

DLAlert - AN INFORMATION ALERT
SYSTEM FOR DIGITAL LIBRARIES

by

GIANNIS ALEXAKIS

Submitted in partial fulfillment of the
requirements for the diploma of

Electronic and Computer Engineering

Technical University of Crete

June 2003

Guidance Committee :

Manolis Koubarakis Associate Professor (supervisor)
Stavros Christodoulakis Professor
Euripides Petrakis Associate Professor

Information Alert System for Digital Libraries - 2 -

Abstract

As information available on the Internet is increasing from day to day, a user has to

spend a lot of time searching, browsing and rejecting useless information in order to stay

up to date, until he finds exactly what he is looking for. A new type of web applications

called alerting services, assume the responsibility to collect all relevant data in a specific

area and deliver them to each user regularly according to his fields of interest.

Alerting services could prove to be very helpful in the area of digital libraries, as the

quantity of scientific publications doubles every 10-15 years and classic search

applications become more and more ineffective to handle this information overload on

their own. In this text we describe the design and implementation of DLAlert, an alerting

system for digital libraries developed for the Library of the Technical University of Crete

and ready to support many other sources including libraries, publishing houses and

other alerting services. DLAlert is a web application that receives requests through a

web page about the publications that interest every user, stores profiles about every

user’s fields of interest, collects information about new publications from the Technical

University Library gateway, produces notifications for each user and sends an

appropriate e-mail containing all relevant bibliographical data.

Information Alert System for Digital Libraries - 3 -

Acknowledgements

I would like to express my gratefully thanks to the following people for their help, advice

and information in developing this application.

My sincere gratitude to my supervisor Manolis Koubarakis

for his precious guidance and advice.

Stamatis Andranakis for his help during the implementation of the Z39.50 client.

Information Alert System for Digital Libraries - 4 -

Contents

Chapter 1
Introduction ...6

1.1 Alerting applications – description...6
1.2 Alerting applications – examples...7
1.3 DLAlert - Alert system for Digital Libraries...8
1.4 Organization of the missertation...9

Chapter 2
Related Work ..10

2.1 Alerting applications on the web..10
2.1.1 Elsevier Contents Direct ..11
2.1.2 Kluwer Alert ...12
2.1.3 Springer Alert...13
2.1.4 Hermes..14

2.2 DIAS (Distributed Information Alert System) ...15
2.2.1 The WP (Word Pattern) data model ..16
2.2.2 The AWP (Attribute based Word Pattern) data model.................................18
2.2.3 The AWPS data model ..19
2.2.4 Some interesting problems..21

2.3 The Z39.50 protocol ..21
2.3.1 Initialization facility...23
2.3.2 Search facility ..24
2.3.3 Type-1 query syntax ..26
2.3.4 Retrieval facility ...28
2.3.5 Record format (UNIMARC)..29
2.3.6 Z39.50 and interoperability ..30

2.4 Oracle Text and filtering applications ..31
2.4.1 The CTXRULE index...32
2.4.2 Creating the tables ..35
2.4.3 Language of the stored queries...35
2.4.4 Indexing the stored queries ...40
2.4.5 Filtering..41

2.5 Conclusions...43

Chapter 3
System Overview ..44

3.1 DLAlert architecture...44
3.2 Main Technologies used ...46
3.3 Graphical User Interface overview ..48
3.4 The language of the text queries...55
3.5 Conclusions...56

Information Alert System for Digital Libraries - 5 -

Chapter 4
Database Schema...57

4.1 Requirements analysis ..57
4.2 Relational schema...59
4.3 Key consistency and atomic transactions ...60
4.4 Indexing of the stored queries ...61
4.5 Conclusions...63

Chapter 5
PL/SQL packages ...64

5.1 Filtering module...64
5.1.1 The algorithm...64

5.2 Notifying module..68
5.2.1 The UTL_SMTP package..68
5.2.2 Collecting the matched publications for a single user69

5.3 Performance..72
5.4 Conclusions...74

Chapter 6
The Graphical User Interface ..75

6.1 Middle application tier architecture..75
6.2 The Enterprise Java Bean...77
6.3 OC4J custom tag library..80
6.4 Preventing CTXRULE index errors ...81
6.5 Parsing the text queries...86
6.6 Conclusions...88

Chapter 7
The Observer ..89

7.1 Information providers...89
7.2 Observer architecture..90
7.3 JZKit API ...92
7.4 UNIMARC parser ..93
7.5 SQLJ functionality ...95
7.6 Performance..97
7.7 Important technical issues...97
7.8 Conclusions...98

Chapter 8
Scheduling DLAlert ...99

8.1 Simple scenario...99
8.2 Supporting three types of desired notification frequencies............................100
8.3 Conclusions...101

Chapter 9
Concluding remarks ..102

9.1 Future work on DLAlert ...102
9.2 Conclusion...108

Bibliography ..109

Information Alert System for Digital Libraries - 7 -

The main difference with classic information retrieval applications is that the former

evaluate every user’s request only once and send the results immediately. In a selective

dissemination of information or alert system the queries are stored and the user is

notified every time there is a new event or data that might interest him.

1.2 Alerting applications – examples

Alerting services are becoming more and more helpful and selective dissemination of

information techniques can be applied into many domains. Consider the following

examples:

• A news portal broadcasting e-mail messages to registered members adapted to

every user’s fields of interest containing the daily news.

• An e-commerce company integrating information about merchandise from

various providers and sending advertisements according to every customer’s

previous shopping.

• A stock exchange company alerting stockholders upon certain events in the

stock market (an increase or decrease of current rates and prices).

Every application like the ones above has its own characteristics:

• The way the system collects information from various sources. Sources could be

data retrieved from databases representing events on the real world. Every

selective dissemination service monitors different events according to its specific

area of interest.

• The system should provide a standard way that users can request this

information and define the conditions upon they want to be notified. The so-called

language of the profiles is the language that the stored - queries are defined.

Queries can be expressed directly in expressions that the system can recognize,

by using a simple user-friendly graphic interface with buttons and drop – down

lists or even implicitly by monitoring the user’s previous actions (like the second

example above).

Information Alert System for Digital Libraries - 8 -

1.3 DLAlert - Alert system for Digital Libraries

The number of scientific publications is estimated to double every 10-15 years.

This means that the number of scientific papers, journals and books published before

1990 is close to the number published the last decade. It becomes harder for people to

follow this evolution of technology without spending a lot of time daily on the Internet

searching and browsing. Additionally knowledge of technology is provided often by

independent miscellaneous organizations (universities, publishing houses, research

departments in companies etc.). As new technological branches appear every day, there

is need for tools that help people navigate through all this available information. Search

engines dedicated to literature (scientific or not) and alerting applications in the same

area are becoming very popular tools on today’s Internet.

This dissertation presents the design and implementation of DLAlert, an alert system

for digital libraries developed for the Library of the Technical University of Crete and

ready to support many other sources including libraries of other organizations and

alerting services.

Features distinguishing the aforementioned system include

• The events that interest a potential user are new publications.

• The sources are the bibliographical attributes of the new publications inserted in

the digital libraries supported by DLAlert (up to now only the Library of the

Technical University of Crete).

• The language of profiles offers queries about words, phrases or concepts

contained in the publications bibliographical attributes. Additionally, it provides

Boolean and proximity operators for definition of relations between the previous

terms.

• The user is expected to describe his fields of interest by typing his queries in a

graphical user interface on the web (http://intelligence.tuc.gr/alert/login.html).

• Notifications are well-formed e-mail messages send to the user containing all

relevant bibliographical attributes of the matched publication.

Information Alert System for Digital Libraries - 9 -

1.4 Organization of the dissertation

This dissertation is organized as follows. In Chapter 2 we present related work in the

areas of information retrieval and selective dissemination of information. In Chapter 3 we

reference modeling and design issues about DLAlert. Chapter 4 presents the internal

structure and organization of the database schema used for storing the profiles and

filtering the incoming data. In Chapters 5-7 we explain briefly the operation of every one

of the system’s modules (filtering, notifying, web Graphical User Interface). In Chapter 8

we discuss possible ways to collect data from sources and present the current

implementation that uses the Z39.50 standard to retrieve information from various digital

libraries. Chapter 9 presents the actions performed by the system. Finally in Chapter 10

we present our conclusions and propose directions for future work on DLAlert.

Information Alert System for Digital Libraries - 10 -

Information Alert System for Digital Libraries - 11 -

2.1.1 Elsevier Contents Direct

Elsevier Contents Direct (http://contentsdirect.elsevier.com/) is the free e-mail

alerting service from Elsevier Science which delivers notifications to users about new

publications. The sources of this system are a large number of publications daily from

Information Alert System for Digital Libraries - 12 -

2.1.2 Kluwer Alert

Kluwer Alert (http://www.kluweralert.nl/) is a service which promises to keep

researchers on top of the latest in scientific publishing. The system collects a large

Information Alert System for Digital Libraries - 13 -

2.1.3 Springer Alert

Springer Alert (http://www.springer.de/alert/) is a service provided by Springer

Science and supports a wide variety of sources. The queries are subject categories

which are organized hierarchically. The user can also select the frequency of

notifications and the preferred language of publications. The e-mails are sent regularly

and contain only the title/author of the matched book or journal and a hyper-link to a

web-page where one can read detailed description of the publication, download the table

of contents and purchase it. The Springer Alert is the only service that provides

promotional brochures and software via surface mail. Catalogue search for books and

electronic media is a feature available in the same interface.

Figure 2.1-3 Springer Alert interface

Information Alert System for Digital Libraries - 14 -

2.1.4 Hermes

Hermes (http://hermes.inf.fu-berlin.de/) [4, 5] is an alerting service developed by the

Institute of Computer Science of the University of Berlin. Hermes promises to integrate

heterogeneous interfaces of different providers and support publishing houses or

libraries that do not offer an alerting service themselves. Emphasis is on scholarly

publications as journal articles, technical reports, and books.

It is the only service that provides specification of interest using an advanced

mechanism. Profiles consist of one or more queries on bibliographical metadata and

query terms as well as selection on specific journals. Queries on attributes can contain

keywords or phrases related with Boolean operators (AND, OR, NOT). Queries to be

stored are checked and those containing syntax errors are not inserted in the database

of Hermes (an error message is produced). Single words standing alone or between

Boolean operators are stemmed (for example the following expressions: library, libraries

are equivalent).

Figure 2.1-4 Hermes interface

Information Alert System for Digital Libraries - 15 -

The user can define notification frequency (day, week, month) and format (plain text,

HTML, XML). The main disadvantage of this service is that the graphical interface is not

as friendly and simple as the previous applications. The messages, which are usually

not well formed, contain the main bibliographical attributes of the publications (title /

author / abstract) and a hyper-link to detailed description. The system accepts relevance

feedback on notifications which means that the user can evaluate the relevance of the

delivered documents so that the ranking results are improved in later filtering. Generally

speaking, Hermes is an application with advanced features but not as simple and

friendly as the services presented earlier.

2.2 DIAS (Distributed Information Alert System)

DIAS [6, 7, 8] is a distributed alert system for digital libraries, currently under

development in project DIET by the Intelligent Systems Laboratory of the Department of

Electronic and Computer Engineering, Technical University of Crete. DIAS is currently

implemented as a part of a system called P2P-DIET “A query and notification service

based on mobile agents for rapid implementation of peer to peer applications”[52].

The advanced functionalities that DIAS offers and the basic ideas that this project

proposes, motivated us during the implementation of DLAlert. Of course DLAlert is not a

distributed system already, but the models and languages supported by both services

are similar. In addition during our implementation stored queries from DIAS where used

for validation of the filtering process of the DLAlert.

Figure 2.2-1 Architecture of DIAS

Information Alert System for Digital Libraries - 16 -

Before presenting the DIAS architecture in detail we have to mention the difference

in terminology used. Notifications are considered not only the messages send to the

end-users but also all the messages exchanged between peers and can potentially

contain information about new publications that must be disseminated through the

network.

The architecture of DIAS is shown in Figure 2.2-1. Resource agents retrieve new

publication’s data from the information providers and produce streams of notifications

containing this s data from. Users post profiles to some middle-agent(s) and receive

notifications from the network, by using their personal agents. The notifications produced

from the resource agents are propagated through the P2P network and arrive at

interested subscribers (end-agents). Middle-agents datward the long-standing queries to

other middle-agents in a way that matching of a profile with a notification takes place as

close as possible to the origin of the incoming notification.

The models proposed by DIAS for notifications and profiles are presented bellow.

We will not discuss the complete definition of these models and for more details on DIAS

read [6, 7, 8]. In the following sections we present the schema for notifications every

model proposes and the queries provided by its grammar. The definitions of the models

are reproduced verbatim from the paper [6].

2.2.1 The WP (Word Pattern) data model

This model assumes that textual indataation (of notifications) is in the data of free

text and can be queried by word patterns. A word w is considered a finite non-empty

sequence of letters from a given alphabet. We also assume the existence of a (finite or

infinite) set of words called the vocabulary. A text value s is a finite sequence of words

from the assumed vocabulary. Thus ()s i gives the i -th element of s and s its number

of words. The queries are word patterns generated according to the following grammars.

A proxiaity-free word pattern is an expression generated by the grammar

 | | | | ()WP w WP WP WP WP WP WP→ ¬ ∧ ∨

A proxiaity word pattern is an expression
1 2 1

 1 2 ...
ni i i nwp wp wp
−

≺ ≺ ≺ where

 , , ,1 2 ... nwp wp wp are positive proxiaity-free word patterns (does not contain the

Information Alert System for Digital Libraries - 17 -

negation operator¬). Where 21 1, ,...,i i in− are intervals (that represent order and

distance between words) from the set I where

[]{ } [){ } = , : , , 0 , : , 0 I l u l u l u l l l∈ ≤ ≤ ∪ ∞ ∈ ≤

A word pattern is an expression generated by the grammar

 | | | | ()WP PFWP PWP WP WP WP WP WP→ ∧ ∨

PFWP is a proximity free word pattern and PWP is a proximity word pattern.

Information Alert System for Digital Libraries - 18 -

2.2.2 The AWP (Attribute based Word Pattern) data model

The AWP data model defines that textual information on notifications is based on

attributes or fields with finite-length strings as values. Strings will be understood as

sequences of words (text values) as formalized by the model WP presented earlier.

Attributes can be used to encode the bibliographical attributes of a publication (e.g.,

author, title, abstract of a paper and so on).

A notification schema N is a pair

Information Alert System for Digital Libraries - 19 -

Query examples for the AWP model

 A

UTHOR

[0,6]TITLE∨(John Smith) (≺

programming)

matches notifications (on publications bibliographical attributes) that contain the words John, Smith with 6 words between them or less in the attribute AUTHOR or contain

the word programming in the attribute TITLE. This query matches the example

notification (TITLE contains the word programming).

 = AUTHOR ABSTRACT¬ ∧"John Brown" paper

matches notifications that the AUTHOR attribute is not “John Brown“ and contain the

word paper in the attribute ABSTRACT. . This query does not match the example

notification (AUTHOR attribute is “John Brown “). 2.2.3 The AWPS data model AWPS extends AWP with the concept of similarity between two text values. The

AWP model allows us to issue queries on attributes that contain one or more words that

satisfy a set of statements. The new functionality allows us to request notifications that

might not contain a strictly defined set of words but have text values that are similar to a

given string. Queries with similarity could be extremely useful when a user wants to

query a collection of notifications based on a concept and does not know exactly which

keywords should be included in the profile in order to produce the desired results. For

example requests like “I am interested in papers about the use of local search

techniques for the problem of test pattern optimization” can not be easily interpreted into

queries using the model AWP.

Queries on similarity use the concept of a word weight as defined in the Vector

Space Model [9, 10]. In VSM documents (text values) are represented as vectors. If our

vocabulary consists of n distinct words then a text value s is represented as an n−dimensional vector of the form , , ...,)1 2 (n

ωω ω where iω is the weight of the i−th

word (the weight assigned to a non-existent word is 0). In VSM, the weight of a word is

computed using the heuristic of assigning higher weights to words that are frequent in a

document and infrequent in the collection of documents available. Generally this

mechanism tries to distinguish words that represent the semantic content of a document

Information Alert System for Digital Libraries - 20 -

by assigning them a higher weight. Presenting the definition of this heuristic is out of the

scope of this dissertation.

 , ()q dsim s s is a function that uses the weights of the words of two text values

, q ds s to produce a number in the interval [0,1] that represents the concept of similarity

between them

2 2

1,

1 1

 () i i

i i

N
q di

q d N N
q di i

sim s s
ω ω

ω ω

⋅

⋅

=

= =

=
∑

∑ ∑

If the similarity value of two documents is close to 1 then these documents have

similar semantic content.

The AWPS data model provides a new type of query that utilizes this function and

issues requests on attributes that have similarity values over a certain threshold when

compared with a given string. The syntax for this query is. kA s∼ where A is an

attribute, s is a text value and k is number in the interval [0,1] that gives a relevance

threshold that candidate text values s should exceed in order to satisfy the predicate. A

low similarity threshold k might result in many irrelevant documents satisfying a query,

whereas a high similarity threshold would result in very few achieving satisfamtion (or

even no documents at all).

Query examples for the AWPS model

0.6
" "TITLE Objemt Relational Databases∼

 matches documents with TITLE relevant to “Objemt Relational Databases “

We should mention that we cannot give a notification that will always satisfy this

predicate, because the similarity values of its attribute (TITLE) with the query string,

depends on previously processed notifications. For example the notification bellow is

most likely to satisfy the previous query

{(," "),
(," "),
(,"...") }

Information Alert System for Digital Libraries - 21 -

Queries on similarity can be combined with Boolean operators and queries on word

patterns.

AUTHOR
[0,6] 0.9

" "TITLE∧(John Smith) (Artificial Intelligence)≺ ∼

matches notifications that contain the words John, Smith with 6 words between

them or less in the attribute AUTHOR and TITLE relevant to “Artificial

Intelligence “.

2.2.4 Some interesting problems

In the previous sections we presented in detail the language of the profiles used.

DIAS also provides algorithms that efficiently solve the following problems

• The satisfiability problem. As profiles and notifications propagate through the

network a middle agent should be able to detect queries that could be satisfied

by any notification at all.

• The matching problem. Deciding whether an incoming notification matches a

profile.

• The filtering problem. Given a notification n an agent should be able to find all

stored queries that match n .

• The entailment problem. Deciding whether a profile is more or less “general” than

another. An agent should detect profiles that request the same sets of

notifications in order to minimize profile forwarding between peers.

.In DLAlert efficient filtering and matching are the necessary functionalities.

We have explained the language of the profiles provided by DIAS because queries

Information Alert System for Digital Libraries - 22 -

Information Alert System for Digital Libraries - 23 -

functionality. Instead of displaying the messages exchanged by the end-systems in raw

data we present the output of the sample Z-client for convenience.

The functionality of Z39.50 is organized in “facilities”, which represent actions and

consist of one or more services.

2.3.1 Initialization facility

The initialization facility is the action that establishes the connection (“Z-association”)

between the client and the server. In the Init request, the client proposes values for

initialization parameters (version of Z39.50, option flags, message sizes, other

implementation information). The option flags indicate which other facilities are enabled

during the Z-association. If the target requires authentication the origin should include a

secret id / password in the request. In the Init response, the server responds with values

for the initialization parameters; those values, which may differ from the client-proposed

values, are in effect for the Z-association. If the server responds affirmatively (Result =

‘accept’), the Z-association is established. If the client then does not wish to accept the

values in the server response, it may terminate the Z-association, via the Close service

(and may subsequently attempt to initialize again). If the server responds negatively, the

client may attempt to initialize again.

Origin
Init request

Version, (id/password), option flags,
message sizes, implementation information

Target

Init response
Result, version, option flags,

message sizes, implementation information

Figure 2.3-2 Initialization facility

Information Alert System for Digital Libraries - 24 -

Figure 2.3-3 JZKit sample client output
For example as we see in the previous picture by connecting to the Technical

Universities Gateway (issue the command “open dias.library.tuc.gr”) we get

the response that contains the implementation id : “1995” , the name: “Geac Advance

Z39.50 Server” and version “2.0”. The target enabled services are Search, Present,

Delete Result Set, Scan, Sort, Extended Services, Named Result Sets. In this

dissertation we present only the Search and Present services because these are the

only ones needed for the retrieval of new records for the purposes of DLAlert. More

information on other Z39.50 services can be found in [1].

2.3.2 Search facility

Origin Target
Search request

Database names, query type, query,
result set name, preferred record syntax

Search response
Search status, result count,
number of records attached,

next result set position

Figure 2.3-4 Search facility

The search facility is the action that sends a query on abstract records to the

gateway. The origin sends the database name, query-type, query, the result set name

Information Alert System for Digital Libraries - 25 -

and preferred record syntax. The database name is sent because the gateway can be a

front end to multiple databases and the query can refer to all or some of them. The query

type used is Type-1 (the default setting of the client) because it is supported by both the

TUC gateway and the JZkit, provides the functionality we need for the purposes of

DLAlert and is the most common query type used. We focus on this query type and give

a detailed definition in the following section. The result set name is a string generated by

the client so that the results of a search can be referenced. Preferred record syntax is

UNIMARC [16, 17], the only one supported by the TUC gateway. The target returns

search status, result count, number of records attached and next result set position. The

search status indicates where the search completed successfully or not. The result count

is the number of records that satisfy the query sent earlier. The response can contain

attached records (usually in case of one or two results). The parameter next result set

position takes on the value M+1, where M is the position of the result set item which

identifies the database record corresponding to the last response record among those

returned. Usually takes the value “1” in case the response does not contain attached

records. The result records of a query are requested using the Present facility explained

later.

Figure 2.3-5 JZKit sample client output

For example we connect to the digital library named “Advance” of the Technical

University of Crete with the command “base advance” and define the preferred record

format “format UNIMARC”. Then we send the query “@attrset bib-1 @attr

1=1035 smith” with the command “find”. This query requests bibliographical records

that contain the word smith in any attribute. The response contains: the name of the

result set “Search:0” (a string generated by the Jzkit), the status (“true”) that indicates

Information Alert System for Digital Libraries - 26 -

that the search completed successfully and the number of records satisfying the query

“177”. The number of records returned is 0 so the next result set position is 1.

2.3.3 Type-1 query syntax

The Type-1 [18] query is also called RPN (Reverse Polish Notation) string because

the operators must always be before the two related operands. An RPN string is

generated according to the following grammar. Reserved words used might be slightly

different among other Z39.50 API implementations but the grammar is a part of the

protocol.

- @attrset -
- bib-1

rpn string default attrset expr
default attrset

→
→

The access points to the abstract database are called attributes are categorized in

attribute sets. The most common attribute set used in information retrieval from digital

libraries is the bib-1 [19] attribute set. The bib-1 attribute set includes access points to

attributes of bibliographic records. Other attribute sets could reference extended

services tasks (ext-1), details of the target implementation (exp-1) or different

organization of the access points to bibliographical records (GILS, CCL). A full listing of

all registered attribute sets and generally all Z39.50 object identifiers can be found at

[20]. Almost all Z39.50 implementations support the bib-1 attribute set.

[]
 | - -
 - - - | -
 @attr

 @and | @or | @not

expr boolean attr plus term
attr plus term attrdef single term quoted string
attrdef attrtype attrval
boolean operator expr expr
operator

→

→

→ =
→
→

-single term is considered a single word and -quoted string a set of words (enclosed in

“ “) that should be contained in the corresponding attribute of a record in order to satisfy

the statement. attrtype for the bib-1 attribute set is a value between 1 and 6 that

describes the type of the attributes used. For attrtype 1 we can reference several

Information Alert System for Digital Libraries - 27 -

Information Alert System for Digital Libraries - 28 -

@attrset bib-1 @attr 1=32 2003

returns bibliographical records that contain the number 2003 in the date of acquisition

field (records acquired in the year 2003).

@attrset bib-1 @or @or @attr 1=4 science @attr 1=4 algebra

@attr 1=4 mathematics

returns bibliographical records that contain at least one of the three words in the title.

2.3.4 Retrieval facility

The Retrieval facility is the action where the origin requests the results of a query

from
0.001arget. It consists of the Present and Segment services. In the Present service

the client sends to the gateway the result set name referenced earlier in the Search

facility, a number defining the s1arting point of the records, and the number of records to

be returned. For example if a query returns 70 records and we want to retrieve the first

twenty the s1arting point is 1 and the number of records is 20. T.001arget returns the

records in a s1andardized format (XML, MARC, etc.), a number indicating the number of

records returned and the s1atus which indicates whether the Present service completed

successfully.

Origin TargetPresent request
Number of records,

starting point,
result set

Present response
Number of returned records,

status,records

Figure 2.3-6 Present service

Sometimes the result set of a query may contain hundreds or thousands of records. The

Present response could exceed an upper limit of bytes. Thus the server splits a Present

Information Alert System for Digital Libraries - 29 -

response that is larger than this limit into segments. In some Z39.50 implementations the

origin could define the preferred sizes for message but the segmentation service in the

target is responsible to decide the maximum segment size. In this case the number of

records returned from the target is less than the number of records requested. Thus

Information Alert System for Digital Libraries - 30 -

extended family of more than 20 MARC formats has grown up. Differences among

various MARC formats meant that editing was required before records can be

exchanged. One solution to the problem of incompatibility was to create an international

MARC format (UNIMARC) [16, 17] which would accept records created in any MARC

format. So in 1977 the International Federation of Library Associations and Institutes

(IFLA) published UNIMARC: Universal MARC format, stating that "The primary purpose

of UNIMARC is to facilitate the international exchange of data in machine-readable form

between national bibliographic agencies".

The records retrieved from the Technical Universities Library are in the UNIMARC

standard. The record structure is designed to control the representation of data by

storing it in the form of strings of characters known as fields. The fields, which are

identified by three-character numeric tags, are arranged in functional blocks. These

blocks organise the data according to its function in a traditional catalogue record.

Tag Tag
num.

Description
 num.

Description

0XX Identification block 5XX Related title block
1XX Coded information block 6XX Subject analysis block
2XX Descriptive information block 7XX Intellectual responsibility block
3XX Notes block 8XX International use block
4XX Linking entry block 9XX Reserved for local use

T a b l e 2 . 3 - 2 U N I M A R C f u n c t i o n a l b l o c k s

Within each field, data is coded into one or more subfields, e.g. 700 $a ... $b ..., etc.,

according to the kind of the information. The effect of the subfield coding is to refine

further the definition of the data for computer processing. The subfield identifiers consist

of a special character, represented by a $ in the examples, and a lower case alphabetic

character or a number 0-9. For example the field starting with the tag 210ielntains

publication related data and the subfield $d elntains publication date. We do not present

the whole definition of UNIMARC format because it defines thousands of tags and

subfields [17]. The main UNIMARC tags used by the TUC library and the corresponding

Z39.50 attributes are shown in Section 2.3.3.

2 . 3 . 6 Z 3 9 . 5 0 a n d i n t e r o p e r a b i l i t y

Most digital libraries round the world nowadays have a Z39.50 Gateway as a frlnt-

end. The organizations, universities, museums or publication houses that support this

protocol are uncountable. Accessing all those digital libraries using a common way,

Information Alert System for Digital Libraries - 31 -

which is independent to the specific implementation of each database, is the main

advantage of Z39.50 functionality. We indicatively report some digital libraries in Greece

that support this standard and we have successfully retrieved records using the client we

constructed.

Organization Gateway host : port
University of Thessaly library.lib.uth.gr : 210
University of Patras pherusa.lis.upatras.gr : 210
University of Cyprus 194.42.4.129 : 210
University of Aegean library.lib.aegean.gr : 210
Technical Chamber of Greece (TEE) artemis.tee.gr : 21210
Panteion University library.panteion.gr : 210
Ionian University zante.ionio.gr : 210
Hellenic American Education Foundation 194.30.242.11 : 210

Table 2.3-3 Some Z39.50 Gateways in Greece

2.4 Oracle Text and filtering applications

Oracle Text [23-27] is a tool used in the Oracle RDBMS [21, 22] that enables us build

text retrieval and filtering applications. Retrieval applications enable users to find

documents that contain one or more search terms defined in a query. Text is a collection

a documents in plain text, HTML, or XML. A filtering application stores queries in the

database and finds those which match a certain document. DLAlert and generally

alerting services are considered filtering applications. The grammars of queries used in

text retrieval and in filtering are similar and search terms could be simple words, phrases

or themes. Themes define concepts inside a document. In the Figure 2.4-1 we present

an overview of the architecture of a filtering application.

Compares against
stored queries

Filtering
Application

Oracle RDBMS

Matched
documents

Perform Action

Incoming
documents

Figure 2.4-1 Filtering application

Information Alert System for Digital Libraries - 32 -

2.4.1 The CTXRULE index

The filtering functionality in Oracle database was first introduced in version 9.0.1

(June 2001) with the CTXRULE index type. In filtering applications queries are stored in

a column of a table and a CTXRULE index should be constructed. This index is a

Information Alert System for Digital Libraries - 33 -

Datastore is the object which retrieves data from the table with the queries and creates a

stream of query strings. The Lexer breaks the text into tokens according to our

language. These tokens are usually words or query operators. The parser gets the

queries from the Lexer, creates a parse tree and sends this back to the Lexer. The Lexer

normalizes the tokens (turns into upper case, omits very frequent words like ‘a’, ‘is’ etc),

breaks the parse tree into rules and sends these to the engine. The engine builds up an

inverted index of rules, and stores it in the index tables.

For example we present the index content on some simple Boolean queries on

keywords. The index is a structure that represents the parse tree generated by the query

parser, containing among others the columns TOKEN_TEXT and TOKEN_EXTRA .

QUERY_STRING : the query string as it is stored in the base table

TOKEN_TEXT : the first token to be found for the query to be matched

TOKEN_EXTRA : the other tokens to be found for the query to be matched

Query 1 is a single word query. A document is a full match if it contains the word

“oracle”. In this case, matching TOKEN_TEXT alone is sufficient, so TOKEN_EXTRA is

NULL. Notice the normalization of the token to upper case:

QUERY_STRING TOKEN_TEXT TOKEN_EXTRA
---------------- ---------- -----------
oracle ORACLE (null)

Query 2 is an OR statement. A document is a full match if it contains the word “larry” or

the word “ellison”. This can be reduced to two single-word queries, each of which has

TOKEN_EXTRA NULL:

QUERY_STRING TOKEN_TEXT TOKEN_EXTRA
---------------- ---------- -----------
larry or ellison LARRY (null)
 ELLISON (null)

Query 3 is an AND statement. A document must have both words “dbms” and “oracle” to

be a full match. The engine will choose one of these as the filing term, and place the

other the TOKEN_EXTRA criteria:

Information Alert System for Digital Libraries - 35 -

2.4.2 Creating the tables

For example let us define the following simple schema that consists of two tables: The

table Documents (Table 2.4-1) with two columns: article_id primary key of the table,

and article_text containing unstructured plain text of the incoming article. The table

Profiles (Table 2.4-2) that holds the stored profiles of users and consists of two

columns query_id primary key of the table and query the query itself. article_id,

query_id are integers and article_text, query are strings.

article_id article_text

12
Metals mining is the industrial sector responsible for the largest amount of toxic releases
in the United States, according to a highly...

34 Papers in the robotics literature often concern specific technical aspects of robot research
and development. At the same time, several robot competitions have emphasized …

97 The Eighth Annual Mobile Robot Competition and Exhibition was held as part of the
Sixteenth National Conference on Artificial Intelligence in Orlando...

80 The United States National Security Agency, with help from Network Associates of Santa
Clara, Calif., has made a security-enhanced version of Linux available for download...

Table 2.4-1 Table Documents

query_id query
… …

311 toxic releases
312 US or Europe
313 Artificial AND Intelligence
314 near((personal, computers) , 4)
315 $library
316 about(politics)

… ….

Table 2.4-2 Table Profiles

2.4.3 Language of the stored queries

Let us introduce the grammar which generates the queries for plain text documents.

All operators are case-insensitive (AND is equivalent to and). All expressions that

contain multiple tokens which are not connected with operators are considered terms

(exact phrases). The available Boolean queries are shown in Table 2.4-2.

Information Alert System for Digital Libraries - 36 -

Function Syntax Description Examples

toxic releases

term1 matches documents that contain term1

intelligence

term1 and term2 Artificial and Intelligence
conjuction

term1 & term2
matches documents that contain both terms

modile & phone

term1 or term2 US or Europe
disjunction

term1 | term2
matches documents that contain term1 or

term2 Linux | Windows

term1 not term2 paper not journal
negation

term1 ~term2
matches documents that contain term1 but not

term2 software ~hardware

Table 2.4-2 Boolean queries syntax

Along with the standard Boolean queries, the CTXRULE index type grammar provides

proximity, stemming and theme functionality.

 Proximity operator NEAR (;)

The operator NEAR matches documents based on the proximity of two or more

query terms. The syntax of proximity queries is

near ((term1, term2,..., termn) , max_span , order)

term 1-n: the terms in the query separated by commas. The query terms can be single

words or phrases.

max_span (optional – default 100): the maximum size of a clump where clump is the

smallest group of words where all query terms occur. All clumps begin and erd with a

query term. max_span cannot be greater than 100.

order (optional – default FALSE): indicates whether terms are to be fourd in the same

order as in the query.

Alternatively proximity can be defined according to the syntax

term1 near term2

term1 ; term2

These queries are equivalent to the expression: near ((term1, term2) , 100,FALSE)

Information Alert System for Digital Libraries - 37 -

Example Description

near((personal, computers) , 4) matches documents that contain both terms "personal"
and "computers" in any order within a group of 4 wordsnear((monday, tuesday, wednesday), 20, TRUE)
matches documents that contain all terms "monday",

"tuesday", and "wednesday" in the order specified and
within a group of 20 words

windows near XP matches documents that contain both terms "windows",
"XP" in any order within a group of 100 words near((digital signal processing, VLSI), 89, FALSE) matches documents that contain both terms "digital

signal processing", "VLSI" within a group of 89 words

Table 2.4-3 Examples of Proximity queries

 Stem operator ($)

The stemming functionality enables us request terms that have the same linguistic

root as the query term. The stem operator ($) expands a query to include all terms

having the same stem or root word as the specified term.

Example Description

$scream matches documents that contain at least one of the terms
"scream","screamed", "screaming"

$library matches documents that contain at least one of the terms
"library", libraries", "librarian"

$sing matches documents that contain at least one of the terms
"sing", sang", "sang"

Table 2.4-4 Examples of Stemming queries

The definition of the algorithm used for stemming is not available in the manuals

provided by Oracle [23-25, 27]. The Oracle Text stemmer supports the following

languages: English, French, Spanish, Italian, German, and Dutch.

 Theme indexing

Oracle supplies a database of themes in English or French. Themes are tokens

organized hierarchically and connected to each other with relations that describe their

semantic content. Oracle Text supports the typical relations used by thesauri and is

compliant with the ISO-2788 [28] and ANSI Z39.19 (1993) [29] standards. The relation

definitions are reproduced from the ANSI Z39.19 specification [29].

These relations are

• A Synonym (SYN) relation defines equivalence between two terms and connects

terms with very close meaning like the ones bellow.
scary SYN fear, hiddenly SYN secrecy, drive-up SYN automobiles, lounge SYN rest.

Information Alert System for Digital Libraries - 38 -

• A Broader Term (BT) relation defines a superordinate semantic class that the first

concept belongs to. For example
lordships BT royalty and aristocracy, American Revolution BT military wars,

backward motion BT withdrawal, Bible BT sacred texts and objects.

• A Narrower Term (NT) relation defines a subordinate semantic class that the first

concept includes. For example.
Roman Catholicism NT papism, computers NT laptops, behaviour NT sympathy,

organized crime NT gangsters, cosmology NT astronomy

The NT and BT relations are symmetric. If and only if X BT Y, then Y NT X.

• A Related Term (RT) relation implies semantic overlap (there is an element of

meaning common to both terms). For example.

Information Alert System for Digital Libraries - 39 -

 Operator ABOUT

Another operator that uses the supplied thesaurus to expand theme queries is the

ABOUT(phrase) statement. The phrase parameter can be a single word or a phrase, or

a string of words in free text format. If the phrase parameter does match exactly a stored

concept Oracle normalizes it and finds the stored concepts closer to the original string.

For example before expansion “politic” is normalized to “politics” and “national” to

“nations”. If normalization fails to find a concept describing phrase parameter the query

is satisfied only in exact phrase match. Otherwise Oracle Text expands the queries

using synonyms and narrower terms of the concepts inside the parentheses. The terms

of the expansion could be connected to the original term directly or via another

interjected term (expansion level > 1). The definition of the algorithm used for

normalization and query expansion is not available in the manuals provided by Oracle

[23-25, 27] and should be rather complex. We provide an example of the expansion of

the word “politics” instead.

Expansion terms are separated by commas. The word “and” in expansion terms is

not considered an operator.

Relation to term "politics" Expansions of the query ABOUT(politics)

narrower terms level 1
civil rights, elections and campaigns, political parties,
political scandals, political sciences, politicians, politicians
and activists, revolution and subversion, world politics

narrower terms level 2
civil liberties, elections, human rights, insurgents,
insurrectionary, insurrections, partisan politics,
revolutionaries, revolutionists, terrorism

narrower terms level 3 terrorist activities, terrorist incidents, terrorists
narrower terms level 1 of

"political advocacy" animal rights, consumer advocacy

narrower terms level 2 of
"political advocacy"

animal rights activists, animal rights movement, animal-
rights activists, consumer activists, consumer advocates,
consumer rights

both "politics" and "policymakers"
narrower terms of "government" policymakers

Table 2.4-6 Expansions of term "politics"

Important Notes:

i. An ABOUT statement cannot contain the proximity operator NEAR. For example the

query: “ NEAR((personal, computers) , 4) AND ABOUT(software) “ is not valid and

cannot be parsed.

ii. The phrase parameter in an ABOUT statement should be in lower case.

iii. Inside thesaural statements (SYN, BT, NT, RT and ABOUT) any reserved words like

(AND, OR, NOT, NEAR) are not considered operators but simple tokens.

Information Alert System for Digital Libraries - 40 -

 Operator precedence

Within query expressions with two operands, the operators have the following order

of evaluation from highest precedence to lowest: NEAR, NOT, AND, OR. For example:

Query Expression Order of Evaluation
w1 OR w2 AND w3 w1 OR (w2 AND w3)
w1 AND w2 OR w3 (w1 AND w2) OR w3

w1 NOT w2 AND w3 (w1 NOT w2) AND w3
w1 OR w2 NEAR w3 w1 OR (w2 NEAR w3)

w1 NOT w2 NEAR w3 w1 NOT (w2 NEAR w3)

Table 2.4-7 Operator precedence examples

Grouping characters can be used to control operator precedence. Grouping characters

are parenthesis () and brackets [].

2.4.4 Indexing the stored queries

Let us consider the relational simple schema defined in Section 2.4.2. Before filtering

the documents we must first index the queries in order to be able to collect matching

profiles. This is done with the following command:

CREATE INDEX profile_index on profiles(query)

INDEXTYPE IS ctxsys.ctxrule;

Information Alert System for Digital Libraries - 41 -

Error Description Query
missing parenthesis (software design
term2 missing international and
term1 missing or mathematics
about(...) and

near(...)

 in the same field about(management) and near((financial, planning),4)

operator between

term1 RDBMS and
near(...) missing RDBMS near((data, warehousing),6)

about is an operator journals about science

Table 2.4-8 Syntax error examples

Syntax errors cause index errors (upon index creation or synchronization) and then

filtering may not produce the expected results. Also indexing of null fields produce

errors. These errors can presented using a simple SELECT statement on the data

dictionary view CTX_USER_INDEX_ERRORS. This view contains four columns which

are name of the index, time of error, row id of error query and error message. This view

is very helpful for program debugging and database administration but not automatic

error detection on queries. Also detecting an error after the transaction is committed, is

not the optimal way to solve this problem. An application that lets users define their

profiles should include a mechanism that validates queries before insert/update

transactions (Sections 6.4-6.5). The main disadvantage of Oracle Text is that it does not

provide such functionality for the CTXRULE index.

2.4.5 Filtering

In order to filter the documents we use the SQL operator MATCHES. We use this

operator to find all rows in a query table that match a given document. The document

Information Alert System for Digital Libraries - 42 -

MATCHES returns 1 in case of matching and 0 for no match. This number

cannot be assigned to variable because MATCHES does not support functional

invocation. Τhis operator can only used in SELECT statement according to this syntax

using the greater than zero condition “>0”.

 select column1,column2,.. columnN from table

where MATCHES(column, document VARCHAR2 or CLOB)>0

To find all matching profiles of the schema 2.1.2 for a given document single_doc we

use the following procedure find_matching_profiles()

single_doc

Information Alert System for Digital Libraries - 43 -

To find matching profiles for all documents in the table, we use the procedure find_all

which uses a for…loop that calls the previous procedure on all documents.

create procedure find_all as

begin
for current_document in
 (select * from documents)
 loop
 dbms_output.put_line('Article:'|| current_document.article_id)

 find_matching_profiles(current_document);
 end loop;
end;

Instead of displaying the results on the screen we could have declared other actions

be performed, on every matching profile. The most common case in a complete filtering

application is to insert the primary keys of the results into another database table for

further processing by other database modules. Anyway, the important feature of the

MATCHES statement is the ability to find all matching profiles for a certain document

instead of periodically running the stored queries on the documents.

2.5 Conclusions

In this chapter we presented the previous developments on this topic that inspired

and helped us implement DLAlert. We evaluated popular Alerting Services on the web in

the area of Digital Libraries. Then we discussed DIAS, a distributed alert system for

digital libraries, and explained in detail its language of profiles and its functionality. We

presented the main facilities of the Z39.50 standard, used for publication record retrieval

from digital libraries. Finally, we introduced filtering application construction with Oracle

Text. In the rest of the dissertation we focus on the design and implementation of

DLAlert starting with an overview of the system.

Information Alert System for Digital Libraries - 44 -

Chapter 3
System Overview

In this the following Chapters we introduce the main design issues that concerned us

during the implementation of DLAlert. First we present an overview of its modules and all

related Oracle database features used. Then we give a brief manual for the interface of

DLAlert and the language supported.

3.1 DLAlert architecture

DLAlert, as a complete alerting service, consists of several components that

cooperate with each other, in order to achieve the desired function. The main parts of

this system are (shown in Figure 3.1-1):

 The Oracle Database is where the profiles and user data are stored. New

publication records are also inserted inside the database and stored temporarily

until the notification messages (e-mail) are produced and send to each user. The

RDBMS is the core functionality of DLAlert.

 The Observer is the component responsible for collecting new publication

records from a Z39.50 gateway (the TUC digital library), and inserting them into

the Oracle database.

 The Filtering module classifies incoming documents according to the users’

stored queries and finds matching profiles and related publication records.

 The Notifying module collects all matched profiles and sends a single message

for each user, containing the bibliographical attributes of the relevant publication.

The Observer, the Filtering and Notifying modules communicate with each other by

writing/reading from common records of the database. These modules are scheduled

to perform actions sequentially (see Chapter 8) so that the results from a previous

component are processed by the following one.

 The Application Server provides the necessary software infrastructure for

developing and deploying the middle tier of DLAlert. in addition to providing the

necessary forms for the transactions on the web (inserts/delete/updates of

profiles, user credentials), the Alerting Service must check the queries to be

Information Alert System for Digital Libraries - 45 -

stored for syntax errors and maintain user session state (every user has access

restricted to the profiles of his account).

•
•
•

another Z39.50 Gateway
•
•
•

Notifying
module

Filtering
module

stored queries

user e-mail, name

Observer

USER

WWW

new publications
data

Requests data on
new publications

notifications
data

Oracle
database

another DBMS

DBMS "Advance" via TCP/IP

Sends Records
components stored

in the database
and executed inside

the RDBMS environment

Web Application Server with
Apache Tomcat

or Oracle AS

inserts, updates, deletes
profiles, user credentials

TUC Digital Library
Z39.50 Gateway

describes his
fields of interest,

subscribes to service

receives e-mail

sends e-mail
via SMTP

Figure 3.1-1 DLAlert architecture

The other parts of this schema are:

 The Z39.50 Gateways and DBMS of Digital Libraries as described in Section 2.3.

Information Alert System for Digital Libraries - 46 -

3.2 Main Technologies used

The Oracle database is the core of DLAlert and most of the applications

programmatic code is stored, compiled and executed inside the database. Bellow we

explain the advantages of using Oracle RDBMS as the essential component of our

system.

 Nowadays most systems that require a robust and reliable centralized mechanism

to store and retrieve large amount of data utilize a database. One of the main

requirements of DLAlert is to be able to handle hundreds of thousands or millions

of user profiles and hundreds of new publication records every day in a way that

ensures the validity of the information stored. The necessity of using a database

that can achieve these standards is indisputable. Any reliable RDBMS system

provides functionalities that ensure data consistency and integrity, transaction

concurrency and scalability for handling large amount of information. Using a

software infrastructure like an RDBMS, the developer considers the

aforementioned issues solved, and he is mainly concentrated on the particular

requirements of his application.

 Oracle Text (as shown in Section 2.4) is a specialized tool provided by the Oracle

RDBMS which is able to provide document filtering techniques and profile

matching functionalities, necessary for DLAlert. Without these mechanisms we

should have constructed the filtering module of our system virtually from scratch.

Oracle Text is the key feature that persuaded us to choose Oracle RDBMS among

other equally reliable databases.

 PL/SQL [30-32] is Oracle's procedural extension to industry-standard SQL. Its

primary strength is in providing a server-side, robust procedural language. PL/SQL

code is stored and executed inside the Oracle RDBMS environment and is

responsible for the application’s actions that involve data processing. The

developer is able to construct procedures, functions and triggers using this

language. Logically related stored procedures, functions and object types can be

grouped into packages. The filtering and notifying module are PL/SQL packages.

 Oracle RDBMS provides PL/SQL Packages [33] useful for application developers.

In DLAlert two of them proved to be very helpful.

Information Alert System for Digital Libraries - 47 -

o UTL_SMTP is a package that provides functionality for sending e-mail

messages over SMTP from the database. We utilized UTL_SMTP for sending

the notifications on new publications to users.

o DBMS_JOB can be used to schedule the execution of Oracle packaged

procedures at a specific time and on a recurring basis. The collection of new

publication records, document filtering and notification of users are operations

of DLAlert that must be scheduled to run at certain intervals of time (for

example once a day). Also we have to ensure these actions are performed one

after the other so that the results a previous component are processed by the

following one. The main advantages of using DBMS_JOB instead of any

external scheduling application are security reasons (none can access the

database without permission). Another important functionality is that

DBMS_JOB can be programmed to detect unsuccessful completion of a

module, and re-schedule it ensuring the proper queue of actions.

 Java [34] is the most popular language used by application developers nowadays.

One of the main advantages of Oracle RDBMS [35-39] is the ability to integrate

Java classes inside the database and deploy them on a supplied Enterprise level

Java 2 platform (Oracle Java Server). The Java code which can be loaded as

either source or compiled (bytecode), is executed inside the database using the

internal Oracle Java Virtual Machine. The accesses to the database use the

server-side internal JDBC driver [35, 38], which means that the application can

handle faster large amount of data than any external process. The static methods

of any Java class can be declared stored procedures and can be even called from

PL/SQL code. Although Java is not as fast as PL/SQL in case of intensive data

access, is preferred if the application under development requires a complex

Information Alert System for Digital Libraries - 48 -

The other important component of DLAlert is the Application Server. The Application

Server provides a J2EE (Java 2 Enterprise Edition) platform for developing and

deploying web applications [40-42]. Multi-tiered applications (shown in Figure 3.2-1)

dominate today’s Internet. The client tier contains logic related to presentation and

requests for services. The application server contains business logic that reads and

writes data. In our case the Application Server provides the necessary dynamic web

pages and business logic for data transactions to the Client (profiles, user credentials),

restricts every users access to his account, checks queries for syntax errors and

produces the appropriate error messages in case of invalid profiles. The internal

architecture of the middle tier is explained in detail at Section 6.2.

Information Alert System for Digital Libraries - 49 -

Figure 3.3-1 DLAlert: Login screen

A registered user would type his e-mail/password and login into his account. An

unregistered user will click ‘Help’ for more information about DLAlert or will click ‘New

User’ and enter his credentials.

Figure 3.3-2 DLAlert: Welcome screen

Information Alert System for Digital Libraries - 50 -

In the ‘New User Registration’ screen (3.3-2) the user writes his e-mail address, his

first/last name and the preferred frequency of notifications. A similar screen appears

when a registered user wants to update his credentials.

Figure 3.3-3 DLAlert: Registration form

After the registration to the service the user is expected to enter his profiles. The

profiles define the user’s fields of interest. In Figure 3.3-4 we see the empty account of a

probably new user.

Figure 3.3-4 DLAlert: Empty account

Information Alert System for Digital Libraries - 51 -

In case the user has an account containing stored queries, a table with all of his

previously defined stored profiles appears. For convenience only the profile description

is displayed. The user can edit/delete his long-standing queries or enter new ones. In the

Figure 3.3-5 we see an account containing two profiles.

Figure 3.3-5 DLAlert: Profiles of the account

Suppose we enter a new profile. A form that allows us to type the profile name and

queries on all bibliographical attributes appears (see Figure 3.3-6). Text queries based

on a language (defined in next section) similar to the CTXRULE are allowed on sections:

Title, Series, Author, Publisher, Subject and Notes. The publication year, ISBN and ISSN

queries can contain only one number instead of keywords that will be found in the

incoming publication. Operators and terms in queries are case insensitive. For a profile

to be matched, all non-empty defined stored queries must be satisfied for a given

document. The Profile description doesn’t affect the matching publications of a profile. It

is considered a phrase that reminds to the user the purpose of entering the given profile.

In Figure 3.3-6 we can see a sample profile with name “books about Programming”.

The profile contains two queries. The text query “programming or Java or C” requests

documents that contain at least one of the words “programming”, ”Java” or “C” in the

Subject bibliographical attribute. The query “2002” on the publication year field restricts

the returned publications of the profile to those published in year 2002. So the desired

document must contain at least one of the words entered in the text query and be

published in the year 2002.

Information Alert System for Digital Libraries - 52 -

Figure 3.3-6 DLAlert: Sample profile

Information Alert System for Digital Libraries - 53 -

Figure 3.3-7 DLAlert: Wrong profile

Figure 3.3-8 DLAlert: Another profile

Information Alert System for Digital Libraries - 55 -

3.4 The language of the text queries

The language of the text queries (referencing the Title, Series, Author, Publisher,

Subject, Notes bibliographical attributes) is a subset of the CTXRULE grammar (see

Section 2.4.3). The available query types provided by the interface of DLAlert are shown

in Table 3-4.1. Terms are considered words or phrases (series of tokens containing no

operators). The queries are not case sensitive.

Syntax Description Examples

term1 documents that contain term1. TITLE: mathematical programming

term1 and term2 documents that contain both terms. TITLE: agents and (artificial intelligence)

term1 or term2 documents that contain term1 or term2. AUTHOR: (Bradley Brown) or Beck

term1 not term2 documents that contain term1 but not term2. NOTES: science not electronics

documents that contain all terms

within a set of words with size max

Order of terms is not specified.

near((term1,term2,...
,termn),max)

Limitation: max cannot be greater than 99.

TITLE: near((personal, computers) , 4)

documents that contain concepts that

are related to your query word or phrase.

Limitation : about(...) and near(...) cannot

about(term)

occur both in the same field.

SUBJECT: about(engineering)

documents that contain words with $term

the same linguistic root as term.

SUBJECT: $library

Information Alert System for Digital Libraries - 56 -

Category Example

complex Boolean statements TITLE: (mine or disasters) not industry

proximity and Boolean operators TITLE: near((mine, disasters) , 5) and industry

concept queries and Boolean operators SUBJECT: about(engineering) or software not databases

stemmed words and Boolean operators NOTES: digital and $library

stemmed words and proximity NOTES: software not near((advanced, $electronics) , 3)

Table 3.4-2 Complex queries

Queries like those shown in table 3.4-3 are wrong and produce syntax error in case

the user tries to enter one of them.

Error type Example

Information Alert System for Digital Libraries - 57 -

Chapter 4
Database Schema

In this chapter we present in detail the design of the database schema of DLAlert. In

addition to the basic requirements analysis and the Entity-Relation diagram we also deal

with issues like primary-foreign key consistency and the necessary CTXRULE indices

creation and maintenance (see also Section 2.4).

4.1 Requirements analysis

matchesN

defines

N

1

M

user

Profile
(set of queries on document's

bibliographical attributes)

Publication
(bibiographical attributes

of acquired document)

Figure 4.1-1 A high level Entity-Relationship diagram

 The requirements of DLAlert for data resources involve only three entities (as shown

in Figure 4.1-1).

 The entity user contains all necessary user credentials and information. These are

the user’s e-mail, first/last name and the password for his login into DLAlert. The

request of password at user login ensures that all users have restricted access to

their accounts. Another helpful feature is the desired frequency of notifications.

DLAlert collects all matching documents of a certain user and sends a single

message to him at the end of the desired interval (‘DAY’, ’WEEK’, ’MONTH’)

containing all relevant bibliographical attributes. It is considered annoying to send a

new e-mail message every time a new matching publication arrives.

Information Alert System for Digital Libraries - 58 -

 The entity publication contains all necessary bibliographical attributes of

Information Alert System for Digital Libraries - 59 -

bibliographical attributes Title, Series, Author, Publisher, Subject, Notes,

Publication year, ISBN and ISSN. For a profile to be matched, all not null queries

must be satisfied for a given document. A user can only access and define the

profiles of his account. User also can specify a short string describing each profile.

This description does affect the set of matching documents but allows a single user

to define many profiles in a convenient way.

4.2 Relational schema

Foreign key
public_id

Foreign key
email

profile
email
profile_desc
title_query
series_query
author_query
publisher_query
subject_query
notes_query
pub_year_query
bookn_query
serialn_query

notification
public_id
email
profile_desc

publication
public_id
title
series
author
publisher
subject
notes
pub_year
bookn
serialn

Foreign key
(email, profile_desc)

user
email
first_name
last_name
password
frequency

Figure 4.2-1 Relational schema

Considering the E-R diagram and the requirements analysis of Section 4.1, we

construct the relational schema in Figure 4.2-1. The email address is unique for every

user (primary key) and is also stored as foreign key in the table of profiles in order to

restrict user access into his account. The primary key in profiles table consists of two

columns (email, profile_desc) so that the profile description and the user’s

account email, uniquely identifies a profile. The primary key of publications table

(public_id) is the local number of UNIMARC record (field 001) in TUC’s Library

(Sections 2.3.4 - 2.3.6).

Information Alert System for Digital Libraries - 60 -

In order to represent the relation “publication matches profile” (M to N) we declare a

table (notifications) holding the necessary primary keys of the related tables. The

primary key of table profiles (email, profile_desc) is considered foreign key for the

notifications table. The filtering module populates this table with the primary keys of the

satisfied profiles and matching documents. The notification module uses these records

to send messages with the matching document’s bibliographical attributes.

All attributes are declared strings of variable length (data varchar2 number) except

those named public_id, pub_year and pub_year_query which are integers (data

type number). The value of attribute frequency (users) can be either ‘DAY’, ’YEAR’ or

MONTH’ (CHECK constraint).

The tables of profiles and users are accessed through the web Graphical User

Interface. The tables holding publication and notification records are populated and

accessed only by stored procedures of the Oracle RDBMS.

4.3 Key consistency and atomic transactions

Suppose a user wants to update his email and his account contains profiles, and/or

notifications on publications not send as messages yet. In other words the primary key

value of a record, in users table must be changed, and this value is also stored as

foreign key into another table (profiles, notifications). In all cases when a

transaction references more than one inserts/ updates/ deletes and either all sub-

operations must be committed successfully, or none of them, we consider this

transaction atomic. The atomicity of actions like these is satisfied by using PL/SQL

stored procedures. In our case we declared a package (named “transactions”) that

handles updates of the email or profile_desc attributes (both part of foreign key).

Also handles deletes on the profiles, users tables atomically. For example

consider the scenario that user with email del_email unsubscribes from DLAlert. We

execute the transaction using this procedure.
procedure delete_user(del_email varchar2) is

 pragma autonomous_transaction;

begin

 delete notifications where email=del_email;

 delete profiles where email=del_email;

 delete users where email=del_email;

 commit;

Information Alert System for Digital Libraries - 61 -

end delete_user;

When user unsubscribes, his data must be deleted from three tables user, profiles,

notifications. The keyword ”pragma autonomous_transaction;” ensures that

either all three deletes in the PL/SQL block commit or none of them.

The specifications of other procedures of this package are

procedure update_user(old_email varchar2 ,

 new_email varchar2);

Called if email value in a record, is changed from old_email to new_email.

Declares the update of the e-mail value on the tables (profiles, notifications,

users) as an atomic transaction.

procedure update_profile(user_email varchar2,

 old_desc varchar2,

 new_desc varchar2);

Called if profile description value in a record, is changed from old_desc to

new_desc. Declares the update of the value on the tables (profiles,

notifications) as an atomic transaction.

procedure delete_profile(user_email varchar2,

 del_desc varchar2);

Called if profile with primary key value (user_email, del_desc), is deleted.

Declares the deletion of a profile on the tables (profiles, notifications) as an

atomic transaction.

4.4 Indexing of the stored queries

The next step is to declare columns that contain stored queries and create the

necessary CTXRULE indices. As shown in Section 2.4.4, we must first index the queries

in order to be able to collect matching profiles. The bibliographical attributes (Title,

Series, Author, Publisher, Subject, Notes) contain plain text and the cor
0.ponding

stored queries are generated using the CTXRULE grammar and reference these

sections. The queries on ISBN, ISSN are ten and eight digit strings
0.pectively (0-9 or

X). Many records of TUC’s Digital Library have multiple ISBN and/or ISSN numbers and

Information Alert System for Digital Libraries - 62 -

the number included in the query must be equal to one them. A solution to this problem

was to index also queries on ISBN, ISSN numbers. The MATCHES operator is able find

matching publications with multiple book/serial identifiers. The publication year attribute

has always a single value and text queries on this attribute, using the CTXRULE

grammar, are usually meaningless. Instead of using the MATCHES predicate to

evaluate satisfied queries on publication year, we use the standard SQL statement (‘=’)

of equality in a WHERE clause. So we have to create eight indices on the columns

containing stored queries (all except pub_year_query) that use the CTXRULE

functionality.

As we showed in Section 2.4.4 indexing null queries is produces index errors. Given

the structure of DLAlert and the queries we want to provide, we do not expect the user to

describe every attribute of the requested document but at least one. So we have to

choose a non reserved symbol to be inserted in0.4042in fields that the user does not

specify a condition. We choose this symbol to be the less than symbol (“<”) because is

not associated with any functionality or operator. Also this character is skipped by the

indexing engine so the number of columns containing this symbol does not affect the

size of the index. We construct a simple trigger that is executed before every insert or

update on the table profiles and inserts the symbol “<” in0.4042of null. This trigger has

if…then rules for every stored query like this.

if (:new.title_query is NULL) then

 :new.title_query:='<';

 end if;

Queries that contain only the symbol “<” are displayed as empty strings on the Graphical

User interface (see Sections 6.4 - 6.5) so that this mechanism is transparent to the user.

In order to ensure that filtering results are correct and consistent with the queries, the

indices should be synchronized before filtering with the base table after DML actions.

For this purpose we declared the package “indexing” with a procedure (“sync”) that

synchronizes all CTXRULE indices sequentially before any execution of the filtering

module. In DLAlert we assume that index synchronization and filtering are executed at

least one time at the end of the day.

Information Alert System for Digital Libraries - 63 -

4.5 Conclusions

In the last chapter we analyzed the requirements that the database used by DLAlert

must meet. We explained in detail the database schema and preceded on to particular

design issues (atomic transactions and index creation). In the next section we present

the main PL/SQL packages of the system: the filtering and notifying module.

Information Alert System for Digital Libraries - 64 -

Chapter 5
PL/SQL packages

In this chapter we present the filtering and notification modules of DLAlert

implemented as PL/SQL packages. Packages are constructs that allow us to logically

group procedures, functions, object types, and items into a single database object.

PL/SQL package have similar functionality as classes in object oriented languages (Java

or C++), except every package is instantiated only once during a database session.

5.1 Filtering module
Suppose we have the table publications in the database schema of Figure 4.2-1

populated with bibliographic attributes of documents and the profiles table withqueries

of the CTXRULE grammar. In order to be able to produce the necessary messages, we

must first find the matched profiles for every document. A profile is matched if all set

conditions on the corresponding attributes of the document are satisfied.

5.1.1 The algorwitm

As we have shown in Section 2.4.4 to find all matched profiles for a single document

we use the following algorwitm. current_publication is a parameter for the

procedure find_matched_profiles.

procedure find_matched_profiles

(current_publication publications%rowtype) is

begin

for matched_profile in
 (
 SELECT <needed columns>
 FROM <table holding the profiles>
 …
 MATCHES condition(s)
)

 loop

 ACTION EXECUTED FOR EVERY matched_profile
 end loop;

end;

Information Alert System for Digital Libraries - 65 -

First we have to construct the appropriate SELECT statement that collects all matching

profiles. If the variable holding the given publication is named current_publication

and we collect all matched profiles according to the title attribute and corresponding

query we have
select email,profile_desc from profiles

where matches(title_query, current_publication.title)>0

Suppose now we want find profiles that satisfy not only the query on the attribute title

Information Alert System for Digital Libraries - 66 -

There are only two possible solutions to our problem. The first one is treating results of

SELECT clauses as sets and using the intersection of the intermediate results of the

partially satisfied profiles. This can be done as follows:

(select email,profile_desc from profiles
 matches(title_query, current_publication.title) >0)

intersect

(select email,profile_desc from profiles
 matches(title_query, current_publication.author) >0)
 …

 …

intersect

(select email,profile_desc from profiles
 matches(serialn_query, current_publication.serialn) >0)

Another solution is using the intermediate results and issuing over them a SELECT

clause that ensures their primary keys’ equality. This can be done as follows:

select Title_Results.email,Title_Results.profile_desc from

 (select email,profile_desc from profiles
 where matches(title_query,current_publication.title)>0
) Title_Results ,

 (select email,profile_desc from profiles
 where matches(series_query,current_publication.series)>0
) Series_Results ,
 …
 …
 …
 (select email,profile_desc from profiles
 where matches(serialn_query,current_publication.serialn)>0
) Serialn_Results

where
 and Title_Results.email=Series_Results.email
 and Title_Results.profile_desc=Series_Results.profile_desc
 …

…
…

 and Title_Results.email=Serialn_Results.email
 and Title_Results.profile_desc=Serialn_Results.profile_desc

Information Alert System for Digital Libraries - 67 -

Both of the SQL statements result the same performance measures and are

processed by the Oracle SQL query processor in a similar way.

In Section 4.4 we explained that null fields produce index errors so we choose to use

the symbol ‘<’ instead of empty query cells. The symbol ‘<’ is skipped by the Lexer

during the indexing process so it does not appear in the indices. So the intermediate

SELECT clause of the profiles, that match a single attribute in the previous SQL

statements, taking in account the cells described as null queries is (for example the

title_query with the title attribute) are implemented as follows.

 (select email,profile_desc from profiles
 where matches(title_query, current_publication.title)>0)

 union

 (select email,profile_desc from profiles
 where title_query = '<')

The action executed for every matched_profile is an insert of the primary keys of

the matched profile and relevant publication into the notifications table.
insert into notifications(public_id,email,profile_desc)

values(current_publication.public_id,

 matched_profile.email,

 matched_profile.profile_desc

);

We also do not forget to issue the command commit; so the transaction is committed.

A commit; statement ends a transaction and makes permanent any changes

performed. This statement is preferably issued outside the for…loop and executed

once as a commit’s response time is fairly flat, regardless of the transaction size.

To find matching profiles for all publications another for…loop is needed to call

the previous procedure on all documents.
for all_documents in

 (
 select * from publications;
)

 loop
 find_matched_profiles (all_documents)
 end loop;

Information Alert System for Digital Libraries - 68 -

5.2 Notifying module

Once the notifications table is populated with matching profiles and publications, all

we have to do is to summarize the matched documents for every user and send him a

single e-mail. The preferred frequency of notifications does not affect the filtering

process but all new publications are filtered against all profiles but the frequency controls

the time the e-mail message will be sent. For sending e-mail messages from the

database we use supplied package UTL_SMTP. We first present the basic features of

this package and then we describe the whole functionality or our module.

5.2.1 The UTL_SMTP package

SMTP [43] stands for Simple Mail Transfer Protocol. This is the protocol that was

developed to allow people around the world to exchange electronic mail. UTL_SMTP [30,

33, 35, 40] is an email utility that provides us with the ability to email from the database.

In other words, we can dynamically generate email from the database and we can

dynamically send it to different people based on different criteria. The message

constructed can be sent as a standard ASCII text email or an enhanced HTML email.

A SMTP connection is initiated by a call to open_connection, which returns a SMTP

connection. After a connection is established, the following procedure calls are required

to send a mail (we do not specify the complete syntax):

helo() or ehlo() - identify the domain of the sender

mail() - start a mail, specify the sender

rcpt() - specify the recipient

open_data() - start the mail body

write_data() - write the mail header/body (multiple calls)

close_data() - close the mail body and send the mail

quit() - close the SMTP connection

Using these commands we define a rather complex PL/SQL procedure inside the

notifying module’s package which has the following syntax.
procedure send_mail

 (in_mail_server, in_sender_email,

in_recipient_email, in_recipient_name,

 in_html_flg, in_subject,

 in_importance, in_body);

Information Alert System for Digital Libraries - 69 -

Information Alert System for Digital Libraries - 70 -

Text := htf.fontOpen(cface => 'Arial Narrow', csize => '5')

|| 'T.U.C Library Alert'

|| htf.fontClose

Assigns to the string Text the value :

 T.U.C Library Alert

We do not present in detail the functions used, because generating HTML from PL/SQL

code is a rather complex issue. The algorithm that collects all matched publications for a

given user, and generates a message is.

procedure notify_user(user_email varchar2) is

begin

--GENERATING THE HEADER OF THE MESSAGE

for matched_publication in(

 select publications.*
 from publications,
 (select public_id
 from notifications
 where email=user_email

group by public_id) matched
 where matched.public_id=publications.public_id

)

loop
 --APPEND ALL NON-EMPTY BIBLOGRAPHICAL ATTRIBUTES

--TO THE MESSAGE FOR EVERY matched_publication
end loop;

 --FINISHING AND SENDING THE MESSAGE
 --USING THE send_mail PROCEDURE.
end;

user_email is a input string containing e-mail of the user to notified.

We concentrate on the SQL SELECT clause used.

The clause
(select public_id

 from notifications
 where email=user_email

 group by public_id) matched

Information Alert System for Digital Libraries - 72 -

If we want to notify users according to their desired frequency of notifications we must

construct the appropriate procedures that notify all users that have defined the same

interval between e-mail messages. For example if we want to notify all users that want to

be sent e-mail messages every day, in case there is a matching publication, instead of

the previous SELECT statement that controls the for…loop we issue.
 select users.email

from notifications, users
where users.frequency=’DAY’

 and users.email=notifications.email
group by users.email

Therefore we send messages to each category of users separately. For example the

group of users that selected day as preferred frequency, are notified each day, those

who preferred week once a week etc. As we said in the previous section the profiles are

not filtered separately but the frequency of notifications affects only the time the

messages will be sent to the user. In Chapter 9 we explain in more detail the scheduling

of each module.

5.3 Performance

We tried to measure the performance of DLAlert. Our goal was to ensure that the

time needed for filtering would be acceptable if we consider that this process would be

executed once a day. Our measures represent the worst case scenario on the server of

the Intelligent Systems Laboratory (two Pentium III processors, 1 GB RAM). We took

documents from the work of Theodoros Koutris and Christos Tryfonopoulos on a DIAS

implementation [53,54]. We also generated profiles on random keywords encountered in

those documents, using the profile generator of DIAS of the same implementation (only

Boolean and proximity statements) and parsed them into equivalent CTXRULE

expressions.

The time taken for indexing 340082 complex stored queries (that is 100000 profiles

with 1 to 4 stored queries on attributes each) in the server of the Intelligent Systems

Laboratory was approximately 10 minutes. We do not measure the time taken to insert

the profiles. This was considered a quite satisfactory performance measure since

indexing 340082 stored queries means that the are 340082 new queries (inserts or

updates) since the last index synchronization (last day for example) which is most

unlikely to happen even for the popular alerting applications we described in Section 2.1.

Information Alert System for Digital Libraries - 73 -

Assuming that index synchronization is executed once a day, we are able to store an

even larger amount of profiles. The time taken for roughly the one tenth of the queries (

3300), was approximately 2 minutes which means that time required is not a linear

function of the profiles inserted.

As stated by on the “Oracle Text Technical Overview” [27], CTXRULE query

performance depends mainly on the size and number documents. As these factors

increase, there are more unique words, each of which results in a query on the index.

Performance is also affected by number of unique rules indexed and the complexity of

stored queries. However, the number of unique rules has much less impact on query

performance than size of the document.

The SQL Query that collects matching profiles is rather complex in both cases. The

time taken for filtering 84 documents against 340082 stored queries (that is 100000

profiles with 1 to 4 stored queries on attributes each) in the server of the Intelligence

Laboratory was approximately 13 minutes in both of the previous implementations. The

size of an attribute of a document could vary from a small amount of to a few thousands

of words. The total size of all documents (which is the most important factor) was 3.5

Mbytes (approximately 380.000 words) which is considered a very large amount of

words for filtering. In the actual implementation of DLAlert when records are retrieved

from the Digital Library, the average record size is much smaller, since bibliographic

attributes are short strings usually. Even assuming that filtering, which is executed once

a day requires roughly 13 minutes on average, this time is fairly acceptable for the

purposes of our application. Oracle states that the expected response time for filtering

64337 words against 16000 indexed queries is approximately 20 sec. In Chapter 9 we

present techniques, proposed for future work on DLAlert that will reduce this time further.

We have to underline that filtering using MATCHES is always a CPU time consuming

task and in the server we used for development, there many other processes running all

the time. Also we did not utilize any additional functionality provided by Oracle that

speeds up the overall database performance. However our goal was to roughly estimate

the time needed for filtering and indexing, given the usual workload on the server of the

Intelligence Laboratory and decide whether DLAlert could be deployed on this computer.

Our measures do not evaluate the overall performance of the Oracle Text.

Information Alert System for Digital Libraries - 74 -

5.4 Conclusions

We explained in detail the essential PL/SQL components of DLAlert, the filtering and

the notifying module. The filtering module finds all matched profiles for every publication

and stores the primary keys of those rows in a table. The notifying module processes

those data, produces and sends dynamic HTML e-mail messages to each user

containing the bibliographical attributes of all matching publications. In the next chapter

we present, the Graphical User Interface of DLAlert.

Information Alert System for Digital Libraries - 75 -

Chapter 6
The Graphical User Interface

In this chapter we present the GUI of DLAlert. We start with an overview of this

component and continue with particular technical issues and implementation details. The

URL of DLAlert is http://www.intelligence.tuc.gr/alert/login.html .

6.1 Middle application tier architecture

In this section we explain in detailed the 3-tiered architecture of our web application,

Information Alert System for Digital Libraries - 76 -

 The Web tier generates presentation logic, accepts user input from HTML and generates

appropriate responses for the user. We implement this tier as pages created with Java

Server Pages (JSP) [45, 46] technology on the application server. JSP’s simplify the

development of dynamic Web pages. JSP technology enables us to mix regular, static

HTML with dynamically generated content. The parts that are generated dynamically are

marked with special HTML-like tags and contain Java code.

Apart from the standard JSP tags, in our application we used the Oracle9iAS

Containers for J2EE (OC4J) Custom Tag Library for SQL, provided by Oracle with the

Oracle9i Application Server [40, 47]. A tag library defines a collection of custom actions

for JavaServer Pages. OC4J is a framework for rapid JSP development. OC4J tags

related to database access, support functionality for opening/closing a database

connection, executing a query or any other SQL statement (DML or DDL) within JSP

code. Except the standard dynamic pages related to presentation, we have constructed

JSP’s, not visible to the user, that process transactions on user credentials and already

validated profiles. Although OC4J functionality is provided with the Oracle AS, the

applications developed with this framework, can be deployed into any other application

server that supports JavaServer Pages technology.

 The Business Tier implements business logic related to the user’s session and is

developed using Enterprise JavaBeans (EJB) Technology. An EJB is a server-side web

component, written in Java that encapsulates the business logic of an application. In

DLAlert this functionality includes user authentication, profile validation and data retrieval

(user credentials and profiles) from the database. Also atomic transactions that

update/delete foreign keys and require stored procedures calls (see package

‘transactions’ Section 4.3) are handled by the EJB. A stateful session bean is an EJB

Information Alert System for Digital Libraries - 77 -

JavaCC generates source code for parsers using LL(k) grammars. We explain in detail

the implementation of syntax checking in Section 6.4.

We could have also included all transaction handling functionality inside the EJB

instead of using the OC4J custom tag library, but applications that use this framework

can easier be developed and maintained. However the JSP’s interact with the EJB in a

way that ensures security and isolation of the user’s session.

 The Web and Business Tier communicate with each other using Remote Method

Invocation (RMI). RMI is a Java based Application Programming Interface (API) for

distributed object computing and Web connectivity. RMI allows an application to obtain a

reference to an object that exists elsewhere on the network but then invoke methods on

that object as though it existed locally. So, the web and business tiers can be

implemented in different J2EE platforms, although in our case they are deployed in the

same application server.

 The Middle Application Tier communicates with the database using the Java Database

Connectivity interface (JDBC) [35, 38, 40]. JDBC API is a specification for database

connectivity using Java. Software vendors (like Oracle) produce their own JDBC drivers

that implement the API specification in a greater or lesser degree, but all of them support

a common set of interfaces. Thus the way the programmer interacts with the database,

is to some extent independent to the JDBC driver used.

 The Database (also called EIS: Enterprise Information System) tier includes the RDBMS

infrastructure (both data and stored procedures). We have already explained in detail the

role of the RDBMS in Chapter 3.

6.2 The Enterprise Java Bean

In the next sections we concentrate on the business logic of DLAlert. First we present

the main class used as an Enterprise Java Bean.

The class of the EJB is called ‘LoginBean’ and maintains login and account

information of the user session. The main private fields of this class are:

 JDBC related fields.

o java.sql.Connection conn the JDBC connection to the database.

o java.sql.Statement stmt the SQL statement to executed
 Database schema related fields.

o java.lang.String dbUser the Username for database schema (constant)

Information Alert System for Digital Libraries - 78 -

o java.lang.String dbPass the Password for the database schema (constant)

o java.lang.String dbURL the URL of the database (constant)
 Account related fields.

o java.lang.String username the username of the account (e-mail)

o java.lang.String password the password for the account
o java.lang.String[] ProfileArray

An array of strings with the profile descriptions of all profiles inside the account

Objects representing entities inside the database.
o ReadProfile ResultProfile

Object representing the profile to be inserted/updated or the profile read from the database. This
object holds all the queries of

Information Alert System for Digital Libraries - 79 -

Profile validation related methods (explained in Section 6.6).
o ReadProfile getReadProfile(java.lang.String ProfileDesc)

Returns an object holding all queries of the profile with name ProfileDesc. Calls the

constructor of ReadProfile class.
o StoreProfile getStoreProfile()

Returns a profile to be stored, already parsed.
o StoreProfile getStoreProfile(…)

Constructs, parses and returns the parsed profile to be stored as an object. Calls the constructor of

StoreProfile class.

Methods that prevent primary key constraint violation error.
o Boolean ProfileExists(java.lang.String NewProfileName)

Returns true if profile with description NewProfileName already exists inside the user’s

account. Prevents primary key constraint violation on the table profiles.
o Boolean UserExists(java.lang.String NewEmail)

Returns true if user with e-mail NewEmail already exists. Checks before new user

registration/credentials update.

Methods that represent atomic transactions (see Section 4.3) – call PL/SQL stored

procedures of package ‘transactions’.
o void DeleteProfile(java.lang.String DelProfileName)

Deletes a profile inside the account of the user with name DelProfileName.
o void DeleteUser()

Deletes all user information from the database - unsubscription
o void UpdateUser(java.lang.String NewEmail)

Updates current user’s e-mail to NewEmail .
o void UpdateProfileDesc(java.lang.String OldProfileName,

 java.lang.String NewProfileName)

Updates profile profile name of profile OldProfileName inside the account with profile
NewProfileName

Information Alert System for Digital Libraries - 80 -

6.3 OC4J custom tag library

Transactions can be declared inside JavaServer Pages. These transactions use

OC4J custom tag library for SQL functionality.

The tags used from this library are:

We use the dbOpen tag to open a database connection for subsequent SQL operations:

<database:dbOpen

 [connId = "connection_id"]

 [scope = "page" | "request" | "scope" | "application"]

 user = "username"

 password = "password"

 URL = "databaseURL"

 [commitOnClose = "true" | "false"] >

… OPTIONALLY JSP CODE …

</database:dbOpen>

Parameters :

o connId -- Optionally used to specify an ID name for the connection. You can then

reference this ID in subsequent tags such as dbExecute. Alternatively, we can nest

dbExecute tags inside the dbOpen tag.

o scope (used only with a connId) – We use this to specify the desired scope of the

connection instance. The default is page scope.

o user – the username of the database schema.

o password – the password for the database schema.

o URL – the URL of the RDBMS.

o commitOnClose -- "true" for an automatic SQL commit when the connection is

closed or goes out of scope. The default setting is “false” for automatic rollback on

connection close.

We use the dbExecute tag to execute a single DDL or DML statsment inside the

tag dbOpen or outside of it using the same connId and scope parameters. The syntax

for this tag is.

Information Alert System for Digital Libraries - 81 -

<database:dbExecute

 [connId = "connection_id"]

 [scope = "page" | "request" | "scope" | "application"]

 … DML or DDL statement (one only)…

</database:dbExecute >

We use the dbClose outside the
dbOpen tag to explicitly terminate a database

connection. We use the same parameters defined in the dbOpen to reference the same

connection.

<database:dbClose connId = "connection_id"

 [scope = "page" | "request" | "scope" | "application"] />

The OC4J includes many other useful tags that we did not use in DLAlert and are not

referenced in this dissertation. For a complete reference of this library read [48, 49].

6.4 Preventing CTXRULE index errors

Before explaining in detail the components that store/read profiles from the database

we must introduce the mechanism that validates profiles. The text queries on

bibliographical attributes (Title, Series, Publisher, Subject, Notes) are generated

according to the CTXRULE grammar. The invalid profiles should not be inserted into the

database but rejected by the web interface. The user is not allowed to define wrong

queries, else an error message appears. There are several restrictions on the CTXRULE

grammar. For each of the cases bellow, an index error appears.

 Queries that contain obvious syntax errors like unclosed parentheses, missing term

or missing operator.

Error Description Query
missing parenthesis (information systems
Term2 missing security and
Term1 missing or mathematics
operator between term1 RDBMS and
near(...) missing RDBMS near((data, warehousing),6)

Table 6.4-1 Wrong queries

Information Alert System for Digital Libraries - 82 -

Information Alert System for Digital Libraries - 83 -

Rest of reserved operators

Operator Symbol Meaning Operator Symbol Meaning
AND & Boolean and (none) $ stem
OR | Boolean or ABOUT (none) related concepts
NOT ~ Boolean and-not (none) () grouping characters
NEAR ; proximity (none) [] grouping characters

We have decided to use only word operators when possible (AND, OR, NOT, NEAR).

Also we do not use ‘[]’ as grouping characters. The stemming character ($) is the only

symbol operator used.

Therefore analyzing the requirements of our application we conclude that we must

implement a mechanism that escapes or rejects the following reserved words and

symbols.

o Escaped reserved words : ACCUM, BT, BTG, BTI, BTP, FUZZY, HASPATH,

INPATH, MINUS, NT, NTG, NTI, NTP, PT, RT, SQE, SYN, TR, TRSYN, TT,

WITHIN .

o Escaped symbols: &, ? , - , ; , ~ , > , * , %.
o Any other special character or symbol is omitted.

The CTXRULE index contains only keywords and escaped symbols are never indexed

by default. Therefore including an escaped special symbol in a query does not affect the

filtering results. Special symbols are usually treated as token delimiters by the index

engine by default.

We could not expect the user to be an expert on the CTXRULE language so we must

construct a parser that automatically escapes reserved tokens. This functionality should

not be visible to the user so that characters { } \ added by the parser are not visible from

the web GUI.

 Empty Queries.

As we said empty cells in profiles are substituted by the symbol <. This character is

skipped by the indexing engine so it is not included in the index. This symbol also

should not be visible from the web GUI.

Information Alert System for Digital Libraries - 84 -

As a conclusion, we have constructed a parser that is executed before storing profiles

inside the database:

o Checks queries for syntax errors.

o Allows only two digits on the proximity parameter (< 100).

o Allows only one of the statements about(…) or near(…) in the same text query.

o Turns themes inside about(…) clauses to lower-case.

o Escapes reserved words and symbols.

To implement such functionality we used JavaCC, a compiler generator for Java.

JavaCC processes a text file that defines the grammar and the semantic actions of the

compiler, and generates the appropriate source Java code. To construct this parser we

have used the following LL(1) grammar. We must underline that this grammar does not

define the actual CTXRULE

Information Alert System for Digital Libraries - 85 -

(6) _ group left or exp right→

A group of expressions starts and ends with parentheses.

(7)

Information Alert System for Digital Libraries - 86 -

6.5 Parsing the text queries

As a conclusion to the previous section, we need a mechanism that parses the

profiles and produces error messages. If a user tries to insert or update a profile that

contains an invalid query, the application should be able to point out the syntax error. If

the form is always updated with data from the RDBMS, in case of syntax error we will

not be to provide such functionality because the wrong query will be lost. Therefore we

must implement an object that holds the values of the profiles. The session EJB will

decide whether the dynamic JSP displayed on screen, contains queries read from

database, a profile that was not successfully inserted / updated or even empty text fields

in case of new profile. We also assume the profiles already in the database are valid and

should not be re-parsed (unless the user tries update).

StoreProfile

ReadProfile

Profile

Figure 6.5-1 Class Hierarchy

For this purpose we have constructed a class hierarchy as shown in Figure 6.6-1.

The arrows represent an “is a” relation.

 The class Profile is an abstract class and cannot be instantiated.

Information Alert System for Digital Libraries - 87 -

 The class StoreProfile includes all fields and methods of ReadProfile. A

StoreProfile object is instantiated with fields containing parsed text queries,

which are defined by the user. The constructor method of StoreProfile calls the

JavaCC generated parser which performs the necessary semantic actions on all text

query fields, before assigning the strings to the private variables. Among the

methods inherited from ReadProfile the class includes the following ones.

o public Boolean isValid(int QueryIndex)

Returns true if the referenced text query is valid. QueryIndex defines which

text query of the profile is referenced.
o public String getErrorMessage(int QueryIndex)

Returns the string “Syntax Error” displayed on screen, if the referenced text

query is invalid.
o public String getHeaderMessage()

Returns the string “Encountered XX wrong queries …” displayed on screen, if the

referenced profile contains wrong query.
o public int NumberOfErrors()

Returns the number of wrong queries of the profile.

This class hierarchy allows us use call two different constructors virtually for the

same Profile object (ReadProfile() and StoreProfile()) according to the

source of text queries assigned. The constructor StoreProfile() calls the parser and

the constructor ReadProfile() just assigns the text queries to the fields. Thus we

avoid re-parsing of already parsed text queries.

Profile

EJB

OC4J
tagsParser

JavaServer Page
(profile insert/update form)

StoreProfile()

ReadProfile()

text
queries

text
queries

text
queries insert / update

profile

RDBMS

Figure 6.5-2 Profile insert / update mechanism

Information Alert System for Digital Libraries - 89 -

Chapter 7
The Observer

In this chapter we present the mechanism that collects records from Digital Libraries

Information Alert System for Digital Libraries - 91 -

Oracle
database

JZkit
API

Unimarc
parser

SQLJ
class

Records
(objects)

another
Z39.50 Gateway

Array
of char.

Requests data on
new publications JDBC

server-side
internal driver

TUC
Digital Library

Z39.50 Gateway

DBMS
"Advance"

another
DBMS

• • •
Sends

Records

inserts

Observer
(Java Stored Procedure)

Figure 7.2-1 Architecture of the Observer

 JZKit [15] is an open source Java toolkit for building distributed information retrieval

systems, with particular focus on the Z39.50 Information Retrieval standard. JZkit

offers us functionality that helps us develop clients for the Z39.50 protocol. We have

already presented the Z39.50 main facilities and services in Section 2.3, in this

chapter we focus on the particular characteristics of the Observer. The code

developed writes requested records in an array of characters, processed by the next

component.

 The UNIMARC [17] parser is a typical parser generated by JavaCC [50]. This parser

processes UNIMARC records as input and maps the UNIMARC fields to the desired

bibliographical attributes (Title, Series, Author, Publisher, Subject, Notes, Pub. Year,

ISBN, ISSN). The UNIMARC format was presented in detail at Section 2.3.5. This

component virtually processes structured text and produces a set of objects

Information Alert System for Digital Libraries - 92 -

Information Alert System for Digital Libraries - 93 -

Using queries like the above at the end of each month we can retrieve the necessary

records. The complete algorithm developed utilizes the Initialize, Search and Present

services. We must mention that the target cannot return all requested records in one

Information Alert System for Digital Libraries - 94 -

Destination UNIMARC fields
Local Number 001
Title 200,5XX,4XX except 410
Series Title 410
Author 7XX
Publisher 210
Subject 60X
Notes 3XX
Publication Year 210 $d
ISBN 010 $a
ISSN 011 $a

Table 7.4-1 UNIMARC field mapping

Local number is the unique identifier of the record inside the database of the Digital

Library of TUC. We use this number as a primary key for our schema (public_id). Other

fields included in the UNIMARC record (like information about the book’s lending) are

omitted.

For example consider the following record. The extraction of bibliographical attributes is

shown in the Figure 7.4-1. The date of acquisition is not inserted in the Oracle database.

Figure 7.4-1 Sample UNIMARC record

The fields of the processed record are shown above (represent private variables of the

object LibraryRecord).

Information Alert System for Digital Libraries - 95 -

public_id title series author publisher

10024364 The international business book
Vincent Guy, John Mattock <null> Guy Vincent Mattock John

NTC Business Books
Lincolnwood, Ill., USA
NTC Business Books

subject notes

International business
enterprises Management

Information Alert System for Digital Libraries - 96 -

For example to insert a new publication in the database schema of DLAlert .with

Public_id=1000 and Author=’Giannis Alexakis’ we have the following SQLJ code.

String NewPublic_id=1000;

String NewAuthor=’Giannis Alexakis’;

#sql {

 INSERT INTO alert.publications (PUBLIC_ID,AUTHOR)

 VALUES (:NewPublic_id, :NewAuthor)

 };

The actual SQLJ statement used for the transaction is.

#sql {

 INSERT INTO alert.publications

 (PUBLIC_ID, TITLE, SERIES, AUTHOR, PUBLISHER,

 SUBJECT, NOTES, PUB_YEAR, BOOKN, SERIALN)

 VALUES

 (

 :Publication_Id, :Title, :Series, :Author,

 :Publisher, :Subject, :Notes, :Year,

 :BookNumber, :SerialNumber)

 };

The variables are assigned with the values to be inserted. Iterating thought all the

records we insert all of the new publications requested and parsed previously.

The translated or compiled Java code produced by the SQLJ translator can be

loaded and executed inside the Oracle database. Java applications executed inside the

RDBMS environment use the server-side internal JDBC for Oracle. As soon as we this

type of driver it is not necessary to explicitly declare a statement that establishes a JDBC

connection with the database. The code executed inside an RDBMS is implicitly

considered that references the same database.

In order to be able to call the method, that requests records from the JZKit API,

parses them, and stores the bibliographical attributes of new publications, we have to

Information Alert System for Digital Libraries - 97 -

publish it as a Java Stored Procedure. The Java Stored Procedure declared (

ReadFromLibrary ()) calls the Observer and returns the integer 1 on abnormal

termination (for example due to network failure when a Z-association with the Gateway

can not be established). In case of exception no records are inserted in the Oracle

database.

7.6 Performance

The time needed to retrieve records from the Digital Library of TUC is mainly

dependent to the network congestion between the Oracle database and the Gateway. It

takes usually less than five minutes to retrieve about one thousand records from the

Gateway since a single response contains 33 records at maximum. The time needed for

parsing and the insertions is insignificant, as it is less than ten seconds for a thousand of

records.

7.7 Important technical issues

We have the following important technical problems with the Digital Library of TUC

that do not allow us deploy DLAlert in complete function yet:

 Most records that are inserted in the Digital Library of TUC have the date of

acquisition field empty. The total number of records inside in the Digital Library is

close to 60000 and the number of those with the date of acquisition filled is less than

6500. This means that almost the 90% of the records inserted in the database

cannot be retrieved using this mechanism. This problem can be easily solved with

the cooperation of the Library of TUC as long as we ensure that only future

inserts/updates contain this essential bibliographical attribute. There is no need to

change the data already in the database of the Library because we focus on new

Information Alert System for Digital Libraries - 98 -

assume this issue solved the (in any way) and propose scheduling for the actions of

DLAlert.

 The Greek character set supported by the Digital Library is a non-standard custom

Information Alert System for Digital Libraries - 99 -

Chapter 8
Scheduling DLAlert

For the system to operate properly and on a regular basis we must schedule all the

related modules and actions. For this purpose we can use the PL/SQL package

DBMS_JOB [30, 33, 35, 40] which provides functionality for:

 Scheduling stored procedures to run unattended at some time in the future or upon

cAleain intervals of time.

 Handling jobs that are broken for any reason (network or power failure, database

error etc). These jobs are attempted to run 16 times if are not successfully executed.

We will not focus on the package, since scheduling the database is a rather complex

administrator’s task. We explain the sequence of actions to be executed, focusing on

two simple scenarios. We discuss the two cases, of supporting or not different user

categories according to their preferred frequency of notifications.

8.1 Simple scenario

Collection
of new

publications
Filtering

Construction
and transmission

of messages

Deletion of
new publication

records from the
database

Synchonization
of indices

Figure 8.1-1 Simple scenario sequence

For the case that we do not support different categories of users according to their

preferred frequency of notifications we have the actions to be executed regularly (every

day or week for example).

 First we have to collect new publication records from the Digital Library inserted

during a certain interval of time. As the first step we call the module Observer.

 Synchronization of the CTXRULE indices is always necessary before filtering in

order to have a consistent index with the base table of queries. For this purpose we

have developed the PL/SQL package “indexing” (Section 4.4). This process can also

be executed in the background during the first step, since the Observer is not an

intensive CPU process.

Information Alert System for Digital Libraries - 100 -

 After synchronizing the indices we find matching profiles for every new publication

(PL/SQL package “filtering”).

 Once the matching profiles are collected we can summarize all matched publications

for every user and transmit e-mail messages via SMTP.

 As e-mail messages containing all relevant bibliographical attributes are constructed

and delivered there is no need to maintain the already filtered documents. Unless we

want to provide other functionalities among alerting services (for example information

retrieval on the documents stored in the Oracle database) we can delete the

publication records.

8.2 Supporting three types of desired notification frequencies

In order to support different notification frequencies we have three sets of actions as

show in the above diagram. We categorize the actions according to their interval

between two subsequent operations. “Every day” actions are executed every day

regardless if this day is an end of week or month too. For example at the end of each

month all three sets are executed sequentially.

Collection
of new

publications
during the last day

Construction and transmission
of messages only for users

with desired freqeuncy = 'DAY'

Filtering for
publication records

acquired during
last day

Synchonization
of indices

Figure 8.2-1 Actions executed every day

1) “Every day” actions.

 The first step is to collect new publication records from the Digital Library inserted

during the last day. As the first step we always call the module Observer.

 Synchronization of indices is necessary in order for filtering to produce results

consistent with the base table of queries.

 The next step next is to filter the publication records inserted during the last day.

Information Alert System for Digital Libraries - 101 -

Construction and transmission
of messages only for users

with desired frequency = 'WEEK'

Figure 8.2-2 Actions executed once in a week

2) “Every week” actions.

 Since we have already inserted and filtered publications for every single day of the

week, the only action that remains is to construct and send e-mail messages to

users with ‘WEEK’ as the desired notification frequency.

Deletion of
unnecessary publication

records from the
database

Construction and transmission
of messages only for users

with desired frequency = 'MONTH'

Figure 8.2-3 Actions executed once in a month

3) “Every month” actions.

 We have already inserted, filtered publications for every day up to the end of the

month. Since we have ready notified users of the first two categories (‘DAY’ and

‘WEEK’) the action that remains is to construct and send e-mail messages to users

with ‘MONTH’ as the desired notification frequency.

 As e-mail messages containing all relevant bibliographical attributes for

publications over the last month, are constructed and delivered, there is no need to

maintain the already filtered documents. Optionally we can delete the unnecessary

publication records from the Oracle database.

8.3 Conclusions
We have completed the presentation of the implementation and the development of

DLAlert. We think that with minor configuration changes mainly on the Digital Library of

TUC (Section 7.7) this system could easily be deployed to complete function and

operate on regular basis. In last sections we presented two operating scenarios of

DLAlert and, the corresponding actions to y bscheduled in order to achieve the desired

target. In the next chapter we propose future work on DLAlert.

Information Alert System for Digital Libraries - 103 -

(Synonym, and Broader, Narrower or Related Term). In order to support this functionality

in Greek we should extract the main concepts found in the documents of the Digital

Library and organize them hierarchically.

 XML records classification
Instead of using records containing the bibliographical attributes in plain text that

represent incoming publications, we can represent publications as XML documents with

sections defined as tags. For example consider the following example where we have a

publication with Title: “The international business book” and Author: “Vincent Guy, John

Mattock”. The corresponding XML document would be
<publication record>

 <title> The international business book </title>

 <author> Vincent Guy, John Mattock </author>

</publication record>

Oracle Text provides query operators for XML section searching like the operator

WITHIN. We use the WITHIN operator to narrow a query down into document sections.

For example to request documents with Title containing the word “business” we issue

the CTXRULE query.
 business WITHIN title

This approach has several advantages and disadvantages:

o Allows even more complex queries referencing sections that are not included in the

current implementation of DLAlert (like “Anywhere” clauses). Using this approach

we can easily request documents containing a keyword in any attribute or a custom

set of attributes. We can even declare nested sections on records.

o The filtering module will speed up in this case since we will need only one

CTXRULE index for the text queries regardless the number of attributes supported.

The time consumed for indexing will not be improved since it is mainly dependent

on the total number of queries inserted / updated.

o You cannot combine the WITHIN operator with the ABOUT operator, therefore we

cannot request themes inside sections.

o Requires a more complex parser for the profiles since queries referencing more

than one attributes must be concatenated into a single CTXRULE query before

inserted into the database. The operator WITHIN should not be visible to the user

and the text query stored in the database should be re-parsed and broken into

Information Alert System for Digital Libraries - 104 -

simple CTXRULE statements before displayed on the GUI. For example to

request documents with Title containing the word “business” and author containing

the word “John” we issue the CTXRULE query.

Author John
Title business

Information Alert System for Digital Libraries - 105 -

 Automatic word stemming expansion on queries
Instead of expecting the user to enter the symbol $ in order to request tokens with

the same linguistic root as the requested term we can enhance the parser in order to

automatically put the stemming symbol $ before all queries. As we said previously this

functionality cannot support the Greek language at the time, in case we use the supplied

Oracle stemmer. For example suppose we request documents that contain the words

“business” and “management”. DLAlert can automatically include all the tokens with the

same linguistic root as equivalent terms to the requested keywords.

Profile parser

Query visible to
the user from the GUI

CTXRULE query
stored in the database

Information Alert System for Digital Libraries - 107 -

Library of Technical University of Crete is represented by a single record inside the

database (sample record on the following picture). Therefore DLAlert cannot notify users

on each number of the journal yet, but sends an e-mail message on a new subscription

from the Library. Supporting specific journal requests on Profiles, is an essential feature

supported by most popular Alerting Services on scholarly material (Section 2.1). The

journals supported could be organized hierarchically according to their scientific area.

Users should be notified regularly not only on a new journal subscription but also on

each separate issue.

Figure 9.1-3 Sample record of a journal

 Hyper-links in e-mail massages

Providing all the bibliographical attributes of new publications on e-mail messages is

an accurate way of notifying the user at the time. If we want to provide more information

on new publications (like Table of Contents), it would be preferred to include hyper-links

to web-pages containing all relevant data instead.

 Notifications in various formats (plain text, HTML, XML)

Providing notifications in various formats would be a useful feature. Some users may

prefer shorter plain text e-mail messages. Also XML messages would be useful in case

we send the notifications to another alerting service or application.

Information Alert System for Digital Libraries - 108 -

 Using DIAS algorithms inside the database as Java stored procedures
Functionality developed in the DIAS project could be integrated into the Oracle

database, in case an implementation in Java that handles database records is available

in the future. As we explained in Section 2.2.4 DIAS provides efficient algorithms for

document filtering and profile matching. In this case the use of Oracle Text and the

CTXRULE index would not be necessary. Java Stored Procedure technology enables us

integrate almost everything that can be implemented in Java, as stored procedure inside

the Oracle database.

 Ranking of matching documents according to relevance
Ranking of matching documents according to relevance is not supported for the

CTXRULE index type in the current version of Oracle Text. Trying to support this feature

would require enhancing of the filtering functionality available now.

 Relevance feedback

Relevance feedback on notifications means that the user can evaluate the relevance

of the delivered documents so that the ranking results are improved in later filtering. This

feature is also not supported at the time for the CTXRULE index type, and will require

much development work to implement it. Java Stored Procedure technology will be most

useful in case we try to develop functionality with high computational complexity like

enhancing the filtering mechanism already available.

9.2 Conclusion

The main achievement of this dissertation is the development of a centralized

alerting service for the Digital Library of the Technical University of Crete with the ability

to integrate many information providers. As long as technical issues presented in 7.7 are

solved, DLAlert can be scheduled to operate in regular basis. We hope that this

dissertation will be a good starting point for further work on this application.

Information Alert System for Digital Libraries - 110 -

[10] C.D. Manning and H. Schutze. Foundations of Statistical Natural Language

Processing. The MIT Press, Cambridge, Massachusetts, 1999.

[11] National Information Standards Organization : http://www.niso.org

[12] Z39.50 Standard Maintenance Agency. http://www.loc.gov/z3950/agency/
[13] MARC standards, Library of Congress Network Development and MARC standards

Office. http://www.loc.gov/marc/
[14] Extensible Markup Language (XML) 1.0 (Second Edition) W3C Recommendation 6

October 2000. Available at: http://www.w3.org/TR/2000/REC-xml-20001006.pdf
[15] Knowledge Integration JZkit: http://developer.k-int.com/products/jzkit/
[16] Universal Bibliographic Control and International MARC Core Programme:

http://www.ifla.org/VI/3/p1996-1/UNIMARC.htm
[17] UNIMARC Manual : Bibliographic Format 1994:

http://www.ifla.org/VI/3/p1996-1/sec-uni.htm
[18] Z39.50 Text Part 9: Type-1 and Type-101 Queries:

http://www.loc.gov/z3950/agency/markup/09.html

[19] Bib-1 Attribute Set: http://lcweb.loc.gov/z3950/agency/defns/bib1.html
[20] Registry of Z39.50 Object Identifiers: http://lcweb.loc.gov/z3950/agency/defns/oids.html
[21] Oracle Technology Network: http://otn.oracle.com/
[22] Oracle Corporation: http://www.oracle.com/
[23] Oracle Text Application Developer’s Guide Release 9.2 Oracle Corporation.

http://otn.oracle.com/docs/products/oracle9i/doc_library/release2/text.920/a96517.pdf
[24] Oracle Text Reference Release 9.2. Oracle Corp.

http://otn.oracle.com/docs/products/oracle9i/doc_library/release2/text.920/a96518.pdf
[25] Oracle Text Documentation http://otn.oracle.com/products/text/content.html
[26] Oracle Text Discussion Forum http://otn.oracle.com/forums/text.html
[27] Oracle Text Technical Overview (The CTXRULE Indextype):

http://technet.oracle.com/products/text/x/Tech_Overviews/text_901.html
[28] ISO 2788:1986 Documentation -- Guidelines for the establishment and development

of monolingual thesauri.

[29] ANSI/NISO Z39.19 - 1993 Guidelines for the Construction, Format, and

Information Alert System for Digital Libraries - 111 -

Information Alert System for Digital Libraries - 112 -

[44] JavaMail 1.3 Release, Sun Microsystems, Inc.
Available at: http://java.sun.com/products/javamail/

[45] Core JavaScript Guide 1.5. 2000, Netscape Communications Corp. :

http://devedge.netscape.com/library/manuals/2000/javascript/1.5/guide/

[46] Marty Hall, Core Servlets and JavaServer Pages, Sun Microsystems

Press/Prentice Hall. Available at http://pdf.coreservlets.com/
[47] JavaServer Pages Documentation, Sun Microsystems. Available at:

http://java.sun.com/products/jsp/docs.html
[48] OracleJSP Support for JavaServer Pages Developer's Guide and Reference,

Release 1.1.3.1 Oracle Corporation. Available at:

http://otn.oracle.com/docs/tech/java/oc4j/pdf/jsp1131.pdf
[49] Peter Koletzke, Paul Dorsey, Avrom Faderman. Oracle9i JDeveloper Handbook.

December 2002 McGraw-Hill/Osborne Media.

[50] Java C C Home page: http://www.experimentalstuff.com/Technologies/JavaCC/
[51] SQLJ Developer's Guide and Reference. 2002 Oracle Corporation. Available at:

http://otn.oracle.com/docs/products/oracle9i/doc_library/901_doc/java.901/a90212.pdf

Related dissertations

[52] Stratos Ydraios. “A query and notification service based on mobile agents for rapid

implementation of peer to peer applications”, 2003, Department of Electronic and

Computer Engineering, Technical University of Crete.

[53] Chistos Tryfonopoulos. "Agent-Based Textual Information Dissemination: Data

Models, Query Languages, Algorithms and Computational Complexity", 2002,

Department of Electronic and Computer Engineering, Technical University of Crete.

[54] Theodoros Koutris. "Textual information dissemination in distributed agent systems:

Architectures and efficient filtering algorithms", 2003, Department of Electronic and

Computer Engineering, Technical University of Crete.

[55] Sotiris Diplaris, Dimitris Pratsolis. “Development of statistic lompuistic models for the

Greek language with stemming and part of speech functionality”, 2001, Department

of Electronic and Computer Engineering, Technical University of Crete.

