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Chapter 1

Introduction

During the last decade there has been increasing scientific interest in a new
distributed computing model. In this model, peer-to-peer computing, the
traditional distinction between clients and server back-ends disappears and
every participant plays both roles. Peer-to-peer networks are being studied
extensively and are expected to achieve greater scalability, availability and
ease of deployment than existing solutions.

Early peer-to-peer systems, such as the file-sharing networks Napster
and Gnutella, had a number of limitations on the indexing scheme used
to locate information. Napster stored such an index on a central server,
thereby greatly limiting the scalability, availability and privacy of the ser-
vice. Gnutella did not employ a centralized index, but due to its simplistic
design it commonly failed to find content that was actually in the system.

Soon afterward, the research community proposed distributed infrastruc-
tures that solved this indexing problem efficiently. These approaches were
Distributed Hash Tables and provided a mapping of keys onto values on ex-
tremely large, Internet-scale systems [17, 20]. One drawback of distributed
hash tables is that, due to the hashing mechanism employed to ensure load
balance, only exact match queries were evaluated efficiently.

Lately there has been significant research work in an attempt to bring
relational database semantics into the peer-to-peer computing model. The
work in the area is far from complete and the original goal has only been
achieved partly, because Distributed Hash Tables are designed to efficiently
support only equality queries. Other interesting problems include efficient
range queries, joins and aggregation. Recent work has extended this func-
tionality to perform efficient range search on a single attribute or in multiple
dimensions [16, 4, 5]. This work focuses on range search, because it is cur-
rently the most important open problem and is connected to another popular
subproblem, the nearest-neighbor problem.

Range queries on one dimension can be evaluated on a number of existing
peer-to-peer networks, like P-Grid [1] and PHT [16]. Both networks actually
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8 CHAPTER 1. INTRODUCTION

store data items in a virtual overlay network, in this case a binary tree, which
is partitioned and distributed across the participating computers. Queries
are forwarded from the computer who initiated the query to other computers
who lie ’closer’ to the answer, until the computer who has the answer to the
query is reached.

On more dimensions, the range query problem starts to become more
complicated. An approach to hide this extra complexity is using a space-
filling curve to map all multi-dimensional data onto one dimension. In
this technique the data items and the queries are mapped onto one dimen-
sion prior to insertion. Then, a network supporting one-dimensional range
queries is used to retrieve answers to incoming queries. Finally, the inverse
function is applied and the multi-dimensional data are extracted from the
space-filling curve mapping. Another approach is to store data items and
queries natively in a multi-dimensional space. Such an idea is used in CAN
network [17], which stores data in a multi-dimensional torus.

Another distinction in the design of peer-to-peer networks is the parti-
tioning policy. Some networks, when a new computer joins the system, the
data space of a random node is split in two equal parts. This idea was pro-
posed based upon the assumption that input data is uniformly distributed
throughout the whole data space. Recent proposals split the data load in
two equal parts when a new computer joins, irrespectively of the data space
associated with the two new nodes.

The number of applications proposed for peer-to-peer networks is gi-
gantic. However, only few such systems have been successful, mainly those
providing file-sharing capabilities. The number of proposals for applications
on peer-to-peer networks with range query support is significantly smaller,
mainly because range-query support hasn’t been very popular outside the
academic community.

An application requiring range query support is GHT [18], which pro-
vides a functionality similar to a hash table for geometric data. The idea
focuses in sensor networks and attempts to take advantage of the topology
of the network for optimal routing and query evaluation.

Another possible application would be the ability to provide location-
based services on ad-hoc networks. As the wireless connectivity has become
very popular, Internet access is available almost anywhere, for example using
GPRS. Users might use the Internet connectivity to query other mobile users
and obtain information about nearby points of interest.

Finally, range query support is an essential feature when building mas-
sive and reliable databases from small and unreliable computers. If a group
of people want to put information in a database and publish it online, cur-
rent practices would require all these people to meet and buy a server and
a high-bandwidth connection. Under the peer-to-peer model, each partici-
pant would use his desktop computer and his home connection to maintain
and make the information publicly available. Thus, new applications be-
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come possible, like Internet-scale distributed databases, run only by people
interested in their content.

In this work we will evaluate and compare the behavior of different
structured peer-to-peer networks when storing low-dimensionality data and
being queried with orthogonal range queries. The nature of our attempt
—comparison— requires precision and careful assessment of the different
aspects of the compared objects. The object in question —peer-to-peer
networks— increases the complexity significantly.

Peer-to-peer systems grow to a very large size, often with millions of
nodes. Also participants join and leave continuously and the network topol-
ogy is constantly changing. Moreover, networks of that scale are much more
susceptible to network failures and therefore a good peer-to-peer system
must take into account the possibility of a temporary network failure and
ensure that the system will maintain its good characteristics in such oc-
casions. These properties, most of which are specific to the peer-to-peer
networks, make research work in this area very challenging.

In order to compare two networks, we must specify what a ’good’ network
features and a ’bad’ network lacks. One desired property of such networks
is good load balance, that is the efficient distribution of the processing load
equally to all participating peers. Another desired property is the minimal
disruption of peers who are unrelated to a query, as ideally only the relevant
peers should be contacted for an answer to a query. Also the ability to
give back answers quickly is very important. This can be broken down
to the ability to provide a few relevant answers quickly (short response
time) and the ability to quickly provide all relative information (short total
answer time). Finally, a very important property is the ability to locate
information while the network is evolving, that is while new computers join
and connected computers leave or fail, but we will not deal with this last
issue in this work.

Perhaps the most difficult obstacle is the lack of a proper and realistic
model for evaluating new proposals. Work in this area is still in its infancy,
with few experimental observations. Researchers therefore rely on statistics
and well-known distributions to prove the efficiency of their ideas but there
is no widely-adopted standard. Another problem is the absence of realis-
tic behavior patterns of the users participating in peer-to-peer systems, an
essential aspect of peer-to-peer networks. Again statistical properties are
frequently employed to combat the last problem.

One important aspect of this work is the introduction of some metrics to
make meaningful quantitative comparisons. Our metrics provide a system-
atic methodology for evaluating network efficiency and focus on the perfor-
mance of the desired properties of the networks, as described in the previous
paragraphs. This work, however, doesn’t introduce a complete theoretical
model for analysis of peer-to-peer networks; it relies on simulation.

All in all, in this work we will evaluate the performance of structured
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peer-to-peer networks when performing range search queries. Although com-
parison is difficult, we carefully created metrics to evaluate the performance
of the network with respect to the desired properties. After analyzing the
results, we will attempt to demonstrate good design practices which achieve
better performance and are not tied to a specific network.



Chapter 2

Related work

The first efficient distributed indices appeared in the early 1990s, being the
essential building block for parallel databases. An example of such work is the
LH* distributed data structure, which was designed to support efficient data
expansion to new servers in order to ensure good load balance and required
no central server, for example in the form of a master directory [13]. Such
data structures, however, were inadequate for peer-to-peer systems. These
systems differ in two major characteristics from parallel databases: There
is no distinction between clients and servers, and the network is changing
rapidly as users are free to join and leave the network at any time.

2.1 Distributed hash tables

Attempts to create a fully decentralized indexing scheme in a peer-to-peer
network can be traced to the original design of the Gnutella network, in
March 2000. Each user of this network maintains a list of other users and
in order to locate information, each query is forwarded to every known user
who recursively forwards the query to new users. This scheme, however, has
been shown to require exponential bandwidth to the number of connected
users [19]. Therefore, a search request will sooner or later be dropped and
most queries will actually reach only a very small percentage of the network.
Making matters worse, the totally unstructured nature of this network makes
such an approach the only solution for locating data.

This observation spurred the academic community to invent distributed
indexing schemes which work well on Internet-scale environments. The main
functionality such structures support is the ability to store and retrieve data
items identified by unique keys, with a simple interface that supports the
following operations:

• put(key, data) which inserts the data in the structure, under key.

• get(key) which retrieves the data item associated with the specific key.

11
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Figure 2.1: Typical Chord topology: the shaded region is the responsibility
area of the shaded peer and the arrows indicate the entries in the finger
table.

It can be observed that the interface follows the conventions used for
retrieving and storing data in regular hash tables and that the distribution
of data to the appropriate peers is completely transparent to the application.
Such structures are named Distributed Hash Tables.

2.1.1 Chord

One distributed hash table is the Chord data structure, proposed by Stoica
et al. [20]. Chord makes use of consistent hashing [12] to assign keys to the
peers, a technique which is designed to let peers enter and leave the network
with minimal disruption. This decentralized scheme tends to balance the
system load, since each peer receives roughly the same number of keys.
Chord manages to locate information with O(logn) messages.

The consistent hash function in Chord assigns each key and peer an m-
bit identifier. All identifiers are ordered in an identifier cycle. Each key is
assigned to the first peer whose identifier equals or follows the key in the
identifier circle. Also, in order to achieve logarithmic lookup performance,
each peer maintains a finger table which points to the peer responsible for
every 2i−1 interval from this peer, with 1 ≤ i ≤ m.

Figure 2.1 shows a Chord network with m = 5.

2.1.2 CAN

Another distributed hash table is the content-addressable network (CAN),
proposed by Ratnasamy et al. [17]. The data space in the CAN network is
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Figure 2.2: Typical CAN topology: the shaded region is the responsibility
area of the peer and the arrows indicate the peers which the shaded peer
knows.

a virtual k-dimensional Cartesian coordinate space on a k-torus. CAN is
designed to be scalable, fault-tolerant and self-organizing and has a routing
performance of O(kN

1

k ).

Each peer is assigned a partition of the entire coordinate space. The
hash function maps a key onto a point in the coordinate space. The key-
value pair is stored in the peer that owns the area within this point lies.
Also, for routing purposes, each peer also maintains a routing table that
holds the coordinate zone and the network address of each neighboring peer.
Lookup messages are forwarded by a simple greedy algorithm that attempts
to minimize the distance to the destination.

Figure 2.2 shows a CAN network with 20 peers.

2.1.3 P-Grid

The P-Grid is a distributed hash table which is based upon a virtual binary
search tree and was introduced by Aberer et al. [1]. In P-Grid, the data
items hash to m-bit identifiers. Each peer is assigned all identifiers which
begin with a given prefix, in such a way that each peer is responsible for a
partition of the entire data space. For routing purposes, each peer maintains
a link to a peer in the other side of the virtual binary tree, for every bit of
its prefix. Lookup messages are forwarded to the peer which has the longest
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Figure 2.3: Typical P-Grid topology: the shaded region is the responsibility
area of the shaded peer. The arrows indicate the subtrees in which the
shaded peer knows at least one other peer.

common prefix with the destination. Figure 2.3 shows a P-Grid network
with m = 4.

2.2 Range queries

One important type of queries in centralized databases is range queries
(sometimes called orthogonal range search queries, to differentiate them from
other more general types of queries) which return every data item within
the range boundaries. Formally, if M is a domain on which the total order
< is defined and S ⊂M is an one-dimensional data items set, then when we
evaluate the one-dimensional range query (q1, q2) with q1, q2 ∈M we retrieve
{d ∈ S | q1 < d ∧ d < q2}. For k dimensions, the data items set is Sk ⊂Mk,
a k-dimensional range query is defined by (q1, q2) with q1, q2 ∈Mk and when
the query is evaluated we retrieve {d ∈ Sk |

∧k
i=1

(

πi(q1) < d ∧ d < πi(q2)
)

},
with πi(q) being the projection of k-dimensional point q on dimension i.

2.2.1 Space-filling curves

Space-filling curves (also known as Peano curves) are curves whose ranges
contain the entire 2-dimensional unit square, or the entire 3-dimensional unit
cube, or for more dimensions the entire k-dimensional unit hypercube. This
interesting property makes space-filling curves a flexible tool for converting
any high-dimensional problem into an one-dimensional problem. Space-
filling curves are used for low-dimensionality problems in the hope that
spatial locality in the k-dimensional domain is preserved —to some extent—
on the one dimension of the space-filling curve.

One of the most often used space-filling curves is the Z-order space filling
curve. It is very popular in computer science because mapping points of
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the k-dimensional space to the one-dimensional curve is easy: if the point
is at the two-dimensional binary coordinates (xn · · · x2x1, yn · · · y2y1), the
one-dimensional mapping is done by interleaving the coordinate bits and
this point is mapped on point ynxn · · · y2x2y1x1. Figure 2.4(a) shows the
Z-order space filling curve applied over a two-dimensional unit square.

One of the biggest disadvantages of Z-order space filing curve is that the
abrupt transitions it exhibits destroy spatial locality. One curve performing
better in this aspect is the Hilbert space filling curve, shown in Figure 2.4(b).
However, mapping k-dimensional points to one dimension using the Hilbert
curve is more complex than performing bit interleaving as in Z-order curve.

Space-filling curves allow k-dimensional queries to be also mapped on
the one-dimensional curve. However, the one-dimensional range that is pro-
duced represents a superset of the query space, which means that the evalua-
tion of the one-dimensional query will return more data items than the eval-
uation of the k-dimensional query. Therefore, the data items domain cannot
be collapsed to one dimension using this technique; space-filling curves pro-
vide merely an overlay: the k-dimensional query must be evaluated in order
to obtain the proper answer set.

Despite this major drawback, however, space-filling curves present an
easy way to adapt low-dimensionality problems to work with existing, widely
used and thoroughly studied data structures for one-dimensional data, like
B-trees. This is achieved by first locating the superset of nodes relevant to
the query, using a space-filling curve, and then evaluating the k-dimensional
query on these specific nodes only.

2.2.2 kd-tree

The first data structure to natively support multi-dimensional range queries
is the kd-tree, proposed by Bentley [3]. A kd-tree is a tree data structure that
organizes points belonging to a k-dimensional space. It uses splitting planes
that are perpendicular to one of the coordinate system axes, partitions the
data set and assigns each partition to a tree node1.

In order to construct a kd-tree, we construct a root node which is re-
sponsible for the whole data set. We then cyclically select the dimension
on which the plane will be split and we split on the median of the points in
this dimension in this node. Tree construction requires O(nlogn) processing
time and O(n) memory space. Figure 2.5 shows an example of a kd-tree
built upon two-dimensional data.

In order to evaluate a range search query, we start from the root and
check if the query region intersects the cell the current node defines. If it

1Originally, kd-trees assign to each tree node one point only. The idea of assigning
each node a partition of the data set is newer and is formally known as a kd-trie. Because
the algorithms and structure are extremely similar, we use the term kd-tree to describe
both approaches and focus on the kd-trie for the rest the text.
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(a) Z-order space-filling curve

(b) Hilbert space-filling curve

Figure 2.4: Space-filling curves applied on two dimensions.
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Figure 2.5: Typical kd-tree for two-dimensional data: the lines indicate
the splitting planes and the numbers show the level of the subtree when
performing the split.

does, then we repeat this check for both children. If it doesn’t, no child
node will also contain points of interest, so we don’t check further down this
tree. Applying this algorithm recursively quickly prunes irrelevant portions
of the space and the time required to evaluate a range query is shown to be
O(n1−1/k + s), where s is the number of data items in the answer set.

2.2.3 R-tree

R-tree is a tree data structure proposed by Guttman [7]. R-trees are similar
to B-trees but are used for indexing multi-dimensional data items and sup-
port spatial access methods. The R-tree data structure partitions the data
space in hierarchically nested boxes, which can even overlap. Each internal
node of the R-tree stores a variable (but limited) number of child nodes and
each child node’s bounding box. Leaf nodes only store data elements and
usually correspond to disk pages, like in B-trees.

The insertion and deletion algorithms use the hierarchy of bounding
boxes to decide in which leaf node will the insert or delete operation take
place. Insertions and deletions result in splitting or merging of existing
nodes, so that the tree remains balanced. The searching algorithm also uses
bounding boxes to decide which child node to visit to reach the required leaf
node.

R-trees do not guarantee good worst-case performance and initial par-
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tition of the data space is a key factor in good performance. Kamel and
Faloutsos [11] propose the Hilbert R-tree and show that by ordering all data
items using the Hilbert space-filling curve there can be significant improve-
ments. Newer variations, like the priority R-tree proposed by Arge et al. [2],
provide good worst-case performance.

2.3 Distributed structures with range query sup-

port

All distributed hash tables described implement several desired features,
such as logarithmic number of messages to the number of users for retrieving
information. However, they also share one major drawback: they rely on
uniform hashing functions to achieve probabilistically good load balance.
This is catastrophic for range and proximity queries, because processing such
a query efficiently means benefiting from spatial locality. Locality however
is destroyed when keys are uniformly hashed before being stored in the
network, so distributed hash tables can not handle such types of queries
natively.

This problem has been identified and alternative solutions have been
proposed which retain the good characteristics the distributed hash tables
demonstrate and, at the same time, can handle range queries and their ad-
ditional complexity. Such proposals have been inspired by scientific work on
distributed hash tables and in fact share routing algorithms and structures
with the distributed hash tables that are based on.

2.3.1 PHT

Ramabhadran et al. [16] present a data structure which is based upon a
distributed hash table and augment it to support one-dimensional range
queries. They name this data structure Prefix Hash Tree, or PHT for short.
The PHT data structure consists of two discrete layers: a binary trie over the
data set and a network layer providing distributed hash table functionality.

The domain being indexed is m-bit binary strings, called keys. Every key
is stored at the leaf node whose label in the trie is a prefix of this key. The
corresponding peer responsible for this leaf node is obtained by querying the
distributed hash table with the label of this node. Therefore, load balancing
is as good as the underlying distributed hash table layer can achieve.

An interesting property of the PHT data structure is the definition of a
threshold, B, which reflects the maximum number of data items each leaf
node can store. If a leaf node stores more than B data items, it must split
in two. If any sub-trie stores less than B+1 data items, two leaf nodes must
merge. With the introduction of this threshold, the shape of the trie becomes
dependent on the distribution of the keys. The trie is deep in regions which
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are densely populated and shallow in regions which are sparsely populated.

A definite advantage of the PHT data structure is that it can be imple-
mented on top of any distributed hash table and inherits its load-balance
characteristics.

2.3.2 Range queries on P-Grid

Datta et al. [4] present two algorithms for supporting one-dimensional range
queries in structured peer-to-peer networks on top of a trie abstraction in
O(logn) complexity. They use the P-Grid network as an example of a binary
trie and propose two algorithms for processing range queries.

The first one, the min-max traversal algorithm, relies on links pointing to
the peer that is responsible for the next partition of the ordered key space.
This way, when a range query is processed, a P-Grid lookup for the lower
bound of the query interval is performed. When the peer responsible for the
minimum bound is located, it answers back the relevant data items in his
partition and forwards the query to the peer responsible for the next parti-
tion in the key space. This exhaustive procedure is applied recursively until
the peer responsible for the maximum bound has been located. Figure 2.6(a)
shows an example of this algorithm. One drawback of this approach is that
it requires new links between peers and cannot be used directly on top of an
existing P-Grid network. Another drawback is that a single peer failure can
terminate a query prematurely, without reaching the upper bound. Thus,
one node failure can easily compromise the reliability of the system.

The second algorithm, the shower algorithm, forwards queries in parallel
to peers who have part of the answer. When a peer receives a range query, it
forwards it to an arbitrary peer responsible for any of the key space partitions
within the range of the query. The query is then recursively forwarded to
other peers in the query interval using this peer’s routing table. Each peer
can discover the subset of peers he is responsible for forwarding the message
to by taking into account the relative position of the peer who forwarded the
query to him in the virtual binary tree. Although it is possible to forward
a query to a peer outside the query range, it is guaranteed that this peer
will forward the query back to a partition within the range. Figure 2.6(b)
provides an example of this algorithm. This technique can retrieve answers
faster and is less prone to peer failures but is shown to require more messages
than the min-max algorithm on average. Also, it utilizes only the existing
P-Grid links to provide answers to range queries.

The shower algorithm has definite advantages over the min-max algo-
rithm and we will focus on this algorithm for the remainder of the text.
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(a) Min-max algorithm

(b) Shower algorithm

Figure 2.6: Range query support on P-Grid: The shaded peer initiates the
query and the query boundaries are indicated by the line stop markers. The
arrows represent the messages sent and the numbers indicate the order the
message forwarding takes place.
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2.3.3 MURK-CAN

Ganesan et al. [5] experimentally compare, in a peer-to-peer environment,
two popular spatial-database solutions to the multidimensional range query
problem. The solutions they experiment with are space-filling curves and
kd-trees.

The first approach of supporting multi-dimensional queries first maps
the data down into a single dimension using a space-filling curve. After-
wards, the single-dimensional data is partitioned among a dynamic set of
participating peers. The underlying network is responsible for locating the
peer responsible for the minimum bound in the query range and using neigh-
boring links to traverse all peers until it locates the peer responsible for the
maximum bound of the query. One drawback of this technique is that every
query will reach some non-relevant peers as well, because the space-filling
curve’s one-dimensional range may actually map to peers irrelevant to the
query in the native query space.

The second approach, named multi-dimensional rectangulation with kd-
trees or MURK for short, partitions the data directly in the high-dimensional
space which is the domain of the problem. This technique breaks up the
data space into hypercubes, with each peer managing one hypercube. The
process of creating this partitioning actually resembles kd-trees: Initially,
one peer manages the entire space. When a new peer arrives, the space is
split along the first dimension into two parts of equal load, with one peer
managing each part. This corresponds to splitting the root node of the kd-
tree to two children. As more peers arrive, each splits the partition managed
by an existing peer; that corresponds to splitting an existing leaf in the kd-
tree. The dimensions are split cyclically to ensure that locality is preserved
in all dimensions. The partitioning scheme is very similar to that employed
in CAN, with the crucial difference that MURK partitions equally the data
load instead of the data space. Figure 2.7 shows a typical MURK topology
on top of a synthetic geographical dataset that reflects points of interest
in Greece. (Section 3.1 describes the details of the dataset construction
process.)

In the MURK approach, each peer knows his neighboring peers in all
dimensions, that is the peers that share a boundary with this peer. For
more efficient routing each peer maintains also a random list of 2logn peers,
obtained, for example, from random walks. The queries in MURK are an-
swered greedily: the query is sent to the neighboring peer that is minimizing
the distance to the query range centroid, where the distance from a peer P

to a hypercube Q is defined as the minimum Manhattan distance from any
point in P ’s area to any point in Q. Once the query reaches a relevant peer,
the query is flooded to all relevant neighbors recursively.
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Figure 2.7: Typical MURK-CAN topology on a dataset with geographical
locations of points of interest in Greece.
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2.3.4 VBI-tree

Jagadish et al. [9] present a balanced tree structure overlay for peer-to-
peer networks which supports a variety of centralized multi-dimensional tree
structures and guarantees that range queries require at most O(logn) mes-
sages for evaluation.

The VBI-tree is a tree data structure that partitions the problem space
and assigns it to the responsibility of some peers. Leaf nodes are responsible
for data items and internal nodes are used only for routing purposes. Each
node maintains pointers to its parent and children nodes, to its adjacent
nodes and to neighbor nodes. Neighbor nodes are nodes at the same level
of the tree. Links are maintained to neighbor nodes whose distance from
this node is a power of 2. Also each node maintains links to all ancestor
nodes and stores the height of the subtrees of all its children. Finally, each
internal node is aware of the area each node it links to is responsible for.
Every physical peer is responsible for one internal and one leaf node at all
times2.

Range queries are evaluated by first forwarding the query to all neighbor-
ing and children nodes that have an intersection with the query boundaries.
Then, if the query in not answered completely, it is forwarded to the parent.
By recursively applying the above algorithm, every query can be evaluated
in O(logn) number of network hops.

The VBI-tree is a much newer work than the other techniques for per-
forming range queries in peer-to-peer environments which have been pre-
sented so far. It addresses problems that were previously very difficult to
solve, like specifying the boundaries of the dimensions of the data set, which
is a very hard problem in real-time applications. The VBI-tree provides
by design a solution to this problem, with the introduction of discrete data
which actually represents data items that lie outside the current data set’s
boundaries and with network restructuring algorithms that allow the en-
largement of the problem boundaries.

Another problem which is handled by the VBI-tree structure is the prob-
lem of a new node joining the network. Previous work relies on unverified
statistical assumptions, like that each new peer joins the network by se-
lecting any existing peer with equal probability and splitting its assigned
space. This uniform probability is what most peer-to-peer networks require
for good load balancing. VBI-tree structure, however, employs a simple but
effective algorithm for selecting which peer will further partition his assigned
data space and thus manages to enforce good load balance.

2In fact, there is an exception: there will always be exactly one peer who will be
responsible only for one leaf node, but for no internal node. This follows from the fact
that the VBI-tree is always a perfect tree.



24 CHAPTER 2. RELATED WORK

2.3.5 Other work

Other research work in the area has been done by Ratnasamy, Karp et
al. [18], as part of the GPSR, a research project on geographical routing for
mobile wireless networks. In this publication, a geographic hash table is pro-
posed, named GHT. Although GHT has many similarities to the problem we
are dealing with, it mainly focuses at the network level, at routing protocols
for communication between mobile clients and doesn’t provide higher level
algorithms.

2.4 Simulators of peer-to-peer networks

Typical peer-to-peer networks involve thousands of computers, make heavy
use of the network communication capabilities of the underlying hardware
and typically computers join and leave continuously. These facts make re-
searching and obtaining experimental results for peer-to-peer networks a
very difficult, error-prone and time-consuming process. The only feasible
way to approach such problems is to use realistic simulation models to ex-
tract useful information about the (virtual) network, before proceeding to
real implementations.

The academic community has created many specialized simulation tools
for a variety of peer-to-peer networks. There is no single widely accepted
framework for performing experiments on peer-to-peer networks; each indi-
vidual solution has its own strengths and weaknesses and often focuses on
different aspects of the problem.

2.4.1 p2psim

A simulator which is widely used for obtaining experimental data from vir-
tual peer-to-peer networks is p2psim [6]. It is developed by Gil et al. at the
Computer Science and Artificial Intelligence Laboratory at Massachusetts
Institute of Technology. p2psim is an open-source, multi-threaded, discrete
event simulator for peer-to-peer protocols. At the time of this writing, most
DHT protocols are supported and have been already implemented: Chord,
Accordion, Koorde, Kelips, Tapestry and Kademlia.

2.4.2 PeerSim

PeerSim [10] is another popular peer-to-peer simulator in use. It is developed
by Jelasity et al. and is a free-source, JavaTM-based simulator. It is designed
with scalability and dynamicity in mind and comes with two engines, a cycle-
based one and an event-driven one. The simulator comes with no protocol
implementations and provides only rudimentary support for many essential
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aspects of peer-to-peer networks, but it is extremely flexible, extensible and
easily configurable.

PeerSim is the simulator we used to get the experimental results from
our prototype implementations. A more thorough description of the PeerSim
simulator follows in Section 3.2.1.

2.4.3 Other simulators

Another simulator for peer-to-peer networks is 3LS [22], a generic 3-layer
peer-to-peer simulator proposed by Ting and Deters. It’s main goal is to
handle extremely complex peer-to-peer networks.

Other peer-to-peer networks have specific simulators, like GPS [24] sim-
ulator for BitTorrent traffic and GnutellaSim [8] for modeling large-scale
Gnutella networks.

2.5 Comparisons between peer-to-peer networks

Although many different peer-to-peer networks and algorithms have been
proposed, there hasn’t been much work in the area of comparing similar
ideas to reveal good practices and possible bottlenecks.

Lua et al. [14] provide a survey and comparison of many peer-to-peer
overlay schemes, both structured and unstructured ones. Specifically, they
describe in detail CAN, Chord, Tapestry, Pastry, Kademlia and Viceroy
structured networks and FreeNet, Gnutella, FastTrack, BitTorrent and eDon-
key unstructured networks. The comparison between these networks, how-
ever, is rudimentary and qualitative. All networks are compared on some
specific aspects (like upper-bound for information lookup cost, reliability and
security) but no experiments are performed, only descriptions are given.

Tsoumakos and Roussopoulos [23] make a detailed experimental com-
parison of different search methods on unstructured peer-to-peer networks.
The metrics they compare on are efficiency in discovery (search accuracy),
bandwidth consumption and adaptation to topology changes. They eval-
uate different approaches in searching: flood-based schemes (like breadth
first search), other blind methods (like random walks) and some informed
methods.
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Chapter 3

Results

A brief overview of the work will be provided in this chapter. We will first
describe the process used to obtain the different input data sets for the ex-
periments. We will then give an abstract but consistent description of our
simulation framework for evaluating different structured peer-to-peer net-
works with range query support. Special attention will be given to specific
issues which prove to be dominating factors for good results, like the initial
topology of the network and the scheme used to assign partitions of the
problem space to physical peers.

3.1 Dataset creation

In order to evaluate and compare the different approaches in low-dimensional
range search, good datasets are required. Input data have two forms: they
are points, which correspond to data keys, and rectangles, which correspond
to query ranges.

For 2-dimensional data, we started by downloading some geographic da-
tasets from ”The R-tree portal” web site [21]. Specifically, we found two
datasets describing the roads and rivers of Greece (using a piecewise linear
approximation) and a dataset containing the geographic locations of cities
and villages in Greece. These original datasets didn’t contain range queries.

In order to extract a list of points from the piecewise linear datasets,
which will be then used as the data input for the simulations, we used the
following technique: First, we choose at random one line segment. Then we
pick a point on this segment and we displace it by a (small) random amount.
By applying this iteratively we can get a large number of points. The final
input data set is constructed by merging1 the results obtained from this
procedure with the datasets originally containing geographic points.

1All the original datasets were using the same reference point for the axes, so no
transformations were required.

27
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Number of points Number of queries Maximum query size

10000 500 50

1000000 50000 50

10
30
50

100000 5000 100
250
500
1000

Table 3.1: Two-dimensional datasets

The query construction process is totally synthetic. We pick one point
from the input data set, we displace it by a random amount and then we
create a square query around this point, of random distance. One important
parameter here which can affect the results is the number of data items
which will be retrieved if this query is evaluated. In order to keep this
parameter under control, we actually pre-evaluate such queries and keep
only the queries whose size satisfies our constraints.

The two-dimensional datasets which were produced by this process are
listed in Table 3.1.

For higher dimensions, we only used synthetic data obtained. We created
datasets using a uniform distribution for 2, 3, 4, 5, 6 and 8 dimensions. For
each dataset, we created 100000 data points and 5000 queries, with each
query evaluating to at most 50 data points.

3.2 Network simulation

We will now present the simulation framework we created to obtain the
experimental results. The framework is based upon the PeerSim simulator
which offers tremendous flexibility but very limited support for running peer-
to-peer experiments. For example, PeerSim doesn’t natively support storing
data items in the class representing a peer; the implementor must take care
of that.

In this work, we will simulate the P-Grid, CAN, MURK, PHT and VBI-
tree networks and some variations. The PHT network requires an additional
DHT layer and we implemented Kademlia[15] for this purpose.

In this section we will first describe the PeerSim internal structure, its
initialization and configuration. We will then describe the actual algorithms
we used to initialize the topology for each different network. Finally, we
will provide an abstract description of the simulation model we created to
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experimentally evaluate these networks.

3.2.1 PeerSim internals

The PeerSim simulator structure is based upon components and makes it
very easy to quickly create pluggable building blocks, which in fact corre-
spond to JavaTMobjects.

PeerSim supports two different simulation models: a cycle-based and an
event-driven model. The second model is the most accurate and can sim-
ulate with accuracy continuous-time delays, like communications latencies.
The first model is simpler and thus makes it possible to achieve extreme
scalability and performance, at the cost of some loss of realism. Special care
needs to be taken when the cycle-based model is selected, in order to fully
specify what a simulation cycle reflects and how will it affect the output
results.

Under the event-driven model, each operation is associated with a time
delay. All events carry time-related information, in the form of a timestamp,
and get sorted in a queue according to their timestamp. The event which
has the timestamp which is closer to current simulation time is processed
first: The specified operation is performed, then the timestamp is updated
by adding the old timestamp and the delay associated with this operation
and finally this or any new events are re-inserted in the event-queue.

Under the cycle-based model, peers communicate with each other di-
rectly and are given the control of the simulation periodically, in sequential
order. During this time they can perform arbitrary actions, such as call
methods of other objects or perform computations. In the application level,
this is achieved by having all building blocks (objects) implement the same
interface. The most interesting interfaces PeerSim provides are listed in
Table 3.2.

In order to make modular programming easier and avoid lengthy recom-
pilation processes, the simulation building blocks (like protocol type) and
parameters (like network size, input data, etc.) can be specified at run-time
from a configuration file.

The general idea of the simulation model is:

1. Choose a network size (number of nodes).

2. Choose one or more protocols to experiment with and initialize them.

3. Choose one or more Control objects to monitor the properties you are
interested in and to modify some parameters during the simulation
(like the size of the network, the internal state of the protocols, etc.).

4. Run your simulation invoking the Simulator class with a configuration
file, that contains the above information.
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Class Description

Node The peer-to-peer network is composed of
nodes. A node is a container of protocols.
The node interface provides access to the
protocols it holds, and to a fixed ID of the
node.

CDProtocol It is a specific protocol, that is designed
to run in the cycle-driven model. Such a
protocol simply defines an operation to be
performed at each cycle.

Control Classes implementing this interface can be
scheduled for execution at certain points
during the simulation. These classes typ-
ically observe or modify the simulation.

Table 3.2: Interesting subset of interfaces provided by PeerSim.

The life-cycle of a cycle-based simulation is as follows: The first step
is to read the configuration file, given as a command-line parameter. The
configuration contains all the simulation parameters concerning all the ob-
jects involved in the experiment. Then, the simulator sets up the network
initializing the nodes in the network and the protocols in them. Each node
has the same kinds of protocols; that is, instances of a protocols form an
array in the network, with one instance in each node.

At this point, initialization needs to be performed, that sets up the initial
states of each protocol. The initialization phase is carried out by Control
objects that are scheduled to run only at the beginning of each experiment.
In the configuration file, the initialization components are recognizable by
the init prefix.

After initialization, the cycle driven engine calls all components (pro-
tocols and controls) once in each cycle, until a given number of cycles, or
until a component decides to end the simulation. It is possible to configure
a protocol or control to run only in certain cycles, and it is also possible to
control the order of the running of the components within each cycle.

The whole scenario is illustrated in Figure 3.1.

3.2.2 Topology construction

Before starting the simulation, the initial network topology needs to be
constructed, that is for each virtual peer we must assign links to other
peers. These links will be used to forward queries to peers who lie ’closer’
to the data items which answer the question. The initial topology and
the partitioning of the data items onto peers is an important part of the
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Figure 3.1: Scheduling controls and protocols. The “C” letters indicate a
control component, while letter “P” indicates a protocol. The numbers in
lower part of the picture indicate the PeerSim cycles. After the last cycle,
it is possible to run any final controls to retrieve final snapshots.

comparison of different peer-to-peer networks.

All structured peer-to-peer networks provide a specific procedure which
is executed when a new peer wants to join the network. This procedure
typically involves knowing at least one participating peer, sending this peer
a request to join the network, taking responsibility of a specific area of
the problem space and discovering other peers to forward incoming queries
to. This is a fully distributed procedure, requires no central server, and is
usually associated with a significant communications cost.

This work focuses on the stable state of the system, not on the transient
state during which new peers join or existing peers leave the network. Al-
though in peer-to-peer networks peers join and leave continuously and thus
a global stable state is impossible to achieve, the assumption of a stable
system provides some significant advantages when analyzing each network’s
performance.

First of all, the performance achieved in the stable state reflects the
optimal ability of the network to retrieve answers to queries. Thus this
assumption enables us to identify the upper bound associated with each
network’s performance. More importantly, when we compare two peer-to-
peer systems in their stable state, we actually only compare the effectiveness
of their algorithms for locating data items. If we were comparing the systems
in their transient state, not only would the results be inevitably affected
by the effectiveness of the algorithms for node join, node removal and node
failure but would also be affected in an unforeseeable and unmeasurable way.
Since this work focuses on revealing good practices for peer-to-peer network
design, such a comparison would make the system much more complicated
and in turn would make the comparison exponentially harder.

In simulation, we benefit from the global view of the network and use it
to extract information about other peers. For performance and simplicity,
we transform the distributed join algorithms to simpler, centralized algo-
rithms. Such transformation however, must be made with care, to ensure
that the original properties of the algorithm are preserved. After the topol-
ogy initialization, each peer only has a few neighboring links which he uses
and is not allowed to use global knowledge to forward a query.
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For the P-Grid network, we partition the problem space using Algorithm
1, and invoking it with:

createPrefix(0, Network.size(), 0)

This algorithm assigns each peer a binary prefix in the virtual overlay
tree. The implementation of the function calcSplitPoint, in line 1 is
important as it specifies the final shape of the tree. If calcSplitPoint

always returns start+end
2

the resulting tree will always be a perfect tree. In
our implementation, the value returned is random, sampled from a normal
distribution with the mean µ = start+end

2
and variance σ2 = (end−start

8
)2.

Algorithm 1 PGrid::createPrefix(int start, int end, int level)

1: split ← calcSplitPoint(start, end)
2: for i = start to split− 1 do

3: Network.getPeer(i).ID.clearBit(level)
4: end for

5: for i = split to end do

6: Network.getPeer(i).ID.setBit(level)
7: end for

8: if split− 1 > start then

9: createPrefix(start, split− 1, level + 1)
10: end if

11: if end > split then

12: createPrefix(split, end, level + 1)
13: end if

After each peer has been assigned a partition of the problem space,
Algorithm 2 is run. This algorithm runs iteratively for each peer and locates
other peers who will be linked to the first one, while maintaining the P-Grid
invariants.

For the CAN network, the space is partitioned and assigned to peers
using Algorithm 3. In this algorithm, we create a kd-tree structure which
will be used later, in the peer discovery phase. Invocation of this algorithm
requires knowing the dimensionality of the problem and a random point p

on which the splitting will take place. We calculate the random point with
two different methods, either a random point from a uniform distribution
over the problem space or a random point from the input dataset. We will
henceforth refer to the uniform distribution as random selection policy and
to the other one as data selection policy. Although the data selection policy
is unrealistic in practice, it makes a very interesting comparison.

An important decision in the space partitioning phase, is the calculation
of the splitting plane, in line 3. In the traditional CAN approach the peer
splits his area on two parts of equal space. The position of the plane is
therefore the mean of the boundaries parallel to the splitting plane. In the
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Algorithm 2 PGrid::assignNeighbors()

1: for all p ∈ Network do

2: k ← 0
3: key ← invertBit(p.ID.getBit(k))
4: key.append(getRandomBits(119))
5: g ← getPeerResponsible(key)
6: while g 6= p do

7: p.addNeighbor(g)
8: k ← k + 1
9: if p.ID.getBit(k − 1) = 1 then

10: key.setBit(k − 1)
11: else

12: key.clearBit(k − 1)
13: end if

14: if p.ID.getBit(k) = 1 then

15: key.clearBit(k)
16: else

17: key.setBit(k)
18: end if

19: g ← getPeerResponsible(key)
20: end while

21: end for
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MURK approach, the peer splits his area on two parts of equal data load.
The position of the plane is then the median of the boundaries parallel to
the splitting plane.

Algorithm 3 CAN::partitionSpace(Point p, int dimensionality)

1: n← Network.getPeerResponsible(p)
2: splitdim← n.getDepth() mod dimensionality

3: splitline← n.calcSplitPoint(splitdim)
4: n.left, n.right ← n.splitArea(splitline)
5: n.left.parent ← n

6: n.right.parent ← n

7: move data items from n to n.left and n.right, as appropriate

In order to discover peers to link to, Algorithm 4 is run. This algorithm
locates all peers who share a boundary with each peer. It relies on the kd-tree
structure created in Algorithm 3 to achieve good performance. Additionally,
each peer maintains 2∗ logn links to other random peers, where n is the size
of the network. In practice, the addresses of the random peers would be
obtained by random walks in the network.

For the PHT network, the space is partitioned by Algorithm 5 which
creates the virtual binary tree over the whole network. There is no need to
perform the additional step of locating peers to link to, as this is handled
automatically by the DHT layer.

The VBI-tree network specifies its own algorithm for selecting peers to
answer the join requests. We simply implemented the algorithms the authors
described in their original publication [9].

3.2.3 Simulation model

In order to be able to run experiments with big networks (like networks
with 100000 simultaneously connected peers) we implemented all protocols
using the cycle-based model. The benefit of this approach is mainly a large
performance gain. Even with massive input sets, all simulations finish in a
few minutes.

The price we have to pay for using the cycle-based model is the lack of
the ability to simulate varying continuous-time delays. This can be epit-
omized in the lack of transport model simulation, which means that we
associate a fixed cost to each network operation. Another drawback is that
the programming complexity rises substantially because we must take care
of many details and quirks the cycle-based model has2.

In the cycle-based simulator we implemented, we associate a fixed time
delay of one simulation cycle each time a message must pass through the

2An example of this complexity is the controls.BufferSwapper class, described later.
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Algorithm 4 CAN::assignNeighbors()

1: for all p ∈ Network do

2: t← p

3: q ← createEmptyQueue()
4: while t.parent exists do

5: if t.parent.left = t then

6: sibling ← t.parent.right
7: else

8: sibling ← t.parent.left
9: end if

10: if sibling and p share a boundary then

11: q.push(sibling)
12: end if

13: end while

14: while q is not empty do

15: tree← q.pop()
16: if tree is a leaf node then

17: p.addNeighbor(tree)
18: else

19: if tree.left and p share a boundary then

20: q.push(tree.left)
21: end if

22: if tree.right and p share a boundary then

23: q.push(tree.right)
24: end if

25: end if

26: end while

27: end for
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Algorithm 5 PHT::partitionSpace(int blocksize)

1: tree← createEmptyTree()
2: addAllData(tree.root)
3: while ∃n ∈ tree which has more than blocksize data items do

4: n.left = createNode()
5: n.left.ID = n.ID.append(’0’)
6: n.right = createNode()
7: n.right.ID = n.ID.append(’1’)
8: for all item ∈ n.getData() do

9: if item starts with n.left.ID then

10: move item to n.left
11: else

12: move item to n.right
13: end if

14: end for

15: end while

16: for all nd ∈ tree do

17: if nd is leaf node then

18: DHT.put(nd.ID, nd)
19: else

20: DHT.put(nd.ID, INTERNAL NODE)
21: end if

22: end for
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network to another peer. The time to process the queries and the time to
prepare the answers to queries is considered trivial. These assumptions were
based upon the fact that the dominant delay is the network communication,
which typically takes a few seconds, while processing and retrieving data
from memory typically takes a few milliseconds. On simulation initialization,
random peers are assigned queries, randomly. On each cycle the query is
duplicated or forwarded throughout the network until all answers have been
retrieved. If all queries have retrieved all their answers, the simulation ends.

This simulator is implemented on the PeerSim framework using a custom
set of classes implementing the Control and CDProtocol interfaces. In each
simulation cycle we usually start by obtaining statistics, using the classes
PrecisionRecallStats, AnswerTimeStats, ExtendedAnswerTimeStats and
NodeStats. Then we run an auxiliary set of classes, like SimulatorStopper
which checks if simulation should stop, Shuffle which is an internal PeerSim
class for shuffling the order of execution of each peer’s protocol. Another im-
portant auxiliary class is the BufferSwapperwhich ensures that if a peer has
not yet processed his incoming queue in this cycle, new messages (from this
cycle) will not interfere with messages in his queue (from previous cycles).

In an attempt to provide a more realistic network model with limited
bandwidth between peers, we constructed the CongestionCompensation

class which actually limits the input queue of each node to accept only a
few messages per cycle. If a message is sent while the buffer is full, message
delivery is postponed until the next cycle. This design is consistent with the
common practice when building network applications: If a network socket
cannot be connected to another computer, an error message is returned
after a certain amount of time has passed (time-out limit) and the attempt
is repeated at a later time.

Also, in order to verify the simulation, we created a special class, AnswerValidator,
which at the end of the simulation compares the answers received from our
model with the answers obtained by querying the whole input dataset. If
this two sets are not the same, the simulation is invalid. This class was very
helpful in quickly evaluating if new changes affected the simulation validity.

The classes implementing the network protocols and initializations can
be found in Table 3.4 and the classes implementing the additional functional-
ity, like statistics processing, are listed in Table 3.3. A sample configuration
file is given below:

1 # s imula t i on parameters
2 random . seed 1234567890
3 s imu la t i on . c y c l e s 500
4 network . s i z e 10000
5

6 # sp e c i f y i n g hashing
7 hash . dimensions 2
8 hash . min1 100000
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9 hash . max1 950000
10 hash . min2 3800000
11 hash . max2 4700000
12

13 # pro to c o l s
14 pro to co l . lnk peers im . core . I d l eP r o t o c o l
15

16 pro to co l . s k ip peers im . core . I d l eP r o t o c o l
17

18 pro to co l . can sim . p r o t o c o l s . CANProtocol
19 pro to co l . can . l i n k a b l e lnk , sk ip
20

21 # i n i t i a l i z e r s
22 i n i t . t p l i n i t sim . i n i t . CANInitNeighbors
23 i n i t . t p l i n i t . p r o to co l lnk
24

25 i n i t . s k i p i n i t peers im . dynamics . WireKOut
26 i n i t . s k i p i n i t . p r o to co l sk ip
27 i n i t . s k i p i n i t . k 2∗13
28

29 i n i t . q i n i t sim . i n i t . F i l e I n s e r t e r
30 i n i t . q i n i t . f i l e Q5K. dat
31 i n i t . q i n i t . networkadapter sim . i n i t . CANQueryAdapter
32 i n i t . q i n i t . networkadapter . p ro to co l can
33

34 i n i t . d i n i t sim . i n i t . F i l e I n s e r t e r
35 i n i t . d i n i t . f i l e D100K . dat
36 i n i t . d i n i t . networkadapter sim . i n i t . CANDataAdapter
37 i n i t . d i n i t . networkadapter . p ro to co l can
38 i n i t . d i n i t . networkadapter . s e l p o l i c y data
39

40 order . i n i t d in i t , t p l i n i t , s k i p i n i t , q i n i t
41

42 # con t r o l s
43 c on t r o l . sh f peers im . cdsim . Shu f f l e
44

45 c on t r o l . answ sim . c on t r o l s . ExtendedAnswerTimeStats
46 c on t r o l . answ . pro to co l can
47 c on t r o l . answ .FINAL
48

49 c on t r o l . swap sim . c on t r o l s . BufferSwapper
50 c on t r o l . swap . pro to co l can
51

52 c on t r o l . stop sim . c on t r o l s . SimulatorStopper
53 c on t r o l . stop . p ro to co l can
54

55 c on t r o l . s t a t sim . c on t r o l s . NodeStats
56 c on t r o l . s t a t . p r o to co l can
57 c on t r o l . s t a t .FINAL
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58

59 c on t r o l . gc sim . c on t r o l s . Col lectGarbage
60

61 c on t r o l . pnr sim . c on t r o l s . P r e c i s i o nRe ca l l S t a t s
62 c on t r o l . pnr . p ro to co l can
63 c on t r o l . pnr .FINAL
64

65 order . c on t r o l pnr , shf , swap , answ , stop , s ta t , gc
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Class Description

controls.BasicStats Abstract base class for obtaining statisti-
cal data.

controls.NodeStats Keeps track of messages received and for-
warded for each peer.

controls.ExtendedAnswerTimeStats Keeps track of answer messages to queries
and records their statistics.

controls.PrecisionRecallStats Calculates precision and recall statistics.

controls.BufferSwapper Isolates the next cycle’s input buffer from
the current input buffer, ensuring consis-
tent simulation results.

controls.SimulatorStopper Stops simulation if all queries have been
answered.

controls.CollectGarbage Forces garbage collection.

controls.AnswerValidator Validates the query answers obtained by
simulation with the answers obtained by
querying the whole input dataset.

controls.CongestionCompensation Provides a more realistic network model
by allowing only a specific number of mes-
sages to be received by peers on each cycle.

misc.Query Interface for all query objects.

misc.CANQuery CAN-specific query object.

misc.PGridQuery P-Grid-specific query object.

misc.KademliaQuery Kademlia-specific query object.

misc.VBIQuery VBI-specific query object.

misc.CANNode Custom CAN node storage.

misc.VBINode Custom VBI node storage.

misc.BitString Handles arbitrary length bit strings.

misc.Hasher Performs hashing and one-dimensional
space-filling curve mapping.

Table 3.3: Description of the classes our framework consists of, regarding
auxillary operations like statistics processing. Classes in italics represent
abstract classes.
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Class Description

init.BaseInserter Provides an interface for all data loaders.

init.FileInserter Loads data from a specific file.

init.RandomInserter Generates random data with specific prop-
erties.

init.NetworkAdapter Interface for all network-specific adapters.

init.PGridDataAdapter Data adapter for data insertion in P-Grid.

init.PHTDataAdapter Data adapter for data insertion in PHT.

init.CANQueryAdapter Query adapter for query insertion in CAN.

init.CANDataAdapter Data adapter for data insertion in CAN.

init.VBIQueryAdapter Query adapter for query insertion in VBI.

init.VBIDataAdapter Data adapter for data insertion in VBI.

init.PGridInit Initializes the P-Grid network topology.

init.KademliaInit Initializes Kademlia topology.

init.CANInitNeighbors Initializes neighboring links in CAN.

protocols.DHT Interface for all DHT implementations.

protocols.KademliaProtocol Kademlia DHT implementation.

protocols.ControlInterface Interface for extracting statistical data
from protocols with range-query support.

protocols.CANProtocol CAN protocol implementation.

protocols.PGridProtocol P-Grid protocol implementation.

protocols.PHTProtocol PHT protocol implementation.

protocols.VBIProtocol VBI-tree protocol implementation.

Table 3.4: Description of the classes our framework consists of, regarding
network implementations. Classes in italics represent abstract classes.
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Chapter 4

Analysis

In this chapter we will first present a description of the metrics we use to
evaluate the comparison between different structured peer-to-peer systems.
Then we will present the graphs with the results of the comparison.

4.1 Description of the metrics

For each query, we can observe a partition on the set of peers. Some peers
have data items which are relevant to the query and some that don’t. Also
for each simulation cycle, some peers have been accessed by this query (either
in order to obtain answers or for routing purposes) and some peers haven’t.
Each peer belongs to any combination of these sets. That means that for
each query in a specific simulation cycle each peer belongs either to the
relevant & accessed set, to the relevant & non-accessed set, to the non-
relevant & accessed set or to the non-relevant & non-accessed set.

By observing the ratios between these quantities, we can measure some
interesting phenomena. The ratio between the number peers in the relevant
& accessed set to the number of peers relevant to the query will reveal how
quickly we retrieve answers to this specific query. This ratio is expected to
be 1 when the simulation ends because in a static network all algorithms
retrieve every answer. Another interesting ratio is between the number of
peers in the relevant & accessed set to the number of peers accessed by this
query. This ratio will show us the how efficient the query processing is. A
ratio of 1 is optimal, meaning that only peers relevant to the query were
disturbed. Therefore, for each query we define:

precision(t) =
number of peers accessed and relevant until cycle t

number of accessed peers until cycle t

recall(t) =
number of peers accessed and relevant until cycle t

number of relevant peers
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We record these two metrics as the simulation evolves in time (in simu-
lation cycles).

Another interesting metric is the number of the peers who were accessed
by the end of the simulation and were relevant to the query. This is the
actual number of peers storing the answers to the query. Analogously, we
also measure the number of peers who were accessed by the end of the
simulation but were not relevant to the query. This is the number of peers
who were disturbed while having no relation to the query.

We keep track of the last two metrics in relation to the answer size of
the query, for all networks.

In addition to these metrics, we also count the number of messages each
peer receives, forwards or sends as query answers. If the distribution of
these values is greatly dispersed this means that some peers do significantly
more work than the others and the load is not balanced equally among all
participants.

4.2 Plots

In this section we will present the graphical plots which were generated
from our simulations. We will see how the networks perform against each
other and we will describe and focus on interesting phenomena. ’data’ and
’random’ appearing on legends show the current selection policy.

Results obtained by running the PHT simulations are missing. We omit-
ted the presentation of the results because PHT performs poorly in terms
of speed. PHT performs successive lookups on the DHT layer, in order to
receive answers. All DHTs require a few cycles to answer back with data
and the overall PHT performance is dominated by this fact. PHT requires
around 250 simulation cycles, whereas most networks finish in 30 cycles.
Therefore, including PHT results in the following plots would ruin their
legibility and has been left out.

4.2.1 Recall measurement

The first thing we were interested in was seeing how fast would a random
query be answered. From a user perspective, answer speed is one of the most
important factors and can be split into two subproblems: how fast will the
total number of answers be retrieved and how fast will the first few answers
be retrieved. The generated plot is in Figure 4.1.

Another interesting question is what part of the total effort is spent on
retrieving data items from peers who have an answer and what is spent on
routing, with respect to the query answer size. This is depicted in Figures
4.3 and 4.2.

As observed, the number of peers is linear to the query size and for
simplicity from now on, we will refer to these plots using their least squares



4.2. PLOTS 45

0

0.
2

0.
4

0.
6

0.
81

0
5

10
15

20
25

30
35

Meanrecall

C
y
cl

e

C
A

N
-d

at
a

C
A

N
-r

an
d
om

M
U

R
K

-d
at

a
M

U
R

K
-r

an
d
om

P
-G

ri
d

V
B

I

Figure 4.1: Recall graph for the real 2-d dataset with 100000 data items,
distributed among 10000 peers and performing 5000 range queries.
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Figure 4.2: Plot of the relevant & accessed peers versus the query size (in
data items) for the real 2-d dataset with 100000 data items, distributed
among 10000 peers and performing 5000 range queries.
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Figure 4.3: Plot of the non-relevant & accessed peers versus the query size
(in data items) for the real 2-d dataset with 100000 data items, distributed
among 10000 peers and performing 5000 range queries.
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approximation. That is, we will find four parameters, aRA, bRA, aNRA,
bNRA that minimize the error of these two equations, where qs is the query
size:

RA = aRA ∗ qs + bRA

NRA = aNRA ∗ qs + bNRA

4.2.2 Effect of dimensionality

In this section we present the performance of these networks perform in
higher dimensions. The Figures 4.4, 4.5 and 4.6 were produced by running
our synthetic dataset for 2, 3 and 5 dimensions respectively.

As for the number of peers who were required to get the results depicted
above, we plot their least squares estimation parameters in Figures 4.7, 4.8,
4.9, 4.10.

4.2.3 Effect of network size

In order to evaluate the scalability of each network, we performed simula-
tions, using the same input datasets but with a varying number of partic-
ipating computers. Figures 4.11 and 4.12 show how recall performance is
affected when the network has 1000 and 50000 peers, respectively.

4.2.4 Load balancing

A very important aspect of peer-to-peer systems is their ability to equally
distribute load to all participants. In order to evaluate this, we obtained
simulation results for the precision metric, shown in Figure 4.13. The final
precision value of each network represents the percentage of disturbed peers
who actually had answers for our query.

However, the precision metric only gives a vague idea of the load bal-
ance quality and not a quantitative result. In order to be able to obtain
such results, we order the number of incoming messages in descending order
and for each peer in the horizontal axis we plot the sum of the messages
received from the peers encountered so far, normalized by the total number
of messages. The optimal load balancing would separate load equally and
would produce a line from the axis starting point to the upper right corner.
The resulting plot is shown in Figure 4.14. This plot allows us to see that
CAN-data and MURK-data are performing best, VBI follows closely (albeit
some small percentage of peers is very heavily loaded) and P-Grid and CAN-
random networks behave poorly, with 10% of the peers being responsible for
50% of the load.

Interesting as the results might be, they still don’t reflect the actual
number of messages sent, since one network can be more expensive than
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Figure 4.4: Recall graph for the 2-dimensional synthetic dataset with 100000
data items, distributed among 10000 peers and performing 5000 range
queries.
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Figure 4.5: Recall graph for the 3-dimensional synthetic dataset with 100000
data items, distributed among 10000 peers and performing 5000 range
queries.



4.2. PLOTS 51

0

0.
2

0.
4

0.
6

0.
81

0
2

4
6

8
10

12
14

16

Meanrecall

C
y
cl

e

C
A

N
-d

at
a

C
A

N
-r

an
d
om

M
U

R
K

-d
at

a
M

U
R

K
-r

an
d
om

P
-G

ri
d

V
B

I

Figure 4.6: Recall graph for the 5-dimensional synthetic dataset with 100000
data items, distributed among 10000 peers and performing 5000 range
queries.
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Figure 4.7: Plot of the aRA parameter versus the dimensionality of the
problem for synthetic datasets with 100000 data items, distributed among
10000 peers and performing 5000 range queries.



4.2. PLOTS 53

0

2040608010
0

12
0

14
0

16
0

2
3

4
5

6
7

8

bRA

D
im

en
si

on
al

it
y

C
A

N
-d

at
a

C
A

N
-r

an
d
om

M
U

R
K

-d
at

a
M

U
R

K
-r

an
d
om

P
-G

ri
d

V
B

I

Figure 4.8: Plot of the bRA parameter versus the dimensionality of the
problem for synthetic datasets with 100000 data items, distributed among
10000 peers and performing 5000 range queries.
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Figure 4.9: Plot of the aNRA parameter versus the dimensionality of the
problem for synthetic datasets with 100000 data items, distributed among
10000 peers and performing 5000 range queries.
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Figure 4.10: Plot of the bNRA parameter versus the dimensionality of the
problem for synthetic datasets with 100000 data items, distributed among
10000 peers and performing 5000 range queries.
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Figure 4.11: Recall graph for the real 2-d dataset with 100000 data items,
distributed among 1000 peers and performing 5000 range queries.
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Figure 4.12: Recall graph for the real 2-d dataset with 100000 data items,
distributed among 50000 peers and performing 5000 range queries.
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Figure 4.13: Precision graph for the real 2-d dataset with 100000 data items,
distributed among 10000 peers and performing 5000 range queries.
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Figure 4.15: Load distribution graph for the real 2-d dataset with 100000
data items, distributed among 10000 peers and performing 5000 range
queries.
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the other. For this purpose, we also plotted the number of messages each
peer receives, in descending order, with no summations and normalizations.
The result is the logarithmic plot it Figure 4.15, in which we can see that
the VBI network is very expensive in communications cost, with one peer
having received more than 600 messages.

4.2.5 Effect of realistic network model

Finally we want to compare how would these networks perform under a
realistic network model, in which there is limited bandwidth and thus only
a partial set of the messages sent in each cycle will be delivered to the
recipients in the next one. Although we already know that some networks,
like VBI-tree, are more expensive than others, we don’t know how this would
affect their performance. We therefore run the simulations and allowed only
10 and 5 messages to be delivered per cycle. The results are plotted in
Figures 4.16 and 4.17.
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Figure 4.16: Recall graph when allowing only 10 messages per cycle to be
received for the real 2-d dataset with 100000 data items, distributed among
10000 peers and performing 5000 range queries. VBI-tree continues linearly
and reaches 1 around cycle 90.
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Figure 4.17: Recall graph when allowing only 5 messages per cycle to be
received for the real 2-d dataset with 100000 data items, distributed among
10000 peers and performing 5000 range queries. VBI-tree continues linearly
and reaches 1 around cycle 170.
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Chapter 5

Conclusion

As observed from the previous chapter, no currently proposed solution is
best in all aspects. Before making a choice, one should consider all the al-
ternatives and specify the parameters of interest (e.g. fast retrieval, good
load balancing, dimensionality or combinations). Some general-purpose ob-
servations extracted from our simulation results are the following:

• CAN-based schemes which store data items in the native problem
space clearly outperform other approaches in higher dimensions and
their effectiveness is increased as the dimensionality increases.

• The way existing peers are selected for allowing new peers to join (e.g.
via splitting) is a very important issue. This is shown experimentally
with the difference between data and random selection policies in the
previous chapter. VBI-tree is currently the only solution which takes
care of this issue by design.

• As for the load balancing, CAN-based solutions with data selection
policy outperform other approaches. VBI-tree follows closely but is
more expensive in communications cost.

• All solutions are scaling well, with tree-based approaches like P-Grid
and VBI-tree performing better in bigger networks, like in the case of
50000 peers.

• Query answer size, when modified from a few data items to a thousand,
didn’t change the results significantly.

All in all, there is no clear winner. VBI-tree is newer and takes some new
issues into consideration, is scalable, fast and gives good load balance, but
has high communications costs. CAN is fast and is the definite answer for
higher dimensionality problems but in the general (random) case behaves
poorly in load balancing. MURK technique achieves better load balancing
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but reduces the retrieval speed considerably and this worsens as the network
size increases. P-Grid appears to be scaling very well, but doesn’t balance
the load equally.

In the future, we would like to experiment more with higher dimen-
sionality spaces and give more realistic datasets for such problems. Also we
would like to do a more in-depth evaluation of the load balancing properties,
counting data items and accesses per peer.

A future desire is to adapt the framework described here to work with
dynamic networks, but this also requires work in terms of specifying realistic
behavior of peers who join, leave and fail. Also it would require a careful
assessment of different metrics to perform the comparison.

Finally, an open challenge is adapting the framework to work with dy-
namic datasets and evaluate the performance of such methods.
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