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Abstract

In this work, a novel algorithm for incorporating morphological knowledge into

statistical machine translation (SMT) systems is proposed. Using an unsuper-

vised algorithm, morphological analysis is performed for the texts of the source

and target languages resulting in rules that specify the separation of each word

into its stem and affixes. Stem information is used for the construction of a stem-

level SMT system, that translates from stems of one language to stems of another.

Using a general statistical framework that we are proposing, the stem-level SMT

system is combined with a lexical SMT system, resulting in word-to-word trans-

lation through the morphological SMT system.

The combined lexical-morphological SMT system has been implemented us-

ing late integration and lattice re-scoring. The output of this system is compared

to that of the baseline lexical system, after training both of them on the Eur-

parl corpus, a large multilingual parallel corpus. Various experiments have been

conducted by altering the training set size as well as the weights that are used

in the combination of the two systems. For the evaluation of the two systems

translations, two automatic evaluation metrics have been used.

Experiments have shown that the scores for both the two metrics, NIST and

BLEU, for the combined lexical-morphological SMT system, improve over the

baseline system by 14% and 33% for the NIST and BLEU metrics respectively,

for translation of English to Greek, using a 800k word training corpus, on the

sentences that result in different translations between the two systems. To pro-

vide further evidence of the validity of our results, we have performed statistical

significance tests to calculate confidence intervals for the true values of the im-

provement our system provides.

ix



x

We are also proposing an enhancement to the combined lexical-morphological

SMT system, by providing the theoretical framework for the incorporation of affix

information into the system. Such an incorporation could take place by creating

an affix-to-affix system and combining this system into the statistical framework

of the combined lexical-morphological system.
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Introduction

The translation of foreign language texts by computers has been the driving force

for the research that has been carried out during the past 50 years in the field of

Machine Translation (MT). A matter of speculation long before computers were

capable of performing complex calculations to make such a tedious task viable,

the field of MT has claimed attention from pioneers in linguistics, philosophy,

computer science and mathematics.

Today MT has become an important field of research and development as

the need for translation of technical and commercial documentation is growing.

Great progress has been made, yet the translation quality of today’s state-of-the-

art systems is nowhere near that of a skilled human professional translator. This

is mainly due to the inherent complexities that characterize human languages

and the inability of current systems to exploit the wealth of information within

them, such as linguistic information.

Different approaches to Machine Translation (MT) exist today. Statistical

Machine Translation (SMT) is the approach that utilizes the power of statistics,

by training statistical models for sets of languages and using Bayesian inference

to compute the best translation from one language to the other. Most existing

SMT systems operate at the lexical level, providing word-based or phrase-based

translation by modeling word or phrase relations between sets of languages. Such

systems do not take advantage of the linguistic information that is inherent in
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the training sets used, such as the morphology of each language.

Morphology is the study of the way words are built up from smaller meaning

bearing units, such as stems and affixes. An analysis of large monolingual corpora

may provide rules that specify how each word of the vocabulary of the language

is constructed by a stem and optional affixes in an unsupervised way. Algorithms

for such a morphological analysis exist today, one of which is used in our work

for the derivation of such rules.

In this work, we are proposing a method for the incorporation of linguis-

tic knowledge, specifically morphological knowledge, into existing SMT systems.

First, morphological rules are extracted in in unsupervised way, resulting into

knowledge about the way each word can be split into a stem and its affixes. This

knowledge is used in order to stem the training corpora and to train statistical

models that allow for the creation of a system that performs translation at the

stem level. The stem-level SMT system is then combined with the lexical SMT

system, resulting on what may be called a combined lexical-morphological SMT

system. This combination employs weights that model the participation of each

system in the process of translation, allowing it to give more weight to one of the

two systems.

In this work, we are also demonstrating an implementation of such a lexical-

morphological SMT system, using late integration and lattice re-scoring. During

the stage of decoding, which is the process of computing the best translation of

a given sentence, lattices are produced for both the word-level and stem-level

system. These lattices are represented as weighted finite state machines, as also

happens for the stem-to-word model which implements what we call a morpho-

logical generator. The combination of the two systems is then implemented by

operations between the resulting finite state machines.
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Evaluation of both systems output is done automatically, in order for the

results to be unbiased, using two automatic evaluation metrics that are widely

used in Machine Translation, namely the BLEU and NIST metrics. These metrics

are computed by comparing the translation of a system to a reference translation,

that has been created by a human expert. Computing scores for these metrics

makes it possible to directly compare the translation quality of the two different

SMT systems. This comparison has shown that the lexical-morphological SMT

system greatly improves the translation quality, up to 33% and 14% for the two

metrics respectively, for a 800k words training corpus, on the sentences that result

in different translations between the two systems.

The evaluation of any SMT system is affected by the size of the testing sets.

Although we used quite large testing sets, in order to be confident that the

results are valid we performed statistical significance tests. Using the method

of bootstrap resampling, we calculated confidence intervals for the true value of

the improvement achieved by the morphological knowledge incorporation. These

tests have shown that our results are statistically significant and that there is

clear improvement in the translation quality.

Document Structure

The rest of this document is structured as follows: Chapter 1 provides the es-

sential background in the field of Statistical Machine Translation (SMT), while

Chapter 2 discusses language morphologies as well as related work in the field of

SMT research. The baseline system that has been used is introduced in detail

in Chapter 3, while the theoretical framework of our work as well as an imple-

mentation of such a system are presented in Chapter 4. Chapter 5 discusses the
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experiments that have been conducted and demonstrates the results of the com-

parison between the new system and the baseline. We conclude our research in

Chapter 6 and provide some pointers for future work in this area. Some transla-

tion examples from both systems are presented in Appendix A.



Chapter 1

Background in Statistical
Machine Translation

1.1 Introduction to Machine Translation

1.1.1 What is Machine Translation?

Before discussing about Statistical Machine Translation, it is useful to provide

some brief introduction to the field of Machine Translation in general. The Eu-

ropean Association for Machine Translation gives the following definition for

MT: “Machine translation (MT) is the application of computers to the task of

translating texts from one natural language to another” [11]. The term Machine

Translation (MT) is the traditional and standard name for computerised sys-

tems responsible for the production of translations from one natural language

into another, with or without human assistance. Other terms have been used in

the past, such as “mechanical translation” and “automatic translation” but are

rarely used now in English.

5
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1.1.2 A Brief History of MT

The idea of using mechanical dictionaries to overcome the limitations of languages

is not new; both Descartes and Leibniz, back in the 17th century, speculated on

the creation of dictionaries based on universal numerical codes. The “universal

language” movement was born, which is the idea of creating an unambiguous

language, based on logical principles and iconic symbols, with which all humanity

could communicate without fear of misunderstanding. The most familiar work

in this area is the interlingua, elaborated by John Wilkins in [16].

In this work, Wilkins defines the “real character” which is a new orthogra-

phy for the English language that resembles shorthand, and the “philosophical

language” which is based on an early classification scheme, or ontology, in what

would later become the computer science meaning of the term. He then de-

scribes a large number of possible concepts as single words by first dividing all

reality into forty different categories, each assigned to a different syllable, then

sub-dividing these categories into sub-categories, and so on. The resulting words

thus encode some of the semantics of their meanings into their spelling. Such

a-priori languages were inspired by accounts of how the Chinese writing system

worked.

Although there were many proposals for international languages in the sub-

sequent centuries1, few attempts to mechanize translation took place, until the

middle of the 19th century. Then, in 1933, two patents appeared independently

of each other in France and in Russia; one of a French-Armenian named George

Artsrouni, and the second by the Russian Petr Smirnov-Troyanskii.

1More modern a-priori languages are Solresol, an artificial language devised by Jean Franhois
Sudre beginning in 1817, and Ro, a constructed language created by Rev. Edward Powell Foster
beginning in 1904, yet the most widely spoken constructed international language is Esperanto,
first published in 1887 by L. L. Zamenhof under the pseudonym D-ro Esperanto (Dr. Hopeful).
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The latter work was indeed pioneer in the field of MT; Troyanskii’s proposal

consisted of three stages. First, an editor knowing only the source language was to

perform a logical analysis of words into their base forms and syntactic functions.

Then, another machine would transform sequences of base forms and functions

into equivalent sequences in the target language. Finally, a third editor, which

held knowledge of the target language only, would convert this output into the

normal forms of that language2. Apparently, this is a rough idea of how modern

MT systems work, and it is certain that the reader may find many similarities

between the Russian’s work back in 1933, and the architecture of the systems we

are describing in later chapters of this document.

Although Troyanskii’s work is quite astonishing for his era, few references

about his work exist in the literature. When it comes to mentioning the people

who first had the idea of translating automatically between languages, there is

some dispute about conversations between Andrew D. Booth, a british crystallo-

grapher, and Warren Weaver of the Rockefeller Foundation, and more specifically

to a memorandum written by the latter which included the folllowing two sen-

tences:

“I have a text in front of me which is written in Russian but I am

going to pretend that it is really written in English and that it has

been coded in some strange symbols. All I need to do is strip off the

code in order to retrieve the information contained in the text.”

Later in the memorandum, Weaver proposed some other more sophisticated

methods, that could turn such an apparent difficult task into one that could be

approached with the emergent computer technology of that time. When the idea

2Troyanskii’s patent referred only to the machine involved in the second stage, although he
believed that “the process of logical analysis could itself be mechanized”.
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was brought to general notice, various methods were suggested, being inspired

by the use of war-time cryptography techniques, statistical analysis, Shannon’s

information theory and exploration of the underlying logic and universal features

of spoken languages. By the early 1950s there was a large number of research

groups working in Europe and the USA, but despite some success, there was

doubt about the possibility of automating translation in general.

The mistakes of the early MT workers have been accredited to the lack of

judgement: the complexity of the conceptual problem of natural language un-

derstanding was underestimated [30]. In 1964 the National Academy of Sciences

of the United States published the report of its Automatic Language Processing

Advisory Committee (ALPAC), in which it was recommended that most research

into MT should be stopped immediately due to its failure to produce useful trans-

lation, destroying all confidence in the vision of building a fully automated MT

system.

During the next decade, researchers moved away from MT and concentrated

on understanding language processing, but in the early 1980s there was a revival

of MT research, though much of the work was carried out in Japan and not

Europe or the US. In Europe the Commission of the European Communities

(CEC) did invest in the English-French version of the SYSTRAN and in 1997

Altavista adopted BabelFish Translation making it the first real time Systran

translation to appear on the Web.

The reader that is further interested into the history of MT shall find detailed

information about the subject in [15].
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1.1.3 Approaches to MT

As research in the field of MT has been carried out in parallel and in many re-

search groups and countries, there have been different approaches to the problem

of machine translation. The most important ones, are:

• direct translation

• transfer based translation

• interlingua

• example-based translation

• statistical translation

Direct Translation

The “direct approach” is the earliest historically, adopted by most MT systems

of what has come to be known as the first generation of MT systems. It lacks any

kinds of intermediate stages in the translation processes: the processing of the

source language input text leads “directly” to the desired target language output

text. Direct translation systems can be considered to be word-for-word systems

because they do not offer something in the field of semantic, contextual knowledge

etc. They are missing any analysis of the internal structure of the source text,

particularly the grammatical relationships between the principal parts of the

sentences.

Transfer Based Translation

The lack of contextual accuracy and the inability to capture the meaning of

the source text using a direct strategy prompted the development of systems
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that could. Such a strategy for translating from one language to another, is to

treat translation as a process of altering the structure and words of an input

sentence to arrive at a valid sentence of the target language. Application of this

metaphor can be applied using knowledge about the differences between a set of

two distinct languages. Systems that use this strategy are often said to be based

on the transfer model.

The transfer model consists of three phases: analysis, transfer and generation.

The first phase involves some sort of parsing, in order to construct a represen-

tation of the structure of the input, which in phase two is transformed into a

structure for the target language. Finally, this structure is given as input to a

generator, in order to actually create the output sentence.

Based on the transfer model and depending on the level of the contrastive

knowledge that is modeled, such systems may utilize lexical, syntactic or semantic

transformations between two languages. Lexical transfer is the process of finding

the correct word in a cross-language dictionary, while syntactic transfer is the

operation of mapping from one parse tree (which models a sentence), to another.

At a higher level, this could also be applied to semantics, by generating semantic

trees that should then be transformed into the corresponding structures of the

target language, which is a rather tedious task. All of the rules that the transfer

model uses, in order to perform such transformations are usually hand-written,

which makes it rather expensive to use.

Interlingua

Methods based on the transfer model pose a serious disadvantage, in that they

require a distinct set of transfer rules for each pair of languages. When it comes to

systems that target multilingual environments, like the European Union where
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there are eleven official languages, it appears that the transfer model is quite

suboptimal. An alternative is to extract the meaning of the input sentence and

express it using the target language. This way, there is no need for transformation

rules between pairs of languages; the amount of knowledge needed is proportional

to the number of languages that the system needs to handle, rather than the

square as in the transfer model.

The common meaning representation that can be derived by all languages is

termed interlingua and instantly brings to mind the works of Wilkins and the con-

structed languages that have been mentioned in Section 1.1.2, yet it does not have

to be a real language, but a language-independent canonical form. Translation

using this method first performs a semantic analysis on the input sentence and

constructs the interlingual representation, then generates from this intermediate

structure the sentence in the target language.

This approach however is not free from limitations. In order for such a system

to work, there has to be a global interlingua vocabulary in which every word, or

meaning, from every language has to exist, which does not hold true, especially

for languages that have been derived from different cultures. Although the goal

of defining a universal interlingua is both intellectually stimulating and has many

potential advantages, it seems highly unlikely that there will ever be one truly

universal interlingua.

Example-based translation

Example-based translation is essentially translation by analogy. An Example-

Based Machine Translation (EBMT) system is given a set of sentences in the

source language (from which one is translating) and their corresponding transla-

tions in the target language, and uses those examples to translate other, similar
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source-language sentences into the target language. The basic premise is that,

if a previously translated sentence occurs again, the same translation is likely to

be correct again. Which examples an EBMT system determines to be equivalent

(or at least similar enough) to the text to be translated varies according to the

approach taken by the system.

Statistical Machine Translation

SMT may be viewed as a different approach to machine translation, when it is

compared to the other four approaches that have been described so far, because

it focuses on the result, and not on the process of translation. The goal of an

SMT system is to find the most probable sentence in the target language, given a

sentence in the source language. These probabilities are determined automatically

by training statistical models using large corpora of bilingual texts, translated

usually by human specialists. This approach in presented in detail in the next

Section.

1.2 Statistical Machine Translation

1.2.1 Overview

Statistical Machine Translation is the approach to machine translation that uses

probabilistic models in order to calculate the best translation of a given sentence.

Section 1.2.3 discusses what is meant by the term “best” translation and the

compromises that must be made in order to achieve it.

As a research area, SMT started in the late 1980s with the Candide project

at IBM [4]. This original approach calculated mappings between words and

allowed for deletion and insertions of words as well. Translation quality has been
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improved with the use of phrase translation, as early as Och’s [32] alignment

template model.

1.2.2 Bayes Rule and the noisy channel model

The most fundamental role in SMT theory (as well as in other natural language

applications) is the notion of Bayesian inference, or noisy channel model. This

model has been based on speech recognition techniques, where the source signal

has been altered by passing through a noisy communications channel, resulting

into a noisy word. This word should then be decoded in order to recover the

original word.

Bayes theorem is essentially an expression of conditional probabilities. Condi-

tional probabilities represent the probability of an event occurring given evidence.

The theorem can be derived from the joint probability of A and B as follows:

P (A, B) = P (B, A)

P (A|B)P (B) = P (B|A)P (A)

P (A|B) =
P (B|A)P (A)

P (B)
(1.2.1)

where P (A|B) is referred to as the posterior probability; P (B|A) is known as the

likelihood, P (A) is the prior probability and P (B) is generally the evidence and

is used as a scaling factor. Therefore, Bayes rule can be formulated as:

posterior =
likelihood× prior

evidence
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Application to MT

The noisy channel model can be used in MT: the intuition is to treat the sentence

of a foreign language that needs to be translated in the native language, as an

original sentence in the native language that has been passed through a noisy

communication channel. The sentence is transformed while passing through this

channel because of the “noise”3 of the channel. The goal then is to remove the

“noise” and recover the original sentence.

Given a sentence f in a foreign language, the goal is to find a sentence n in

the native language that maximizes the probability P (n|f), as

n̂ = arg max
n

P (n|f)

which by using Eq. (1.2.1) may be rewritten as:

n̂ = arg max
n

P (f |n)P (n)

P (f)

and since the maximization is over n it can be finally written as:

n̂ = arg max
n

P (f |n)P (n) (1.2.2)

So in order to calculate the best translation the probabilites p(f |n) and p(n)

should be modeled, where p(f |n) models the likelihood, i.e. how likely it is to

have the sentence f , given the sentence n, while p(n) models the prior probability

of sentence n to appear in the training corpora.

1.2.3 Faithfulness and fluency in translation

The very idea of translating from one language to another may be viewed firstly

as a subjective process and secondly as incapable of producing a perfect transla-

tion. The first point is based on the ambiguities that are present in all natural

3Although the term “noise” has been used literally in speech recognition tasks, it is used as
a metaphor in SMT.
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languages, that may lead in multiple “correct” translations. However, a sentence

that one person considers to be the best, may sound inappropriate for another

person, making the evaluation of the outcome a subjective process. The second

point is justified by the absence of 1:1 mappings between concepts and ideas

between sets of languages. For example, the word tread may not appear in the

language of a race that has not yet invented rubber wheels thus rendering it

impossible to translate the sentence the tread wears into that race’s dialect4.

In order to overcome these limitations, the quest for the calculation of the

“best” translation needs to take under consideration two different aspects: faith-

fulness and fluency.

Faithfulness

When multiple translations exists for a given sentence, there should be a means

of measuring how close each one of them is compared to the original sentence.

This is quoted as the faithfulness of a sentence. For example, the sentence the

tread wears could be translated in two ways: one that denotes that the outer

area of a tyre is being deconstructed into pieces, and one that claims that the

tyre is wearing something (perhaps a cloth or accessory). Obviously, the first

translation is a much more faithful attempt than the second one.

Fluency

Fluency may be defined as “the ability to express oneself readily and effortlessly”.

In the case of MT, fluency characterizes a sentence regarding it’s validity in the

language it belongs to. For example, the sentence “that is I” consists of valid

4In the case of this example it would be difficult in general to translate sentences in the
domain of automobiles, since it is not very probable for a race that hasn’t invented rubber
wheels to have invented cars.
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english words, yet is not valid as a sentence, in contrast to the sentence “that is

me”. Hence, the model p(n) that models the prior probability of a sentence n to

exist in the language, models the fluency of each sentence.

Going back to Eq. (1.2.2) it can be seen that the model p(f |n) actually mod-

els the faithfulness of the translation. Substituting p(n) and p(f |n) with the

corresponding concepts that they model into Eq. (1.2.2), we can express it in

non-mathematical terms as:

best-translationT̂ = arg max
T

faithfulness× fluency

which shows that in SMT, the goal of translation may be viewed as the production

of an output that maximizes some value function that represents the importance

of both faithfulness and fluency. Among all the sentences that correspond to the

original sentence, the one which maximizes both it’s faithfulness and it’s fluency

is considered to be the best translation.

1.2.4 Computing models

Having defined what is considered to be the best translation of a sentence, in

order for it to be calculated, the models that have been mentioned in the previous

section must be computed. The model p(n) is usually referred to as the language

model, since it models the language; the model p(f |n) is then referred to as the

translation model since it models the translation of one sentence into another.

Both these models can be computed by assessing large bilingual (or multilingual)

parallel corpora. These corpora that are used in training the models, must be a

large set of texts that are written in the native language, and the corresponding

texts in the foreign language, usually translated by human experts.

Regarding the language model, it can be easily computed as an n-gram model
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of the language. In order to compute the translation model though, some pre-

processing needs to take place. First of all, the corresponding documents from

every language must be paired. Then, the sentences that they contain must be

matched, and the words or phrases aligned. Pairs of words, or phrases (in word-

based or phrase-based translation accordingly) that appear in the same position

in texts that represent translations of the same source are then computed and

are assigned a probability, based on the number of times that they appear in the

corpora. The most well known models in this area are IBM Models 1 through 5,

which approximate the translation of n to f as a word substitution/permutation

process. Each of the models have a slightly different generative probabilistic

story. In depth information about these models may be found at [5].

1.2.5 Decoding

After the models have been computed, the best translation can be calculated.

Because the set of possible translations is enormous, efficient methods must be

used while searching, without actually generating the infinite set of all possible

translations. Because machine translation allows for word re-ordering, finding

the output that maximizes the objective function is NP-complete [22].

This decoding problem is usually addressed by a dynamic programming-based

beam decoder, where the output is produced left-to-right, by incrementally con-

structing a lattice of partial translation hypotheses. Each one of them stores:

the last pair of words/phrases used in translation, the next-to-last target word, a

coverage vector that makes explicit which source words have been already trans-

lated, a language and translation model score as well as other model scores. The

most promising hypotheses are expanded left to right until a translation with

a coverage vector that covers the entire sentence is found, then backtracking to
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generate the sentence. Instead of storing just the best translation, it is often

useful to store a list of n-best translations, as well as the lattice that has been

generated in the process of decoding.



Chapter 2

Language Morphologies

2.1 Introduction

2.1.1 What is a language’s morphology?

Morphology is the study of the way words are built up from smaller meaning-

bearing units, which are called morphemes. In the information retrieval domain,

the similar (but not identical) problem is called stemming, which usually deals

with removing endings from words leaving the stem (root) of the word. How-

ever, a full morphological analysis is more than that, and is usually regarded as

a segmentation of the word into morphemes combined with an analysis of the

interaction of these morphemes that determine the syntactic class of the word

form as a whole.

2.1.2 Different kinds of morphologies

Morphemes are defined as the minimal meaning-bearing units in a language.

Apart from the stem of a word, a morpheme can be an affix, which usually

provides additional meaning of some kind to the main concept that is provided

by the stem. An affix may be a prefix, suffix, infix or circumfix, whether it

19
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precedes the stem, follows it, do both or being inserted in it respectively. The

use of prefixes and suffixes (and circumfixes as well, since they may be viewed as

a combination of a prefix and a suffix) is often called concatenative morphology,

since a word is composed of a number of morphemes concatenated together.

In some languages, morphemes are combined in complex ways, using what is

called non-concatenative morphology. Another kind of this type is the templatic

morphology that is very common in languages like Arabic, Hebrew etc, and uses

root words and templates that transform them.

There are two broad classes of ways to form words from morphemes: inflection

and derivation, and thus we speak of inflectional and derivational morphology.

These two are partially overlapping since the borders between them are usually

not absolutely clear. Inflection mostly deals with the use of affixes, while deriva-

tion is the combination of a word stem with a grammatical morpheme, usually

resulting in a word of a different class, often with a meaning hard to predict

exactly.

In order to build morphological parses, there are three general classes of lin-

guistic knowledge that are needed: a lexicon, which is the list of stems and affixes,

together with basic information about them; morphotactics, which is the model

of morpheme ordering that explains which classes of morphemes can follow other

classes of morphemes inside a word; finally orthographic rules, which are the

spelling changes that can occur due to morpheme attachment. However, unsu-

pervised algorithms for performing a morphological analysis are available, using

statistical means.
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2.2 Learning a morphology

In recent years, there has been much interest in computational models that learn

aspects of the morphology of a natural language from raw or structured data.

These models are of great practical interest, minimizing the expert resources or

need of linguists in order to develop stemmers and analyzers.

There are three distinct ways of learning a language’s morphology:

Supervised learning The data consists of a set of pair of words

Unsupervised learning The data consists of a single set of all the words in a

corpus

Partially supervised learning The data consists of two sets of words, without

any indication of the relationship between the individual words

In this chapter we are discussing algorithms for the unsupervised learning of

morphologies, since such methods may be used with untagged corpora which is

often the case, performing a morphological analysis based only on a corpus. This

can be a valuable tool that may be used in statistical machine translation, where

the system is being trained using such untagged corpora.

2.3 Related work into morphology and SMT

In this section, the most important approaches of (mostly) unsupervised mor-

phology learning algorithms are presented. One way to categorize the existing

approaches on this matter is by evaluating whether human input is provided in

the process of deriving the morphology and whether the goal is to only obtain

affixes or to perform a complete morphological analysis [35]. According to this
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categorization, we may therefore cluster the various approaches and techniques

as follows:

• Bootstrapping using a knowledge source

• Obtaining affix inventories

• Performing a complete morphological analysis

2.3.1 Bootstrapping using a knowledge source

A first approach in obtaining morphologies is to begin with some initial human-

labeled source from which to induce other morphological components.

Exploiting co-occurence

Although their work may be more suited to information retrieval (IR), Xu and

Croft [37] are proposing a technique that is an example to this case. They are

basing their work around the hypothesis that the word forms that should be

conflated for a given corpus will co-occur in documents from that corpus. They

use a co-occurrence measure to modify an initial set of conflation classes generated

by a stemmer, refining the output of the well known Porter stemmer. This corpus-

based stemming automatically modifies the equivalence classes (conflation sets)

to suit the characteristics of a given text corpus. They perform experiments in

English and Spanish, but they do agree that generating the initial conflation

classes in languages with more complex morphologies may be a problem.

Using inflectional lexicons

Gaussier [12] proposes an unsupervised method of learning derivational morpholo-

gies from an inflectional lexicon of a language. Apart from restricting his work
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on suffixes and suffixation operators (and not prefixes, infixes or circumfixes), he

further focuses only on concatenative languages where derivation can be viewed

as a concatenation operation. For a given language, his method builds relational

families, which are an approximation of derivational families, which are then used

to produce pairs of words which are a first approximation of the pairs of related

words. From this set some parameters are being estimated and then used to

induce a derivation tree on each relational family. These trees are then used to

refine the previous set of word pairs and suffixes and extract dependencies be-

tween suffixation operations as well as morphographemic rules. The lexicon that

is being used includes part of speech information.

Multimodal alignment

Yarowsky and Wicentowsky [40] propose a corpus-based algorithm for the nearly

unsupervised induction of inflectional morphological analyzers, with a focus on

highly irregular forms. They obtain outstanding results at inducing English past

tense (92.2% accuracy for their set). Their method requires a table of the in-

flectional parts of speech of the given language along with a list of the canonical

suffixes for each part of speech, a list of the open class roots in the language and a

large unannotated text corpus. Their method treats morphological analysis pre-

dominantly as an alignment task, performing the effective collaboration of four

similarity measures: expected frequency distributions, context, morphologically-

weighted Levenshtein similarity and a model of affixation and stem-change prob-

abilities. This combination of different probabilistic models finds pairs of words

that are likely to be morphologically related.
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Learning of morphology without morphemes

An interesting approach against the literature of computational morphology, is

that of Neuvel and Fulop [29], who propose a mechanism for the induction of mor-

phological relationships without attempting to discover or identify morphemes,

using a part-of-speech tagged lexicon as an input. Additionally, their method

claims to be able to generate new words beyond the learning sample, with preci-

sion as high as 92%.

Their work is based on the theory of whole word morphology [2], which

seeks to account for morphological relations in a minimalist fashion. The cen-

tral mechanism of the theory is the Word Formation Strategy (WFS), a sort

of non-decomposable morphological transformation that relates full words with

other full words and parses any complex word into a variable and a non-variable

component. According to this, there is no distinction between inflectional and

derivational morphology, and morphology is relational and not compositional.

So, instead of looking for similarities between words (common stems, suffixes etc,

as in all other approaches), they argue that words are defined by the differences

amongst them, and it’s some of these that constitute the domain of morphology.

Hence, two words of a lexicon are meant to be morphologically related if and only

if all the differences between them are found in at least one other pair of words

of the same lexicon.

Their algorithm starts by comparing every word of a small lexicon and deter-

mines the segmental differences found between them. Merging the comparison

structures that exceed some threshold in occurrence, they create a list of mor-

phological strategies, which are then used to unify the words of the lexicon with

some part of them. Preliminary results are encouraging, and the authors are

looking forward to develop a more sophisticated sequence alignment routine, to
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allow the handling of infixing, circumfixing or templatic morphologies (e.g. those

of the Semitic type).

2.3.2 Obtaining affix inventories

A second, knowledge free category of research has focused on obtaining affix

inventories.

Discover morphemes by using MDL

Brent, et al. [27] exploit the minimum description length (MDL) principle to

discover the most powerful morphemic suffixes. They present two models for

generating the words in a corpus, based on two linguistic hypotheses: (1) that

morphemic suffixes and stems recombine with one another to form multiple words,

and (2) that morphemic suffixes provide information about the syntactic cate-

gories of words formed with them. In such a fashion, words are generated by

selecting a stem and a suffix from respective lists and then selecting a syntactic

category from a list of such categories available to words with the selected suffix.

Words are encoded into bit strings and form tables by the splitting of each word

in a stem and suffix and then heuristics are applied to reduce the number of

accountings in the search space. Their experiments output -age, -al, -ed, -ing,

-ion, -ity, -nce and -s as the most common suffixes.

Creutz and Lagus also presented a more recent work [7] containing two meth-

ods for the unspervised segmentation of words into morphemes, one model using

MDL and another one using Maximum Likelihood (ML) optimization. The ex-

periments appeared successful, with the first model being slightly more efficient

than the second.
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Use of genetic algorithms

Something similar has been proposed by Kazakov [20], a combination of unsuper-

vised and supervised learning techniques for the generation of word segmentation

rules from a raw list of words, using genetic algorithms and inductive logic pro-

gramming. The former provides a first approximation of the concept learnt and

reduces the search space, while the latter learns rules that can be employed to

segment unseen words. Results of their tests show that a set of rules for word

segmentation can be learnt from a limited number of unannotated words (in the

order of 103 words). The genetic algorithm in this work may be viewed as a

search technique in the MDL framework for word segmentation.

Morphemes as concept for structures

DeJean [10] is inspired by the works of Zellig Harris [14], a distributional ap-

proach where the distribution of an element is the set of the environments in

which it occurs. His work uses untagged and non artificial corpora without spe-

cific knowledge about the studied language. The algorithm is divided into three

steps: the first step computes the list of the most frequent morphemes, which

is being extended in the second step by segmenting words with the help of the

morphemes already generated, while the third step consists in the segmentation

of all the words with the morphemes obtained at the second step. A symmetric

procedure can be used to identify prefixes; the letters of the words are just re-

versed. Morpheme boundaries for the most frequent morphemes are discovered

when the number of different letters that are found to follow some sequence of

letters is higher than a threshold.
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2.3.3 Performing a complete morphological analysis

Although the work presented in the previous categories does induce some informa-

tion about a language’s morphology, finding just the affixes of a language is not a

complete morphological analysis of the specific language. Another knowledge-free

category of research attempts is to induce a complete analysis of the morphology

for each word of a corpus.

Guessing morphology

One approach that falls into this category is that of Jacquemin [17]. His algorithm

is aimed not only at the derivation of affixes, but the automatic acquisition of

morphological links between words in a corpus. These morphological relations

actually rely on a measure of distance between two strings which is similar to the

distances used for approximate string matching, following the notion that words

which share a common stem are semantically related. Besides the text corpus,

his algorithm also requires a list of multi-word terms.

The aforementioned measure of similarity is a comparison of truncations

whose lengths are related to the lengths of the initial string (k -similarity). Af-

ter words are related using this procedure, the algorithm looks for approximate

equalities between multi-word terms and corpus utterances, using the idea of k -

n-conflation. Next, conflations are grouped into classes and the incorrect ones

are filtered out. The classification relies on a characterization of the morpholog-

ical operation transforming the original term into its corpus occurrence. Finally,

classes are clustered together if they are associated with similar morphological

processes. Again, this step is based on some linguistic principles that form a

measure of distance between the classes.
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Linguistica

Goldsmith [13] proposes another method of minimum description length (MDL)

analysis to model unsupervised learning of the morphology of European lan-

guages. Inspired by De Marcken’s thesis on MDL [8], he attempts to provide

both a list of morphemes and an analysis of each word in a corpus. His algorithm

is implemented and named Linguistica, and is freely available on the Internet. He

presents a set of heuristics that develop a morphological grammar and then uses

MDL to determine whether the modifications proposed by the heuristics will be

adopted or not, by eliminating inappropriate parses for every word in the corpus.

Further information about Linguistica is presented in Section 2.4.

Knowledge-free morphology induction

An interesting and still quite straightforward approach is that of Schone and

Jurafsky [35], who also propose an unsupervised morphology acquisition method,

based on untagged corpus, which will be described in more detail. In general,

their approach consists first of looking for potential suffixes by searching for

frequent affixes, then looking for potential morphologically related pairs. A series

of enhancements provide improved results, such as incorporation of semantic,

orthographic, local syntactic information and transitive closure.

In more detail, their approach consists of the following states:

1. Identification of pairs of potential morphological variants

2. Determination of semantic vectors for each word

3. Correlation of the semantic vectors and creating of conflation sets

4. Augmentation with frequency information
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5. Consideration of local context for part of speech info

6. Addition of words using transitive closure

In the first phase, beggining with an untagged corpus as input, they first

generate a list of word pairs that might be morphological variants. One strong

point in their algorithm is that it does not only seek to identify prefixes and

suffixes, but circumfixes as well. From this lexicon that consists of all the words

in the corpus, they identify and strip pesudo-prefixes, that is word begginings

in excess of some threshold (T1). The word residuals are inserted back into

the lexicon as if they are valid words. Using this final lexicon, they now seek

for suffixes, by inserting the lexicon into a trie and assembling a list of all trie

branches that occur some minimum number of times (T2). This list contains all

the potential suffixes. In a similar manner, by reversing the ordering of the words,

a list of potential prefixes is derived.

Additionally, a potential circumfix is a pair B/E where B and E occur respec-

tively in potential prefix and suffix lists. The residual of a word after a potential

circumfix is removed, is called a pseudo-stem. A potential circumfix that appears

more than T3 times is called a candidate circumfix. Following this, comes the

derivation of a rule, which is a pair of candidate circumfixes sharing at least T4

pseudo-stems. Two words sharing the same rule but distinct candidate circum-

fixes constitute a pair of potential morphological variants (PPMV). Finally, the

set of all PPMVs for a common rule is a ruleset.

The final goal of the first phase is to find all the possible rules and correspond-

ing rulesets. Several of these rules are quite valid, still there are some that are

almost never valid, but the incorporation of semantics can help in determining

the validity of each rule.
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The second phase of the algorithm is where semantics are incorporated,

by using the algorithm of Latent Semantic Analysis [9], which shows that valid

semantic relationships between words and documents in a corpus can be induced

with virtually no human intervention. This is done for the N most frequent words

(because computations are expensive) and the remaining terms are ”fold in” to

a glob position.

Correlation of these semantic vectors takes place in phase three, by com-

puting a score for a pair of words, namely the normalized cosine score NCS. If

this score exceeds some threshold (T5) for two words of a PPMV, then a valid

relationship between the words is accepted.

In the fourth phase, affix and rule frequencies take part in the computa-

tion of the orthographic probability of validity that two words are morphological

variants, motivated by the use of the minimum edit distance (MED), which is

the minimum-weighted set of insertions, substitutions and deletions required to

transform one word into another.

The authors also argue that there is no guarantee that two words that are

morphological variants need to share similar semantic properties, so in phase five

they incorporate the use of local syntactic contexts around words, in addition to

the large-window contexts that were used in semantic processing. By use of

signatures (collections of words that occur too many times around the word),

they compute a syntax-based probability for each word. The result is that the

probabilities of some low-score, but yet valid PPMVs increases because of their

local context.

In the sixth phase, the algorithm tries not to deem PPMVs that still may

seem unrelated, if they appear as members of other valid PPMVs. By combining
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the probabilities of all independent (intermediate) paths from X to Z, they com-

pute a branching probability, and when it exceeds T5 the two are declared to be

morphological variants of each other.

Evaluation of the algorithm on English, German and Dutch yield quite good

results, resulting in almost a 20% relative reduction in overall induction error. A

combination of such an approach with that of Yarowsky and Wicentowski [40]

(which does very good work with irregular forms) could potentially lead to a

quite successful derivation of a language’s morphology.

Using orthographic and semantic similarity in another fashion

Another knowledge-free approach that exploits orthographic and semantic sim-

ilarity is that of Baroni, et al. [26]. With an unannotated corpus as input, it

returns a list of probable morphologically related word pairs. Orthographic simi-

larity is measured using minimum edit distance (MED). Their approach however

differs from that of Schone and Jurafsky [35] in that regarding orthography, they

rely on the comparison between individual word pairs without requiring that the

two pairs share a frequent affix. Also, from the point of view of semantics, they

compute scores based on Mutual Information [6] instead of latent semantic anal-

ysis, looking at the co-occurrence patterns of the target words, rather than the

similarity of their contexts.

Mutual Information between two words A and B is given by:

I(A, B) = log
Pr(A, B)

Pr(A)Pr(B)
(2.3.1)

which intuitively means that the larger the deviation between the empirical fre-

quency of co-occurrence of two words and the expected frequency of co-occurrence

if they were independent, the more likely it is that the occurrence of one of the
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two words is not independent from the occurrence of the other. The measurement

of semantic similarity is thus based on the notion that related words will tend to

often occur in the nears of each other.

Experiments with German and English inputs gave encouraging results, both

in terms of precision, and in terms of the nature of the morphological patterns

found within the output set.

2.4 The Linguistica Morphological Analyzer

In our work, we used the Linguistica system to perform morphological analysis

for both the source and target languages. As mentioned in the previous section,

Linguistica uses a set of heuristics to provide an initial morphological analysis.

The first one (called take-all-splits), considers for each word of length l all the

possible cuts into w1,i, wi+1,l, 1 ≤ i < l. For each cut, the metric H is computed

(as seen in Eq. (2.4.1)) and the corresponding probability of the cut is given by

Eq. (2.4.2), i.e.,

H(w1,i, wi+1,l) =

= −(i log freq(stem = w1,i)+

(l − i) log freq(suffix = wi+1,l)) (2.4.1)

where freq represents the number of times a stem or suffix appears in the corpus

and

prob(w = w1,i wi+1,l) =
1

Z
e−H(w1,i,wi+1,l) (2.4.2)

where the normalization factor Z equals

Z =
n−1∑
i=1

H(w1,i, wi+1,l)
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For each word, the best parse in the maximum likelihood sense is selected to boot-

strap the heuristic and then the metric is optimized globally over all words, stems

and suffixes in the corpus (usually the process converges after five iterations).

The second heuristic computes the counts of all sequences of characters with

length n between two and six letters. Then for each n-gram n1, n2 . . . nk we

compute the weighted mutual information metric:

[n1, n2, . . . , nk]

Total count of n-grams
log

[n1, n2, . . . , nk]

[n1][n2] . . . [nk]

The top 100 scoring n-grams are kept and used to parse each word (if possible)

into stem plus suffix. For those words that more than one splits exist, the previous

heuristic is used to choose the best one.

Finally, for each stem the list of all corresponding suffixes is created which

is referred to as a signature. Stems with the same suffix signatures are merged.

Signatures that contain more than one stems and affixes are referred to as regular

signatures and are of the form
stem1

stem2

stem3


{

suffix1

suffix2

}

Heuristic rules are used to add stems or suffixes to regular signatures (based on

similarities with other regular signatures) thus improving on the generalization

power of the morphological rules. Note that the morphological signatures are

derived in a fully unsupervised fashion.

2.4.1 Improving Linguistica

Linguistica offers the chance of adjusting some parameters in order to influence

the resulting morphology, but in order to do this one must take into consideration
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the way the morphology is built. A simple and cheap (in terms of time and

computational power needed) way of increasing the precision of the resulting

morphological analysis, on the expense of recall has been proposed by Giannis

Klasinas in [21] and is presented in this section.

Examining the result of the morphological analysis that Linguistica provides,

it can be observed that in most words that are mistakenly analyzed, the error

is assigning stem characters to the suffix. The problem of false identification

becomes more important when dealing with short words, where removal of the

suffix usually leaves a very short stem which is possibly useless for training an

SMT system. In order to overcome these problems, a heuristic rule is employed,

which uses two parameters:

• the lenght of the words l

• the ratio r of the length of the suffix divided by the length of the whole

word

Every word that is analyzed by Linguistic is examined, and the analysis is kept

only for words that have lword > l0 and rword < r0. In order to choose the

appropriate values for these two heuristics, an experiment has been carried out.

Linguistica was used to provide a morphological analysis based on a 1M token

greek corpus, then 1k words were picked randomly (2k tokens). A human judge

was then used to decide for each word if the analysis provided by Linguistica was

correct or mistaken. The results for different values of l0 and r0 are shown in

Table 2.1
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r0 L0 Precision(%)
1 0 79

0.2 0 89
0.2 4 89
0.2 5 89
0.2 6 93
0.3 0 84
0.3 4 84
0.3 5 90
0.3 6 94

Table 2.1: Precision results for the additional heuristics in Linguistica



Chapter 3

The Baseline SMT System

3.1 Overview

In this Chapter the baseline SMT system that has been used in our experiments

is presented. This system plays two different roles in our work. First, it is used as

the lexical system with which the morphological SMT system is combined, result-

ing into the combined lexical-morphological SMT system that will be presented

in the next Chapter. Second, it is used as the baseline to which we compare the

new system, regarding their translation quality. This SMT system has been de-

veloped by Fanouris Moraitis [28]. Modification of the bilingual phrase extraction

by Giannis Klasinas [21] has resulted into further improved translation quality

results.

The rest of this chapter is organized as follows: Section 3.2 discusses the

methodology used to address the problem of sentence boundary detection, while

the original sentence alignment algorithm is presented in Section 3.3. Language

modeling and translation modeling techniques that are used in the baseline sys-

tem are discussed in Sections 3.4 and 3.5 respectively. Finally, the part of decod-

ing is discussed in Section 3.6.

36
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3.2 Sentence Boundary Detection

As discussed earlier in this document, Statistical Machine Translation systems use

large bilingual (or multilingual) text corpora to train statistical models. These

corpora are often not annotated or tagged in any way. The first step in pre-

processing the texts in order for them to be used in the training process, is to

pair sentences between the different languages, but in order for this to happen,

there must be a way to detect where a sentence’s boundaries are.

The process of sentence boundary detection may sound as a trivial issue,

however this is not the case. The first thing that comes to mind is that a sentence

ends with a period (.), but this is not always the case since the period is a

character that is also used in acronyms or words like e.t.c. Other characters that

often delimit the end of a sentence are ?, ! and :. In these cases it’s more probable

to have the end of a sentence when one of these characters are used since they

don’t tend to be used in other ways.

In order to address this problem, first the text is split into tokens. A token is

considered to be a sequence of characters between two spaces. Then, every token

that contains one of the characters of the set (. ! : ? ) is further divided into

three parts: a prefix, which consists of the characters before the special character,

a candidate which is the special character itself and a suffix which is made of the

rest of the characters that appear after the candidate. Additional information

is also stored, as whether the token is some known abbreviation or honorific as

well as whether the previous or next token begins with a capital letter. Each

potential token that may be a sentence boundary is then examined by a function

that applies a set of rules, using all the information gathered about the token, to

conclude whether there should be a valid sentence boundary.
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3.3 Sentence alignment

After the sentence boundaries in the texts have been detected, the sentences that

correspond to one another in the parallel texts must be found, hence the sentences

must be aligned. The method that has been used for the sentence alignment is

based on the assumption that the length of a sentence in one language is often

proportional to the length of the sentence in the other language too, i.e. long

sentences in one language usually correspond to long sentences in other languages.

The distance between two sentences is defined as − log P (match|δ) where δ

is a random variable that depends on the lengths of the two sentences, l1 and

l2. Specifically, δ = l1−l2c√
l1s2

, where c represents the mean of the model and s2 it’s

standard deviation. These values are computed empirically.

Using Bayes rule then, P (match|δ) can be written as:

P (match|δ) =
P (δ|match)P (match)

P (δ)

where P (δ) can be ignored since it is the same for all possible matching pairs.

The value of P (match), which is the prior probability is given from Table 3.1.

The type of a match means whether there is a 1:1 sentence match, a 1:0 or 0:1

where a sentence in one language does not appear in the other language, and 1:2

or 2:1 where one sentence in the first language occurs as two sentences in the

second language and vice versa.

Match type P (match)
1− 1 0.89

1− 0 or 0− 1 0.005
1− 2 or 2− 1 0.0445

Table 3.1: Match prior probabilities
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Since δ follows the normal distribution with mean c = 0 and standard devia-

tion s2 = 1 we can assume that P (δ|match) ≈ P (δ). So, suppose there is a match

in the range [−δ0, δ0] we have:

P (δ|match) = P (−δ0 < δ < δ0)

and using the Cumulative Distribution Function we come up with

P (−δ0 < δ < δ0) = 2[1− P (δ < δ0)]

where

P (δ < δ0) =
1√
2π

∫ δ0

− inf

e
−δ2

2

so finally we come up with

P (match|δ) = P (match)

[
2

(
1− 1√

2π

∫ δ0

−∞
e
−δ2

2

)]
Every possible pair of sentences is assigned a cost that is computed in the

way described above, then dynamic programming is used which results into the

best matches between the sentences. This method of sentence alignment is an

implementation of the algorithm presented in [36].

3.4 Language modeling

As we have seen earlier, SMT is based on the maximization of the product of two

probabilities which model fluency and faithfulness. Fluency is modeled using the

language model, which computes the prior probabilities of each phrase, based on

occurrences in the training corpus. This corresponds to the prior probability of

a word of phrase to occur in a language.

For the calculation of these probabilities n-grams are used, which are phrases

of n words and are called unigrams, bigrams, trigrams etc when they use one,
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two or three words and so on respectively. In order to model the sequence of two

words, hence a bigram, the number of occurrences of the phrase is divided by the

number of occurrences of the first word. For example, for the phrase he speaks

the probability P (speaks|he) is calculated as:

P (speaks|he) =
#(he speaks)

#(he)

For the computation of these models, we used the SRILM toolkit [1] which is

available over the Internet for non-commercial applications. Our implementation

used fourgrams.

3.5 Translation modeling

Quantification of the faithfulness of the translation is achieved by using a trans-

lation model, as we have seen before. The translation that can be modeled may

be word-to-word or phrase-to-phrase. Our baseline system used phrase-based

translation which uses the results of a word-based translation model.

3.5.1 Word-based translation modeling

The technique used to achieve word-based translation, first translates the words

of a sentence to the target language and then re-orders the words. In some

cases, a word may be translated into two or more other words, that may exist in

sequentially or scattered in the sentence. To model these variations, the notions

of fertility and distortion are employed. Fertility is the probability that a word

in the source language will be translated into k words in the target language,

while distortion is the probability that a word in position pn in the sentence n

of the source language will produce a word in position pf in sentence f in the
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target language. Also, the notion of spurious words is used: it is assumed that

in position zero of every sentence in the source language the word NULL exists,

which can give spurious words in sentence f with probability p1.

For the translation modeling the IBM Model 3 has been chosen [5]. The

process begins with the input sentence, written in the source language being

transformed first by examining the fertility of each word and creating or deleting

words according to them. Spurious words are then inserted and then the words

are translated to the target language. Finally, the words are re-ordered using the

distortion probabilities.

In order to produce the word alignment, we used the GIZA++ toolkit [31],

an extension of the program GIZA (part of the SMT toolkit EGYPT). GIZA++

takes as input the sentence-aligned bilingual texts and computes the most prob-

able word alignment for every sentence. This alignment is then used to calculate

phrase-level probabilities between the source and target languages.

3.5.2 Phrase-based translation modeling

Word-based SMT systems are simple systems that do not take advantage of the

contextual information of the texts, since they translate one word at a time.

It is clear that if we could model the translation between phrases, instead of

words, the translation quality would improve. In order to build such phrase-based

translation models, we need to extract the bilingual phrases from the alignments

provided by GIZA++.

A bilingual phrase may be defined as a pair of m source words and n target

words. In order to extract these phrases from a word aligned training corpus, two

additional constraints are posed: the words should be consecutive and consistent

with the word alignment matrix, which means that the source words are aligned
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only to the target words and vice versa. Phrases or words that are rejected are

not ignored but regarded as being created from the word NULL.

The resulting bilingual phrases result in very large files, but since they don’t

have to be long, only phrases of up to three words length are kept. For the

phrases that are kept, the translation probability is calculated as:

P (f̄ |n̄) =
count(f̄ , n̄)∑
f̄ count(f̄ , n̄)

(3.5.1)

3.6 Decoding

As it has been discussed in Section 1.2.5, after the translation model has been

built, the best translation needs to be computed. For this task, we used the

Pharaoh decoder [23], a beam search decoder for phrase-based statistical machine

translation models available freely for non-commercial purposes. When supplied

with the translation and language models that have been computed with the tools

presented above, the decoder computes the best (most probable) translation from

the source to the target language.

Pharaoh begins the search in an initial state where no source language input

words are translated and no target language words are generated. New states are

created by extending the target language output with a phrasal translation that

covers some of the input words not yet translated. The current cost of each new

state is that of the original state multiplied by the translation, distortion and

language model costs of the added translation. Each hypothesis is represented

by a back link to the previous best state (for back-tracking), a coverage vector,

the last two words generated (in order to compute future language model costs),

the end of the last phrase covered, the last added phrase, the cost so far and an
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estimate of the future cost. Final states are hypotheses that cover all words in the

input sentence, and the one with the lower cost (higher probability) is selected

as the best translation.

Except for computing the best translation, Pharaoh can also be instructed to

output the lattice of the probable paths that have been used. Running the decoder

with the appropriate options allow for the creation of bigger lattices (in the

expense of speed). We used these lattices to implement our lexical-morphological

SMT system, as will be described in the next sections.



Chapter 4

Morphology Incorporation into
SMT

4.1 Overview

SMT systems have proven to be a valuable tool for the unsupervised, automatic

translation of texts between two languages. As we have seen in Chapter 1, these

systems can be trained from untagged, parallel bilingual (or multinlingual) cor-

pora of text documents translated in two (or more) languages. The quality of the

produced translations of such systems may be evaluated either by human experts,

or automatically, by computing metrics that quantify how fluent and faithful a

given translation may be. These metrics are presented in Chapter 5.

All of the MT approaches that have been presented in Section 1.1.3 employ

little or no linguistic knowledge at all. They operate on the lexical level with-

out taking advantage of the linguistic information underlying in the texts. This

linguistic information has the potential of improving the performance of SMT

systems, especially when limited amounts of parallel training data sets are avail-

able.

Our work proposes a method for the improvement of existing, lexical SMT

systems by the incorporation of morphological knowledge into such systems, and

44
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specifically information about word-stems resulting in what we call morphological

SMT systems. Such a system is then combined with the traditional lexical SMT

system. This combination has proven to improve translation quality significantly,

as it will be demonstrated in Chapter 5. Moreover, the process is fully automated

and unsupervised; first, the morphological information is extracted automatically

from the corpora, using a robust version of the unsupervised morphology acqui-

sition algorithm that has been presented in Section 2.4. Second, the stems are

incorporated into the SMT system using a generic statistical framework which

combines a word-based and a stem-based SMT system [19].

The proposed SMT system implementation uses information about stems of

words, discarding the information that can be obtained by the affixes. The mor-

phological SMT system then operates at the stem level, performing translation

between stems of one language to another. However, affix information could en-

hance the produced translation, since discarding it inevitably results into some

loss of information. In order to exploit this information, we propose an extension

to the statistical framework of the combined lexical-morphological SMT system

we have implemented. Since this part of the incorporation has not yet been

implemented, more information about it is displayed in Section 6.1.

The rest of this Chapter is organized as follows: Section 4.2 describes the

motivation that drove to the idea of the morphological knowledge incorporation,

while the way such an incorporation addresses the problem of sparse training

data is discussed in Section 4.3. The proposed system architecture is illustrated

in Section 4.4 while the mathematics that form the statistical framework on which

the incorporation is based are presented in Section 4.5. An implementation of

the combined lexical-morphological system is described in Section 4.6. Finally,

a pointer to the extension to the statistical framework for the incorporation of
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affix information is given in Section 4.7.

4.2 Motivation

The basic idea behind Statistical Machine Translation is briefly the computation

of probabilistic models about how a word in one language is translated into some

word in another language. Phrase-based SMT has provided further improvement

in the quality of the translation, by modeling relationships between phrases,

instead of plain words. The translation model of a phrase-based SMT system

computes the probability of a given phrase, in a source language, to be translated

in another phrase in the target language.

Both word-based and phrase-based SMT methodologies operate in the lexical

level. However, as we have seen in Chapter 2, words are not monolithic constructs

of symbols, but are usually built by the combination of smaller units, morphemes.

Studying the morphology of a language reveals a vast amount of information

about how words are created from simple morphemes, according to some inherent

rules, and how each word that is generated by the same stem is used in different

occasions. All this information is lost in today’s SMT systems that operate on

the lexical level.

Although morphological knowledge contains a lot of useful information about

the formation of words, it is not easy for it to be incorporated into SMT systems.

A morphological analysis that results into rules about word formation could be

incorporated in a rule-based MT system, but is not very useful in SMT since

the latter uses statistical means to model the translation between two different

languages. In order for it to be exploited by SMT systems, there has to be a way

of incorporating such knowledge into the SMT framework.
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4.3 Addressing data sparseness problems

An application where morphological knowledge may prove to be quite useful is

in the case of sparse training data. The heart of the SMT methodology is the

computation of the translation model, which is based solely on the training data

that are available. The size of the training data is important in building better

translation models; the bigger the data that has been used to train the model,

the better the probabilities computed. However, probabilities are computed for

every word, or phrase, hence they depend on how often the words appear in the

corpus. Even a large training corpus may have quite sparse data, i.e. distinct

words may not appear very often in it.

Using morphological knowledge that has been obtained, the data can become

more “dense”. If the training corpora were stemmed, then every distinct stem

would appear many more times than a single word that is derived from it does, so

a translation model trained on such corpora would be better trained. This gives

a definite advantage over the translation of words that are rare derivations of a

common stem, since they would appear very little (or not at all) in the training

data. However, since the stem of the word would probably appear many times

in the stemmed training corpus, it’s translation to the corresponding stem of the

target language could be done quite successfully. The resulting stem would then

have to be converted to the proper word in the target language, possibly by using

the information of the affixes of the original word.

4.4 System Architecture

The procedure that has been briefly described is equivalent to a word-to-word

translation system that performs the translation through a stem-to-stem SMT
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system. We call such a system a morphological SMT system, since it performs

translation exploiting the inherent morphological knowledge in the texts. This

system could then be combined with the simple lexical SMT system, resulting in

what is called a combined lexical-morphological SMT system.

The morphological SMT system that we propose consists of three different

modules:

• the morphological analyzer

• the stem-to-stem SMT system

• the morphological generator

The same input is provided to both the lexical and the morphological sys-

tem. In the case of the lexical system, translation takes place and the output is

produced. For the morphological system, the input text is first analyzed by the

morphological analyzer, resulting in a set of a stem and affixes for every word.

The stems are then translated using the stem-to-stem SMT system and the mor-

phological generator converts the produced stems into proper words. The output

of this system is then combined with the output of the lexical system. More

about how this combination takes place is discussed in Section 4.5.4.

The architecture of the combined lexical-morphological SMT system is illus-

trated in Figure 4.1. In this figure the symbols Ws and Ss denote words and

stems in the source language, while Wt and St refer to the words and stems of

the target language respectively.

4.4.1 Morphological Analyzer

As stated already, a morphological analyzer is responsible for splitting a word into

it’s stem and affixes, after performing an analysis to it. Such an analyzer may be
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Figure 4.1: System Architecture

implemented in different ways, depending on the level of analysis it performs, i.e.

it may perform a complete morphological analysis or simply stem the words. In

essence, the morphological analyzer computes the probabilities P (S|W ) where S

denotes the stem of the word W .

In our work we used the Linguistica morphological analyzer that has been

presented in Section 2.4. Running Linguistica over an original training corpus, we

obtain a list of stems and the affixes that they may be combined with, resulting

into different words of the same stem. This information is then consulted, in

order to split a word into it’s stem and suffix. We consider this procedure to

be deterministic, i.e. there is only one way to stem a word. This simplifies the

model since for every word we will have P (S|W ) = 1.

4.4.2 Stem-level SMT system

The stem-to-stem SMT system can be implemented like any traditional SMT

system, with the difference that the training of the language and translation
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models has been performed on stemmed corpora. In the training phase, the

texts of the training corpora are processed by the morphological analyzer which

produces their stemmed versions, which are then used to train the language and

translation models of the stem-to-stem SMT system.

4.4.3 Morphological generator

A morphological generator is capable of performing the reverse process than that

of an analyzer; given a stem, it has the duty of finding the words that are derived

from it. Obviously, there are many words that can be derived from a single root,

so choosing the appropriate word is hard. The morphological generator thus

computes the probabilities P (W |S).

A first approach is that the generator produces every possible word that may

be derived from a specific stem. This approach may sound naive, since it is almost

definite that the wrong words will be produced in this step. However, since the

output of this phase will be combined with that of the lexical SMT system, all

invalid words that have been produced will be “discarded” by the lexical system,

because of the language model it uses.

The second approach is that of a probabilistic model, where every word that

can be derived from the specific stem is assigned a probability. These probabil-

ities may, in the simplest case be computed in a maximum likelihood fashion,

i.e. depending on how often every word occurs in the training corpus. A more

sophisticated word production algorithm though, would take into consideration

the original affixes that have been discarded in the process of stemming, so to

apply the proper affixes to the stem and thus turn it into a word. More about

this approach is discussed in Section 6.1.1.
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4.5 Statistical framework

This section describes the underlying mathematics that form the statistical frame-

work on which morphology knowledge incorporation may take place.

4.5.1 Lexical SMT system

The traditional lexical SMT system that is used for the combined SMT system,

is based on the original theory of SMT. As we have seen in Section 1.2, the goal

of translation in traditional SMT systems is a posterior probability maximization

problem. Slightly changing the notation now, let us consider Ws and Wt to

be word sequences for the source and target languages respectively. Then, the

problem of translation can be formulated as:

Ŵt = arg max
Wt

P (Wt|Ws) (4.5.1)

where Ŵt is the translated sequence of words in the target language. We are no

longer using the terms native and foreign language since translation can occur

in either ways; instead, we consider the source language to be the one that the

input sentence in written in, and the target language the one that we wish to

translate the input sentence into.

4.5.2 Stem to stem translation

Let us now consider Ss and St to be sequences of stems for the source and target

languages respectively. These sequences of stems have come up from the morpho-

logical analysis that has been described in the previous section. A stem-to-stem

machine translation can then be formulated as:

Ŝt = arg max
St

P (St|Ss) (4.5.2)



52

This results into a system that operates at the stem level, which can be trained

from the stemmed training corpora, as described in Section 4.4.2.

4.5.3 Word-to-word translation via the stem-to-stem sys-

tem

Having the statistical models for the morphological analyzer and generator, as

well as the translation model for the stem-to-stem system, we can achieve a word-

to-word translation based on the stem-to-stem system. Rewriting Eq. (4.5.1) we

have:

Ŵt = arg max
Wt

P (Wt|Ws)

= arg max
Wt

∑
St,Ss

P (Wt, St, Ss|Ws)

= arg max
Wt

∑
St,Ss

P (Wt|St, Ss, Ws)P (St|Ss, Ws)P (Ss|Ws)

= arg max
Wt

∑
St,Ss

P (Wt|St)P (St|Ss)P (Ss|Ws) (4.5.3)

provided that Wt, Ss are conditionally independent given St; Wt, Ws are con-

ditionally independent given St, Ss; and Ws, St are conditionally independent

given Ss. This equation corresponds to a word-to-word translation model which

is performed via the stem-to-stem system, i.e. Ws → Ss → St → Wt.

Eq. (4.5.3) can be further simplified as follows: the mapping S → W is a

many to one mapping and P (Ss|Ws) = 1, because the mapping Ws → Ss is de-

terministic, so the double summation at Eq. (4.5.3) becomes a single summation

over St only, as follows:

Ŵt = arg max
Wt

∑
St

P (Wt|St)P (St|Ss) (4.5.4)
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We refer to this SMT system that translates from Ws to Wt via an intermediate

morphological representation S, as a morphological SMT system. Implementa-

tion of such a system is now easy; as it can be seen from Eq. (4.5.4), one must

compute the probability model P (Wt|St), which is the morphological generator

that has been discussed before, as well as the probability model P (St|Ss) which

is the stem-to-stem translation model.

4.5.4 SMT system combination

Once the morphological SMT system is built, it is combined with the traditional

lexical SMT system. This combination may assume that each system computes

probabilities independently of each other, i.e.,

Ŵt = arg max
Wt

[P (Wt|Ws)]
w0

[∑
St

P (Wt|St)P (St|Ss)

]w1

(4.5.5)

where w0 and w1 are weights that model the “confidence” we have in each trans-

lation the lexical and the morphological SMT systems provide correspondingly.

The combination of these two systems is performed in order to overcome the

weakness of the conditional independence assumptions of Eq. (4.5.3). This com-

bination may be performed at an early, or late stage.

Experimentation on the values of the weights w0 and w1 may boost the trans-

lation performance. The results of our experiments in regard of these weights are

presented in the next Chapter.
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4.6 Combined Lexical-Morphological system im-

plementation

This section discusses our implementation of such a combined lexical-morphological

SMT system. Our approach uses late integration and lattice re-scoring. The no-

tion is to use the lattices that are produced by the Pharaoh decoder, in the stage

of decoding, for both the lexical and the morphological SMT systems. These

lattices start from an initial empty state and create nodes for every possible

translation, as described in Sections 1.2.5 and 3.6.

Both lattices are read and then represented as weighted finite state machines

(FSMs). In our work, we used the AT&T FSM Library [25] for the representa-

tion of finite state machines and the operations applied to them (closure, com-

position, intersection, best path decoding). The AT&T FSM Library is a set of

general-purpose software tools for building, combining, optimizing, and searching

weighted finite-state acceptors and transducers.

The lattice that has been produced by the SMT system is the output of the

second phase of the stem level translation system. The next step is to pass

it through the morphological generator. In our implementation, the generator

simply produces all the words that can be derived from the stem, using the

sets of stems and affixes that have been provided by Linguistica in the training

process. This is implemented as the composition of the FSM that represents the

lattice and a new FSM that is constructed, containing identity mappings from a

stem to every possible word. All these identity mappings are assigned the same

fixed cost, making them all equiprobable. The reason for making such a loose

word production is that invalid words will be discarded in the next step of the

two systems combination.
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The next step in the procedure is the combination of the two systems. The

two FSMs that have resulted from the procedure till now, are weighted and then

intersected to obtain a final FSM, which implements the output of the combined

lexical-morphological SMT system. This FSM is then decoded in order to find

the best path, which is the best possible translation of the input sentence into

the target language.

All the steps that have been mentioned in the procedure just described, may

be outlined as follows:

1. The lexical SMT system that computes the probabilities P (Wt|Ws) is built.

This is the translation model for the pure lexical SMT system that is being

constructed using the baseline system described before.

2. The Linguistica morphological analyzer is given a set of training data, in

order to perform a morphological analysis and output the rules that govern

how a word is separated into its stem and affixes.

3. The training corpus is stemmed using the unsupervised rules derived from

the Linguistica morphological analyzer in the previous step. The new

stemmed corpus is stored, in order to be processed for the construction

of the stem-level SMT system.

4. The stemmed corpus is used to derive the morphological (stem) SMT system

that computes the probabilities P (St|Ss), as has been described in Section

4.5.2.

5. Every sentence in the evaluation corpus is decoded using the lexical SMT

system producing a lattice of possible word-level translations. This lattice

is then represented as a finite state acceptor FW .
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6. Every sentence in the evaluation corpus is stemmed (again using the unsu-

pervised rules that have been derived in step two) and then decoded using

the morphological SMT system. The resulting lattice contains all possible

stem-level translations and is represented as a finite state acceptor FS.

7. The stem to word model P (Wt|St) in the target language is constructed by

running the Linguistica system on the target language corpus and obtain-

ing the morphological signatures. The stem to word model is represented

as a unweighted (costless) finite state transducer TSW , i.e., in our case,

we assume that all possible words that can be generated from a stem are

equiprobable 1.

8. The stem acceptor FS and the stem to word transducer TSW are composed

to obtain a stem-to-word mapping; the resulting transducer is projected to

its output symbols to obtain the finite state acceptor FW ′ .

9. FW and FW ′ acceptors are re-weighted2 (weights multiplied) by the factors

w0 and w1 as discussed in Section 4.5.4. (in practice, we don’t weight FW

and w0 is always 1.).

10. The weighted acceptors FW and FW ′ are intersected and the best path of the

intersection is found using Viterbi decoding. The best path T ′ represents

the translated sentence of the combined lexical-morphological SMT system.

The aforementioned process can be formulated as follows:

T ′ = bestpath{([FS ◦ TSW ]2 ∗ w1) ∩ FW}
1In order to guarantee non-empty composition in the next step, all words contained in FW

and FS were added as identity mappings in TSW and then Kleene closure was applied to TSW .
2In our implementation the tropical semiring was used, so the information in the FMSs is

cost instead of probability.
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where ◦ represents composition, ∩ intersection, ∗ weighting and 2 projection to

the output symbols; T ′, FS, TSW , FW and w1 are defined above.

The implementation that has just been described slightly differs from Eq. (4.5.5),

in that the summation over St is substituted by maximization. Hence, our im-

plementation approximates Eq. (4.5.5) as follows:

Ŵt = arg max
Wt

[P (Wt|Ws)]
w0

[
max

[
P (Wt|St)P (St| arg max

Ss

P (Ss|Ws))

]]w1

(4.6.1)

Such a simplification could create probability normalization problems, but is

acceptable since the mapping from Ws to Ss is deterministic and the distribution

P (Wt|St) has a low entropy. Even if this simplification did not take place and the

summation was implemented, there are no guarantees that all instances of St that

can generate Wt are available in the lattices. The substitution of maximization

for summation in Eq. (4.5.5) results in simplifying the model computationally.

The system was implemented in Perl 5 scripts, using the tools that have been

described in the previous Chapter when necessary.

4.7 Incorporating affix information

Discarding affixes in the process of the morphological analysis results in informa-

tion loss. In the system described so far, only the stems are kept, translated into

the target language and then converted back into words. It is possible though

to incorporate the information that affixes contain, to further enhance the trans-

lation quality of the system, by creating an affix-to-affix translation system and

then incorporating it into the statistical framework presented so far. Such an

incorporation of affix information has not been implemented in the SMT system

we have built and is presented in Section 6.1.1.



Chapter 5

Experimental Results

5.1 Overview

This Chapter presents our experimental results in testing the combined lexical-

morphological SMT systems that we have implemented. The comparison criterion

is translation quality, a criterion which is rather subjective for human judges.

Because of this, we have not evaluated our results with human judges but using

two metrics that are used in machine translation evaluation and are presented in

Section 5.2.

The comparison is made between two systems: the traditional, lexical SMT

system which is the baseline; and the combined lexical-morphological SMT sys-

tem that has been described in the previous Chapter. Several experiments have

been carried out, varying in different training corpus sizes as well as combination

weights. To further validate our results, we have performed significance tests to

verify that the improvement that has been observed is indeed significant. For

the purpose of statistical significance tests, we used the method of bootstrap

resampling.

The rest of this Chapter is organized as follows: the automatic evaluation met-

rics that are used are introduced in Section 5.2 while information about training
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the morphological analyzer is presented in Section 5.3. The corpora that has been

used are discussed in Section 5.4 while Section 5.5 presents the parameters of our

experiments. The results of the experiments are illustrated in Section 5.6 while

the statistical significance background and test results are displayed in Section

5.7.

5.2 Evaluation Metrics

In Section 1.2.3, we discussed about two different criteria that define how good a

translation is: faithfulness and fluency. The relationship between these criteria as

concepts and the underlying mathematics of SMT is a direct one; faithfulness is

achieved through the translation model, and fluency through the language model.

Maximization of these two probabilities results in the best possible translation.

These two criteria, faithfulness (or adequacy) and fluency are the main criteria

in machine translation evaluation.

Assigning the task of translation quality evaluation to human judges, is a

difficult task mainly for two reasons; first, it is expensive, since it is a laborious

and time-consuming process; second, because it is a process rather subjective, so

the outcome of the evaluation could be biased when using different judges.

In order to overcome these limitations, two automatic scoring metrics have

been devised and are widely used in MT evaluation: BLEU [34] and NIST [18].

The system output is compared to a reference translation of the same source text,

then a value for these two metrics can be computed deterministically.
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5.2.1 The BLEU metric

BLEU was the first metric that has been devised to quantify the translation

quality of MT systems. It is based on the modified n-gram precision, which

counts how many n-grams of the candidate translation match with n-grams of

the reference translation. Given the precision pn of n-grams of size up to N

(usually N = 4), the length of the test set in words (c) and the length of the

reference translation words (r) then BLEU is defined as:

BLEU = BP exp(
N∑

n=1

log pn)

where

BP = min(1, e1− r
c )

Computation of pn is done by first counting the maximum number of times an

n-gram occurs in any single reference translation, clipping the total count of each

candidate n-gram by its maximum reference count, adding these clipped counts

up and dividing by the total number of candidate words. BP is termed the

Brevity Penalty which accounts for the factor of recall and penalizes candidates

shorter than their reference translations, so the system can not only translate

fragments of the test set of which it is confident, resulting in high precision.

The final BLEU score is the geometric average of the modified n-gram precision

multiplied by the brevity penalty.

5.2.2 The NIST metric

The NIST scoring metric has been based on BLEU and has been proposed in

order to address some limitations of it. First, because the BLEU metric uses a

geometric mean over N the score is equally sensitive to proportional differences in
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co-occurrence for all N . As a result, there exists the potential of counterproduc-

tive variance due to low co-occurrences for the larger values of N. An alternative

would be to use an arithmetic average of N-gram counts rather than a geometric

average.

Second, it proposes that it would be better to weight more heavily those n-

grams that are most informative, i.e. the ones that occur less frequently. This

would also help to combat possible gaming of the scoring algorithm, since the

n-grams that are most likely to (co-)occur would add less to the score than less

likely n-grams.

In order to capture the difference in the information that different n-grams

carry, information weights are introduced as follows:

Info(w1 · · ·wn) = log2

(
# of occurrences w1 · · ·wn−1

# of occurrences w1 · · ·wn

)
then the formula for the score calculation is:

Score =
N∑

m=1

{∑
W 1 Info(w1 · · ·wn)∑

W2
(1)

}
exp

{
β log2

[
min

(
Lsys

L̄ref

, 1

)]}
where W 1 denotes the set of all w weights that co-occur and W 2 the set of all w

weights in the system output; β is chosen to make the brevity penalty factor 0.5

when the number of words in the system output is 2/3rds of the average number

of words in the reference translation; L̄ref is the average number of words in

a reference translation, averaged over all reference translations and Lsys is the

number of words in the translation being scored.

5.3 Morphological analysis

As discussed in the previous chapter, we used the Linguistica morphological ana-

lyzer to automatically derive morphological rules. These rules have been derived
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from a 5M word parallel translation corpus, in both the source and target lan-

guages, in an unsupervised way. As we have discussed in Section 2.4, Linguistica

uses a set of heuristics to develop a probabilistic grammar and then depends on

Minimum Description Length analysis to determine which of the rules proposed

will be adopted. In the same section is has been also shown that precision in-

creases by introducing two heuristics, length of word l and suffix ratio r. During

our experiments the values that have been used are l0 = 6 and r0 = 0.4.

5.4 Corpora

The systems that have been implemented have been trained on parts of the Eu-

roparl corpus [33], a parallel corpus in 11 European languages which is extracted

from the proceedings of the European Parliament. The training corpus sizes that

have been used are presented in Section 5.5.1.

The test sets have also been drawn from the Europarl corpus. Care was taken

when creating training and test sets: it is common for sequential segments of

texts in the corpus to share the same vocabulary and style, so it is better to

avoid creating models based on such data. In order to overcome this, we used

broad sampling, so the chosen data is evenly distributed in the corpus. Both

systems have been trained on the same training sets.

5.5 Parameters

Experimentation in the task of comparing the translation quality of the two

systems has been done by altering two parameters:

• the training corpus size
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• the weights used in the systems combination

5.5.1 Parameter 1: Training corpus size

The first parameter, training set size, directly affects the quality of the output of

an SMT system. The larger the training data, the better the translation quality

since the models are better trained. Also, as the training set becomes larger,

words tend to appear more often, while in systems that have been trained with

a small corpus some words may not appear at all.

We expect that the combined lexical-morphological SMT system will provide

great improvement in systems that have been trained with small corpora and

that this improvement will become more subtle as the systems get better trained.

Experimenting on different training set sizes lets us evaluate in which cases the

morphological knowledge incorporation truly boost the system’s performance.

For our experiments we used three different training corpora sizes, of 800k,

2.5M and 4.5M words each. For every set, the models of both the lexical and

the combined SMT system were trained and a series of experiments took place

by changing the second parameter, the weight w1. Tables 5.1 and 5.2 summarize

some important information about the training sets used, for the english and

greek language respectively1.

words distinct words distinct stems stem:word ratio
800k 21k 16k 76%
2.5M 35k 27k 77%
4.5M 45k 36k 80%

Table 5.1: English training corpus information

1The values presented in the table are approximate values
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words distinct words distinct stems stem:word ratio
800k 45k 33k 73%
2.5M 76k 55k 72%
4.5M 100k 75k 75%

Table 5.2: Greek training corpus information

Examining the values of these tables leads to some interesting realizations.

First, it is evident that for the same corpus, the distinct english words are almost

half of the greek ones, due to the fact that the greek language has a richer

vocabulary than the english one. The same analogy applies to the distinct stems

found for every language as well, which draws a second point, that the stem-to-

word ratio is roughly the same for both english and greek with an average of 75%.

This means that after stemming the corpus, the vocabulary drops to the 75% of

the initial size.

One other interesting fact is that the increase of the distinct stems is not

proportional to the increase of the corpus size. This is expected, since the number

of stems that exist in some language is somewhat fixed, so increasing arbitrarily

the training set does not necessarily mean that the vocabulary should increase

as well.

5.5.2 Parameter 2: Combination weights

The second parameter in our experiments regards the combination weights that

are used in the system combination. Specifically, since w0 = 1 we conducted

several experiments by altering the weight w1. It should be noted that since in

our implementation we are using costs instead of probabilities, a smaller value

for w1 gives more power to the combined SMT system in the combination.
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5.6 Results

This section illustrates the results of our experiments. For the sake of illustra-

tion we have named the baseline SMT system as system A and the combined

lexical-morphological SMT system as system B. Since we’re interested in the

improvement that the new SMT system has over the baseline, we have calcu-

lated the differences in the NIST and BLEU scores between the two systems,

by subtracting the scores of the baseline from the scores of the new system, as

follows:

NISTd = NISTB −NISTA

BLEUd = BLEUB −BLEUA

where NISTA and NISTB are the NIST scores for systems A and B respectively

and NISTd is the difference between the two scores. A positive value for NISTd

thus means the new systems has improved the translation quality. The same

applies for the BLEU scores.

As the same input is given to both systems, some sentences produce different

translations and some not. In order to evaluate the actual improvement in trans-

lation quality, we focus on the sentences that did result in different translations.

This allows for an evaluation of the improvement that the morphological incorpo-

ration provides over the baseline system. Both systems have been provided with

a test set of approximately 40k sentences. The sentences that resulted in different

translations were found to be approximately 8k, which stands for roughly 20%

of the original test data. These sentences have formed the true test set on which

the evaluation metrics have been calculated.

Figures 5.1 and 5.2 illustrate how different values of the w1 parameter (x-

axis) affect the scores of both metrics for the three different training sets. Also,
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Figure 5.1: Improvement in NIST scores (over w1)
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Figure 5.2: Improvement in BLEU scores (over w1)
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Figure 5.3: Improvement in NIST scores (over training set)

figures 5.3 and 5.4 show the improvement over the different training corpus sizes

(x-axis). By examination of these figures it is evident that smaller values for w1

result in more improvement in translation quality, as expected. The percentages

of improvement for the two evaluation metrics, for the 800k, 2.5M and the 4.5M

sets are presented in Tables 5.3, 5.4 and 5.5.

w1 NIST improvement BLEU improvement
0.005 14.72% 33.26%
0.01 14.14% 32.34%
0.05 10.39% 24.28%
0.1 7.40% 17.28%
0.2 4.06% 5.10%

Table 5.3: Percentage of improvement for the 800k set
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Figure 5.4: Improvement in BLEU scores (over training set)

w1 NIST improvement BLEU improvement
0.005 3.24% 8.18%
0.01 3.21% 7.49%
0.05 3.03% 7.01%
0.1 2.90% 6.23%
0.2 2.47% 3.51%

Table 5.4: Percentage of improvement for the 2.5M set

w1 NIST improvement BLEU improvement
0.005 2.28% 7.41%
0.01 2.28% 7.41%
0.05 2.25% 6.96%
0.1 1.97% 5.38%
0.2 1.36% 1.91%

Table 5.5: Percentage of improvement for the 4.5M set
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5.7 Statistical Significance

5.7.1 Practical limitations

In statistical machine translation, the size of the test set is an important factor

in the validity of a system’s results. The bigger the test set, the more significant

the results. However, it is extremely difficult to conduct experiments using huge

test sets for two reasons. First, the procedure of translating takes a lot of time,

especially when using large lattices for every sentence translated (in our case

each lattice occupied several MBs on disk). Second, there is lack of such huge

parallel corpora. In order for the automatic evaluation to take place, there must

be a reference translation, to which the output of the systems tested is compared.

Based on this reference, the automated evaluation procedure computes the values

for the evaluation metrics. This forces the test sets to be taken from bilingual

corpora, so in our case we had to split the corpora in three parts; one part for

the training set, a second part for development and a third part for testing. This

limits the available size of the test set.

In order to overcome these limitations and be certain that our results are

valid, we performed statistical significance tests in our results. These tests were

performed to validate our results, thus providing extensive evidence that the

improvement that has been noticed in the combined lexical-morphological system

is indeed true.

5.7.2 Confidence intervals

Statistical significance is an estimate of the degree, to which the true translation

quality lies within a confidence interval around the measurement on the test

sets. A common level or reliability that is used is that of 95%, or p = 0.05. The



71

interval represents the range of values, consistent with the data, which is believed

to encompass the “true” value with high probability, in this case 95%. The

confidence interval is expressed in the same units as the estimate. Wide intervals

indicate lower precision; narrow intervals, greater precision. The estimated range

is calculated from a given set of sample data.

5.7.3 Bootstrap resampling

Bootstrap resampling, or bootstrapping2, is a data-based statistical method for

statistical inference, which can be used to measure confidence intervals. It has a

long tradition in the field of statistics [3].

The method of bootstrap resampling is based on the following assumption:

estimating the confidence interval from a large number of test sets with n test

sentences drawn from a set of n test sentences with replacement, is as good as

estimating the confidence interval for test sets of size n from a large number of

test sets with n test sentences drawn from an infinite set of test sentences.

In practice, the method is relatively simple. Having a set of n test sentences

that we evaluated, we create a new set of the same number of sentences. This

set is created from the initial set of sentences with replacement, that is for the

first sentence of a new set, a sentence of the initial set is chosen randomly, then

for the second etc. This means that in the new set, a sentence from the initial

set may exist zero or many times.

Repeating the process explained above, we come up with a new set of n

sentences. This is considered to be the second sample. In order to create more

samples (sets) the process is repeated for the desired amount of samples. Let b be

2The term bootstrapping refers to the old story about people lifting themselves off the ground
by pulling on the backs of their own boots.
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the number of samples created. Every sample is evaluated, in our case resulting

into scores for the BLEU and NIST values. As it is expected, these scores have a

normal distribution. From these samples, the confidence interval is calculated by

keeping the middle 95% scores (from the 2.5th percentile to the 97, 5th percentile).

After calculating the confidence interval, the mean and relative standard

deviation are calculated. Relative standard deviation, or RSD is defined as

(100 ∗ σ/µ)%, where µ and σ are the mean and standard deviation respectively.

This method has been used in various fields of research, including automatic

speech recognition and statistical machine translation [24], [38], [39].

5.7.4 Statistical significance test results

Tables 5.6 and 5.7 display the 95% confidence intervals as well as the relative

standard deviation that has been calculated for various experiments, for the NIST

and BLEU metrics respectively. TCs denotes the training corpus size, Ndmean

the mean value found, Nd interval the confidence interval values and NB RSD

the relative standard deviation for the combined lexical-morphological system.

TCs w1 Nd mean Nd interval NB RSD
800k 0.005 0.5616 [0.4793, 0.6453] 1.04%
800k 0.05 0.4143 [0.3465, 0.4849] 0.99%
4.5M 0.005 0.0993 [0.0426, 0.1572] 1.14%
4.5M 0.05 0.0632 [0.0101, 0.1156] 0.99%

Table 5.6: 95% confidence intervals for Nd scores (NIST)
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TCs w1 Bd mean Bd interval BB RSD
800k 0.005 0.0169 [0.0123, 0.0214] 2.33%
800k 0.05 0.0136 [0.0095, 0.0178 2.26%
4.5M 0.005 0.0054 [0.0016, 0.0094] 2.64%
4.5M 0.05 0.0035 [0.0002, 0,0071] 2.26%

Table 5.7: 95% confidence intervals for Bd scores (BLEU)



Chapter 6

Conclusions

In this work, we have presented a novel algorithm for the incorporation of mor-

phological knowledge into existing statistical machine translation systems. Most

SMT systems today operate at the lexical level without taking into account the

morphologies of languages they’re translating to and from. Morphological knowl-

edge, such as an analysis of a word into it’s stem and affixes, could be incor-

porated into these lexical SMT systems, clearly improving their performance, as

our experiments have shown.

Using an unsupervised method for the morphological analysis of the texts to

be translated, rules are obtained that specify the root and affixes that construct

words. In the first phase, this information is used in order to stem the training

corpora and use them to create a stem-to-stem SMT system. A mathematical

framework that incorporates morphological knowledge has been presented, result-

ing in a morphological SMT system that performs word-level translation through

the stem-level system. This system is then combined with a traditional lexical

system, resulting in the combined lexical-morphological SMT system.

Such a system has been implemented using late integration and lattice re-

scoring. This new system has been compared to the baseline system, regarding the

translation quality of their output. Evaluation has been performed by computing
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automatic evaluation metrics that are widely used in MT, namely the BLEU and

NIST metrics. The combined SMT system has proven to improve the translation

quality up to 14% for the NIST metric and up to 33% for the BLEU metric for

the sentences that result in different translations between the two systems.

In order to be certain that our results are valid and that the test set that have

been used is large enough to provide confident results, we performed significance

tests over our results. Using the method of bootstrap resampling, we calculated

the confidence intervals of the two metrics. Examination of these confidence

intervals has shown that our experimental results are statistically significant and

that the new proposed SMT system has clearly improved on the baseline.

The combined lexical-morphological SMT system that has been implemented

is using information about word stems, discarding affixes. In order to address

the possible information loss that that may take place due to this, we propose in

Section 6.1 an extension of the statistical framework that exploits affix informa-

tion as well, by computing an affix-to-affix translation model and incorporating

it into the SMT formulation.

Our work has shown that SMT systems can be enhanced greatly by incor-

porating morphological knowledge in them, using a framework like the one we

propose. This performance boost is mostly evident in systems that are badly

trained, because of the data in the training corpora being sparse.

As the field of statistical machine translation may be considered to be in it’s

infancy, it is evident that pure lexical SMT systems will soon be a thing of the

past. Spoken languages are extremely complex constructs that are quite difficult

to be modeled. Incorporating morphological, syntactic or semantic information

into existing SMT systems shall definitely improve their performance.
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6.1 Ongoing work

This section introduces the ongoing work that has been carried out in order to

implement a system that exploit affix information and incorporates it into the

morphological SMT system that has been presented in this work.

6.1.1 Affix-to-affix translation

In the same way that the word-level and stem-level SMT systems are created, it

is possible to create an affix-to-affix SMT system. During the training stage, the

morphological analyzer creates two output texts: one with the stemmed corpus,

and one with only the affixes of the words of the original corpus. This corpus is

then used to train the language and translation models that operate in the affix

level. Given an affix As in the source language, the best translation of it Ât in

the target language would be:

Ât = arg max
At

P (At|As) (6.1.1)

6.1.2 Extended SMT system

In order to incorporate this affix-to-affix translation system into the system de-

scribed so far, an alteration to the topology of the bayesian network is required.

Word-to-word translation should now be achieved not only through the stem-to-

stem system, but by using this affix SMT system as well. The new topology is

depicted in Figure 6.1.

For a Bayesian network like this, we have:

Ŵt = arg max
Wt

P (Wt|Ws)

= arg max
Wt

∑
Ss,St,As,At

P (Wt, Ss, St, As, At|Ws) (6.1.2)
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Ws

Ss

St

Wt

As

At

Figure 6.1: Enhanced Bayesian Network Topology

but assuming that Wt, Ws are conditionally independent given Ss, St, As, At; At, Ws

are conditionally independent given As; St, Ws are conditionally independent

given Ss, eq. (6.1.2) becomes:

Ŵt = arg max
Wt

P (Wt|Ws)

= arg max
Wt

∑
Ss,St,As,At

P (Wt|St, At)P (St|Ss)P (Ss|Ws)P (At|As)P (As|Ws) (6.1.3)

which can be further simplified since P (Ss|Ws) = 1 and P (As|Ws) = 1 since

we assume that the mapping from a word to a stem and affix is deterministic,

resulting in:

Ŵt = arg max
Wt

∑
St,At

P (Wt|St, At)P (St|Ss)P (At|As) (6.1.4)

The probability model P (Wt|St, At) is hard to compute though, but using

Bayes rule it can be written as:

P (Wt|St, At) =
P (St, At|Wt)P (Wt)

P (St, At)
(6.1.5)
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but because of the assumptions mentioned before it can be simplified into

P (Wt|St, At) =
P (St|Wt)P (At|Wt)P (Wt)

P (St, At)
(6.1.6)

Combining Eq. (6.1.6) with Eq. (6.1.4) we have:

Ŵt = arg max
Wt

∑
St,At

P (St|Wt)P (At|Wt)P (Wt)P (St|Ss)P (At|As)

P (St, At)
(6.1.7)

but since the maximization is done over both St and At the probability P (St, At)

is always equal to 1 so the probability of the denominator may be omitted.

6.1.3 Additional affix information incorporation

This section provides a different approach for the incorporation of affix informa-

tion into the SMT system. The idea of the proposed method is based on the

assumption that the training corpora could also be used to model the probability

of a specific stem being applied to an arbitrary word, when it occurs after a series

of n− 1 other words, in the target language.

This can be made clearer with the use of an example. By examining the

training corpora for the target language, we take sets of n words, for example

n = 3. Then, for a given word in the corpus, the n − 1 = 3 − 1 = 2 words are

examined in relation to the affix of the word, i.e. in the sentence he is driving,

we see that the word driving is being preceded by the words he and is. We stem

the word driving and keep only it’s affix: -ing. Then, we correlate this affix with

the words that precede it. By counting how many times this pattern appears in

the training corpora, we can assign it a probability. Such probabilities can be

calculated for every affix of the target language and the previous n− 1 words, in

a way of an n-gram.
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Some examples of such probabilities could be:

P (-ing|he is) = 0.89

P (-ed|he has) = 0.74

P (-ation|he is) = 0.03

The first probability denotes that it is quite probable that the word which

follows the phrase he is should have the affix -ing ; the last probability shows

that it is not so probable for the word that follows the phrase he is to have the

suffix -ation.

Calculation based on stemmed corpora

Following the motivation of the original morphological SMT system, we can train

these probabilities on the stemmed training corpora, since the data are less sparse

in the stem level. This way, the system will be trained more efficiently. Such a

probability would then be, the probability that any word that follows a series of

specific n− 1 stems, ends with a specific suffix.

Formulation

Let a denote an affix and sn−1, sn−2, · · · , s1, s0 denote a series of stems. Then we

can compute:

P (a|sn−1, sn−2, · · · , s1) (6.1.8)

for every possible affix a and all the sequences of n words in the training corpora.

Then, when searching for the best possible affix a for a given stem s0 we have:

â = arg max
a

P (a|sn−1, sn−2, · · · , s1)
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which means that the most possible affix is the one that maximizes the probability

of it being used in a word that is preceded by the rest n−1 words. This way, when

the morphological generator is asked to generate a word from a stem, it does so

in a way that takes into consideration the words before it, estimating what should

be the proper affix for the word that is the last of a series of n words. The value

of n could be assigned to the value that maximizes the efficiency of the system

(like the use of the proper value for n-grams in traditional SMT systems).

Modeling fluency

The morphological generator should also guarantee that the word it generates is

a valid english word. For this, there has to be a way of giving higher probability

for valid words to be created than invalid or rare ones. This can be modeled

by computation of the probabilites P (a|s), which is the probability of an affix a

being used by a particular stem s.

For example, P (s|play) could have a high value, since the word plays is a valid

word and may appear often in the corpus. However, the probability P (ness|play)

could be zero, since the word playness does not exist in the english vocabulary.

Combining likelihood and fluency

Both of the models that have been discussed so far can be used by the morpholog-

ical generator in the process of generating the most probable word from a stem.

This incorporation could be formulated as:

â = arg max
a

P (a|sn−1, · · · , s1)P (a|s0) (6.1.9)

where a is the affix, that maximizes the probability of i) being used in a word

that is preceded by a series of specific stems and ii) in conjunction with the stem
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s0 results in a valid and probable word.

This affix could then be concatenated to the stem, producing the most prob-

able word. Obviously, the morphological generator could be instructed to return

not only the most probable word, but a list of words, each one assigned to a

probability that is computed using equation 6.1.9.

6.2 Future work

In the future we are looking forward into conducting experiments with larger

training sets, as well as between pairs of languages other than english and greek.

Evaluation of a broader range of such experiments will result in fine-tuning our

system and providing further evidence on the improvement that morphological

information can provide in SMT systems. We are also looking forward into im-

plementing the enhanced SMT system that has been proposed in order to exploit

affix information and evaluate the further improvement that this incorporation

will possibly have to the translation quality of the existing SMT system.

The implementation of the morphological analyzer in our work assumes that

the process of stemming a word is deterministic, i.e. given a word there is only

one stem that the word is derived from. This is not always the case, especially

for words that are derived from different but similar stems, since the morpho-

logical analyzer may falsely stem them. Employing a probabilistic model for the

morphological analyzer could slightly increase the output quality. Also, experi-

mentation could be done in how the performance of the analyzer affects the final

translation quality, by changing the values for the heuristics of minimum stem

length and ratio for the process of stemming.

Our work can also be generalized to incorporate not only morphological, but
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linguistic information in general, like syntactic or semantic information. The

mathematical formulation that has been presented can be easily generalized to

deal with linguistic tags, instead of just stems. These linguistic tags may be

obtained by the analysis of the texts in the shallow syntactic level (e.g. part-of-

speech tags), deep syntactic or semantic level. In analogy to the morphological

analyzers and generators that have been presented in this work, it is possible

to implement such analyzers and generators that operate in these levels and

incorporate them into SMT systems. This would result in a combination of the

traditional lexical SMT system, with the morphological SMT system we have

built and the new SMT systems, like the part-of-speech (POS) SMT system,

semantic SMT system etc. Such a combination should also be accompanied by

experimentation on the weights that are used to model the confidence of each

system.

Specifically, we are looking forward into incorporating part-of-speech knowl-

edge into our system and evaluating the improvement it will possibly have on our

existing combined lexical-morphological system. The implementation of a POS

tagger, paired with slight modification of the code that has been produced in

this research can result in a new SMT system that will incorporate morphology

and part-of-speech knowledge into the baseline system, thus providing further

improvement in translation quality.



Appendix A

Translation samples

This section presents some translation examples for both systems. First the

input sentence is displayed, followed by the translation of system A (the baseline

system) and that of system B (the combined lexical-morphological SMT system).

Finally the reference translation is displayed.

800k training corpus, w0 = 0.05

Input: however the main concern remains

System A: wstìso to basikì mèlhma akìmh

System B: wstìso h megĹlh anhsuqÐa paramènei

Reference: parìla autĹ h basikă anhsuqÐa paramènei

Input: therefore the responsibility of the european union has to be seen in a cer-

tain context

System A: sunepÿc h eujÔnh thn eurwpaðkă èna sugkekrimèno perieqìmeno thc

eurwpaðkăc ènwshc

System B: sunepÿc h armodiìthta thc eurwpaðkăc ènwshc prèpei na jewrhjeÐ se

83
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èna sugkekrimèno perieqìmeno

Reference: ara oi eujÔnec thc eurwpaðkăc ènwshc entĹssontai se sugkekrimèno

plaÐsio

Input: my final point concerns the preparation of the budget for

System A: teleutaÐo shmeÐo aforĹ thn proetoimasÐa tou proôpologismoÔ

System B: to teleutaÐo shmeÐo aforĹ thn proetoimasÐa tou proôpologismoÔ

Reference: ja anaferjÿ tèloc sthn katĹrtish tou proôpologismoÔ tou

Input: it is easy to see that developing countries still stand to benefit

System A: eÐnai eÔkolo na diapistÿsoume ìti anaptussìmenwn qwrÿn akìmh uyÿsei

proc ìfeloc

System B: eÐnai eÔkolo na diapistÿsoume ìti oi anaptussìmenec qÿrec akìmh

uyÿsei proc ìfeloc

Reference: eÐnai problepìmeno ìti edÿ ja parousiastoÔn pleonektămata gia tic

qÿrec autèc

Input: after all this is not a product which is a threat to people’ s health

System A: se telikă anĹlush prìkeitai oÔte enìc proðìntoc pou sunistĹ apeilă

gia laðkì ugeÐa

System B: se telikă anĹlush den prìkeitai gia èna proðìn pou sunistĹ apeilă gia

laðkì ugeÐa

Reference: oÔtwc ă Ĺllwc den prìkeitai gia èna proðìn blaberì gia thn ugeÐa

Input: we do not believe that a declaration is sufficient

System A: eÐmaste thc Ĺpoyhc ìti mia dălwsh eÐnai eparkeÐc
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System B: den pisteÔoume ìti mia dălwsh eÐnai eparkeÐc

Reference: jewroÔme pwc mia diakăruxh den eÐnai arketă

Input: we have to expect that it will take time to implement this report

System A: ja prèpei na perimènoun pou ja th forĹ na thn èkjesh

System B: ja prèpei na anamènoume ìti ja lĹbei kairìc na efarmìsei thn èkjesh

Reference: prèpei na perimènoume ìti ja qreiasteÐ qrìnoc gia thn ulopoÐhsh thc

en lìgw èkjeshc

4.5M training corpus, w0 = 0.05

Input: let me just look at the figures from the day that the agreement was signed

System A: epitrèyte mou na to hmèrac ìti h sumfwnÐa aută upogrĹfhke

System B: ja ăjela mìno na exetĹsei ta stoiqeÐa apì thn hmèra pou h sumfwnÐa

pou upogrĹfhke

Reference: epitrèyte mou mia sÔntomh anadromă stouc arijmoÔc apì thn hmèra

thc upografăc thc sumfwnÐac

Input: that is why big industry is so much in favour of them

System A: gi’ autì oi megĹlec biomhqanÐec eÐnai tìso eunoðkĹ touc

System B: gi’ autì oi megĹlec biomhqanÐec eÐnai tìso upèr autÿn

Reference: gi’ autì kai oi megĹlec biomhqanÐec eÐnai upèr thc qrhsimopoÐhshc

autÿn twn ousiÿn

Input: we do not wish the charter to be a mere declaration

System A: den jèloume o qĹrthc prèpei na gÐnei mia aplă diakăruxh
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System B: den jèloume na gÐnei mia aplă diakăruxh tou qĹrth

Reference: jèloume o qĹrthc na mh sunistĹ aplĹ mia diakăruxh

Input: i would like to thank the commissioner for his reply which i find extremely

satisfactory

System A: ja ăjela na euqaristăsw ton epÐtropo gia thn apĹnthsh pou jewrÿ

idiaÐtera ikanopoihtikì

System B: ja ăjela na euqaristăsw ton epÐtropo gia thn apĹnthsh pou jewrÿ

apolÔtwc ikanopoihtikă

Reference: euqaristÿ ton epÐtropo jewrÿ thn apĹnthsă tou idiaÐtera ikanopoihtikă

Input: i therefore support this amendment

System A: uposthrÐzw thn tropologÐa aută

System B: gia to lìgo autì uposthrÐzw thn tropologÐa aută

Reference: sunepÿc blèpw eunoðkĹ aută thn tropologÐa
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