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Abstract

In this work, an unsupervised semantic class induction algorithm is proposed that

is based on the principle that similarity of context implies similarity of meaning.

Two semantic similarity metrics that are variations of the Vector Product distance

are used in order to measure the semantic distance between words and to auto-

matically generate semantic classes. The first metric computes “wide-context”

similarity between words using a “bag-of-words” model, while the second metric

computes “narrow-context” similarity using a bigram language model.

Additionally, a hybrid metric that is defined as the weighted linear combina-

tion of the wide and narrow-context metrics is also proposed and evaluated. The

motivation of this approach is to improve effectiveness by combining evidence.

Our work reinforces the idea that selecting the “best” algorithm is not neces-

sarily the ideal choice, since potentially valuable information may be wasted by

discarding the results of a less successful classifier. To calculate the values of the

weights for each metric an algorithm is proposed that measures the quality of

each metric. This algorithm is based on the inter-class distance.

To cluster words into semantic classes an iterative clustering algorithm is used.

The semantic metrics are evaluated on two corpora: a semantically heterogeneous

web news domain (HR-Net) and an application-specific travel reservation corpus

(ATIS). For the hybrid metric, semantic class member precision of 90% is achieved

at 24% recall for the HR-Net task and precision of 88% is achieved at 70% recall

for the ATIS task. In general, “wide-context” similarity metric performs better in

the heterogeneous corpus while “narrow-context” similarity metric in the domain

specific corpus. The hybrid metric performs better in both cases.
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Chapter 1

Thesis Overview

Many applications dealing with textual information require classification of words

into semantic classes including spoken dialogue systems, language modelling,

speech understanding and machine translation applications. For example, in a

typical human−machine spoken dialogue interaction over the telephone network,

the telephone call is picked up by a telephony server, which passes the audio

stream to a speech recognizer, residing on a remote computer. The automatic

speech recognizer (ASR) transcribes the audio stream into a string of text, which

is then passed on to a computer dialogue agent. The dialogue agent must extract

the information content of this text string. This requires teaching the dialogue

manager what semantic concepts to expect, and how to extract them from the

persons utterance [21]. Text mining systems often convert text into a set of fea-

tures, many of which are defined in terms of semantic classes [12]. In information

extraction and question answering, many of the pattern matching rules make use

of semantic classes such as management positions, expenditures, art work, etc.

The subject of our work is the extraction of semantic concepts from text using

an automatic procedure.

Manual construction of semantic classes is a time consuming task and often
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requires expert knowledge: an inexperienced developer may omit important com-

ponents for each semantic concept. It is a daunting and expensive task, which

forms a major bottleneck in the development of language understanding systems.

The difficulty arises because a new domain (or, task) for an application is fre-

quently poorly understood because there may be very little a priori knowledge

about grammar structure or the semantic meanings of words. A comprehensive

description of the semantics and grammar for such tasks must then be defined

manually. The set of semantic classes, where each semantic class is a meaning

representation (concept) consisting of a set of words and phrases with similar se-

mantic meaning, must be identified from that data. Some classes, such as those

consisting of lists of names from a lexicon, are easy to specify, e.g., city, whereas

others require a deeper understanding of language structure and the formal rela-

tionships (syntax) between words and phrases, e.g., departure city. A developer

must supply this knowledge manually, or develop tools that automatically (or,

semiautomatically) extract these concepts from annotated corpora with the help

of language modelling tools.

Additionally, the lexical information is not specific to any domain. Rather,

the entries attempt to capture what applies to the language at large, or represent

specialized senses in a disjunctive manner. Note that semantic lexical knowl-

edge is most sensitive to domain changes. Unlike syntactic constraints, semantic

features tend to change as the word is used in different ways for different domains.

All these reasons raise the need for an automatic procedure. Clearly, an

automatic or semi-automatic algorithm for extracting semantic classes from text

can significantly reduce development-time in many natural language processing

systems. Unsupervised induction of semantic classes is also the first step towards

unsupervised learning of semantics from text, the “holy grail” of natural language
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processing.

Our effort, for meaning identification, relied on the hypothesis that words that

appear in similar lexical contents are semantically similar. The lexical environ-

ment was the only text’s feature that was explored. In some sense, our approach

tried to discover the meaning, which is hidden in a flexible use of natural language,

without the use of strict syntactic rules. This is achieved by exploiting only the

frequential aspect of data by using statistical and probabilistic techniques.

Outline

The rest of the thesis is organized as follows: Chapter 2 provides the necessary

theoretical background and in Chapter 3 some related projects are presented.

Chapter 4 presents in details our approach in the area of semantic class induction

and in Chapter 5 the experimental procedure is being thoroughly described. In

Chapter 6 an evaluation of the proposed system is provided and finally, in Chapter

7 some interesting conclusions are provided along with an outline of future work

and ideas that may improve the performance of the proposed system.



Chapter 2

Theoretical Background

2.1 Importance of statistics

This chapter introduces some basic material on probabilities and statistics re-

quired for the understanding of this work. These definitions play central role in

corpora processing since through their interpretation and implementation, epit-

omize the meaningful data. This ability can be compared with a dive in a deep

and foggy lexical environment that results in discovery of the treasure of mean-

ing. Corpora can be large collections of texts written by any editor or transcribed

human - human, human - computer dialogues.

Obviously the desired meaning is hidden inside of each word. Also, each

word can be viewed as a distinct event which whenever it occurs, it transmits,

in a sense, some general information. The notion of “word” in linguistics is

denoted by the term “lexeme”. Thus a lexeme is the minimal unit of language,

which has a semantic interpretation and embodies a distinct cultural concept.

Furthermore, the extracted knowledge can be broader if we study a larger lexical

field that consists of more than one lexeme. A single lexeme can be a “lexical

unit”, but in writing it is very common, more than one lexemes to behave as

a lexical unit. So, is there any difference between lexeme and lexical unit or

4
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not? Cruse[3] distinguishes lexemes from lexical units. The formers are the items

listed in the lexicon, or ideal dictionary of a language. A lexeme corresponds

to a particular word or word form, and can be associated with indefinitely many

senses. The latters are form-meaning complexes with stable and discrete semantic

properties, and the meaning component is called a sense, corresponding to the

intuitive notion of sense. So bank is a lexeme, while bank-financial institution

and bank-edge of a river are lexical units. We will see that for our work this

approach does not propose clear criteria for establishing Cruse’s distinction. We

underline only the fact that it is myopic policy to isolate word from its lexical

environment. It is reasonable to claim that a word preserves a kind of relationship

with its neighboring words, in some way. Still the concept of “neighbor” remains

abstract. We can guess correctly that it is worthless to treat a whole sentence

as a single lexical unit that expresses a very specific meaning. Therefore, few

consecutive words may form a lexical unit with a particular meaning. In such

case we are sure that each word contains an amount of information about the

other words of the lexical unit. This means that the probability of one word’s

appearance is not independent. In the opposite case the consecutive words would

not form a lexical unit with a comprehensive meaning. These considerations

trigger off the thought to find an alternative, single lexeme in order to express

the same meaning that the whole lexical unit does. But still we need a metric

to estimate the precision of this idea. Additionally, we cannot ignore the fact

that a certain matter can be said or written using more than one lexical unit.

Practically this is interpreted to the fact that people use many different lexical

units to express approximately the same concept. So it is important to explore

the semantic relationship between the lexical units of a corpus regardless of their

place in the text.
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2.1.1 Counting Words

Probability theory deals with predicting how likely it is that an event will take

place. There are two interesting views of probabilities:

The objectivist view states that probabilities are real aspects of the world that

can be measured by relative frequencies of outcomes of experiments. In contrast,

according to the subjectivist view, probabilities are descriptions of an observer’s

degree of belief or uncertainty rather than having any external significance. These

contrasting views are also referred to as Frequentist vs. Bayesian. Both views

are relevant for linguistics; yet, the laws of probability theory remain the same

under both interpretations.

Probabilities are based on counting things. In our case, statistical language

processing requires computation of word probabilities. These probabilities are

computed by counting words or lexical units in a corpus. The classical definition

of probability, as given by Pascal is:

“The probability of an event x is computed as the relative frequency with which x

occurs in a sequence of n identical experiments.”

So, the probability of a word w can be approximated by:

p(w) =
occurences of word w

number of words
(2.1.1)

which is the relative frequency with which w occurs in the corpus.

2.1.2 Punctuation Marks

Suppose that we have to count the words of the following sentence from Shake-

speare’s Hamlet and compute the probability of the word “God”.

“Oh God, I could be bounded in a nutshell and count myself a king of infinite

space.”
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If we count punctuation marks as words, the sentence has totally 19 words, if we

do not 17 words..

Whether we count punctuation marks as words depends on the task. Tasks

such as grammar checking or author-identification must treat punctuation marks

as words because in these cases the location of the punctuation is important.

Usually corpora of spoken language do not have punctuation marks.

In our work punctuation marks are not taken under consideration.

2.2 N-grams Probabilistic Model

This model proposes the assignment of probabilities to strings of words. Based

on this method we can easily compute the probability of an entire sentence or

predict the next word in a sequence.

The simplest probabilistic version of this model allows every word to have the

same probability of following every other word. A more robust model let every

word follow every other word, with the appearance of the following word to be

depended on its normal frequency of occurrence. We still consider the individual

relative frequency of each word. The following example, based on real data, can

verify the precision of this simplistic approach.

Brown corpus[8] has 1, 000, 000 words. The word “the” occurs 69,971 times

in the corpus and the word “rabbit” occurs 11 times. Thus the probabilities are

0.07 and 0.00001 for the words “the” and “rabbit”, respectively. Suppose that

we have just read this part of a sentence: “Just then, the white...”. Furthermore,

suppose that we are curious about what the next word will be. If we use the

simple model, we will conclude that the word “the” is the most possible word to

follow “white”. But this seems totally false because there is no meaning in the

sentence “Just then, the white the”. Doubtless the sentence “Just then, the white
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rabbit” sounds more reasonable. This example shows that the computation of

the probability of word sequences must use the conditional probability of a word

given the previous word. Particularly that means that the probability of a word

given the previous one is higher than its probability otherwise.

2.2.1 Conditional probability and independence

The notion of conditional probability can be considered as a kind of updated

probability of an event given some knowledge. The probability of an event before

gaining additional knowledge is referred to as the prior probability of the event.

The new probability of the event estimated using the additional knowledge is

called posterior probability of the event. The event of interest is formed by the

occurrences of a word in the corpus. Using symbol Ω we denote the sample space,

which is discrete, having finite number of elements. The sample space, which

corresponds to a corpus, includes all the occurrences of each distinct word of the

corpus. That is, the sample space Ω includes all the events of the corpus. For

instance, assume a small corpus: “A tiny corpus tiny”. For the previous corpus:

Ω = { occurrence of the word “A”, occurrence of the word “tiny”, occurrence of

the word “corpus”, occurrence of the word “tiny” for second time }.

The event of the occurrence of “tiny” in the corpus is denoted as tiny and is:

tiny = {occurrence of the word “tiny”, occurrence of the word “tiny” for second

time}.

We define the probability of the occurrence of the word ”tiny” according to

Eq. (2.1.1) as:

p(tiny) =
|tiny|
|Ω|

(2.2.1)

where |tiny| is the number of elements in the set “tiny” and |Ω| is the number of

elements in the probability space Ω. Thus p(Ω) = 1. So, the probability of the
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event p(tiny) is: p(tiny) = |tiny|
|Ω| = 2

4
.

For the general case:

p(event) =
|event|
|Ω|

(2.2.2)

where each event is a subset of Ω.

The conditional probability of a word w2 assuming that word w1 has occurred

(p(w1) > 0), denoted p(w2|w1) equals:

p(w2|w1) =
p(w2 ∩ w1)

p(w1)
(2.2.3)

which can easily be transformed into:

p(w2|w1)p(w1) = p(w2 ∩ w1) (2.2.4)

Eq. (2.2.3) gives:

p(w1|w2) =
p(w1 ∩ w2)

p(w2)
(2.2.5)

We can do the conditionalization either way because set intersection is sym-

metric, w2 ∩ w1 = w1 ∩ w2. So Eq. (2.2.3) becomes:

p(w2|w1) =
p(w2)p(w1|w2)

p(w1)
(2.2.6)

Two words w1, w2 are considered to be conditionally independent if p(w2 ∩

w1) = p(w2)p(w1).

Conditional probability and independence can be the basis for computing

the probability of a string of words. A string of words can be represented as

w1, w2, ..., wn−1, wn or w1..n. Assuming the occurrence of each word in the corpus

as an independent occurrence, we can write the probability of a string of words

as follows:p(w1, w2, ..., wn−1, wn) or p(w1..n).

Using the chain rule of probability we represent p(w1..n) as:

p(w1..n) = p(w1)p(w1|w2)p(w3|w1..2)...p(wn|w1..n−1) =
n∏

k=1

p(wk|w1..k−1) (2.2.7)
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Since there is not any easy way for computing the probability of a word given

all the previous words, an alternative solution for this task is to find a satisfactory

approximation. The bigram model proposed for solving this difficulty, assumes

that the probability of a word depends only on the previous word. In other words,

p(wn|w1..n−1) is approximated by the conditional probability of the word that

preceded p(wn|wn−1). This approximation is referred as a Markov assumption.

Markov models are probabilistic models, which predict a future event without

much prior knowledge. In the case of bigram (first order Markov model) models

they need to know only the preceding word.

It is obvious that the trigram (second order Markov model) model looks two

words into the past. Generalizing bigrams and trigrams, N-grams are resulted by

which the probability of a word given all the previous words can be approximated

by the probability given only the previous N words.

p(wn|w1..n−1) ' p(wn|w(n−N+1)..(n−1)) (2.2.8)

For a bigram grammar, p(w1..n) can be found by combining Eq. (2.2.8) and

Eq. (2.2.7):

p(w1..n) '
n∏

k=1

p(wk|wk−1) (2.2.9)

2.2.2 Smoothing

For any particular corpus, it is possible that some N-grams not to exist in this

corpus. The consequence is that the N-gram model assigns zero probability to

these N-grams. Also, using only relative frequencies to estimate N-grams proba-

bilities might produce poor estimates when the counts are too small. This major

problem raises the need to find a way of reevaluating zero probability and low

probability N-grams and assigning them non-zero values. This procedure is called
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smoothing.

Add-One Smoothing

This algorithm suggests to take the bigram counts and before normalizing them

to probabilities, to add one to all the counts. This algorithm is very simple and

in practice does not perform well. However it stands as an introduction to the

concept of smoothing that is implemented much better by other algorithms.

Considering the unsmoothed maximum likelihood estimate of the unigram

probability:

p(wx) =
c(wx)∑
i c(wi)

=
c(wx)

N
(2.2.10)

where c(wx) is the frequency (counts) of word wx in the corpus and N represents

the total number of word tokens in the corpus.

The basic idea of smoothing relies on the c’s adjustment. The adjusted count

for add-one smoothing is defined by adding one to the count c and then multiply-

ing by the factor N/(N+V), which is a normalization factor. Then the adjusted

count is:

c∗i =
(ci + 1)N

(N + V )
(2.2.11)

where V is the vocabulary size of the corpus.

Eq. (2.2.11) can be turned into probabilities p∗
i by dividing with the total

number of word tokens:

p∗
i =

(ci + 1)

(N + V )
(2.2.12)

Applying Eq. (2.2.12) to Eq. (2.2.10), the add-one-smoothed probability for

a bigram is defined as:

p∗(wn|wn−1) =
c(wn−1wn) + 1

c(wn−1) + V
(2.2.13)
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An alternative view of smoothing

Actually a smoothing algorithm discounts some non-zero counts. This is a way

to find the probability mass, which will be assigned to the zero counts. An

alternative way to refer to lowered counts c∗ is to define a discount ratio dc:

dc =
c∗

c
(2.2.14)

The choice of value one (1) which is added to the each count c is arbitrary. This

affects the probability mass that is moved near the zero value. A solution to this

problem is the choice of smaller values regarding the situation.

2.2.3 Witten-Bell Discounting

This algorithm is referred as Method C, a method initially introduced by Alistair

Moffat [19] and is considered to perform better than Add-One smoothing. In

[30], Witten and Bell surveyed and compared several approaches to the zero-

frequency problem that have been used in text compression systems. Witten and

Bell described the zero-frequency problem in the case of adaptive word coding

assuming a coding scheme in which the encoder reads the next word of text,

searches for it in a list and transmits an index extracted from the list in place

of the word. If the next word is not appeared in the list, a special code, called

escape code, must be transmitted followed by the unknown word. This new word

is added to the encoder and decoder’s lists in case it appears again. According

to this method each word is assigned an associated frequency. The computing of

probability of the escape character, by estimating the likelihood of a novel word

occurring, can solve the zero-frequency problem.

Similarly, a novel N-gram could then be assigned the probability of seeing it

for the first time. The basic idea behind this conception is to “use the count



13

of things we have seen once to help estimate the count of things we have never

seen”.

We can compute the probability of seeing a novel N-gram by counting the

number of times we saw N-grams for the first time in the corpus. The count

of the first-time seen N-grams is simply the number of N-gram types we have

already seen.

Hence we can estimate the total probability mass of all the zero N-grams by

dividing the number of N -gram types we have seen with the sum of number of

tokens and the number of N -gram types we have seen:

∑
i:ci=0

p∗
i =

T

N + T
(2.2.15)

where T is the N-gram types we have already seen and N is the number of tokens.

Probability given by Eq. (2.2.15) is the total probability of unseen N-grams.

This “amount of probability” needs to be divided in order to assign a part of

it to each zero N-gram. A simple compromise is to divide equally. Letter Z

denotes the total number of N-grams with count zero. So the equal share of the

probability mass is:

p∗
i =

T

Z(N + T )
(2.2.16)

The probability of all the seen N-grams is given by the equation:

p∗
i =

ci

N + T ′ , if ci > 0 (2.2.17)

Extending the Witten-Bell discounting to bigrams, the type-counts are con-

ditioned on some history. The probability of seeing for first time a bigram wn−1

wn is equivalent to the probability of seeing a new bigram starting with the word

wn−1.
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According to the Eq. (2.2.14) the probability of a bigram wx wi we have not

seen is: ∑
i:c(wxwi)=0

p∗(wi|wx) =
T (wx)

N(wx) + T (wx)
(2.2.18)

where T (wx) is the number of bigram types on the previous word wx we have

already seen and N(wx) is the number of bigram tokens on the previous word

wx.

Distributing the probability mass of the Eq. (2.2.18) among all the unseen

bigrams, we get:

p∗(wi|wi−1) =
T (wi−1)

Z(wi−1)(N + T (wi−1))
, if c(wi−1wi) = 0 (2.2.19)

where Z(wi−1) is the total number of bigrams with wi−1 as the first word, that

have zero counts.

For the non-zero bigrams, we parameterize T on the history:

p∗(wi|wx) =
c(wxwi)

c(wx) + T (wx)
, if c(wi−1wi) > 0 (2.2.20)

2.2.4 Backoff

So far the algorithms we have presented have all made use of the frequency of an

N-gram and have tried to compute the best estimate of its probability. In general

N-grams that never appeared or appeared only few times, were given the same

estimate. A reasonable extension of the previous methods (smoothing) is to try

to build better estimates by looking at the frequency of the (N-1)-grams found

in the N-gram.

If (N-1)-grams, found in the N-gram, are appeared rarely, then a low estimate

is given to the N-gram. Otherwise, N-grams with (N-1)-grams of moderate fre-

quency are given a higher probability estimate. This issue grounded in a more
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general discussion deals with combining multiple probability estimates making

use of different models. That is, if there are no examples of a particular tri-

gram, let’s say wn−2wn−1wn, the computation of p(wn|wn−1wn−2) can be achieved

through the use of the bigram probability p(wn|wn−1). In the same manner, if

we have no examples of wn−1wn in order to compute p(wn|wn−1), we can use the

unigram probability p(wn).

In the backoff model, as described above, an N-gram model is built based on a

(N-1)-gram model. We only look to a lower-order N-gram if we have no examples

of a higher-order N-gram. So the backoff model for the trigram wi−2wi−1wi can

be calculated from:

Case 1:

p(wi|wi−2wi−1) = p(wi|wi−2wi−1) if c(wi−2wi−1wi) > 0 (2.2.21)

Case 2:

p(wi|wi−2wi−1) = a1p(wi|wi−1) if c(wi−2wi−1wi) = 0 and c(wi−1wi) > 0

(2.2.22)

Case 3:

p(wi|wi−2wi−1) = a2p(wi) otherwise (2.2.23)

Parameters a1 and a2 are weighting factors, which ensure that the result of

the previous equation system is a true probability. For the general case the form

of backoff is:

p̂(wn|w(n−N+1)..(n−1)) =

p̃(wn|w(n−N+1)..(n−1)) + θ(p(wn|w(n−N+1)..(n−1)))ap̂(wn|w(n−N+2)..(n−1)) (2.2.24)

The θ notation indicates a binary function that selects a lower-order model only

if the higher-order model produces a zero probability. Specifically, if x = 0 then

θ(x) = 1, else θ(x) = 0. Each p(.) is a Maximum Likelihood Estimation.
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2.2.5 A clever combination: Backoff and Discounting

As was previously shown, discounting methods are used to calculate the proba-

bility mass which is assigned to unseen events, assuming that they were equally

probable. Combining discounting with backoff, this probability can be distributed

more cleverly.

Consider the following example, which shows how backoff can lead to prob-

ability greater than 1: Using relative frequencies,
∑

i,j p(wn|wiwj) = 1, which

means that the probability of a word wn over all N-gram contexts equals to 1. If

we use backoff in this case, adopting a lower order model, the probability of wn

will be greater than 1. So, discounting must be applied to backoff model.

Thus, the correct form of Eq. (2.2.23) is:

p̂(wn|w(n−N+1)..(n−1)) =

p̃(wn|w(n−N+1)..(n−1))+θ(p(wn|w(n−N+1)..(n−1)))a(w(n−N+1)..(n−1))p̂(wn|w(n−N+2)..(n−1))

(2.2.25)

where p̃(.) stands for the discounted MLE probabilities:

p̃(wn|w(n−N+1)..(n−1)) =
c∗(w(n−N+1)..n)

c(w1..(n−N+1))
(2.2.26)

Function a represents the amount of probability mass, which must be distributed

from an N-gram to an (N-1)-gram:

a(wn|w(n−N+1)..(n−1)) =
1−

∑
β p̃(wn|w(n−N+1)..(n−1))

1−
∑

β p̃(wn|w(n−N+2)..(n−1))
(2.2.27)

where β denotes wn : c(w(n−N+1)..(n−1)) > 0.

2.3 Vector Space Model

Vector space model primarily applies in the fields of information retrieval, a

domain which is of great interest due to its widespread adoption of word-based
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indexing and retrieval methods. Most current information retrieval systems are

based on an extreme interpretation of the principles of compositional semantics.

In these systems, the meaning of documents resides solely in the words that are

contained within them. The ordering and constituency of the words that make up

the sentences that make up documents play no role in determining their meaning.

Because they ignore syntactic information, these systems are often referred to as

bag of words methods.

In the vector space model, documents (and queries) are represented as vectors

of features representing the terms that occur within them [24]. More properly,

they are represented as vectors of features consisting of the terms that occur with

the collection of documents, with the value of each feature indicating the presence

or absence of a given term in a given document. These vectors can be denoted

as follows:

~d = (t1, t2, t3, ..., tN)

~q = (t1, t2, t3, ..., tN)

where d represents a document and q a query.

In this notation, the various t features represent the N terms that occur in

the document collection. The values that these features take on, represent the

importance of these terms in each document and within the whole document

collection. These are often referred to as term weights and can be determined in

many ways. In this way, the document and query vectors mentioned earlier can

be generalized as follows:

~dj = (w1,j, w2,j, w3,j, ..., wn,j)

~qk = (w1,k, w2,k, w3,k, ..., wn,k)

This characterization of individual documents as vectors of term weights allows

to view the document collection as a matrix of weights, where wi,j represents
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the weight of term i in document j. The columns of this weight matrix, called

term-by-document matrix, represent the documents in the collection and the rows

represent the terms.

2.3.1 Term Weighing Schemes

A typical and very simple approach for determining term weights is by a simple

binary weighting scheme where values one or zero are applied indicating the

presence or the absence of a given term in a document. Of course, a problem

with the use of binary values is that it fails to capture the fact that some terms

are more important to the meaning of a document than others.

In practice, the method used to assign weights in the documents and query

vectors has an enormous impact on the effectiveness of a retrieval system. Two

factors have proven to be critical in deriving effective term weights:

The first factor is the term frequency which is based on the simple notion

that terms that occur frequently within a document may reflect its meaning

more strongly than terms that occur less frequently and should thus have higher

weights. The frequency of the term i in the document j is represented as: tfi,j.

The second factor to consider is the distribution of terms across the collection

as a whole. Terms that are limited to a few documents are useful for discriminat-

ing those documents from the rest of the collection. On the other hand, terms

that occur frequently across the entire collection are less useful in discriminating

among documents. The fraction N
ni

, where N is the total number of documents in

the collection and ni is the number of documents in which term i occurs, provides

exactly this measure that favors terms that occur in fewer documents. Due to the

large number of documents in many collections, this measure is usually squashed

with a log function, which leads to the final inverse document frequency of the
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term i in the document collection: idfi = log(N
ni

).

Combining the term frequency with the inverse document frequency results in

a weighting scheme known as tf × idf weighting scheme: wi,j = tfi,j × idfi,j; that

is the weight of term i in the vector for document j is the product of its overall

frequency in j with the log of its inverse document frequency in the collection.

2.4 Contextual Word Similarity

The concept of word similarity was traditionally captured with thesauri. A the-

saurus is a lexicographic resource that specifies semantic relationships between

words, listing for each word related words such as synonyms, hyponyms and hy-

pernyms. Thesauri have been used to assist writers in selecting appropriate words

and terms and in enriching the vocabulary of a text. To this end, modern word

processors provide a thesaurus as a built in tool.

The area of information retrieval has provided a new application for word

similarity in the framework of query expansion. Good free-text retrieval queries

are difficult to formulate since the same concept may be denoted in the text by

different words and terms. Query expansion is a technique in which a query is

expanded with terms that are related to the original terms that were given by the

user, in order to improve the quality of the query. Various query expansion meth-

ods have been implemented, both by researchers and in commercial systems that

rely on manually crafted thesauri or on statistical measures for word similarity.

Word similarity may also be useful for disambiguation and language modeling

in the area of NLP and speech processing. Many disambiguation methods and

language models rely on word co-occurrence statistics that are used to estimate

the likelihood of alternative interpretations of a natural language utterance (in
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speech or text). Due to data sparseness, though, the likelihood of many word co-

occurrences cannot be estimated reliably from a corpus, in which case statistics

about similar words may be helpful.

It should be noted that while all the applications mentioned above are based

on some notion of “word similarity” the appropriate type of similarity relationship

might vary. A thesaurus intended for writing assistance should identify words that

resemble each other in their meaning, like “aircraft” and “airplane”, which may

be substituted for each other. For query expansion, on the other hand, it is also

useful to identify contextually related words, like “aircraft” and “airline”, which

may both, appear in relevant target documents. Finally, co-occurrence-based

disambiguation methods would benefit from identifying words that have similar

co-occurrence patterns. These might be words that resemble each other in their

meaning, but may also have opposite meanings, like “increase” and “decrease”.

2.4.1 Distance Functions

In order to calculate the resemblance between words, a function is needed to

measure the similarity between the words’ distributions. This function, usually

referred to as distance function when it computes the dissimilarity between words

or similarity function when it computes the similarity is defined as follows:

A metric space is a set X together with a function d (called a “metric” or

“distance function”) which assigns a real number d(x, y) to every pair x, yεX

satisfying the properties:

1. d(x, y) ≥ 0 and d(x, y) = 0 ⇔ x = y,

2. d(x, y) = d(y, x),

3. d(x, y) + d(y, z) ≥ d(x, z)

The last property is known as the “triangle inequality”.
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2.4.2 Vector Product Similarity Measure (Cosine Mea-
sure)

This geometric metric is a similarity measure, rather than a difference measure.

It is related to the angle between two vectors; the “closer” two vectors are, the

smaller the angle between them.

Let Y be a random variable taking values in Υ. Suppose we are considering

exactly two hypotheses about Y : Y is distributed according to q(Hq), and Y is

distributed according to r(Hr). The Vector Product, V P , similarity between the

two distributions is calculated as follows:

V P (q, r) =

∑
yεΥ q(y)r(y)√∑

yεΥ q(y)2
∑

yεΥ r(y)2
(2.4.1)

Notice that the cosine measure is an inverse distance function, in that it achieves

an upper bound of 1 when q(y) = r(y) for all y.

2.4.3 Measuring Similarity in Bigram Probabilistic Model

In order to calculate the similarity between two lexical units according to their

lexical environment, we have to take into account left and right contexts. Let’s

consider a word w with its neighbors in a word sequence:

... v1,L w v1,R ...

with v1,L representing the word in the left context and v1,R representing the

word in the right context. Two probability distributions are calculated, p(v1,L|w)

and p(v1,R|w), for the left and right contexts respectively. The right-context

bigrams are calculated using the usual word order, and the left-context bigrams

are calculated with a reversed-order corpus.

In order to estimate the similarity of two words, w1 and w2, the sum of the

symmetric left and right context-depended distances is needed. So, the total
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distance, D, between the probability distributions for w1 and w2 is :

DLR(w1, w2) = DL
12 + DL

21 + DR
12 + DR

21 (2.4.2)

where DL and DR are the left-context and right-context distance respectively

and D12 denotes the (possibly symmetric) distance between w1 and w2 [22, 25].

In order to calculate the semantic distance between two words, the cosine

distance between two feature vectors is computed; each feature vector of a word

w measures the conditional probability of all possible contexts vi given that word

p(vi|w), i.e., each vector contains bigram language model probabilities for (con-

text, word) pairs. Given the symmetric nature of the Vector Product metric,

V PL
12 ≡ V PL

21 and V PR
12 ≡ V PR

21, Eq. (2.4.2) becomes:

DLR(w1, w2) = V PLR(w1, w2) = V PL
12 + V PR

12 (2.4.3)

where:

V PL
12 =

∑
v1,LεV pL

1 (v1,L|w1)p
L
2 (v1,L|w2)√∑

v1,LεV pL
1 (v1,L|w1)2

∑
v1,LεV pL

2 (v1,L|w2)2
(2.4.4)

and

V PR
12 =

∑
v1,RεV pR

1 (v1,R|w1)p
R
2 (v1,R|w2)√∑

v1,RεV pR
1 (v1,R|w1)2

∑
v1,RεV pR

2 (v1,R|w2)2
(2.4.5)

where V = (v1; v2; ...vN) is the vocabulary set, and pL
1 (vi,L|w1) is the conditional

probability of word vi preceding w1 in the corpus given word w1, i.e., the vi, w1

bigram model probability.

2.4.4 Measuring Similarity in Vector Space Model

Having determined the term weights, a ranking function is needed to measure

the similarity between documents. Vector Space model conceives of the features

used to represent documents as dimensions in a multi-dimensional space. Cor-

respondingly, the weights that serve as values for those features serve to locate
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documents in that space. Documents that are located close to each other can

then be said to be more similar than documents that are farther away.

In general, in order to compute the similarity between two vectors, dot product

between vectors is used as shown below.

s(~dk, ~dj) = ~dk · ~dj =
N∑

i=1

wi,k × wi,j (2.4.6)

The dot product between two vectors is not particularly useful as a similarity met-

ric, since it is too sensitive to the absolute magnitudes of the various dimensions.

This issue can be dealt with by normalizing the document vectors converting all

of them to a standard length. In this way, the importance of the exact length

of a document’s vector in the space is eliminated, emphasizing instead on the

direction of each document vector.

This leads to the similarity measure, known as cosine measure, which deter-

mines the angle between the document vectors. The similarity between document

Di and Dk is defined as:

s( ~Di, ~Dk) =

∑V
j=1 wDi,j × wDk,j√∑V

j=1 w2
Di,j

×
∑V

j=1 w2
Di,j

(2.4.7)

where wDi,j is the weight of term j in document Di and V represent the vocabu-

lary. The denominator in this equation, called the normalization factor, discards

the effect of document lengths on document scores.

2.5 Combining Metrics

Information retrieval (IR) systems are based either directly or indirectly, on mod-

els of the retrieval process. These retrieval models specify how representations of

text documents and information needs should be compared in order to estimate

the likelihood that a document will be judged relevant.
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As these retrieval models were being developed, many experiments were car-

ried out to test the effectiveness of these approaches. In these experiments, it was

observed that different retrieval models, or alternatively, variations on ranking al-

gorithms, had surprisingly low overlap in the relevant documents that were found,

even when the overall effectiveness of the algorithms was similar [18]. It was also

shown that the practice of searching on multiple document representations was

more effective than searching on a single representation [10] suggesting that find-

ing all the relevant documents for a given query was beyond the capability of a

single simple retrieval model or representation.

The lack of overlap between the relevant documents found by different ranking

algorithms and document representations led to two distinct approaches to the

development of IR systems and retrieval models. One approach has been to

create retrieval models that can explicitly describe and combine multiple sources

of evidence about relevance; the other approach has been to design systems that

can effectively combine the results of multiple searches based on different retrieval

models.

The motivation for both these approaches is to improve retrieval effective-

ness by combining evidence. Combining multiple, heterogeneous searches is the

basis of the “meta search” engines on the Web (e.g., MetaCrawler). In gen-

eral, selecting the “best” ranking algorithm is not necessarily the ideal choice,

since potentially valuable information may be wasted by discarding the results of

less successful classifiers. This observation motivates the concept of “combining”

wherein the outputs of all the available classifiers are pooled before a decision is

made. This approach is particularly, useful for difficult problems such as those

the involve a large amount of noise, limited number of training data, or unusually

high dimensional patterns.
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Among many strategies, the most commonly used combing strategy is by

simply averaging the output of the classifiers. It has been observed [29] that

the simple combining strategies are best suited for situations where the classi-

fiers all perform the same task (which is the case for IR), and have comparable

success. Simple combination strategies can fail when even one of the classifiers

being combined has very poor performance or very uneven performance. In such

cases, using different weights for each classifier improves the effectiveness of the

combined metric. Classifiers that provide less evidence about relevance are given

lower weights in the combination to improve overall performance.

In our approach, we have two different forms of the vector product metric with

the same objective but with different perspective of the input data: one metric

with broader lexical scope and another one that concentrates on the immediate

context of each word. Our goal was to create a combined metric that takes into

account both wide-context and narrow context information.

2.6 Synopsis

In this chapter some basic material on probability and statistics was introduced.

The notion of “lexical unit” and the reason for which probability theory pays

a central role in corpora processing were explained. Next we saw the use of N-

grams in natural language modelling followed by the Vector Space model. The

concept of word similarity was also presented along with distance functions and

the way they apply to bigram and vector space model. Lastly, an introduction

was made regarding the combination of metrics and the way that it applies in

our approach.



Chapter 3

Related Work

3.1 Introduction

Numerous techniques and systems have been proposed in the area of induction

semantic classes from textual data. Among them, three major families of tech-

niques can be distinguished each one with different perspective but with the same

objective. These families are: numerical, symbolic and hybrid.

Numerical approaches exploit the frequential aspect of data, and use statistical

and probabilistic techniques. Symbolic approaches examine the structure of data

taking mainly under consideration the syntax of the textual data. Finally, hybrid

approaches are combinations of numerical and symbolic techniques.

3.2 Overview of Related Projects

Among the numerical approaches, [25] uses a semi-automatic approach in order

to cluster words according to a similarity metric, working in a domain-specific

corpus, ATIS. However, the resulting classes had to be hand-revised. More re-

cently, in [21, 22], an automatic procedure is described that classifies words and

26
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concepts into semantic classes, according to the similarity of their lexical envi-

ronment. This approach induces semantically compact classes especially for re-

stricted domains where the expressive style is oriented towards the specific needs

of the certain task. Among symbolic approaches, Text-to-Onto [16, 14, 15], deals

with discovering non taxonomic relationships from text and enhancing an already

defined taxonomic hierarchy. The Text-to-Onto system uses shallow parsing as a

natural language module. Asium [7, 6], is able to learn semantic knowledge from

text by (mostly) extracting concepts/classes and putting them into taxonomic re-

lationships. It is a semi-automatic system, meaning that user’s control is needed

in the process. In [13], a system is described that constructs a domain specific

ontology from text documents [27]. The documents are read, processed, and a

graph-structured ontology is produced using contemporary statistical methods

of information retrieval such as Boolean, extended Boolean and Vector Space

approaches.

In the next paragraphs, the projects that were just mentioned are presented

thoroughly.

3.2.1 “Semi-automatic acquisition of domain-specific se-
mantic structures.”[25]

This work deals with the semi-automatic induction of a grammar from unanno-

tated corpora belonging to a restricted domain. The resultant grammar contains

language structures that may be semantic, syntactic or a tight coupling of both,

which are all conducive towards language understanding. An iterative cluster-

ing algorithm is proposed, having the inferred grammar hand-revised at every

iteration for quality improvement. This constitutes the semi-automatic nature

of this approach. In their experiments, they used the training and test sets of
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the domain specific ATIS (Air Travel Information System) corpus which contains

transcribed utterances dealing with travel information.

In their work, a statistical approach is adopted in order to accomplish the

understanding of natural language. The iterative procedure proposed to cluster

the words from a corpus is implemented both spatially and temporally. In spatial

clustering, words or multi-words entities with similar left and right linguistic

contexts are clustered together. Consider for example the clustering of the entities

e1 and e2. If p1 and p2 denote the unigram distributions of words occurring to

the left of e1 and e2 respectively, then the similarity of the two distributions

can be measured by the divergence metric Div (or symmetrized Kullback-Leiber

distance) as shown below:

Div(pleft
1 , pleft

2 ) = D(pleft
1 ‖ pleft

2 ) + D(pleft
2 ‖ pleft

1 ) (3.2.1)

where:

D(p1 ‖ p2) =
V∑

i=1

p1(i)log
p1(i)

p2(i)
(3.2.2)

and V denotes the corpus’ vocabulary.

When both the left and right contexts are considered, then the distance metric

Dist derives from the following equation:

Dist(e1, e2) = Div(pleft
1 , pleft

2 ) + Div(pright
2 , pright

1 ) (3.2.3)

The probabilities are obtained from the frequency counts in the corpus and in

order to avoid sparse data problems only words that have at least M occurrences

are taken under consideration. The proposed algorithm selects the N most similar

pairs (i.e. lowest values for Dist) to form spatial clusters that are labelled as

SCi, where i is a counter of the number of spatial clusters formed. Then, the

appropriate word pairs in the corpus are substituted by their SC labels.
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Spatial clustering is followed by temporal clustering where words or multi-

word entities that co-occur sequentially are clustered together. At this point,

Mutual Information (MI) is used as the metric for clustering as show in the

following equation:

MI(e1, e2) = P (e1, e2)log
P (e2|e1)

P (e2)
(3.2.4)

Again, only words that have at least M occurrences are taken under consid-

eration and the N pairs of entities with highest MI are selected to form temporal

clusters labeled as TCj, where j is a counter of the number of temporal clus-

ters formed. Thereafter, the appropriate word pairs are substituted by their TC

labels and the algorithm proceeds to another iteration of spatial clustering.

In this way, this agglomerative clustering approach produces a context-free

grammar, where the SCs and TCs are the non-terminal of this grammar. SC

clusters tend to be semantic structures and TC clusters tend to be phrasal struc-

tures. The grammar then is post-processed by hand-editing and the procedure

starts from the beginning.

3.2.2 “Auto-Induced Semantic Classes”[21, 22]

In this work, an automatic procedure is described that classifies words and con-

cepts into semantic classes according to the similarity of their lexical environment.

This approach induces semantically compact classes especially for restricted do-

mains where the expressive style is oriented towards the specific needs of the

certain task.

They use an unsupervised training approach consisting of two complementary

procedures. First, they use n-gram statistics to determine the similarity of words

and more generally, phrases, by looking at their bigram lexical contexts within
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a single domain. According to their research, they compared four different simi-

larity metrics in order to accomplish auto-inducement of semantic classes. These

metrics are the Kullback-Leibler distance, the Information-Radius distance, the

Manhattan-Norm distance, and the Vector-Product [1, 4, 5, 17, 22, 23]. Phrases

that are determined to be the most similar are grouped into the same semantic

class (or, concept). The performance of the aforementioned metrics was eval-

uated using four different application domains: a movie information retrieval

service, the Carmen-Sandiego computer game, a travel reservation system, and

the Wall Street Journal (WSJ) corpus. The first three domains used relatively

small, transcribed dialogues between human subjects and agents while the WSJ

was a large, text-based corpus. Of the first three domains, the computer game

was a Wizard-of-Oz scenario, whereas the movie and travel information services

were human-human dialogues.

In their approach, words or phrases are paired according to the similarity of

their syntactic environments. A candidate word, w, is considered with its nearest

neighbors in a word sequence:

{. . . uL
1 w uR

1 . . .} (3.2.5)

with uL
1 representing the first words in the left context and uR

1 representing the

first word in the right context. Two probability distributions are calculated,

pL(uL
1 |w) and pR(uR

1 |w) for the left and right contexts respectively. The right-

context bigrams are calculated using the usual word order, and the left-context

probabilities are calculated with a reversed-order training corpus using standard

n-gram training tools. They used the 1996 version of the CMU toolkit to calculate

the n-gram statistics [2]. The similarity of two words, w1 and w2 is estimated as

the sum of the symmetric left and right context-dependent distances [25]. Then,
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the total distance between the probability distributions for these two words is

calculated as:

dLR(w1, w2) = DL
12 + DL

21 + DR
12 + DL

21 (3.2.6)

where DL
12(w1, w2) ≡ D(pL

1 ‖ pL
2 ) is the left-context distance for a given metric D.

The ‘‖’ symbol refers to the distance, as calculated using some metric, between

the two given conditional probability distributions. The conditional probability

terms are of the form: pL
1 ≡ pL

1 (uL
1 |w1). This is the probability that the word

uL
1 precedes (is to the left of) the word w1. The DR distance terms are similar,

using the right-context probabilities pR as in the term, pR
2 ≡ pR

2 (uR
1 |w2) which is

the conditional probability that the word uR
1 follows (is immediately to the right

of) the word w2.

Kullback-Leibler Distance (KL)

The total symmetric KL distance, for bigram lexical contexts, is given by

Eq. (3.2.6). For two candidate words w1 and w2 the right, bigram-context distance

KLR
12 is defined over the vocabulary V as:

KLR
12 ≡ KL(pR

1 (w1)|pR
2 (w2)) =

∑
uR
1 εV

pR
1 (uR

1 |w1)log
pR

1 (uR
1 |w1)

pR
2 (uR

1 |w2)
(3.2.7)

where the sum is over all the words in the vocabulary, V .

Information Radius (Shannon-Jannsen distance) (IR)

The IR distance is similar to the KL distance. The total symmetric IR dis-

tance IRLR(w1, w2) is given by Eq. (3.2.6). For two candidate words w1 and w2

the left, bigram-context distance IRL
12 is defined over the vocabulary V as:

IRL
12 =

∑
uεV

pL
1 (u|w1)log

pL
1 (u|w1)

1
2
(pL

1 (u|w1) + pL
2 (u|w2))

(3.2.8)

Manhattan-norm distance (M)
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The Manhattan-norm MLR(w1, w2) for two candidate words w1 and w2 is

calculated as:

MLR(w1, w2) = ML
12 + MR

12 (3.2.9)

The left-context dependent term is:

ML
12 =

∑
uεV

|pL
1 (u|w1)− pL

2 (u|w2)| (3.2.10)

where M12 ≡ M21.

Vector product similarity (VP)

This metric is a similarity measure rather than a difference measure. The

total distance V PLR(w1, w2) for two candidate words w1 and w2 is calculated as:

V PLR(w1, w2) = V PL
12 + V PR

12 (3.2.11)

where the left-context vector product is:

V PL
12 =

∑
uεV pL

1 (u|w1)p
L
2 (u|w2)√∑

uεV pL
1 (u|w1)2

∑
uεV pL

2 (u|w2)2
(3.2.12)

They propose an iterative procedure for automatically inducing semantic classes,

consisting of three main components: a lexical phraser, a semantic generalizer,

and a corpus reparser as shown in figure 3.1.

First, the lexical phraser groups words in a single lexical unit. Next, a se-

mantic generalizer generates rules that map words (and concepts) to concepts.

Finally, a corpus parser re-parses the corpus using the rules generated from the

semantic generalizer.

Lexical Phraser

This module generates a list of the most commonly co-occurring lexical phrases

or sentence fragments. The lexical phraser groups consecutive words into phrases
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Figure 3.1: Iterative procedure used for the auto-induction of semantic classes.
The sample sentence is from the Travel domain

by using a weighted point-wise mutual information (MI) measure to find those

lexical entities that co-occur often. The n phrases with the highest MI measure,

MI(w1, w2) = p(w1, w2)log
p(w1, w2)

p(w1)p(w2)
(3.2.13)

for the words w1 and w2 are kept at each iterations. They are only retained in

successive iterations if they are classified into semantic groups in the following,

semantic generalizer, module.

Semantic Generalizer

During this procedure, grammar rules are generated, where a rule maps a

word or a previously formed class into a semantic class whose members share the

same meaning. The main criterion for generating such groupings is the lexical or

semantic similarity of the left of right-hand context for the members of a group.

Corpus Parser
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At this point, the corpus is reparsed and all instances of each of the generalized

phrases are replaced with the appropriate class. This is done for each of the

grammar rules that were generated in the previous module. Then, the system

stars again from the beginning.

3.2.3 Text-to-Onto[16, 14, 15]

In their work they describe an approach to discover non-taxonomic conceptual

relations from text, built on shallow text processing techniques. They propose a

generalized association rule algorithm that does not only detect relations between

concepts, but also determines the appropriate level of abstraction at which to

define relations. Their approach has been implemented on top of a shallow text

processor for German adapted to the tourism domain called SMES (Saarbrucken

Message Extraction System).

The architecture of SMES comprises a tokenizer based on regular expressions,

a lexical analysis component including a word and a domain lexicon and a chunk

parser.

Tokenizer

Its main task is to scan the text in order to identify boundaries of words and

complex expressions like “$20.000” and to expand abbreviations.

Lexicon

The lexicon contains more than 120,000 stem entries and more than 12,000

subcategorization frames describing information used for lexical analysis and

chunk parsing. Furthermore, the domain specific part of the lexicon associates

word stems with concepts.

Lexical Analysis

It uses the lexicon to perform:
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• Morphological Analysis

In German language, compounds are extremely frequent and, hence, their

analysis into their parts, e.g. “database” becoming “data” and “base”,

is crucial and may yield interesting relationships between concepts. Fur-

thermore, morphological analysis returns possible readings for the words

concerned, e.g. the noun and the verb reading for a word like “man” in

“The old man the boats.”

• Recognition of name entities

Processing of named entities includes the recognition of proper and com-

pany names like “Hotel Schwarzer Adler” as single, complex entities, as well

as the recognition and transformation of complex time and date expressions

into a canonical format, e.g. “January 1st, 2000” becomes “1/1/2000”.

• Retrieval of domain-specific information

This step associates single words or complex expressions with a concept

if a corresponding entry in the domain-specific part of the lexicon exists.

E.g., the expression “Hotel Schwarzer Adler” is associated with the concept

Hotel.

• Part-of-speech tagging

Part-of-speech tagging disambiguates the reading returned from morpho-

logical analysis of words or complex expressions using the local context.

Chunk Parser

SMES uses weighted finite state transducers to efficiently process phrasal and

sentential patterns. The parser works on the phrasal level, before it analyzes

the overall sentence. Grammatical functions (such as subject, direct-object) are
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determined for each dependency-based sentential structure on the basis of sub-

categorizations frames in the lexicon.

Dependency Relations

The primary output derived from SMES consists of dependency relations

found through lexical analysis(compound processing) and through parsing at the

phrase and sentential level. It is important for their approach that on these lev-

els syntactic dependency relations coincide rather closely with semantic relations

that are often found to hold between the very same entities.

Heuristics

Chunk parsing such as performed by SMES still returns many phrasal entities

that are not related within or across sentence boundaries. This however means

that the system misses many relations that often occur in the corpus, but are

not detected due to the limited capabilities of SMES. Therefore, the SMES out-

put has been extended to include heuristic correlations beside linguistics-based

dependency relations.

Generally, their learning algorithm is based on the algorithm for discovering

generalized association rules proposed by Srikant and Agrawal[26]. This algo-

rithm finds associations that occur between items, e.g. supermarket products, in

a set of transactions, e.g. customers’ purchases, and describes them at the ap-

propriate level of abstraction, e.g. “snacks are purchased together with drinks”

rather than “chips are purchased with beer” and “peanuts are purchased with

soda”.

3.2.4 ASIUM[7, 6]

Asium is able to learn semantic knowledge from text. In this context it means

extracting concepts/classes and putting them into taxonomic relationship. It is a
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semi-automatic system meaning that user’s control is needed in the process. As

preliminary experimentation, Asium was applied to a very narrow and specific do-

main that contains cooking recipes. Asium learns semantic knowledge and ontolo-

gies in the form of subcategorization frames of verbs. A sub-categorization frame

in this context is defined as: <verb> <preposition or syntactic role: headword>

<preposition or syntactic role: headword>.

The ontology extracted represents generality relations between concepts in

the form of an acyclic oriented graph. The concepts of this ontology are related

only in an IS-A form.

For example, a sub-categorization frame of the sentence: My father travels

by car is: <to travel> <subject: father> <by: car>. The system uses a stop

list and it only takes headwords into consideration. So all articles, adjectives,

etc. (a, the, my, your, nice, beautiful, etc.) are considered noise and are ignored,

due to them still being believed to be preserved semantic information. Moreover,

syntactic parser Sylex identifies whether headwords are expressions, i.e. double

decker, Ford Escort or single words. The syntactic parser gives all possible frame

interpretations of sentences and ASIUM uses all of them for this approach to

avoid a very time consuming hand disambiguation step while still giving a good

outcome.

Once each sentence has been instantiated into a frame the learning component

takes them as input and learns an ontology. This step incorporates unsupervised

clustering (bottom-up) and relies on the following assumption:

Headwords occurring after the same preposition or syntactic role, and with

the same verbs represent the same concept.

For example from <to travel> <subject: father> <by: car> and <to travel>

<subject: father> <by: train> one can conclude that car and train represent the
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same concept, i.e. motorized vehicle.

This assumption is implemented in two steps. The first step gathers head-

words that occur in the same contexts such as with the same verb and the same

preposition or syntactic role. The second one builds synthetic frames according

to verbs of subcategorization frames and assigns number of occurrence in the

given context. For example, from the following instantiated frames:

<to travel> <subject: father> <by: car> <to travel> <subject: mother>

<by: train>

<to drive> <subject: friend> <object: car>

<to drive> <subject: colleague> <object: motorbike>

<to drive> <subject: friend> <object: motorbike>

Asium might create synthetic frames, one per verb:

<to travel> <subject: [father(1), mother(1)]> <by: [car (1), train(1)]>

<to drive> <subject: [friend(2), colleague(1)]> <object: [car(1), motorbike(2)]>

At this stage clustering comes into play. The clustering is based on the dis-

tance between two clusters. In this context a cluster is represented as a list

of headwords, for example [car(1), train(1)]. Overlapping clusters are aggre-

gated into a new cluster. Thus, clusters that contain the same headwords with

the same frequencies are considered to be similar - their distance is zero. On

the other hand, the distance of clusters that do not share any headword is the

highest, equal to 1. The clustering algorithm is very simple and could be briefly

described as an examination of each possible couple of clusters, aggregating those

pairs that are the most similar(a threshold value is used for distance pruning) and

repeating the same step over and over again until it is not able to aggregate any

pair anymore. It is important to understand that aggregated are the headwords
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of two clusters (no frames). For example [car(1), train(1)] and [car(1), motor-

bike(2)] might be aggregated to form new cluster called motorized vehicles. After

the aggregation, the new cluster is propagated through all the synthetic frames,

meaning that every occurrence of [car(1), train(1)] and [car(1), motorbike(2)]

will be replaced with motorized vehicle. At this stage, a user is asked to accept or

reject the aggregation to be propagated. The participation of the user is needed

in such a method, not only to control the generality level of restrictions in verb

frames but also to interactively correct the clusters in case of noise. For instance

aggregation might yield new cluster [car(1), train(1), bike(1), motorbike(2)].

While this cluster is certainly good for a frame <to travel>, it is no good for

<to drive> since everyone knows that a bike is not drivable because it is not a

motorized vehicle.

In their approach a concept/class of a building ontology is a cluster. Therefore

at each level of clustering new classes are introduced. One can observe that

clustering, which at each level creates only pairs, might lead to enormous number

of useless classes. Asium has however a post-processing phase in which it removes

all useless classes. This approach might be a big help in ontology construction in

a narrow specific domain but it might not be very useful in a general one.

3.2.5 “Ontology Extraction from text documents by Sin-
gular Value Decomposition.”[13]

This project is concentrated on statistical analysis methods, as compared to

heuristic and rule based methods because of their simplicity and because these

methods are based on fairly precise mathematical foundation. This system con-

structs a domain specific ontology from text documents, presented to it as a

training set with a small amount of user feedback. The documents are read,
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Figure 3.2: Proposed Architecture

processed, and a graph-structured ontology is produced.

In the process of achieving this goal, contemporary statistical methods of

information retrieval such as Boolean, extended Boolean and vector space ap-

proaches have been used. Of all these approaches, vector space approach has

been found to be the most efficient method. It describes each document as a

set of terms. This set defines the document space such that each distinct term

represents one dimension in that space. Each document in this document space is

defined by the weights, or in other words frequencies, of the terms that represent

it.

The architecture of the proposed system is briefly presented in fig. 3.2:

The input for this system is a set of text documents. These documents are

pre-processed, a step that involves various procedures to facilitate meaningful

statistical analysis and only meaningful terms are extracted for which their fre-

quency is accurately counted. Then, for each word obtained at the previous step

a normalized weight is calculated which leads to the creation of a term-document
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matrix that describes the occurrence of meaningful terms in each document of

the collection. This matrix is referred to as term-document matrix and contains

terms as rows and documents as columns.

At the next stage, a set of concepts are determined from the previously ex-

tracted term-document matrix, where a concept is defined as a set of related

terms. This is accomplished by using a method called Latent Semantic Index-

ing (LSI) which primarily involves decomposing the term-document matrix using

Singular Value Decomposition (SVD). LSI is a statistical method that links terms

into a useful semantic structure without syntactic or semantic natural language

analysis and without manual human intervention. By using this method, each

document is represented not by terms but by concepts that are truly statistically

independent in a way that terms are not.

Singular value decomposition, is a method for matrix decomposition. It de-

composes a matrix A, i.e. the m x n term-document matrix, with m terms and n

documents, as A = U ∗ S ∗ V T where U is m x r matrix called the term matrix,

V is r x n matrix called the document matrix and S is r x r diagonal matrix

containing singular values of A in its diagonal in descending order. In LSI a new

matrix is formed Aq = U q ∗ Sq ∗ (V q)T where Aq is derived from A by removing

all but the largest q singular values, U q is derived from U by removing all but the

q columns corresponding to the remaining singular values and V q is derived from

V by removing all but q corresponding rows where q <=r. The matrix U q is an

m x n matrix representing correlations between terms in the document collection.

Each column of this matrix is a vector which is considered to represent a concept.

The construction of the document ontology is accomplished by building con-

cept nodes and term nodes from the term matrix (U) and document matrix (V )

which have been obtained from SVD. A concept node represents a concept and
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contains information about its concept name, terms that belong to that concept

and their weights in that concept. The name of a concept is generated automat-

ically and is a hyphenated string of the five most frequent terms in that concept.

Since this does not produce excessively intuitive concept names, the user has the

ability to modify the concept name, to a more meaningful one. A term node

represents a term and contains information about its term name, concept that

belongs to, and its weight in different concepts. The ontology constructed is a

bipartite graph containing only two types of nodes: concepts and terms. Concept

nodes are connected to term nodes but are not connected to other concept nodes

directly. Term nodes are connected to other term nodes, only by being connected

to a common concept node.

3.3 Synopsis

In this chapter, some related to our work projects have been presented. It was

made clear that the techniques and systems that have been proposed in the area

of semantic class induction from textual data are numerous. Each system, con-

centrates on specific view of the textual data but has as final goal the extraction

of structure from text.



Chapter 4

Our Approach

4.1 Overview

Our approach lies on an iterative procedure for automatic induction of seman-

tic classes, consisting of two main components: a class generator and a corpus

parser. The class generator, explores the context information of every word, cal-

culating the similarity between words and groups semantically similar words or

concepts into classes. The semantic similarity distance combines two variations of

the Vector Product similarity metric: one metric computes “wide-context” simi-

larity between words using a “bag-of-words” model and a second metric computes

“narrow-context” similarity using a bigram language model. The hybrid metric

proposed, produces high-quality clustering of words into semantic classes even for

semantically heterogeneous domains such as news. The corpus parser, re-parses

the corpus using the class definitions generated by the class generator, i.e., sub-

stitutes all instances of each class member with the corresponding class label.

The class generator and corpus parser are run sequentially and iteratively over

the corpus.

43
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4.2 Vector Product Similarity in “Bag-of-Words”

Model

As was previously mentioned, “Bag-of-words” or Vector Space representation

models view each word as one dimension in a high-dimensional vector space.

Every document is considered as a vector in this space, with a zero value for

every word that does not appear in the document, and a non-zero value for every

word that appears in it. The non-zero values are set by using various weighting

schemes — for example words that occur frequently in a document are given

higher values. Similarity between two documents is measured using the cosine of

the (normalized) vectors representing the two documents.

In our work, the Vector Space model is used to calculate the contextual sim-

ilarity between words that appear in a corpus of documents. The key assump-

tion is that the context surrounding a given word provides information about its

meaning.

First, a vocabulary V = (v1, v2, ..., vN) is built containing the N unique words

in the corpus. Then, a context window size WS is selected; for each word w in the

vocabulary all right and left contexts of length WS are identified in the training

corpus, e.g., corpus segments

wWS,L ... w2,L w1,L w w1,R w2,R ... wWS,R

where wi,L and wi,R represent the ith word to the left and to the right of w

respectively. We define the left-right context set of words NLR,WS as the set of

unique words that are found in the left and right contexts of w for a fixed context

window size WS.

The feature vector for every word w is defined as Tw,WS = (t1, t2, ..., tN) where

ti is a non-negative integer and WS is the context window size. Note that the
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feature vector size is equal to the vocabulary size N , i.e., we have a feature for

each word in the vocabulary. The ith feature value ti reflects the occurrences

of vocabulary word vi within the left or right context window WS. These non-

negative values, ti, are set according to one of two different weighting schemes:

Binary Weighting Scheme ‘B’:

tBi =

{
1, if vi ∈ NLR,WS

0, if vi /∈ NLR,WS

Full Weighting Scheme ‘F’:

tFi =

{
c(vi|WS), if vi ∈ NLR,WS

0, if vi /∈ NLR,WS

where c(vi|WS) is a function of the number of occurrences of vi within a left and

right window context of size WS for the word w and for the whole corpus.

The similarity of two words, w and w′, is measured as the cosine distance

of their corresponding feature vectors, Tw,WS and Tw′,WS. In case of weighting

scheme ‘B’ the similarity, V P1B, is defined as:

V P1B(w, w′) =

∑N
i=1 tBi t′Bi√∑N

i=1(t
B
i )2

√∑N
i=1(t

′B
i )2

(4.2.1)

for TB
w,WS = (tB1 , tB2 , ..., tBN) and TB

w′,WS = (t′B1 , t′B2 , ..., t′BN ). In case of weighting

scheme ‘F’, the similarity,V P1F , is calculated using the following equation:

V P1F (w,w′) =

∑N
i=1 tFi t′Fi√∑N

i=1(t
F
i )2

√∑N
i=1(t

′F
i )2

(4.2.2)

for T F
w,WS = (tF1 , tF2 , ..., tFN) and T F

w′,WS = (t′F1 , t′F2 , ..., t′FN ).
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4.3 Vector Product Similarity in Bigram Lan-

guage Model

As above, the main idea underlying our approach is that the similarity of con-

text implies similarity of meaning. We assume that words, which are similar in

contextual distribution, have a close semantic relation. Consider the following

sentences.

A strong quake measuring on the Richter Scale...

A strong earthquake measuring according to ...

The two italicized words occur in same lexical contexts and they are indeed similar

in meaning, referring to the concept of earthquake.

A word, w, is considered with its neighboring words in a sequence

...w1,L w w1,R....

where the words in the left and right contexts are represented by w1,L and w1,R

respectively.

The similarity of two words, w1 and w2, is estimated as the sum of the left and

right context-dependent distances. This sum gives the total “distance” between

the probability distributions for, w1 and w2 as:

DLR(w1, w2) = DL
12 + DL

21 + DR
12 + DR

21 (4.3.1)

where DL and DR are the left-context and right-context distance respectively

and D12 denotes the (possibly asymmetric) distance between w1 and w2 [25, 21].

Pargellis et al [21] propose four different distance metrics D, all being computed

directly from the conditional probability distributions of contexts given words,

e.g., see Eqs. (4.3.3), (4.3.4). In our approach, the Vector Product metric was
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used. In order to calculate the semantic distance between two words, we com-

pute the cosine distance between two feature vectors; each feature vector of a

word w measures the conditional probability of all possible contexts vi given that

word p(vi|w), i.e., each vector contains bigram language model probabilities for

(context, word) pairs. Given the symmetric nature of the Vector Product metric,

Eq. (4.3.1) becomes:

V P2 = V PLR(w1, w2) = V PL
12 + V PR

12 (4.3.2)

because V PL
12 ≡ V PL

21 and V PR
12 ≡ V PR

21. The two terms of Eq. (4.3.2) are defined

as follows [21]:

V PL
12 ==

∑N
i=1 pL

1 (vi|w1)p
L
2 (vi|w2)√∑N

i=1 pL
1 (vi|w1)2

√∑N
i=1 pL

2 (vi|w2)2

(4.3.3)

V PR
12 ==

∑N
i=1 pR

1 (vi|w1)p
R
2 (vi|w2)√∑N

i=1 pR
1 (vi|w1)2

√∑N
i=1 pR

2 (vi|w2)2

(4.3.4)

where V = (v1, v2, ..., vN) is the vocabulary set, and pL
1 (vi|w1) is the conditional

probability of word vi preceding w1 in the corpus given word w1, i.e., the vi, w1

bigram model probability.

4.4 Linear Combination

Combining classifiers [31, 11] is a particularly useful technique for diverse corpora,

such as those that involve large amount of noise or unusually high dimensional

patterns. A popular and simple way of combining multiple classifiers is simple

averaging of the corresponding output values. Weighted averaging has also been

proposed, along with different methods of computing the proper classifier weights

[28]. In our approach, we have two different forms of the Vector Product metric

with the same objective but with different perspective of the input corpus: V P1
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with broad lexical scope and V P2 that concentrates on the immediate context of

each word.

Our goal is to create a combined metric that takes into account both wide-

context and narrow-context information. In our experiments, a weighted linear

combination of the two metrics was used as follows:

V PC = λ1V P1 + λ2V P2 (4.4.1)

where λ1+λ2=1. The algorithm for calculating λ1 and λ2 will be presented later

in this chapter.

4.5 Grouping Semantically Related Words

The V P1, V P2 and V PC metrics output a list of pairs, ranked according to the

semantic similarity of their members, from semantically similar to semantically

dissimilar. Words and semantic classes (induced in previous system iterations)

are valid members of such pairs. From this list that contains all possible word

pairs in the corpus, one has to choose a fixed number of top ranking pairs in

order to induce the next set of semantic classes. The mapping from top ranking

pairs to classes was achieved using a variant of the algorithm presented in [21].

In their approach, a new class label is created for each pair and the two members

are assigned to the new class. However, there is no way to merge more than

two lexical units at one step which may lead to a large number of hierarchically

nested classes.

Extending the work of Pargellis et al, an algorithm was implemented that

creates classes that are allowed to have more than two members. This algorithm

examines multiple pairs and finds those pairs that have a common element. Pro-

vided that certain conditions are met, a new class label is created and the union
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of these pairs is assigned to this class. Assume that the pairs (A,B), (A,C), (B,D)

were ranked at the upper part of the list. According to the proposed algorithm,

the class (A,B,C,D) will be created. To avoid over-generalizations only pairs that

are rank ordered close to each other are allowed to participate in this process.

The parameter “Search Margin”, SM , defines the maximum distance between

two pairs (in the semantic distance rank ordered list) that are allowed to be

merged in a single class. Consider the following ranked pairs

Position in List 1 2 3 4 5

Pairs A B B C E F F G C D

where A, B, C, D, E, F, G represent candidate words or classes. For SM = 2

the classes (A,B,C) and (E,F,G) will be generated, while for SM = 3 the classes

(A,B,C,D) and (E,F,G) will be generated. By adding the search margin SM

constraint it was observed that the semantic homogeny of the created classes was

better preserved.

The described algorithm is based only in a simple observation regarding the

same member that two pairs may have. The quantity and quality of the resulting

classes depends on the size of the list. Generally the pairs, which are near to

the top of the list, are composed of lexical units that are strongly related. In

contrast, the lower pairs in the list have more poor semantic relationship. The

balancing art is to have a large list of pairs in order to derive enough semantic

classes, preserving at the same time their semantic homogeny.

4.6 Estimating λ1 and λ2

As was previously mentioned, the primary goal is to create a hybrid metric that

will take into account both “wide-context” and “narrow-context” information.

This was achieved by using a weighted linear combination of the two metrics
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V P1 and V P2 as follows:

V PC = λ1V P1 + λ2V P2 (4.6.1)

where λ1+λ2=1. Parameters λ1 and λ2 are calculated using an algorithm that is

based on the following key idea: Greater importance should be given to the metric

that produces more “qualitative” results. In order to measure the performance

of V P1 and V P2 the algorithm proposed, measures the average distance between

the classes induced by each metric at every iteration for a fixed number of top

ranking pairs, NP . The metric that produces more distinct classes i.e. classes

with big distance, should be given greater weight.

Assume for example that V P1 produces NNP
V P1

classes from the top NP pairs.

These classes are represented as:

ci = {vi,1, vi,2, ..., vi,ni
} 0 ≤ i ≤ NNP

V P1

where ci represents the ith class and {vi,1, vi,2, ..., vi,ni
} represent the ni members

of the ith class. The distance in general between two classes cj and ck is computed

as follows:

Dcj ,ck
=

∑nj

p=1

∑nk

q=1 d(vj,pvk,q)

njnk

(4.6.2)

where d(vj,pvk,q) represents the semantic similarity between words vj,p and vk,q

(calculated in this example by V P1). Finally, the performance of V P1 is calculated

by averaging over all the possible Ds as follows:

DV P1
avg =

∑N
NP
V P1

r=1

∑N
NP
V P1

t=r+1 Dcr,ct

N
NP
V P1

(N
NP
V P1

−1)

2

(4.6.3)

It should be noted that both V P1 and V P2 outputs a list of pairs according

to their semantic similarity, from semantically similar to semantically dissimilar.

In other words, Eq. (4.6.2) and Eq. (4.6.3) represent how close the classes are, so

small D means that the classes are distinct and away from each other while bigger
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values mean that the classes are close. By combining DV P1
avg and DV P2

avg as show in

the following equation and considering that λ1+λ2=1, it is easy to calculate the

values of λ1 and λ2.

λ1

λ2

=

1

D
V P1
avg

1

D
V P2
avg

(4.6.4)

These parameters are calculated at every iteration, leading to further im-

provement of the systems performance.

4.7 Synopsis

In this chapter, our approach for automatic induction of semantic classes was

thoroughly presented. The way that the bigram language model and the vector

space model are applied is explained in details along with the combination of

them. Then, the algorithm for grouping semantically similar words is introduced

followed by the algorithm for estimating λ1 and λ2.



Chapter 5

Experimental Method

5.1 Corpora

Experiments were made on two different kinds of corpora, an heterogeneous do-

main generic and a domain specific corpus. The first corpus was the seman-

tically heterogeneous “HR-Net” corpus that was downloaded from the Hellenic

Resources Network (http://www.hri.org). Specifically, news in English from the

Hellenic Radio (ERA) between 01/01/2005 and 05/11/2005 were gathered, con-

sidering every article as a single document. HTML tags were removed from each

document. The number of articles in the corpus is 2,082, the total number of

words is 549,660, the size of the vocabulary is 22,904 words, the average num-

ber of words per document is 264, the maximum number of words found in a

document is 1,495 and the minimum 41.

The second corpus we experimented with was the domain specific ATIS cor-

pus. This corpus contains transcribed utterances dealing with travel information.

We used an experimental corpus consisting of 1,705 utterances. The total number

of words is 19,197 and the size of vocabulary is 575 words.
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5.2 Vector Space Model

For the V P1 metric, as was already mentioned, the feature vector for every word

w is defined as Tw,WS = (t1, t2, ..., tN) where ti is a non-negative integer and WS

is the context window size. These non-negative values, ti, are set according to

one of two different weighting schemes:

Binary Weighting Scheme ‘B’:

tBi =

{
1, if vi ∈ NLR,WS

0, if vi /∈ NLR,WS

Full Weighting Scheme ‘F’:

tFi =

{
c(vi|WS), if vi ∈ NLR,WS

0, if vi /∈ NLR,WS

where c(vi|WS) is a function of the number of occurrences of vi within a left and

right window context of size WS for the word w and for the whole corpus.

In the conducted experiments, two versions of tFi were used: In the first ver-

sion,

c1(vi|WS) = f(vi|WS) (5.2.1)

f(vi|WS) represents the number of occurrences of vi (frequency) within a left and

right window context for the word w and for the whole corpus.

In the second version,

c2(vi|WS) = f1(vi|WS)log(NC/Nvi
) (5.2.2)

f(vi|WS) represents again the number of occurrences of vi, NC represents the

total number of documents in the corpus and Nvi
the number of documents in

which vi exists at least once.
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5.3 Bigram Language Model

For the V P2 metric, a bigram language model was built using the CMU Statistical

Language Modeling toolkit [2], applying Witten-Bell discounting [9]. Since the

computation of bigram probabilities in Eq. (4.3.3), (4.3.4) over V is a time con-

suming procedure for the HR-Net corpus, we focused only on the “seen” bigrams

(bigrams that appeared in the corpus), for which no backoff weight is needed.

Furthermore, we set a threshold of k “seen” bigrams for each word participating

in the pair, in order to reduce computational complexity. We followed this strat-

egy only for the HR-Net corpus by setting k = 3, while for the ATIS corpus we

did not demand a minimum number of “seen” bigrams to compute the similarity

between words.

5.4 Experimental Procedure

The proposed system works iteratively performing the following steps:

Step 1: Calculation of the V P1 metric.

Step 2: Calculation of the V P2 metric.

Step 3: Normalization of the V P1 and V P2 results using min-max normalization.

Step 4: Calculation of λ1 and λ2 using the procedure that was presented in Sec-

tion 4.6.

Step 5: Calculation of the hybrid V PC metric.

Step 6: Induction of semantic classes as was presented in Section 4.5.

Step 7: Corpus re-parsing: all occurrences of the derived class members in the

corpus are substituted by the corresponding class label.

Step 8: If specified number of iteration SI is reached stop, else go to step 1.
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The experimental parameters are:

Parameter 0: The choice of the weighting scheme for the “wide-context” se-

mantic similarity metric V P1, i.e., use V P1F or V P1B as defined in Sections 4.2

and 5.2.

Parameter 1: The size of the context window WS for metric V P1 as defined

in Section 4.2.

Parameter 2: The number of system iterations (SI).

Parameter 3: The number of induced semantic classes per iteration (IC).

Parameter 4: The size of Search Margin (SM) defined in Section 4.5.

Parameter 5: The number of top ranking pairs (NP ) in order to calculate λ1 and

λ2 as defined in Section 4.6.

5.5 Synopsis

In this chapter, the experimental procedure that was followed is presented in

details. The textual corpora that was used is introduced. Then, every step of

the system that was implemented is introduced along with the parameters that

we experimented on regarding bigram language model, vector space model and

the combination of the two metrics.



Chapter 6

Evaluation

6.1 Evaluation

In order to evaluate the induced semantic classes for the HR-Net corpus, we used

as a benchmark a manually crafted semantic taxonomy. Two researchers were

assigned this task, devising a taxonomy of 43 semantic classes with 1,820 word-

members in them. Every word was assigned to a single class. In order to avoid

infrequent words, a threshold was adopted and only words with frequency greater

than 9 in the corpus were included in the taxonomy. Regarding the experimental

procedure, in order to decrease computation time, our system was tested only for

these 1,820 words. The following table illustrates 5 representative handcrafted

classes along with example members.

Class Name Members

Education university, school, student...

Politics Karamanlis, president, minister...

Law prosecutor, judge, crime...

Health hospital, surgery, pharmaceutical...

Sports Olympiacos, UEFA, Rehhagel ...

For the evaluation procedure of the ATIS corpus, we used a manually crafted

semantic taxonomy, consisting of 32 classes that include a total of 291 members.
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Every word was assigned to a single class. Regarding the experimental procedure,

we generated manually characteristic chunks, like New York → New York, J

F K → J F K etc. Also, during the experiments on ATIS, all the words of

the vocabulary were taken under consideration. The following table shows 5

representative handcrafted classes along with some members.

Class Name Members

City Atlanta, Dallas, Las Vegas...

Day Monday, Tuesday, Friday...

Fairtype one way, round trip, nonstop...

Airline Delta, Lufthansa, T W A...

Meal meal, lunch, breakfast ...

Although a hierarchical semantic taxonomy was also constructed for both cor-

pora, the evaluation focused only on the flat (terminal) semantic classes presented

above. In other words, every induced class was evaluated with respect only to the

corresponding handcrafted class without examining its relationships with other

classes over the taxonomy. An induced class is assumed to correspond to a hand-

crafted class, if at least half of its members are included (“correct members”) in

the handcrafted class. Precision and recall are calculated as follows:

Precision =

∑m
i=1 cmi∑m
i=1 αi

Recall =

∑m
i=1 cmi∑r
j=1 βj

where m is the total number of induced classes, r is the total number of hand-

crafted classes, cmi is the “correct members” of the ith induced class, αi is the

total number of members of the ith induced class and βj is the total number of

members of the jth handcrafted class that appear in the corpus.
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6.2 Evaluation Results on the HR-Net corpus

Regarding HR-Net corpus, many experiments were conducted, each one with dif-

ferent combination of the parameters that were described in Section 5.4. Among

these experiments Fig 6.1 illustrates the three metrics, V P1, V P2 and V PC , whose

combination lead to the best performance of the system. The parameters used in

this experiments were V P1F combined with c2(vi|WS) as described in Section 5.2,

WS = 50, SI = 30, IC = 10, SM = 10, NP = 20. Clearly, the V P1 metric sig-

Figure 6.1: Cumulative precision on the HR-Net corpus as a function of system
iterations for the three metrics.

nificantly outperforms the V P2 metric on this task. This is expected because the

HR-Net corpus is semantically diverse and words with similar “narrow-context”

are often not semantically related. Despite the poor precision of V P2, this metric

contributes to the combined metric V PC by identifying those words that have a
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distinct bigram context. The linear combination of the two metrics, V PC , tends

to achieve the best results but the difference between V P1 and V PC is often small

or non-existent. The highest precision, 99.31%, is obtained by V PC at the end

of the 7th iteration.

The following table presents the cumulative values of achieved recall as a

function of system’s iterations and metric used (V PC , V P1 or V P2) on the HR-

Net corpus (same parameters as above).

Recall

SI V PC V P1 V P2

5 5.71% 5.11% 3.30%

10 10.44% 9.50% 5.44%

15 14.28% 13.63% 7.86%

20 17.80% 16.98% 9.78%

25 20.88% 19.89% 12.09%

30 23.74% 22.97% 14.12%

It can be seen, that V PC has slightly higher recall than V P1 and that V P2 is

clearly the worst out of the three metrics. Note that at the end this experiment

for SI = 30 the V PC metric generates 39 classes with 432 members.

The following figure, fig. 6.2 illustrates the values of λ1 and λ2 that were

assigned to V P1 and V P2 respectively at every system’s iteration for the same

experiment on the HR-Net corpus. It can be seen that, in general, V P1 metric

produces more qualitative results and that is why λ1 is assigned bigger values.

V P2 metric contributes to the V PC metric especially during the first 10 system’s

iterations where its precision remains above 20% as shown in Fig. 6.1. Never-

theless and despite the poor performance of V P2 metric, V PC metric performs

better both in terms of precision and recall.
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Figure 6.2: Values assigned to λ1 and λ2 at each system’s iteration.

6.3 Evaluation Results on the ATIS corpus

Among the experiments that were conducted on ATIS corpus, Fig. 6.3 shows

the performance of the three metrics V P1, V P2 and V PC , whose combination

lead to the best performance of the system. For this experiment we used the

following parameters: V P1f combined with c2(vi|WS) as described in Section

5.2, WS = 20, SI = 30, IC = 10, SM = 5, NP = 50. On this domain-specific

corpus the performance of the V P1 and V P2 metrics is reversed. V P2 clearly

outperforms V P1 both in terms of precision and recall (shown in the table that

follows). This is expected because in this semantically homogeneous corpus the

“narrow-context” similarity often signifies semantic similarity; while there is not

enough data to adequately train the statistics of the “wide-context” metric. The

precision of the linear combination of the two metrics, V PC is higher than the
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Figure 6.3: Cumulative precision on the ATIS corpus as a function of system
iterations for the three metrics.

precision of V P2, especially after the 14th iteration where the performance of V P2

drops significantly. Note that the best precision for V P2 and V PC (almost 100%)

is achieved in the first iteration of the system.

The following table presents the cumulative values of achieved recall as a

function of system iterations and metric used.

Recall

SI V PC V P1 V P2

5 29.55% 8.59% 30.58%

10 40.89% 19.59% 43.30%

15 53.61% 28.52% 53.26%

20 58.42% 39.52% 59.79%

25 65.98% 46.74% 65.29%

30 70.44% 51.89% 71.13%
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It can be seen, that V PC and V P2 have similar recall values, while V P1 is signif-

icantly worse. Note that for SI = 30 the V PC metric generates 28 classes with

205 members.

The following figure, fig. 6.4 illustrates the values of λ1 and λ2 that were

assigned to V P1 and V P2 respectively at every system’s iteration for the same

experiment on the ATIS corpus. It can be seen that, in general, V P2 metric

Figure 6.4: Values assigned to λ1 and λ2 at each system’s iteration.

produces more qualitative results and that is why λ2 is assigned bigger values

especially at the first system’s iterations. Later, after the 20th where the per-

formance of V P2 drops, λ1 is assigned greater values since V P1 performs better.

Generally, V P1 metric contributes to the V PC metric in every system’s iteration,

leading to better performance both in terms of precision and recall.



Chapter 7

Conclusions

This work raised several valuable issues regarding the nature of human language

and how it can be integrated with probability and statistical techniques. It was

shown that it is possible to discover the hidden meaning of the natural language

without the support of strict grammatical rules. Statistical language processing

was used taking into account only the textual context.

An unsupervised procedure for automatic induction of semantic classes was

presented using a “wide-context”, V P1, and a “narrow-context”, V P2, seman-

tic similarity metric as well as their combination V PC . It was shown that V P1

performs best for the semantically heterogeneous HR-Net corpus, while V P2 per-

forms better for the domain-specific ATIS corpus. The hybrid metric V PC per-

formed slightly better than the best of V P1, V P2 in our experiments, both in

terms of precision and recall. Semantic class precision of 90% and recall of 24%

was obtained for the HR-Net corpus. Precision of 88% and recall of 70% was

achieved for the ATIS corpus.

We have also presented, an unsupervised procedure to measure the quality

of each metric, V P1 and V P2, in order to assign values to λ1 and λ2. The

distance between the classes induced by each metric was calculated, assigning

bigger weight to the metric that produced more distinct classes. This measure
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proved to perform very well as it lead V PC to perform better during almost every

system’s iteration regarding experiments on both corpora.

7.1 Ongoing Work

During the last few weeks, our focus was mainly concentrated on measuring the

quality of each metrics’ results, in order to calculate λ1 and λ2 more efficiently.

In Section 4.6 the algorithm presented, takes under consideration only the aver-

age distance between classes (inter-class distance). A variant of this algorithm

was also applied which considers additionally the average distance between the

members of each induced class (intra-class distance) at every system’s iteration.

As in Section 4.6, assume that V P1 produces NNP
V P1

classes from the top NP

pairs. These classes are represented as:

ci = {vi,1, vi,2, ..., vi,ni
} 0 ≤ i ≤ NNP

V P1

where ci represents the ith class and {vi,1, vi,2, ..., vi,ni
} represent the ni members

of the ith class. The distance in general of a class member vi,l from the other

members of the class ci is computed as follows:

d′
vi,l

=

∑ni

k=1,k 6=l d(vi,lvi,k)

ni − 1
(7.1.1)

where d(vj,pvk,q) represents again the semantic similarity between words vi,l and

vi,k (calculated in this example by V P1). The average distance between the

members of the class ci is:

D′
ci

=

∑ni

l=1 d′(vi,l)

ni

(7.1.2)

Finally, the average distance between the members of every class at each

system’s iteration is:

D′V P1
avg =

∑N
NP
V P1

i=1 D′
ci

NNP
V P1

(7.1.3)



65

Eq. (7.1.3) represents how compact the induced classes are. By combining DV P1
avg ,

DV P2
avg , D′V P1

avg and D′V P2
avg as show in the following equation and considering that

λ1+λ2=1, it is easy to calculate the values of λ1 and λ2.

λ1

λ2

=

D
′V P1
avg

D
V P1
avg

D
′V P2
avg

D
V P2
avg

(7.1.4)

Primary experiments conducted with the ATIS corpus using Eq. (7.1.4) lead

to promising results. Fig. 7.1 shows the performance of V PC (using Eq. (4.6.4)),

V P ′
C (using Eq. (7.1.4)), V P1 and V P2. For this experiment we used the following

parameters: V P1f combined with c2(vi|WS) as described in Section 5.2, WS =

20, SI = 30, IC = 10, SM = 5, NP = 50. It is clear that both V PC and

Figure 7.1: Cumulative precision on the ATIS corpus as a function of system
iterations for the four metrics.

V P ′
C outperforms V P2 in terms of precision, with V PC performing slightly better
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than V P ′
C . Regarding the cumulative values of achieved recall, as shown in the

following table, V P ′
C performs better than V PC .

Recall

SI V P ′
C V PC V P1 V P2

5 30.93% 29.55% 8.59% 30.58%

10 41.24% 40.89% 19.59% 43.30%

15 53.26% 53.61% 28.52% 53.26%

20 61.51% 58.42% 39.52% 59.79%

25 66.67% 65.98% 46.74% 65.29%

30 71.82% 70.44% 51.89% 71.13%

Finally, fig. 7.2 illustrates the values of λ1 and λ2 that were assigned to V P1

and V P2 respectively at every system’s iteration. Again, as in fig. 6.4, V P2

Figure 7.2: Values assigned to λ1 and λ2 at each system’s iteration.

is assigned bigger weights at the first iterations of the system but during the

following iterations the situation is reversed and V P1 receives greater importance.
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7.2 Future Work

More work is needed to improve on each of the metrics and, especially, on the

combined metric. Further research needs to be done in the area of soft cluster-

ing regarding the non-deterministic assignment of words to classes, resulting to

semantically richer taxonomies. Also, a stopping criterion can determine a suffi-

cient number of rules, terminating automatically procedure of the V PC metric.

One challenging scenario is not only to assign names to the output classes, but

also to identify various kinds of relations that exist between them, setting the

foundations for automatic hierarchy derivation.

During our experimentation we observed that the system generated automat-

ically some internal relationships between previous induced semantic classes. A

representative example, taken from the experiments over the HR-Net corpus is

shown in Fig. 7.3. This aspect of the system can be considered as a promising

Figure 7.3: Pictorial view of relationships among induced classes for HR-Net

step towards the automatic extraction of a hierarchy between taxonomic classes.
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