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Abstract

Term extraction relates to identifying the most characteristic or important terms in a 

corpus. In this work we focus on the problem of extracting multi-word terms from 

documents.  We implemented a state-of-the-art method for term extraction  which 

combines linguistic  and  statistical  information  [15].  Methods  for  computing  the 

similarity between such multi-word terms are also considered. The approach followed 

combines internal (lexical) and external (contextual) criteria [21]. Lexical similarity is 

based on  computing  common constituents (i.e.  term heads and modifiers  within 

multi-word terms) while contextual similarity is based on the likelihood of using the 

same terms in similar concepts along with the terms. We combine these measures to 

form a hybrid similarity measure for computing the similarity between multi-word 

terms. The effectiveness of this hybrid measure was evaluated using human relevance 

judgements. The  results  of  the  evaluation  revealed that  the  proposed similarity 

measure approximates the human notion of similarity up to  73%. Building upon 

multi-word similarity, we proposed an information retrieval model, the  Term-based 

Similarity  Retrieval  Model  (T-SRM),  capable  of  discovering  similarities  between 

documents  that  contain  conceptually  similar  terms.  The  T-SRM was  applied  for 

retrieval  on  the  OhsuMed  document  collection.  The  results  demonstrated  very 

promising  performance improvements over  the  Vector  Space Model,  the  classic 

model for information retrieval.
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Chapter 1. Introduction

The increasing amounts of text information in modern application domains such as 

medicine,  digital  libraries  and  the  Web,  brings  new  challenges  to  information 

management. Information extraction in particular, plays an important role towards 

understanding  better  the  contents  of  document collections  and  can  be  used  for 

improving the accuracy of processes such as document indexing and retrieval. As a 

result of this, information extraction has become of primary interest in computational 

and applied linguistics, language interpretation, as well as in various other disciplines 

for extracting terminologies from texts. By terminologies we refer to the study of and 

the  field  of  activity  concerned with  the  collection,  description,  processing  and 

presentations of terms [17] (i.e. lexical items belonging to specialised areas of usage). 

Such a  task used to  be particularly laborious  in  the past,  as term extraction was 

carried manually  by  human  experts. The  introduction  of  computers  to  language 

analysis  facilitated the  automation  of  the term extraction  process. As  a  result,  a 

number  of term extraction methods have been developed to assist  terminological 

work.

Because terms can also be related to existing knowledge and to each other, the notion 

of term similarity has also been defined and considered in different ways: terms may 

have functional, structural, lexical or other similarities. Establishing relations between 

extracted terms from a corpus is indispensable for improving information extraction, 

document categorisation and information retrieval [51].

The purpose of information retrieval is to assist users in locating the information they 

are  looking  for.  Information retrieval is  currently being  applied  in  a  variety  of 
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application domains from database systems to web information search engines. The 

main idea is to locate documents that contain terms that users specify in queries. 

Retrieval, by classical information retrieval models (e.g. Vector Space, Probabilistic, 

Boolean), is based on plain lexicographic term matching between terms (e.g. a query 

and a document term are considered similar if they are lexicographically the same). 

However,  plain lexicographic analysis and matching is  not generally sufficient  to 

determine if two terms are similar and consequently whether two documents. Two 

terms can be lexicographically different although they have the same meaning (e.g. 

they  are  synonyms).  The  lack  of  common terms  in  two  documents does  not 

necessarily mean that the documents are irrelevant. Similarly,  relevant documents 

may contain conceptually similar but not necessarily the same terms. Conceptually 

similar terms may be expressed in different words in the documents and the queries, 

and direct comparison between them is not effective (e.g. the Vector Space Model 

will not recognize synonyms or semantically similar terms).

In this work we apply Automatic Term Extraction in combination with term similarity 

measures for the purpose of improving the effectiveness if information retrieval. We 

examined term extraction  techniques,  we  experimented with  similarity  measures 

between multi-word terms and we explored  machine learning algorithms computing 

the relative importance of various term similarity criteria (i.e. lexical and contextual) 

for defining a hybrid similarity measure,  combining different similarity measures. 

Building upon term similarity, we proposed the Term Similarity Retrieval Model (T-

SRM),  which is capable of computing the similarity between documents containing 

similar multi-word terms (not just single word terms as in classical retrieval models).

Our work is organised as follows: Chapter 2 discusses the background and related 

work. Chapter 3 talks about the methodology followed while chapter 4 discusses the 

Implementation  part.  chapter  5  talks  about  the  Experiments and  Evaluation  and 

finally chapter 6 denotes the future work.
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Chapter 2. Related Work & Background

This work aims of exploring similarity measures between multi-word terms and their 

application  in  Information  Retrieval.  In  this  chapter  we  discuss  problems  and 

approaches in  the two related research areas.  That is  Automatic Term Extraction 

(ATE) and Information Retrieval (IR).  Firstly, we identify the main problems in ATE 

(i.e. variation and ambiguity). We provide a definition for  term and  we introduce the 

notion  of  multi-word  term.  We  also  present  various  automatic  term  extraction 

approaches (statistical, linguistic, machine learning, hybrid) and we discuss multi-

word term similarity measures. Then  we discuss the main objectives of  IR along 

with classical IR approaches.

2.1 Automatic Term Extraction (ATE)

The terms represent important information related to a corpus, as they linguistically 

represent the  concepts in  documents, express the  semantic  content  of  texts  and 

characterize the  documents semantically.  Term Extraction  is  considered to  be  a 

difficult task and it is usually carried out by human experts. However this process 

tends  to  be  slow and subjective  and does not  scale-up well  for  large  document 

collections. 

2.1.1 What is a term ?

According  to  ISO704 [45],  terms  are  words  or  multi-word expressions,  which, 

contrary to general language words, are deliberately created within a scientific or 

technical linguistic community not only for concept naming, but also for specialized 

concept distinction and classification purposes. The automatic identification of terms 
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is  of  particular  importance in  information management applications since certain 

linguistic  expressions  are  bound  to  convey  the  informational  content  load  of  a 

document.  In  the  specific context  of  term extraction for  retrieval  purposes,  the 

principal objective of ATE  is the identification of discrete content indicators , namely 

index terms.    At this point, a distinction should be made between the notion of 

domain term and the  index term.  Domain terms  are deliberately created within a 

scientific or technical linguistic community for specialized concept distinction and 

classification purposes, as defined by ISO704 [45].  Index terms  are key concepts, 

words of phrases, which semantically label and categorize the content of a document 

for information management purposes, such as retrieval. For this reason, although 

terms (domain terms) may be discovered in an indexing process, neither all domain 

terms are useful index terms, nor all index terms are domain terms. For example, a 

valid domain term appearing very frequently in a document collection is useless for 

the retrieval of a specific document.

In the rest of this work, the notion of term refers mainly to index terms, though in the 

ATE approach used in our method (C-NC Value, as we will see in the next chapters), 

the design objective is domain term extraction, rather than indexing.  Our purpose is 

to  use  the  information from  this  Automatic  Term  Extraction  method   for  the 

establishment of  term similarities between multi word terms and the application of 

all the above in our proposed Information Retrieval Model, the Term-based Similarity 

Retrieval Model (T-SRM).

2.1.2 Problems in term identification

In theory, terms must be mono-referential (i.e. one and only one term should refer to 

only  one). In practice, we face phenomena of semantic ambiguity, such as Polysemy 

(i.e. when a term refers to many different concepts) and synonymy (i.e. when many 

terms reflect the same concept).

Statistical  measures  (e.g.  frequency  of  occurrence)  are  widely  used  for  the 

identification and evaluation of  the terms in  document collections.  However,  the 

frequency does not always constitute a sufficient  criterion for term identification, 
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given that many words may appear often within specialized texts without being terms 

and conversely many domain terms may have  low frequencies. 

2.1.3 Multi-Word terms : Definition – Problems

The majority of terms consist of compound  units [44].  Most compound terms are 

nouns, which consist of either two or more nouns, e.g. “carrier protein” , or by a 

noun that follows an adjective, ex. “nuclear receptor”. Also the existence of nested 

terms is very common .e.g. [cornea [nerve] cell]. The term “cornea cell” is nested 

within the “cornea nerve cell”.

The identification of multi-word terms, although it may be fairly an easy task for an 

expert,  it  is  not  equally  simple  for  an  automatic  term  extraction system.  The 

identification of compound and nested terms constitutes one of the main researching 

challenges in ATE, as it relates to the resolution of the problems of  ambiguity (the 

same term corresponding to many concepts) and variation (many terms leading to the 

same concept).

Ambiguity is a general phenomenon of natural languages that greatly has preoccupied 

the research area of linguistic technology. In the field of automatic term extraction, 

the phenomenon of ambiguity may be of four types :  morphosyntactic, syntactic, 

semantic  and  classification  ambiguity.  For  example,  we  have  morphosyntactic 

ambiguity when a word may be interpreted in more than one ways (i.e. as a verb or 

noun (e.g. “walk”), as an adjective or adverb). Further explanation regarding other 

types of term ambiguity is given in [44].

Variation  appears when a concept is expressed with many synonym terms or with 

variants of the same term (table 2.1). Variation is widely common phenomenon in 

terminology, it is estimated that the 37% of terms that appear in a document consist of 

variations [46].  Variant tracking and identification is of a great importance to term 

extraction and the construction of thesauri. It is important  to know if different term 

patterns are referring to the same concept or  (in general) if they are related to each 

other (and how).
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                    haemorrhage  v  blood loss                     Lexico-semantic

               Clones of human  v  human clones                S  yntactic  

                 Down syndrome  v   Down's syndrome         M  orphological  

          amyloid beta-protein  v  amyloid β-protein         Orthographical

Table 2.1 Variant example types

The  FASTR  system [46]  handles  morphological  and  syntactic  variations,  while 

semantic variants are handled via a specialized lexicon (e.g. “WordNet”).

In this work, we applied a simple morphological analyser from WordNet Java library, 

for handling morphological and orthographic variants in our term extraction process. 

2.1.4 Automatic Term Extraction Approaches – Term Similarity

An  overview of  the  methods  for  automatic term  extraction  and  for  computing 

similarities  between  terms  is  presented  below.  Some  make  use  of  linguistic 

knowledge, some others of statistical information while the majority of methods make 

use of both. 

A purely linguistically based tool to term extraction, created by the French Electricity 

Board for thesauri  updating and creation, is  Lexter.   Lexter works in two stages. 

During the first stage, it extracts all word sequences that on linguistic rules could not 

constitute a terminological unit.  Studies of the linguistic properties of terms have 

shown that certain word sequences rarely constitute a term, for example sequences 

comprising  conjugated  verbs,  pronouns,  conjunctions  or  certain  strings  of 

prepositions  +  determiners. Next,  based  again  on  linguistic  information  on  the 

prevailing term formation patterns of the special language under study, Lexter extracts 

subsets from maximal length noun phrases that most likely constitute a terminological 

unit.  The resulting list is then submitted to an expert for validation. Another approach 

which makes use both of word repetition and negative knowledge is proposed by 

Oueslati et al. (1996).  Their algorithm extracts repeated word sequences and then 

uses a stop list and a domain verb list to filter the extracted data.  The result is a list of 

noun-noun combinations. Additionally, FASTR, an algorithm proposed by Jacquemin 
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[46], attempts to retrieve both terms and term variants in an attempt to improve recall 

(i.e. to reveal even more terms).

A  state-of-the  art  method  for  extracting  multi-word  terms  is  KEA [14].  KEA 

automatically extracts keyphrases from the full text  of documents. The set  of all 

candidate phrases  in a document are identified using rudimentary lexical processing, 

features are computed for each candidate, and  machine learning is used to generate a 

classifier that determines which candidates should be assigned as keyphrases. Two 

features are used in the standard algorithm: tf*idf and position of first occurrence. 

The  tf*idf  requires  a  corpus  of  text  from which  document frequencies can  be 

calculated; the machine learning phase requires a  set  of training documents with 

keyphrases assigned.

Another method for the automatic extraction of multi-word terms is C-NC/Value [15]. 

C-NC/Value  constitutes  a  domain-independent  method,  combining  linguistic  and 

statistical information. It enhances the common statistical measure of frequency of 

occurrence and incorporates information from context  words to  the extraction of 

terms. 

Based on the work by Milios et al. demonstrating that C/NC-Value outperforms KEA 

achieving significantly better precision and recall in identifying terms in special text 

corpora [13], we use the  C-NC Value method for the extraction phase, as we will 

discuss in methodology chapter (chapter 3).

2.1.5 Term Similarity

Several methods have been developed for the identification of conceptual similarities 

among terms.  For example, Bourigault and Jacquemin [22] used lexical similarities 

to  cluster terms. Their idea is  based on  adapting the term normalization  process 

proposed within the FASTR framework [46]. A cluster is produced by linking terms 

that are associated by specific syntactic variation links (namely lexical characteristics 

and  possible  term-formation  decompositions),  which  reflect  the  internal  term 

structures. 

Statistical methods (such as co-occurrence frequency counts) have also been used for 

establishing term similarities. For example, Maynard and Ananiadou [6] and Mima, 

Ananiadou and Nenadic [47] analysed terms co-occurring in a close proximity to one 
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another as a basis for estimating term similarities. However, term co-occurrences and 

statistical  distributions  over  larger  text  units  (e.g.  documents)  may  not  reveal 

significant associations for some types of relationships (Hindle [48] Ding, Berleant, 

Nettleton and Wurtele [49]). Therefore, statistical and shallow-parsing methods have 

been combined. For example, Hindle [48] suggested a  similarity  measure among 

nouns based on mutual information of subject-verb and verb-object co-occurrences. 

His main assumption is that a noun appears as subject or object of a restricted set of 

verbs, and that, consequently, each noun can be characterized by the verbs it co-

occurs  with.  Grefenstette  [19]  extended  this  approach  by  considering  other 

grammatical roles.

2.2 Information retrieval (IR)

Information Retrieval  deals with the representation, storage, organization of, and 

access to information items [4].  The user must express his information need into a 

query  which can be processed by the IR system (the search engine). Given a user 

query, the objective of an IR system is to retrieve information which is related to the 

query and might be useful to the user. In its most common form , the translation of the 

user query yields a set of keywords (index terms) which summarize the description of 

the user information need [4]. An index term in IR is simply a (document) word 

whose semantics helps in representing the document's main themes. For example, let 

us  consider  a collection of a  thousand documents:  a  word which appears in all 

documents  is  completely useless as an index term, because it  does not  distinctly 

represent the particular content of a specific document in the collection. Conversely, a 

word which only appears in some, but not all documents is quite useful, because it 

narrows down considerably the space of documents which might be of interest to the 

user. Thus, it should be clear that distinct index terms have varying relevance when 

used to describe documents. The assignment  of numerical weights to each index term 

of a document allows for the estimation of the varying relevance of the index terms.
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2.2.1 Building an information retrieval system

Before the retrieval process can be initiated, it is necessary to define the text database. 

Text  normalization  operations  are  firstly  applied to  the  text[4].  Such  operations 

include  stemming (the reduction of distinct words into their common grammatical 

roots)  and  the  elimination of  stopwords (such as  articles and connectives).  Text 

operations reduce the complexity of the document representation and result in a set of 

index terms for each document.

Different index structures might be used to speed up the search, but the most popular 

one is the inverted file. It can be thought as a data structure that allows fast random 

access to words stored inside it contained in documents. The concept behind it, is 

analogous to an index at the end of a book, which lets the reader locate rapidly pages 

that discuss certain topics.

The user first specifies a query (an expression of his information need)  which is then 

parsed and transformed by the same text operations into a vector of terms. Then the 

query is processed to obtain the retrieved documents. The retrieved  documents are 

ranked according to their likelihood of relevance to the query. The user then examines 

the set of ranked documents in the search for useful information. 

2.2.2 Classic Information Retrieval

In this section we briefly present the three classic models  namely, the Boolean, the 

Vector, and the Probabilistic models.

Boolean Model

The Boolean model is a simple retrieval model based on set theory and Boolean 

algebra. It considers that index terms are present or absent in a document. As a result, 

the index term weights are assumed to be all binary, i.e. w i , j∈{0,1 } . A query q is 

composed of index terms linked by boolean operators such as “not”, ”and”, ” or”. 

The Boolean model suffers from the following drawbacks. First, its retrieval strategy 

is  based on a  binary decision criterion (i.e.  a document is  predicted to be either 

relevant or non-relevant) without any notion of grading scale. Second, while Boolean 

expressions  have  precise  semantics,  frequently it  is  not  simple  to  translate  an 
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information need into a  Boolean expression.  Finally  because the Boolean model 

predicts that each document is either relevant or non-relevant, there is no notion of a 

partial match to query conditions. 

To conclude, the main advantages of the Boolean model are the clean formalism 

behind the model and its simplicity. The main disadvantages are that exact matching 

may lead to retrieval of too few or too many documents and that retrieved documents 

are not ranked by relevance to the query.

Vector Space Model

The vector model [41, 42] recognizes that the use of binary weights is too limiting 

and proposes a framework in which partial matching is possible and desirable. This is 

accomplished by  assigning  non-binary weights  to  index terms in  queries and in 

documents.  These  term  weights  are  ultimately  used  to  compute  the  degree  of 

similarity between each document stored in the system and the user query. The vector 

space model sorts the retrieved documents by decreasing order of similarity. Also, 

retrieves documents that match the query only partially (i.e. a query term may be 

absent from a document). Similarly, the vector for a document dj is represented by dj 

= (w1;j ,w2;j ,....,  wt;j  ).  A document  dj  and a  user  query  q are  represented as  t-

dimensional vectors (figure 2.1). Let  wi,q be the weight assisted with the pair  [ki,q], 

where wi,q >= 0. The query vector q , is defined as q = (w1;q,w2;q,....,wt;q) where t is the 

total number of index terms in the system. 

 

Figure 2.1 The cosine of θ is adopted as sim( dj ,q)

The Vector Space Model computes the degree of similarity of the document dj with 

regard to the query q as the cosine of the angle between document vectors q  and 

d .  This  is  computed  as  follows,  where d j⋅q is  the  inner  product  of  the 

document and query vectors.
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×∑t

w i , q
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Sim( dj ,q)  varies from 0 to +1. Thus, instead of attempting to predict  whether a 

document is relevant or not, the vector model ranks the documents according to their 

degree of similarity to the query.

Appropriate weight to documents and queries is computed according to the tf*idf 

formula. The tf  (i.e. term frequency) measures the raw frequency of a term ki inside a 

document dj. Term frequency is referred to as the tf factor and provides a measure of 

how well a term describes a document content. The inverse of the frequency of a term 

ki   among the documents in the collection, measures the importance of a term in the 

whole  document collection.  This  factor  is  referred  to  as  the  inverse  document 

frequency or the  idf factor.  The motivation for usage of an idf factor is that terms 

which appear in many documents are not very useful for distinguishing a relevant 

document from a non-relevant one. 

The tf*idf weighting scheme tries to balance these factors and computes weights as :  

w i , j= tf∗idf     (2.1)

The main advantages of Vector Space Model (VSM) are (according to [4] )  :

i. Its term-weighting scheme improves retrieval performance

ii. Its partial matching strategy allows retrieval of document that approximate the 

q conditions (don't necessarily match all query terms)

iii. Its cosine ranking formula allows for sorting the documents by decreasing 

similarity with the q.

The vector model has the disadvantage that index terms are assumed to be mutually 

independent. (equation 2.1 does not account for index term dependencies). In this 

work,  our  proposed  model,  the  T-SRM  model  (as  described  in  chapter  3, 

Methodology)  tries to resolve this drawback. 
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Probabilistic Model

The Probabilistic Model introduced by Robertson and Sparck Jones [43] and later 

became known as the binary independence retrieval model. The fundamental idea is 

that  given a  user query,  there is  a  set  of  documents which contains  exactly  the 

relevant documents and no other (an ideal answer set). Given the description of this 

ideal answer set, we would have no problems in retrieving its documents. Thus, we 

can think of the querying process as a process of specifying the properties of an ideal 

answer set. The probabilistic model is based on the assumption that given a user 

query q and a document  dj  in the collection, the probabilistic model tries to estimate 

the probability that the user will find the document  dj   interesting (i.e. relevant). 

Documents in the set R are predicted to be relevant to the query. Documents not in 

this  set  are  predicted  to  be  non-relevant.  This  assumption is  quite  troublesome 

because it does not state explicitly how to compute the probabilities of relevance [4].

The main advantage of the probabilistic model [4] is that documents are ranked in 

decreasing order of their probability of being relevant. The disadvantages include: i) 

the need to guess the initial separation of documents into relevant and non-relevant 

sets, ii) the fact that the method does not take into account the frequency that an index 

term occurs in the document (i.e. all weights are binary) iii) the assumption that all 

index terms are independent.

2.2.3 Comparison of Models

The Boolean model in general is considered to be the weakest from the methods 

described  briefly  above  [4].  In  comparing  vector  with  probabilistic,  Salton and 

Buckley showed that the vector model is expected to outperform the probabilistic 

model [50]. This  also  seems to be the most popular thought among researchers, 

practitioners and the Web community. For this reason, we choose to  implement the 

vector space model (see also chapter  4) to compare the results with out proposed 

method, the Term based Similarity Retrieval Model (T-SRM).

2.2.4  Performance Evaluation

The evaluation of the performance of retrieval is usually based on a test reference 

collection and on an evaluation criterion. The test reference collection consists of a 
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collection of documents, a set of example queries and a set of relevant documents 

(provided by specialists) for each query. Given a retrieval strategy S, the evaluation 

criterion measures the similarity between the set of documents retrieved by S and the 

set of relevant documents provided by the specialists. This provides an estimation of 

the goodness of the retrieval strategy [4]. In our experiments, we apply the two most 

common retrieval evaluation measures, referred to as recall and precision. 

  

As shown in the first two figures on the 

left, these measures assume:

1. There is a set of documents in the 

database which is relevant to the 

search topic 

2. Documents are assumed to be either relevant or irrelevant (these measures do not 

allow for degrees of relevancy). 

3. The actual retrieval set may not 

perfectly match the set of relevant 

documents. 

Recall is  the  ratio  of  the  number of  

relevant  documents  retrieved  to  the  

total number of relevant documents in  

the database. It is usually expressed as  

a percentage.

Precision is the ratio of the number of  
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relevant records retrieved to the total number  of  irrelevant  and  relevant  

records retrieved. It is usually expressed as a percentage.

Measuring recall is difficult because it is often difficult to know how many relevant 

records exist in a database. This would require that the whole database is browsed and 

each document is judged as relevant or non relevant. This is particularly difficult for 

large document collections. Often recall is estimated by identifying a pool of relevant 

records (“pooling method”, [27]) and then determining what proportion of the pool 

retrieved by the search. There are several ways of creating a pool of relevant records: 

one method is to use all the relevant records found from different searches, another is 

to manually scan several journals to identify a set of relevant answers. Of course there 

are alternative measures to evaluate a retrieval method. Some of them are the  E 

measure, the harmonic mean, satisfaction etc. [4]. 
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Chapter 3. Methodology

Our proposed method aims towards extracting meaningful multi-word terms from 

documents. It shows furthermore that it is possible to exploit this result for enhancing 

the performance of information retrieval in document collections. This is achieved 

through T-SRM,  a novel information retrieval method, which uses vectors of multi-

word  terms  as  document  representations  and  appropriately  defined  similarity 

measures for computing document similarity as a function of the similarity between 

individual multi-word terms. Our method works in the following steps: 

● Corpus selection

● Term Extraction

● Multi-Word Term similarity computation 

● Weight computation

● Term-Based Document Similarity 

 3.1 Considerations  in Corpus Selection

Corpus selection  is  an  essential  prerequisite  for  testing our  method. Our corpus 

should be in text format and representative of a domain. Also, should be a collection 

potentially used in IR tasks. Moreover, in order to  benchmark  our  method against 

other   methods,  we should use  a  standard  reference corpus.  TREC1 meets our 

requirements. TREC,  The Text Retrieval Conference, has purpose to support research 

within the information retrieval community by providing the infrastructure necessary 

for large-scale evaluation of text retrieval methodologies.  Each of these collections 

consists of a set of documents, a set of topics (queries), and a corresponding set of 

1 http://trec.nist.gov/   
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relevance judgements (correct answers to the queries). 

Another consideration is the corpus size. In particular we need our corpus length to be 

big enough to help us make reliable judgements using statistical methods.  

In the Implementation chapter (section  4.1)   we describe the corpus fulfilling our 

requirements  and  its particular characteristics.

The method  for multi-word term extraction, referred to as the C-NC Value method 

[15], is discussed in the next section (section 3.2).

3.2 The C-NC Value Method [15]

The C-Value method  is a hybrid domain-independent method combining linguistic 

and statistical information (with emphasis on the statistical part) for the extraction of 

multi-word and nested terms  (i.e. terms that appear within other longer terms, and 

may or may not appear by themselves in the corpus).  This method takes as input a 

corpus and produces a list of candidate multi-word terms, ordered by the likelihood of 

being valid terms, namely their C-Value measure.

The C/NC-Value method comprises of two main parts: 

i. The linguistic

ii. The statistical, which consist of: 

(a) C-Value

(b) NC-Value

NC-Value  is  an  enhancement  to  C-Value.  It  incorporates  contextual  

information aiming at improving the ranking of candidate multi-word term 

list extracted by C-Value.

3.2.1 Linguistic Processing 

The Linguistic Processing applies the following steps: 

● The Part-of-Speech(POS) tagging of the corpus:   

Part-of-Speech(POS)  tagging  is  the process of assigning a grammatical  
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category tag (such as noun, verb, adjective, adverb or preposition) to each 

word. In  C/NC-Value,  POS is  applied prior to linguistic filters that exact  

noun phrases.

● The Linguistic Filter:  

Terms  consist  mostly  of  nouns  and  adjectives  [17]  and  sometimes  

prepositions  [9].   The  statistical  information ,   without   any  linguistic  

filtering, is not enough to produce  useful results.  Without any  linguistic  

information, undesirable strings  such as  “of the”,  “is  a”,  “etc.”, would  

also be extracted. The linguistic filter is used to extract noun phrases that  

constitute multi-word terms discarding such undesirable strings. 

● The Stop-list.   

A stop-list for a corpus in ATR is a list of words which are not expected to 

occur as term words in that domain. It is used to avoid the extraction of  

strings that are unlikely to be terms, improving the precision of the output  

list.  The  stop list  is  manually  constructed based on domain observation.  

Figure 3.1 shows a sample list of stop words.

became because becoming before beforehand behind

become becomes been being believe below

better best beside even does every

far cant did day etc. fold
Figure 3.1  Example of stop words

3.2.2 The Statistical Part

(i) C-Value

 The  C-value  constitutes  a   measure of  the  importance of  each candidate  term 

extracted in the previous steps.  The higher the C-Value measure the more likely it is 

the candidate term to be a valid term. 

The C-Value of a term is computed as follows:    
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where : 

● α   is the candidate string

● f(.)  the frequency of occurrence in corpus

● Ta  the set of extracted candidate terms  that contain α  (longer candidate 

terms) 

● P(Ta)  the number of these longer candidate terms

The  negative effect  on  the  candidate string α  being a  substring of  other  longer 

candidate  terms is  reflected by  the  negative  sign  '-'  in  the  formula above. The 

independence of α from these longer candidate terms is given by P(Ta). The greater 

this number the bigger its  independence(and the opposite) is  reflected by having 

P(Ta) as the denominator of a negatively signed fraction. The measure is built using 

several statistical  characteristics of the candidate string. These are:

1. The total frequency of occurrence of the candidate string in the corpus.

2. The frequency of the candidate string as part of other longer candidate terms.

3. The number of these longer candidate terms.

4. The length of the candidate string (in number of words).

      Figure 3.2 Characteristics of the candidate string used for calculating C-Value

The higher the number of distinct longer terms that our string appears as nested in , 

the more  certain we can be about  its  independence (i.e.  that  the candidate term 

extracted is  a  real term).  The  fact that a  longer string appears  X times is  more 

important than that of a shorter string appearing again X  times[15]

(ii) NC-Value

NC-Value is  an  enhancement  to  C-Value that  is  computed  based  on  context 

information.

Firstly NC-Value creates a list of important term context words. Term context words 
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are words that appear in the vicinity of terms in texts. These will be ranked according 

to their `importance' when appearing with terms. The criterion for the extraction of a 

word as a term context word is the number of terms it appears with. The higher this 

number is, the higher the likelihood that the word is `related' to terms (it occurs with 

other terms in the same corpus).  

Each candidate term in the C-Value list appears in the corpus with a set of context 

words. From these context words, the nouns, adjectives and verbs are retained for 

each candidate term. NC-Value provides a method for the extraction of term context 

words (words that tend to appear with terms) and incorporates this information (from 

term context words) into the term extraction process. This above criterion is more 

formally expressed as [15] :

Weight w=
t w

n
  (figure 3.3)

where

● w is the context word (noun, verb or adjective) to be assigned a weight as a 

term context word,

● Weight(w) the assigned weight to the word w,

● t(w) the number of terms the word w appears with,

● n the total number of terms considered.

The purpose of the denominator  n is to express this weight as a probability (the 

probability that the word w might be a term context word). The NC-value measure is 

then computed as :

NC−Value=0.8CValue a 0.2∑
b∈C a

f a bweight b

where

● a is the candidate term,

● Ca is the set of distinct context words of a,

● b is a word from Ca,

● fa(b) is the frequency of b as a term context word of a,

● weight(b) is the weight of  b as a term context word.

The two factors of  NC-value, i.e.  C-value  and the context information factor, have 
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been assigned the weights 0.8 and 0.2 respectively. These have been chosen among 

others after experiments and comparisons of the results  [15].

We  describe  thoroughly  the  C/NC-Value algorithms  during  the  implementation 

section (chapter 4).

    3.3 Multi-word similarity measures

In this  section, we  present  the  method  for computing the similarity between multi-

word terms extracted by  C-NC Value (as described in section 3.2). The multi-word 

term similarity measures are to be used in combination with our proposed  T-SRM 

(Term-based Similarity  Retrieval  Model)   in   information retrieval  tasks  –  for 

retrieving results to user queries.

An approach for computing similarity between multi-word terms is proposed in [21]. 

It takes into consideration both lexical and contextual criteria which are combined 

into a unique formula. In this work we apply machine learning for measuring the 

relative importance of the two criteria.

3.3.1 Lexical Similarity

The Lexical Similarity between multi-word terms measures the similarity between the 

words that constitute terms.  This idea was exploited by Bourigault and Jacquemin 

[22] by adapting the term variation process, and by Dagan and Church [18] via 

“grouping” the list of term candidates according to their heads2. These approaches 

were generalized  by considering constituents (head and modifiers) shared by terms. 

Therefore  the  rationale  behind  lexical  similarity  involves  the  following 

hypotheses[21]:

1. Terms sharing a head are assumed to be (in)direct hyponyms of the same term 

( e.g. progesterone receptor and oestrogen receptor are both receptors)

2. When a term is nested inside another term , we assume that the terms are 

related (e.g. retinoic acid receptor and retinoic acid  should be associated)

2 i.e for “web page” and “web snippet” the head is the word “web”.
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Lexical similarity between two terms is defined based on based on identifying their 

respective  common  subsequences[21]. By  comparing  all  their  non-empty  sub-

sequences, it is possible to give more credit to pairs of terms that share longer nested 

constituents. An additional credit is given to terms having common heads. 

Given a sequence of words s, P(s) (according to Nenadic et al. [21])  refers to the set 

of  all  sub-sequences in  s.  For  example, P(orphan  nuclear receptor)  =  {orphan, 

nuclear, receptor, orphan nuclear, nuclear receptor, orphan nuclear receptor}. The 

lexical similarity between term t1 and term t2 (whose heads are denoted by h1 and h2 

respectively)  is  computed  according  to  a  Dice-like  coefficient  formula.  Dice 

coefficient  is widely used in information retrieval [33].  Building upon the idea of 

Dice coefficient [33], the lexical similarity between two terms is computed as : 

 

LS  t 1 ,t 2 =
∣P h 1 ∩P h 2 ∣

∣P h 1 ∣∣P h 2 ∣


∣P t 1∩P t 2 ∣

∣P t 1∣∣P t 2 ∣
 

The numerators in the previous formula  denote the number of shared constituents, 

while  the  denominators refer to  the  sums of  total  numbers of  constituents.  The 

following  table illustrates  some  examples.

i ti P(ti)

1 nuclear receptor {nuclear, receptor, nuclear 

receptor}

2 orphan receptor {orphan, receptor, orphan receptor}

3 orphan nuclear receptor {orphan, nuclear,receptor, orphan 

nuclear, nuclear receptor,  orphan 

nuclear receptor}

4 nuclear orphan receptor {nuclear, orphan,  receptor, nuclear 

orphan, orphan receptor, nuclear 

orphan receptor}

LS(t1,t2)=0.67, LS(t1,t3)=0.83, LS(t1,t4)=0.72, LS(t2,t3)=0.72, LS(t3,t4)=0.75

Examples of lexical similarity
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3.3.2 Contextual Similarity

According to Nenadic et. al. [21], contextual similarity is mainly based on the Harris' 

notion of substitutability:  If two terms can substitute each other in similar  contexts, 

then  they  can  be  deemed  similar.  For  example  the  term“ligand  inducible 

transcription factor”   (following table)  typically appears in a context that can be 

described as “belonging to a superfamily of”.

More specifically, the contexts of terms similar to the term ‘ligand-inducible 

transcription factor’ are:

• ...T3R belongs to the nuclear receptor family of ligand-inducible 

transcription factors...

• ...The retinoid receptors belong to a large superfamily of ligand-inducible 

transcription factors...

• ...this receptor is a novel member of the superfamily of ligand-inducible 

transcription factor....

So this description follows a certain context pattern :

   <term> (belong  |  member  of)  <modifier>  superfamily  of  ligand-inducible 

transcription factor

In place of  <term>  different terms may appear  and all these terms are mutually 

associated. Such context  patterns can  be used to  establish  term similarities [21]. As 

context  patterns are treated as  term features, the Dice-like coefficient is  used to 

estimate contextual  similarity between terms as  a  function of  both common and 

distinctive features . The Contextual similarity measure is formally defined as : 

ContextualSimt 1 , t 2=
∣C L1 ∩ C L2∣ ∣C R1 ∩ CR2∣
∣C L1∣∣C L2∣ ∣C R1∣ ∣C R2∣

 

where: CL1,CR1,CL2,CR2 are sets of left and right context patterns associated with terms 

t1 and t2 respectively.
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3.4 Combination of Similarities using Machine Learning

Neither lexical, nor contextual similarity are sufficient on their own to define term 

similarity measure between two arbitrary terms: Lexical similarity can indicate only 

restricted  types  of  similarity  (hyponymy and  meronymy).  Regarding contextual 

similarity,  if a term appears  infrequently or  within  very specific context patterns, 

the number of its context patterns will influence its contextual similarity  to  other 

terms. Thus, a combination of these similarities is required.

In this  work the relative  importance of  each similarity  measure is  computed by 

machine learning. An existing platform of machine learning algorithms is WEKA1. 

WEKA is  self-described  in  its  web page as  “a  collection  of  machine  learning 

algorithms for data mining tasks”. The algorithms can either be applied directly to a 

dataset or  called  from  Java  source code.  WEKA  contains tools for data pre-

processing, classification, regression, clustering, association rules, and visualization. 

It is also well-suited for developing new machine learning schemes. WEKA is an 

open source software issued under the GNU General Public License.

We tried several algorithms to combine the similarities. These algorithms along with 

the results are  briefly explained  in the  implementation  chapter (4.5).  In the next 

section (3.6) we propose the  Term-Based Similarity Retrieval Model (T-SRM) ,  an 

information  retrieval  model  based  on  the  multi-word  term  similarity  method 

described above. 

3.5 The Term-based Similarity Retrieval Model  (T-SRM)

Our hypothesis  is  that conceptual similarity may be learnt directly from our text 

corpora and that conceptual similarity may be expressed as combination of lexical 

and contextual  similarities.  Building upon this  idea,  we propose the Term-Based 

Similarity Retrieval Model (T-SRM),  a novel information retrieval model which s 

capable of  computing  the  similarity  between documents containing conceptually 

similar but not necessarily lexically similar terms. Notice that classic retrieval models 

1 http://www.cs.waikato.ac.nz/ml/weka/   
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such  as  the  Vector  Space  Model  (section  2),  will  not  recognize synonyms or 

conceptually similar terms (e.g. “google search engine”, ”web search engine”).

Our T-SRM model suggests computing the similarity between documents based on the 

similarity of multi-word terms contained in the documents (i.e. based on the lexical 

and contextual similarity measures as described in section 3.3). In our T-SRM model 

the  queries may  also  be  augmented with  conceptually  similar  terms which  are 

retrieved by applying  similarity  measure to  the terms extracted from the corpus 

examined. T-SRM takes into account dependencies between terms during its query 

expansion  step, namely each query term is expanded by conceptually similar terms. 

Our model takes all possible term associations between two documents into account 

and  accumulate their similarities. Similarly to VSM, queries and documents should 

be first analysed and represented by term vectors. Very infrequent or very frequent 

terms should be eliminated. Each term in this vector should be represented by its 

weight. The weight of a term should be  computed as a function of its frequency of 

occurrence in  the  document collection.  In  particular  in  our  approach  the  term 

frequency -  inverse document frequency (tf*idf)  model is used for computing the 

weight. Typically, the weight di of a term i in a document is computed as

d i=tf i⋅idf i

where tfi is the frequency of term i in the document and idfi is the inverse document 

frequency of i in the whole document collection. 

Then the T-SRM computes:

● Query Expansion: 

The query is augmented by synonym terms using term similarity measures. 

We expand each  term with other similar terms having similarity up to  T,  

where T  is user-defined.

 

● Document Similarity:

 The similarity between an expanded  query q and a document d is computed 

as:

Sιmq ,d =
∑i∑ j

qi d j sιm i , j

∑i∑ j
qi d j
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where i and j are terms in the query and the document respectively. Query 

terms are expanded according to  the  previous  step.  All  tf*idf terms and  

documents(queries) are  normalized  by  document  (query)  length. The  

measure is normalized in range[0,1].

An alternative would be to use C-Values for term weighting. Furthermore, the formula 

by Mihalcea [40] could be applied  for computing similarity between documents. 

According to Mihalcea,  The similarity between the input documents T1  and T2 is 

determined using the following scoring function:

SιmT 1, T 2=
1
2


∑
w∈T1

maxSimw ,T 2∗idf w

∑
w∈T1

idf w


∑
w∈T 2

maxSimw ,T 1∗idf w

∑
w∈T 2

idf w


Mihalcea defines the semantic similarity of two documents T1  and T2  using a metric 

that combines the similarities of each document in turn with respect to the other 

document. First, for each word w in the document T1 tries to identify the word in the 

segment T2  that has the highest semantic similarity (maxSim(w,T2) ). Next, the same 

process is applied to determine the most similar word in T1 starting with words in T2. 
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Chapter 4. Implementation

The implementation of the method is discussed below. The method is implemented in 

Java and the main steps are :

1. Corpus preprocessing

2. C/NC Value computation

3. Multi-Word Similarity computations

4. Combination of Similarities

5. T-SRM document similarity computation
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Corpus Preprocessing



C-Value Preprocessing



Lemmatizer



Linguistic Filter



Stop List



C-Value



Context Processing

(context pattern & context word extraction)



NC-Value


Lexical and Contextual Similarities



Indexing of the corpus



T-SRM Model



Retrieval
Fig. 4.1 T-SRM processing steps

4.1 Corpus Preprocessing

We  test out methods on a standard TREC corpus. OhsuMed collection, due its large 

size  and thorough experimentation, is  considered to  be  a  standard reference  test 

collection. OhsuMed is a set of 348,566 references from Medline, the on-line medical 

information database, consisting of titles and/or abstracts from 270 medical journals 

over  a  five-year  period  (1987-1991).   The  OhsuMed  document collection  was 
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compiled by William Hersh and colleagues, for the experiments described in [38], 

[39]. 

OhsuMed provides queries and a set a documents that are relevant to each query 

respectively. All other documents are considered irrelevant. This helped us measuring 

precision and recall automatically in our IR experiment. 

4.2 C-NC Value

The C/NC-Value method is implemented in the following steps: 

4.2.1 Preprocessing

Corpus preprocessing applied the following:

• Sentence Splitting 

• Tokenizing

• POS tagging

We used initially the tools from GATE1 for Part-of-Speech Tagging , tokenizing and 

sentence splitting. However,  our first  experiments showed that the corresponding 

collection from OpenNLP2 was much faster and much more stable. For this reason we 

decided to use the OpenNLP tools for the preprocessing stage.

The OpenNLP POS tagger that we used is  the MX-POST, based on the work of 

Ratnaparkhi  on maximum entropy models3 for natural language processing [36] .

The tagset (a sample in table 4.1)  used is the Penn-TreeBank tagset [16]. After POS 

Tagging, the linguistic filter that extracts phrases that satisfy the linguistic criterion 

1 http://gate.ac.uk   :: GATE is an infrastructure for developing and deploying software components 

that process human language.

2 http://www.opennlp.org   :: OpenNLP is an organizational center for open source projects related 

to natural language processing. Hosts a variety of java-based NLP tools which perform sentence 

detection,  tokenization,  pos-tagging,  chunking  and  parsing,  named-entity  detection,  and 

coreference using the OpenNLP Maxent machine learning package.

3 (quoting  from  Manning  and  Schutze)   [37] (page  589):  Maximum  entropy  modeling  is  a 
framework   for  integrating  information  from  many  heterogeneous  information  sources  for 
classification. The data for a classification problem is described as a (potentially large) number of 
features. These features can be quite complex and allow the experimenter to make use of prior 
knowledge about what types of informations are expected to be important for classification. Each 
feature corresponds to a constraint on the model. We then compute the maximum entropy model, 
the model with the maximum entropy of all the models that satisfy the constraints.
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and frequency threshold is applied next.

POS Tag Description Example

CC coordinating conjunction and

IN preposition/subordinating 

conjunction

in, of, like

JJ adjective green

JJS adjective, superlative greenest

NN noun, singular or mass table

NNP proper noun, singular John

RB adverb however, usually, 

naturally, here, good

VB verb, base form take

VBZ verb, 3rd person sing. present takes

PRP personal pronoun I, he, it

LS list marker 1)

Table 4.1 Description and Examples of sample POS tags

Table 4.2 shows a sample paragraph before and after the preprocessing respectively.

                The original text

This survey focuses on clustering in data mining. Data mining adds to clustering the 

complications of very large datasets with very many attributes of different types. This 

imposes unique computational requirements on relevant clustering algorithms. A variety of 

algorithms have recently emerged that meet these requirements and were successfully 

applied to real-life data mining problems. They are subject of the survey.

             After POS Tagging , Sentence Splitting, Tokenizing

This/DT survey/NN focuses/VBZ on/IN clustering/VBG in/IN data/NNS mining/NN ./.

Data/NNP mining/NN adds/VBZ to/TO clustering/VBG the/DT complications/NNS of/IN 

very/RB large/JJ datasets/NNS with/IN very/RB many/JJ attributes/NNS of/IN different/JJ 

types/NNS ./. 

This/DT imposes/VBZ unique/JJ computational/JJ requirements/NNS on/IN relevant/JJ 

clustering/NN algorithms/NNS ./. 

A/DT variety/NN of/IN algorithms/NNS have/VBP recently/RB emerged/VBN that/IN 

meet/VB these/DT requirements/NNS and/CC were/VBD successfully/RB applied/VBN 

to/TO real-life/JJ data/NNS mining/NN problems/NNS ./.

 They/PRP are/VBP subject/JJ of/IN the/DT survey/NN ./.

Table 4.2  Preprocessing stage sample
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Detection of morphological variants1

We proposed and implemented an enhancement to C-Value, using the morphological 

processor from WordNet2  Java Library3 (JWNL) .  JWNL is an API for accessing 

WordNet-style  relational  dictionaries.  It  also  provides  relationship  discovery and 

morphological processing. The Morphological Processor attempts to match the form 

of a word or phrase to its respective lemma, i.e. base form, in WordNet. For example, 

if  one calls lookupBaseForm(POS.VERB, "running"), the lemma "run" should be 

returned. This enhancement has been thought important because it allows the C/NC 

Value tool to handle morphological variants of terms , for example “web page”, “web 

pages”. 

Linguistic filtering and stop-word removal

At this point the linguistic filter is applied on each sentence to extract potential multi-

word terms. Moreover, if a constituent word in each candidate extracted multi-word 

term resides in the stop list, then the candidate term is rejected. 

The choice of  linguistic filter affects the precision and recall of the output list. A 

`closed' filter which is strict about the strings it permits, will have a positive effect on 

precision but a negative effect on recall. As an example, consider the “Noun+” filter 

that Dagan and Church used [18]. This filter permits only noun sequences and as a 

result produces high precision since noun sequences in a corpus are the most likely to 

be terms. At the same time, it negatively affects recall, since there are many noun 

compound terms that consist of adjectives and nouns, which are excluded by this 

filter.  We implemented all  the filters  below and we chose the third one for our 

experiments, the open filter  which results  in  augmented recall over precision (to 

reveal more candidate terms):

1. Noun+Noun,

1 The notion of term variants is described in chapter 2

2 http://wordnet.princeton.edu/

3 http://jwordnet.sourceforge.net/   :: JWNL is an API for accessing WordNet-style relational 

dictionaries. It also provides functionality beyond data access, such as relationship discovery and 

morphological processing.
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2. (Adj | Noun)+Noun,

3. ((Adj | Noun)+|((Adj | Noun)*(NounPrep)?)(Adj | Noun)*)Noun

After this step, main process of C-Value takes place. 

4.2.2 C-Value process – The algorithm - Implementation

We describe the steps taken in the  C-value  method to construct a list of candidate 

terms from a corpus.

 Step 1

We tag the corpus. As mentioned earlier, we need the tagging process since we will 

use a linguistic filter to restrict the type of terms to be extracted.

 Step 2

This  stage  extracts  those  strings  that  satisfy  the  linguistic  filter  and  frequency 

threshold. The  terms will  be  extracted from among these  strings.  According  to 

Nenadic et al. [21] the maximum length of the extracted strings depends on:

1. The working domain. In arts for example, terms tend to be shorter than in 

science and technology.

2. The type of terms we accept. Terms that only consist of nouns for example, 

very rarely contain more than 5 or 6 words.

The process of finding the maximum length is as follows: We attempt to extract 

strings of a specific  length. If we do not find any strings of this length, we decrease 

the number by 1 and make a new attempt. We continue in this way until we find a 

length for which strings exist. At this point, extraction of the candidate strings can 

take place. Initially,  a list  of strings of each length is created, (i.e. a list  for the 

bigrams, a list for the trigrams, etc.). The lists contain the strings with their frequency 

of occurrence. The lists are then filtered through the stop-list and are concatenated. 

The longest strings appear at the top, and decrease in size as we move down, with the 

bigrams being at the bottom. 

 Step 3

The C-value for each of the candidate strings is computed, starting with the longest 
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ones and finishing with the bigrams. The C-value for the longest terms is given by the 

top branch of formula described in the C-Value section (section 3.2.2) and we quote 

again:

We set  a  C-value  threshold, so  that  only  those strings with  C-value  above  this 

threshold are added onto the list of candidate terms. For the evaluation of C-value for 

any of the shorter strings, we need two more parameters:

✔ their frequency as part of longer candidate terms

✔ the number of these longer candidate terms

 

To obtain these two parameters, we perform the following:

For every string a, that it is extracted as a candidate term and for each substring b of 

a , we compute tuples (f(b), t(b), c(b)), where

f(b) is the total frequency of b in the corpus,

t(b) is the frequency of b as a nested string of candidate terms,

c(b) is the number of these longer candidate terms.

When this triple is first created, c(b) = 1 and t(b) equals the frequency of a. Each time 

b is found after that, t(b) and c(b) are updated, while f(b), its total frequency, does not 

change.

c(b) and t(b) are updated in the following manner:

c(b) is increased by 1 every time b is found within a longer string a that is extracted as 

a candidate term.  t(b) is increased by the frequency of the longer candidate term a, 

f(a), every time b is found as nested. If n(a) is the number of times a has appeared as 

nested, then t(b) will be increased by f(a) – n(a).

Now in order to compute C-value  for a string a which is shorter by one word, we 

either already have for it a triple  (f(a), t(a), c(a)), or we do not. If we do not, we 

calculate the C-value from the top branch of the above C-Value formula. If we do, we 

use the bottom branch respectively. In that case, P(Ta) = c(a) and ∑b∈Ta

=t a  .
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After  the calculation of  C-value  for strings of length  l  finishes, we  move to the 

computation of C-value  for  strings  of  length l-1 .  This way  it is  evident whether 

the string  to  be  processed  has  been  found  nested  in longer candidate terms.

At the end of this step, a list of candidate terms has been built. The strings of the list 

are ranked  by  their C-value.

Table  4.3 shows a part of the output list  after the application of C-Value on our 

computer science corpus. The higher a  term is  in  this  hierarchy ,  the higher its 

probability of being a real term [15]

              Extracted Term              C-Value

web page 1260.2

search engine 881.0

information retrieval                     492.333

similarity measure                         412.667

web site               409.2

machine learning 405.0

prior specific permission              340.763

natural language processing         339.57

clustering algorithm                      337.909

IEEE transactions 325.0

semantic web 306.142

relevant document 305.0

relevant page 283.0

information extraction 262.0

objective function 248.0

knowledge base               241.6

subject descriptor 240.0

Table  4.3 C-Value output sample

        

We then proceed to the next phase, i.e. the NC-Value computation. 

4.2.3 NC-Value computation

NC-Value is computed to each candidate term as follows: 
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 Step 1 

We apply the  C-value method to the corpus. The output of this process is a list of 

candidate terms, ordered by their C-value. 

 Step 2

This involves the extraction of the term context words and their weights. These will 

be used in the third stage to improve the term classification in the extracted list. In 

order to extract the term context words, we need a set of top C-Value terms, according 

to [15]. We use the `top' candidate terms from the C-value list, which are expected to 

present  very high  precision on valid terms4.   We chose  the first  1500 terms for 

running our experiments. These `top' terms produce a list of term context words and 

assign to each of them a weight following the process described in the previous 

section.

 Step 3

This involves incorporating of context information acquired from the second stage of 

the extraction of multi-word terms. The  C-value  list  of candidate terms extracted 

during stage one is re-ranked using context information, so that the real terms appear 

closer to the top of the list than they did before, i.e. the collection of real terms at the 

top of the list increases while the collection of those at the bottom decreases. The re-

ranking takes place in the following way: Each candidate term from the C-value list 

appears in the corpus with a set of context words. From these context words, we 

retain the nouns, adjectives and verbs for each candidate term. These words may or 

may not have been met before, during the second stage of the creation of the list with 

the term context words. In the case where they have been met,  they retain their 

assigned weight. Otherwise, they are assigned zero weight. For each candidate term, 

we obtain the context factor by summing up: the weights for its term context words, 

multiplied by their frequency of co-occurrence with this candidate term.

For example, let us assume that the candidate word  W  appears 10 times with the 

context word c1, 20 times with the context word c2, and 30 times with the context 

4 Note  also  that  C/NC Value  was  primarily  designed  for  the  detection  of  domain  terms.  Our 

application of C/NC Value is in indexing. Therefore any not valid domain terms are not expected 

to cause problems in retrieval.
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word c3. Let us assume also, that the weight for c1 is w1, the weight for c2 is w2, and 

the weight for c3 is  w3. Then, the context factor for W (The definition of weights is  

given in methodology chapter, section 3.2.2 ) is :

10 w1 + 20 w2 + 30 w3

The above description is the second factor of the NC-value measure which re-ranks 

the C-value list of candidate terms. The first factor is the C-value of the candidate 

terms. The whole NC-value measure is formally described as

NC−Value=0.8CValue a 0.2∑
b∈C a

f a bweight b  ( figure 4.4)

where

● a is the candidate term,

● Ca is the set of distinct context words of a,

● b is a word from Ca,

● fa(b) is the frequency of b as a term context word of a,

● weight(b) is the weight of  b as a term context word.

The two factors of  NC-value, i.e.  C-value  and the context information factor, have 

been assigned the weights 0.8 and 0.2 respectively. These have been chosen among 

others after experiments and comparisons of the results. [15]

4.3 Multi-Word Similarity measures 

During the implementation of contextual similarity (as described in chapter 3), we 

had to consider two types of context pattern constituents: morpho-syntactic (such as 

noun and verb phrases, prepositions, etc.) and terminological (i.e. term occurrences). 

Morpho-syntactic  constituents  like  verb  and  noun  phrases  can  be  identified by 

applying a chunker (which recognize syntactic noun phrases {NPs}, verb phrases 

{VPs} ), while terminological entities can be recognized  by an ATR processor (like 

C-NC Value as described in section 3.2).

We  generated  all  possible “linearly nested” patterns for each given context. In 

particular, when considering left contexts, contexts of the maximal length (without 
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crossing the sentence boundary) are initially selected, and they are then iteratively 

trimmed on the left side until the minimal length is reached. Right contexts are treated 

analogously.  The  following example illustrates  the  left  linear  pattern  generation 

process:

V PREP TERM  NP PREP  (the maximal pattern)

PREP TERM  NP PREP

TERM  NP PREP

 NP PREP (the minimal pattern)

NP stands for 'Noun Phrase', a basic syntactic structure.

During our implementation we experimented with various maximal pattern lengths. 

Based on results observation, we decided to set the minimum pattern length to 2 and 

the maximum to 8. We assume that longer contexts are more important for assessing 

term similarities[23].

Some of the syntactic categories were removed from context patterns, since not all of 

them are equally significant in providing useful contextual information. Adjectives 

(that are not part of terms), adverbs and determiners can be removed from context 

patterns for they rarely bare some specific information [23]. In addition, the so-called 

“linking words” (e.g. however, moreover, etc.), or  more generally, “linking devices” 

(e.g. verb phrases, such as “result in”, “lead to”, “entail”, etc.) are frequently used in 

special languages in order to achieve more effective communication [5]. However, 

these constituents are typically non informative and were eliminated.

During  the implementation of contextual similarity, (as described in section 3.3.2), 

we needed some syntactic phrase structure information in order to  apply various 

levels of generalizations on the term context. For this reason, we considered using  a 

chunker (a shallow syntax analyser).  A chunker applies shallow syntactic parsing 

analysis.  In  particular,  text  chunking  consists  of  dividing  a  text  in  syntactically 

correlated parts of words.  A chunker attempts to  identify noun phrases and verb 

phrases in text.  For example, the sentence “He reckons the current account deficit 

41



will narrow to only # 1..8 billion in September .”  can be analysed as follows:

[NP He ] [VP reckons ] [NP the current account deficit ] [VP will narrow ] [PP to ] 

[NP only # 1.8 billion ] [PP in ] [NP September ] .

For the chunker used in our implementation, the OpenNLP chunker, the problem of 

chunking is viewed as tagging problem[26], where the chunk structure is encoded as 

tags attach to each word. 

In the next section (4.4) we present the methods used to combine the similarity 

measures (lexical and contextual)  to form a final hybrid similarity measure.

           4.4 Combination of Similarities

We used the WEKA implementation of machine learning algorithms to produce a 

linear combination of our similarity measures.  The training set is given to WEKA in 

a specific (ARFF) format. The training set for WEKA was consisting of term pairs, 

their respective similarity measures and their evaluation. 

An ARFF (Attribute-Relation File Format) file is an ASCII text file that describes a 

list of instances sharing a set of attributes . In our implementation, each instance (on a 

single line) represents a term pair. The training set consisted of a representation of 

200 term pairs. The size of the training set was considered adequate for training. The 

training set had three term similarity features:

(a) lexical similarity measure

(b) contextual similarity measure

(c) human similarity measure

The latter, human similarity measure, was assigned to term pairs by human evaluators 

on a scale of 0 to 3 where (nominal values):

✗ 0 : The terms are completely unrelated (No relation between them)

✗ 1 : The terms are almost unrelated (not completely unrelated)

✗ 2 : The terms are very similar (not exactly similar)

✗ 3 : The terms have the same meaning
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Some of the WEKA algorithms required nominal values (like the decision trees) 

while other functions required numeric values. 

After carefully browsing the plurality of the available WEKA algorithms we finally 

chose SMOreg,  Least Median Square and the C4.5 Decision tree based on results 

observation.  

✗ SMOreg 

Implements  Alex  J.Smola  and  Bernhard  Scholkopf  sequential  minimal 

optimization  algorithm  for  training  a  support  vector  regression  using 

polynomial or RBF kernels. [28,29]

✗ Least Median Square 

Implements a  least  median squared linear regression utilizing the existing 

WEKA Linear  Regression5 class  to  form  predictions.  The  basis  of  the 

algorithm is [32].

✗ C4.5 decision tree [30] 

decision trees classify instances by sorting them down the tree from the root 

node to some  leaf node,  which provides the classification of the instance. 

Each node in the tree specifies a  test of some attribute of the instance, and 

each  branch descending from that node corresponds to one of the possible 

values for this attribute.  An instance is classified by starting at the root node 

of the decision tree, testing the attribute specified by this node, then moving 

down the tree branch  corresponding to the value of the attribute. This process 

is then repeated at the node on this branch and so on until  a leaf node is 

reached. ID3 and C4.5 are algorithms introduced by Quinlan for inducing 

Classification Models, also called Decision Trees, from data [30].

A web interface was built to test the output predictions from the C4.5 prediction tree 

(figure 4.6).   

5 Class for using linear regression for prediction. Uses the Akaike criterion for model selection, and 
is able to deal with weighted instances.
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Figure 4.6 Web Interface testing the C4.5 Decision Tree

WEKA was  trained with  the  input  ARFF  file  as  described before (figure  4.5). 

Contextual and Lexical similarity are calculated and then according to these values 

the decision tree makes a prediction from scale 0 to 3 along with a probability for 

being correct.

 4.5 Information Retrieval

At the heart of all search engines is the concept of indexing: processing the original 

data  into  a  highly  efficient  cross-reference  lookup  in  order  to  facilitate  rapid 

searching. Index can be thought as a data structure that allows fast random access to 

words stored inside it. The concept behind it is analogous to an index at the end of a 

book, which lets you quickly locate pages that discuss certain topics.
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We implemented the  indexing  of  the  corpus  with  Apache Lucene6.  Lucene is  a 

mature  ,open-source,  high  performance  scalable  Information  Retrieval  library 

implemented in Java.

Before text is indexed, it is passed through an Analyser. The Analyser is in charge of 

extracting tokens out of text to be indexed and eliminating the rest. It is an abstract 

class in Lucene library : We implemented our Analyser with the help of the linguistic 

filter  we previously implemented in C-Value section (4.2),  analysing the data to 

make it more suitable for searching. To do so, the analyser splits the textual data into 

tokens (multi-word terms) and then stores them to the index, building  term-vectors 

for each document in the collection. 

6 http://lucene.apache.org   
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We implemented the Vector Space Model, as well  as the  T-SRM in Java and we 

integrated both methods within with Lucene.

The methods we implemented were:

✔ classic Vector Space Model (vectors of single word terms)

✔ Vector Space Model with vectors of with multi-word terms

✔ T-SRM

✔ T-SRM with  the  C-Value of  each multi-word in  the  document instead of 

standard tf*idf weighting

In the next chapter (Chapter 5) we present the evaluation of the above methods in the 

IR experiments on both corpora.  We will  also discuss the results of the machine 

learning process (i.e. the relevant importance of each similarity measure, lexical and 

contextual respectively). In addition, we will talk about the correlation experiment, 
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tried to compare the output similarity came from WEKA machine learning algorithms 

in contrast to the human notion of similarity.

Chapter 5. Experimental Results

For the evaluation of our method we carried out the following sets of experiments:

1. Relative importance of lexical and contextual similarity - combination
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2. Correlation Experiment

3. Information Retrieval on OhsuMed corpus

5.1 Similarity Relevant Weights Computation

As we note in chapter 4 , none of lexical or contextual similarities respectively are 

sufficient on their own to establish term similarities between multi-word terms. With 

the help of WEKA machine learning algorithms we attempted to combine the two 

similarity measures. 

SMOreg  :  

Final Similarity = 0,7534 * LexicalSim + 0,0723 * ContextualSim - 0,0042

Least Median Square : 

Final Similarity = 0,7137 * LexicalSim + 0,322 * ContextualSim + 0,0172

The method for extracting weights from the resulting C4.5 decision tree:

  Final Similarity = 0.8 * LexicalSim + 0.2 * ContextualSim
Table 5.1 Results from lexical&contextual similarity measures into a unique similarity formula

All methods(described in 4.4)  assigned  increased weight on lexical similarity. The 

combination of  lexical and  contextual similarity measures, resulting from each of 

these, was correlated with human judgements to estimate how close the human notion 

of term similarity relates to the results. 

5.2 Correlation Experiment

Our objective is to discover how close the human notion of similarity (in the same 

queries) is to the similarity results produced from the methods described above.  For 

the purpose of this experiment, we prepared 50 pairs of multi-word terms. They were 

randomly selected from the  list  of  terms  which  C/NC Value  extracted  from a 

computer science collection  of  papers (Lithel  corpus1).  Then,  we  asked  domain 

1 http://www.lithel.ca/Testbed_Corpus/index.html   
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experts2 to provide and estimate for each pair, in a range between 0 (no similarity) 

and 3 (same meaning). We created a form-based interface on the web and we invited 

domain experts to enter their evaluation (Table 5.2).

We normalized the results to [0,1] and computed lexical and contextual similarity for 

each pair.  Then we estimated the final hybrid similarity  value for each machine 

learning algorithm as indicated on the formulas shown in table 5.1.

2 http://www.intelligence.tuc.gr/people   
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Correlation  was  computed using  the  Pearson's  correlation function (equation  I). 

Suppose we have two variables X and Y , with means X  and Y  and standard 

deviations σx and σy respectively. The correlation is computed as
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r=
∑
i−1

n

X i−X Y i−Y 

n−1σ x σ y

 (equation I)

where:  X  and  Y  in our experiment stands for the final similarities of each of the 

methods and of the human evaluation respectively.

Table 5.3  presents a sample part of the results.

Term Pairs Human Lexical

Sim

Context 

Sim

Decision 

Tree

SMO 

Reg

Least Median 

Square

learning process,training process 0.71 0.72 0.48 0.64 0.62 0.63

vector space model,web document 0.14 0 0.55 0.17 0.08 0.19

search engine,web search engine 0.67 0.88 0.31 0.71 0.71 0.75

biomedical terms,mesh terms 0.8 0.72 0.26 0.58 0.57 0.61

term weighting,term frequency 0.57 0.72 0.35 0.61 0.59 0.64

frequent terms,common terms 0.67 0.72 0.36 0.61 0.59 0.64

text summarization,automatic text 

processing

0.43 0.11 0.13 0.12 0.07 0.14

web page,web snippet 0.33 0.72 0.1 0.53 0.53 0.56

network interface,document 

relevance

0 0 0.37 0.11 0.04 0.14

average precision,search space 0.2 0 0.5 0.15 0.07 0.18

text mining,information retrieval 0.43 0 0.53 0.16 0.08 0.19

.

.

.

.

.

.

.

.

.

.

.

.

.

.

xml instance,web search 0 0 0.56 0.17 0.09 0.2

Human correlation 1 0.72 0.73 0.72

 Table  5.3  Correlation Experiment Results

The  1st column denotes the  normalized human judgement, while  the  2nd and 3rd 

column denote lexical and contextual similarity for the pair of terms. Respectively, 

the last 3 columns present the final similarity between the terms, as a combination of 

lexical and contextual similarity extracted by the machine learning algorithms(table 

5.1).
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It is clear from the correlation score that all chosen methods perform almost equally 

well.  The  output  weights  extracted from  all  methods  were  very  close  (lexical 

similarity was given increased weight). Robust regression method [28],[29]  returned 

the best correlation score (~73%) with the other methods following very closely. 

        5.3 OhsuMed corpus IR experiment - Results

The purpose of this experiment is to demonstrate that our method performs better 

than classic information retrieval models like the Vector Space Model (VSM). We 

experimented with  two  versions  of  VSM,  one  with  multi-word  term  vectors 

(produced by the C-NC method) and one with single word term vectors as it is typical 

in IR applications.

We  selected  18  queries  among  Ohsumed's  set  of  queries,  to  benchmark  the 

information retrieval methods. We chose queries whose title was constituting from 2 

words and above. All  answers that were not contained in the set   that OhsuMed 

provides, were considered irrelevant. 

Figure 5.6 shows a sample OhsuMed query :

<num> Number: MSH282

<title> Anticholesteremic Agents

<desc> Description:

Substances that promote a reduction of blood cholesterol levels. (Dorland, 28th ed)

                  Figure 5.6  Sample OhsuMed query

Searching through the instructions and the ReadMe files of the OhsuMed collection, 

it was not clear whether the relative answers were given based on the title only or the 

title  and  the  description  (i.e.  the   query  was  “Anticholesteremic  Agents”  or 

“Anticholesteremic Agents, Substances that promote a reduction of blood cholesterol  

levels” ? ). 

We ran two experiments on OhsuMed. One experiment  using only “titles” as queries 

and a second one using both “title” and “description” fields as queries. Notice that 
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both types of queries are commonly used in evaluation experiments in the literature. 

The  resulting  curve  behaviour  does  not  differ  significantly  among  the  two 

experiments, as figures 5.7 , 5.8 denote. 

The performance results below indicate that using T-SRM in document representation 

increases the performance of retrieval in contrast to vector space model using both 

single  word  and  multi-word  term  vectors.  This  may  be  explained  due  to  the 

incorporation  of  conceptual similarity into  the  T-SRM model. The documents in 

OhsuMed collection where abstracts, thus the information was dense and the T-SRM 

took benefit of this. We should also in the future benchmark the performance of our 

method with full text and more general collections. 

The drawback of T-SRM is that our method is noticeably slower than VSM with 

single word terms. At the same time, because multi-word VSM  analyses the query 

with a more complicated analyser (needs to extract multi-word terms, does not only 

take  single word tokens like simple VSM), this delay is not noticeable comparing T-

SRM with multi-word VSM.
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Figure 5.7 Precision-Recall for queries specifying title with description

Figure 5.8 Precision-Recall for queries specifying title only
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Chapter 6. Conclusions & Future Work

The contribution of this thesis is twofold: Firstly we showed that it is possible to 

apply automatic term extraction methods for extracting meaningful representations 

from documents. Secondly, we showed that is is possible to use  these representations 

for enhancing the performance of retrieval in large document collections. 

Our proposed method relies on applying the C/NC-Value term extraction method [15] 

in  conjunction  with  combined  lexical  and   contextual  similarity  measures  for 

measuring the similarity between multi-word terms [21]. The experimental  results 

indicate  that  it  is  possible  to  approximate algorithmically  the  human  notion  of 

similarity,  reaching  correlation  up  to  73%.  Based  on  this  observation  we 

demonstrated  that  it  is  possible  to  exploit  this  information for  improving  the 

performance of information retrieval in applications.  We introduce the Term-based 

Similarity Retrieval Model (T-SRM).  T-SRM  is a novel document similarity model 

capable of computing similarities when documents contain similar phrases (multi-

word terms in general), namely containing not just similar single word terms as it is 

typical on IR applications and classic retrieval models (like the Vector Space Model). 

The experimental results indicate that  T-SRM outperforms the  Vector Space Model 

(VSM) for queries on OhsuMed (a standard TREC collection).

As described in chapter 3, the lexical similarity measure relies on the fact that relative 

multi-word terms often share constituents (heads and modifiers). It will be interesting 

in the future to explore the semantic relationship between these shared constituents 

with  the   integration  of  semantic information from  taxonomic  ontologies  (e.g. 

WordNet). We  will  to   try  make  the  similarity  methods  work  even  better  and 

consequently increase the accuracy of T-SRM model retrieval. 

Furthermore, additional  methods should be used and benchmarked for retrieval,  such 

56



as the method by Mihalcea et al. [52].
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