps 2 to 

7.  

Following step 2, the number of characters of the first part is 16. We make the 

subtraction 48 – 16 and 32 is the number of characters now. We also reduce the 

number of parts by 1 and the new number of parts is 2. Following again step 2, we 

divide the number of characters (32) with the number of parts (2). The number of 

characters of the second part is 16, and the number of parts is 1. Following again steps 

2 – 4, the third part has 16 characters and there are no other parts left. Following step 

6, none of the parts is longer than 17 characters as a result (step 7) the algorithm 

reports the results which are: 1st part: 16 characters, 2nd part: 16 characters, 3rd part: 16 

characters.  

 
Following the procedure we described before, we broke all patterns longer than 

17 characters. Then, we select the fragments and we put them in the structures which 

are shown in Figure 3.6. The number of patterns before and after the partitioning is 

shown in Figure 3.7. 
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Figure 3.7: Number of patterns per structure before and after partitioning. In structures 3-4, 
5-7, 8-10 the new number of patterns is still smaller than 512 while in structures 11-13 and 
14-17 we have about 130% increase in the number of patterns.  
 
 

After putting all fragments in the structures we had to check them again for 

conflicts following the procedure we followed in paragraph 3.3.1. It resulted to a great 

amount of conflicts in each structure. We have to find a new and better structure 

which removes the conflicts regardless of the SNORT rule-set we use.  

The idea is to have overlapping structures or to have more than one same length 

structures in the V-HashMem. For example, assume that we have two overlapping 

structures: 5-10 and 8-13. The conflicts for patterns which have length 8, 9 or 10 

characters can be removed by moving one of the patterns who create the conflict from 

structure e.g. 5-10 to 8-13. By this technique we solve many conflicts in which a 

couple of patterns have the same prefix. There are also few cases in which the patterns 

that create a conflict are more than two, usually three. In these cases, we just remove 
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the conflict by letting one pattern in the current structure, moving the second to 

another structure, deleting the third one and re-breaking the long string, in which the 

third one was a part, again randomly. The distribution of patterns in each structure in 

the final V-HashMem is shown in Figure 3.8. 
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Figure 3.8: Patterns’ Distribution in each structure in the final V-HashMem. The Patterns’ 
Distribution which  is shown in this figure is the final and it is after solving not only the 
conflicts we mentioned before but also all some other conflicts we found and we are talking 
about them in the next chapter. 
 
 
 
3.4 Summary 
 
 

In this chapter, we described in short the HashMem Architecture. Then we 

presented the idea on which V-HashMem was based and we tackled the issues 

concerning the CRC generators, the comparators and prefix conflicts. Finally, we 

presented to the reader the steps we followed to design the V-HashMem structure. 



 

 
 
 
Chapter 4 
 
Variable – Length HashMem Architecture (V-HashMem) 
 
 
 

In this chapter we describe the design of the basic V-HashMem Datapath. Then, 

we describe Glue Logic and after these issues we describe the design and 

implementation of the final V-HashMem Architecture. At the end of the chapter we 

introduce 2 improvements in order to make our design more efficient.  

 
 
 
4.1 Basic V-HashMem Datapath 
 
 

 In this paragraph we describe how to design the Basic V-HashMem Datapath 

based on what we have already mentioned in chapter 3. At first, we describe the 

design of V-HashMem for the very short patterns, then the design of each component 

(CRCs, memories, etc) and finally we present the basic V-HashMem Architecture. 

 
 
4.1.1 How V-HashMem handles Very Short Patterns  
 
 

SNORT rule-set contains very few patterns of one or two characters as we 

mentioned in paragraph 3.1.2. V-HashMem handles 1-character long patterns in 

exactly the same way as HashMem. However, there is a slight difference about how 

V-HashMem handles 2-character long patterns comparing to the HashMem.  

Two-character patterns in the SNORT rule-set of April 2005 are more than 64 but 

less than 128. We use the same idea as HashMem but we recode the 8 input bits into 

an 8-bit code from which the most significant bit is a single-character match and the 

other 7 is the encoded value of the half part of dual-byte patterns. Again after the 

appropriate delay the two input recoded characters amount now to 14 bits, address to a 

16Kx1 lookup table. This approach does not increase the memory block requirements 

comparing to HashMem since the shortest (smallest width) primitive memory block is 
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16Kx1 (For Dual byte Pattern LUT) and the widest 512x36 (For Single Byte Pattern 

LUT). Figure 4.1 shows how V-HashMem handles one and two characters patterns.    

  

 
 
Figure 4.1: How V-HashMem handles very short patterns. 
 
 
4.1.2 CRC generation 
 
   

A CRC generator transforms the input data into other data using a specific 

polynomial.  In paragraph 3.2.1, we said that we use the minimum length of the stored 

patterns in the structure to feed the CRC generator. In table 4.1, it is shown how many 

characters we use to feed the CRC generator in each structure.  

 
Structure CRC's input width [bytes] 
3-4 3 
5-10 5 
8-13 8 
11-13 11 

14-17 14 
Table 4.1: How many character we use to feed the CRC generator in each structure. A 
character is one byte. 
 
 

Since wide CRC generators have a high cost, we implement full CRC generators 

for inputs’ lengths 3, 4, 5 and 6 characters (bytes). For inputs longer than 7 characters 

we break the input stream into shorter ones and feed the existing CRC generators. 

Then, we glue their result and feed another CRC generator. For example, if we have 

an input of 8 characters we break it into 2 pieces (e.g. 4 characters each one) and we 

feed each piece into a 4-byte CRC generator. All the 12-bit results of every CRC are 

concatenated and the result is fed into a 3-byte CRC generator. This is shown better in 

Figure 4.2.  
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Figure 4.2: CRC generation for an 8-character input.  
 
 

The width of the output of the CRC generator affects the length of the memory of 

each structure and consequently its cost, since the output of the CRC generator is used 

as an address to access the memory. For that reason, we want CRC generator to have 

the minimum output width. Minimum output width means that we use polynomial of 

small degree. On the other hand, the maximum the degree the better mapping of 

patterns in the memory. Taking into account these parameters we resulted that the best 

polynomial’s degree is 12 for the all the patterns, except the patterns which are in the 

structure 3 – 4 where we use degree 11 and for the patterns which are in the structure 

11 – 13 where degree 13 is used. In the table 4.2 it is shown clearly how many bytes 

have the CRC generators in each structure.  

 
 

Structure CRC's input width [bytes] 
1st level CRC's 
input width [bytes] 

2nd level CRC's 
input width [bytes] 

3-4 3 3 no 
5-10 5 5 no 
8-13 8 5, 3 3 
11-13 11 6, 5 3 
14-17 14 3, 3, 4, 4 6 

Table 4.2: In this table, it is shown the Input width for the CRC generator of each structure in 
each level. In structure 11 – 13 we use polynomial with degree 13 only for the 2nd level CRC 
generator. For the CRC of the 1st level we use 12th degree polynomial. 
 
 

Using a programme which was constructed by George Papadopoulos [2] we 

produce efficient CRC polynomials for the CRC generators we mentioned in Table 
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4.2. This programme specifies the best CRC polynomial for the specific patterns. If 

there is no polynomial which produces distinct addresses for every single input 

pattern this programme will specify the CRC polynomial which creates the least 

conflicts. We removed those conflicts by just moving one of the patterns which 

participate in the conflict from one structure to another. The number of patterns which 

created every conflict does not overcome 2.  

Using these polynomials we generate the CRC generators (XOR-based) with 

Easics tools [21]. Then, we pipelined each CRC generator to achieve better 1) 

throughput and 2) cycle time.  

 
 
 
4.1.3 Basic V-HashMem Datapath – Design and Implementation  
 
 

V-HashMem Architecture, just as HashMem, has Index Memories in order to 

achieve better utilization in the pattern memory (this is described better in paragraph 

3.1.1). Usage of Index Memories has another very important advantage: when we are 

storing the patterns in the Pattern Memory, we can put each pattern wherever we 

want. Then we initialize the Index Memory based on the calculated CRC values and 

the locations of the patterns in the pattern memory. This is shown in Figure 4.3. We 

described in the paragraph 4.2.2 how we use this property.   

Based on what we have said until now, we design and implement V-HashMem 

datapath. The datapath which is shown in Figure 4.4 does not include all the structures 

but only the 3-4 and 5-10 structures because all structures have been designed in the 

same way, except structure 14 – 17. Structure 14 – 17 consists of two structures: 14 – 

17A and 14 – 17B but we use one CRC generator for both of them because firstly it is 

the same for both structures and secondly only one of them will report a match for a 

specific input.  

The input string is inserted into a long shift register, which has one byte 

(character) width, once per cycle.  The smallest length of the input (based on the 

structure) is fed into the CRC generator. Then, the output of the CRC generator is 

used to access the Index Memory and take the Pattern Memory’s Address which we 

use to find the pattern. Then we send the pattern and the appropriately delayed 
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packet’s string into the variable comparator which determines whether there is a 

match or not. This implementation has a single-byte processing throughput per cycle. 

 
Figure 4.3: How Index Memory is used. CRC address is used to access the Index Memory. 
Then data of Index Memory (Pattern Address) is used to access the Pattern Memory.  
 
 

 
Figure 4.4: One part of the Basic V-HashMem Datapath. In this datapath, it is shown clearly 
that the smallest length of the input (based on which is the smallest length of the patterns of 
the current structure) is fed into the CRC generator. In addition, the variable comparators 
take into account the Don’t Care bits for the variable portion (4th character of the first one 
and 6-10 characters for the second) for the comparison. 
 
 

The area and memory cost (Index and Pattern Memory Cost) for the 

implementation of the Basic V-HashMem Datapath is shown in Table 4.3, Table 4.4 

and Table 4.5 respectively. In these tables the cost is shown for each and every 
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structure of the basic V-HashMem Datapath. In this implementation we use the 

SNORT rule-set of April 2005 which contains 2187 rules or 33613 characters.  

 
 

Structure Area Cost [Logic Cells (LC)] 
3-4 88 
5-10 126 
8-13 164 
11-13 120 
14-17 308 
Total 806 

Table 4.3: Area cost per structure and Total Area Cost of the basic V-HashMem. 
 
 

Pattern Memory Cost 

Structure 
Number 
of Entries Width[bits] Number of memory blocks 

3-4 512 33 1 
5-10 512 85 3 
8-13 512 109 4 
11-13 1024 106 6 
14-17A 512 139 4 
14-17B 512 139 4 
Total     22 

Table 4.4: In this table it is shown how many memory blocks are used for the implementation 
of the Pattern Memory, for each structure and for the total implementation of basic V-
HashMem.   
 
 

Index Memory Cost 

Structure 
Number 
of Entries Width[bits] Number of memory blocks 

3-4 2048 9 1 
5-10 4096 9 2 
8-13 4096 9 2 
11-13 8192 10 5 
14-17A 4096 9 2 
14-17B 4096 9 2 
Total     14 

Table 4.5: In this table it is shown how many memory blocks are used for the implementation 
of the Index Memory, for each structure and for the total implementation of basic V-
HashMem. 
 
 

The pattern memories of all the structures except structure 11 – 13 are 

implemented using the shortest and simultaneously widest memory block of Xilinx 

512x36. The number of memory blocks in these cases depends clearly on the width of 

the pattern memory of each structure. On the other hand, in structure 11 – 13 we use 



41               Chapter 4 – Variable - Length HashMem Architecture (V-HashMem) 

the 1024x18 memory block because we need 1024 entries for the implementation of 

the pattern memory and we use 6 blocks because pattern memory’s width is 106.  

  For the index memories we use longer memory blocks but with a small width. 

For example, the index memories of the structures 5 – 10 or 8 – 13 are implemented 

using the 2048x9 memory block 2 times for each structure putting them vertically. We 

could also use the 4096x4 memory block but you can understand that this would 

require 3 memory blocks (we would place them horizontally) of it, since these index 

memories have 9 bits width. We can easily understand that Xilinx offer many choices 

about how to use the memory blocks of the FPGA.  

Finally, in the Table 4.6 we present the total Area and Memory Cost for the basic 

V-HashMem, and calculate the logic cost per character as well. 

 
Basic V-HashMem Architecture 

Area Cost [LC] 806 
Memory Cost [Memory blocks] 36 
Logic Cells/ Character 0.02 

Table 4.6: Total Area and Memory Cost for the Basic V-HashMem Architecture.  
 
 
 
4.2 Glue Logic 
 
 

In the previous paragraphs we have described the basic V-HashMem 

Architecture. We have described how the patterns are stored in the memories of V-

HashMem and how a pattern matching, if it exists, is reported. Until now, V-

HashMem Architecture reports a match, if it exists, but it does not mention what kind 

of match it is. We have to extend the current V-HashMem Architecture so that after 

the fragments are matched in the regular memory structures, custom glue logic will 

combine the partial match signals to determine whether the entire wide pattern was 

actually found in the input. Determining the actual match involves delaying the partial 

match signals appropriately to indicate the actual position of the partial pattern in the 

overall input. This technique has been also used in HashMem Architecture. 

In the following paragraphs, we describe the idea on which Glue Logic is based. 

Then we describe some special cases on which Glue Logic is not working properly 

and what we have done in order to face them. Finally, we implement Glue Logic.  
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4.2.1 The Idea 
 
 

Given the number of wide patterns (624 patterns wider than 18 characters), using 

a per fragment solution as in HashMem is inefficient. Instead we used an addressing 

convention that places fragments in consecutive locations, so that when the first 

fragment of a wide string is located say at location x, the expected location of the 

subsequent fragment is already known to be at location x+1. Then we compare the 

delayed expected address to the address of the second fragment and determine the 

match. Since this rule holds for all fragments of all patterns, the cost of the approach 

is to add one to the address and broadcast it (appropriately delayed) to all memory 

structures for future inspection.  

In addition, it is useful to know what kind of pattern we have (fragment or not and 

what kind of fragment: first, medium or last), since we report only the non fragment 

and the last fragment. It is also useful to know in which memory structure the 

previous fragment is stored provided that the fragment exists. We encode this piece of 

information into 2 and 3 bits respectively and store it into every memory structure. 

This encoding is shown in True Tables 4.7 and 4.8. This piece of information is useful 

when the address is broadcasted (see paragraph 4.2.3).  

 
Previous Structure 

5-10 000
8-13 001
11-13 010
14-17 011
8-13 or 14-17 100
11-13 or 14-17 101

Kind of Pattern 
Non Fragment 00 
First Fragment 01 
Medium Fragment 10 
Last Fragment 11 

 
Table 4.7: Kind of Pattern. 
        Table 4.8: Previous Struct. 
 
           
4.2.2 Special Cases 
 
 

With the previous idea we implement a great amount of fragments. However, 

there are patterns that when broken down to fragments create “strange” structures. 

These structures are: 

 
 Tree – like structures 

 
 Reverse Tree – like structures 
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 Special List structures 

 
 

First of all, we will discuss about Tree – like structures like the ones that are 

shown in Figure 4.5a and Figure 4.5b. Consider the case of two patterns “abcdef” and 

“abcxyz”. A match of “abc” followed by a match of either “def” or “xyz” is a full 

match. This fan-out structure deviates from the +1 rule. This situation is relatively 

rare (178 patterns that form 41 trees in our rule set), and we solved it by adding a 

small exception memory in parallel to each pattern memory. In our example we would 

place the “abc” and “def” fragments in locations x and x + 1. Then we would place the 

“xyz” fragment at another location y and place the entry x + 1 in location y in the 

exception memory, indicating that a match at location y after matching location x + 1 

is a full match. 

 

 
 
Figure 4.5a: Multi – level Tree – like structure. 

 
 
Figure 4.5b: A 2-level Tree – like 
structure. Most of tree cases are like 
this one. 

 
 

The other case is the Reverse Tree – like structure and it is shown in Figure 4.6. 

In this case we put the common fragment in a position say x and all the other different 

fragments in a position x-1, using +1 rule. However, in some cases two or more 

different fragments may be in the same memory structure as a result they cannot be 

stored in the same position x-1. In these cases, we just move the fragments into 

another memory structure, removing this conflict.  

There are also some cases which are a combination of tree and reverse tree like 

structures like the one that is shown in Figure 4.7. Since these cases are a combination 

of the cases we mentioned before we face them by dividing them into known cases.  
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Figure 4.6: Reverse Tree – like structure. 
 
 

 
Figure 4.8: Special List Structure. 
 
 

 
Figure 4.7: Combination of Tree and 
Reverse Tree – like structures. We 
separate these cases into known cases and 
manage them using the techniques we 
showed.

Finally, we have some cases which create special list structures. These structures 

are like the one is shown in Figure 4.8. These structures are simple lists in which the 

first or an intermediate node is both fragment and non-fragment and we have to report 

the match if it exists. Since these cases are very few (6 cases) we put these patterns 

into known positions and if we have a match we report it independently of being a 

first or an intermediate part of a long pattern.  
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4.2.3 Glue Logic – Design and Implementation 
 
 

In the previous paragraphs, we described how we handle the fragments. We 

proposed our ideas and now we are ready to design the Glue Logic. The block 

diagram of Glue Logic is shown in Figure 4.9.  

We use the output data from the Index Memory to access the Pattern Memory as 

we described in paragraph 4.1.3. We also use some bits of this data to determine (tree 

decoder) whether there is a tree-like case (Mux output is the Exception Memory’s 

Output) or not (Mux output is the Data from Index Memory). The patterns of one 

structure which create Tree-like cases are placed into a certain zone (consecutive 

places) of the pattern memory. The id of this zone is compared with the input of the 

Tree Decoder.  The number of bits of this id is not standard as it depends on the 

Structure (5-10, 8-13, etc) because the “size” of each zone depends on the number of 

the patterns which create Tree-like cases in each structure. The remaining bits of the 

output data of Index Memory are used in order to access the Exception Memory.   

The Mask Decoder determines which broadcasted address to use based on the 

saved information in Memory (Bits of Structure of Previous Fragment). The Control 

Signal of the Mask Decoder depends on the kind of the pattern. If we have a non 

fragment the output of the Mask Decoder must be zeros since there is nothing to be 

glued. In any other case the control signal has a value 1. 

We also use a 2-input OR gate after the first comparator. If we did not put this 

gate, we would never report a match when we have a non partial pattern because the 

output of the 4-input OR gate would be zero. For that reason, we put this 2-input OR 

gate so that when we have a non partial pattern the output of the 4-input OR must be 

one independently of the comparators. On the other hand, in any other case it will be 

zero and the report will depend on the comparators. In addition, we report a match 

when there is a match and it is either a non partial pattern or the last fragment and that 

is the reason why we use this XNOR gate. True Table 4.7 shows exactly why we use 

an XNOR gate. Moreover, we broadcast the address only when we have a first or an 

intermediate fragment and there is also a match. In any other case we broadcast zeros 

and that is the reason why these registers are cleared not only by reset but also by 

other signals, like match and the kind of pattern. The last comparator is used to face 
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the Special List – like cases. Only in these cases and when there is a match we report 

it independently of the kind of pattern and the output of the other logic.  

 

 
Figure 4.9: Glue Logic Datapath. We use the data from Index Memory to access the Pattern 
Memory as we described before. We also use it to access the Exception Memory. The Mask 
Decoder determines which broadcasted address to use based on the saved information in 
Memory (Bits of Structure of Previous Fragment). The Control Signal of the Mask Decoder 
depends on the kind of the pattern. If we have a non fragment the output of the Mask Decoder 
must be zeros since there is nothing to be glued. As it is mentioned before we report a match 
when there is a match and it is a non partial pattern or the last fragment and that is the 
reason why we use this XNOR gate. Finally, we broadcast the address only when we have a 
first or intermediate fragment and there is a match. In any other case we broadcast zeros.   
 
 

After implementing the Glue Logic we pipelined it in order to achieve better 

cycle time. The duration of Glue Logic is about 10 cycles. Of course some signals are 

used few cycles after their creation and for that reason they are delayed appropriately 

using shift registers. Also, the broadcasting addresses are delayed appropriately before 
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they are fed into the comparators. The area cost is 948 slices taking into account all 

the appropriate delays. The exception memories are implemented using the distributed 

memories of Xilinx which do not use memory blocks but logic and this logic cost is 

included in the area cost we mentioned before. However, we need to use slightly more 

memory blocks than these of table 4.4 since we put the extra bits in the pattern 

memories. We present the final memory and area cost in the next chapter (Evaluation 

and Results).  

 
 
 
4.3 Final V-HashMem Architecture – Implementation and 

Evaluation 
 
 

After completing the implementation of Glue Logic we have to replicate it and 

put it in every single structure except the 3-4 structure as it does not contain any 

fragment. Also, the V-HashMem Architecture consists of 5 structures and every 

single structure can report a match. For that reason we construct a priority encoder 

and determine the final match from all the matches. In the Figure 4.10, we show 

which structure has the biggest priority to determine the final match.   

 

Structure

3-4
5-10
8-13

11-13
14-17

Priority

 
Figure 4.10: Match Priority of the structures   

 
 
In Figure 4.11, we show one part of the Final V-HashMem Architecture. We do 

not show the whole V-HashMem Architecture since every single structure except the 

structure 3-4 are similar. Structure 3-4 does not contain any fragment as a result Glue 

is not needed. In this figure we also show how we report a long pattern match after 

gluing its fragments’ matching signals. Also, the structure 14-17 is slightly different 

than the others as we mentioned in previous paragraphs as it consists of the 2 sub-
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structures: 14-17a and 14-17b. We put the Glue Logic in both sub-structures and since 

only one of them can report a match we choose the right one using a multiplexer.  

The final area and memory cost as well as the performance of the V-HashMem 

Architecture are shown in the next chapter (Evaluation and Results). Finally, we have 

to mention that the above architecture has a single – byte (character) processing 

throughput per cycle. We can increase it and have a two – byte (character) processing 

throughput per cycle but this requires duplicating of the area since we have to use 

dual port memories, two CRC generators, two variable comparators and two pieces of 

Glue Logic per structure. The V-HashMem Architecture (only the 3-4 structure) with 

two input byte processing throughput per cycle is shown in Figure 4.12. 

 

 
 
Figure 4.11: Final V-HashMem Architecture. In this figure, we show only one part of the 
Final V-HashMem because the other structures are like these of Figure 3.18. Only structure 
3-4 is different because it does not contain any fragment as a result Glue Logic is not needed.  
 
 

In this figure, we notice that we feed the CRC generators with 2 input streams at 

offsets 0 and 1 per cycle. Then, each output of the Index Memory is used to access the 
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Pattern Memory and each output of Pattern Memory is sent to a Variable Comparator 

which makes the comparison between the input stream, for offset 0 and 1, and the 

output of the Pattern Memory. Then each comparator’s output is sent to a Glue Logic 

component to report the match or not. It is clear that by this improvement we almost 

double the throughput but we need to duplicate the area as a result the area cost is 

doubled.  

Finally, we investigated the support for header matching information. A complete 

SNORT-like NIDS system combines two pieces of information: header matching with 

payload scan. It is easy to see that payload scan is by far the most difficult and 

complex task, since header matching generally involves merely equality or range 

matching on fixed numeric fields. 

 
 

input

Struct 3-4

CRC 

Index
Mem

Pattern
Mem

Comparator

CRC 

Port A

Port A

Port B
Port B

Comparator

Glue
Logic

Glue
Logic

 
Figure 4.12: In this figure, it is shown a part of the V-HashMem Architecture for doubled 
processing throughput (2 input characters processing throughput per cycle). However, we 
have to duplicate all the logic components (CRCs, comparators and Glue Logic) and use dual 
port memories. That means, that we have to double the area cost in order to achieve this 
doubled processing throughput. 
 
 

However, payload scanning should consider the header matching information and 

report matches only when the combined check of header and pattern are found. To 

include this functionality, we can add a Header Group ID field along with the search 

pattern in the pattern memories. This ID will determine the set of search patterns that 
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are compatible with the current packet header. Earlier research of Dimopoulos et al 

[1] indicates that the snort rules can be classified into ~300 groups, which can be 

encoded with 9 bits. Upon arrival of a new input packet, the header matching circuitry 

performs its tests and provides the Header-ID to the V-HashMem sub-system. The 

pattern checking occurs as described earlier, but to report a match the comparators 

also test the Header-ID field for equality with that of the incoming packet. This test 

suppresses false positive answers when the search pattern is not compatible with the 

header of the packet. The additional cost of this feature is the memory bits to store the 

Header-ID and the additional comparator logic.  

Of course, a complete system would also add the cost of header classification into 

the header group identifiers. This system could be like the one which is shown in 

Figure 4.13. The header data of a packet is inserted into the Header field extractor 

which performs header delineation, and field separation. In header classification, only 

six of all the possible header fields are necessary: source and destination IP address 

and ports, the protocol type and the ICMP type.  

 

 
 

Figure 4.13: Header Classification Circuitry which was proposed by B. Dimopoulos et al [1].  
 

 
The six header fields are forwarded to the rule set comparator module. The output 

of this module is a bitmask indicating all possible matching rules. The matches are 

strictly prioritized based on T-Gate (software which was proposed by Dimopoulos et 

al [1]) and SNORT. Therefore, the rule match indications are fed to a priority encoder 

to identify the most significant matched rule and to provide its encoding along with 

the packet data to the next processing level. We have to mention that the cost of the 

Header classification will not be included in our measurements in the next chapter.  



 

 
 
 
Chapter 5 
 
Evaluation and Comparison with Related Work 
 
 
 

In chapters 3 and 4 we presented the V-HashMem Architecture. We presented the 

idea on which V-HashMem Architecture is based and then we described the design 

process and the implementation of it. Also, we proposed an idea in order to improve 

the throughput of it and another one to support Header matching. Now, we have to 

evaluate it and present the area cost as well as the performance and the throughput. 

These values will give us a clear view of the quality of our design. Furthermore we 

will compare our design with other related works.  

First of all, we evaluate our system using the SNORT rule-set of April 2005 

which contains 2187 rules or 33613 characters. We used Xilinx ISE 7.1i in order to 

implement our design and ModelSim in order to verify its correct functionality. The 

device families we used are VirtexIIpro, Spartan3 and Virtex4 and the device speeds 

are -7, -5 and -12 respectively. After completing the implementation we measure the 

area cost and the performance using the synthesis and place and route tools of ISE.  

Before starting the evaluation of our design and present the results we will give 

some information to the readers about the metrics we use in order to evaluate our 

system. The metric we used to measure the area cost is the number of Logic Cells. 

The number of Logic Cells is the number of the Reported Slices multiplied by a 

factor of 2. Another metric which is based on the number of the measured Logic Cells 

is the number of Logic Cells per character. This number is the ratio of the number of 

Logic Cells and the total number of characters of the rule-set and it is a very useful 

metric since it shows how many logic cells we use in order to match a single 

character.  

Furthermore we use some metrics in order to measure the speed of our design. 

Using Xilinx ISE synthesis tools we measure the Performance (Operating 

Frequency) of the system. Multiplying this Frequency with the input bits to the 

system per cycle we calculate the Throughput. Throughput is used widely by most 
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researchers in order to evaluate their research. Moreover, we use another metric in 

order to combine the speed and area cost of our design. This metric is called 

Performance Efficiency Metric (PEM) and is also used by all researchers. PEM is 

the ratio of performance over the area cost or, in other words, the ratio of Throughput 

over the number of Logic Cells per Character. Finally, as our first goal was to reduce 

the number of the required Memory Blocks reducing the area cost and keeping the 

same the Performance we use another metric, PEM/m which shows clearly the 

efficiency of our design according to all the parameters we mentioned. In the 

following figure (Figure 5.1) we show all the metrics we use.  

This chapter contains, at first, area and memory evaluation and utilization. Then 

we evaluate the Performance of our system. At paragraph 5.3 we evaluate V-

HashMem Architecture again but combining Area, Memory and Performance results. 

Finally, we compare our implementation with related work.  

 

 
Figure 5.1: In this figure, the metrics we use for the evaluation of our system are shown. Also, 
the formulas which give these metrics are also shown.    
 
 
 
5.1 Area and Memory Evaluation 
 
 

In chapter 4 we presented some first results on memory and area cost. Then, we 

described the design of the glue logic. In addition, we completed our design by adding 

the FIFO, from which the input stream is coming, and the priority encoder, which 

determines the final reported match and the broadcasted address. In the next tables we 

are going to show the area cost for every structure of the V-HashMem Architecture.  
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First of all, the area cost for every structure of the V-HashMem Architecture is 

shown in Table 5.1. Tree Logic contains the Exception Memory, the Tree Decoder 

and a MUX (Figure 4.9). Special List Logic contains a comparator, an AND gate, an 

OR gate and the appropriate delays (bottom of Figure 4.9) and +1 rule Logic contains 

all the remaining Logic of Figure 4.9. 

 
Area Cost per Structure (Logic Cells) 

Structure 
CRC 
Generators Comparators

Tree 
Logic 

"+1 rule” 
Logic 

Special List 
Logic 

3-4 62 26 0 0 0 
5-10 64 62 30 80 10 
8-13 82 82 44 90 20 
11-13 46 74 90 90 10 
14-17 108 200 160 160 20 
Total 362 444 324 420 60 

Table 5.1: This table shows the Area cost in Logic Cells (LCs) for each and every structure of 
the V-HashMem Architecture. Tree Logic contains the Exception Memory, the Tree Decoder 
and a MUX (Figure 4.9). Special List Logic contains a comparator, an AND gate, an OR gate 
and the appropriate delays (bottom of Figure 4.9) and “+1 rule” Logic contains all the 
remaining Logic of Figure 4.9.The cost for the CRC generators and the Comparators is the 
same before and after the adding of Glue Logic. Notice that Glue Logic is the sum of Tree 
Logic, Special List Logic, +1 rule Logic and the appropriate delays for the broadcasting 
addresses. For structure 3-4 we observe that there is no Tree Logic, “+1 rule” logic or 
Special List Logic Cost because this structure does not contain fragments as a result there is 
no Glue Logic. 
 
 

 The cost for the CRC generators and the Comparators is the same before and 

after the adding of Glue Logic. Notice that Glue Logic is the sum of Tree Logic, 

Special List Logic, “+1 rule” Logic and the appropriate delays for the broadcasting 

addresses. The last one is not shown in the Table 5.1. In the next table (Table 5.2) we 

are showing the total area cost for every component that is contained in the V-

HashMem Architecture as well as the Total Area Cost of the final implementation of 

it. The medium column shows the Area Cost for processing Throughput 1 character 

per cycle. At the end of chapter 4 we proposed an improvement of V-HashMem 

Architecture in order to increase the Throughput by increasing the processing 

Throughput from one byte (character) to two bytes (2 characters) per cycle. This 

improvement almost doubles the required Area Cost as every single component must 

be duplicated except FIFO as it was shown also in Figure 4.12. Adding Header-ID 

matching, we have to add 80 and 160 LCs, which is the cost of the Header 

comparators, for 1 input character and 2 input characters per cycle respectively.    
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Area Cost 

Component 
Processing Throughput:  
1 character per cycle. 

Processing Throughput:  
2 characters per cycle. 

CRC 
generator 362 724 
Comparator 444 888 
FIFO 250 250 
Glue Logic 948 1896 
Priority Mux 80 160 
Total 2084 3918 

Table 5.2: Total Area Cost for every Component of the V-HashMem Architecture and the 
Total Area Cost of the final implementation of the V-HashMem Architecture for processing 
Throughput (TH) 1 and 2 characters per cycle.   

 
 
Regarding Memory, we showed in chapter 4 the memory cost for the basic V-

HashMem Architecture but this is not the final memory cost since we put 5 extra bits 

in the Pattern Memories in order to encode significant information about the kind of 

the Pattern and the source structure of a previous fragment as it is mentioned in 

paragraph 4.2.1. In Table 5.3 and 5.4 we show how many memory blocks are used in 

the final implementation for the Pattern Memories and Index Memories respectively.   

 
Pattern Memory Cost 

Structure Entries Width(bits) Number of memory blocks 
Header 
ID 

3-4 512 33 1 +1 
5-10 512 90 3 +0 
8-13 512 114 4 +0 
11-13 1024 111 7 +0 
14-17A 512 144 4 +1 
14-17B 512 144 4 +1 
Sum     23 +3 

Table 5.3: In this table, it is shown how many memory blocks are used in order to implement 
the Pattern Memories of V-HashMem. Comparing this Table with Table 4.4 we notice that the 
number of memory blocks in the final implementation is only increased from 22 to 23 memory 
blocks.   
 
 

Comparing Table 5.3 with Table 4.4 we notice that the number of memory blocks 

in the final implementation is only increased from 22 to 23 memory blocks. We have 

only this small increase because the maximum width of the Memory Blocks of all the 

pattern memories except the one of structure 11-13 was enough to accept the adding 

of the 5 extra bits. In structure 11-13 we just add another memory block. Regarding 

the memory blocks which are used for the implementation of the Index Memories we 
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mention that the cost is the same as it is shown also in Table 4.5. Furthermore, there is 

an amount of 2 additional memory blocks for the implementation of the very short 

strings (of one or two characters). So, the total number of Memory Blocks we used in 

order to implement the memories of our design is 39. Taking also into account the 

Header support, the stored Header IDs make the pattern memories wider. Some 

memories have spare bits and can accept this extension while other do not; overall, 

storing the Header-ID along with the patterns requires an additional 3 memory blocks 

(Table 5.3), a small price for the increased functionality. Finally, we will not describe 

why we used this number of memory blocks for the implementation of Index and 

Pattern Memories since it was described in much detail in paragraph 4.1.3. 

 
Index Memory Cost 

Structure 
Number 
of Entries Width[bits] Number of memory blocks 

3-4 2048 9 1 
5-10 4096 9 2 
8-13 4096 9 2 
11-13 8192 10 5 
14-17A 4096 9 2 
14-17B 4096 9 2 
Total     14 

Table 5.4: In this table it is shown how many memory blocks are used for the implementation 
of the Pattern Memory, for each structure and for the total implementation. 
    
 

We evaluated our implementation and we exported the results for the area cost. 

Before evaluating our design about the Performance lets see which is the area and the 

memory utilization since it is also an important factor of the efficiency of our 

implementation.  

Firstly, in Table 5.5 we show the memory utilization for the Pattern Memories of 

the V-HashMem Architecture. Observing this Table we can notice that we achieve a 

satisfactory utilization except for the memory structure 3-4 in which the utilization is 

modest.  
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Pattern Memory 

Structure Number of Patterns Memory Utilization (%) 
3-4 169 33 
5-10 372 72.6 
8-13 509 99.4 
11-13 715 69.8 
14-17A 456 89 
14-17B 345 67.3 

Table 5.5: In this table it is shown the Pattern Memory’s Utilization. Looking at this Table we 
notice that we achieve very satisfactory memory utilization. Only for the memory structure 3-
4 memory utilization is modest but we cannot do something better as the patterns which are 
stored  are neither so short nor so long to handle them either on the way we handled patterns 
of 1 or 2 characters or on the way we handled long patterns.  
 
 

In Table 5.6 we show the memory utilization for the Exception Memory which 

was suggested in order to solve the Tree – Like structures. According to this table we 

also achieve very good utilization. Finally, Exception Memories are not used in the 

Structure 3-4 because this structure does not contain any fragment. The exception 

memory was constructed using the Distributed Memories of Xilinx, which do not use 

memory blocks but logic. We choice to use Distributed Memories and not block 

memories because the number of Data, as it is shown in Table 5.6, is very small. If we 

used block memories we would use 5 times the memory block 512x36 and achieve 

12% utilization in the best case (14-17B).    

 
Exception Memory 

Structure Number of Data Memory Utilization (%) 
5-10 3 18.8 
8-13 21 65.6 
11-13 58 60.4 
14-17A 33 51.2 
14-17B 63 49.2 

Table 5.6: In this table it is shown the Utilization for the Exception Memories. Looking at 
this Table we notice that we achieve very satisfactory memory utilization. 
 
 

In addition, in Figure 5.2 we show the Area Utilization of V-HashMem 

Architecture and we notice that Glue Logic takes up about the half of the used Area of 

it while CRC generators and the Comparators take up 17% and 21% of the total used 

Area.  
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Figure 5.2: In this Figure, it is shown how much area is used by every component of the total 
2084 Logic Cells of V-HashMem Architecture. Figure 5.2 would be similar if we calculated 
the utilization of the Area for processing Throughput 2 characters per cycle.  
 
 

To analyze Device Area and Memory Utilization we used three different devices 

of the same Device family VirtexIIpro to implement the design, within and without 

the improvement we mentioned in the last paragraph of chapter 4. Table 5.7 shows 

this Device Area and Memory Utilization for the above cases. Observing Table 5.7, 

we can notice that V-HashMem Architecture within or without the improvement can 

fit in a device of medium size as well as a small device.   

 
  Device Area Utilization (%) Device Memory Utilization (%) 

Devices 

Processing 
throughput 
1 character/cycle 

Processing 
throughput  
2 characters/cycle 

Processing 
throughput 
1 character/cycle 

Processing 
throughput 
2 characters/cycle 

VirtexIIpro 7 21.1 39.8 84.1 84.1 
VirtexIIpro 
20 11.2 21.1 42.1 42.1 
VirtexIIpro 
30 7.6 14.3 27.2 27.2 

Table 5.7: In this Table, we show the Area and Memory Utilization for 3 different devices for 
both implementations within or without improvements.  
 
 

We will give the area and memory cost, using the metrics we mentioned in the 

introduction of this chapter, after the performance evaluation on a summary table 

(Table 5.9).  
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5.2 Performance Evaluation 
 
 

For our implementation we used 3 different Device families: VirtexIIpro, 

Spartan3 and Virtex4 and measured the Frequency of the system. Then we calculated 

Throughput and the results are shown in Table 5.8.  

 
  Frequency (MHz) Throughput (Gbps) 
Device 
Family Input bits: 8 Input bits:16 Input bits: 8 Input bits:16 
VirtexIIpro 320.146 ~309 2.56 ~4.95 
Spartan3 190.387 ~176 1.52 ~2.82 
Virtex4 346.021 ~340 2.77 ~5.44 

Table 5.8: In this table the Frequencies and the TH for V-HashMem Architecture with one 
and two input characters (8 and 16 input bits respectively) for 3 different device families are 
shown.   
 
 

These results are for specific devices of each Device Family. We used the 

devices: xc2vpx20, xc3s3000 and sc4vsx35 for the device families VirtexIIpro, 

Spartan3 and Virtex4 respectively. All these devices have medium size. In addition, 

we measured the Frequencies using the modes Advanced 1.90 2005-01-22, Advanced 

1.35 2005-01-22 and Preview 1.52 2005-01-22 of Place and Route tool of Xilinx ISE 

for the device families VirtexIIpro, Spartan3, Virtex4 respectively.  

According to table 5.8, using VirtexIIpro for the implementation with 1 input 

character processing throughput (without the improvement) we achieve a very good 

Throughput, near 2.5 Gbps. Also for Virtex4 Device family, which is faster and better 

than VirtexIIpro, we achieve Frequency 346.021MHz for the same implementation. 

On the other hand, Frequency and Throughput for both implementations on Spartan3 

Device Families are not impressive. But we do have an explanation for these results: 

Spartan3 Device Families have generally low speed in comparison with other Device 

Families, such as VirtexIIpro and Virtex4 and are really cheap and have low energy 

consumption.  
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5.3 Total Evaluation and Results 
 
 

In Table 5.9, we present the total results for V-HashMem Architecture with 1 and 

2 input characters (meaning without or within the improvement) using also all the 

metrics we mentioned at the introduction of this Chapter.  

 

V-HashMem Architecture: Area, Memory and Performance Evaluation 

  
Num of 
Patterns 

Patterns 
Chars LCs LCs/char

Mem 
Blocks 
(kbits) 

Frequency 
(MHz) 

TH 
(Gbps) PEM PEM/m

Input 
Char 
1 2187 33613 2084 0.06

39 
(648.32) 320 2.560 42.66 22.45

Input 
Chars 
2 2187 33613 3918 0.11

39 
(648.32) 309 4.948 44.98 23.67

Table 5.9: Table with total results for the V-HashMem Architecture for Input 1 and 2 
characters. This Table contains the results for all the metrics which were mentioned in the 
introduction of Chapter 5.   
 
 

Looking at Table 5.9, we notice that for the first approach we achieve Frequency 

320 MHz and Throughput 2.560 Gbps using only 2084 Logic Cells or 0.06 LCs per 

character. On the other hand, for 2 input characters (doubled processing throughput) 

although we achieve slightly lower performance (309 MHz), we almost doubled the 

Throughput (4.948 Gbps). To achieve this we needed to use Dual port Memories and 

duplicated components for each memory structure as a result the Area Cost almost 

doubled. Furthermore, Performance Efficiency Metric is better in the second approach 

than the one of the first approach. Finally, if we consider the fact that we stored a 

really great number of patterns using only 39 memory blocks, using about 20% and 

40% of the total area of a small FPGA and achieving Frequencies 320MHz and 309 

MHz  for both approaches we can say that V-HashMem Architecture is a very 

efficient design.  

 
 
 
5.4 Comparing V-HashMem Architecture with HashMem 

Architecture 
 
 



60                               Chapter 5 – Evaluation and Comparison with Related Work 

In the previous paragraphs we evaluated V-HashMem Architecture in order to see 

how efficient our design is. However, this is not enough. It is very crucial to compare 

our work with other related works. At first we are going to compare V-HashMem 

Architecture with HashMem Architecture which was designed and implemented by 

George Papadopoulos and Dionisios Pnevmatikatos [2].  

As we described in chapter 3, HashMem Architecture contains 14 memory 

structures where patterns from 3 to 16 characters length are stored. Also there is one 

memory structure where very short patterns (of one or two characters) are stored 

there. Finally, patterns longer or equal 17 characters are broken into shorter strings 

and are stored in the existed memory structures. Extra glue logic is used to combine 

the matching signals of the partial patterns in order to report the final long match. The 

main difference of HashMem Architecture and V-HashMem Architecture is that the 

in the first one every single memory structure contains patterns of the same length 

while in our design patterns of different but close lengths are stored in the same 

memory.  

In V-HashMem Architecture, the resulting structures use a total of 74 character 

comparators, compared to 150 in HashMem, a 50% improvement, and require 5 CRC 

generators with a total of 41 character input, compared to 150 character input for 

HashMem as it is shown in Table 5.10. 

 
 V-HashMem Width (characters) 
Structures CRC generator Comparators 
3-4 3 4 
5-10 5 10 
8-13 8 13 
11-13 11 13 
14-17 14 34 
Total 41 74 

HashMem 150 150 
Table 5.10: V-HashMem Architecture compared with HashMem Architecture on the width of 
CRC generators and Comparators.   
 
 

Given the observation that in HashMem CRC generation and comparators 

account for 32% and 42% of the logic respectively, there is the potential for 

considerable logic savings (in the order of 40%), despite using the newer SNORT 

rule-set with 70% more characters. On the other hand, the newer rule-set also includes 
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many more wide strings that have glue logic overhead, reducing the potential 

improvement. 

The memory usage of our V-HashMem configuration is also depicted in tables 

5.4 and 5.5. As we said, 23 memory blocks are needed for pattern storage and 14 for 

index memories. In addition to these memories we need another 2 memory blocks to 

match the very narrow 1 and 2 character patterns. This leads to a total of 39 memory 

blocks. The best HashMem configuration used 31 memory blocks but to store 

significantly fewer patterns and using both memory read ports. This best HashMem 

approach, which is named as “HashMem + Reuse + Share + Small CRCs”, is an 

improved version of the HashMem we described in Chapter 3. In this approach, the 

memory is partitioned in two independent portions. The “upper” portion is used for 

patterns of width X and the other is used for patterns of widths Y (usually X+1). This 

approach was possible because of 1) the low density of the indirection memory and 

pattern memory in the HashMem Architecture and 2) that Xilinx memories are dual 

ported. However, in this approach they could not increase the processing throughput 

from one to two characters per cycle since both ports of memory are used now.   

Table 5.1 shows the area cost of each sub-system of our V-HashMem 

architecture. We break down the cost into (a) the character FIFOs that accumulate the 

characters for the CRC generators and the comparators, (b) CRC generators, (c) 

comparators, (d) glue logic for partial matches, and (e) final address and match 

reporting circuitry (priority encoder). The total calculated logic cost is 2086 Logic 

cells, or a cost of ~0.06 LCs/character (Table 5.9). This corresponds to a per character 

improvement of 50% over the unoptimized HashMem. In Figures 5.3 – 5.6 we 

compare the two approaches of V-HashMem Architecture with the best HashMem 

Architecture over 5 parameters.  
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Figure 5.6: Comparing V-HashMem with the best HashMem over PEM/m. 

 
Looking at figures 5.3b and 5.4 we observe that although HashMem Architecture 

achieves better Frequency than both approaches of V-HashMem Architecture, the 

second approach of V-HashMem Architecture achieves almost doubled Throughput. 

Looking at Figure 5.5, we notice that both approaches of V-HashMem Architecture 

achieve more than doubled PEM. Furthermore, looking at Figure 5.6, we notice that 

PEM/m in both approaches of our design is 3 or 4 times better than PEM/m of 

HashMem, even though we use 8 memory blocks more. The combination of these 

results and the low area cost per character in comparison with the one of the 

HashMem Architecture taking into account also that the rule-set we use contains 70% 

more characters than the rule-set which was used in HashMem approach shows 

clearly that V-HashMem Architecture is more efficient than the HashMem 

Architecture (best approach).   
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5.5 Comparing V-HashMem Architecture with Related Works 
 
 

In the recent years many pattern matching architectures have been proposed 

specifically for accelerating a SNORT-like NIDS using FPGAs. The architectures 

differ in the approach (finite automata or CAM-like), in their internal organizations, 

and obviously in their cost-performance tradeoffs [6, 7, 8, 9, 10, 11, 12, 13, 3, 4, 5]. 

These works strive for lower cost, at the same or better performance. V-HashMem is 

based on two ideas: (i) the use of simple hashing to summarize the multiple input bits 

(also used in Bloom filters [8, 4]), and (ii) the use of memories to provide exact match 

with fewer gates (also used by Cho et al. [10, 11], Sourdis et al. [3]). 

The use of Bloom filters for pattern matching has been proposed by 

Dharmapurikar for low cost pattern matching [4, 8]. Bloom filters are very elegant in 

representing set membership, but suffer two potential drawbacks: (i) they require 

multiple hash functions and memories, and (ii) they give an approximate match 

answer since they allow false positives. Solutions to these limitations exist but at 

additional cost. In this architecture, it may be possible that a total amount of 420000 

characters can be stored. However, the stored patterns can only be between 2 and 26 

characters long. On the other hand, V-HashMem Architecture uses fewer hash 

functions and eliminates the false positives by exactly defining the intrusion pattern 

using two-level memories. Furthermore, the number of stored patterns is only 33613 

characters. This is the SNORT rule-set of April 2005 and the length’s range of the 

stored patterns is not kept between 2 and 26 characters but between 1 and 122 

characters. Also, V-HashMem Architecture can be easily updated to include even 

more patterns without significant overhead in area cost and with little increase in 

memory cost.  

In figures 5.7 to 5.11, we compare V-HashMem Architecture with Bloom Filters 

over the same parameters used for the comparison between V-HashMem Architecture 

and HashMem Architecture. Looking at these figures we notice that both approaches 

of V-HashMem Architecture achieve about 5 times better Frequency, about 5 and 10 

times for first and second approach respectively better throughput and about 7 times 

better PEM than the ones in Bloom Filters. Of course, the performance of VirtexE 

2000 which was used for the implementation of Bloom Filters is worse than 
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VirtexIIpro but not worse than 35%. So the slowest V-HashMem Architecture is 

210% faster than Bloom Filters.  On the other hand, we achieve better area cost using 

the first approach but worse using the second approach in comparison to with Bloom 

Filters.  
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Finally, PEM/m in Bloom Filter is 1.5 times better than ours. However, if they 

used the implemented number of characters and not the number of characters their 

system was able to store the PEM/m would become much lower and possibly worse 

than ours.  

 
Another approach (RDL+ROM) was proposed by Cho and Mangione-Smith [10]. 

They used a CAM to match short patterns and to match unique prefixes of longer 

search patterns. They choose the CAM width so as to provide unique prefix signals 

for each possible match. The match signals for all prefixes are then encoded to 

provide a memory address where the candidate suffixes are stored. The remaining 

input is compared against the expected suffix, and the result is the overall match for 

the pattern. Their approach offers very good memory density and low gate count. The 

cost of this approach however increases if the patterns have many and long common 

prefixes. 
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In figures 5.12 to 5.16 we compare V-HashMem Architecture with RDL+ROM 

approach using Spartan3 Device Family. Looking at figure 5.12 we use much fewer 

LCs per character in both approaches than RDL+ROM. As long as Performance is 

concerned, RDL+ROM achieves much better Frequency than V-HashMem 

Architecture but observing figure 5.14 we notice that the second approach of V-

HashMem Architecture achieves much better Throughput than RDL+ROM. Finally, 

PEM and PEM/m are about 400% and 100% respectively better than the ones of 

RDL+ROM approach making V-HashMem Architecture more efficient than 

RDL+ROM considering also that the stored characters in V-HashMem are about 60% 

more than the ones in RDL+ROM. 

 
 

 The final comparison will be done with Perfect Hashing which is similar to 

HashMem and was proposed by Sourdis et al. [3]. Sourdis et al have used a 

centralized memory based pattern matching, where the memory location is selected 

using a perfect hashing of selected input bits. This approach shares many of the 

advantages of HashMem, and achieves even better memory usage but at a higher logic 

cost.  

In figures 5.17-5.21 we compare V-HashMem Architecture with PHmem over the 

parameters we used in the previous comparisons. Looking at figure 5.17 in each and 

every approach we achieve much better area cost per character. On the other hand, 

Frequency and Throughput in PHmem in both cases is better than the ones of V-

HashMem Architecture. Also in both cases, less memory blocks are used in PHmem 
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than ours but the stored patterns were 60% less than the ones in V-HashMem. Finally, 

comparing PEM and PEM/m for the first approach between the 2 architectures we 

notice that V-HashMem Architecture is better by a factor of 7 and 10 respectively 

than PHmem. Also, and for the second approach in V-HashMem these values are 5 

and 8 times better than the ones of PHmem.  
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Until now, we compared V-HashMem Architecture with similar designs. Other 

approaches are the DCAM which was proposed by Sourdis et al.[5],  DCAM by 

Baker and Prassana [12, 13] and Non Deterministic Finite Automata (NFA) by Clark 

et al. [9]. The results of these approaches are shown in Table 5.10. DCAM [5] by 

Sourdis et al achieves better Frequency and Throughput but worse Area cost per 

character and PEM than V-HashMem. Generally, it is considered as the best FPGA-

based intrusion detection architecture but it supports 86% less patterns’ characters 

than V-HashMem Architecture. On the other hand, DCAM, which was proposed by 

Baker and Prassana, has two approaches: Unary-based and Tree-based. Both 

approaches of this design not only achieve less Frequency and Throughput than V-

HashMem Architecture but they also use much more area cost per character. Finally, 

NFA achieve worse Frequency than V-HashMem Architecture but it achieves a very 

large Throughput (about 7 Gbps) since the input bits are 32. This approach, also, has 

very much area cost per character and it supports much less patterns’ characters than 

V-HashMem Architecture. Finally, these approaches do not use any memory block.  

 

In conclusion, V-HashMem Architecture achieves the best PEM comparing with 

every related work we mentioned before. Also, it achieves the same or better 

Frequency and Throughput comparing with the most designs. Finally, V-HashMem 

Architecture used the less Area than any other design even though the stored patterns’ 

characters are in most cases 70% more than the ones of the other approaches and this 

is the strong advantage of V-HashMem Architecture.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Detailed Comparison between the Designs over Area, Memory and Performance Parameters   

Design 
Input 
bits 

Patterns' 
Chars LCs LCs/char 

Mem Blocks 
(kbits) 

Frequency 
(MHz) 

Throughput 
(Gbps) PEM PEM/m Device 

8 2084 0.062 320 2.56 42.66 22.45 
16 3918 0.11 ~309 ~4.95 44.98 23.67 

VirtexIIpro 
20 

8 2084 0.062 190.387 1.52 21.98 11.4 
16 3918 0.11 ~176 ~2.82 24.68 12.8 

Spartan3 
3000 

8 2084 0.062 346.021 2.77 44.64 23.49 
V-HashMem 

 
 
 16

 
 
 
 

33613 
 
 
 3918 0.11

648 
 
 
 ~340 ~5.44 49.45 26.02 

Virtex4  
35 
 

                   

Best HashMem 8 2759 0.15 558 339 2.71 18.3 6.11 
VirtexIIpro 
7 

HashMem unoptimized 8 2632 0.14 1188 333 2.66 18.86 2.96 
HashMem unoptimized 16

18636 
 5219 0.28 1188 322 5.15 18.4 2.89 

VirtexIIpro 
20 

                   

Bloom Filters  8 420000 36720 0.09 629 63 0.50 5.58 37.24 
VirtexE 
2000 

RDL+ROM 8 20800 >8000 >0.38 162 238 1.9 <5 <6.42 
Spartan3 
1000 

PH-mem 8 9426 0.45 576 361 2.88 6.4 2.32 

PH-mem 16
20911 

 13554 0.65 612 358 5.73 8.85 3.02 

Virtex2 
1000 
 

                   

DCAM by Sourdis et al 8 18036 17538 0.97 0 335 2.68 2.75 Undefined 
Virtex2 
3000 

DCAM by Baker and Prassana (Unary-
based) 8 19584 8056 0.41 0 185 1.49 3.62 Undefined 
DCAM by Baker and Prassana (Tree-
based) 8 19584 6340 0.32 0 237 1.90 5.86 Undefined 

Virtex2pro 
100 
 
Virtex2 
8000 NFA by Clark et al 32 17537 54890 3.13 0 219 7.00 2.24 Undefined 

Table 5.11: Summary Table. In this Table we summarize the results for any evaluation metric for every design we mentioned in this chapter.  

 





 

 
 
 
Chapter 6 
 
Conclusions and Future Work 
 
 
 

In this work we extended the HashMem Architecture which is an FPGA-based 

Network Intrusion Detection System. NIDS monitor the incoming packets on the 

network and compare some specific packets’ data with known threats which are 

stored in a database. In our work, we store the patterns of different but close lengths in 

a single memory structure achieving low area and memory cost. We use the reuse 

technique which was firstly proposed in HashMem Architecture, with which we break 

the long patterns into shorter ones and reuse the already existent memory structures. 

In order to report a long pattern matching we combine the partial matching signals 

and report the final match. For this work, we used the SNORT rule-set, which is one 

of the most famous NIDS. 

To this end we have achieved savings in the logic cost, while retaining the 

memory use at levels comparable to that of HashMem despite the 70% larger rule-set. 

This is a clear indication of the scaling abilities of the overall HashMem approach. 

The efficiency of V-HashMem is especially evident in the logic area cost per search 

pattern character (~0.06 LCs/char) and in the expected PEM rating, which about 

doubled compared to HashMem, and is the highest as we saw in the previous chapter. 

In addition, another important discovery was that as the SNORT rule-set progresses, 

new and more difficult rules are included. In our case, the difficulty stems from the 

fact that very wide patterns increase the cost of glue logic considerably, since some of 

them, when broken into shorter ones, created tree-like structures. Furthermore, as V-

HashMem Architecture exactly defines the intrusion pattern, we eliminate false 

positives from which many other related works suffer. 

We evaluated our system and we proposed two ideas in order to improve it and 

make it more efficient. Firstly, we proposed the idea improve the throughput of the 

system but the impact was to almost double the area cost, using dual port memories 
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(same number of memory blocks). Which of the two approaches is better depends on 

what kind of system we would like to have.  

The second idea, which was proposed, was about the support for header matching 

information. We found that it is possible at the cost of three extra memory blocks and 

about 80 logic cells for the necessary logic. This is a very small cost compared to the 

increased accuracy of the pattern matching subsystem. Of course, a complete system 

would also add the cost of header classification into the header group identifiers, but it 

was not included in our measurements.  

Other potential challenges for the future include regular expressions. Also it 

would be very interesting to implement some of the options we described in the 

paragraph 2.1 (distance, within, etc). Another interesting idea for future work in order 

to improve the efficiency of V-HashMem is to pipeline the memories since the critical 

path of V-HashMem Architecture is in the memories.  

These improvements lead closer to an efficient FPGA implementation of a NIDS 

system. We believe that such a successful system will rely on memory to store the 

patterns, and that the HashMem architecture with the proposed variable length 

extensions is a very competitive approach.  
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