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1. INTRODUCTION

1.1. General description

Ancient inscriptions are very important for archaeologists and historians because they
provide valuable information about the activities and the achievements of human
kind. During the last century many excavations all over Greece have brought to light a
very large number of inscriptions. Most of these inscriptions are carved on marble or
stone. However many of them are heavily corroded by water or by other elements in
their long exposure. In attempts to extract useful information from them,
archaeologists have found that for several inscriptions when lit from different angles,
different letters or drawings can be distinguished. Even worse, there are rocks where
it is known that inscriptions exist, but they are completely unreadable.

This thesis develops and studies an automated system that could exploit the various
methods that people use to read the inscriptions, such as lighting, in order to provide a
helpful and hopefully valuable tool for archaeologists.

1.2. Problem definition

In this thesis our efforts are focused on a first attempt to extract letters from
inscriptions. Our goal is not to recognize the characters that are carved, but merely to
isolate them from the noisy background in order to make them clearly visible to the
human eye. We do not study the electromechanical system, which would consist of
lighting and acquisition devices, but we rather focus on image processing tasks. For
this reason we use as input images that were taken using a normal commercial digital
camera. We consider images that are relatively easy to be read by the human eye, in
order to trace the issues that must be considered in the real problem.

Moreover, we focus on the potential of image processing tools rather than pattern
recognition or pattern matching tools.
Several problems that were confronted during this work were:

• Marbles or stones are not smooth and express variations on the color of their
surface

• Non-uniform illumination degrades the images due to diffusion when acquiring
the images

• There exist large cracks on the surface of the stones that interfere with the
writings

• Erosion on the surface of the rocks makes the recognition of the carvings quite
difficult



6

Taking under consideration these problems, the following tasks have to be performed
towards effective recognition of the carvings:

• Intensity or histogram equalization of the input image

• Edge detection which can discard trivial information

• Post-processing techniques for eliminating the noise and for improving the
quality of the edges, such as edge connection algorithms

A schematic diagram of these steps takes has the following form:

In the preprocessing part, we attempt to eliminate the problems we face due to the
non-uniform lighting.
The second step is the edge detection phase, where as we will see, the corrosion will
create many problems.
Finally we have the post processing part were we extract edges that correspond to
letters from the image produced by the edge detector. This latter part will be based
only on processing to reveal its potential in such tasks; we do not use pattern
recognition methods, such as pattern matching that would be useful for character
recognition.

The organization of this work is as follows. Chapter 2 deals with algorithms and
methods that are known and have been found in literature. In Chapter 3 our approach
and some proposed algorithms will be discussed.

1.3. Related research

While searching for related subjects and work in the literature we came across the
following representative papers.

Hwang and Chang [1] have proposed a method for extracting the characters from
document with non-uniform background. The method actually removes unwanted
background noise from textual images. They have used the wavelet transform and
they observed that the magnitude of the intensity variation of character boundaries
differs from that of noise at various scales of their wavelet transform. Thus they
extract the characters by thesholding.

This work is one of the few algorithms developed to deal with the extraction of
characters from a noisy background. However, the background contains only noise
due to the scanning procedure and does not involve random noise that can interfere
with the characters. Other works that deal mostly with recognition are the following
two.

Pre-
processing

Edge
detection

Post-
processingInput Output
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Bourbakis and Goldman [2] have developed an approach for recognizing lines that
have unevenness and are not smooth. This is very helpful in tasks such as fingerprint
recognition. A graph-based method, using this approach, recognizes characters and
fingerprints.

Kim et al. [3] worked on a system for on-line recognition of Korean characters. The
tools they used were artificial neural networks and hidden Markov models.

The OCR problem (Optical Character Recognition) has been extensively studied.
Nowadays OCR methods have been developed for almost all character sets used
worldwide. The two previous papers are headed toward that direction. It is obvious
that these are focused on a different direction than our study. Their goal is recognizing
line patterns or characters, while we try only to extract the characters from a noisy
background.

As a general conclusion, artificial intelligence and pattern recognition methods are
mainly used for the character recognition problem, instead of image processing.
Methods such as neural networks and fuzzy logic are studied extensively, along with
hidden Markov models. This is a logical approach since these tools provide means of
recognizing characters, whereas image processing alone cannot be used for
recognition or identification.

We emphasize here that all these works, except from Hwang et al., deal with the
problem of recognizing hand-written or printed characters on a uniform single-colored
background. There is only limited work dealing with the extraction or recognition of
characters that are carved on stone or marble, or generally printed on a non-uniform
background, which can produce problems such as the ones we are facing in the
present study. Some of the most difficult problems in our work are cracks on the
surface of the rock that can be mistaken for characters and structural background
noise that interferes with the characters.
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2. ALGORITHMS & TOOLS

In this chapter we examine algorithms that have been already established and we
focus on whether or not they can be applied to our application. For the reasons
explained herein, we turn our attention to mathematical morphology, rather than on
conventional edge detection algorithms.
Concerning the post processing, the algorithms in the literature are very general,
dealing with edge following, edge linking etc.

Fig. 2.1. The original image of the inscription

2.1. Mathematical Morphology

Edge detection is the most important part of our processing, since it provides the
initial characteristics for description and/or recognition. If the edge detector discards
information that is contained in the image, there is no way of retrieving it. On the
other hand, if it over-detects edges, then it becomes difficult to get rid of the
redundant information. Our aim is to preserve as much existing information as
possible and use post-processing of the image to remove excessive edges.

We use mathematical morphology for edge detection due to its established potential in
detecting vaguely defined edges. According to Lee, Haralick and Shapiro [4]
mathematical-morphology edge detectors outperform most of the classical edge
detection algorithms. Another reason is the fact that mathematical morphology has
been around only for about 30 years. This means that there is plenty of work to be
done in this field, contrary to the conventional techniques. A third reason is
computational speed. These algorithms are faster than the complicated conventional
edge detecting algorithms, although speed is not a matter of priority in our work.



9

Before the algorithms are presented, an introduction to mathematical morphology is
required.

2.1.1. Basic Morphological Operations

Any given image can be represented as a two-dimensional set of pixels.
Morphological operators work with two images. The first is the data image and the
second is the structuring element. This is also an image and resembles the kernel of a
convolution operator. The structuring element can have any shape, which can be
considered as a parameter of the operator. The basic morphological operators are two,
namely dilation and erosion.
First we consider the case of binary images. Let A be the set of points representing the
binary “one” pixels of the original binary image ƒ and B be the set of points
representing the binary “one” pixels of the structuring element s.

The dilation of the binary image ƒ by the structuring element s, denoted by A⊕ B, is
defined by:

U
Aa

BbabBA
∈

∈+=⊕ }|{

The erosion of the binary image ƒ by the structuring element s, denoted by AÈ B, is
defined by:

}|{ ApBpBA ⊆+=Θ

To clarify the above, we can describe intuitively the operators. Let the structuring
element have the shape of a cross of size 3x3 pixels. Morphological operations work
very similarly to convolution. When performing a dilation on the input image the
structuring element scans the entire image. If its reference pixel overlaps a binary
“one” pixel it replaces all the pixels it covers with binary “one” value.
In the literature there are two different views regarding the reference point of the
structuring element, some researchers use the center pixel, others use the top left
pixel. We will use the center pixel for the purposes of this work.
The example below is characteristic of a binary dilation.

If A is the set of the data image and B is the set of the structuring element then Ä is
the set of the image which results from the dilation of A by B.

Erosion works in a similar fashion like dilation. The difference is that instead of
having to find a single binary “one” pixel in the original image, the structuring
element has to find a group of binary “one” pixels exactly like itself. If that happens it
assigns all of them a “zero” value, except from the pixel that is overlapped by the
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reference pixel of the structuring element. An example will make this more
comprehensive.

If A is the set of “ones” of the original image and B the set of the structuring element,
then E is the set that results from the erosion of A by B.
The E set has two binary “one” pixels because the structuring element “fits” on the
original image on two different occasions.

Dilation has the effect of filling in small (relative to the size of the structuring
element) holes and protrusions into the image, whereas erosion eliminates small
components and extrusions of the image into its complement.

Apart from the two basic operations described above two other operations can be
defined as a combination of the previous. These are the closing and the opening,
which can also be considered as basic operations.

The closing of an image ƒ by a structuring element s is a dilation of ƒ by s followed
by an erosion of the previous result by s.

BBABA Θ⊕=• )(

Intuitively, the closing smoothes the contours of the objects in the image, by blocking
up the narrow channels, the small lakes and the long, thin gulfs [5].

The opening of an image ƒ by a structuring element s is the erosion of ƒ by s followed
by the dilation of the result by s.

BBABA ⊕Θ= )(o

Intuitively, the opening smoothes the contours of the objects in the image, cuts the
narrow isthmuses, suppresses the small islands and the sharp capes of the objects in
the image [5]. The opening operation also eliminates single pixels, or small groups of
pixels, that resemble the salt and pepper noise.

The extensions of the morphologic transformations from binary to gray-scale domain
in the mid-80’s introduced a natural morphologic generalization of the dilation and
erosion operations, along with their combinations.

The dilation of a gray-level image ƒ by a gray-scale structuring element s is defined
by

d ( r , c ) = max ( ƒ ( r-i, c-j ) + s ( i , j ) )
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where, the maximum is taken over all ( i , j ) in the domain of s such that  ( r-i, c-j ) is
in the domain of ƒ. The domain of d is the erosion of the domain of ƒ with the domain
of s [4].
The erosion of a gray-scale image ƒ by a gray-scale structuring element s is defined
by

e( r , c ) = min ( ƒ ( r+i , c+j ) – s ( i , j ) )

where, the minimum is taken over all ( i , j ) in the domain of s. The domain of e is the
domain of ƒ eroded by the domain of s [4].

The definitions of the opening and closing operations do not change, rather they use
the new definitions of the dilation and the erosion for gray-scale images.

Unfortunately, gray-scale morphology is not as easy to conceive, but it is possible to
give examples like the ones given for the binary case.

Let assume we have a one dimension signal, where we want to detect edges. The
structuring element used is a horizontal rod of size 3 and gray-level value of 20,
which means that we are interested in the pixel under consideration and its two
neighbors.
In the following figure we can see the original signal in the first row. This signal
represents the step edge. The numbers on the left and the right are the gray scale
values of the pixels. Sampling is performed on the vertical lines.

Fig. 2.2.
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For example, in the original signal the first three pixels have a value of 100 and the
next four 50.

The dilation of this signal is as shown in Fig. 2.2. The dilation operation adds to the
values of signal the values of the structuring element and keeps the maximum value.
Hence, the only change will be in the fourth pixel. The element covers pixels 3,4 and
5. But, because pixel 3 had an original value of 100, added up to the element makes it
120, it is the maximum of the three, so pixel 3 is assigned this value.
Similar, we can apply the erosion operation, where the value of the structuring
element is subtracted from that of the original image and the minimum value is kept.
This figure also illustrates the simplest morphological edge detector. It is obvious
from Fig. 2.2 that when subtracting the eroded signal from the dilated one, the edge
stands out.

2.2. Edge Detection Algorithms

Several morphological edge detection techniques have been proposed in the past. The
most promising were the following. We will omit to mention the structuring element
in the course of the description of the algorithm and we will define in it the end of
each description, since as we will see it does not play a major role as a parameter.

2.2.1. Gradient  [6]

This is a very simple way to extract the edges of an image using mathematical
morphology, as illustrated above, and is described by.

f edge-strength ( i , j ) = dilation( f input ( i , j ) ) – erosion( f input ( i , j ) )

First an erosion and then a dilation are performed on the original image. By
subtracting the eroded image from the dilated image, the edges of the original image
remain, because dilation expands the objects in the image and erosion shrinks them.

This scheme works well for binary and gray scale morphology in case of step edges,
but does not perform well in the images in our application, where the edges are
vaguely defined and far from ideal. The result is shown in Fig. 2.3.
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Fig. 2.3. Output of gradient algorithm

The structuring element used in this algorithm is a cross of size 3 and a gray level
value of 60.

Increasing the gray level value of the structuring element results in an increase of the
gray level value of the entire image, while decreasing the structuring element has the
opposite effect. This is obvious since dilation adds the gray level values of the image
and of the structuring element. When subtracting the eroded from the dilated image,
the result increases when increasing the values of the structuring element and vice
versa.

On the other hand, increasing the size of the structuring element decreases the
effectiveness of edge detection and most edges are lost, because they have a small
width and a large structring element is not able to locate the exact position of these
edges. This is easy to comprehend if we assume the structuring element in Fig. 2.2 to
have a width of 7 pixels. The final edge would be very wide and its exact location
would be impossible to find.
Furthermore, the problem in this application is a little more complicated. The actual
width of an edge is only the width of the transition from the background to the gray-
level value of the carved part or the opposite and not the width across a letter itself.
This means that the structuring element must be small enough to fit inside the carved
part of the inscriptions, so that it can detect both these transitions.
As a result, instead of a single line for every letter that accounts for one edge, we get
the perimeter of each letter; i.e. for the letter I we have an outside and an inside
rectangle. It is emphasized that this is not a problem of the specific algorithm, but of
the general concept of mathematical morphology.

2.2.2. Regularized Gradient [7]

Another algorithm, a little more complicated than the gradient, is the regularized
gradient. It is described by the following equations.
First, the input image is blurred.



14

fblurred ( x , y ) = median ( finput ( x , y ) )

The blurred image is dilated and eroded using a cross structuring element (Si) of size
( 1+2*i ) for 0<i<4.

di ( x , y ) = dilation ( fblurred , Si)
ei ( x , y ) = erosion ( fblurred , Si)

The eroded image is then subtracted from the dilated image taken with the same
structuring element.

hi ( x , y ) = di ( x , y ) – ei ( x , y )

The gradient operator described above is the applied to this image.

gi ( x , y ) = gradient( hi ( x , y ) )

Finally the minimum is taken of all the images taken as the output of the gradient.

fedge-strength ( x , y ) = min { gi ( x , y ) }, for 0<i<4

Fig. 2.4. Output of the regularized gradient algorithm

The result of this algorithm is a little better than that of the gradient algorithm, but due
to the size of the structuring elements used ( up to 7x7 ) the edges are almost lost.
Due to the large size of the structuring element, the detected edges appear very wide
and blurred as discussed previously.

2.2.3. Blur and Minimum Operator [4]

This algorithm consists of the following steps.
The first step is to blur the original image.
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f blurred ( i , j ) = blur{ finput ( i , j ) }

The blurred image is eroded and dilated. In the eroded image the object appears
slightly smaller, whereas in the dilated image it appears slightly larger than the
original.
The next step is to subtract the eroded image from the blurred one and to subtract the
blurred image from the dilated one. This step produces two new images.

f2 ( i , j ) = f blurred ( i , j ) - erosion( f1 ( i , j ) )
and  f3 ( i , j ) = dilation( f1 ( i , j ) ) – f blurred ( i , j )

As a result, f2 contains the inner boundary of the object and f3 contains the outer
boundary of the object. The edge pixels in the two images overlap and an OR
combination would produce very thick lines. Instead, the minimum is taken to derive
thin edge-lines, i.e.

f edge-strength ( i , j ) = min { f2 ( i , j ) , f3 ( i , j ) }

This algorithm was developed to find edges of bright objects on dark background.
Although it is not very sensitive to additive noise, it does not perform well in our
application. The algorithm does not succeed in separating letter edges from
background edges, since gray-scale transitions are not clearly defined on the image.

The result of this algorithm on the input image is the following:

Fig. 2.5. Output of blur and minimum algorithm

In order to get this result an averaging 3x3 filter was used for blurring. The structuring
element used was a cross of size 3 and gray level value 100.
The effects of the structuring element discussed for the gradient algorithm apply also
to this approach.
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2.2.4. Alpha-Trimmed Multidimensional morphological edge detection [8]

This algorithm also blurres the image as its first step, but introduces a new kind of
blurring. This blur operation has similarities with the averaging filter. It takes the
average of the pixels spanned by the structuring element, except from the á smallest
and the á highest pixels values. This helps reducing salt and pepper noise. The
equation that describes this operation is the following:

∑
−

+= −
=

ak

ai

i
a ak

f
f

1 )*2(

?

where if?  represents the ordered input values.
At the next step, an erosion and a dilation are performed on the á trimmed blurred
image. Subsequently, an opening is performed on the eroded image and a closing on
the dilated image. Then, the eroded image is subtracted from the opened and the
closed from the dilated, creating two new images.
Finally the minimum of these two images is taken at every pixel. The following
equations clarify the above operations:

e ( i , j ) = erosion( f a ( i , j ) ) d ( i , j ) = dilation( f a ( i , j ) )
o ( i , j ) = opening( e ( i , j ) ) c ( i , j ) = closing( d ( i , j ) )

f ATM( i , j ) = min{ ( o ( i , j ) – e ( i , j ) ) , ( d ( i , j ) – c ( i , j ) ) }

This algorithm yields good results on our input images. Its major problem is that it
produces “double” edges, representing both the inner and the outer edges of the
objects.
This effect can be easily explained on the basis of the effect of the individual
operations employed. Lets consider an I that is a vertical line 5 pixels wide (letters on
the inscription are actually wider.) Applying the dilation operation, using a 3x3
structuring element, expands the I by one pixel in each direction. Then the closing
smoothes the curve of the letter. Subtracting the closing from the dilation produces an
edge that fits the letter on the outside.
Similarly, the erosion shrinks the object by one pixel in each direction. The opening
again smoothes the contour and the subtraction of the two produces an edge that fits
the I from inside.
The algorithm also returns many small edges, which are caused by noise.
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Fig. 2.6. Output of ATM algorithm

The image in Fig. 2.6 is obtained using a cross as a structuring element of size 3 and
gray level value 60. The blurring filter used is 5x5 and alpha is 1. Experimenting with
the gray level of the structuring element showed that the best value was 60, but if
increased as much as 110 still returned good results. Outside this range (60-110) the
results are not as good. The “double edge” effect is obvious in the above image.

An interesting fact is that contrary to the other edge-strength images, the result of this
algorithm has dark edges on a bright background. The reason for this is that during the
morphological operations some pixel values become negative. To avoid dealing with
negative pixel values a histogram normalization is performed to bring the pixel values
to their normal range (from 0 to 255). In the process of normalization, the background
that is originally black ( gray level 0 ) becomes white (gray level 255 ), whereas the
edges that are originally negative become dark. We will further discuss this in the
following chapter.

2.2.5. Histogram-based Morphological Edge Detection [8]

This algorithm introduces a new kind of morphological operators, namely histogramic
erosion and dilation. These operators make use of the histogram of the image instead
of the actual gray levels of individual pixels. Histogramic erosion is defined as the
gray-level intensity at which the histogram height is the maximum of all histogram
values at gray level intensities lower than the intensity of the pixel.

dh ( x , y ) = { gj | h( gj ) = max [ h(gj), h(gj+2), …  , h(gl-1) ] and (i-1 < j < l) }

Histogramic dilation is defined as the intensity at which the histogram height is the
maximum of all histogram heights at intensities greater than the intensity of the pixel.

eh ( x , y ) = { gj | h( gj ) = max [ h(g0), h(g1), …  , h(gi) ] and (0 <= j < i+1) }
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The HMED operator, after blurring the input image, produces an edge strength image
in which nonmaxima suppresion has to be performed. In order to take the edge
strenght image histogramic dilation and histogramic erosion are used:

f HMED( x , y ) = min ( fblurred ( x , y ) - eh( x , y ), dh ( x , y ) - fblurred ( x , y ) )

Where eh and dh are histogramic eroded and dilated images. Having this image we can
either threshold it, or perform nonmaxima suppresion to get the edges.
In the second case, we suppress a pixel as a non-edge pixel if there exists a group of
pixels whose value is much greater than the pixel to be suppressed.
This operator was developed for edge detection in oceanographic images.

Figure 2.7 is the result image of the HMED algorithm. Although the nonmaxima
suppression was not applied, the histogram content of the image shows that it does not
contain any useful information regarding the edges and it is obvious that it does not
work in our application.

Fig. 2.7. Output of HMED algorithm

We mention here that apart from the above algorithms some combinations of
algorithms were tried without any noticeable results.

2.2.6. Comments on the algorithms

2.2.6.1. Blurring

As we have seen above, all the morphological edge detection algorithms use blurring
as a first step before applying any morphological operators. The reason is that these
label a pixel as an edge pixel if it has gray level between two extremes in the area
spanned by the structuring element centered at the given pixel. Therefore, if an ideal
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step edge is encountered the algorithm will not work properly because neither the
smallest valued pixel nor the highest valued pixel has neighbors with higher and
lower gray level values [4]. Thus in the case of a step edge, the blurring will transform
this edge to a ramp, satisfying the above criteria.
However, blurring has a negative effect on the image and the edges produced, because
it spreads the edges. When they are not ideal step ones, the algorithm tends to further
spread them resulting in a loss of the information of the actual location of the edge, as
well as of its intensity.
In our application this disadvantage is actually desirable in a small extent. Due to this
effect, the small gray-scale variations on the surface of the rock that are caused by the
corrosion are smoothed. Thus the edge detector does not recognize them as edges; this
is a first stage of noise elimination.
We conclude then that only a small amount of blurring should be introduced in order
for the detected edges to resemble the actual ones as close as possible.

2.2.6.2. Structuring Elements

Some issues regarding the structuring elements can be also summarized. The optimal
size was found to be 3x3, which is expected in our application. The edges in our input
images are quite thin, since the letters are small. This means that a small structuring
element must be used to involve only a small neighborhood around the edge. If the
element is large, many pixels that do not belong to the edge are taken into account and
the algorithm cannot determine the exact position of the edge. The reason is that the
larger the structuring element is, the more the objects will be expanded or shrank, see
Fig. 2.2. If the element is 7x7 pixels, then the objects will be expanded by 3 pixels in
case of a dilation. Subtracting the dilation from the original image an edge 3 pixels
wide is produced, even in the case of a binary image input. A good example to
illustrate this is the regularized gradient, where large structuring elements were used.
It is easy to see that the algorithm could not find the exact position of the edges,
resulting in very thick edges.
Concerning the gray-level value of the structuring elements, most algorithms work
very well using a value of about 60, although some work optimally with the value of
100. The optimal value used is very much dependent on the lighting and the gray level
of the image itself. For most algorithms a good value is one that when added to and
subtracted from the gray level of the image gives results in the 0-255 range. The
reason is that gray scale morphological operations add and subtract the values of the
images and the structuring element. As a result, if an image is very dark or very bright
a structuring element with smaller gray level value will have to be used.
One could mention that larger gray-levels can be used for the structuring element and
histogram normalization can be applied to bring the image back to the visible value
range (0 to 255). Although the use of larger values is possible, there is no evident
advantage to their use. The output of the algorithm is not be improved, since the
transitions from edge to background are not altered and a histogram normalization has
to be applied, adding to the complexity of the algorithm.
The shape of the structuring element is also important. The shape that worked best for
the algorithms is the cross, because it can detect edges on all directions. If a horizontal
rod is used, only vertical edges would be detected, since the algorithm has to locate a
change in gray level along the element in order to detect edges. Bearing in mind that
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we have a 3x3 limitation in size, due to the size of the letters in our input images, a
3x3 cross is the best compromise.

2.3. General Algorithms

2.3.1. Histogram Normalization [9]

Histogram normalization is used extensively during this work. It is very simple, but
also very important for improving the uniformity of contrast within the image.
This algorithm takes an image as input and normalizes its histogram to span the entire
0 to 255 range. The input image’s histogram might be located in a subset of this
range, in a region larger than 255, or even in the negative gray scale range. The
original histogram is shifted, shrank or expanded so that the output image’s histogram
lies exactly in the 0 to 255 range.
The transformation that achieves this normalization is given by:

a = max { f ( x , y ) }
b = min { f ( x , y ) }
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where f is the original image and g is the output image whose histogram is
normalized.
The main use of this algorithm in our work is to bring the histogram of each image in
the visible range (0 to 255). Having negative pixels or pixel values of over 255 is not
a major problem for processing purposes. The problem is these images cannot be seen
correctly, because images are stored and viewed as arrays of 8 bit characters, 8 bits
are allocated for each pixel. This way, if a pixel is negative it will be assigned a zero
value and if it is larger than 255, it will be assigned 255 as its value. Therefore
important information is lost, because pixel values are truncated to this range without
any care taken for the rest of the pixels. That results in a poor contrast either locally or
globally.

In Fig. 2.8 the histogram of the original picture of the inscription is shown. The pixel
values are concentrated, and as a result the contrast of the image is very low, which
can easily be observed.

Fig. 2.8. Histogram of original image



21

If a histogram normalization is applied to this image the resulting histogram will be
that of Fig. 2.9.

Fig. 2.9. Normalized histogram of original image

The new histogram is spread, in order to expand from 0 to 255. The lower value of the
first histogram, which was not zero, has been dragged to zero and the entire histogram
has expanded. This results in an increase of contrast, since the value of the pixels are
more clearly separated.

2.4. Post Processing Algorithms

2.4.1. Contour following [10][11]

This is a well known algorithm for contour following and the extraction of closed
edges from the background.
Assuming that edges follow smooth curves, it uses the direction as a criterion for
connecting edge pixels. It examines the neighbors of every pixel along the direction of
the edge. If one of them (on either side) has an edge direction that matches the slope
of the edge pixel in consideration, the neighbor is linked to the edge, else it is
discarded. If no such pixel is found it can skip one pixel, or even two, and continue
the search beyond that point. This can also help in filling small gaps that might exist
along the edge curve. In order to find the slope of each pixel the gradient is used.
Contour following can successfully extract curves that are perimeters of bright objects
on a dark background and vice versa. In order to trace the curve, it requires that pixels
on one side of the edge are dark and on the other they are bright, so that the algorithm
can clearly assign a gradient value and determine whether a pixel lies on the boundary
of the two areas by the direction criterion alone.
This algorithm can be extended to include the strength (the gray level value) of the
edge-pixel as an additional criterion. That means that a pixel is linked to the edge only
if its slope is close to the edge’s slope and if its (gradient) magnitude exceeds a certain
threshold. This version of the algorithm can be used for our application after the edge
detection phase. Having the edge-strength image, we could follow each edge and add
another pixel if its gray level value exceeds a threshold and if its slope is similar to
that of the curve. The problem in applying this to our application is that the curves we
want to detect are by no means smooth since many angles exist on letters.
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2.4.2. Raster tracking [10]

Another algorithm by Rosenfeld and Kak is raster tracking. This can be used for
cleaning small edges that are caused by noise rather than actual edges in the image.
This algorithm scans the image row by row, assuming that the edges to be traced are
thin, dark and continuous curves, whose slopes never differ far more than 90°. If a
given pixel (x,y) exceeds a relatively high threshold Th, we accept it as an edge pixel.
We also accept any neighboring pixel that lies in the previous row (y-1), which
exceeds a lower threshold Tl.
As a result, if an edge has a single pixel with a gray level value exceeding Th, the line
will be tracked from there and downwards until one of the edge pixels is lower than
Tl, in which case the edge will break. This procedure can lose the entire edge or can
detect only parts of the main edges of the image, because parts will be lost if the
uppermost pixel does not exceed Th.
This algorithm is very sensitive to the thresholds and especially Th.

2.4.3. Double thresholding

A slightly different version of the previous algorithm is double thresholding.
Suppose that the input image is a black background and a gray edge. Select two
thresholds T1 and T2, where T2=T1+å. Create f1 and f2 two new images by
thresholding the original image twice using these thresholds, f1 contains pixels larger
than T1 and smaller than T2, whereas f2 contains pixels larger than T2. This way f2

contains few edge pixels that have large values and are very likely to belong to an
actual edge. f1 contains more pixels, ideally every pixel that belongs to an actual edge
and inevitably some noise pixels.
The algorithm can now proceed in the following manner. After thresholding, f2 is
scanned. If an edge pixel say f2(x,y) has a neighboring edge pixel in f1 then assign this
pixel in f2 as an edge. This process is repeated until no change is made in f2.
This way we achieve to keep every pixel (larger than T2) that definitely belongs to an
edge and to get rid of edges that have pixels of low gray level value, which are
probably noise pixels.
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3. PROPOSED ALGORITHMS

In this chapter we describe all algorithms we developed for this application. Some of
the algorithms have been mentioned in the previous chapter. They have been adjusted
so as to have optimal performance, in accordance to the requirements of our
application. In other areas, we propose new algorithms designed to match the
requirements of the application. Along with the description, the reasons that led us to
these algorithms will be investigated.

3.1. Pre processing

This is a procedure by Gonzalez and Woods [9] that is extensively used before the
edge detection, in order to improve the quality of the image fed to the edge detector.
The effect of image equalization is that the background pixels are assigned values
near a reference gray scale value and, at the same time, the contrast between the
foreground and the background pixels becomes more uniform. The main reason that
can cause variations on the values of the background pixels is the lighting conditions
when taking the images. For instance, excessive lighting may result in an image such
as the one shown in Fig. 3.1(c), with large variations at the incident light distribution.
In our application the reason we use this algorithm is the uniformity of the edges,
rather than the correction of the background. Morphological edge detectors detect
edges based only on spatial information in the neighborhood of each pixel. As a result
our primary concern is the contrast between foreground and background pixels and
not the background level itself. The reason is that, as we saw in the previous chapter,
most morphological edge detectors involve a subtraction between images which
means that background values in on image are subtracted from similar values of the
other. However, it is important to us that letters across the image have the same
contrast with the background regardless of the original lighting conditions of the
image. This is very important since different contrast across the image between letters
and background will result in edges that have different gray levels in the edge-
strength image. If the contrast is large the output edge will have a larger gray level
than if it were smaller. As a result applying a threshold becomes more difficult,
because the edges do not have similar gray levels across the image in the output of the
edge detector. The assumption of uniform contrast does not hold for the original
image, where very bright areas have larger contrast (in variance of gray levels) than
darker areas.

A quite simple algorithm for equalization is the following:
First of all the original image is blurred using the blurring operation of the ATM
algorithm, described in chapter 2. A 7x7 filter is used with alpha equal to 1.
Let f be the original image. Then:

g ( x , y ) = ATM blur { f ( x , y ) }
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Subsequently the mean gray level value of the blurred image is calculated.

widthheight

yxg

mean

width
height

y
x

*

),(
1
1

∑
=
=

=

Finally the original image is divided by the blurred image pixel by pixel and the result
is multiplied with the mean value we have calculated.

),(
),(*),(

yxg
yxfmeanyxe =

As a last step, a histogram normalization is applied to the resulting image, so that the
pixel values are clearly separated.

In Fig. 3.1. an example of applying this equalization algorithm to an image with large
variations in the background level is presented.

(a) (b)

(c) (d)

Fig. 3.1. (a) Image with large variations in background,
(b) the result of equalizing (a),  (c) very bright image,

(d) the result of equalizing (c)
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As a conclusion, the equalization algorithm manages to suppress the difference in the
background in the various parts of the image, while retaining the contrast locally. The
difference between background and foreground pixels changes slightly, but the
background pixels are forced to a reference gray level. This is clearly illustrated in
Fig. 3.1. The letters that can be identified in the left hand side images can be
identified in the right hand side images also, but the background in the second set of
images is almost uniform. Moreover, histogram equalization manages to enhance the
contrast between letters and background.

3.2. Edge detection

It is obvious from the previous chapter that the algorithm yielding the best results in
edge detection for our application is the ATM algorithm. However, in spite of its quite
good results many noise edges are detected among the letters. This is an important
problem along with the fact that “double edges” are detected.
For these reasons we experimented with the algorithm to improve its performance. As
input to the ATM algorithm in these experiments, the equalized image shown in Fig.
3.2 is be used.

Fig.3.2. Input image for the edge detector

The ATM algorithm has two different parts; the first is the blurring operation that is
applied to the input image and the second is the morphological operators that extract
edges.

3.2.1 Blurring operation

In this phase we attempt to optimize the blurring operation of the ATM algorithm.
First of all we replace the averaging (blurring) operation with a median filter. This is a
natural consequence from the characteristics of input image. The letters have a
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slightly higher gray scale value (lighter color) that the background, not taking the
shadows under consideration. The averaging filter used by the ATM algorithm
spreads the edges of the letters, which are already quite wide. This is an undesirable
side effect of the algorithm in our case. The median filter, contrary to the averaging,
does not average pixels but keeps the median value within its neighborhood. This
means that large deviations from the average gray scale values are eliminated,
whether positive or negative. As a result, when applied to an area with constant value,
whether background of letter, it merely suppresses large differences and eliminates
the salt and pepper noise. When applied to an area on a border of a letter it keeps the
value that the majority of the pixels have. This way the edges are not spread and
deviations of values in smooth areas are slightly reduced as seen in Fig. 3.3.

Fig 3.3. Equalized image filtered using 5x5 median filter

Substituting the ATM blurring operation with this median filtering and applying the
algorithm we obtain the result of fig. 3.4.
It is easily seen that a major improvement has been achieved. The unwanted noise
edges are reduced and the edges that belong to the letters are enhanced. This image is
obtained with a median blurring 5x5 filter prior to the morphological operators.
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Fig. 3.4. Output of ATM using 5x5 median blurring

If a 3x3 filter is used instead of a 5x5 median filter we expect an output that is less
blurred but preserves more noise effects. The corresponding image of the edge
detecting algorithm is shown in Fig. 3.5.

Fig. 3.5. Output of ATM using 3x3 median blurring

The edges here are much stronger as a result of less severe blurring. Although the
edges we want to keep are further enhanced, the noise edges are also emphasized,
creating problems to subsequent processing.

The 5x5 median filtering reduces the noise edges and slightly enhances the edges that
belong to letters. To further improve this step of the edge detection, we use a
combination of blurring filters.

The advantages of the median filter have been already pointed out. On the other hand
the averaging filter also has some characteristics that are desirable to our application.
The main one relates to its effectiveness in averaging large portions of the image, thus
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eliminating dark spots and shadows, caused by inadequate lighting, as in Fig. 3.1.
These effects are clearly visible in the lower and central part of the equalized image.
The surface of the rock is very rugged and lighting produces intense shadows that
pose severe problems to the edge detection algorithm. If a large averaging filter is
applied, then such spots are eliminated along with useful information in the image,
since all the letters are averaged with the background.
Bearing in mind that the important information, i.e. the letters, are lighter in color than
the background, a potential averaging combination that could be used involves the
maximum of the two filters; the median and the mean-value filters. This way in the
region of a letter the median will have a larger value than the averaging, so that it will
be preserved. In the case of background, the averaging will probably have a value
slightly larger, because it also averages brighter pixels belonging to letters. Dark spots
will not present a problem, because the averaging will eliminate them, replacing them
with larger values of the background. A possible shortcoming is the fact that the gap
between letters and background is slightly decreased, but from the result it is observed
that this effect is not crucial.

Fig. 3.6. Equalized image blurred using 7x7 averaging filter.

A 5x5 median and a 7x7 averaging filter are used on the equalized image. The
averaging filter is larger in size because it should create a gray scale level of
reference, which ideally falls between the values of background and letters in the
median blurred image. Then, when the maximum of the two at every pixel is taken,
only useful information is preserved.

The result of feeding this blurred image to the rest of ATM algorithm is shown in Fig.
3.7.
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Fig. 3.7. Output of ATM algorithm using combination of blurring filters.

This is the best result we achieve in our application. It is obvious that the unwanted
noise edges are efficiently eliminated, especially in the central and lower parts of the
image. On the other hand, the edges that belong to letters are quite strong and they can
be easily distinguished without further processing. As a result, this blurring operation
is preferred and forms the first step of our edge detection algorithm.

3.2.2. Morphological processing

Following the specification of the blurring operation, we have to deal with the
“double-edges” effect. This is caused by the fact that the ATM algorithm takes into
account all edges produced by the erosion and dilation operators. In fact, the ATM
algorithm works with two different images from which the minimum is kept at every
pixel to produce the edge-detection output. The first image is the subtraction of the
erosion of the blurred image from the opening of the eroded image (I1). The second
comes from the subtraction of the closing of the dilated image from the dilation of the
blurred image (I2).

The first attempt to overcome this problem was combination of the two images
reflecting the edges. Instead of taking the minimum, we apply thresholds on these two
images and accept a pixel as an edge pixel only if its gray values are smaller than the
corresponding thresholds. In fact, we use a threshold of 240 for I1 and 200 for I2. If
both values are smaller than the corresponding threshold, we keep the pixel from the
second image. Alternatively, we preserve the pixel from the first image. In this way, if
the pixel is an edge pixel in both images, we keep the lower value of the two (the one
that accounts for the larger contrast). If it is not an edge pixel in both images, we keep
the higher value, which would be very close to the background level. The result is
shown in Fig. 3.8. It is easily seen that this approach has a large impact, resulting in
complete elimination of the “double edges” effect.
The reason we use a larger threshold for I1 than for I2 is because we mainly want to
keep the edges produced by the opening minus erosion part (I1). This part produces
the inner edge for each letter (the skeleton), rather than the outer (the perimeter).
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Fig. 3.8. Output of edge detection algorithm using thresholds

However, despite the fact that its output is very good compared to the previous results
this method has one major disadvantage. We must assign the thresholds heuristically
and a strategy for estimating them for each image must be developed. This is a very
difficult task since the histogram of the output image is very concentrated and does
not form any valleys to assist the process of threshold selection, as seen in Fig. 3.9.

Fig. 3.9. Histogram of thresholded ATM

One possible approach for threshold selection would be to implement a strategy that
found a threshold based on the percentage of pixels on each side of the histogram. For
example, a candidate threshold could be the value that separates the 10% of the pixels
as edges and the rest as background.
Even with a selection method, this edge detection scheme remains quite heuristic.

Another way to overcome the “double-edge” problem is to consider only one part of
the algorithm; either the erosion and opening part, or the dilation and closing part. As
we have discussed in the previous chapter each part of the algorithm returns either the
inner edge or the outer edge of the letters, respectively. In order to get a single edge
for each letter, we may select the opening minus erosion part. In this case, an edge
will be obtained that fits the letter from inside. Hence, since the letters are not very
wide, an edge resembling the skeleton of each letter will be produced. If we use the
closing minus dilation part, then the edge would resemble the perimeter of each letter.
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Fig. 3.10.

The quality of this image is as good as that we get using the two thresholds technique.
Thus, we use this approach for two main reasons. First of all, it does not require any
threshold selecting strategy. Secondly, although not as important, this second
approach is computationally cheaper, since almost half of the morphological
operations are executed.

Overall, we propose the following edge detection algorithm. The input image is the
output of the equalization algorithm.

The blurring step is described by:

fm (x,y) = median5x5( finput (x,y) )
fa (x,y) = averaging7x7( finput (x,y) )

fblurred (x,y) = max{ fm (x,y) ,fa (x,y) }

The morphological operations applied subsequently are given by:

e(x,y) = erosion{ fblurred (x,y) }
o(x,y) = opening{ e(x,y) }
fedge-strength = o(x,y) – e(x,y)

Although this algorithm is quite simple, it is the one that yields by far the best results
in our application.

Here, we must further analyze the negative pixels phenomenon that was mentioned in
the previous chapter when discussing the ATM algorithm.

The erosion, which is the first step after the blurring operation, subtracts the value of
the structuring element from that of the image and keeps the minimum of these two
values. Thus, the local maxima are lost since only the minima are kept. Let I1 be the
resulting image. Following the erosion, an opening is applied. The opening is an
erosion followed by a dilation. This operation has no effect when applied to an area
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with uniform gray scale values since no local minima and maxima exist. On the other
hand, when transitions are present, the opening behaves differently on minima and
maxima. First the erosion is applied and the local minima are kept reduced by the gray
scale value of the structuring element, we will refer to this image as I2. Then when the
dilation is applied it is applied over I2, so even though it keeps the local maxima
increased by the value of the structuring element it does not reach the values of the
pixels in I1. The output of the opening will be referred to as I3. All these operations
use the same structuring element. Concluding, the opened image is expected to have
smaller gray levels in areas of the image where transitions (edges) exist.
Also, as we have seen in the previous chapter, the opening smoothes the contours.
This means that due to the fact that the edges are far from smooth the opening will
produce a smoother edge contour than that of the erosion. This results in a different
shape of the edges in the two images I1 and I3.
From all the above we conclude that by subtracting I1 from I3 the result is zero in
areas of uniform gray scale values and negative in areas where transitions exist, on the
perimeters of the letters.

As a result, a histogram normalization (from 0 to 255) is applied following the edge
detection. By normalizing the histogram no information is lost, which is important for
post processing and the image can be handled by a normal viewer.

3.3. Post processing algorithms

Following the edge detection phase, we obtain an image that contains many edges,
many more than those carrying useful information, due to small cracks and other
irregularities on the surface of the stone. Our target in this stage of the processing is to
eliminate as much as possible these unwanted edges so as to preserve and, if possible,
enhance the edges that belong to letters. At this stage enhancement refers to the
connection of small (broken) edges that are parts of larger segments. This task
becomes difficult, due to the lack of special characteristics of noise and/or useful
edges.
Several algorithms were developed for this task. In the following, we discuss each of
the algorithms developed and the reasons that led to their selection.

3.3.1. Labeling

A labeling technique is necessary at this stage on, so as to process edges as distinct
and separate objects. Labeling implies that all pixels belonging to a single edge have a
unique label and pixels belonging to different edges have different labels. A single
edge is a group of foreground pixels that are 8-connected.
The algorithm developed for labeling has two steps. First of all, it scans the image
once and assigns each edge pixel a different label, unless a neighboring pixel already
has a label, in which case it assigns this label to the pixel under consideration. This
ensures that all edge pixels have a label and the ones connected have the same label.
In the next step, the labels on a single edge’s pixels are forced to a unique label. The
algorithm checks each pixel’s neighbors. If one neighbor has a label l2 different than
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that of the pixel, it scans the entire image and replaces all labels l2 with that of the
pixel under consideration. For example, let a pixel with label 3 be examined. If it has
a neighbor with a label 4, the entire image is scanned and all the pixels having label 4
are assigned label 3 as their new label. This second step is repeated until no change is
made to the labels and assures that all the pixels that belong to a single edge have a
unique label. The first step of the algorithm makes sure that no different edges have
the same label, since only connected pixels are assigned the same label. The second
step further improves the labeling process by assigning the same label to all
neighboring pixels.
This technique is time-consuming, since the image needs to be scanned many times in
order to derive the final values of the labels.

3.3.2. Cleaning

A simple idea that can be applied towards eliminating unwanted edges is to eliminate
those having size less than a number of pre-specified pixels, i.e. 5. This will clear the
image of all the noise edges that look like salt and pepper noise. Although it is very
simple as an idea, it yields good results in cleaning many small edges that existed in
rather “empty” parts of the image. When referring to “empty” parts, we imply areas of
the image where there are few edges, or where the density of the edge pixels is low.
An area meeting these criteria in Fig. 3.10 is the upper left part of the image, where
only the edges that belong to letters are long and connected. The other edges are very
small and are caused by irregularities on the surface of the marble, such as corruption.
The algorithm manages to clean that area rather well.
On the other hand, we observe that there are many small edges in the center and lower
part of the image which involve more than a few pixels and cannot be cleaned using a
small size threshold. Furthermore, some of these edges are almost as long as some of
the not-connected parts of the edges that we want to preserve. If we eliminate these
noise edges by means of a size threshold, we will also eliminate edges that belong to
letters and are not connected, such as the vertical line of T at the first row of letters.
This conflict makes the use of this simple cleaning approach quite inefficient and
leads to a form of a selective cleaning algorithm.

3.3.3. Selective cleaning

This algorithm forms an extension of the previous cleaning scheme that avoids the
problem stated above to a satisfactory degree. In order to eliminate an edge it uses
criteria relating not only to the number of pixels, but also to the density of edge pixels
in the surrounding area. If this area has few edges the threshold is decreased, whereas
the threshold is increased in areas of dense edges. This scheme can eliminate larger
edges in areas where we face noise contamination leading to increased edge activity.
The algorithm for selective cleaning scans the image and defines a window for every
pixel that belongs to an edge centered at that pixel. Then, the number of edge pixels in
this window is measured. The density of edges in this window controls the size
threshold applied. If the density is smaller than the lower accepted density then the
size threshold is decreased, so that only very small edges are eliminated. If it is higher
than a higher accepted density, then the threshold is increased, so that larger edges can
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be eliminated from places where the edge density is large. If the density falls in
between these two values no change is made to the threshold.
According to the above we apply the algorithm using an initial threshold of 10. In
areas of the image that are quite “empty”, this threshold is reduced to 5, so only edges
that have less than 5 pixels are eliminated. In areas of the image where there are a lot
of edges the threshold is increased to 15 to eliminate longer edges. In all other parts of
the image the threshold remains unchanged and edges of size 10 are eliminated. It
should be mentioned that all numbers above are set experimentally. The ideal value of
the threshold depends heavily on the output image of the edge detector and the
threshold used to obtain the binary image. The same apply for the threshold changes.
Under the assumption that the size of the letters in the image does not differ
drastically and depends only on the actual size of the letters on the inscription and the
distance at which the picture was taken, such threshold levels can be easily set.

3.3.4. Edge elimination

This step was developed to face the problem of the existence of very long and
randomly spread small edges in the image.
If the length exceeds the maximum expected length of a letter then this edge is
obviously caused by a large crack on the surface of the rock, or by corrosion and is
certainly not part of a letter. Edges like this are removed from the image without any
further examination. The only side effect that can arise is when a letter is placed on a
crack. Then, we throw a large edge caused by the crack, but part of this edge could
have been devoted to a letter. This is not a rare case, as we have seen in our images,
but it is very difficult to overcome it.
Implementing the above we eliminate any edge that is longer than 70 pixels, for
example, regardless of their angle. This number is estimated taking in mind that
letters are about 50 pixels long and certainly no more than 70 in any direction.

Furthermore, we must eliminate some of the small edges that exist in the image and
are mainly noise edges. The criterion we will use in this case is the angle information
we have obtained for the edges.

The procedure followed in our approach is the following.
First, the labeling algorithm is applied. The majority of lines that make up the letters
are vertical or horizontal. Other regular directions are hard to be defined, since ancient
inscriptions were carved by hand and we do not expect regularity of line directions.
For example, consider the letter N. The diagonal line can be assumed to be in the
vicinity of 135 degrees in printed text. In hand carved characters, though, it can have
any angle from about 100 to 150 degrees.
Another conclusion that is easy to make is that noise edges appear in random angles.
Noise edges are rather small ones that are caused by the small anomalies on the
surface of the rock in any direction. As a result we cannot extract any conclusions for
small edges that are not nearly vertical or horizontal.
Vertical and horizontal small edge segments have a large probability of belonging to
letters, because of their regular orientation. On the other hand all other edges have a
large probability of being noise.
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Therefore in the elimination phase we preserve all edges that are horizontal or vertical
and we eliminate all other edges if their length is below a threshold, so as to eliminate
only very small ones.

3.3.5. Edge linking

Edge linking is the procedure of connecting line segments. To decide which segments
should be connected several criteria are used. In the literature we came across criteria
such as the gray scale value of the pixels under consideration and their gradient
direction. However, these are not applicable to our application since gray levels are
very similar in all edges, regardless of whether they belong to letters. The gradient
direction criterion is also inappropriate, since it uses only the direction of the two
pixels to be connected and not of the entire two edge segments. It is adequate for
images where the edges are smooth and the gradient direction of the extreme pixels
correspond to the direction of the segment.
This led us to search for other criteria, which would be effective for our application.
These criteria are size, proximity and direction of the segments and are structural
criteria. In this paragraph we discuss two algorithms. The first utilizes only the
criterion of proximity and merely connects edges that are separated by small gaps.
The second one is more sophisticated and uses all the mentioned criteria to connect
segments that have a large probability of belonging to letters.

First algorithm
A simple step that improves the results is the linking of edges that have gaps up to
two pixels between them. It is very common for gaps of 1 or 2 pixels to exist between
edges and it is mainly caused by the thresholding that is applied in the binarization
process. During the thresholding, no care is taken on whether a pixel lies on an edge.
As a result, it is considered as background if its gray level value does not exceed the
threshold even when it obviously belongs to an edge. For this reason, some edges
appear with small gaps. The edge linking algorithm fills these gaps to obtain larger
edges, by looking in the neighborhood of each pixel for other edge pixels. To fill gaps
of 1 pixel a neighborhood with radius of 2 is searched; for 2 pixel gaps a radius of 3 is
used, etc. If another edge pixel is found in this neighborhood, it is connected to the
pixel under consideration. This linking, however, must be performed carefully,
especially when the gap is 2 pixels wide. In this case, it is not obvious which pixels
should be linked to existing edge pixels. To overcome face this problem we devised
the following.
If the gap is only one pixel wide then the solution is easy. Lets assume we want to
connect two pixels that have coordinates (x1,y1) and (x2,y2). It is obvious that the pixel
that would fill the gap has the following coordinates:






 ++

2
,

2
2121 yyxx

If the division produces numbers that are not integers, i.e. 10.5, the decimal part is
discarded.
The filling of two pixel gaps is not as trivial. We calculate the mean values of the x
and y coordinates of the pixels to be connected in this case also. At least one of the
mean values will not be an integer, since the gap is two pixels wide in one axis. For



36

example, if the gap is two pixels wide along the x axis, then x1 and x2 cannot be both
even or both odd, so the mean value will be not an integer.
Let’s assume P1 and P2 are the two pixels we are looking for to fill the gap. One of
these two pixels is calculated the same way as for the one pixel gap case. The other
pixel is calculated by adding 0.5 to the coordinate, which was not integer.
To illustrate the above, the possible coordinates of the gap filling pixels are shown
below:
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If the mean value of the x coordinates is not an integer.
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If the mean value of the y coordinates is not an integer.

For example, if we are to connect (0,3) to (3,5) the procedure is the following, as in
Fig. 3.11. The mean values of the x and y coordinates are (0+3)/2=1.5 and (3+5)/2=4
respectively. The mean value of the x coordinate is not an integer. This means that the
two pixels we want have coordinates (1,4) and (2,4).

Fig. 3.11. Edge linking example

This algorithm has other side effects. It links any small noise edge to other edges on
the basis of proximity, instead of discarding it. This, however, is easy to overcome if a
cleaning operation is applied before the linking to eliminate very small edges.
Moreover, it connects any two pixels that have a direct gap even if they are connected
along other longer paths. This results in a thickening of edges.

Second algorithm
The existence of many broken small line segments along the same direction that
belong to the same edge, led us to the development of this algorithm, which connects
segments based on all the criteria mentioned, size, direction and proximity.
First of all, labeling is applied so that edges are separated and features are extracted
from them. These features include the center of gravity of the edge and the direction
of the line that fits the specific edge, as well as its length. The center of gravity and
length are relatively easy to calculate; they are the mean values of the x and y
coordinates and the diagonal of the bounding box, respectively. To find the bounding
box two points are needed; the upper right and the lower left point. The upper right
coordinates are the maximum x and y taken over all the pixels that belong to the edge
segment, whereas the lower left coordinates are the minimum x and y, respectively.
In order to find the parameters of the line, two different approaches were tested,
namely the linear regression [12] and the Hough transform [9].
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•

•(0,3)

(3,5)

(1,4)
(2,4)
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Linear regression is a numerical method based on least squares approximation. It
attempts to find the line, which has minimum distance from all the points that
compose the edge. The equation of a line is:

bxay += * Eq. 3.1

The algorithm returns the slope of the line, a, and the distance from the crossing of the
x axis to the origin, b.
Suppose we have N points and xi and yi be the coordinates of these points. For each
point we form the error measure:

2)*( bxays iii −−=

If si is zero then the i-th point is on the line, else si is a measure of the distance of the
point from the line in Eq. 3.1 with the specific parameters a and b. Summing up the
above measure for all points we obtain the overall error measure:
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If all the points lie on this line (a,b), then s is zero. Since we want to find the line that
best fits these points we need to find the parameters a and b for which s is minimum.
The optimization process results to the parameters values:
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This method is used to find the line that fits a number of points that compose an edge
label.

The Hough transform is based on an entirely different idea. The basic idea of this
technique is to find curves that can be parameterized like straight lines, polynomials,
circles, etc., in a suitable parameter space. We use the following representation of a
line:

ρϑϑ =+ sin*cos* yx

To understand how the Hough transform works, let’s assume we have N points (xi,yi)
forming a line and we want to find the equation of this line. Using the above equation
and substituting the coordinates of every point we get a sinusoidal equation for ρ and
θ on a parameter space (ρ,θ). After repeating this procedure for all the points, we
obtain many sinusoidal lines in the parameter space. The crossing of these lines give
us (ρ,θ) pairs that fit many equations. The point where the most sinusoidal lines cross
gives the parameters of the equation of the line we are looking for.
Since we are working on digital space we must quantize the parameter space into
accumulator cells, forming a two dimensional array. The range of ρ is from 0 to the
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length of the diagonal of the image and that of θ is from 0 to 360 degrees. For
computational reasons, we quantized θ every 2 degrees and ρ every pixel.

The results of linear regression and Hough transform are by no means the same. If we
have an L shaped edge, linear regression returns a line with a slope of about 135
degrees, whereas the Hough transform yields a vertical line, the line that passes
through most points of our edge.
Linear regression has one major shortcoming. The problem with using the Eq. 3.1. to
represent a line is that slope and intercept approach infinity as the line approaches
vertical and horizontal direction, respectively. As a result this equation cannot be used
as is, because it does not provide a uniform way of dealing with lines. Even if we
managed to overcome this problem, the approach used by the Hough transform suits
better our purposes. The reason we need these line equations is to compare the slopes
and the intercepts of different edge segments in order to decide whether to connect
them. The linear regression approach returns the slope and the intercept, while the
Hough transform returns the angle and the perpendicular distnce from the origin of
the plane. It is far easier to compare the output of the Hough transform between two
edge segments, than comparing the slope and intercept resulting from linear
regression. For example, nearly vertical lines might have similar slopes, but the
difference of their intercepts might be very large. Although they should be connected,
if they meet the rest of the criteria, the difference of their intercepts makes that
impossible. On the other hand, angle and perpendicular distance are measures that
give similar values for similar lines regardless of their values. This makes the
comparison fairly easy using the Hough transform.
It is obvious from the above that, Hough transform has certain advantages to be used
in our application.
Having calculated the features we need, we organize them making a record for each
edge segment. The features stored are the coordinates of the center of gravity, the
length and the line fitted on the edge segment, along with the edge label.

After the features have been calculated, the next step is to find which, if any, edge
segments must be connected. The criteria that must be met to connect two edge
segments are three and are verified in the following order:
• Angle. The angles returned by the Hough transform are compared to determine

whether the two segments are parallel or almost parallel.
• Distance from origin. The other parameter that is returned by the Hough transform

is the perpendicular distance from the origin. If these distances are equal or very
close for the two segments, their centers of gravity lie on the same circle
perimeter. Combined with the above angle criterion, if both are met, the lines
fitted on the edges are the same or almost the same.
In the final implementation of the algorithm this criterion is substituted with
another very similar but more reliable one. Instead of comparing the distances
provided by the line fitting process, we find the perpendicular distance from the
center of gravity of one edge to the line fitted to the other. The equation defining
this distance from a point P (xi,yi) to a line ε: 0** =++ CyBxA  is the following:
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This method is a little more reliable, because, as we have seen, the Hough
transform is not a line fitting algorithm. This distance gives us a better estimation
of the actual distance between the two edge segments.

• Distance between edges. If the above criteria are met the two segments lie
approximately on the same line. The final check that must be made is how far they
are from each other; if they are on opposite sides of the image they should not be
connected. The distance from the center of gravity of the first to the second is:

2
21

2
21 )()( yyxxd −+−= .

If this distance is smaller than the sum of the lengths of the segments then they are
connected. The sum of the lengths is used as a threshold since if the two edges are
far from each other and are short then they are probably noise edges or belong to
different letters if their distance is very large. If they are quite long, then we
connect them, since they are likely parts of the same letter.
We must emphasize that all the above apply only for edge segments that are not
too long. For example, if we know that the maximum length of a letter is 20 and
we find a segment 40 pixels long, then it is obviously caused by corrosion and we
do not connect it with any other segment.

Finally, if all the above criteria are met we connect the two segments by drawing a
line from the center of gravity of the first to the center of gravity of the second.
A problem exists here when one of the two or both are not line-shaped. Then the
center of gravity lies outside the edge, is not an edge pixel, and when the segment is
connected the connecting line does not coincide with the edge. This may mean that in
a later labeling operation they might not be considered as a single edge. This
occasion, though, was rarely met in our work and did not present major problems. A
solution to this problem is to connect only segments that are line-shaped and ignore
segments that form angles or arcs. In the case of arcs it is possible to connect some,
small arcs that have large radii resemble straight lines and can be connected.
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4. PROPOSED PROCEDURE

In this chapter we present the actual procedure we developed and applied to our
problem. We discuss how all the algorithms described in the previous chapter are used
in our overall approach.

The overall algorithm is divided into three major steps, see Fig. 4.1. First of all we
preprocess the original image, to facilitate the edge detector phase. Secondly, the edge
detection algorithm is applied to the resulting image. The final step is the post
processing procedure, which takes the edge strength image and keeps only the
information that is important for this application. From chapter 3 we have concluded
on the algorithms to be applied in the first two parts. On the contrary the post
processing is a combination of previously presented algorithms that will require
further analysis.

Fig. 4.1. Block diagram of the procedure

The pre-processing stage applies a fairly simple algorithm as discussed in chapter 3.1.
Below we will show block diagrams of the edge detection and the post processing
phases, which are more complicated.

Fig. 4.2. Block diagram of the edge detection algorithm

For further details on the edge detection algorithm see chapter 3.2. A block diagram
of the post processing is shown in Fig. 4.3. So far we have only discussed the
algorithms we are going to use. Here we will show the sequence of the algorithms and
how they interact.
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Details on each of the algorithms are presented in the previous chapter and later on in
this chapter.

Fig. 4.3. Block diagram of post processing phase

The image shown in Fig. 4.4. is the one that will be used as an input to the entire
processing and the effect of each step of the procedure will be illustrated using
intermediate results.

Fig. 4.4. The input image
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4.1. Preprocessing

The image equalization algorithm presented in the previous chapter (section 3.1) gives
good results in the test images it was applied to. When the above image is fed to this
algorithm the result is shown in Fig. 4.5. It is obvious that differences in illumination
have been eliminated and the edges have been emphasized.

Fig. 4.5. The equalized image

4.2. Edge detection

The algorithm developed in the previous chapter (section 3.2) is used without any
modifications. The result is shown in Fig. 4.6.

Fig. 4.6. The output of the edge detection algorithm
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In order to obtain a complete idea of the edges that are detected in the image above
we threshold the image at a level of 254. This thresholding is done purely for
purposes of understanding the output of the edge detector and is not a part of the
processing. The output is shown in Fig. 4.7.

Fig. 4.7. Output of edge detection thresholded at 254

It is obvious from Fig. 4.7 that the edge detector finds many edges, many more than
desirable. The post processing phase must eliminate most of these edges that do not
belong to letters and to keep the letters intact, as possible.

4.3. Post processing

The post processing that will be applied to the output of the edge detector is a
combination of the algorithms described in the previous two chapters.

4.3.1. Double thresholding

A variation of the algorithm discussed in chapter 2.4.3 is developed to meet the
requirements of our application. The original algorithm takes one image and
thresholds it twice, creating two images and continues using them. Instead of this, we
modified the algorithm to take the two thresholded images as input. This way we can
do some further processing on them, instead of a simple thresholding.
The determination of the images that are supplied to the double thresholding
algorithm is very crucial. Any information that will be lost from now on at every step
of the processing will not be recoved. Therefore care must be taken so as to discard
only trivial edges.
One of the two images that will be supplied to the algorithm must have few edges and
desirably only edges that are parts of letters. This is used as a basis for expanding
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edges using the second image. This second image must have a lot of edges and must
contain entire letter-edges to preserve all useful information.
The images that we actually use are:
• The first image in Fig. 4.8. is taken using two thresholds and an edge cleaning

procedure.
• The second image in Fig. 4.9. is the result of a simple thresholding at 250.

Fig. 4.8. Thresholding the edge strength twice.

The image in Fig. 4.8. was first thresholded at 245 and anything larger than this
threshold was set to 0. Every non-zero pixel was then assigned the value it had in the
equalized image, so as to keep the brightness information of the original image. Then,
the final image was obtained by thresholding, which sets to 0 anything above 185 (in
the equalized image). The first threshold is applied to keep only the stronger of the
edge pixels after the

Fig. 4.9.  Thresholding edge strength image at 250.
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edge detection and the second one to eliminate some very bright pixels that are caused
by lighting irregularities in the original image. Finally the edge cleaning algorithm is
applied to the output of the two thresholds, to eliminate the edges that are composed
of less than 4 pixels.

Having these two intermediate edge images the algorithm continues by scanning the
edges on the first image that contains fewer edge pixels. If an edge pixel in this image
has an edge neighbor then this new pixel is kept as an edge pixel. If it has none then
the neighbors in the second image are searched. If a neighbor in the second image is
found then it is added to the first image as an edge pixel. The algorithm repeats the
same procedure until no change is made to the first image, which is the final output of
the algorithm.

The resulting image contains all edges of Fig. 4.8. extended with parts of the edges
from Fig. 4.9.

The output of the double thresholding algorithm is the following image.

Fig. 4.10. Output of the double thresholding algorithm.

It is easily seen that most of the very small edges that existed in Fig. 4.9. have now
disappeared and the large edges have almost remained intact. Some small pats of
letter edges have actually been lost, but the whole procedure poses a trade off. Trying
to eliminate a large portion of the noise edges, some useful edges are also eliminated.

4.3.2. Selective cleaning

The next step in post processing is the selective cleaning algorithm. The image we
have at this stage has most of the letter edges, but also contains many small or larger
edges that are caused by cracks or corrosion on the surface of the rock. For example,
in the upper central and the lower left parts of the image, some large edges can be
distinguished that are definitely not caused by the carved letters. Furthermore, many
small edges are spread all over the image. The problem with those small edges is that
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in some parts of the image they are really quite small, while in other parts their length
is comparable to that of the letter edges. This is the problem we attempt to overcome
by using the selective cleaning. The result of applying this algorithm to the output
image of the previous step is shown in Fig. 4.11.

Fig. 4.11. Output of selective cleaning algorithm

The result of this algorithm is exceptionally good if we consider the input image. It is
obvious that it has removed almost all small edges. The noise edges that remain are a
big problem because they cannot be classified as different than the letters edges.
Indeed, the remaining edges have similar characteristics and it is impossible to find
some way of clearly determining which are noise and which are letter edges.
This algorithm, although it works very well, has a major shortcoming. It uses many
parameters that have to be estimated. More specifically, it needs a threshold, the
variation of this threshold and two limits for the edge density of the image. The
threshold is the minimum number of pixels each edge must have in order to be
preserved. The variation of the threshold is the value that is added to or subtracted
from the threshold depending on the edge density on every part of the image. Finally,
the limits for the density are the upper limit over which the threshold is increased and
the lower limit under which the threshold is reduced. Assuming that the original
images used do not vary a lot and have similar letter sizes, then it is possible to find
values for these parameters that can work optimally for a wide variety of images.

4.3.3. Edge linking

At this stage we attempt to connect some edges that probably belong to single larger
edges. Applying the algorithm that was described in chapter 3.3.5 (second algorithm)
gives the result shown in Fig. 4.12.
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Fig. 4.12. Output of the edge connection algorithm

The effect of the algorithm is clearly illustrated in this image. Many segments that
were parts of larger edges have been connected, building up longer edges. It is
possible now to eliminate some of them based on their length. Very long edges that
were broken into smaller parts by the thresholding are connected again and can be
now detected and discarded. Furthermore, edges that belong to letters are connected
also so that they will not be treated as small noise edges.

4.3.4. Edge elimination

The final step in this process is the edge elimination described in chapter 3.3.4.

Fig. 4.13. Output of the edge elimination algorithm
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The result of this algorithm to the image in Fig. 4.12. is shown in Fig. 4.13. All edges
that were longer than the maximum length of a letter are no longer present in this
image.
This is the best output we have managed to achieve. The noise is obviously not
completely removed. The reason is that the remaining edges all have similar
characteristics to useful letter-edges and there is no way to separare noise from letters.
Image processing can get only this far in this application. In order to get a clear
description of the letters some kind of recognition should be applied,

4.4. Other Examples

The procedure, described in this chapter, yielded good results not only for the image
used as input in the previous sections, but for a variety of images. The only
restrictions are that the letters in the images have roughly the same size. This is
important because in the course of the processing we assume that edges larger than a
certain threshold cannot be parts of letters due to their large size. If an image, which
has very large letters, is used as input the parameters of the algorithms may require a
slight modification.

In Fig.4.14. we see an image from a different region of the same inscription as the
image previously used. It suits our purposes, since it was taken from almost the same
distance as the previous, thus having same letter sizes. We must emphasize here that
our algorithms are expected to work equally as well in any image of an inscription,
provided the letter sizes do not change significantly.

Fig. 4.14. Another image taken from the inscription

Applying the procedure discussed in this chapter we obtain the result shown in Fig.
4.15.
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Fig. 4.15. Output of the entire procedure

We can that in the Fig. 4.13. most of the edges belonging to letters are preserved and
most of the edges due to noise have been eliminated. Some noise edges that still exist
in the image cannot be eliminated because they have very similar characteristics to
letter edges.
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5. CONCLUSION AND FUTURE WORK

The recognition of objects in a complex background is generally a complicated task.
Various algorithms have been developed to achieve such a task. In their majority, the
algorithms are Pattern Recognition algorithms that try to match exact or almost exact
occurrences of the object to be recognized. These algorithms generally require a
uniform background, as in OCR algorithms. Noisy background increases the difficulty
of the entire problem and makes the PR algorithms much more complicated.
Furthermore, lack of knowledge of the objects to be detected can cause major
problems. In this case the classical PR algorithms cannot be applied since they require
good knowledge of the characteristics of the object to be found.

In the course of this work we tried to extract the letters from the noisy background of
ancient inscriptions. We focused on image processing, since our goal was merely to
make these inscriptions readable and not to recognize the letters carved on them. This
is the first step before any pattern recognition can be applied. Our work was further
complicated, because we applied no special characteristics that could discriminate the
letters from the anomalies on the surface of the rock or marble.

Another difficulty we faced was the lack of an adequate edge detection algorithm in
the literature. We implemented a number of existing algorithms, but only one of them
yielded a somewhat promising result, the ATM algorithm. The images we process
have very faint edges and most of the existing algorithms could not detect them. This
led us to the modification of the ATM algorithm. To further improve the result of the
edge detection algorithm we pre-processed the image, to remove lighting anomalies
and enhance the contrast of the image.
After the edge detection phase, post processing had to be applied in order to preserve
only the edges belonging to letters and not those caused by anomalies on the surface
of the rock. Few algorithms were found that could be effective in our application. One
of them was used almost unmodified, the double thresholding algorithm, but for the
rest of the post processing we had to develop algorithms such as the edge linking or
the selective cleaning algorithms to better suit our application.

As we have mentioned in the first chapter this work is just the first attempt in building
an automated system for reading ancient inscriptions. Further work to extend this
thesis can be separated in two categories. First, the processing might be continued
with pattern recognition applied to the images. Secondly an image acquisition system
should be developed in order to obtain better pictures from the inscriptions than the
ones we already have.

Processing & pattern recognition

In this work we have tried to extract the letters from the noisy background of the rock
region. The result of our work is an image with uniform background that contains a
good portion of the letters. This means that, although we have lost parts of the letters,
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the larger part of the information is still available, so that a pattern recognizer can be
applied. As we have seen in the first chapter, the problem of pattern recognition,
especially that of optical character recognition, is extensively researched.

Bourbakis and Goldman [2] have developed a pattern recognizer that has a feature
very useful in our application. It can handle lines that are not smooth, lines with
unevenness. This will be effective in our work since in our results most of the lines
are not smooth and other PR algorithms will have problems recognizing them as
straight lines. However, the recognition part of the algorithm uses a graph-based
method, which will probably give poor results, due to the lack of information in our
image, the letters are broken or parts are missing.
Artificial Intelligence is nowadays heavily used to confront these problems. Methods
such as Hidden Markov Models, Artificial Neural Networks and Fuzzy Logic have
been utilized lately.
For example, Lazzerini and Marcelloni [13] have developed a fuzzy system for
recognizing handwritten characters. They describe the shape of each character by
linguistic expressions derived from a fuzzy partition of the character image. Then this
linguistic description is compared with others in a database.

The problem of broken characters might yet have another solution. Wang and Yan
[14] have proposed a macrostructure analysis method for mending broken
handwriting. This can prove very useful, because most of the letters in our output
image are either broken or parts of them are missing. This algorithm does not
recognize the characters, it simply connects the broken ones, thus making the
recognition task easier.

This work even if it is done, will not be totally successful without the development of
an adequate lighting and image acquisition system.

Image acquisition system

Such a system is necessary for two reasons. First of all, the images captured under
controlled conditions will be better than the ones we had using a commercial digital
camera. Lighting conditions, which are very important, the entire preprocessing step
deals with them, should be controlled in order to acquire images that will be
uniformly illuminated. This will make the edge detector produce better results.
Secondly, from a brief discussion with the archaeologists we have found out that the
major contribution of a system like the one we are beginning to develop would be to
help in reading some inscriptions that are not readable now. The archaeologists have
noticed that when lighting these inscriptions from different angles they can
distinguish some parts of their carvings.
A possible solution for an automated system would be to get several captures of one
inscription in different lighting conditions, for example lighting the inscriptions from
various angles. Having many images and the information spread in these images we
can apply the algorithms that were developed in this work to get some first
experimental results.
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