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Chapter 1 

  Introduction 
 

 

Introduction 
 
 
Reconfigurable logic is one of the most rapidly growing sectors of the semiconductor industry. 
FPGAs are becoming an important implementation technology, as the need for quick production 
of products with relatively fluid specifications is becoming more urgent. Time to market has 
become a very important factor. To shorten this time it important to shorten the validation and 
debugging times.  
 
Design Simulation provides complete observability and controllability, but on the other hand 
execution times are very slow. Millions of simulated cycles can take hours or even days to run on 
a computer. This means longer verification and debugging times. Finally, simulation does not 
guarantee that the designs will operate as desired when they are loaded on an FPGA that is on a 
board because the simulated cases are by necessity limited. 
 
Development boards have proven to be a reliable solution in such cases. They usually consist of 
a board with one or more FPGA of the same vendor and family and a User Interface, or 
implemented classes of a language (C/C++ or Java [1]). This solves many problems, but creates 
other. The developer is limited to testing his design on the board and on the specific FPGA that 
is on it. To test it on his own board, the developer has to buy a programmer. Programmers are 
usually vendor specific and quite expensive.  
 
The purpose of this thesis is to develop a language and a Run-Time Environment for FPGA 
programming, that are vendor-independent. These along with a board containing an Atmel AVR 
[2] microprocessor provide a very good solution to all the problems mentioned above.  
 
The language is used to create scripts that give the programmer essential information on how to 
perform the configuration or that can be used for test purposes. 
 
A Graphical User Interface has been developed for writing, compiling and sending scripts to the 
programmer. The programmer parses the script, takes the necessary steps to execute it. This 
includes configuration, readback and testing. 
 
The Run-Time Environment enables the programming of an FPGA by providing the necessary 
script or using one of those already created and giving the configuration bitstream file. The user 
can also create scripts that will be executed by the hardware for debugging purposes. 
 
This thesis is divided in seven chapters and the appendix. 
 
The second chapter discusses matters concerning FPGA configuration and related work. More 
specifically, the chapter contains explanations of the configuration modes, configuration pins and 
bitstreams. A reference is made to the programming of Xilinx’s [3] Spartan-II [4] and Virtex [5] 
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devices. And finally the PCI Pamette v1 [6], Xilinx’s JBits API [7], Xilinx’s MultiLinx 
Download Cable[8] and Altera’s [9] MasterBlaster Serial/USB Communications Cable [10] are 
discussed. 
 
The third chapter describes the architecture of the Reconfigurable logic Run-time environment 
(ReRun). The first two sections contain a brief description as well as the features and attributes. 
In the third section the structure and operating instructions are discussed. The fourth presents the 
instructions of the language, while the fifth describes the back-end.  
 
The fourth chapter is dedicated to the language. The first two sections detail the lexical and 
syntactical analyzers. The third describes the contents of the symbol table. And finally, the fourth 
refers to the integrity checks and error messages.  
 
The fifth chapter analyzes the Graphical User Interface developed. The first two sections discuss 
the classes created and the communication protocol. Finally, the third contains usage information 
for the GUI.  
 
The sixth section is dedicated to presenting complete examples of PTL code. The three first 
scripts were used for programming FPGAs. The first is for a Xilinx XC3000, the second for a 
Xilinx XC4000 and the third for an Altera Flex 8000. The fourth example is a test script. 
 
Finally, the seventh chapter contains conclusions and future work. 
 
There are three Appendixes. The first contains a graphical representation of the language 
grammar. The second provides instructions on how to install ReRun and the third analyzes the 
instruction opcodes created by the ReRun compiler. 
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Chapter 2 

FPGA/CPLD Configuration Guidelines 
 

This chapter contains information about the configuration process of FPGAs. The first section 

is a brief introduction to configuration. The second describes the configuration process in more 

detail. The third section analyzes the various configuration modes. The fourth contains the 

configuration pins and their description. Next, the fifth analyzes the configuration bitstreams 

and files. The sixth section refers to the configuration of Xilinx’s Spartan-II and Virtex 

devices. The next four sections contain related work. Section seven describes the PCI Pammete 

v1. Section eight presents the Xilinx JBits API. The ninth and tenth sections describe Xilinx’s 

MultiLinx Download Cable and MasterBlaster Serial/USB Communications Cable, 

respectively. Finally, the eleventh section contains a summary of this chapter. 

 

2.1 Introduction 
 

Configuration is the process of loading design-specific programming data into one or more 

FPGAs/CPLDs to define the functional operation of the internal blocks and their 

interconnections. An SRAM-based FPGA can be configured on its power-up or even on 

demand, depending on the architecture of the device. The reason we have to do this is because 

their configuration memory is generally volatile. That means that they lose their configuration 

if the power is turned off. The EEPROM based CPLDs can be programmed on demand and 

they keep their configuration data even after power-off. After configuration the device resets 

its registers, enables its I/O pins and begins normal operation as a logic device. This is called 

User Mode. 

 
Figure 2.1 - A general block diagram for the configuration of an FPGA/CPLD 

Configuration 
Data 

Source 

Control
Logic 

(optional) 

FPGA 
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2.2 Configuration Process 

   
Generally the configuration process is partitioned into several stages. Each stage is responsible 

for a specific task. For example the configuration starts with the device power-up which 

coincides with memory initialization in some SRAM based devices. Then the device enters 

programming mode, by activating the appropriate signals. The first stage of configuration, 

Configuration Memory Clear, is unpublished for Altera devices, while for Xilinx and Lucent 

[11] devices it is the stage in which the configuration memory is cleared. After that, the 

configuration data is loaded serially or in parallel. In the final stage, the device resets its 

registers, enables its I/O pins and begins operation as a logic device. 

The Altera Company does not provide such information about its devices. The configuration 

process stages can be generally described as Power-Up ! Configuration ! Initialization ! 

User Mode.  

The configuration process for Xilinx devices consists of four stages: 

 

" Configuration Memory Clear 

" Initialization 

" Load Configuration data 

" Start-up 
 

 

The full process for Xilinx devices is illustrated in Fig. 2.2. The first stage is Configuration 

Memory Clear. An internal circuit initializes the configuration logic. Then the VCC reaches an 

operational level. When that is done a time delay occurs and during this delay the FPGA 

memory is cleared. During the second stage, Initialization, the initialization pin is released and 

the mode pins are sampled. Loading Configuration Data, which is the third stage, loads the 

device with the configuration bitstream. And finally, the fourth stage, Start-Up, prepares the 

device for normal operation. It releases or activates the configuration control signals and then 

the FPGA is active and functional with the loaded design. 
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   Figure 2.2 - Xilinx Configuration Process [9] 
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2.3 Configuration Modes 

 
FPGAs/CPLDs can be configured using several schemes. Some modes configure the device 

using serial configuration data, while others use parallel. On many occasions the FPGA/CPLD 

produces by itself the control signals needed while in other modes these signals must be 

provided by external circuitry. When choosing a configuration mode, we must first consider 

the speed and configuration resources factors. Then we can choose a scheme that is supported 

by the device, as a device cannot always be configured in all modes. This section categorizes 

the configuration modes as Master[12]/Active[13], Slave[12]/Passive[13] and JTAG[12][13]. 

The names Master and Slave are used by Xilinx and Lucent, while Active and Passive are used 

by Altera. The two first modes will be mentioned as Master and Slave for simplicity.  
 

2.3.1  Master Modes  
 

In Master configuration modes the device controls the entire configuration process and 

generates the synchronization and control signals necessary to configure and initialize itself 

from an external memory. These configuration modes can be used when fast time-to-market 

is an important factor in our design. They are easy and quick to implement and they require 

no external intelligence. A device in Master mode can be used in a daisy-chain to configure 

slave devices by providing the control signals. Finally, a master mode is ideal for automatic 

configuration at system power-up in most SRAM-based devices, although during an 

erroneous situation an external circuit must be present to issue reconfiguration. The Master 

modes are Master Serial and Master Parallel Up/Low and Down/High, which will be 

explained in the following sections. 
 

2.3.1.1 Master Serial Mode 
 

Master Serial Mode is supported by all FPGAs. As the name implies this mode uses a serial 

bitstream as a data source and data is loaded at a rate of 1 bit per configuration clock. 

Whether the MSB or LSB of each data byte is always written first to the data pin, depends on 

the manufacturing company. The configuration clock pin, which is driven by the target 

device (FPGA), clocks the sequential data bits from the configuration bitstream into the data 

pin. Since the target device is the one that controls the entire programming process, the 
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bitstream is typically stored in an EPROM. Figure 2.3 displays a block diagram for Master 

Serial Modes. 
 

  

 

 

 

 

   

Figure 2.3 - Master Serial FPGA Configuration 

 

 

2.3.1.2 Master Parallel Up/Low and Down/High Modes 

 

In these modes the target device generates sequential addresses that drive the address inputs 

of an external PROM. The PROM then returns the byte-wide data to the configuration data 

input pins of the device. The HEX starting address is 00..0h and increases to a limit  for 

Master Up mode, and it is xx..xh and decrements for Master Down. The limit varies 

depending on the device. This way they provide address compatibility for microprocessors 

which begin execution from opposite ends of memory. The device generates addresses until 

the pin indicating configuration completion, is released. The parallel modes simply activate 

an internal parallel-to-serial converter and then use the serial bitstream internally. In this 

mode the RDCLK/RCLK, a clock signal that is generated by dividing the configuration clock 

signal by eight (fRDCLK= 8*fDCLK), is used to frame the data bytes supplied by the external 

PROM. In both modes the configuration clock is generated internally and is used to serialize 

the incoming data bytes. On each pulse of the RDCLK (RCLK in Xilinx) signal, the byte is 

latched and the following 8 pulses on the configuration clock convert the 8-bit value into a 

serial data stream. The address generation starts when the signal used to indicate the status of 

the configuration process (i.e. DONE for Xilinx and CONF_DONE for Altera) is de-asserted. 
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2.3.2  Slave Modes 

 
Slave Modes use external control logic to generate the configuration clock and allow Daisy-

Chain configurations. It allows the FPGA to be configured using other logic devices such as 

microprocessors, or in a daisy-chain. The device is incorporated into a system with an 

intelligent host that controls the configuration process. The intelligent host transparently 

selects a serial or parallel data source and the data is presented to the device on a common 

data bus. Such systems can store the configuration data on a mass-storage device, such as a 

hard disk. This way, installing new configuration data becomes easier and the number of 

Integrated Circuits (ICs) required for a system is reduced. The two slave modes are Serial 

and Parallel: 

 
2.3.2.1 Slave Serial Mode 

 

Slave Serial Mode is supported by essentially all devices. It places, like all serial modes, the 

device configuration data at a rate of 1 bit at a time on the configuration data pin of the target 

device. Depending on the manufacturing company, either the LSB or the MSB is presented 

first. After all the data has been transferred, the configuration clock must be clocked a few 

additional times to initialize the device. 

 

2.3.2.2 Slave Parallel /Express/SelectMAP Mode 

 

This Mode is similar to Slave Serial, but the configuration data is loaded at a rate of 1 byte 

per configuration clock. Each byte is then serialized as described earlier in Master Parallel 

Mode. Slave Parallel Mode is used when speed is a factor. The Slave Parallel Mode differs 

from Peripheral Parallel Modes in that devices in this configuration scheme can not be 

serially daisy chained. At this point, it must be noted that Altera devices do not have a “pure” 

Slave Parallel Mode. Instead there are the Passive Parallel Synchronous (PPS) and 

Asynchronous (PPA) Modes. Due to the fact that these modes use an intelligent host (i.e. 

microprocessor) to control the configuration process they are considered Peripheral Modes 

and will be described in the Peripheral Modes Section. This is a convention made to 

categorize the configuration modes efficiently. 
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Figure 2.4 - Slave Parallel/ SelectMAP Configuration Mode 
 

 

2.3.3 Peripheral Modes 

 
Peripheral modes provide a simplified interface through which the device may be loaded bit 

or byte-wide, as a processor peripheral. Processor write cycles are decoded by controlling the 

Write Strobe and the Chip Select pins. These modes provide a pin indicating whether the 

target device is ready to receive the next bit or byte of configuration data. As with Master 

modes, Peripheral mode may also be used as a lead device for a daisy-chain of slave devices. 
 
2.3.3.1 Serial Asynchronous (Altera Specific) 

 

The microprocessor places a configuration bit on the configuration data input pin and uses 

the Write Strobe (WS) signal to write data to the device. On the next rising edge of the WS 

the device latches a bit of configuration data. Subsequently, the device drives the 

Ready/Busy signal to the appropriate level, indicating that it is processing the configuration 

data. The microprocessor can then perform other system functions while the device is 

processing the data bit. It can also monitor other control signals in order to send the next data 

bit, start initialization stage or restart configuration. An optional address decoder can control 

the device’s Chip Select (CS) pins. This decoder allows the microprocessor to select the 

device by accessing a particular address, simplifying the configuration process. The 

microprocessor can control the CS signals directly. The device can process data internally 
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without the microprocessor. When it is ready to receive the next bit of configuration data, it 

inverts the Ready/Busy, causing the microprocessor to strobe it into the device. 

 

2.3.3.2 Parallel Asynchronous 

 

Parallel Asynchronous schemes are similar to Peripheral Serial Asynchronous. As the names 

imply, their main difference is that configuration data is loaded at a rate of one byte, instead 

of bit, at a time. In this mode the FPGA’s internal oscillator generates a configuration clock 

burst signal used to time the byte-wide data. Asynchronous Mode uses the trailing edge of 

the logic AND condition of WS and one of the CS signals, as well as the AND of the Read 

Strobe (RS) and another of the CS signals to accept the data from a microprocessor bus. The 

Ready/Busy signal is inverted when a byte has been received and returns to its former level 

again when the byte-wide input buffer has transferred its information into the shift register 

and is ready to receive new data. This mode allows the RS signal to be strobed, causing the 

Ready/Busy signal to appear on one of the configuration data inputs pins. 

 

2.3.3.3 Parallel Synchronous 

 

In this mode the data can be driven directly onto a common data bus between the intelligent 

host and the device. The configuration control signals are connected to a port on the local 

host. The configuration clock can be driven from the system clock, but complete control over 

the interrupts is needed. Like in Master Parallel Up/Down, on the first rising clock edge a 

byte of configuration data is latched into the target device. The subsequent 8 falling clock 

edges serialize the data in the device. On the ninth rising clock edge the next byte is latched 

and serialized. The Ready/Busy pin indicates whether the device serializes data or is ready to 

receive the next byte.  

 

2.3.4 JTAG 

 
The Bed of Nails was the traditional method of testing electronic assemblies, but it has 

become obsolete due to smaller pin spacing and more sophisticated assembly methods (like 

surface mount technologies and multilayer boards). The Joint Test Action Group has 

developed a specification for boundary scan testing. The Boundary Scan Test (BST) is an 
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industry standard (IEEE 1149.1, or 1532) and it offers the capability to efficiently test 

components on PCBs with tight lead spacing. It can also test pin connections without using 

physical probes (like the Bed-of-Nails technique) and capture functional data while the 

device is operating normally. Another reason that this mode has gained popularity is due to 

its standardization and ability to program both FPGAs and CPLDs. Finally BST can be used 

to shift configuration data into the device. In this mode external logic is also required but this 

time to drive the JTAG specific pins, Test Data In (TDI), Test Mode Select (TMS) and Test 

Clock (TCK), and one optional the Test Reset (TRST). All other pins are tri-stated during 

JTAG configuration. JTAG configuration can start at any time, even during configuration 

through another mode. To avoid starting JTAG configuration accidentally, the JTAG pins 

should be kept stable during configuration of Altera devices and for Xilinx devices, at least 

one of the TCK, TDI, TMS should be kept High. The JTAG pins are described in Section 2.4 

Configuration Pins. To configure a single device in a JTAG chain, the software places all the 

other devices in BYPASS mode. JTAG testing can be performed before and after, but not 

during, configuration. The chip-wide reset and output enable pins do not affect JTAG 

boundary scan or programming operations. Toggling these pins does not affect JTAG 

operations. When designing a board for JTAG configuration, the regular configuration pins 

should be considered. 

 

 
2.4 Configuration Pins 

 

The configuration of FPGAs/CPLDs is performed through certain pins. During the 

configuration specific pins on the FPGA are used and these pins may act differently depending 

on the chosen mode (i.e. CCLK is an input in some modes and an output in some others). 

Finally one important note is that some pins are used in specific modes only (i.e. TDI, TMS, 

TCK are only used in JTAG). Also, most of the configuration pins, are not dedicated and 

reserved for configuration, so after the configuration process is complete, these pins can be 

used as user I/O. Each manufacturing company uses different names for the configuration pins, 

but although the names are different, there is a functional analogy among them.  

This section gives a detailed description of the configuration pins and defines a universal pin 

naming, where this is feasible. 
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The Mode Select (MS) are the input pins and as denoted by their name they are used to select 

the configuration mode. The number of these pins varies, depending on the target device, from 

one up to three. It must also be mentioned that the encoding of a specific value in the MS pins 

is device dependent. If for example the value “010” implies Passive Serial configuration mode 

in one device, it does not necessarily mean that this applies to the rest. They are sampled before 

the start of the configuration and after the configuration process these pins can be used as user 

I/O.  

The Program is an active-low configuration control input pin. A low transition forces the 

FPGA to reset. It is used to initiate the configuration process. When it goes high the FPGA 

begins configuration. All device I/Os go to tristate when the Program is de-asserted. 

The Configuration Clock (CCLK) is either an input (i.e. Slave Modes) or an output (i.e. 

Master Modes). In Xilinx devices after configuration the Configuration Clock can be selected 

as a Readback Clock. In Altera, if selected from the software, this pin can be used as a user 

I/O. 

The DataIn pin is the serial configuration data input receiving data on the rising edge of 

Configuration Clock (CCLK), during the Serial Modes. During Parallel Modes, DataIn is the 

DataIn0 input. In certain Peripheral configuration schemes, the DataIn pin represents the 

Ready/nBusy signal after the RS pin has been strobed. This is more convenient, for 

microprocessors, than using the Ready/nBusy pin. After configuration it is a user 

programmable I/O pin. 

The DataIn[7..0] pins are the parallel configuration data input bus receiving data on the rising 

edge of Configuration Clock (CCLK), during Parallel Modes. Each configuration data byte is 

serialized according to the specifications of the device. In some cases DataIn0 is the MSB 

while in other cases it is LSB. 

The DataOut pin during configuration is the serial output that can drive the DataIn of daisy-

chained slave devices. Configuration Data appears on the DataOut pin after a specific number 

CCLK cycles. After configuration it is a user programmable I/O pin. 

P_Done is an I/O signal. When used as an output the device drives this pin low before and 

during configuration. Once all data is loaded without error and the initialization cycle starts, 

the target device releases it. In other words, P_Done indicates the completion of the 

configuration process. When used as an input, a Low level on P_Done can be configured to 

delay the global logic initialization and the enabling of outputs. 

nCS, CS, nWS, nRS are four inputs used in most Peripheral Modes. The chip is selected when 

nCS is Low and CS is High. After configuration these are user programmable I/O pins. If only 
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one chip select input is used the other must be tied to the active value (e.g., nCS can be tied to 

ground if CS is used). These two pins must be active during configuration and initialization. 

The nWS and nRS pins should be mutually exclusive, but if both are Low simultaneously the 

Write Strobe overrides 

The signal nWS is an active low Write Strobe input. A low-to-high transition causes the device 

to latch a bit or byte of data on the DataIn or DataIn[7..0] pins, respectively. 

The signal nRS is an active low Read Strobe input. A low input on this pin directs the device 

to drive the Ready/nBusy (High if Ready, Low if Busy) signal on the DataIn7 or DataIn pin 

and drives DataIn[6..0] High. If the nRS pin is not used, it should be tied high. 

FPGA/CPLD vendors provide certain status pins that can be monitored in order to detect errors 

in the configuration process and observe the configuration progress. 

For example the Altera nSTATUS pin is pulled low if an error occurs. If this is done by an 

external source, during configuration or initialization, the target device enters an error state. 

Driving this pin low after configuration does not affect the device. The nSTATUS pin can be 

used to indicate an error during configuration. 

A similar pin is the bidirectional INIT pin in Xilinx devices. During configuration a Low on 

this output indicates that a configuration data error has occurred. This pin acts as an active Low 

open-drain output and is held low during the power stabilization and internal clearing of the 

configuration memory. As an active Low input it can be used to hold the FPGA in the internal 

WAIT state before the start of the configuration. 

Similarities can also be observed between the INIT (Xilinx) and INIT_DONE (Altera). This is 

a status pin that indicates when the device has finished start-up and is in user mode. It drives 

low during configuration. Before and after configuration it is released and pulled to VCC by an 

external pull-up resistor. Because INIT_DONE is tri-stated before configuration it is pulled 

high by the external pull-up resistor. Thus the monitoring circuit must be able to detect a low-

to-high transition. 

Finally there are the TDI, TMS, TCK and TDO for the JTAG. The TDO is the Test Data Out 

if Boundary Scan is used, if not it is a 3-state output after configuration is completed. 

The TDI, TCK and TMS pins are the Test Data In, Test Clock and Test Mode Select 

respectively. They come directly from the pads, bypassing the IOBs. In some devices, once 

configuration is completed these pins become user programmable I/O. In some others, they can 

be used as user I/O but they must be kept stable before and during configuration, so as to 

prevent accidental loading of JTAG instructions. 
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Figure 2.5 - Start-Up Timing for Xilinx XC4000/XC5200 devices [12] 

 

 

2.5 Configuration Bitstream and Files 

 
The Bitstream is a stream of bits that contains location information for logic on a device, that 

is, the placement of Configurable Logic Blocks (CLBs), Input/Output Blocks (IOBs), TBUFs, 

pins, and routing elements. Xilinx, unlike Altera, provides a substantial amount of information 

concerning the structure of its devices bitstream, therefore the main part of this section refers to 

Xilinx.  
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The bitstream includes empty placeholders that are filled with the logical states sent by the 

device during a readback. Only the memory elements, such as flip-flops, RAMs, and CLB 

outputs, are mapped to these placeholders, because their contents are likely to change from one 

state to another. When downloaded to a device, a bitstream configures the logic of a device and 

programs the device so that the states of that device can be read back. An example bitstream, 

for XC3000[14], and the switching characteristics are shown in Fig. 2.6 below. 

 

 
 

Figure 2.6 - Configuration and Start-up for XC3000 [9] 

 

The bitstream format is very similar in Xilinx Families XC3000, XC4000[15], XC5200[16] 

and SPARTAN/XL. It starts with 8 Dummy or Fill bits and is followed by the preamble code 

which is 4 (0010 in XC3000, XC4000 and Spartan) or 8 bits (11110010 for XC5200 and 

Spartan XL Express Mode). The next part is the 24-bit length count. When configuration is 

initiated a counter in the FPGA is set to zero and begins to count the total number of 

configuration clock cycles applied to the device. The Configuration Loading process is 

completed when the current length count equals the loaded length count and when the required  

configuration program data frames have been written. The last part of the header is 4 fill or 

dummy bits or 8 in the XC5200 Family and none in the Spartan XL Express Mode. For 
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Spartan XL Express Mode the Length Count is not used by configuration logic and is 

considered fill bits. The next part of the bitstream is Data Frame which is divided in frames. 

The number and length of frames depends on the device. Each frame begins with a start field 

ranging from 1 bit for XC3000 to 8 bits in XC5200 and Spartan XL Express Mode. Its next 

field is the configuration data which varies in size from one device to another. And the frame 

ends with a Cyclic Redundancy Check (CRC) or a Constant Field Check which is 4 bits 

(XC3000 and Spartan XL in Express Mode do not support CRC). The Constant Field Check is 

used if the CRC error check is disabled. Detection of an error, as mentioned before, results in 

the suspension of data loading and the pulling down of the INIT pin. 

Altera does not provide any information regarding the structure of its configuration files, so we 

are limited to a brief reference to the programming files. The following sections contain a 

description of the files used to program Altera and Xilinx FPGAs.  

 

2.5.1 Bit File (.bit) - Xilinx 

 

A Bit file is used to program a single FPGA. It is a binary file, which contains all the 

configuration information, as well as device specific information from other files. The Bit 

file is the standard bitstream file created.  

 

2.5.2 Raw Bit File (.rbt) - Xilinx 

 

A Raw Bit file is also used to program a single device, but it is an optional file. It is an ASCII 

version of the Bit file, containing ASCII ones and zeros. Another difference from the Bit file 

is that the header information is removed from the Raw Bit File.  

 

2.5.3 Raw Binary File (.rbf) - Altera 

 

The Raw Binary File is a binary file, containing configuration data. Data must be stored so 

that the least significant bit (LSB) of each data byte is loaded first. The converted image can 

be stored on a mass storage device. The microprocessor can read data from the binary file 

and load it into the device. A microprocessor can be used to perform real time conversion 

during configuration. In PPS and PPA configuration schemes, the target device receives its 
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information in parallel from the data bus, a data port on the microprocessor or some byte-

wide channel. In PS and PSA the data is shifted in serially, LSB first. 

 

2.5.4 Hexadecimal (Intel Format) File (.hex) - Altera 

 

A Hex file is an ASCII file in the Intel Hex format. The file is used by third-party 

programmers to program Altera’s serial configuration devices. Hex files are also used to 

program parallel configuration devices with third-party programming hardware. You can use 

parallel configuration devices in PPS, PPA or PSA configuration schemes, in which a 

microprocessor uses the parallel configuration device as the data configuration source. 

 

2.5.5 Tabular Text File (.ttf) - Altera 

 

The Tabular Text file is a tabular ASCII text file that provides a comma-separated version of 

the configuration data for the PPA, PPS, PSA and bit-wide PS configuration schemes. In 

some applications, the storage device containing the configuration data is neither dedicated to 

nor connected directly to the target device. For example, a configuration device can also 

contain executable code for a system and other data. The TTF allows you to include the 

configuration data as a part of the microprocessor’s source code using the include or the 

source command. The microprocessor can still access this data from a configuration or mass 

storage device and load it into the target device. The TTF can be imported into nearly any 

assembly language or high level language compiler. 

 

 

 
 

2.6 Spartan II and Virtex Configuration - Xilinx 

 
2.6.1 Configuration Modes and Daisy-Chains 

 
Spartan II and Virtex FPGAs can be configured in 8 different modes. There are four primary 

modes (Master Serial, Slave Serial, Slave Parallel (Spartan II) or SelectMAP (Virtex) and 

Boundary Scan), each with the option to have the user I/Os pulled up or floating during 
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configuration. If pull-ups are selected, they are only active during configuration. After 

configuration unused I/Os are de-asserted. 

The Serial Modes perform essentially the same as those of previous FPGAs families.  

In Parallel Modes, the Slave Parallel/SelectMAP are the 8-bit parallel mode for these 

devices that are similar to the Express Mode in XC4000XLA and Spartan/XL. As with these 

other device families, the D0 is considered the MSB. Spartan II and Virtex FPGAs do not 

have a Master Parallel mode, but can be configured using a parallel EPROM. 

Spartan II and Virtex devices can be serially Daisy-Chained for configuration as all previous 

FPGA families. All devices must be in one of the serial modes. The Slave Parallel and 

SelectMAP modes do not support any serial daisy-chaining. Multiple devices can still be 

programmed using these modes in a parallel fashion. 

Boundary Scan is always active from the moment of power-up, before, during and after 

configuration. Boundary Scan modes select the optional pull-ups and prevent configuration 

in any other modes. 

 

2.6.2 Initialization and Timing 
 

The initialization sequence is somewhat simpler in Spartan II and Virtex devices. Upon 

power-up the INIT signal is held low while the FPGA initializes the internal circuitry and 

clears the internal configuration memory. Configuration may not commence until this cycle 

is complete, indicated by the positive transition of INIT. Previous FPGAs families required 

an additional waiting period after INIT transitioning high before configuration could begin. 

Spartan II and Virtex devices do not require an additional waiting period after INIT 

transitioning high. As soon as this occurs, configuration may commence. The Spartan II and 

Virtex configuration logic does however require several CCLK transitions to initialize 

themselves. For this reason the configuration bitstream is padded with several dummy data 

words at the beginning of the stream. 

 

2.6.3 Mixed Voltage Environments 

 

Spartan II and Virtex FPGAs have separate voltage sources for the internal core circuitry 

(VCC = 2.5V) and the I/O circuitry (SelectI/O). SelectI/O is separated into eight banks of I/O 

groups. Each bank may be configured with one of several I/O standards. Before and during 
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configuration all I/O banks are set for the LVTTL which requires an output voltage of 3.3V 

for normal operation. 

 

2.6.4 BitGen Switches and Options  

 

This section describes the new optional settings for bitstream generation that pertain only to 

Spartan II and Virtex devices. The new BitGen options found in the configuration options 

template of the Xilinx development software are listed in table 2.1 and described below. 
 

Switch Default Setting Optional Setting 

Readback N/A N/A 

Config Rate (MHz) 

(nominal) 

4 4, 5, 7, 8, 9, 10, 13, 15, 20, 26, 30, 

34, 41, 45, 51, 55, 60 

StartupClk CCLK UserClk, JtagClk 

DONE_cycle 4 1, 2, 3, 5, 6 

GTS_cycle 5 1, 2, 3, 4, 6, DONE 

GSR_cycle 6 1, 2, 3, 4, 5, DONE 

GWE_cycle 6 1, 2, 3, 4, 5, DONE 

LCK_cycle NoWait 0, 1, 2, 3, 4, 5, 6 

Persist No Yes, No 

DriveDONE No Yes 

Donepipe No Yes 

Security None Level1, Level2 

UserID FFFF FFFF <hex string>(32-bit) 

Gclkdel0 11111 <binary string>11111 

Gclkdel1 11111 <binary string> 

Gclkdel2 11111 <binary string> 

Gclkdel3 11111 <binary string> 

 

Table 2.1 Spartan II and Virtex BitGen Options 

   Note: Spartan II has the extra option KEEP for GTS, GSR and GWE cycles. 
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2.6.5 CCLK and LengthCount 
 

Spartan II and Virtex FPGAs do not use any LengthCount number in the configuration 

bitstreams. The Start-Up sequence for these devices is controlled by a set of configuration 

commands that are embedded near the end of the configuration bitstream. Thus a free 

running oscillator can be used to drive the CCLK pin. Figure 2.7 below displays the default 

Start-up sequence timings for Virtex FPGAs, with the bold lines. This figure also applies to 

Spartan II FPGAs if we invert the GWE signal. 

 

 
 

 
      

            

Figure 2.7 - Default Start-Up Sequence [17] 
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2.6.6 Configuration Pins 

 

The configuration pins for Spartan II and Virtex are listed in Table 2.2 below. 

 

 

Name Direction Driver Type Description 

Dedicated Pins 

CCLK Input/Output Active Configuration clock. Output in 

Master mode. 

 

PROGRAM 

Input Active/ Open-Drain Asynchronous reset to configuration 

logic. 

DONE Input/Output  Configuration status and start-up 

control. 

M2, M1, M0 Input  Configuration mode selection. 

TMS Input  Boundary-scan tap controller. 

TCK Input  Boundary-scan clock. 

TDI Input  Boundary-scan data input 

TDO Output Active Boundary-scan data output. 

Dual Function 

DIN (D0) Input/Output Active Bidirectional Serial configuration data input. 

D[0:7] Input/Output Active Bidirectional Slave Parallel configuration data 

input, readback data output. 

 

CS 

Input  Chip Select (Slave Parallel only). 

 

WRITE 

Input  Active Low write select, read select 

(Slave Parallel only). 

BUSY/ DOUT Output Open-Drain/Active Busy/Ready status for Slave 

Parallel (open drain). 

 

INIT 

Input/Output Open-Drain Serial configuration data output for 

serial 

 

Table 2.2 Configuration Pins for Spartan II and Virtex 
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2.7 PCI Pamette v1 
 

The PCI Pamette is manufactured by Compaq and is a generic PCI card based on 

reconfigurable logic. 
 

2.7.1 The Hardware Architecture 
 

The PCI Pamette has footprints for 5 Xilinx 4000 series FPGAs in PQ208 packages. One 

FPGA serves as the PCI interface (a 4010-E), while the other four (4044-XL) are organized 

in a simple two by two matrix. The FPGA implementing the PCI interface has a relatively 

 

Figure 2.8 – PCI Pammete v1 Architecture [18] 
 

 

fixed configuration, while the remaining four can be programmed with application specific 

configurations. As depicted in Fig.1, the front two user FPGAs connect to private scratchpad 

SRAMs and funnel data from the rear two user FPGAs to the interface FPGA. The rear two 

user FPGAs connect to the daughter board connectors and the DRAM SIMM sockets. The 

SRAM is divided in two banks of 16-bit wide 64k, and through the supplied connectors, 

industry standard 72-pin SIMM DRAM modules which permit from 4MB to 256MB of  

DRAM can be attached. The board has also a clock generation scheme. 
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The interface FPGA controls download and readback of the user area and generation of 

clocks. User FPGAs can be individually reconfigured without affecting other FPGAs, 

however when multiple FPGAs are reconfigured or their configurations are read, this is done 

in parallel. 

 

 

2.7.2 Programming Tools 
 

The PCI Pamette can be programmed using one of the following programming tools:  

 

o Code-based module libraries from Compaq (PamDC[19]) 

o Tools from Xilinx, Inc.  

o Any logic synthesis tools which generate the Xilinx .rbt raw bitstream format  

 

Provided with the Pamette is a set of CAD tools called PamDC for implementing designs. 

PamDC is derived from Perle1DC, the CAD system of DECPeRLe-1. PamDC is a C++ class 

library which allows netlist descriptions to be embedded in user-written C++ code. The 

Pamette CAD provides support for attaching placement directives to nets at the C++ level. 

C++ classes are used to represent the hierarchy of a design, equivalent to blocks and sub-

blocks in a schematic. 

The Pamette design flow consists of writing a C++ program which, when compiled and run, 

produces a netlist. This netlist is then passed to the Xilinx backend tools to produce a Xilinx 

bitstream. Use of the CAD tools is not mandatory; any technique which generates a Xilinx 

bitstream can be used to configure the Pamette FPGAs. 

 
 

2.7.3 Interface Modes 
 

In firmware v2.0 four distinct interface modes are supported. These are selected through the 

<PamRT.h> function PamSetMode or PamSetModeAndDelay which set the appropriate 

value(s) in the decode register at address 0x30 in PCI Pamette memory space. The modes are 

Static mode a simple low-performance interface that provides statically configured 

16 bit paths to and from the user-area. The static mode is displayed in Fig.2. 
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Promiscuous mode transmits a selection of data and control values present on the PCI 

bus to the user-area. The flow of data is one-way. The name promiscuous is chosen by 

analogy with modes on some ethernet adapters which allow them to accept and observe 

all packets on the network. 

Transaction mode is a high performance transaction oriented mode that supports both 

target and master operation. This is the preferred mode for all but the simplest designs. 

Promiscuous Transaction mode combines the protocol state machine of Transaction 

mode with the trace collection capabilities of Promiscuous mode. It can aid in the debug 

of Transaction mode applications.  
 

 

Figure 2.9 – Static Mode [18] 
 

 

2.8 The JBits API - Xilinx 

The JBits SDK contains a set of software tools and API's which let you create Xilinx XC4000 

and Virtex bitstreams from Java code. All configurable resources of the device can be 

programmed individually through the software. Included is a graphical debugger called 

BoardScope, which allows you to view chip internals at runtime. BoardScope can also be used 

in simulator mode if hardware is unavailable.  
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2.8.1 The JBits Design Flow  

The JBits API is based on the Java Environment for Reconfigurable Computing for the 

XC6200 family of devices (JERC6K). JERC6K was also implemented completely in Java 

and provided fast compile times and supported dynamic reconfiguration. 

JBits is a library which gives complete access to all of the configurable architectural features 

of the device. This library is pre-compiled Java classes, so the result is not a static 

configuration bitstream, but rather executable code. This code executes and supplies 

configuration control and data to the reconfigurable logic. The Design Flow for JBits is 

depicted in Fig. 2.10. 
 

 
Figure 2.10 JBits Design Flow 

 

2.8.2 The JBits System Design and BoardScope 

The JBits System Design is illustrated in Figure 2.11. The User Java Code utilizes the JBits 

Interface to manipulate the configurable resources of the FPGA. The Bit Interface Level is 

called by function calls at the JBits Interface Level. At this point a single bit can be 

configured or cleared. The Bit Level Interface also interacts with the Bitstream class, which 

manages the device bitstream and provides support for reading and writing bitstreams to and 

from files. The Bitstream class can also take data read back from the device and map it the 
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underlying bitstream data format. Finally, the Core Library is a collection of Java classes 

which define macrocells or cores.  
 

 
Figure 2.11 - The JBits System Design 

 

BoardScope is a tool that enables the user to examine graphically the operation of FPGA 

circuits on any reconfigurable computing board. It can be used to verify the design’s 

operation.  

The JBits interface is used to access resources in the FPGA’s bitstream. Then using XHWIF 

[20] the bitstreams are downloaded to configure the FPGAs, or readback to analyze them. 

BoardScope graphically displays the states of all CLB flip-flops for all computational FPGAs 

on the board. All the CLB flip flops can be examined in one view and flips flops changes 

from one state to the next can be observed. BoardScope also provides a more detailed view 

of the state of a Configurable Logic Block showing the look up table states, the X and Y flip-

flop configuration and states, and the CLB’s internal interconnect.  

 
2.8.3 Limitations of JBits 

 
The most important limitation of JBits is its manual nature that requires that everything is 

explicitly stated in the source code, including the routing. This need for explicit specification 
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of all resources makes the JBits interface more appropriate for structured circuits. Unstructured circuits 

such as random logic are not well suited for direct implementation in JBits applications.  

JBits also requires that the user is familiar with the architecture. This makes it hard to use, 

because most users have never had the need of such details. It is also the greatest barrier to 

the widespread acceptance of JBits interface. 

In addition, the JBits interface is at the most downstream end of the tool chain. While JBits 

API may make use of circuits produced by standard development tools, modification or 

reconfiguration of the circuit at the JBits level eliminates any possibility of using any 

analysis tools available to circuit designers further up the tool chain. One tool which appears 

to have at least partially offset the lack of analysis tools is the recent development of 

BoardScope. 

 

2.9 MasterBlaster Serial/USB Communications Cable - Altera 

The MasterBlaster Serial/USB Communications Cable is a typical Altera programmer that 

interfaces with an RS-232 serial or Universal Serial Bus (USB) port. It supports the SignalTap 

[21] embedded logic analyzer in the Quartus II software [22]. PC and UNIX users can 

configure every Altera FPGA/CPLD with the MasterBlaster. The power is received from 5.0-V 

or 3.3-V circuit boards, a DC power supply or 5.0-V from the USB cable.  

The data is downloaded from the Quartus II development software or the MAX+PLUS II 

software [23] versions 9.3 and higher. The modes supported are Passive Serial and JTAG. 

Finally, a 10-pin circuit board connector is used. 

 

2.10 MultiLinx Download Cable - Xilinx 

The MultiLINX Cable is a peripheral hardware product released by Xilinx in 1999. This cable 

is primarily used for the purpose of downloading configuration and programming data to 

Xilinx FPGAs and CPLDs from a host computer to a users’ target system. 

The MultiLINX cable supports a USB interface. The MultiLINX Cable is also outfitted with all 

the appropriate flying leads for multiple configuration mode support, as well as supporting 

multiple readback modes such as verification, Capture, and the Virtex SelectMAP interface. 
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Finally, a noted feature of MultiLINX is that its internal hardware is upgraded via software, 

something that allows future expansion of cable features 

 

2.11 Summary 

In this chapter we discussed matters concerning the configuration of FPGAs and related work. 

The PCI Pammete v1 development board was presented. The Pamette design flow consists of 

writing a C++ program which, when compiled and run, produces a netlist. This netlist is then 

passed to the Xilinx backend tools to produce a Xilinx bitstream. This bitstream can then be 

downloaded to the FPGAs either by writing C++ code and including the libraries or by using a 

command prompt utiliy that requires writing the same program without including the libraries. 

The JBits API, is a powerful tool, but requires that the user is familiar with the FPGA 

architecture. This makes it hard to use and is probably the reason for not being widespread. 

MultiLinx and MasterBlaster are reliable solutions but they are vendor specific and as we will 

see in the next chapter, their prices are inhibiting. 
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Chapter 3 

  Architecture of ReRun 
 

 

This chapter describes the architecture of ReRun and its purpose, the development of a 

language and a universal run-time environment for FPGA programming. The language is 

named PTL and it is supplemented by a Graphical User Interface (GUI).  

 

The first section contains a brief description of ReRun (Reconfigurable Run-Time 

Environment). The second section moves on to describing its features and attributes. The third 

analyzes its structure and gives an insight of the language and the GUI. In the fourth section 

the commands of the PTL are described. The fifth section makes a functional description of the 

back-end. Finally, the sixth section contains a summary of this chapter. 

 

 

3.1 Brief Description 

 

ReRun (Reconfigurable Run-Time Environment) is a system developed at the Microprocessor 

and Hardware Laboratory (MHL) [24] of the Technical University of Crete [25]. It is the 

software part of a Universal Run-Time Environment for FPGA programming. As the title 

denotes during the implementation of ReRun a language was developed along with a Graphical 

User Interface. The language can be used to write scripts describing the configuration or testing 

process. The scripts are then passed through the compiler using the GUI. The compiler 

produces two files, one to be downloaded to the FPGA, the avr.dl and one to be used by the 

GUI, the props.gui. In case the script is intended for configuring an FPGA, the bitstream file 

produced by the Development Tools of the FPGA vendor, has to be provided by the user. Then 

through the GUI, the user can program and test any FPGA. The hardware platform of the Run-

Time Environment is named Hardware Programmer and Tester (HPT) and was implemented 

by Dionissis Efstathiou. The software-hardware interface is established using the RS-232 serial 

port protocol. 
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3.2 Features and attributes 
 

ReRun has a number of features that make it unique. First of all, it is versatile as it is a 

programmer and tester of FPGAs. It is also vendor-independent for it can be used for FPGAs 

of any vendor. Looking at Table 3.1, that lists FPGA programmers along with their prices, it is 

obvious that the cost of buying one is quite considerable, even more so if you require one 

programmer from each vendor. Besides being a many-in-one tool, ReRun is an open system 

with a cost which can be as little as $25. 

 

Xilinx Cable Price 
MultiLinx Cable $495 
Parallel Cable III [26] $95 
Altera Cable Price 
MasterBlaster $576 
ByteBlaster [27] $576 

 

Table 3.1 FPGA Programmers Cost 
 

Another notable feature is the Graphical User Interface (GUI). A GUI is a fundamental aspect 

of the design of this system. It presents tasks visually, so that the tasks are easy to learn and 

prevent errors. It also combines functionally and usability. ReRun has a user-friendly GUI that 

allows the user to open, edit, compile and execute a script file, change the port settings, etc. A 

more thorough description of its features is made in Section 3.3.2. 

The language has been developed using Flex [28] and Bison [29], while the GUI was 

implemented with Java. This has made ReRun portable and platform-independent. Java 

compilers do not produce native object code for a particular platform but rather ‘byte code’ 

instructions for the Java Virtual Machine (JVM) [30]. Making Java code work on a particular 

platform is then simply a matter of writing a byte code interpreter to simulate a JVM. What this 

means is that the same compiled byte code will run unmodified on any platform that supports 

Java. Flex and Bison on the other hand produce a C program, which with few modifications 

can become cross-platform. 

The communication between hardware and software is achieved using the serial port of a 

computer. Thus it does not consume a lot of system resources, like for example a PCI card 

would. Moreover, it does not require the installation of hardware drivers specific to the 
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Operating System. A common problem for cards is that drivers for all operating systems are 

not available. 

 

3.3 Structure 
 

The Language and GUI are the most important parts of ReRun. Fig 3.1 is a graphical 

illustration of the structure. The tools used to implement the language, as well as the files 

produced by the PTL compiler are discussed in Section 4.3.1, while Section 4.3.2 describes the 

GUI in more detail. 
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Interface FPGA
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Figure 3.1 ReRun Structure 

 

 

3.3.1 The Programming and Testing Language (PTL) 
 

The PTL language was developed using GNU’s Flex Lexical Analyzer Generator and Bison 

Syntactical Analyzer Generator. More specifically: 

Flex is a tool for generating scanners: programs which recognized lexical patterns in text. 

Flex reads the given input files, or its standard input if no file names are given, for a 

description of a scanner to generate. The description is in the form of pairs of regular 

expressions and C code, called rules. Flex generates as output a C source file, `lex.yy.c', 

which defines a routine `yylex()'. This file is compiled and linked with the `-lfl' library to 

produce an executable code. When the executable code is run, it analyzes its input for 
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occurrences of the regular expressions. Whenever it finds one, it executes the corresponding 

C code.  

Bison is a general-purpose parser generator that converts a grammar description for an 

LALR context-free grammar into a C program to parse that grammar. 

Figure 3.2 depicts the steps taken to develop the compiler. First the input file containing the 

rules is read from Flex and the lex.yy.c file is generated. On the other hand the file 

expressing the grammar in Bison syntax is read from Bison and a filename.tab.c file is 

produced. Finally, the two files generated by Flex and Bison are compiled by a C/C++ 

compiler and the PTL Compiler is ready.  
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Figure 3.2 Compiler Development 

 

The user can choose to compile a script from the command line or load the script using the 

GUI and compile it by pressing one button. Doing this will produce two files. The first, 

avr.dl, is the one that will be downloaded to and parsed by the HPT. The second file, 

props.gui, contains information that is utilized by the GUI. Specifically this information is 

the Configuration Clock Frequency, the Voltage Source, the Signal and Static Mapping 

and the Number of Signals Used. Section 3.4 provides more information concerning the 

language and presents its commands, while Chapter 4 delves into more technical details. 
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3.3.2 The Graphical User Interface 
 

The GUI was implemented using the Java Programming Language and the Java 

Communications Application Programming Interface (API) [31]. This choice was made, 

taking into consideration two factors, the increasing usage of Java-based tools and 

technology in the Reconfigurable Logic Industry and the cross-platform operability of Java 

Applications. 

Examples, of Java in Reconfigurable Logic are Xilinx’s JBits API and JHDL [32]. JBits is a 

Java API that allows designers to write information directly to a Xilinx FPGA to carry out 

whatever customer logic operations were designed for it. It permits the modification of 

FPGA bitstreams and can be used to partially or fully reconfigure the internal logic of 

Xilinx’s Virtex devices. On the other hand, JHDL is a design tool for Reconfigurable 

Systems, implemented as a set of Java class libraries, that allows the user to design the 

structure and layout of a circuit, debug the circuit in simulation, netlist and interface with 

back-end tools for synthesis, and so forth. 

The Java Programming Language and Communications API can be used to write platform-

independent applications. The Java Comm API used contains support for RS232 serial ports 

and IEEE 1284 parallel ports. More specifically, the user of the API can: 

 

" Enumerate ports available on the system.  

" Open and claim ownership of ports.  

" Resolve port ownership contention between multiple applications.  

" Perform asynchronous and synchronous I/O on ports.  

" Receive Beans-style events describing communication port state 

 changes.  

 

A test was performed to ensure that the Java Comm API can be sent to and received from the 

HPT hex numbers ranging from 0x00 to 0xFF. The test was successful, thus no encoding was 

needed to ensure transmission of special characters through the serial port and this does not 

depend on the serial port driver. 

The GUI was created using Sun’s ForteTM for JavaTM Community Edition Integrated 

Development Environment (IDE) [33]. The GUI is further analyzed in Chapter 5. 
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3.3.3 Operating Instructions 
 

ReRun is not a completely independent Run-Time Environment. It requires that the user 

provides the configuration bitstream file. This file is produced by the development tools of 

the FPGA vendor. For Xilinx, the Bit file (.bit), described in Section 2.5.1 is required, while 

for Altera, the Raw Binary File (.rbf), described in Section 2.5.3 must be provided. This file 

is not produced automatically by the development tools, so the user must convert the 

bitstream produced to .rbf. 

The user must also choose a script or write one in the GUI. The script must be compiled 

before it is downloaded to the HPT. 

For programming scripts, the user must load the configuration bitstream file. When loaded, 

its size is displayed, to help the user calculate the load instruction’s arguments. 

For Xilinx devices, the Bit files contain a header which must be cut from the bitstream. To do 

this, the user must check the Process Bitstream checkbox. This option should be left 

unchecked for Altera devices or the device will not be configured.  

To download a script to the FPGA, the user must connect the serial cable to the HPT. Then 

the appropriate set of cables must be connected to the FPGA and the system must be powered 

up. To connect these cables to the correct FPGA pins, the user must read the data sheet 

provided by the vendor. 

During program scripts, the Clock is generated by the HPT, thus the user does not have to 

take any actions to create and map a signal for it in the script. On the other hand, in a test 

script, it must be implemented by the user, using the set instructions, which are described in 

the following section. 

Finally, the configuration data is loaded to the device from a specific set of flying wires and 

the user only has to use the load instruction for the data to be loaded to the device. This 

means that no signal declaration is required for the data. 

 

3.4 The Script Language 

 
The Programming and Testing Language (PTL) is designed to support the programming and 

testing of FPGAs. It is interpreted to binary code that is sent through a port (the serial port in 

this implementation) to the Hardware Programmer and Tester (HPT). The HPT then executes 

the code and either programs a device or tests it. A PTL script consists of the header and the 
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main part of the script. The header is a series of declarations and the signal mappings. The 

main part is where the user types the code to be executed by the HPT. 

Comments are supported by PTL. Line comments start with a double backslash (//) and stop at 

the end of the line. On the other hand, multi-line comments start with a backslash followed by 

an asterisk (/*) and terminate when an asterisk and a backslash are found (*/). Comments in 

comments are not allowed. 

Finally, the PTL language supports instructions that are not implemented by the HPT. These 

instructions are optional and the user can write and execute scripts for the HPT without any 

problem. 

 

3.4.1 Header 

 
In the beginning of the script the user can write some comments about the FPGA. The next 

step is defining whether it is a program or test script. Then he can define the frequency of the 

configuration clock and the voltage source. These three parts are optional, but if used they 

must be defined in the specific order. Finally the header of the script consists of the 

declaration of integers, signals and statics and the mapping of the last two.  

The commands that can be used in the header of the script are listed below, in the order they 

must be typed. 

 

Comments (Optional) 
 

Comments are used to provide information about the device to be programmed or tested. 

Below is an example of a comment: 
 

manufacturer "Xilinx"; 

family "XC4000"; 

device "XC4044XLHQ208"; 
 

The comment statement, if present, requires all fields (manufacturer, family, device) to be 

specified. This feature is not utilized by the current version of the HPT. 

 

Program or Test Script (Optional) 
 

This part defines the type of the script. In case of a program script the user must type: 
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program “PM” ; 
 

PM is the programming mode. Currently this can be serial or parallel and instructs the HPT 

about how to load the data, serial or parallel. To define that the script is a test script the user 

must type: 
 

test; 
 

This causes the HPT to use the port reserved for loading the configuration data, as inputs for 

testing. 

 

LSB or MSB (Optional) 
 

This part defines how the configuration data is loaded to the FPGA, Least Significant Bit 

(LSB) first or Most Significant Bit (MSB) first. Xilinx for example loads the configuration 

data MSB first, while Altera loads it LSB first. This command can be used only in program 

scripts. The syntax is 
 

lsb; 

or 
msb; 

 

Clock Declaration (Optional) 
 

In this part the user can define the configuration clock rate or the test clock frequency. This 

command has two versions. The first is: 
 

clk value (unit); 
 

The value is an integer and the units are KHz, Khz, khz, MHz, Mhz, mhz. This feature is not 

utilized by the current version of the HPT. 

The second version is: 
 

clk low; 

clk high; 
 

This version tells the HPT that if, for example, clk low is selected, the configuration clock 

has no maximum low time, but there is a limit to the high time.  
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Operating Voltage Declaration (Optional) 
 

It is well known, that FPGAs can operate at various voltage supplies. If the HPT can provide 

more than one voltage supply, the user can use the language to define the preferred value. 

The syntax is: 
vs value (unit); 
 

The value is an integer and the units are V, v, mV, mv. This feature is not utilized by the 

current version of the HPT. 

 

Variable Declarations 
 

The typical variable declarations are: 
 

type id; 

or 

type id1,id2,…,idn; 
 

The type can be int and signal and the name can be anything that is not a reserved word. The 

type int is the same as in C programming language. The signals declared here must be 

mapped in the Signal Mapping part. 

 

Static Variables (Optional) 
 

This feature can be used to hold certain signals at the specified value throughout the whole 

configuration or testing process. Its syntax is: 
 

Static id ‘state’; 
 

The statics declared must be mapped in the Signal and Static Mapping part of the script. 

 

Signal and Static Mappings 
 

 

In the signal mapping part of the script, the user must correspond the declared signals and 

statics to a specific cable of the HPT. To define that the signal or static is an output the user 

must use the symbol => and to define that it is an input the <=. Finally a static can not be 

defined to be an input. For example to correspond the signals mm0, mm1, init and prog to 

cables 0, 1, 2, and 3 as input, output, input and output respectively, the user must write: 
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map{ 

mm0 => 0; 

mm1 <= 1; 

init => 3; 

prog <= 4; 

} 
 

A signal or static can not be mapped to more than one wire and vice versa.  

Warning! The maximum number of signals that can be mapped is 23. The first 16 (0-15) can 

be inputs and outputs, while the last 8 (16-23) can only be inputs, to the HPT, in the case of a 

test script. In programming mode pins 16-23 are used for loading configuration data to the 

FPGA so they can not be used! 

 

3.4.2 Main Program 
 

This is the main part of the script and the code is written between a start – end statement. 

The language supports the following statements: 

o Assignment 

o For Loop 

o Set 

o Load (Byte, Kbyte) 

o Readback (Byte, KByte) 

o Get 

o Nop 

o Wait 

o Compound Statement 
 

Assignment 
 

An integer variable can be assigned to an expression. An expression can be an integer 

variable, a number or a simple arithmetic operation such as addition, subtraction, 

multiplication and division. For example:  
id1 = id1 + id2 + id3; 

id2 =id3 + 15; 
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Compound Statement 
 

Commands within a compound statement are executed simultaneously by the HPT. Only set 

statements are allowed and they must be two or more. For example to set the values of 

signals init, program and confdone to 1, 0, 1 you type: 
 

{ 

set init ‘1’; 

set prog ‘0’; 

set confdone ‘1’; 

} 

 

For Loops 
 

The For Loop can be used to repeat commands for a number of times equal to that specified 

by the user. It starts with the for keyword followed by a number and ends with an endfor: 
 

for expression 

… 

endfor 
 

The expression can be a number or a variable, denoting the number of iterations. The current 

maximum value for the expression is 256. Load and readback instructions can not be inside a 

for loop. 

 

Get 
 

This command returns the values of all the signals and statics declared by the user. The HPT 

checks them and sends their values in the appropriate form. This command consists of a 

single word, the word get followed by a number from 0 to 3 and a semicolon: 
 

get 0; 
 

Depending on the number, the HPT returns the values of all or some signals: 

0 – Get data from all signals (Input and Output) 

1 – Get data from signals mapped to pins 0-7. 

2 – Get data from signals mapped to pins 8-15. 

3 – Get data from signals mapped to pins 16-23. 
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Load 
 

This command notifies the HPT that the next x Bytes or Kbytes of data sent through the 

serial port are from the bitstream file and must be loaded to the FPGA. Depending on the 

programming mode, the HPT loads the data in the device at a rate of 1 bit/clock cycle in 

serial modes or 1 byte/clock cycle in parallel modes. The data loaded by one load instruction 

can be up to 256 bytes or Kbytes. This means that to load a file of size 3,526 bytes, the user 

must type: 
  

loadkb  3; 

loadb 256; 

loadb 198; 
 

As mentioned above, the current limit for this instruction is 256. 

 

Nop 
 

This instruction can be used for adding delays. The argument defines how many nops will be 

sent to the HPT. 
 

nop 5; 

 

Readback 
 

The readback command is similar to load but causes the HPT to send data read back from the 

FPGA, to the GUI. There are two versions of this command. The one specifies number of 

bytes to read and the other number of Kbytes. Its syntax is simple, it is the keyword 

readbackb or readbackkb followed by the number of bytes or Kbytes respectively and a 

semicolon: 
 

readbackb 230; 

readbbackkb 20; 

 

Reverse 
 

The reverse command toggles the state of a signal from input to output or vice versa. This is  

very useful in the case of input/output signals. Its syntax is the keyword reverse followed by 

the name of the signal: 
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reverse init; 
 

This is command is not allowed for signals mapped to pins 16-23 and statics. 

 

Set 
 

This command is used to set the value of a signal to a specific state. Finally a static can not 

be set. For example: 
 

set program ‘1‘ ; 

 

Wait 
 

The wait command causes the HPT to wait until a signal gets a specific value to continue 

normal operation. 
 

wait init ‘1’; 
 

This feature is not utilized by the current version of the HPT. 

 

 

3.4.3 Compiler Output 
 

The compiler produces two output files. The one is the script that will be sent to the HPT and 

the other provides information to the GUI. 

o Script File 
 

The script file produced by the compiler is downloaded to the HPT. The HPT then, parses it 

and executes its commands. 

o Properties File 
 

This file contains information that is utilized by the GUI. Specifically, the Configuration 

Clock, the Voltage Source, the Signals and Statics Mapping, the Number of Signals Used  

as well as information about the ports of the HPT that are used. 
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3.5 Back-End 
 

The Back-End of ReRun is the hardware platform developed by Dionissis Efstathiou. The 

platform is based on an AVR Microcontroller and communicates with the computer and GUI 

through the serial port using the RS-232 protocol. The HPT can be used for programming an 

FPGA device as well as test it.  

To program a device, the user writes the appropriate script, compiles it, chooses the bitstream 

and presses the Start Button in the GUI. Then the compiled script and the bitstream are sent to 

the HPT through the serial port using the protocol developed. In the end the user receives a 

message that confirms the successful or unsuccessful configuration of the device.  

In case of a test script, the user writes a script, compiles it and presses the Start Button. The 

script is then downloaded to the HPT using the same protocol. The HPT returns the values of 

the signals to the GUI, which stores them in a file and displays them in the form of arrays. 

The crystal oscillator used for the AVR Microprocessor is 7.68 MHz. 

The HPT can provide up to 24 signals to the user.  

Caution!! These signals are limited to 16 when in programming mode, because the 8 

signals are used for loading configuration data to the FPGA. In test mode, these 8 signals 

can be used, but only as inputs to HPT. 

The language is not AVR-specific, thus it is possible to develop another platform for 

programming and testing FPGAs, as long as it complies with the specifications set by the 

language. 

 

3.6 Summary 
 

In this chapter we referred to the architecture of ReRun. We saw a brief description of the 

system, as well as its features and attributes. Then we moved on to describing its structure, the 

tools used to create ReRun and some operating instructions. We presented the Programming 

and Testing Language (PTL) and its instructions. And finally we discussed the back-end of 

ReRun, also implemented at the Microprocessor and Hardware Laboratory, by Dionissis 

Efstathiou. 
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Chapter 4 

  Language 
 

 

This chapter analyzes the language that was developed for ReRun in more depth. More 

specifically, the first two sections describe the Lexical and Syntactical Analyzers. The third 

section moves on to the Symbol Table. The fourth contains the type checking and error 

messages. And finally, the sixth section contains a summary of this chapter. 
 

4.1 Lexical Analyzer 
 

A lexical analyzer is an input procedure that reads blocks of input conforming to a specified set 

of patterns (tokens). A lexical analyzer reads from the current input (usually a file). It 

consumes characters until a complete token has been found. It then returns them to the 

Syntactical Analyzer. Usual tokens are keywords, variable identifiers, delimiters and operands. 

The procedure followed to build the lexical analyzer is depicted in Fig. 4.1. 

 

 
Fig 4.1 – The Lexical Analyzer 

 

As mentioned in Chapter 3, the tool used to develop the lexical analyzer is GNU’s Flex. Flex is 

Lexical Analyzer Generator in C/C++. It is based on UNIX’s lex tool. Flex is relatively easy to 

use and is quite flexible. It can also cooperate with syntactical analyzer generators. The code is 

divided in three parts that are separated with the % symbol. 

Flex 
Source 

Program 
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Flex   C 
Compiler A.out 

Input 
Stream 

Stream of 
Tokens 



Microprocessor and Hardware Laboratory  
 

 53

Part A 

% 

Part B 

% 

Part C 

 

The first part contains comments in /* and */ and C/C++ code in %{ and %}, that will be 

embedded as is. For example: 

 

%{ 

 #define TK_EOF 0 

 #define TK_ID  1 

 

 int lineCount = 0; 

%} 

The first part also contains mnemonic name definitions for character families or canonical 

expressions. For example: 

 

NOT_DQUOTE [^"] 

identifier {letter}({letter}|{digit})* 

 

Finally it includes instructions to Flex and initial state definitions. 

 

In the beginning of the second part one can write C/C++ code in %{ and }% to declare 

variables for the lexical analyzer function. The most important part is the rules. Rules are in the 

form of: 
 

Canonical expression Action 
 

For example: 
 

clk {printf("clk");return TK_CLK;} 

 

Comments are not allowed in the second part and the syntax is strict, so trivial mistakes can 

lead to different results. 
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Finally, the third part, as well as the % separator, is optional. It contains C/C++ code that is 

embedded as is and is usually used to define helpful functions that can be called from the 

lexical analyzer in the actions of the second part. 

 

The lexical analyzer of PTL recognizes the following keywords: 

o vs (The voltage source declaration) TK_VS 

o clk (Configuration Clock declaration) TK_CLK 

o manufacturer (The DUT vendor declaration) TK_MANUFACTURER 

o family (The FPGA family) TK_FAMILY 

o device (The device) TK_DEVICE 

o int (Integer variable declaration) TK_INT 

o signal (signal declaration) TK_SIGNAL 

o program (Program Script declaration) TK_PROGRAM 

o static (Static declaration) TK_STATIC 

o test (Test Script declaration) TK_TEST 

o map (Start of Signal and Static Mapping) TK_MAP 

o start (Start of Script) TK_START 

o end (End of Script) TK_END 

o set (Change the value of a signal) TK_SET 

o loadb (Load bytes) TK_LOADB 

o loadkb (Load KBytes) TK_LOADKB 

o get (Get the values of the signals on a port) TK_GET 

o readbackb (Readback KBytes) TK_RDBKKB 

o readbackkb (Readback Bytes) TK_RDBKB 

o wait (Wait for a signal to get the specified value) TK_WAIT 

o reverse (Toggle a signal between input and output) TK_REV 

o for (Start of for loop) TK_FOR 

o endfor (End of for loop) TK_ENDFOR 

o low (Value for the Configuration Clock) TK_LOW 

o high (Value for the Configuration Clock) TK_HIGH 

o lsb (Load least significant bit first) TK_LSB 

o msb (Load most significant bit first) TK_MSB 

o nop (No Operation) TK_NOP 

 



Microprocessor and Hardware Laboratory  
 

 55

The lexical analyzer also recognizes the following symbols: ( TK_LPA, ) TK_RPA, { TK-

LBRA, } TK_RBRA,  , TK_COM, ; TK_TERM, = TK_EQ, <= TK_VASSGN, => 

TK_ASSGN, + TK_PLUS, - TK_MINUS, * TK_MULT, / TK_DIV and comments. There can 

be line comments and multi-line comments. Line comments start with // and multi-line 

comments start with /* and end with */. Finally, the lexical analyzer recognizes numbers and 

identifiers and returns their values to the syntactical analyzer. 

Another function performed is keeping the line number of each token in a variable. This 

variable is later utilized by the syntactical analyzer for error messages. 

 

4.2 Syntactical Analyzer 
 

Syntactical analysis imposes a hierarchical structure on the program. This structure is specified 

by the rules of a context-free grammar. A syntactical phrase is introduced by giving one or more 

alternatives. An alternative specifies how to construct an instance of the phrase. It lists the 

members that build up the phrase, where such a member is either a token or the name of a phrase 

(a non-terminal). 

Consider the rule to define statements:  
 

   statement : id ASSIGN expression 

       | set signal state 

          ; 
 

For example, the first alternative specifies that if D is an id and if E is an expression then D := 

E is a statement.  

The syntactical analyzer generator used to develop the language is GNU’s Bison. In order for 

Bison to parse a language, it must be described by a context-free grammar. The most common 

way to describe rules is the Backus-Normal-Form (BNF). Any language expressed in BNF 

form is context-free. In the formal grammatical rules for a language, each kind of syntactic unit 

or grouping is named by a symbol. Those which are built by grouping smaller constructs 

according to grammatical rules are called non-terminal symbols; those which can't be 

subdivided are called terminal symbols or token types. A piece of input corresponding to a 

single terminal symbol is called a token, and a piece corresponding to a single non-terminal 

symbol is called a grouping.  

The Bison file is in the form: 
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%{ 

C/C++ declarations 

}% 

Bison declarations 

% 

Grammar rules 

% 

Extra C/C++ code 
 

The Bison declarations are terminal and non-terminal symbol declarations. For example: 
 

%token TK_ID 

%type<number> expression 
 

There can also be precedence and associativity declarations: 
 

%left TK_PLUS 

%right TK_EXPON 
 

Symbol type declaration: 
 

%union{ 

 int number; 

 char *string; 

} 
 

The third part, the Grammar Rules has declarations of the general form: 
 

left_part: right_part; 
 

The left part being a non-terminal symbol and the right part, zero or more terminal and non-

terminal symbols. There can be alternative right parts and they can have semantic actions. For 

example: 
 

main : TK_START  { 

  printf(“Start of main program”); 

 } smts TK_END { 
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  printf(“End  of program”); 

 }; 

The last part, as well as the % separator, is optional. It contains C/C++ code that is embedded  

as is. It can be used to define functions that can be called by the semantic actions.  

 

The grammar of the language developed is presented below in BNF form: 

 

<script> ::= <comment> 

   <PT>  

   <loadlm> 

   <CLK>  

   <VS>  

   <declarations> 

   <mapping>  

   <main> 

 

<declarations> ::= 

           | <declarations> <declaration> 

 

<declaration> ::= <var_def> 

          | <static> 

 

<comment> ::=  

         | TK_MANUFACTURER TK_CHARCON TK_TERM TK_FAMILY   

  TK_CHARCON TK_TERM TK_DEVICE TK_CHARCON TK_TERM 

 

<var_def> ::= <type> <def_some> TK_TERM 

 

<type> ::= TK_INT 

      | TK_SIGNAL  

<def_some> ::= <def_one> 

          | <def_some> TK_COM <def_one> 

           

<def_one> ::= TK_ID  



Microprocessor and Hardware Laboratory  
 

 58

<CLK> ::=  

  |TK_CLK TK_NUM TK_LPA TK_FUN TK_RPA TK_TERM  

  |TK_CLK TK_LOW TK_TERM 

  |TK_CLK TK_HIGH TK_TERM 

 

<VS> ::=  

 |TK_VS TK_NUM TK_LPA TK_VUN TK_RPA TK_TERM 

 

<PT> ::= <test> 

    | <program> 

 

<test> ::= TK_TEST TK_TERM 

  

<program> ::= TK_PROGRAM TK_CHARCON TK_TERM 

 

<loadlm> ::= 

      |TK_LSB TK_TERM 

      |TK_MSB TK_TERM 

 

  

<static> ::= TK_STATIC TK_ID TK_STATE TK_TERM 

 

<mapping> ::= TK_MAP TK_LBRA <maps> TK_RBRA 

 

<maps> ::=  

      | <maps> <map> 

 

<map> ::= TK_ID <assgn> TK_NUM TK_TERM 

 

<assgn> ::= TK_ASSGN  

    | TK_VASSGN  

 

<main> ::= TK_START <smts> TK_END 
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<compound> ::= TK_LBRA <cmp_smts> TK_RBRA; 

 

<cmp_smts> ::=  

   | <cmp_smts> <cmp_smt> 

 

<cmp_smt> : <set> 

 

<smts> ::=  

      | <smts> <smt> 

 

<smt> ::= <assignment>  

     | <for_smt> 

     | <set> 

     | <load> 

     | <get> 

     | <compound> 

     | <reverse> 

     | <wait> 

     | <readback> 

  | <nop> 

 

<assignment> ::= TK_ID TK_EQ <expression> TK_TERM 

 

<expression> ::= <expression> TK_PLUS <expression> 

         | <expression> TK_MINUS <expression> 

         | <expression> TK_MULT <expression> 

     | <expression> TK_DIV <expression> 

         | TK_NUM 

         | TK_ID 

 

<for_smt> ::= TK_FOR <expression> <for_smts> TK_ENDFOR 

     

<for_smts> ::=  

   | <for_smts> <f_smt> 
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<f_smt> ::= <assignment> 

      | <set> 

      | <compound> 

      | <reverse> 

      | <wait> 

   | <nop> 

 

<wait> ::= TK_WAIT TK_ID TK_STATE TK_TERM 

 

<set> ::= TK_SET TK_ID TK_STATE TK_TERM 

 

<load> ::= TK_LOADB TK_NUM TK_TERM 

      | TK_LOADKB TK_NUM TK_TERM 

 

<get> ::= TK_GET TK_NUM TK_TERM 

 

<reverse> ::= TK_REV TK_ID TK_TERM 

 

<readback> ::= TK_RDBKB TK_NUM TK_TERM 

       | TK_RDBKKB TK_NUM TK_TERM 

 

<nop> ::= TK_NOP TK_NUM TK_TERM 

 

 

4.3 Symbol Table 
 

The symbol table constructed for the language is dynamically increasing list with pointers to 

the first and last node. Each node has a pointer to the next node and is a struct of type node. 

The symbol table stores the variables, signals and statics declared by the user. The struct has 

the following elements: 

 

o A string containing the name of the variable, signal or static declared. The maximum 

length is currently defined to 20. This number is sufficient for naming variables, signals 

and static that a user may declare. 
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o An integer recording its value. 

o An integer defining its type (1 is integer, 2 is signal and 3 is static). 

o An integer that applies to signals and statics and defines whether the signal has been 

mapped. This field is 0 when this element has not been mapped and 1 if it has. For 

integers it is always 0 and can not be changed. 

o Another integer that also applies to signals and statics, but not integers. This integer 

keeps the value of the pin to which the element has been mapped. The previous field is 

always check first to ensure that this one won’t be read accidentally for an integer. 

o Another, third integer exists in the symbol table and applies to signals and statics only.  

o It defines whether the signal is an input or an output. 

o Finally there is a pointer to the next element of the symbol table. 

 

Besides the essential functions needed to insert, delete and find an element, some additional 

have been implemented.  

One function named error has been created to produce better error messages than the ones 

produced from yyerror. 

Another, vartype, returns the type of the element with the name that is passed as an argument. 

The getsignals returns the current values of signals and statics to two global variables, so that 

they can be processed by set or other command. 

The getios is similar to the getsignals with the difference that it returns whether the signals are 

inputs or outputs. 

The getnames is used to write the variable names along with the pin to which each is mapped 

to a file that is later used by the Graphical User Interface. 

And finally, the ismapped returns whether the signals or static passed as an argument to this 

function has been mapped. 

 

 

4.4 Integrity Checks and Compiler Errors 
 

The compiler performs the following integrity checks: 

 

o Type Checking 

In this case the correctness of operands is checked. For example, the user can not set the  
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value of an integer or a static using the command set, or assign a value to a signal or 

static. 

o Check for unique declaration 

This checks whether the name of a signal, variable or static is being declared more than 

one time. If so an error is produced. 

 

Below the error messages and their explanation is presented: 

 

o Variable x already exists! 

This error is produced when the user tries to declare a variable or signal with the name x  

but there is one with the same name already declared. 

o Unrecognized programming mode! 

This means that a programming mode other than the currently supported serial or 

parallel is declared. 

o Static x, already declared! 

The user has declared a static with the name x but there is one with the same name 

already declared 

o Signal or Static x, not declared! 

The user has tried to map a signal or static with the name x that has not been declared to a 

pin. 

o x, has already been mapped! 

The signal or static x has already been mapped. 

o x, is not a Signal or Static! 

The user tried to map x to a pin, but it is not a signal or static. 

o Cable x, has been mapped to another Signal or Static! 

The user tried to map a signal or static to a cable that is already mapped. 

o Static ,x, can not be an input 

A static can only be mapped as output. 

o A signal cannot be mapped as an output on pins greater than 15, in test mode! 

The reason this error message was produced is that test mode uses pins 16-23 only as 

inputs. 

o No such cable! 

The current HPT supports a maximum of 23 pins and the user tried to map a signal or 

static to a pin greater than 23.  
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o Unable to map beyond the 16th cable in programming mode! 

Programming mode uses pins 16-23 for downloading configuration data to the FPGA, so 

these pins are not accessible. 

o Maximum number of signals reached! 

The user has already mapped 24 signals which is the maximum and tries to map one 

more. 

o Error! Compound statement in compound statement! 

A compound statement can not exist inside another compound statement. 

o Use more than one set command inside a compound statement! 

A compound statement is used to change the values of signals with the set command  

simultaneously. It is meaningless to use only one set command. 

o Variable x, is not declared! 

Trying to assign a value to a variable that has not been declared produces this error. 

o Error assigning, x!Illegal types 

The user tried to assign signals or statics, instead of integers. 

o x, does not exist! 

Expressions with variables that have not been declared, produces this message. 

o Addition between x and y is not defined 

Adding signals and statics with variables or signals and statics is illegal and produces this 

error message. 

o Subtraction between x and y is not defined 

The same as the previous but appears when the user subtracts. 

o Multiplication between x and y is not defined 

The same as the previous but appears when the user multiplies. 

o Division between x and y is not defined 

The same as the previous but appears when the user divides. 

o You can not iterate more than x times! 

The maximum number of iterations is limited due to the HPT. Current x is 256 iterations, 

but can be changed through the macro MAXITER. 

o You can not store more than x bytes! 

The maximum number of instructions in a for loop is limited due to small HPT storage. 

Currently x is 256 bytes. This limit can be changed through the MAXDATA macro. 

Consult the Instruction Opcodes and Sizes for more information. 
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o x is not a signal! 

The set instruction can only be used for signals. Using it on integers or statics produces 

this message. 

o You can not change the value of an input signal! 

Input signals can not be set to a value. This can only be done if the reverse command is 

used first and then the set. 

o Signal x, not declared! 

Signals must be declared to be used with the set instruction. 

o You can not use the loadb command in a Test Script! 

The loadb command can only be used in a program script, this is the error message when 

the user tries to use it in a Test Script. 

o You can not load more than x bytes at a time! 

The maximum value for a loadb is currently 256. To loadb more bytes, type another 

loadb command immediately after this one. 

o You can not use the loadkb command in a Test Script! 

Same as the loadb error, but for Kbytes. 

o You can not load more than ",tmp," KBytes at a time! 

Same as the loadb error, but for Kbytes. 

o The argument for get must be 0, 1, 2 or 3! 

The get command can only take one of four possible arguments. This is the error message 

produced for any other case. 

o You must map signals to all ports to use 'get 0'! 

It is important to have signals mapped to all ports of the HPT to use the get command. 

o You have not mapped any signals beyond 8! 

You can not get the values of pins you have not mapped signals to. 

o You have not mapped any inputs to the Data Port! 

You can not get the values of pins you have not mapped signals to. 

o Can not reverse a signal mapped to the Data Port! 

Trying to reverse a signal mapped to the Data Port is not allowed. 

o Can not reverse a static! 

Statics can only be outputs, so reversing them is not allowed. 

o You can not use the readbackb command in a Program Script! 

Readbackb command can only be used in a test script. 
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o You can not readbackb more than x bytes at a time! 

The same limit with the load command applies to readbackb. 

o You can not use the readbackkb command in a Program Script! 

Readbackkb command can only be used in a test script. 

o You can not readbackkb more than x KBytes at a time! 

The same limit with the load command applies to readbackkb. 

o The msb instruction can not be used in a test script! 

This command has no use in tests scripts, as there is no bitstream to send. 

o The lsb instruction can not be used in a test script! 

The same as the previous error message, for the lsb command. 

o The get instruction can not be used in a for loop! 

A get instruction can not be used inside for loops. 

o Argument for nop must be greater than 0! 

Passing 0 as an argument to the nop instruction is not possible. 

 

 

4.5 Summary 
 

This chapter discussed development issues of the PTL, such as the process of constructing the 

lexical and syntactical analyzers and their structure.  Then we moved on to the contents of the 

Symbol Table. And finally, we described the code integrity checks and the compiler errors.  

 
 
 
 
 
 
 
 
 
 
 
 



Microprocessor and Hardware Laboratory  
 

 66

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 5 

 

Graphical User Interface 
 

 



Microprocessor and Hardware Laboratory  
 

 67

Chapter 5 

  Graphical User Interface 
 

 

This chapter analyzes the Graphical User Interface developed. The first section describes the 

Java classes. The second refers to the communication protocol. The third section contains 

information about its usage. 
 

5.1 Graphical User Interface classes 
 

As mentioned in Chapter 3, the GUI was developed using Sun’s Forte for Java Community 

Edition Integrated Development Environment. As this denotes, the programming language 

used is Java. The JFC Swing classes were used for the graphical components and the Java 

Communications API for implementing the connection to the HPT. 

A total of eight classes were developed. Each one is described in the following sections. 

 

5.1.1 AppFilter Class 
 

This class is a file filter. It is used when a File Chooser Window appears and only allows 

files that pass the filter to appear in the window. This class is used when the user chooses to 

open a script file or load a bitstream. Scripts have an .spt extension, so all other files are not 

shown. The case that the script file has another extension is covered. An option enables the 

File Chooser Window to print all the files. 

 

5.1.2 ConfigurationPanel Class 
 

This class creates a Configuration Panel with the port settings. Currently, the serial port is 

used so the parameters are for a serial port. The following parameters are set by this class: 

 

o Port Name. This list contains the names of the ports and is dynamically created by 

scanning the available serial ports on the system.  
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o Baud Rate. This option refers to the speed at which the serial port can transmit and 

receive data. The Baud Rates selected were those supported by the HPT: 

 

1. 2400 

2. 4800 

3. 9600 

4. 14400 

5. 19200 

6. 28800 

7. 57600 

8. 115200 

 

The default Baud Rate is 9600. 

 

o Flow Control In/Out. Flow control means the ability to slow down the flow of bytes 

in a wire. For serial ports this means the ability to stop and then restart the flow 

without any loss of bytes. The available options listed below apply to both Flow 

Control In and Flow Control Out: 

 

1. None 

2. Xon/Xoff In 

3. RTS/CTS In 

 

The default value is None. 

 

o Data Bits. This is the number of bits used to represent each character. The available 

options are 5, 6, 7, 8. ReRun works with this option set to 8, which is also the default 

value. 

 

o Stop Bits. The stop bits represent how many bits mark the end of a data block when 

using asynchronous data transmission. The available options are 1, 1.5, 2 and the 

default is 1. 
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o Parity. The parity adds an extra bit to each character, which is set or cleared based on 

the type of parity used (odd or even). The default choice is none, but the user can 

select odd or even. 

 

 

5.1.3 Connection Class 
 

The Connection and ReRun classes are the most important for the GUI. The Connection class 

implements the connection to the serial port and all the associated functions. More  

specifically the following methods are implemented: 

 

o openConnection. This method opens the port represented by the CommPortIdentifier 

object. Gives the open call a timeout of 30 seconds to allow a different application to 

give up the port if the user wishes to. Then the parameters for the connection are set. 

If, for any reason they can't be set, the port is closed and an exception is thrown. After 

that the input and output streams for the connection are opened. If they can't be 

opened the port is closed and an exception is thrown. Then the 

notifyOnDataAvailable is set to true, to allow event driven input and break handling 

correspondingly and adds an ownership listener to allow ownership event handling. 

Finally the parameters for the connection are set with a starting Baud Rate of 2400, a 

reset is sent to the HPT and the GUI waits for a response to verify correct operation. 

If it gets one, the Baud Rate instruction is sent to the HPT with the desired Baud Rate 

and the GUI is ready to send the rest of the data. If it gets no response, it retries the 

operation a total of 3 times and if unsuccessful it produces an error message. 

 

o setConnectionParameters. This method is called by the openConnection method to 

set the connection parameters (Baud Rate, Parity, etc). 

 

o closeConnection. Takes the appropriate steps to close the connection. 

 

o isOpen. Returns a Boolean that denotes the state of the connection to the port. 
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o waitData/waitData1. These two methods are invoked when a script requires 

feedback from the HPT. If the appropriate data is received, the script continues. If no 

data is received or is incorrect, the GUI sends a reset instruction to the HPT and waits 

for an acknowledge. If no data is received, the waitData method sends two more 

resets and then produces an error message. The waitData1 produces an error message 

if no data after the first reset. 

o Finally, the SerialEvent Listener is implemented in the Connection class. This 

Listener waits for data from the serial port and depending on what is received, it 

performs specific actions. The FSM that is responsible for sending the script to the 

HPT, raises certain flags when some instructions are sent. For example, a get 

command waits for the values of signals and the GUI must stop sending data until 

they are received. The following instructions must receive feedback before the GUI 

resumes sending the script: 

o Reset 

o All get instructions 

o For loops 

o Readback instructions 

o CRC Checks 

The Reset and for loop instruction await one byte, 0x00 and 0x0C respectively. Get 1, 

get 2, get 3 instructions wait one byte that depends on the values of the signals on the 

HPT. And finally, get 0 waits for 3 bytes. 

 

5.1.4 ConnectionException Class 
 

This is constructs a Connection Exception with a detailed on no message. It is by the 

Connection class to throw exceptions regarding the connection. 

 

5.1.5 Parameters Class 
 

This is a class that stores the serial port parameters. The default constructor sets the 

parameters to no port, 9600 Baud Rate, no flow control, 8 data bits, 1 stop bit and no parity. 

There is also another constructor that sets all the parameters to the desired values. This class 
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also implements the methods for settings the parameters and getting the various parameters 

as strings or integers. 

 

5.1.6 PortRequestedDialog Class 
 

This class notifies the user that another application has requested the port, and then asks if 

they are willing to give it up. If the user answers "Yes" the port is closed and the dialog box 

is closed, if the user answers "No" the dialog box closes and no other action is taken. 

 

5.1.7 ReRun Class 
 

This is the basic class of the GUI. It creates the graphical components and implements their 

Action Listeners. This is where the “main” function is. Running this class first brings up a 

Splash Screen which remains for a few seconds or until the mouse clicks on it. Then the 

interface components are created and shown. This class also implements the Action Listeners 

for the Buttons, Text Areas and Menus. The following menu options are created: 

 

Menus 

 File Menu 
o Open Script. This brings up a File Chooser Window that allows the user to select the 

script file. Only .spt files are displayed .After the file is selected, it is opened in the 

first Text Area where it can be viewed or edited. When a script file is loaded, the 

Save Script menu option and the Compile Script button are enabled. 

o Load Bitstream. This option also brings up a File Chooser Window. This time the 

user can select a bitstream file. The name of this file is displayed along with a 

message on the third Text Area. Selecting a bitstream file is necessary for a program 

script. If the user tries to download a program script without choosing a bitstream, an 

error message is popped up. 

o Save Script. The Save Script menu option saves the script. 

o Save As. The Save As option brings up a File Chooser Window, where the user must 

specify a name and extension with which the file will be saved. This option can be 

used to save a new script or an existing one with a different name. 
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o Exit. This option closes the connection to the serial port if it is open and closes the 

GUI. 

 Port Settings 
o Port Settings. This menu option brings up a window with the Settings for the Serial 

Port. 

 Help 
o Help. This option provides the user links to online help. 
o About. This produces an about box. 

 

Buttons 
o Download Script. This button starts the process of downloading the script to the 

HPT. This part is the heart of the GUI.  

Test scripts require only one file, the script, while program scripts also require the 

bitstream. Each type of script calls a different method. Each method implements a 

different Finite State Machine, due to the fact that certain instructions do not apply to 

both scripts. This method handles the data from get commands. It prints it to the 

screen and saves it to a file (output.txt). In case of scripts meant for readback. The 

data is saved to the readback.bit file. The CRC Check is also performed here every 

about 256 bytes. 

o Compile Script. This button creates a new Thread and compiles the script. The 

compilation results are displayed on the third Text Area. Here the props.gui file 

produced by the compiler is processed. The GUI reads the signals’ and statics’ names 

and mapping, the type of script and prints them to the middle text area and the 

output.txt file. 

o Reset. The Reset Button sends a reset instruction to the HPT and clears variables that 

have been set to specific values. 

 

Check Box 
o Process Bitstream. Xilinx bitstreams contain a header with information about the 

design. This header must be removed before the bitstream is ready to be sent. This 

check box can be used for such purposes.  
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A number of other methods are implemented here, openFile, saveFile, shutdown, restart, etc. 

These methods are used to simplify and modularize the code.  

 

5.1.8 SplashWindow Class 
 

The SplashWindow class pops up a Splash Screen when the GUI is run. This is achieved by 

creating a thread that runs for time equal to that specified when the constructor is called. If a 

mouse click on the Splash Screen is detected, it disappears, but the thread keeps running until 

the specified time has elapsed. This does not affect the performance, as it does nothing. 

 

5.2 Communication protocol 
 

The GUI communicates with the HPT through a protocol. This protocol is substantially a Finite 

State Machine (FSM). This FSM is different in the case of a test script and a program script. 

For example test scripts can not contain the loadb or loadkb instructions. Such instructions 

produce an error and the GUI is reset. In each case a different function is called, the function 

for test scripts needs the path of the script, while the one for program scripts requires both the 

script and bitstream files. 

In both cases the props.gui file is read and depending on the properties the FSM is 

dynamically modified. For example a set instruction has one argument if no signals are mapped 

on pins beyond 8, otherwise it has two arguments. This means that another byte must be read 

from the script and sent to the HPT. 

Most instructions are simply sent to the HPT, but some require feedback or acknowledge. The 

following instructions must wait for data from the serial port: 

 

o Get. All get instructions wait for one byte from the serial port, with the exception of get 

0 (get data from all ports), that waits for 3 bytes. 

o Readback. These instructions receive the bitstream of an FPGA and store it in a file. 

So the GUI waits until all the requested data has been read back to continue. 

Reset.  In case of a reset the HPT must send back one byte (0x00) to acknowledge the 

reset. If this does not happen, the reset is sent a total of 3 times. If nothing happens, the 

user is notified with an error message. 
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In case the GUI does not receive data for a specific amount of time, the programmer is reset, as 

there is probably a synchronization or data transfer error. Currently the time limit is 3 seconds. 

When the GUI receives data from a get instruction, the following actions are performed. First it 

writes the data to a file that has been created. This files is named outputs.txt and the first line 

contains the names of the signals used, separated by |. Each get the user writes creates a new 

line to this file. The values of signals that were not asked for are n/a (not available). This file is 

also printed on the second text area of the GUI.  

 

When the interface starts communicating with the HPT, it starts at a BAUD RATE of 4800. 

Then it sends the new BAUD RATE and resets the HPT. When and if the HPT returns the 

appropriate byte (0x00), the script is downloaded, otherwise an error message notifies the user. 

 

The implementation of a CRC Check was deemed unnecessary. There were two reasons for 

this decision. First, the user can enable CRC from the vendor’s development tools. This CRC is 

embedded in each frame of the configuration bitstream and if the check fails, the configuration 

fails and must restart. The same thing would happen even if we had implemented a CRC, 

because the HPT does not support error recovery. This brings us to the second reason. Taking 

into consideration that wrong data causes the configuration to fail, a CRC would be 

meaningful, if the HPT could store it, perform the CRC and then load it. But this is not possible 

in the current version of the HPT, due to insufficient memory.  

 

5.3 Usage Instructions 

 
The Graphical User Interface developed for ReRun is quite easy to use. Starting, the user has 

the following options: 

o Change the port settings 

o Open a script file. 

o Write a script in the first Text Area and save it. 

o Load the bitstream file. If the script opened is not a program script, this does not affect 

the transmission of data. 

Opening a file enables the Save Script menu option and the Compile Script menu option and 

button. From here the user can compile the script. After doing so, the compiler messages are 
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displayed on the third text area. They can either be errors or the message that the compilation 

was successful.  

Having compiled the script and set the port settings, the user can download the script to the 

HPT. This is done by pressing the Download Script Button.  

In case the user is programming a device, the Process Bitstream button is enabled. If the device 

vendor is Xilinx, this button must be pressed before downloading the script. 

The user can view the results of any get commands in the middle text area or in the output.txt 

file. This file is created in the directory ReRun was installed. If the user is writing a readback 

test script, the data read back is saved in the readback.bit file which is also in the directory 

ReRun is installed. 

Finally, the user can press the Reset button at any time. This is useful, when an unexpected 

error has occurred and the GUI can not communicate with the HPT. Pressing Reset, will reset 

the HPT. 

 

5.4 Summary 
 

This chapter discussed development issues of the Graphical User Interface. We analyzed the 

Java classes created. Then we described the communication protocol between ReRun and the 

Hardware Programmer and Tester. And finally, usage instructions for the GUI were presented. 
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Chapter 6 

  Examples of Usage 
 

 

This chapter contains examples of PTL scripts used to test the system. The tests performed 

were the programming and testing of 3 FPGAs (two Xilinx and one Altera). The successful 

configuration was confirmed by viewing the status of the DONE signal (for the Xilinx FPGAs) 

and CONF_DONE and INIT_DONE signals (for the Altera FPGA). The status of the signals 

was viewed both on a logic analyzer and on the GUI.  

The first section contains the script used to program Xilinx’s XC3042-50PC84. The section 

refers to the programming of Xilinx’s XC4010XLPC84. The third contains the PTL code for 

Altera’s Flex 8000 (EPF8282ALC84-3). Finally the fourth section presents a test script. 
 

6.1 Example 1 – Script for programming a Xilinx XC3042-50PC84 
 

The configuration process for the XC3000 family is described in Chapter two. The following 

script will configure the FPGA using Slave Serial configuration mode. This mode requires 

three control, three configuration mode select and two status signals. The first control signal is 

the configuration clock (CCLK) and is produced by the HPT when there is a load instruction. 

The next is DIN and is used for loading the configuration data. These two signals need not be 

declared in the script as they have a specific purpose and are controlled when a load command 

is issued. The configuration select signals are MM0, MM1 and MM2 and must all be set high 

to select Slave Serial mode.  From the remaining three signals, the RESET controls the 

initialization of the configuration, while the INIT and DONE/PROG are status signals. A high-

low-high transition on the RESET signal initiates configuration. The INIT signal is initially 

high, then low to indicate that the configuration memory is being cleared and then again high. 

If an error occurs, the INIT will go low. The DONE/PROG signal is low during configuration 

and it goes high if the configuration is successful. The following script was used to program 

the XC3000 FPGA. Only three signals were declared, reset (connected to the RESET pin of the 

FPGA), init (connected to the INIT pin of the FPGA) and done (connected to the 

DONE/PROG pin of the FPGA). Init and done were declared as inputs to the HPT and reset as 

an output. After the end of the configuration, the init and done signals were, indicating a 
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successful configuration. The script is written for Xilinx and was thus downloaded with the 

Process Bitstream option in the GUI. 

 

 1 program "serial"; // Set the programming mode to Serial 

 2 

 3 msb;     // The MSB will be loaded first 

 4 

 5 clk high;    // The configuration clock has a  

 6      // minimum low time 

 7 

 8 signal reset,done,init; // Three signals will be used  

 9 static mm0 ‘1’;  // The mode pins should be statics 

10 static mm1 ‘1’;  // For Slave Serial they must be  

11 static mm2 ‘1’;  // set to 111 

12 map     // Signal Mapping 

13 { 

14  prog <= 0; // prog is an input and connected to  

15     // cable 0 of the HPT 

16  reset => 1; // reset is an output and connected to 

17     // cable 1 of the HPT 

18  init <= 2; // init is an input and is connected to 

19     // cable 2 of the HPT 

20  mm0 => 3;  // The mode pins are statics and 

21  mm1 => 4;  // can only be mapped as  

22  mm2 =>5;  // outputs from the HPT 

23 } 

24 

25 start    //Start of script 

26  set reset '1';  // Generate a high-low-high 

27  set reset '0';  // pulse on the reset 

28  set reset '1';  // signal 

29 

30  loadkb 3;   // 

31  loadb 256;  // Load a total of 3,927 bytes 
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32  loadb 256;  // This is the size of the 

33  loadb 256;  // bit file 

34  loadb 87;   // 

35 

36  get 1;   // Get back the values 

37 end 

 

The configuration was successful, as not only did the status signals go both high, but also the 

design downloaded, operated as expected. This was the first FPGA programmed by ReRun. 

The FPGA was on a GERM Board with various designs. The FPGA was programmed with 

Baud Rates up to 115200 which is the maximum. For more information on the VHDL code 

downloaded to the device, refer to the HPT report. 

 

 

6.2 Example 2 - Script for programming a Xilinx XC4010XLPC84 
 

The script described below configures the FPGA using Slave Serial mode. The configuration 

of the XC4000 device required three control, three configuration mode select and two status 

signals as the XC3000. The only difference is that the reset pin is called PROGRAM and the 

DONE/PROG, is called DONE. Consequently, the programming script is very similar to the 

one in the previous section. 

 

 1 program "serial";  // Set Serial Programming Mode 

 2 

 3 msb;     // Load LSB of configuration data   

 4      // first 

 5 

 6 clk high;    // The clock has a maximum low  

 7      // time 

 8 

 9 signal prog,init,done; // Declare the signals that will 

10      // be used 

11 static mm0 ‘1’;  // The mode pins should be statics 

12 static mm1 ‘1’;  // For Slave Serial they must be  
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13 static mm2 ‘1’;  // set to 111 

14 map     // Signal Mapping  

15 { 

16  init <= 0;  // init is an input to the HPT 

17  prog => 1;  // prog is an output from the HPT 

18  done <= 2;  // done is an input to the HPT 

19  mm0 => 3;   // The statics are mapped and  

20  mm1 => 4;   // their values can not change 

21  mm2 => 5;   // while the script is executed 

22 } 

23 

24 start    // Start of Script 

25  set prog '1';  // Produce a high-low-high pulse 

26  set prog '0';  // on the prog signal to initiate 

27  set prog '1';  // configuration 

28 

29  nop 13;   // Wait until the FPGA clears its  

30      // configuration memory 

31  loadkb 34;  // 

32  loadb 256;  // Load the configuration data  

33  loadb 256;  // (Size of bitstream is 

34  loadb 172;  //  35500 bytes) 

35 

36  get 1;   // Get the values of the signals 

37 end 

 

The XC4010XL-PC84 FPGA was configured with Line's Round Movement using Bresenham's 

Line algorithm. The VHDL code for this design was implemented by Giannis Sourdis and the 

FPGA configured was on an XS-40 Board with a VGA output. The result was visible on a PC 

Monitor. This FPGA was programmed with Baud Rates up to 115200 which is the maximum. 

The MultiLinx Download cable, has a maximum Baud Rate setting of 57600. 
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6.3 Example 3 – Script for programming an Altera Flex 8000 
 

The following script is used to program an Altera Flex 8000, specifically, the EPF8282ALC84-

3. The configuration mode that will be used is Passive Serial. The signals used as outputs is are 

nConfig and the three configuration mode select signals. The ConfDone and nStatus are 

indicative signals. The nS/P signal must be set low, MSEL0 high and MSEL1 low to enable 

Passive Serial configuration mode. The Altera devices receive configuration data LSB first, 

this is declared in line 4 of the script. The clk instruction takes the argument high, which is the 

default value, if this instruction is omitted. Then we declare the signals. The only output is 

nConfig, as the mapping defines. The other two, are used for monitoring the configuration 

process. To initiate configuration the nConfig signal is given a high-low-high pulse, this is 

done in lines 12-14. Then we use the nop instruction to give the nStatus enough time to be 

high. Then we load the configuration data to the device. The size of the raw binary file is 5kb. 

The serial data loading continues until ConfDone goes high, indicating that the device is 

configured. After the last byte of data is loaded, the DCLK pin is clocked another 10 times 

until the Flex 8000 releases the ConfDone and initializes the device. Finally, we use the get 

instruction, to view the state of the signals and confirm the success or failure of the 

configuration. 

 

 1 program "serial";  // Set Serial Programming 

 2      // Mode 

 3 clk high;    // The clock has a maximum  

 4      // low time 

 5 lsb;     // Load LSB of configuration 

 6      // data first 

 7 signal nConfig,nStatus,ConfDone; // Declare the signals 

 8       // that will be used 

 9 static nSP ‘0’;   // Set the mode pins to  

10 static MSEL0 ‘1’;  // 010 to enable Passive 

11 static MSEL1 ‘0’;  // Serial configuration mode 

12 

13 map   // Signal Mapping 

14 { 

15 ConfDone <= 0; // ConfDone is an input to the HPT 
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16 nStatus <= 1; // nStatus is an input to the HPT 

17 nConfig => 2; // nConfig is an output from the HPT 

18 nSP => 3;  // The mode pins are statics and 

19 MSEL0 => 4;  // can only be mapped as 

20 MSEL1 => 5;  // outputs 

21 } 

22 

23 start    // Start of script 

24 

25 set nConfig '1'; // Produce a high-low-high  

26 set nConfig '0'; // on the nConfig to 

27 set nConfig '1'; // initiate configuration 

28 

29 nop 13;   // Sent 13 useless bytes 

30 loadkb 5;   // Load 5 Kb of configuration data 

31 loadb 5;   // Load 5 more bytes to initialize 

32     // the FPGA.  

33 

34 get 1;   // Get the values of the signals 

35 

36 end    // End of Script 

 

This script has been executed at Baud Rates up to 115200 and the configuration was 

successful. This was confirmed from both the GUI and a logic analyzer. A custom board was 

created for testing the design. The board had a seven segment display, driven by the FPGA. For 

more information regarding the VHDL code loaded and extra tests to ensure correct 

configuration, refer to the HPT report. 

 

6.4 Example 4 – Test Script 
 

In this section we present a test script written to verify the correct configuration of a device 

with a 4-bit counter. This script presumes that the FPGA has already been configured. First the 

user must connect the flying wires to the device. The signals used will be clk (connected to the 

pin defined as the clock by the design), bit0, bit1, bit2 and bit3 of the counter. The following 
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script will run the design for 5 clock cycles then get the values of the pins, then run it for 

another 10 and again return the results. 

 

 1 test; 

 2 

 3 signal clk, bit0, bit1, bit2, bit3; 

 4 

 5 map 

 6 { 

 7 clk => 0;  // The clock is an output and is 

 8    // connected to cable 0 

 9 bit0 <= 1;  // The bit0 is an output and is 

10    // connected to cable 1 

11 bit1 <= 2;  // The bit1 is an output and is 

12    // connected to cable 2 

13 bit2 <= 3;  // The bit2 is an output and is 

14    // connected to cable 3 

15 bit3 <= 4;  // The bit3 is an output and is 

16    // connected to cable 4 

17 } 

18 

19 start     // Start of script 

20  

21 for 5   // Iterate 5 times 

22  set clk ‘1’; // Create one  

23  set clk ‘0’; // clock pulse 

24 endfor 

26 

25  get 1;   // Get the values 

26  

27  for 10   // Iterate 10 times 

28   set clk ‘1’; // Create one  

29  set clk ‘0’; // clock pulse 

30 endfor 
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31  

32 get 1;    // Get the values 

33 end    // End of script 

 

This is a relatively simple script, but it demonstrates the basic techniques of testing designs. 
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Chapter 7 

  Conclusions and Future Work 
 

 

7.1 Conclusions 
 

In the early chapters of this document, we discussed the need for a Universal Programmer and 

Tester as well as the configuration process and modes. Then we moved on to describing the 

structure of ReRun, analyzing the language and the Graphical User Interface that were 

developed. Finally, we saw some tests that were performed.  

The results of this thesis were more than satisfactory. Three FPGAs were successfully 

programmed, two Xilinx FPGAs and one Altera FPGA. By doing so, we achieved our initial 

goal, to make ReRun a Universal Run-Time Environment for FPGA programming.  

Also, the FPGAs were programmed up to a maximum Baud Rate of 115200. This is quite 

important achievement, considering that the speed matched Altera’s MasterBlaster and 

surpassed the 57600 maximum Baud Rate for the MultiLinx Cable!  

Finally, the system developed is modular, which makes it easy to upgrade. Future work is 

discussed in the next section. 

 

7.2 Future Work 
 

The language can be upgraded in many ways. An array type can be developed along with 

instructions to use its values as output signals. The instructions can be easily changed so that 

the parser produces a different output to accommodate for the needs of an upgraded version of 

the HPT. More instructions, such as ifs, can be added to provide additional functionality. 

Finally, the parser output can become even more abstract to become completely independent of 

the current HPT. 

The modular structure of the Graphical User Interface allows it to be upgraded easily. The 

communication with the HPT is currently implemented using the serial port. This module can 

be changed with one for a parallel or USB port. The Java Communications API provides 

support for serial and parallel, but in the future USB port will be supported.  
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Another improvement would be the implementation of a CRC Check. This is relatively easy in 

the case of a CRC 32, because the java.util. library has a CRC32 class.  

Finally, another module that can be upgraded is the one printing the values of signals. This 

information is currently displayed in text. A graphical representation would be more 

appropriate. 

Finally, more scripts could be written to program additional FPGAs. 
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Appendix 
 

Appendix A - Language Grammar 

 

Figure Appendix.1 Language Grammar (continued) 

Script

0 

Comments 

0 

comment 

TK_FAMILY 

TK_TERM 

TK_MANUFACTURER 

TK_CHARCON 

TK_TERM 

TK_CHARCON 

TK_CHARCON 

TK_TERM 

TK_DEVICE 

VS

0 

TK_RPA

TK_TERM

TK_VUN

TK_LPA

TK_NUM

TK_VS

CLK

0 

TK_RPA

TK_TERM

TK_FUN

TK_LPA

TK_NUM

TK_CLKTK_CLK

TK_LOW

TK_TERM

TK_CLK 

TK_HIGH 

TK_TERM 

comments PT mapping CLK VS declarations mainloadlm 

loadlm 

TK_LSB

TK_TERM

TK_MSB

TK_TERM

0 
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Figure Appendix.1 Language Grammar (continued) 

PT

program test

TK_TEST

TK_TERM

TK_PROGRAM

TK_CHARCON

TK_TERM

mapping 

TK_MAP TK_LBR maps TK_RBR

0maps map

TK_ID assgn TK NUM TK TERM

TK_ASSGN TK_VASSGN
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Figure Appendix.1 Language Grammar (continued) 

main

TK_START smts TK_END

set 

TK_SET 

TK_ID 

TK_STATE 

TK_TERM 

get 

TK_GET 

TK_NUM 

TK_TERM 

reverse

TK_REV

TK_ID

TK_TERM

readback 

TK_RDBK TK_RDBKB

TK_NUM

TK_TERM TK_TERM

TK_NUM

declarations

declarations declaration

static 

type def_some TK_TERM

var_def 

TK_INT TK_SIGNAL

TK_STATIC

TK_ID 

TK_STATE

TK_TERM

def one def one def som TK_COM

TK_ID
TK_ID 

0
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Figure Appendix.1 Language Grammar (continued) 

smts

wait 

TK_WAIT 

TK_ID 

TK_STATE 

TK_TERM 

for_smt

TK_FOR expression for smts TK_ENDFOR

0 for smts f smt 

compound reverse waitassignment setnop 

smts

load 

TK_LOADB TK_LOADKB 

TK_NUM 

TK TERM 

TK_NUM 

TK TERM 

compound 

TK_LBRA TK_RBRA

cmp_smst cmp_smt 

set

cmp_smts 

0

nop

TK_NOP TK_TERMTK_NUM
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Figure Appendix.1 Language Grammar 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

smts

assignment

TK_ID TK_EQ expression TK_TERM

TK_ID TK_NUM 
expression expressionTK_PLUS 

expression expression TK_DIV 
expression expression TK_MINUS

expression expressionTK_MULT
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Appendix B – Installing ReRun 
 

The examples in this document assume that you have installed in your C: partition. More 

specifically we assume that you unzipped the javacomm20-win32.zip file in C:\commapi and 

your JDK installation is in C:\jdk1.3.1_01. If you have installed JDK in another location or 

unzipped javacomm20-win32.zip in another location modify the example commands 

appropriately. 

 

1. Install the Java 2 SDK, v 1.3.1_01 in your computer. The file is j2sdk-1_3_1_01-win.exe. 

After the installation is complete Unzip the file javacomm20-win32.zip. This will produce a 

hierarchy with a top level directory commapi.  

 

2. Copy win32com.dll from c:\commapi\ to your <JDK>\bin directory.  

 

C:\>copy c:\commapi\win32com.dll c:\jdk1.3.1_01\bin  

 

If you are using Windows you must also copy the win32com.dll to another directory, the 

C:\Program Files\Javasoft\JRE\bin. 

 

C:\>copy c:\commapi\win32com.dll C:\Program Files\Javasoft\JRE\bin 

 

Note! If you can not find the win32com.dll file, remember that dll files are usually hidden and  

that you must enable the option view hidden and system files in Windows. 

 

3. Copy comm.jar file from c:\commapi\ to your <JDK>\lib directory.  

 

C:\>copy c:\commapi\comm.jar c:\jdk1.3.1_01\lib  

 

If you are using Windows must also copy the comm.jar to your C:\Program 

Files\Javasoft\JRE\lib directory. 

 

C:\>copy c:\commapi\comm.jar C:\Program Files\Javasoft\JRE\lib 
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4. Copy javax.comm.properties, also from c:\commapi\ to your <JDK>\lib directory.  

 

C:\>copy c:\commapi\javax.comm.properties c:\jdk1.3.1_01\lib  

 

The javax.comm.properties file must be installed. If it is not, no ports will be found by the 

system.  

 

If you are using Windows, again you must copy the javax.comm.properties to your C:\Program 

Files\Javasoft\JRE\lib directory. 

 

C:\>copy c:\commapi\javax.comm.properties C:\Program Files\Javasoft\JRE\lib 

 

5. Add comm.jar to your classpath.  

 

If you don't have a classpath defined:  

 

C:\>set CLASSPATH=.;c:\jdk1.3.1_01\lib\comm.jar  

If you already have a classpath defined:  

 

C:\>set CLASSPATH=c:\jdk1.3.1_01\lib\comm.jar;%classpath% 

 

In Windows, this must be done from the Environmental tab of the the System Properties 

window (Control Panel->System). 

 

6. Set the JAVA_HOME to your <JDK>\ directory. If you don't have JAVA_HOME defined:  

 

C:\>set JAVA_HOME=c:\jdk1.3.1_01\ 

Add <JDK>\bin to your path.  

 

In Windows the same procedure as the previous step must be followed. 

 

C:\>set PATH=c:\jdk1.3.1_01\bin\;%path% 
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7. Create the directory you wish to install ReRun. 

 

8. Copy the following .java files in that directory: 

 

AppFilter.java 

ConfigurationPanel.java 

Connection.java 

ConnectionException.java 

MainWindow.java 

Parameters.java 

PortRequestedDialog.java 

SplashWindow.java 

 

9. Compile the previous files by typing: 

 

javac *.java 

 

10. The next step is copying the compiler to the directory you installed ReRun. The compiler is 

the file rerun.exe.  

 

11. Finally, the Splash Screen file must be placed in the same directory. The name of the file is 

mhl.jpg. 
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Appendix C – Instruction Opcodes 
 

CNTRL_8_INST   ;Use one port of the AVR 

(1 byte) opcode: "0x00" 

  

CNTRL_16_INST   ;Use two ports of the AVR 

(1 byte) opcode: "0x01" 

 

CNTRL_MAP_INST  ;Defines Input and Output Signals 

(2/3 bytes) opcode: "0x02" 

 

CLEAR_BITS_INST  ;Clear Bits 

(2/3 bytes) opcode: "0x03" 

 

SET_BITS_INST   ;Set Bits 

(2/3 bytes) opcode: "0x04" 

 

DATA_SERIAL_INST  ;Load Data Serially 

(1 byte) opcode: "0x05" 

 

DATA_PARALLEL_INST  ;Load Data Parallel 

(1 byte) opcode: "0x06" 

 

RESET    ;Reset 

(1 byte) opcode: "0x07" 

Waits for : 0x00 to ACK 

 

PROG_BYTE_INST  ;Send Programming Data byte(s) 

(2 bytes) opcode: "0x08" 

 

PROG_KBYTE_INST  ;Send Programming Data Kbyte(s) 

(2 bytes) opcode: "0x09" 

CTRL_BITS_INST   ;Send Entire Byte(s) to control pins 
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(2/3 bytes) opcode: "0x0A" 

 

FOR_LOOP_START_INST ;Start of for loop 

(3 bytes) opcode: "0x0B" 

 

FOR_LOOP_END_INST  ;End of for loop 

(1 byte) opcode: "0x0C" 

 

NOP_INST    ;No Operation Instruction 

(1 byte) opcode: "0x0D" 

 

BAUDRATE_2400 :  ;Set Baud Rate to 2400 

(1 Byte) opcode:"0x0E" 

 

BAUDRATE_4800 :  ;Set Baud Rate to 4800 

(1 Byte) opcode:"0x0F" 

 

BAUDRATE_9600 :  ;Set Baud Rate to 9600 

(1 Byte) opcode:"0x10" 

 

BAUDRATE_14400 :  ;Set Baud Rate to 14400 

(1 Byte) opcode:"0x11" 

 

BAUDRATE_19200 :  ;Set Baud Rate to 19200 

(1 Byte) opcode:"0x12" 

 

BAUDRATE_28800 :  ;Set Baud Rate to 28809 

(1 Byte) opcode:"0x13" 

 

BAUDRATE_57600 :  ;Set Baud Rate to 57600 

(1 Byte) opcode:"0x14" 

 

 

BAUDRATE_115200 :  ;Set Baud Rate to 115200 
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(1 Byte) opcode:"0x15" 

 

READBACK_KBYTE    ;Reads back Kbytes 

(2 Bytes) opcode:"0x16" 

 

Waits for : (Byte 2) KBytes 

 

READBACK_KBYTE    ;Reads back Bytes 

(2 Bytes) opcode:"0x17" 

 

Waits for : (Byte 2) Bytes 

 

Test Script    ;Defines that this is a test script 

(1 byte) opcode:"0x18" 

 

GET_ALL_PORTS   ;Asks for the values of all ports 

(1 byte) opcode:"0x19" 

 

Waits for : 3 Bytes (CTRL0,then CTRL1 and then CTRL_DATA) 

 

GET_CNTRL0   ;Get values for signals mapped to the first 8 pins 

(1 byte) opcode:"0x1A" 

 

Waits for : 1 Byte 

 

GET_CNTRL1   ;Get values for signals mapped to pins 8-15 

(1 byte) opcode:"0x1B" 

 

Waits for : 1 Byte 

 

GET_DATA    ;Get values for signals mapped to pins 16-23. 

(1 byte) opcode:"0x1C" 

 

Waits for : 1 Byte 
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CLK_LOW   ;Defines that the FPGA receives data 

    ;on the falling edge of the clock 

(1 byte) opcode:"0x1D" 

 

CLK_HIGH   ;Defines that the FPGA receives data 

    ;on the rising edge of the clock 

(1 byte) opcode:"0x1E" 

 

LSB    ;Load the MSB of the bitstream first 

(1 byte) opcode:"0x1F" 

 

MSB    ;Load the LSB of the bitstream first 

(1 byte) opcode:"0x20" 
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Appendix D – ReRun File Structure and Size 
 

The files of ReRun are: 

 
 

Java Classes 
 

Size (Bytes)
 

Number of Lines

AppFilter.java 744 38 

ConfigurationPanel.java 7,251 222 

Connection.java 37,685 901 

ConnectionException.java 385 21 

Parameters.java 7,371 319 

PortRequestedDialog.java 1955 66 

ReRun.java 53,278 1385 

SplashWindow.java 2,087 56 
 

Compiler Files 
  

lex.l 1,926 83 

synt.y 26,031 1,333 

Total 138,713 4,424 
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