
Exploring multi-word similarity measures for

Information Retrieval applications: the T-SRM

method

Euthymios Drymonas

Technical University of Crete (TUC)

Department of Electronics and Computer Engineering

Chania 2006

1

Table of Contents

Abstract..4

Acknowledgements...5

Chapter 1. Introduction...6

Chapter 2. Related Work & Background..7

 2.1 Automatic Term Extraction (ATE)..8

2.1.1 What is a term ?..8

2.1.2 Problems in term identification..9

 2.1.3 Multi-Word terms : Definition – Problems...9

 2.1.4 Automatic Term Extraction Approaches – Term Similarity.....................11

 2.1.5 Term Similarity..12

 2.2 Information retrieval (IR)..13

 2.2.1 Building an information retrieval system...13

 2.2.2 Classic Information Retrieval...14

 Boolean Model...14

 Vector Space Model...14

 Probabilistic Model..16

 2.2.3 Comparison of Models..17

 2.2.4 Performance Evaluation...17

Chapter 3. Methodology..19

 3.1 Considerations in Corpus Selection...20

 3.2 The C-NC Value Method [15]...20

 3.2.1 Linguistic Processing ...21

 3.2.2 The Statistical Part...22

 3.3 Multi-word similarity measures..24

 3.3.1 Lexical Similarity..24

 3.3.2 Contextual Similarity..26

 3.4 Combination of Similarities using Machine Learning.....................................27

 3.5 The Term-based Similarity Retrieval Model (T-SRM)....................................28

Chapter 4. Implementation..30

 4.1 Corpus Preprocessing..31

 4.2 C-NC Value..31

 4.2.1 Preprocessing..32

2

 Detection of morphological variants...33

 Linguistic filtering and stop-word removal...34

 4.2.2 C-Value process – The algorithm - Implementation.................................34

 4.2.3 NC-Value computation..37

4.3 Multi-Word Similarity measures ...39

4.4 Combination of Similarities...41

4.5 Information Retrieval...43

Chapter 5. Experimental Results...46

5.1 Similarity Relevant Weights Computation..46

5.2 Correlation Experiment..47

5.3 OhsuMed corpus IR experiment - Results...50

Chapter 6. Conclusions & Future Work..53

Bibliography – References :..54

3

Abstract

Term extraction relates to identifying the most characteristic or important terms in a

corpus. In this work we focus on the problem of extracting multi-word terms from

documents. We implemented a state-of-the-art method for term extraction which

combines linguistic and statistical information [15]. Methods for computing the

similarity between such multi-word terms are also considered. The approach followed

combines internal (lexical) and external (contextual) criteria [21]. Lexical similarity is

based on computing common constituents (i.e. term heads and modifiers within

multi-word terms) while contextual similarity is based on the likelihood of using the

same terms in similar concepts along with the terms. We combine these measures to

form a hybrid similarity measure for computing the similarity between multi-word

terms. The effectiveness of this hybrid measure was evaluated using human relevance

judgements. The results of the evaluation revealed that the proposed similarity

measure approximates the human notion of similarity up to 73%. Building upon

multi-word similarity, we proposed an information retrieval model, the Term-based

Similarity Retrieval Model (T-SRM), capable of discovering similarities between

documents that contain conceptually similar terms. The T-SRM was applied for

retrieval on the OhsuMed document collection. The results demonstrated very

promising performance improvements over the Vector Space Model, the classic

model for information retrieval.

4

Acknowledgements

I would like to thank Dr. Petrakis for the advice, encouragement and support he

provided to me in supervising this thesis. I would like to thank all people in the

Intelligent Systems Laboratory of Technical University of Crete, especially

Epimenidis Voutsakis and Kelly Zervanou for their technical advise and their

invaluable contribution in this thesis.

5

Chapter 1. Introduction

The increasing amounts of text information in modern application domains such as

medicine, digital libraries and the Web, brings new challenges to information

management. Information extraction in particular, plays an important role towards

understanding better the contents of document collections and can be used for

improving the accuracy of processes such as document indexing and retrieval. As a

result of this, information extraction has become of primary interest in computational

and applied linguistics, language interpretation, as well as in various other disciplines

for extracting terminologies from texts. By terminologies we refer to the study of and

the field of activity concerned with the collection, description, processing and

presentations of terms [17] (i.e. lexical items belonging to specialised areas of usage).

Such a task used to be particularly laborious in the past, as term extraction was

carried manually by human experts. The introduction of computers to language

analysis facilitated the automation of the term extraction process. As a result, a

number of term extraction methods have been developed to assist terminological

work.

Because terms can also be related to existing knowledge and to each other, the notion

of term similarity has also been defined and considered in different ways: terms may

have functional, structural, lexical or other similarities. Establishing relations between

extracted terms from a corpus is indispensable for improving information extraction,

document categorisation and information retrieval [51].

The purpose of information retrieval is to assist users in locating the information they

are looking for. Information retrieval is currently being applied in a variety of

6

application domains from database systems to web information search engines. The

main idea is to locate documents that contain terms that users specify in queries.

Retrieval, by classical information retrieval models (e.g. Vector Space, Probabilistic,

Boolean), is based on plain lexicographic term matching between terms (e.g. a query

and a document term are considered similar if they are lexicographically the same).

However, plain lexicographic analysis and matching is not generally sufficient to

determine if two terms are similar and consequently whether two documents. Two

terms can be lexicographically different although they have the same meaning (e.g.

they are synonyms). The lack of common terms in two documents does not

necessarily mean that the documents are irrelevant. Similarly, relevant documents

may contain conceptually similar but not necessarily the same terms. Conceptually

similar terms may be expressed in different words in the documents and the queries,

and direct comparison between them is not effective (e.g. the Vector Space Model

will not recognize synonyms or semantically similar terms).

In this work we apply Automatic Term Extraction in combination with term similarity

measures for the purpose of improving the effectiveness if information retrieval. We

examined term extraction techniques, we experimented with similarity measures

between multi-word terms and we explored machine learning algorithms computing

the relative importance of various term similarity criteria (i.e. lexical and contextual)

for defining a hybrid similarity measure, combining different similarity measures.

Building upon term similarity, we proposed the Term Similarity Retrieval Model (T-

SRM), which is capable of computing the similarity between documents containing

similar multi-word terms (not just single word terms as in classical retrieval models).

Our work is organised as follows: Chapter 2 discusses the background and related

work. Chapter 3 talks about the methodology followed while chapter 4 discusses the

Implementation part. chapter 5 talks about the Experiments and Evaluation and

finally chapter 6 denotes the future work.

7

Chapter 2. Related Work & Background

This work aims of exploring similarity measures between multi-word terms and their

application in Information Retrieval. In this chapter we discuss problems and

approaches in the two related research areas. That is Automatic Term Extraction

(ATE) and Information Retrieval (IR). Firstly, we identify the main problems in ATE

(i.e. variation and ambiguity). We provide a definition for term and we introduce the

notion of multi-word term. We also present various automatic term extraction

approaches (statistical, linguistic, machine learning, hybrid) and we discuss multi-

word term similarity measures. Then we discuss the main objectives of IR along

with classical IR approaches.

2.1 Automatic Term Extraction (ATE)

The terms represent important information related to a corpus, as they linguistically

represent the concepts in documents, express the semantic content of texts and

characterize the documents semantically. Term Extraction is considered to be a

difficult task and it is usually carried out by human experts. However this process

tends to be slow and subjective and does not scale-up well for large document

collections.

2.1.1 What is a term ?

According to ISO704 [45], terms are words or multi-word expressions, which,

contrary to general language words, are deliberately created within a scientific or

technical linguistic community not only for concept naming, but also for specialized

concept distinction and classification purposes. The automatic identification of terms

8

is of particular importance in information management applications since certain

linguistic expressions are bound to convey the informational content load of a

document. In the specific context of term extraction for retrieval purposes, the

principal objective of ATE is the identification of discrete content indicators , namely

index terms. At this point, a distinction should be made between the notion of

domain term and the index term. Domain terms are deliberately created within a

scientific or technical linguistic community for specialized concept distinction and

classification purposes, as defined by ISO704 [45]. Index terms are key concepts,

words of phrases, which semantically label and categorize the content of a document

for information management purposes, such as retrieval. For this reason, although

terms (domain terms) may be discovered in an indexing process, neither all domain

terms are useful index terms, nor all index terms are domain terms. For example, a

valid domain term appearing very frequently in a document collection is useless for

the retrieval of a specific document.

In the rest of this work, the notion of term refers mainly to index terms, though in the

ATE approach used in our method (C-NC Value, as we will see in the next chapters),

the design objective is domain term extraction, rather than indexing. Our purpose is

to use the information from this Automatic Term Extraction method for the

establishment of term similarities between multi word terms and the application of

all the above in our proposed Information Retrieval Model, the Term-based Similarity

Retrieval Model (T-SRM).

2.1.2 Problems in term identification

In theory, terms must be mono-referential (i.e. one and only one term should refer to

only one). In practice, we face phenomena of semantic ambiguity, such as Polysemy

(i.e. when a term refers to many different concepts) and synonymy (i.e. when many

terms reflect the same concept).

Statistical measures (e.g. frequency of occurrence) are widely used for the

identification and evaluation of the terms in document collections. However, the

frequency does not always constitute a sufficient criterion for term identification,

9

given that many words may appear often within specialized texts without being terms

and conversely many domain terms may have low frequencies.

2.1.3 Multi-Word terms : Definition – Problems

The majority of terms consist of compound units [44]. Most compound terms are

nouns, which consist of either two or more nouns, e.g. “carrier protein” , or by a

noun that follows an adjective, ex. “nuclear receptor”. Also the existence of nested

terms is very common .e.g. [cornea [nerve] cell]. The term “cornea cell” is nested

within the “cornea nerve cell”.

The identification of multi-word terms, although it may be fairly an easy task for an

expert, it is not equally simple for an automatic term extraction system. The

identification of compound and nested terms constitutes one of the main researching

challenges in ATE, as it relates to the resolution of the problems of ambiguity (the

same term corresponding to many concepts) and variation (many terms leading to the

same concept).

Ambiguity is a general phenomenon of natural languages that greatly has preoccupied

the research area of linguistic technology. In the field of automatic term extraction,

the phenomenon of ambiguity may be of four types : morphosyntactic, syntactic,

semantic and classification ambiguity. For example, we have morphosyntactic

ambiguity when a word may be interpreted in more than one ways (i.e. as a verb or

noun (e.g. “walk”), as an adjective or adverb). Further explanation regarding other

types of term ambiguity is given in [44].

Variation appears when a concept is expressed with many synonym terms or with

variants of the same term (table 2.1). Variation is widely common phenomenon in

terminology, it is estimated that the 37% of terms that appear in a document consist of

variations [46]. Variant tracking and identification is of a great importance to term

extraction and the construction of thesauri. It is important to know if different term

patterns are referring to the same concept or (in general) if they are related to each

other (and how).

10

 haemorrhage v blood loss Lexico-semantic

 Clones of human v human clones S yntactic

 Down syndrome v Down's syndrome M orphological

 amyloid beta-protein v amyloid β-protein Orthographical

Table 2.1 Variant example types

The FASTR system [46] handles morphological and syntactic variations, while

semantic variants are handled via a specialized lexicon (e.g. “WordNet”).

In this work, we applied a simple morphological analyser from WordNet Java library,

for handling morphological and orthographic variants in our term extraction process.

2.1.4 Automatic Term Extraction Approaches – Term Similarity

An overview of the methods for automatic term extraction and for computing

similarities between terms is presented below. Some make use of linguistic

knowledge, some others of statistical information while the majority of methods make

use of both.

A purely linguistically based tool to term extraction, created by the French Electricity

Board for thesauri updating and creation, is Lexter. Lexter works in two stages.

During the first stage, it extracts all word sequences that on linguistic rules could not

constitute a terminological unit. Studies of the linguistic properties of terms have

shown that certain word sequences rarely constitute a term, for example sequences

comprising conjugated verbs, pronouns, conjunctions or certain strings of

prepositions + determiners. Next, based again on linguistic information on the

prevailing term formation patterns of the special language under study, Lexter extracts

subsets from maximal length noun phrases that most likely constitute a terminological

unit. The resulting list is then submitted to an expert for validation. Another approach

which makes use both of word repetition and negative knowledge is proposed by

Oueslati et al. (1996). Their algorithm extracts repeated word sequences and then

uses a stop list and a domain verb list to filter the extracted data. The result is a list of

noun-noun combinations. Additionally, FASTR, an algorithm proposed by Jacquemin

11

[46], attempts to retrieve both terms and term variants in an attempt to improve recall

(i.e. to reveal even more terms).

A state-of-the art method for extracting multi-word terms is KEA [14]. KEA

automatically extracts keyphrases from the full text of documents. The set of all

candidate phrases in a document are identified using rudimentary lexical processing,

features are computed for each candidate, and machine learning is used to generate a

classifier that determines which candidates should be assigned as keyphrases. Two

features are used in the standard algorithm: tf*idf and position of first occurrence.

The tf*idf requires a corpus of text from which document frequencies can be

calculated; the machine learning phase requires a set of training documents with

keyphrases assigned.

Another method for the automatic extraction of multi-word terms is C-NC/Value [15].

C-NC/Value constitutes a domain-independent method, combining linguistic and

statistical information. It enhances the common statistical measure of frequency of

occurrence and incorporates information from context words to the extraction of

terms.

Based on the work by Milios et al. demonstrating that C/NC-Value outperforms KEA

achieving significantly better precision and recall in identifying terms in special text

corpora [13], we use the C-NC Value method for the extraction phase, as we will

discuss in methodology chapter (chapter 3).

2.1.5 Term Similarity

Several methods have been developed for the identification of conceptual similarities

among terms. For example, Bourigault and Jacquemin [22] used lexical similarities

to cluster terms. Their idea is based on adapting the term normalization process

proposed within the FASTR framework [46]. A cluster is produced by linking terms

that are associated by specific syntactic variation links (namely lexical characteristics

and possible term-formation decompositions), which reflect the internal term

structures.

Statistical methods (such as co-occurrence frequency counts) have also been used for

establishing term similarities. For example, Maynard and Ananiadou [6] and Mima,

Ananiadou and Nenadic [47] analysed terms co-occurring in a close proximity to one

12

another as a basis for estimating term similarities. However, term co-occurrences and

statistical distributions over larger text units (e.g. documents) may not reveal

significant associations for some types of relationships (Hindle [48] Ding, Berleant,

Nettleton and Wurtele [49]). Therefore, statistical and shallow-parsing methods have

been combined. For example, Hindle [48] suggested a similarity measure among

nouns based on mutual information of subject-verb and verb-object co-occurrences.

His main assumption is that a noun appears as subject or object of a restricted set of

verbs, and that, consequently, each noun can be characterized by the verbs it co-

occurs with. Grefenstette [19] extended this approach by considering other

grammatical roles.

2.2 Information retrieval (IR)

Information Retrieval deals with the representation, storage, organization of, and

access to information items [4]. The user must express his information need into a

query which can be processed by the IR system (the search engine). Given a user

query, the objective of an IR system is to retrieve information which is related to the

query and might be useful to the user. In its most common form , the translation of the

user query yields a set of keywords (index terms) which summarize the description of

the user information need [4]. An index term in IR is simply a (document) word

whose semantics helps in representing the document's main themes. For example, let

us consider a collection of a thousand documents: a word which appears in all

documents is completely useless as an index term, because it does not distinctly

represent the particular content of a specific document in the collection. Conversely, a

word which only appears in some, but not all documents is quite useful, because it

narrows down considerably the space of documents which might be of interest to the

user. Thus, it should be clear that distinct index terms have varying relevance when

used to describe documents. The assignment of numerical weights to each index term

of a document allows for the estimation of the varying relevance of the index terms.

13

2.2.1 Building an information retrieval system

Before the retrieval process can be initiated, it is necessary to define the text database.

Text normalization operations are firstly applied to the text[4]. Such operations

include stemming (the reduction of distinct words into their common grammatical

roots) and the elimination of stopwords (such as articles and connectives). Text

operations reduce the complexity of the document representation and result in a set of

index terms for each document.

Different index structures might be used to speed up the search, but the most popular

one is the inverted file. It can be thought as a data structure that allows fast random

access to words stored inside it contained in documents. The concept behind it, is

analogous to an index at the end of a book, which lets the reader locate rapidly pages

that discuss certain topics.

The user first specifies a query (an expression of his information need) which is then

parsed and transformed by the same text operations into a vector of terms. Then the

query is processed to obtain the retrieved documents. The retrieved documents are

ranked according to their likelihood of relevance to the query. The user then examines

the set of ranked documents in the search for useful information.

2.2.2 Classic Information Retrieval

In this section we briefly present the three classic models namely, the Boolean, the

Vector, and the Probabilistic models.

Boolean Model

The Boolean model is a simple retrieval model based on set theory and Boolean

algebra. It considers that index terms are present or absent in a document. As a result,

the index term weights are assumed to be all binary, i.e. w i , j∈{0,1 } . A query q is

composed of index terms linked by boolean operators such as “not”, ”and”, ” or”.

The Boolean model suffers from the following drawbacks. First, its retrieval strategy

is based on a binary decision criterion (i.e. a document is predicted to be either

relevant or non-relevant) without any notion of grading scale. Second, while Boolean

expressions have precise semantics, frequently it is not simple to translate an

14

information need into a Boolean expression. Finally because the Boolean model

predicts that each document is either relevant or non-relevant, there is no notion of a

partial match to query conditions.

To conclude, the main advantages of the Boolean model are the clean formalism

behind the model and its simplicity. The main disadvantages are that exact matching

may lead to retrieval of too few or too many documents and that retrieved documents

are not ranked by relevance to the query.

Vector Space Model

The vector model [41, 42] recognizes that the use of binary weights is too limiting

and proposes a framework in which partial matching is possible and desirable. This is

accomplished by assigning non-binary weights to index terms in queries and in

documents. These term weights are ultimately used to compute the degree of

similarity between each document stored in the system and the user query. The vector

space model sorts the retrieved documents by decreasing order of similarity. Also,

retrieves documents that match the query only partially (i.e. a query term may be

absent from a document). Similarly, the vector for a document dj is represented by dj

= (w1;j ,w2;j ,...., wt;j). A document dj and a user query q are represented as t-

dimensional vectors (figure 2.1). Let wi,q be the weight assisted with the pair [ki,q],

where wi,q >= 0. The query vector q , is defined as q = (w1;q,w2;q,....,wt;q) where t is the

total number of index terms in the system.

Figure 2.1 The cosine of θ is adopted as sim(dj ,q)

The Vector Space Model computes the degree of similarity of the document dj with

regard to the query q as the cosine of the angle between document vectors q and

d . This is computed as follows, where d j⋅q is the inner product of the

document and query vectors.

15

Sιmd i ,q=
d j⋅q
∣d j∣×∣q∣

=
∑t

wi , j×w i , q

∑t
w i , j

2
×∑t

w i , q
2

Sim(dj ,q) varies from 0 to +1. Thus, instead of attempting to predict whether a

document is relevant or not, the vector model ranks the documents according to their

degree of similarity to the query.

Appropriate weight to documents and queries is computed according to the tf*idf

formula. The tf (i.e. term frequency) measures the raw frequency of a term ki inside a

document dj. Term frequency is referred to as the tf factor and provides a measure of

how well a term describes a document content. The inverse of the frequency of a term

ki among the documents in the collection, measures the importance of a term in the

whole document collection. This factor is referred to as the inverse document

frequency or the idf factor. The motivation for usage of an idf factor is that terms

which appear in many documents are not very useful for distinguishing a relevant

document from a non-relevant one.

The tf*idf weighting scheme tries to balance these factors and computes weights as :

w i , j= tf∗idf (2.1)

The main advantages of Vector Space Model (VSM) are (according to [4]) :

i. Its term-weighting scheme improves retrieval performance

ii. Its partial matching strategy allows retrieval of document that approximate the

q conditions (don't necessarily match all query terms)

iii. Its cosine ranking formula allows for sorting the documents by decreasing

similarity with the q.

The vector model has the disadvantage that index terms are assumed to be mutually

independent. (equation 2.1 does not account for index term dependencies). In this

work, our proposed model, the T-SRM model (as described in chapter 3,

Methodology) tries to resolve this drawback.

16

Probabilistic Model

The Probabilistic Model introduced by Robertson and Sparck Jones [43] and later

became known as the binary independence retrieval model. The fundamental idea is

that given a user query, there is a set of documents which contains exactly the

relevant documents and no other (an ideal answer set). Given the description of this

ideal answer set, we would have no problems in retrieving its documents. Thus, we

can think of the querying process as a process of specifying the properties of an ideal

answer set. The probabilistic model is based on the assumption that given a user

query q and a document dj in the collection, the probabilistic model tries to estimate

the probability that the user will find the document dj interesting (i.e. relevant).

Documents in the set R are predicted to be relevant to the query. Documents not in

this set are predicted to be non-relevant. This assumption is quite troublesome

because it does not state explicitly how to compute the probabilities of relevance [4].

The main advantage of the probabilistic model [4] is that documents are ranked in

decreasing order of their probability of being relevant. The disadvantages include: i)

the need to guess the initial separation of documents into relevant and non-relevant

sets, ii) the fact that the method does not take into account the frequency that an index

term occurs in the document (i.e. all weights are binary) iii) the assumption that all

index terms are independent.

2.2.3 Comparison of Models

The Boolean model in general is considered to be the weakest from the methods

described briefly above [4]. In comparing vector with probabilistic, Salton and

Buckley showed that the vector model is expected to outperform the probabilistic

model [50]. This also seems to be the most popular thought among researchers,

practitioners and the Web community. For this reason, we choose to implement the

vector space model (see also chapter 4) to compare the results with out proposed

method, the Term based Similarity Retrieval Model (T-SRM).

2.2.4 Performance Evaluation

The evaluation of the performance of retrieval is usually based on a test reference

collection and on an evaluation criterion. The test reference collection consists of a

17

collection of documents, a set of example queries and a set of relevant documents

(provided by specialists) for each query. Given a retrieval strategy S, the evaluation

criterion measures the similarity between the set of documents retrieved by S and the

set of relevant documents provided by the specialists. This provides an estimation of

the goodness of the retrieval strategy [4]. In our experiments, we apply the two most

common retrieval evaluation measures, referred to as recall and precision.

As shown in the first two figures on the

left, these measures assume:

1. There is a set of documents in the

database which is relevant to the

search topic

2. Documents are assumed to be either relevant or irrelevant (these measures do not

allow for degrees of relevancy).

3. The actual retrieval set may not

perfectly match the set of relevant

documents.

Recall is the ratio of the number of

relevant documents retrieved to the

total number of relevant documents in

the database. It is usually expressed as

a percentage.

Precision is the ratio of the number of

18

relevant records retrieved to the total number of irrelevant and relevant

records retrieved. It is usually expressed as a percentage.

Measuring recall is difficult because it is often difficult to know how many relevant

records exist in a database. This would require that the whole database is browsed and

each document is judged as relevant or non relevant. This is particularly difficult for

large document collections. Often recall is estimated by identifying a pool of relevant

records (“pooling method”, [27]) and then determining what proportion of the pool

retrieved by the search. There are several ways of creating a pool of relevant records:

one method is to use all the relevant records found from different searches, another is

to manually scan several journals to identify a set of relevant answers. Of course there

are alternative measures to evaluate a retrieval method. Some of them are the E

measure, the harmonic mean, satisfaction etc. [4].

19

Chapter 3. Methodology

Our proposed method aims towards extracting meaningful multi-word terms from

documents. It shows furthermore that it is possible to exploit this result for enhancing

the performance of information retrieval in document collections. This is achieved

through T-SRM, a novel information retrieval method, which uses vectors of multi-

word terms as document representations and appropriately defined similarity

measures for computing document similarity as a function of the similarity between

individual multi-word terms. Our method works in the following steps:

● Corpus selection

● Term Extraction

● Multi-Word Term similarity computation

● Weight computation

● Term-Based Document Similarity

 3.1 Considerations in Corpus Selection

Corpus selection is an essential prerequisite for testing our method. Our corpus

should be in text format and representative of a domain. Also, should be a collection

potentially used in IR tasks. Moreover, in order to benchmark our method against

other methods, we should use a standard reference corpus. TREC1 meets our

requirements. TREC, The Text Retrieval Conference, has purpose to support research

within the information retrieval community by providing the infrastructure necessary

for large-scale evaluation of text retrieval methodologies. Each of these collections

consists of a set of documents, a set of topics (queries), and a corresponding set of

1 http://trec.nist.gov/

20

http://trec.nist.gov/

relevance judgements (correct answers to the queries).

Another consideration is the corpus size. In particular we need our corpus length to be

big enough to help us make reliable judgements using statistical methods.

In the Implementation chapter (section 4.1) we describe the corpus fulfilling our

requirements and its particular characteristics.

The method for multi-word term extraction, referred to as the C-NC Value method

[15], is discussed in the next section (section 3.2).

3.2 The C-NC Value Method [15]

The C-Value method is a hybrid domain-independent method combining linguistic

and statistical information (with emphasis on the statistical part) for the extraction of

multi-word and nested terms (i.e. terms that appear within other longer terms, and

may or may not appear by themselves in the corpus). This method takes as input a

corpus and produces a list of candidate multi-word terms, ordered by the likelihood of

being valid terms, namely their C-Value measure.

The C/NC-Value method comprises of two main parts:

i. The linguistic

ii. The statistical, which consist of:

(a) C-Value

(b) NC-Value

NC-Value is an enhancement to C-Value. It incorporates contextual

information aiming at improving the ranking of candidate multi-word term

list extracted by C-Value.

3.2.1 Linguistic Processing

The Linguistic Processing applies the following steps:

● The Part-of-Speech(POS) tagging of the corpus:

Part-of-Speech(POS) tagging is the process of assigning a grammatical

21

category tag (such as noun, verb, adjective, adverb or preposition) to each

word. In C/NC-Value, POS is applied prior to linguistic filters that exact

noun phrases.

● The Linguistic Filter:

Terms consist mostly of nouns and adjectives [17] and sometimes

prepositions [9]. The statistical information , without any linguistic

filtering, is not enough to produce useful results. Without any linguistic

information, undesirable strings such as “of the”, “is a”, “etc.”, would

also be extracted. The linguistic filter is used to extract noun phrases that

constitute multi-word terms discarding such undesirable strings.

● The Stop-list.

A stop-list for a corpus in ATR is a list of words which are not expected to

occur as term words in that domain. It is used to avoid the extraction of

strings that are unlikely to be terms, improving the precision of the output

list. The stop list is manually constructed based on domain observation.

Figure 3.1 shows a sample list of stop words.

became because becoming before beforehand behind

become becomes been being believe below

better best beside even does every

far cant did day etc. fold
Figure 3.1 Example of stop words

3.2.2 The Statistical Part

(i) C-Value

 The C-value constitutes a measure of the importance of each candidate term

extracted in the previous steps. The higher the C-Value measure the more likely it is

the candidate term to be a valid term.

The C-Value of a term is computed as follows:

22

C−valuea ={
log2∣a∣∗ f a a is not nested

log2∣a∣∗ f a −
1

P T a
∑b∈T a

f b otherwise

where :

● α is the candidate string

● f(.) the frequency of occurrence in corpus

● Ta the set of extracted candidate terms that contain α (longer candidate

terms)

● P(Ta) the number of these longer candidate terms

The negative effect on the candidate string α being a substring of other longer

candidate terms is reflected by the negative sign '-' in the formula above. The

independence of α from these longer candidate terms is given by P(Ta). The greater

this number the bigger its independence(and the opposite) is reflected by having

P(Ta) as the denominator of a negatively signed fraction. The measure is built using

several statistical characteristics of the candidate string. These are:

1. The total frequency of occurrence of the candidate string in the corpus.

2. The frequency of the candidate string as part of other longer candidate terms.

3. The number of these longer candidate terms.

4. The length of the candidate string (in number of words).

 Figure 3.2 Characteristics of the candidate string used for calculating C-Value

The higher the number of distinct longer terms that our string appears as nested in ,

the more certain we can be about its independence (i.e. that the candidate term

extracted is a real term). The fact that a longer string appears X times is more

important than that of a shorter string appearing again X times[15]

(ii) NC-Value

NC-Value is an enhancement to C-Value that is computed based on context

information.

Firstly NC-Value creates a list of important term context words. Term context words

23

are words that appear in the vicinity of terms in texts. These will be ranked according

to their `importance' when appearing with terms. The criterion for the extraction of a

word as a term context word is the number of terms it appears with. The higher this

number is, the higher the likelihood that the word is `related' to terms (it occurs with

other terms in the same corpus).

Each candidate term in the C-Value list appears in the corpus with a set of context

words. From these context words, the nouns, adjectives and verbs are retained for

each candidate term. NC-Value provides a method for the extraction of term context

words (words that tend to appear with terms) and incorporates this information (from

term context words) into the term extraction process. This above criterion is more

formally expressed as [15] :

Weight w=
t w

n
 (figure 3.3)

where

● w is the context word (noun, verb or adjective) to be assigned a weight as a

term context word,

● Weight(w) the assigned weight to the word w,

● t(w) the number of terms the word w appears with,

● n the total number of terms considered.

The purpose of the denominator n is to express this weight as a probability (the

probability that the word w might be a term context word). The NC-value measure is

then computed as :

NC−Value=0.8CValue a 0.2∑
b∈C a

f a bweight b

where

● a is the candidate term,

● Ca is the set of distinct context words of a,

● b is a word from Ca,

● fa(b) is the frequency of b as a term context word of a,

● weight(b) is the weight of b as a term context word.

The two factors of NC-value, i.e. C-value and the context information factor, have

24

been assigned the weights 0.8 and 0.2 respectively. These have been chosen among

others after experiments and comparisons of the results [15].

We describe thoroughly the C/NC-Value algorithms during the implementation

section (chapter 4).

 3.3 Multi-word similarity measures

In this section, we present the method for computing the similarity between multi-

word terms extracted by C-NC Value (as described in section 3.2). The multi-word

term similarity measures are to be used in combination with our proposed T-SRM

(Term-based Similarity Retrieval Model) in information retrieval tasks – for

retrieving results to user queries.

An approach for computing similarity between multi-word terms is proposed in [21].

It takes into consideration both lexical and contextual criteria which are combined

into a unique formula. In this work we apply machine learning for measuring the

relative importance of the two criteria.

3.3.1 Lexical Similarity

The Lexical Similarity between multi-word terms measures the similarity between the

words that constitute terms. This idea was exploited by Bourigault and Jacquemin

[22] by adapting the term variation process, and by Dagan and Church [18] via

“grouping” the list of term candidates according to their heads2. These approaches

were generalized by considering constituents (head and modifiers) shared by terms.

Therefore the rationale behind lexical similarity involves the following

hypotheses[21]:

1. Terms sharing a head are assumed to be (in)direct hyponyms of the same term

(e.g. progesterone receptor and oestrogen receptor are both receptors)

2. When a term is nested inside another term , we assume that the terms are

related (e.g. retinoic acid receptor and retinoic acid should be associated)

2 i.e for “web page” and “web snippet” the head is the word “web”.

25

Lexical similarity between two terms is defined based on based on identifying their

respective common subsequences[21]. By comparing all their non-empty sub-

sequences, it is possible to give more credit to pairs of terms that share longer nested

constituents. An additional credit is given to terms having common heads.

Given a sequence of words s, P(s) (according to Nenadic et al. [21]) refers to the set

of all sub-sequences in s. For example, P(orphan nuclear receptor) = {orphan,

nuclear, receptor, orphan nuclear, nuclear receptor, orphan nuclear receptor}. The

lexical similarity between term t1 and term t2 (whose heads are denoted by h1 and h2

respectively) is computed according to a Dice-like coefficient formula. Dice

coefficient is widely used in information retrieval [33]. Building upon the idea of

Dice coefficient [33], the lexical similarity between two terms is computed as :

LS t 1 ,t 2 =
∣P h 1 ∩P h 2 ∣

∣P h 1 ∣∣P h 2 ∣

∣P t 1∩P t 2 ∣

∣P t 1∣∣P t 2 ∣

The numerators in the previous formula denote the number of shared constituents,

while the denominators refer to the sums of total numbers of constituents. The

following table illustrates some examples.

i ti P(ti)

1 nuclear receptor {nuclear, receptor, nuclear

receptor}

2 orphan receptor {orphan, receptor, orphan receptor}

3 orphan nuclear receptor {orphan, nuclear,receptor, orphan

nuclear, nuclear receptor, orphan

nuclear receptor}

4 nuclear orphan receptor {nuclear, orphan, receptor, nuclear

orphan, orphan receptor, nuclear

orphan receptor}

LS(t1,t2)=0.67, LS(t1,t3)=0.83, LS(t1,t4)=0.72, LS(t2,t3)=0.72, LS(t3,t4)=0.75

Examples of lexical similarity

26

3.3.2 Contextual Similarity

According to Nenadic et. al. [21], contextual similarity is mainly based on the Harris'

notion of substitutability: If two terms can substitute each other in similar contexts,

then they can be deemed similar. For example the term“ligand inducible

transcription factor” (following table) typically appears in a context that can be

described as “belonging to a superfamily of”.

More specifically, the contexts of terms similar to the term ‘ligand-inducible

transcription factor’ are:

• ...T3R belongs to the nuclear receptor family of ligand-inducible

transcription factors...

• ...The retinoid receptors belong to a large superfamily of ligand-inducible

transcription factors...

• ...this receptor is a novel member of the superfamily of ligand-inducible

transcription factor....

So this description follows a certain context pattern :

 <term> (belong | member of) <modifier> superfamily of ligand-inducible

transcription factor

In place of <term> different terms may appear and all these terms are mutually

associated. Such context patterns can be used to establish term similarities [21]. As

context patterns are treated as term features, the Dice-like coefficient is used to

estimate contextual similarity between terms as a function of both common and

distinctive features . The Contextual similarity measure is formally defined as :

ContextualSimt 1 , t 2=
∣C L1 ∩ C L2∣ ∣C R1 ∩ CR2∣
∣C L1∣∣C L2∣ ∣C R1∣ ∣C R2∣

where: CL1,CR1,CL2,CR2 are sets of left and right context patterns associated with terms

t1 and t2 respectively.

27

3.4 Combination of Similarities using Machine Learning

Neither lexical, nor contextual similarity are sufficient on their own to define term

similarity measure between two arbitrary terms: Lexical similarity can indicate only

restricted types of similarity (hyponymy and meronymy). Regarding contextual

similarity, if a term appears infrequently or within very specific context patterns,

the number of its context patterns will influence its contextual similarity to other

terms. Thus, a combination of these similarities is required.

In this work the relative importance of each similarity measure is computed by

machine learning. An existing platform of machine learning algorithms is WEKA1.

WEKA is self-described in its web page as “a collection of machine learning

algorithms for data mining tasks”. The algorithms can either be applied directly to a

dataset or called from Java source code. WEKA contains tools for data pre-

processing, classification, regression, clustering, association rules, and visualization.

It is also well-suited for developing new machine learning schemes. WEKA is an

open source software issued under the GNU General Public License.

We tried several algorithms to combine the similarities. These algorithms along with

the results are briefly explained in the implementation chapter (4.5). In the next

section (3.6) we propose the Term-Based Similarity Retrieval Model (T-SRM) , an

information retrieval model based on the multi-word term similarity method

described above.

3.5 The Term-based Similarity Retrieval Model (T-SRM)

Our hypothesis is that conceptual similarity may be learnt directly from our text

corpora and that conceptual similarity may be expressed as combination of lexical

and contextual similarities. Building upon this idea, we propose the Term-Based

Similarity Retrieval Model (T-SRM), a novel information retrieval model which s

capable of computing the similarity between documents containing conceptually

similar but not necessarily lexically similar terms. Notice that classic retrieval models

1 http://www.cs.waikato.ac.nz/ml/weka/

28

http://www.gnu.org/copyleft/gpl.html
http://www.cs.waikato.ac.nz/ml/weka/

such as the Vector Space Model (section 2), will not recognize synonyms or

conceptually similar terms (e.g. “google search engine”, ”web search engine”).

Our T-SRM model suggests computing the similarity between documents based on the

similarity of multi-word terms contained in the documents (i.e. based on the lexical

and contextual similarity measures as described in section 3.3). In our T-SRM model

the queries may also be augmented with conceptually similar terms which are

retrieved by applying similarity measure to the terms extracted from the corpus

examined. T-SRM takes into account dependencies between terms during its query

expansion step, namely each query term is expanded by conceptually similar terms.

Our model takes all possible term associations between two documents into account

and accumulate their similarities. Similarly to VSM, queries and documents should

be first analysed and represented by term vectors. Very infrequent or very frequent

terms should be eliminated. Each term in this vector should be represented by its

weight. The weight of a term should be computed as a function of its frequency of

occurrence in the document collection. In particular in our approach the term

frequency - inverse document frequency (tf*idf) model is used for computing the

weight. Typically, the weight di of a term i in a document is computed as

d i=tf i⋅idf i

where tfi is the frequency of term i in the document and idfi is the inverse document

frequency of i in the whole document collection.

Then the T-SRM computes:

● Query Expansion:

The query is augmented by synonym terms using term similarity measures.

We expand each term with other similar terms having similarity up to T,

where T is user-defined.

● Document Similarity:

 The similarity between an expanded query q and a document d is computed

as:

Sιmq ,d =
∑i∑ j

qi d j sιm i , j

∑i∑ j
qi d j

29

where i and j are terms in the query and the document respectively. Query

terms are expanded according to the previous step. All tf*idf terms and

documents(queries) are normalized by document (query) length. The

measure is normalized in range[0,1].

An alternative would be to use C-Values for term weighting. Furthermore, the formula

by Mihalcea [40] could be applied for computing similarity between documents.

According to Mihalcea, The similarity between the input documents T1 and T2 is

determined using the following scoring function:

SιmT 1, T 2=
1
2

∑
w∈T1

maxSimw ,T 2∗idf w

∑
w∈T1

idf w

∑
w∈T 2

maxSimw ,T 1∗idf w

∑
w∈T 2

idf w

Mihalcea defines the semantic similarity of two documents T1 and T2 using a metric

that combines the similarities of each document in turn with respect to the other

document. First, for each word w in the document T1 tries to identify the word in the

segment T2 that has the highest semantic similarity (maxSim(w,T2)). Next, the same

process is applied to determine the most similar word in T1 starting with words in T2.

30

Chapter 4. Implementation

The implementation of the method is discussed below. The method is implemented in

Java and the main steps are :

1. Corpus preprocessing

2. C/NC Value computation

3. Multi-Word Similarity computations

4. Combination of Similarities

5. T-SRM document similarity computation

31

Corpus Preprocessing

C-Value Preprocessing

Lemmatizer

Linguistic Filter

Stop List

C-Value

Context Processing

(context pattern & context word extraction)

NC-Value

Lexical and Contextual Similarities

Indexing of the corpus

T-SRM Model

Retrieval
Fig. 4.1 T-SRM processing steps

4.1 Corpus Preprocessing

We test out methods on a standard TREC corpus. OhsuMed collection, due its large

size and thorough experimentation, is considered to be a standard reference test

collection. OhsuMed is a set of 348,566 references from Medline, the on-line medical

information database, consisting of titles and/or abstracts from 270 medical journals

over a five-year period (1987-1991). The OhsuMed document collection was

32

compiled by William Hersh and colleagues, for the experiments described in [38],

[39].

OhsuMed provides queries and a set a documents that are relevant to each query

respectively. All other documents are considered irrelevant. This helped us measuring

precision and recall automatically in our IR experiment.

4.2 C-NC Value

The C/NC-Value method is implemented in the following steps:

4.2.1 Preprocessing

Corpus preprocessing applied the following:

• Sentence Splitting

• Tokenizing

• POS tagging

We used initially the tools from GATE1 for Part-of-Speech Tagging , tokenizing and

sentence splitting. However, our first experiments showed that the corresponding

collection from OpenNLP2 was much faster and much more stable. For this reason we

decided to use the OpenNLP tools for the preprocessing stage.

The OpenNLP POS tagger that we used is the MX-POST, based on the work of

Ratnaparkhi on maximum entropy models3 for natural language processing [36] .

The tagset (a sample in table 4.1) used is the Penn-TreeBank tagset [16]. After POS

Tagging, the linguistic filter that extracts phrases that satisfy the linguistic criterion

1 http://gate.ac.uk :: GATE is an infrastructure for developing and deploying software components

that process human language.

2 http://www.opennlp.org :: OpenNLP is an organizational center for open source projects related

to natural language processing. Hosts a variety of java-based NLP tools which perform sentence

detection, tokenization, pos-tagging, chunking and parsing, named-entity detection, and

coreference using the OpenNLP Maxent machine learning package.

3 (quoting from Manning and Schutze) [37] (page 589): Maximum entropy modeling is a
framework for integrating information from many heterogeneous information sources for
classification. The data for a classification problem is described as a (potentially large) number of
features. These features can be quite complex and allow the experimenter to make use of prior
knowledge about what types of informations are expected to be important for classification. Each
feature corresponds to a constraint on the model. We then compute the maximum entropy model,
the model with the maximum entropy of all the models that satisfy the constraints.

33

http://maxent.sourceforge.net/
http://www.opennlp.org/
http://gate.ac.uk/

and frequency threshold is applied next.

POS Tag Description Example

CC coordinating conjunction and

IN preposition/subordinating

conjunction

in, of, like

JJ adjective green

JJS adjective, superlative greenest

NN noun, singular or mass table

NNP proper noun, singular John

RB adverb however, usually,

naturally, here, good

VB verb, base form take

VBZ verb, 3rd person sing. present takes

PRP personal pronoun I, he, it

LS list marker 1)

Table 4.1 Description and Examples of sample POS tags

Table 4.2 shows a sample paragraph before and after the preprocessing respectively.

 The original text

This survey focuses on clustering in data mining. Data mining adds to clustering the

complications of very large datasets with very many attributes of different types. This

imposes unique computational requirements on relevant clustering algorithms. A variety of

algorithms have recently emerged that meet these requirements and were successfully

applied to real-life data mining problems. They are subject of the survey.

 After POS Tagging , Sentence Splitting, Tokenizing

This/DT survey/NN focuses/VBZ on/IN clustering/VBG in/IN data/NNS mining/NN ./.

Data/NNP mining/NN adds/VBZ to/TO clustering/VBG the/DT complications/NNS of/IN

very/RB large/JJ datasets/NNS with/IN very/RB many/JJ attributes/NNS of/IN different/JJ

types/NNS ./.

This/DT imposes/VBZ unique/JJ computational/JJ requirements/NNS on/IN relevant/JJ

clustering/NN algorithms/NNS ./.

A/DT variety/NN of/IN algorithms/NNS have/VBP recently/RB emerged/VBN that/IN

meet/VB these/DT requirements/NNS and/CC were/VBD successfully/RB applied/VBN

to/TO real-life/JJ data/NNS mining/NN problems/NNS ./.

 They/PRP are/VBP subject/JJ of/IN the/DT survey/NN ./.

Table 4.2 Preprocessing stage sample

34

Detection of morphological variants1

We proposed and implemented an enhancement to C-Value, using the morphological

processor from WordNet2 Java Library3 (JWNL) . JWNL is an API for accessing

WordNet-style relational dictionaries. It also provides relationship discovery and

morphological processing. The Morphological Processor attempts to match the form

of a word or phrase to its respective lemma, i.e. base form, in WordNet. For example,

if one calls lookupBaseForm(POS.VERB, "running"), the lemma "run" should be

returned. This enhancement has been thought important because it allows the C/NC

Value tool to handle morphological variants of terms , for example “web page”, “web

pages”.

Linguistic filtering and stop-word removal

At this point the linguistic filter is applied on each sentence to extract potential multi-

word terms. Moreover, if a constituent word in each candidate extracted multi-word

term resides in the stop list, then the candidate term is rejected.

The choice of linguistic filter affects the precision and recall of the output list. A

`closed' filter which is strict about the strings it permits, will have a positive effect on

precision but a negative effect on recall. As an example, consider the “Noun+” filter

that Dagan and Church used [18]. This filter permits only noun sequences and as a

result produces high precision since noun sequences in a corpus are the most likely to

be terms. At the same time, it negatively affects recall, since there are many noun

compound terms that consist of adjectives and nouns, which are excluded by this

filter. We implemented all the filters below and we chose the third one for our

experiments, the open filter which results in augmented recall over precision (to

reveal more candidate terms):

1. Noun+Noun,

1 The notion of term variants is described in chapter 2

2 http://wordnet.princeton.edu/

3 http://jwordnet.sourceforge.net/ :: JWNL is an API for accessing WordNet-style relational

dictionaries. It also provides functionality beyond data access, such as relationship discovery and

morphological processing.

35

http://www.cogsci.princeton.edu/~wn/
http://www.cogsci.princeton.edu/~wn/
http://jwordnet.sourceforge.net/

2. (Adj | Noun)+Noun,

3. ((Adj | Noun)+|((Adj | Noun)*(NounPrep)?)(Adj | Noun)*)Noun

After this step, main process of C-Value takes place.

4.2.2 C-Value process – The algorithm - Implementation

We describe the steps taken in the C-value method to construct a list of candidate

terms from a corpus.

 Step 1

We tag the corpus. As mentioned earlier, we need the tagging process since we will

use a linguistic filter to restrict the type of terms to be extracted.

 Step 2

This stage extracts those strings that satisfy the linguistic filter and frequency

threshold. The terms will be extracted from among these strings. According to

Nenadic et al. [21] the maximum length of the extracted strings depends on:

1. The working domain. In arts for example, terms tend to be shorter than in

science and technology.

2. The type of terms we accept. Terms that only consist of nouns for example,

very rarely contain more than 5 or 6 words.

The process of finding the maximum length is as follows: We attempt to extract

strings of a specific length. If we do not find any strings of this length, we decrease

the number by 1 and make a new attempt. We continue in this way until we find a

length for which strings exist. At this point, extraction of the candidate strings can

take place. Initially, a list of strings of each length is created, (i.e. a list for the

bigrams, a list for the trigrams, etc.). The lists contain the strings with their frequency

of occurrence. The lists are then filtered through the stop-list and are concatenated.

The longest strings appear at the top, and decrease in size as we move down, with the

bigrams being at the bottom.

 Step 3

The C-value for each of the candidate strings is computed, starting with the longest

36

ones and finishing with the bigrams. The C-value for the longest terms is given by the

top branch of formula described in the C-Value section (section 3.2.2) and we quote

again:

We set a C-value threshold, so that only those strings with C-value above this

threshold are added onto the list of candidate terms. For the evaluation of C-value for

any of the shorter strings, we need two more parameters:

✔ their frequency as part of longer candidate terms

✔ the number of these longer candidate terms

To obtain these two parameters, we perform the following:

For every string a, that it is extracted as a candidate term and for each substring b of

a , we compute tuples (f(b), t(b), c(b)), where

f(b) is the total frequency of b in the corpus,

t(b) is the frequency of b as a nested string of candidate terms,

c(b) is the number of these longer candidate terms.

When this triple is first created, c(b) = 1 and t(b) equals the frequency of a. Each time

b is found after that, t(b) and c(b) are updated, while f(b), its total frequency, does not

change.

c(b) and t(b) are updated in the following manner:

c(b) is increased by 1 every time b is found within a longer string a that is extracted as

a candidate term. t(b) is increased by the frequency of the longer candidate term a,

f(a), every time b is found as nested. If n(a) is the number of times a has appeared as

nested, then t(b) will be increased by f(a) – n(a).

Now in order to compute C-value for a string a which is shorter by one word, we

either already have for it a triple (f(a), t(a), c(a)), or we do not. If we do not, we

calculate the C-value from the top branch of the above C-Value formula. If we do, we

use the bottom branch respectively. In that case, P(Ta) = c(a) and ∑b∈Ta

=t a .

37

C−valuea ={
log2∣a∣∗ f a a is not nested

log2∣a∣∗ f a −
1

P T a
∑b∈T a

f b otherwise

After the calculation of C-value for strings of length l finishes, we move to the

computation of C-value for strings of length l-1 . This way it is evident whether

the string to be processed has been found nested in longer candidate terms.

At the end of this step, a list of candidate terms has been built. The strings of the list

are ranked by their C-value.

Table 4.3 shows a part of the output list after the application of C-Value on our

computer science corpus. The higher a term is in this hierarchy , the higher its

probability of being a real term [15]

 Extracted Term C-Value

web page 1260.2

search engine 881.0

information retrieval 492.333

similarity measure 412.667

web site 409.2

machine learning 405.0

prior specific permission 340.763

natural language processing 339.57

clustering algorithm 337.909

IEEE transactions 325.0

semantic web 306.142

relevant document 305.0

relevant page 283.0

information extraction 262.0

objective function 248.0

knowledge base 241.6

subject descriptor 240.0

Table 4.3 C-Value output sample

We then proceed to the next phase, i.e. the NC-Value computation.

4.2.3 NC-Value computation

NC-Value is computed to each candidate term as follows:

38

 Step 1

We apply the C-value method to the corpus. The output of this process is a list of

candidate terms, ordered by their C-value.

 Step 2

This involves the extraction of the term context words and their weights. These will

be used in the third stage to improve the term classification in the extracted list. In

order to extract the term context words, we need a set of top C-Value terms, according

to [15]. We use the `top' candidate terms from the C-value list, which are expected to

present very high precision on valid terms4. We chose the first 1500 terms for

running our experiments. These `top' terms produce a list of term context words and

assign to each of them a weight following the process described in the previous

section.

 Step 3

This involves incorporating of context information acquired from the second stage of

the extraction of multi-word terms. The C-value list of candidate terms extracted

during stage one is re-ranked using context information, so that the real terms appear

closer to the top of the list than they did before, i.e. the collection of real terms at the

top of the list increases while the collection of those at the bottom decreases. The re-

ranking takes place in the following way: Each candidate term from the C-value list

appears in the corpus with a set of context words. From these context words, we

retain the nouns, adjectives and verbs for each candidate term. These words may or

may not have been met before, during the second stage of the creation of the list with

the term context words. In the case where they have been met, they retain their

assigned weight. Otherwise, they are assigned zero weight. For each candidate term,

we obtain the context factor by summing up: the weights for its term context words,

multiplied by their frequency of co-occurrence with this candidate term.

For example, let us assume that the candidate word W appears 10 times with the

context word c1, 20 times with the context word c2, and 30 times with the context

4 Note also that C/NC Value was primarily designed for the detection of domain terms. Our

application of C/NC Value is in indexing. Therefore any not valid domain terms are not expected

to cause problems in retrieval.

39

word c3. Let us assume also, that the weight for c1 is w1, the weight for c2 is w2, and

the weight for c3 is w3. Then, the context factor for W (The definition of weights is

given in methodology chapter, section 3.2.2) is :

10 w1 + 20 w2 + 30 w3

The above description is the second factor of the NC-value measure which re-ranks

the C-value list of candidate terms. The first factor is the C-value of the candidate

terms. The whole NC-value measure is formally described as

NC−Value=0.8CValue a 0.2∑
b∈C a

f a bweight b (figure 4.4)

where

● a is the candidate term,

● Ca is the set of distinct context words of a,

● b is a word from Ca,

● fa(b) is the frequency of b as a term context word of a,

● weight(b) is the weight of b as a term context word.

The two factors of NC-value, i.e. C-value and the context information factor, have

been assigned the weights 0.8 and 0.2 respectively. These have been chosen among

others after experiments and comparisons of the results. [15]

4.3 Multi-Word Similarity measures

During the implementation of contextual similarity (as described in chapter 3), we

had to consider two types of context pattern constituents: morpho-syntactic (such as

noun and verb phrases, prepositions, etc.) and terminological (i.e. term occurrences).

Morpho-syntactic constituents like verb and noun phrases can be identified by

applying a chunker (which recognize syntactic noun phrases {NPs}, verb phrases

{VPs}), while terminological entities can be recognized by an ATR processor (like

C-NC Value as described in section 3.2).

We generated all possible “linearly nested” patterns for each given context. In

particular, when considering left contexts, contexts of the maximal length (without

40

crossing the sentence boundary) are initially selected, and they are then iteratively

trimmed on the left side until the minimal length is reached. Right contexts are treated

analogously. The following example illustrates the left linear pattern generation

process:

V PREP TERM NP PREP (the maximal pattern)

PREP TERM NP PREP

TERM NP PREP

 NP PREP (the minimal pattern)

NP stands for 'Noun Phrase', a basic syntactic structure.

During our implementation we experimented with various maximal pattern lengths.

Based on results observation, we decided to set the minimum pattern length to 2 and

the maximum to 8. We assume that longer contexts are more important for assessing

term similarities[23].

Some of the syntactic categories were removed from context patterns, since not all of

them are equally significant in providing useful contextual information. Adjectives

(that are not part of terms), adverbs and determiners can be removed from context

patterns for they rarely bare some specific information [23]. In addition, the so-called

“linking words” (e.g. however, moreover, etc.), or more generally, “linking devices”

(e.g. verb phrases, such as “result in”, “lead to”, “entail”, etc.) are frequently used in

special languages in order to achieve more effective communication [5]. However,

these constituents are typically non informative and were eliminated.

During the implementation of contextual similarity, (as described in section 3.3.2),

we needed some syntactic phrase structure information in order to apply various

levels of generalizations on the term context. For this reason, we considered using a

chunker (a shallow syntax analyser). A chunker applies shallow syntactic parsing

analysis. In particular, text chunking consists of dividing a text in syntactically

correlated parts of words. A chunker attempts to identify noun phrases and verb

phrases in text. For example, the sentence “He reckons the current account deficit

41

will narrow to only # 1..8 billion in September .” can be analysed as follows:

[NP He] [VP reckons] [NP the current account deficit] [VP will narrow] [PP to]

[NP only # 1.8 billion] [PP in] [NP September] .

For the chunker used in our implementation, the OpenNLP chunker, the problem of

chunking is viewed as tagging problem[26], where the chunk structure is encoded as

tags attach to each word.

In the next section (4.4) we present the methods used to combine the similarity

measures (lexical and contextual) to form a final hybrid similarity measure.

 4.4 Combination of Similarities

We used the WEKA implementation of machine learning algorithms to produce a

linear combination of our similarity measures. The training set is given to WEKA in

a specific (ARFF) format. The training set for WEKA was consisting of term pairs,

their respective similarity measures and their evaluation.

An ARFF (Attribute-Relation File Format) file is an ASCII text file that describes a

list of instances sharing a set of attributes . In our implementation, each instance (on a

single line) represents a term pair. The training set consisted of a representation of

200 term pairs. The size of the training set was considered adequate for training. The

training set had three term similarity features:

(a) lexical similarity measure

(b) contextual similarity measure

(c) human similarity measure

The latter, human similarity measure, was assigned to term pairs by human evaluators

on a scale of 0 to 3 where (nominal values):

✗ 0 : The terms are completely unrelated (No relation between them)

✗ 1 : The terms are almost unrelated (not completely unrelated)

✗ 2 : The terms are very similar (not exactly similar)

✗ 3 : The terms have the same meaning

42

Some of the WEKA algorithms required nominal values (like the decision trees)

while other functions required numeric values.

After carefully browsing the plurality of the available WEKA algorithms we finally

chose SMOreg, Least Median Square and the C4.5 Decision tree based on results

observation.

✗ SMOreg

Implements Alex J.Smola and Bernhard Scholkopf sequential minimal

optimization algorithm for training a support vector regression using

polynomial or RBF kernels. [28,29]

✗ Least Median Square

Implements a least median squared linear regression utilizing the existing

WEKA Linear Regression5 class to form predictions. The basis of the

algorithm is [32].

✗ C4.5 decision tree [30]

decision trees classify instances by sorting them down the tree from the root

node to some leaf node, which provides the classification of the instance.

Each node in the tree specifies a test of some attribute of the instance, and

each branch descending from that node corresponds to one of the possible

values for this attribute. An instance is classified by starting at the root node

of the decision tree, testing the attribute specified by this node, then moving

down the tree branch corresponding to the value of the attribute. This process

is then repeated at the node on this branch and so on until a leaf node is

reached. ID3 and C4.5 are algorithms introduced by Quinlan for inducing

Classification Models, also called Decision Trees, from data [30].

A web interface was built to test the output predictions from the C4.5 prediction tree

(figure 4.6).

5 Class for using linear regression for prediction. Uses the Akaike criterion for model selection, and
is able to deal with weighted instances.

43

Figure 4.6 Web Interface testing the C4.5 Decision Tree

WEKA was trained with the input ARFF file as described before (figure 4.5).

Contextual and Lexical similarity are calculated and then according to these values

the decision tree makes a prediction from scale 0 to 3 along with a probability for

being correct.

 4.5 Information Retrieval

At the heart of all search engines is the concept of indexing: processing the original

data into a highly efficient cross-reference lookup in order to facilitate rapid

searching. Index can be thought as a data structure that allows fast random access to

words stored inside it. The concept behind it is analogous to an index at the end of a

book, which lets you quickly locate pages that discuss certain topics.

44

We implemented the indexing of the corpus with Apache Lucene6. Lucene is a

mature ,open-source, high performance scalable Information Retrieval library

implemented in Java.

Before text is indexed, it is passed through an Analyser. The Analyser is in charge of

extracting tokens out of text to be indexed and eliminating the rest. It is an abstract

class in Lucene library : We implemented our Analyser with the help of the linguistic

filter we previously implemented in C-Value section (4.2), analysing the data to

make it more suitable for searching. To do so, the analyser splits the textual data into

tokens (multi-word terms) and then stores them to the index, building term-vectors

for each document in the collection.

6 http://lucene.apache.org

45

http://lucene.apache.org/

We implemented the Vector Space Model, as well as the T-SRM in Java and we

integrated both methods within with Lucene.

The methods we implemented were:

✔ classic Vector Space Model (vectors of single word terms)

✔ Vector Space Model with vectors of with multi-word terms

✔ T-SRM

✔ T-SRM with the C-Value of each multi-word in the document instead of

standard tf*idf weighting

In the next chapter (Chapter 5) we present the evaluation of the above methods in the

IR experiments on both corpora. We will also discuss the results of the machine

learning process (i.e. the relevant importance of each similarity measure, lexical and

contextual respectively). In addition, we will talk about the correlation experiment,

46

tried to compare the output similarity came from WEKA machine learning algorithms

in contrast to the human notion of similarity.

Chapter 5. Experimental Results

For the evaluation of our method we carried out the following sets of experiments:

1. Relative importance of lexical and contextual similarity - combination

47

2. Correlation Experiment

3. Information Retrieval on OhsuMed corpus

5.1 Similarity Relevant Weights Computation

As we note in chapter 4 , none of lexical or contextual similarities respectively are

sufficient on their own to establish term similarities between multi-word terms. With

the help of WEKA machine learning algorithms we attempted to combine the two

similarity measures.

SMOreg :

Final Similarity = 0,7534 * LexicalSim + 0,0723 * ContextualSim - 0,0042

Least Median Square :

Final Similarity = 0,7137 * LexicalSim + 0,322 * ContextualSim + 0,0172

The method for extracting weights from the resulting C4.5 decision tree:

 Final Similarity = 0.8 * LexicalSim + 0.2 * ContextualSim
Table 5.1 Results from lexical&contextual similarity measures into a unique similarity formula

All methods(described in 4.4) assigned increased weight on lexical similarity. The

combination of lexical and contextual similarity measures, resulting from each of

these, was correlated with human judgements to estimate how close the human notion

of term similarity relates to the results.

5.2 Correlation Experiment

Our objective is to discover how close the human notion of similarity (in the same

queries) is to the similarity results produced from the methods described above. For

the purpose of this experiment, we prepared 50 pairs of multi-word terms. They were

randomly selected from the list of terms which C/NC Value extracted from a

computer science collection of papers (Lithel corpus1). Then, we asked domain

1 http://www.lithel.ca/Testbed_Corpus/index.html

48

http://www.lithel.ca/Testbed_Corpus/index.html

experts2 to provide and estimate for each pair, in a range between 0 (no similarity)

and 3 (same meaning). We created a form-based interface on the web and we invited

domain experts to enter their evaluation (Table 5.2).

We normalized the results to [0,1] and computed lexical and contextual similarity for

each pair. Then we estimated the final hybrid similarity value for each machine

learning algorithm as indicated on the formulas shown in table 5.1.

2 http://www.intelligence.tuc.gr/people

49

http://www.intelligence.tuc.gr/people

Correlation was computed using the Pearson's correlation function (equation I).

Suppose we have two variables X and Y , with means X and Y and standard

deviations σx and σy respectively. The correlation is computed as

50

Table 5.2 . Interface built to help the evaluation by human domain-experts

r=
∑
i−1

n

X i−X Y i−Y

n−1σ x σ y

 (equation I)

where: X and Y in our experiment stands for the final similarities of each of the

methods and of the human evaluation respectively.

Table 5.3 presents a sample part of the results.

Term Pairs Human Lexical

Sim

Context

Sim

Decision

Tree

SMO

Reg

Least Median

Square

learning process,training process 0.71 0.72 0.48 0.64 0.62 0.63

vector space model,web document 0.14 0 0.55 0.17 0.08 0.19

search engine,web search engine 0.67 0.88 0.31 0.71 0.71 0.75

biomedical terms,mesh terms 0.8 0.72 0.26 0.58 0.57 0.61

term weighting,term frequency 0.57 0.72 0.35 0.61 0.59 0.64

frequent terms,common terms 0.67 0.72 0.36 0.61 0.59 0.64

text summarization,automatic text

processing

0.43 0.11 0.13 0.12 0.07 0.14

web page,web snippet 0.33 0.72 0.1 0.53 0.53 0.56

network interface,document

relevance

0 0 0.37 0.11 0.04 0.14

average precision,search space 0.2 0 0.5 0.15 0.07 0.18

text mining,information retrieval 0.43 0 0.53 0.16 0.08 0.19

.

.

.

.

.

.

.

.

.

.

.

.

.

.

xml instance,web search 0 0 0.56 0.17 0.09 0.2

Human correlation 1 0.72 0.73 0.72

 Table 5.3 Correlation Experiment Results

The 1st column denotes the normalized human judgement, while the 2nd and 3rd

column denote lexical and contextual similarity for the pair of terms. Respectively,

the last 3 columns present the final similarity between the terms, as a combination of

lexical and contextual similarity extracted by the machine learning algorithms(table

5.1).

51

It is clear from the correlation score that all chosen methods perform almost equally

well. The output weights extracted from all methods were very close (lexical

similarity was given increased weight). Robust regression method [28],[29] returned

the best correlation score (~73%) with the other methods following very closely.

 5.3 OhsuMed corpus IR experiment - Results

The purpose of this experiment is to demonstrate that our method performs better

than classic information retrieval models like the Vector Space Model (VSM). We

experimented with two versions of VSM, one with multi-word term vectors

(produced by the C-NC method) and one with single word term vectors as it is typical

in IR applications.

We selected 18 queries among Ohsumed's set of queries, to benchmark the

information retrieval methods. We chose queries whose title was constituting from 2

words and above. All answers that were not contained in the set that OhsuMed

provides, were considered irrelevant.

Figure 5.6 shows a sample OhsuMed query :

<num> Number: MSH282

<title> Anticholesteremic Agents

<desc> Description:

Substances that promote a reduction of blood cholesterol levels. (Dorland, 28th ed)

 Figure 5.6 Sample OhsuMed query

Searching through the instructions and the ReadMe files of the OhsuMed collection,

it was not clear whether the relative answers were given based on the title only or the

title and the description (i.e. the query was “Anticholesteremic Agents” or

“Anticholesteremic Agents, Substances that promote a reduction of blood cholesterol

levels” ?).

We ran two experiments on OhsuMed. One experiment using only “titles” as queries

and a second one using both “title” and “description” fields as queries. Notice that

52

both types of queries are commonly used in evaluation experiments in the literature.

The resulting curve behaviour does not differ significantly among the two

experiments, as figures 5.7 , 5.8 denote.

The performance results below indicate that using T-SRM in document representation

increases the performance of retrieval in contrast to vector space model using both

single word and multi-word term vectors. This may be explained due to the

incorporation of conceptual similarity into the T-SRM model. The documents in

OhsuMed collection where abstracts, thus the information was dense and the T-SRM

took benefit of this. We should also in the future benchmark the performance of our

method with full text and more general collections.

The drawback of T-SRM is that our method is noticeably slower than VSM with

single word terms. At the same time, because multi-word VSM analyses the query

with a more complicated analyser (needs to extract multi-word terms, does not only

take single word tokens like simple VSM), this delay is not noticeable comparing T-

SRM with multi-word VSM.

53

54

Figure 5.7 Precision-Recall for queries specifying title with description

Figure 5.8 Precision-Recall for queries specifying title only

55

Chapter 6. Conclusions & Future Work

The contribution of this thesis is twofold: Firstly we showed that it is possible to

apply automatic term extraction methods for extracting meaningful representations

from documents. Secondly, we showed that is is possible to use these representations

for enhancing the performance of retrieval in large document collections.

Our proposed method relies on applying the C/NC-Value term extraction method [15]

in conjunction with combined lexical and contextual similarity measures for

measuring the similarity between multi-word terms [21]. The experimental results

indicate that it is possible to approximate algorithmically the human notion of

similarity, reaching correlation up to 73%. Based on this observation we

demonstrated that it is possible to exploit this information for improving the

performance of information retrieval in applications. We introduce the Term-based

Similarity Retrieval Model (T-SRM). T-SRM is a novel document similarity model

capable of computing similarities when documents contain similar phrases (multi-

word terms in general), namely containing not just similar single word terms as it is

typical on IR applications and classic retrieval models (like the Vector Space Model).

The experimental results indicate that T-SRM outperforms the Vector Space Model

(VSM) for queries on OhsuMed (a standard TREC collection).

As described in chapter 3, the lexical similarity measure relies on the fact that relative

multi-word terms often share constituents (heads and modifiers). It will be interesting

in the future to explore the semantic relationship between these shared constituents

with the integration of semantic information from taxonomic ontologies (e.g.

WordNet). We will to try make the similarity methods work even better and

consequently increase the accuracy of T-SRM model retrieval.

Furthermore, additional methods should be used and benchmarked for retrieval, such

56

as the method by Mihalcea et al. [52].

Bibliography – References :

1. Sophia Ananiadou. Towards a Methodology for Automatic Term Recognition. PhD

thesis, University of Manchester Institute of Science and Technology, 1988.

2. Sophia Ananiadou. A methodology for automatic term recognition. In Proceedings

of the 15th International Conference on Computational Linguistics, COLING'94,

pages 1034-1038, 1994.

3. Didier Bourigault. Surface grammatical analysis for the extraction of

terminological noun phrases.

In Proceedings of the 14th International Conference on Computational Lingustics,

COLING'92, pages 977{981, 1992.

4. Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval.

Addison Wesley Longman, 1999.

5. Sager,J.C., Dungworth D.,McDonald P.F : English Special Languages : principles

and practice in science and technology. Oscar Brandsletter Verlag KG , Wiesbaden ,

1980

6. Maynard D, Ananiadou S. 2000b “TRUCKS: a model for automatic multo-word

term recognition” Journal of Natural Language Processing Vol.8, No. 1, 101-125

7. Kyo Kageura and Bin Umino. Methods of automatic term recognition -a review-.

Terminology, 3(2):259-289,1996.

8. Salton G. : Introduction to modern information retrieval.

Computer Science. McGraw-Hill , 1983

9. Justeson, J.S., Katz,S.M : Technical terminology : some linguistic properties and an

algorithm for identification in text.

Natural Language Engineering 1(1):9-27,1995

10. B.Daille, E.Gaussier, J.M.Lange . Towards automatic extraction of monolingual

57

and bilingual terminology. In proceedings of Coling 94, pages 515-521, 1994

11. C.Enguehard and Pantera. Automatic manual acquisition of terminology. In Journal

of Quantitative Linguistics , 2(1):27-32 , 1994

12. Dagan I and Itai.A. Word sense disambiguation using a second language

monoligual corpus. Computational Linguistics, 20:253-596, 1994

13. E.Milios, Y.Zhang, B.He, L.Dong: Automatic term extraction and document

similarity in special text corpora. Proceedings of the 6th conference of the Pacific

Association for Computational Linguistics (PACLing'03), Halifax,Nova Scotia,

Canada , August 22-25, 2003 , pages 275-284

14. Frank E., Paynter G.W., Witten I.H., Gutwin C. and Nevill-Manning C.G. (1999)

“Domain specific keyphrase extraction” Proc. Sixteenth International Joint

Conference on Artificial Intelligence, Morgan Kaufmann Publishers, San Francisco,

CA, pp. 668-673.

15. Frantzi, K., Ananiadou, S. & Mima, H. (2000) Automatic recognition of multi-word

terms. International Journal of Digital Libraries 3(2), Special issue edited by

Nikolau, C. & Stephanidis, C. (eds.), 117–132

16. Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz: Building a

Large Annotated Corpus of English: The Penn Treebank, in Computational

Linguistics, Volume 19, Number 2 (June 1993), pp. 313--330 (Special Issue on

Using Large Corpora).

17. Juan C. Sager. A Practical Course in Terminology Processing

John Benjamins Publishing Company, 1990.

18. Dagan I. , Church K. : Termight: Identifying and translating technical terminology.

In: Proc. 7th Conference of the european Chapter of the association for

Computational Linguistics, 1995. EACL'95 , pp 34-40

19. Grefenstette G. :Explorations in Automatic Thesaurus Discovery. Kluwer Academic

Publishers, 1994

20. Juan C. Sager. Commentary by Prof. Juan Carlos Sager.In Guy Rondeau, editor,

Actes Table Ronde sur les Problemes du Decoupage du Terms, Montreal, 26 aouout

1978, pages 39-74, Quebec, 1978. AILA-Comterm,Office de la Langue Francaise.

21. Nenadic, G., Spasic, I. , Ananiadou, S. (2004) Automatic Discovery of Term

Similarities Using Pattern Mining, in International Journal ofTerminology.10:1, 55-

80

22. Bourigault, D. and C. Jacquemin. 1999. “Term extraction + term clustering: an

integrated platform for computer-aided terminology.” In Proceedings of the 8th

Conference of the European Chapter of the Association for Computational

58

Linguistics, Bergen, Norway, 15-22

23. Maynard D. and S. Ananiadou, 2000a. “Identifying terms by their family and

friends.” in Proceedings of COLING 2000, Luxembourg, 530-536.

24. Collins-Thomson, K., Callan, J.: Query Expansion Using Random Walk Models.

In: ACM Conf. on Information and Knowledge Management (CIKM’05), Bremen,

Germany (2005) 704–711

25. Voorhees, E.: Query Expansion Using Lexical-Semantic Relations. In: ACM

SIGIR’94, Dublin, Ireland (1994) 61–69

26. Ramshaw, LA & Marcus, MP, Text Chunking using Transformation-Based

Learning , ACL Third Workshop on Very Large Corpora, pp. 82-94, 1995.

27. E.M. Voorhees and D.K. Harmann. Overview of the Seventh Text Retrieval

Conference (TREC-7). In NIST Special Publication 500-242: The Seventh Text

Retrieval Conference (TREC-7), pages 1-23,

http://trec.nist.gov/pubs/trec7/t7proceedings.html , 1998.

28. Alex J. Smola, Bernhard Scholkopf (1998). A Tutorial on Support Vector

Regression. NeuroCOLT2 Technical Report Series – NC2-TR-1998-030.

29. S.K. Shevade, S.S. Keerthi, C. Bhattacharyya, K.R.K. Murthy, Improvements to

SMO Algorithm for SVM Regression. Technical Report CD-99-16, Control Division

Dept of Mechanical and Production Engineering, National University of Singapore.

30. Ross Quinlan (1993). C4.5: Programs for Machine Learning, Morgan Kaufmann

Publishers, San Mateo, CA.une, 1995

31. “Text Chunking Using Transformation-Based Learning”, Lance Ramshaw &

Mitchell Marcus,Proceedings of the Third ACL Workshop on Very Large Corpora,

MIT, June 1995

32. “Robust regression and outlier detection Peter J. Rousseeuw, Annick M. Leroy.

c1987”

33. Frakes, W., Information Retrieval. Data Structures and Algorithms,

ed. W. Frakes and R. Baeza-Yates, Prentice Hall, 1992.

34. Weisstein, Eric W. (1999). Eric Weisstein's World of Mathematics. An on-line

encyclopedia hosted by Wolfram Inc. (http://mathworld.wolfram.com/)

35. Smadja, Frank (1993). Retrieving collocations from text: Xtract. Computational

Linguistics 19(1), 143-177.

36. A. Ratnaparkhi, A maximum entropy model for part-of-speech tagging. In

Proceedings of Conference on Empirical Methods in Natural Language Processing,

59

http://mathworld.wolfram.com/

University of Pennsylvania, 1996.

37. Foundations of statistical natural language processing . Christopher D. Manning,

Hinrich Schutze. Cambridge, Mass. : MIT Press, c1999.

38. Hersh WR, Buckley C, Leone TJ, Hickam DH, OHSUMED: An

interactiveretrieval evaluation and new large test collection for research,

Proceedings of the 17th Annual ACM SIGIR Conference, 1994, 192-201.

39. Hersh WR, Hickam DH, Use of a multi-application computer workstation in a

clinical setting, Bulletin of the Medical Library Association, 1994, 82: 382-389.

40. Rada Mihalcea, Courtney Corley, Carlo Strapparava, Corpus-based and

Knowledge-based Measures of Text Semantic Similarity, to appear in Proceedings

of the American Association for Artificial Intelligence (AAAI 2006), Boston, July

2006.

41. G.Salton. The SMART retrieval system – Experiments in Automatic Document

Processing. Prentice Hall Inc., Englewood Cliffs, NJ, 1971

42. G.Salton and M.E. Lesh Computer evaluation of indexing and text processing.

Journal of the ACM, 15(1):8-36, January 1968

43. S.E Robertson and K.Sparck Jones. Relevance weighting of search terms. Journal

of the American Society for Information Sciences,27(3):129-146, 1976

44. Ananiadou, S. and Zervanou, K. (2004) Techniques and problems in Automatic

Term Recognition, GreekTerminology: Research and Applications (in Greek)

Kastaniotis editions, Athens .

45. ISO704. Principles and Methods of Terminology. Technical report, Intern.

Organization for Standardization (ISO), Geneva, Switzerland, 1986

46. Jacquemin, C. 2001, Spotting and Discovering Terms through NLP. Cambridge MA:

MIT Press

47. Mima, H., S. Ananiadou and G. Nenadic. 2001. “ATRACT workbench: an

automatic term recognition and clustering of terms.” In Matousek, V. et al. (eds),

Text, Speech and Dialogue - TSD 2001, LNAI 2166, Springer-Verlag, Berlin, 126-

133.

48. Hindle, D. 1990. “Noun classification from predicate-argument structures.” In

Proceedings of 28thAnnual Meeting of the Association for Computational

Linguistic ,Pittsburgh, PA, USA, 268 275.

49. Ding, J., D. Berleant, D. Nettleton and E. Wurtele. 2002. “Mining Medline:

abstracts, sentences, orphrases?” in Proceedings of Pacific Symposium on

Bioinformatics 2002, Hawaii, USA, 326-337.

50. Salton, G. and Buckley, C. (1988). Term-weighting approaches in automatic text

60

retrieval. Information Processing and Management, 24:513—523.

51. Skuce, D. and I. Meyer. 1991. “Terminology and Knowledge Engineering:

Exploring a Symbiotic Relationship,” in Proceedings of 6th International Workshop

on Knowledge Acquisition for Knowledge-Based Systems, Banff, 29.1-29.21

52. Rada Mihalcea, Courtney Corley, Carlo Strapparava, Corpus-based and

Knowledge-based Measures of Text Semantic Similarity, Proceedings of the

American Association for Artificial Intelligence (AAAI 2006), Boston, July 2006.

61

	Abstract
	Acknowledgements
	Chapter 1. Introduction
	Chapter 2. Related Work & Background
		2.1 Automatic Term Extraction (ATE)
	2.1.1 What is a term ?
	2.1.2 Problems in term identification
		2.1.3 Multi-Word terms : Definition – Problems
		2.1.4 Automatic Term Extraction Approaches – Term Similarity
		2.1.5 Term Similarity

		2.2 Information retrieval (IR)
		2.2.1 Building an information retrieval system
		2.2.2 Classic Information Retrieval
		Boolean Model
		Vector Space Model
		Probabilistic Model

		2.2.3 Comparison of Models
		2.2.4 Performance Evaluation

	Chapter 3. Methodology
	 	3.1 Considerations in Corpus Selection
		3.2 The C-NC Value Method [15]
		3.2.1 Linguistic Processing
		3.2.2 The Statistical Part

	 3.3 Multi-word similarity measures
		3.3.1 Lexical Similarity
		3.3.2 Contextual Similarity

		3.4 Combination of Similarities using Machine Learning
		3.5 The Term-based Similarity Retrieval Model (T-SRM)

	Chapter 4. Implementation
		4.1 Corpus Preprocessing
		4.2 C-NC Value
			4.2.1 Preprocessing
		Detection of morphological variants1
		Linguistic filtering and stop-word removal

		4.2.2 C-Value process – The algorithm - Implementation
			4.2.3 NC-Value computation

		4.3 Multi-Word Similarity measures
	 4.4 Combination of Similarities
	 	4.5 Information Retrieval

	Chapter 5. Experimental Results
	5.1 Similarity Relevant Weights Computation
	5.2 Correlation Experiment
	 5.3 OhsuMed corpus IR experiment - Results

	Chapter 6. Conclusions & Future Work
	Bibliography – References :

