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Abstract 

 

Visual tracking is a domain of computer vision with many promising applications. An 

important field of this domain involves the tracking of human motion with interesting 

applications, including “smart” surveillance systems, virtual interfaces, character 

animation and gesture-driven control. This work intends to implement a semi-

automatic, non-real-time tracking system of humans by using active contour models 

(snakes). Snakes are energy-minimizing splines that are moving towards a target of 

interest under the influence of internal and external forces. The modular character of 

the snake energy functional allows the inclusion of many different image cues (edges, 

color, shape) and corresponding terms, according to the specific application. The 

snake model offers a flexible and unified way of extracting and representing a desired 

image feature. Emphasis is given in the confrontation of two major, intrinsic problems 

of snakes: the dependence on the initial contour and the weakness in outlining 

concave shapes. Moreover, this work examines the details of adapting the snake 

model to the tracking system. The overall algorithm is tested on sequences of grey-

scale images under some specific stipulations and has encouraging results.      
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Introduction 

The term ‘visual tracking’ may be generally defined as the problem where- given an 

identified target in an initial image I0 of a sequence of images (I0, I1, I2, …), and a 

corresponding initial configuration (or state), S0, of this target- we must produce a 

series of target state estimates (S1, S2, …). At this generic definition we may add some 

stipulations in order to produce a more specific visual tracking system that covers our 

needs at each time. Such stipulations may concern the ‘real-time’ or ‘non-real-time’ 

operation of the system, the range of the conditions under which the target is expected 

to be tracked, the dominant cue(s) that distinguish the target of interest (e.g. shape, 

color, appearance), or some prior information that can be assumed. In this thesis, the 

goal is to produce a semi-automatic, ‘non-real-time’ system of tracking moving 

humans in sequences of gray-scale images. 

 For a long time, the mainstream of tracking has been the “ blob” tracking 

algorithm. It can be said that it is a ‘segmentation-based’ approach, in the sense that it 

is actually a way of optimizing a pixel selection based on a given cue. This algorithm 

though relies on some (usually) undesirable assumptions, for example the fact that 

there is only one target in the region of interest and that this target remains roughly 

constant in size from frame to frame. The same limitation in the appearance of the 

object of interest between frames somewhat also exists in the “template-based” 

region-tracking algorithm. The basic idea of this approach is that of matching the 

direct appearance of the target from frame to frame, using some variation in 

correlation. This thesis uses a third approach that can be referred to as “snake- 

tracking”. The state estimates of the target are represented as contours of discrete 

points; the given initial contour in the first image converges to the target through an 

energy-minimization process, whereas the initial contour of the subsequent states is 

generated from the previous state(s) and converges with the same process. This 

approach can give quite accurate results by low computational work. 

 Snakes were proposed by Kass et al. in 1988, as energy-minimizing splines in 

an image domain, with the ability to move under the influence of internal forces, 

coming from within the curve itself, and external image forces, computed from the 

image data. They may also be guided by external constrained forces. The internal 

forces aim to enforce a piecewise smoothness constraint. The external image forces 

attract the snake toward salient image features like edges, lines and subjective 
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contours. Finally, the external constraint forces serve to put the snake near the desired 

local minimum and can, for example, come from user interaction or high-level 

interpretations. All these forces form an energy functional, which has to be minimized 

in order to achieve a convergence of an initial contour to the object of interest. This 

minimization exhibits a dynamic behavior and that is why snakes are regarded to be 

active models.  

 In the original definition of snakes, the minimization of the energy functional 

is achieved by a variational approach (Euler – Lagrange equations). This approach 

requires the computation of higher order derivatives of the discrete data, may have 

problems of numerical instability and do not allow direct and natural addition of 

external constraints, as these need to be differentiable. Amini et al. presented a 

dynamic programming algorithm for energy-minimization, which allows the 

enforcement of hard constraints for a more desirable behavior of the snakes. 

Nevertheless, this method is very slow and computationally expensive in memory 

requirements. Williams et al. proposed a fast algorithm, widely known as “greedy 

snake”. This method was derived from the dynamic programming method, but, unlike 

the latter, does not use exhaustive search. Its searching strategy is based instead on the 

connective property of the eight neighbours of a snake point. Furthermore, the greedy 

snake retains the privilege of the dynamic programming method to allow hard 

constraints. Therefore, it is a method that combines speed, flexibility and simplicity 

and that is why is chosen in this thesis. 

 However, irrespectively of the method used for the minimization of the energy 

functional, snakes tend to present some generic problems. Mainly, if the initial 

contour is not close to the target in both position and shape, the convergence process 

may end up in the wrong result due to the lack of attracting forces or because the 

snake is trapped by local minima. Even in the case of a quite close initial contour, 

snakes usually have difficulties in handling concave/convex contours. Many methods 

have been proposed towards the solution of these problems, such as the “gradient-

vector-flow” (GVF) snake, in the area of the variational approach, and the “attractable 

snake model”, which is based on the greedy algorithm. Some of these methods solve 

some problems, usually in specific cases, but sometimes other problems appear. It is 

hard to say that there is a globally optimal solution.  

 This work intends to examine the effectiveness of snakes in outlining and 

tracking of humans and proposes some modifications on the previous work. Chapter 1 

 vii



is an introduction to visual tracking and a statement of the assumptions and 

stipulations of our desired tracking system. Chapter 2 introduces the original snake 

model of Kass (variational approach), continues with the dynamic programming 

approach and concludes to the greedy algorithm. Chapter 3 describes two major 

problems of snakes and outlines some of the proposed solutions. Chapter 4 proceeds 

to the implementation details and results of the snake model and the tracker of the 

current thesis. Finally, chapter 5 gives the conclusion and some possible directions of 

future work.  
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Chapter 1: Visual tracking  
 

 

1.1 What is visual tracking? - Definition and applications 
 
A simple and theoretical definition of visual tracking could be given through the 

following problem [1]: 

 

Given:  

1. an identified target (or object of interest) in an initial image, I0, 

2. a corresponding initial configuration (or state), S0, of this target and 

3. a series of subsequent images, I1, I2, …, 

produce a corresponding series of state-estimates S1, S2, … of the target. 

 

Visual tracking could also be defined mathematically, in a probabilistic framework 

[2].  In a dynamic system, the states of the target and image observations are 

represented by Xt and Zt respectively. The tracking problem could be formulated as an 

inference problem with the prior , which is a prediction density. We 

have: 

1 , 1,...( |t t tp + −X Z Z )

)

 

 1 1, ,... 1 1 1 , 1,...( | ) ( | ) ( |t t t t t t t tp p p+ + + + + −∝X Z Z Z X X Z Z  (1.1) 

 1 , 1,... 1 , 1,...( | ) ( | ) ( | )t t t t t t t tp p p+ − + −= td∫X Z Z X X X Z Z X  (1.2) 

 

where  represents the measurement or observation likelihood and 1( |t tp + +Z X 1)

)t1( |tp +X X  is the dynamic model. This probabilistic formulation could be 

represented by a graphical model that is similar to the hidden Markov model (Figure 

1.1). At time t, the observation Zt is independent of previous states,  and 

previous observations, , given the current state, X

1, 2,...( )t t− −X X

1, 2,...( t t− −Z Z )

p

)

t, i.e. 

, and the states have Markov property, i.e. , 1,... 1, 2,...( | , ) ( | )t t t t t t tp − − − =Z X X Z Z Z X

1, 2,... 1( | ) ( |t t t t tp p− − −=X X X X X . 
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Xt-1 Xt Xt+1

Zt-1 Zt Zt+1
 

Figure 1.1: The tracking problem through a graphical model [2]. 

 

However, in many practical cases, this strict definition is of small significance. On the 

other hand, the first definition is quite generic. In order to describe accurately a real 

visual tracking system we have to add some stipulations to this definition. 

 

1.1.1 A real visual tracking system 
 
The stipulations and assumptions that define the form of a real visual tracking system 

could be derived from the following set of questions [1]: 

• What is/are the dominant cue(s) (e.g. edges, colour, appearance, etc.) that 

discriminate the target from other objects and consequently what is the target 

representation (e.g. parameterised shapes, colour distribution, image-

templates, etc.)? Usually there are good ‘local’ approximations rather that a 

globally unique answer. 

• What is the range of viewing conditions under which we expect to track our 

target? Is the target constant in shape or is it deformable (and then what are the 

expected changes in pose)? What are the changes in lighting conditions? Is the 

system able to handle occlusion (i.e. the case where other objects ‘hide’, 

partially or totally, the target of interest)? 

• Relevant to the issue of the viewing conditions are also some features of the 

camera (or generally of the sensor), principally its multiplicity and its 

mobility; does the tracker use a single camera or multiple cameras, which can 

resolve some ambiguous poses that may occur from monocular vision? Is/are 

the camera(s) stationary or moving? 

• What is the desired dimensionality of the tracking space? Does the tracker 

need a quite accurate and compact representation of physical space (3-D 

approach) or a less precise representation of the target is sufficient? 
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• What kind of prior information can be assumed? For example, is the 3-D 

structure (in 3-D approaches) of the object already known? Is it possible to 

know a priori the deformation pattern of the target? 

• What level and frequency of information is needed? There is a big difference 

between expecting 60 Hz pose estimates down to seconds of accuracy, and 

just coarsely knowing where something is going. By sub-sampling the image 

or the frame rate, we can gain in speed but lose in accuracy. What is more 

important?    

• Do we need a ‘real-time’ tracking operation or not? 

• What grade of user interference is allowed? For example, a user could provide 

the initial state or interfere by correcting an estimate. 

 

Some of these issues are not necessarily independent of one another. Moreover, 

thinking about them, may lead us to some other useful questions. In each case, the 

answers to these questions depend, more or less, on the application of the specific 

tracker.  

 

1.1.2 Applications  
 
In the last few years, a new application domain has emerged in computer vision. This 

domain works on the analysis of images involving humans, covering, among others, 

issues like, hand gesture recognition, lip tracking and whole-body tracking [3]. The 

tracking of human motion could be put in a general framework of human motion 

analysis [4]. A step of motion analysis involving human body parts may precede the 

tracking-phase, providing to it some low-level information (e.g. body part 

segmentation or joint detection and identification) that may be useful during the 

tracking-phase. Finally, a higher-level task of recognizing human activities may 

follow a successful tracking stage, completing the procedure of human motion 

analysis. There are many interesting and promising applications in this area. For a 

summary, see Table 1.1 [3]. 

More specifically, human motion analysis can help in the development of 

advanced social interfaces, where computer-generated characters may interact with 

the user in a more friendly way, using human-like behaviours [5]. Furthermore, a 

speech-guided interface can use computer vision, either in order to detect the presence 
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of a user and commence an interaction, either in order to recognize a user, distinguish 

multiple users and guide the dialogue in a more proper way, or finally in order to 

enable a more robust recognition of speech in the presence of acoustic noise (e.g. lip 

tracking [6]). Other interesting applications in this domain are sign-language 

interpretation [7], gesture-driven control for people with disabilities [8] and signalling 

in high-noise environments, such as airports and factories. 

 The development of interactive virtual worlds is also relevant to the above 

application domain. The tracking of the human body may help in the creation of a 

human presence in a virtual space, whereas the tracking of hand gestures may be 

useful in finding a natural way to interact with virtual objects. Other applications in 

the domain of virtual reality are games [9], virtual studios and character animation 

[10]. 

 

 
Table 1.1: Applications of human tracking [3]. 

 

 4



Visual tracking 
 

 Moreover, visual-based human motion analysis can be applied in personalized 

training systems for various activities, like sports and dance. It can also help the 

clinical research in medical branches, like orthopedics. Another possible application 

could be the content-based indexing of sports video footage, that would decrease the 

browsing-effort through a large data set, for example in a query like “give me all the 

cases of action X of the player Y” [3]. 

 Another important application domain is that of “smart” surveillance. 

Applications may range from detection of human presence and motion to face 

recognition for the purpose of access control or the observation of human actions and 

suspicious behaviours. These applications are useful in areas such as parking lots, 

airports, department stores or traffic management systems. Of course the matter of 

privacy rights must be taken into account in these cases [3].  

 Especially in traffic management systems, it is usually desirable to track, apart 

from humans, other objects as well, for example, vehicles, obstacles and traffic signs. 

The goal is usually the maintenance of a secure distance of the pedestrian or vehicle 

from static or moving obstacles and the observance of traffic laws [11]. Furthermore, 

visual systems that track only vehicles are also useful in applications such as the 

measurement of traffic flow or the computation of parameters like the average vehicle 

speed and spatial occupancy [12]. 

 Visual tracking is also applicable in areas where the human motion is not 

involved in a direct way like in the previous applications, or is not involved at all. 

Medicine is one of them and relevant application is the tracking of biological 

structures in MR images [13]. 

 Robotic applications are another domain. These can include mobile robot 

navigation [14], machine-learning [15] and visual servo [16].  

 Finally, tracking techniques are often applied in the area of model-based 

coding in order to accomplish low bit-rate video compression [17]. 
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1.2 Tracking approaches 
 
It is obvious that visual tracking is a very intriguing and quite complex problem of 

computer vision with numerous and interesting applications. Therefore, during the last 

years a lot of research has been done on this subject. The proposed approaches usually 

depend on the specific application and the stipulations that govern the tracker. 

Although there is no globally adopted classification of the existing tracking 

techniques, we can consider two distinct classes [18], [19]: 

 

• Model-based approaches that impose high-level semantic representation and a 

priori knowledge of the 2-D or 3-D structure of the object. 

• View-based approaches that do not use shape models but rely on heuristic 

assumptions to find correspondences of the target. 

 

The view-based approaches are relatively fast but cannot handle non-rigid movements 

of objects as easily as the model-based approaches; on the other hand the latter have 

higher computational cost. In both classes, tracking is performed by information 

provided by geometrical properties of the target. We can define two different sub-

classes according to the type of this information: 

 

• Feature-based approaches, which depend on the information provided by the 

target’s features, such as points, lines and, especially, boundaries (boundary-

based or edge-based approaches).   

• Region-based approaches, which rely on the information provided by the 

whole region. 

 

Another, more general classification states that there are two kinds of approaches to 

the visual tracking problem [2]: 

 

• Bottom-up approaches, which try to determine the target state by simply 

analysing the content of images. 

• Top-down approaches, which generate candidate hypotheses (predictions) 

from the previous frame and then measure and verify these hypotheses against 

the image observations. 

 6



Visual tracking 
 

The first class might be computational efficient, but, since tracking depends only on 

the content of the image, its robustness is strongly affected by the viewing and 

analysis conditions. On the other hand, top-down approaches are less dependent on 

image analysis but the need for methods of generating and verifying hypotheses 

imposes larger computational effort. 

  Obviously it is not possible to outline all the existing tracking approaches at 

this point, however we can overview three typical approaches: “Blob” tracking, 

“Template-Based” region tracking and “snake” tracking. 

 

1.2.1 “Blob” tracking 
 
Basic “blob” tracking has been for quite a long time the mainstream of tracking. It can 

be considered to be a region-based approach according to the above classification. 

More specifically, it can be characterized as “segmentation-based” approach since it 

groups similar (in the sense of a given cue) image pixels into blobs in order to 

estimate the position and shape of the target. Thus, it relies on the analysis of the 

image and can be regarded as a bottom-up approach. Some of the cues that can be 

used for the grouping of blobs are intensity, colour, motion, texture and depth. The 

basic algorithm goes roughly as follows [1]: 

 

1. Identify an image (binary) segmentation function π  (based on the selected 

cue) and an initial region of interest R0 in the initial image I0. Let the 

location of the center of R0 (with respect to the entire image) be u-1. 

2. For every image of the video stream I0, I1, …  

i. acquire Ri about ui-1 in Ii, 

ii. compute the new blob Bi = π(Ri), 

iii. compute the new center ui = ui-1 + centroid(Bi). 

 

This basic form of the algorithm promises quite efficient and accurate tracking but 

only under some restrictive assumptions. Such assumptions are the usage of a 

constant segmentation function and the presence, in the region of interest, of only one 

target, which remains almost constant in size and stays into the region of interest 

between frames. Even then, this algorithm is very sensitive to unstructured 
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environments, where large appearance variability occurs, due to pose, lighting or 

occlusion.  

Furthermore, the segmentation process can be computationally time-

consuming. A good idea to improve the algorithm’s performance would be to use 

lower image resolution (sub-sampling) and lookup-tables for the segmentation 

function. 

 

1.2.2 “Template-based” region tracking 
 
The basic idea of this approach is to match the direct appearance of the target from 

frame to frame. Thus, it could be roughly considered as a top-dawn approach (the 

candidate hypotheses are all the possible locations of the template and the matching 

based on image features works as the verification phase). A simple form of this 

algorithm would be [1]: 

 

1. Choose a region of interest R0 in the initial image I0. Let the location of R0 

in I0 be u0. 

2. For every subsequent image I1, I2, … 

i. use some variation on correlation to find the location ui of the 

best match to Ri in Ii, 

ii. sample Ri about ui in Ii. 

 

The above “greedy” operation of correlation, which demands searching for the target 

at each possible location of the image, is expected to lead to a prohibitive 

computational cost. Some algorithmic tricks and data structures, such as the resolution 

pyramids, could improve the performance. In a resolution pyramid, successive levels 

are smaller versions of the image with fewer pixels to be processed.  

As far as the accuracy is concerned, this basic algorithm relies on the 

assumption that the target remains almost constant in appearance between frames. 

Likewise the “blob” approach, it cannot handle occlusion and rapid changes in pose 

and illumination.  

The problem of the algorithms that use simplified matching methods, like SSD 

(Sum of Squared Difference) minimization or cross-correlation maximization, is that 

they model the motion of the target region as pure translation in the image plane. 
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However, as mentioned above, in most real cases of tracking a target through a large 

sequence of images, changes of illumination and image distortions (e.g. rotation or 

scaling), may occur. Thus, more efficient and robust algorithms of region tracking 

may be accomplished by modelling these changes in a unified framework [20]. 

 

1.2.3 “Snake” tracking 
 
Snakes were introduced by Kass et al. [21] as energy-minimizing splines, which tend 

to lock onto nearby edges. They are active contour models with the ability to 

represent the boundary of a target and keep updating it dynamically between frames. 

Hence, they can be used in a boundary-based tracking approach. The basic form of 

such an algorithm is: 

 

1. Identify an initial contour, C0, in the initial image, I0. 

2. Let it converge iteratively to the target boundary through the energy-

minimization process, giving you the optimised contour .  '
0C

3. For every subsequent image Ii (i = 1, 2 ,…), 

i. compute the initial contour, Ci, of the image Ii, based on the 

optimised contour, , of the previous image I'
1−iC i-1 , 

ii.  let Ci converge iteratively to the target boundary through the 

energy-minimization process, giving you the optimised contour 

. '
iC

 

The initial contour, C0, in the first image of the sequence, can be either provided by 

the user or acquired through a high-level process. In both cases, tracking should 

proceed automatically (i.e. with no further input) and therefore the initial contour, Ci, 

in the subsequent images, Ii (i = 1, 2 ,…), has to be computed.     

There are more than one possible ways to compute Ci, based on the optimised 

contour, , of the previous image. A very ‘naïve’ approach is to use  directly as 

C

'
1−iC '

1−iC

i (Figure 1.1). This is a really simplified method that could work only under certain 

circumstances. For example, the interior of the target boundary has to be smooth 

(without edges) and the displacements of the target between frames should be 

relatively small. 
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Figure 1.1: The initial contour is provided by the user and its optimisation is used as starting 

contour for the next frame (naïve approach) [22]. 

 

A similar, but less simple, method computes Ci using an inflation factor in 

order to expand the previous optimised contour  about its centroid. One drawback 

of this method is that improper inflation factor may lead to a starting contour, which is 

either too far away from the real boundary and cannot be attracted to it, or intersects 

the boundary of adjacent objects.  

'
1−iC

A third possible approach is to take as starting contour, Ci, the motion-

compensated version of the optimised  (using optic flow for example). This third 

approach is usually the most efficient but undoubtedly increases the computational 

cost. 

'
1−iC

 From the above we can claim that snake tracking is somewhat an operation 

where predictions (naïve or more complex) are made and updated against image 

observations through the energy-minimization process. Thus, it can be considered as a 

top-down approach. 

 Regarding accuracy, the basic algorithm as it stands, can promise quite 

efficient but still not very precise tracking of a target contour at all points, since 

snakes are actually an interpolation through a discrete set of points. Furthermore, the 

boundary-based character of snakes makes them sensitive to lighting changes and 

occlusion. A more robust tracking requires some addition to the basic algorithm. 

Nevertheless, snakes are generally a good and computationally easy way of tracking.  

 Finally, it is worth to mention  that, some research, inspired from Kass’ snakes, 

has moved on to statistical frameworks and spline-based ideas. A least-squares-style 
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snake algorithm (a Kalman filter) [23] and a probabilistic model of object shape and 

motion [24] are some of these approaches.    

 

1.3 Visual tracking in the current thesis 
 
This thesis intents to build a quite efficient and robust non-real-time visual system for 

tracking a single human target through a video stream. The tracking approach that is 

followed is snake-based. The starting contour of the initial image is a rectangular that 

is provided by the user and encloses the human target. The user actually defines the 

rectangular by ‘clicking’ on the image the upper-left and lower-right angles. This is 

the only user interference; the following tracking is curried out automatically using 

motion compensation for the determination of the following starting contours.  

 The representation of the target is performed in the 2-D space using a contour 

and the dominant cue of tracking is edges. The system does not use any kind of shape 

model or other prior knowledge. The target is expected to be deformable (e.g. 

movement of arms, gait). Small changes in lighting are tolerable but occlusion is not 

handled. The tracking system is tested on gray-scale images, taken from one single 

and stationary camera.  

 More implementation details of the tracker will be stated in chapter 4. Until 

then we have to take a closer look at snakes.  
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Chapter 2: Snakes: active contour models 

 

 

2.1 Introduction 

Snakes were introduced by Kass et al. [21], as energy-minimizing splines guided by 

internal spline forces and external, image and constraint, forces. They are contour 

models that can provide a unified account of a number of visual problems, which used 

to be examined separately, such as detection of edges, lines and subjective contours, 

stereo matching and motion tracking. The iterative and dynamic minimization of their 

energy functional makes these models active. The name “snakes” was given to them 

because the movement of the contour through this dynamic minimization looks like 

the slithering of the homonym reptile. 

 A snake is actually defined as a sequence of (x,y) points in an image, named 

“control points”, but is usually drawn with lines that connect the adjacent control 

points, giving the impression  of the snake-shape (Figure 2.1). The control points are 

also called “snaxels” (Snake Elements, according to pixels). Every control point has 

an energy level, which is desirable to be minimized at each iteration, in order to 

minimize the energy functional of the whole contour. Depending on the 

implementation, the minimization process makes each snaxel move, either 

asynchronously to the other snaxels (affecting the energy level of adjacent snaxels) or 

synchronously to them. When all snaxels have their energy minimized once, a new 

iteration begins and the procedure goes on until the total energy stops decreasing or 

when a more complex criterion is satisfied.  

 

 
Figure 2.1: A snake as a sequence of control points in an image [22]. 
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 There are three main implementations of the snake model according to the 

formulation of the energy functional and the techniques used for the energy 

minimization; Kass’ original model adopts a variational approach, Amini et. al use 

dynamic programming and Williams and Shah propose a greedy algorithm. 

 

2.2 Original snake model – a variational approach 

Representing the position of a snake parametrically by v(s) = (x(s), y(s)) (where s is 

proportional to the contour arc length and ]1,0[∈s ), the energy functional of the 

original snake model can be written as: 

 

 
1 1

*

0 0

( ( )) ( ( ( )) ( ( )) ( ( )))snake snake int image conE E s ds E s E s E s= = + +∫ ∫v v v v ds  (2.1) 

 

where Eint is the internal energy of the spline, Eimage is the energy from the exerted 

image forces and Econ is due to the constraint forces. The minimization of Eint aims to 

impose a piecewise smoothness constraint to the curve, whereas the image forces pull 

the snake towards salient image feature. The external constraint forces may be exerted 

through user-interference or high-level interpretations, and serve in putting the snake 

near the desired local minima. The image and constraint forces are both considered as 

external forces, unlike the internal forces that come from the spline itself.  

 

2.2.1 Internal energy 

The internal spline energy consists of a weighted first-order term and a second-order 

term, also controlled by some weight: 

 

 2
int

1 ( ( ) | ( ) | ( ) | ( ) | )
2 s ssE s s s sα β= +v v 2  (2.2) 

 

where  and  denote the first and second derivatives of ( )s sv ( )ss sv ( )sv  with respect to 

s and can be approximated in a discrete form by the backward finite differences 
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1i i−−v v  and 1 2i i i 1− +−v v + v  respectively ( 1i−v  and 1i+v  are the preceding and 

following snaxels of the snaxel  in the sequence of the snake points). Adjusting the 

two weights, α(s) and β(s), results in controlling the relative significance of the above 

terms.  

iv

 The first term, also called “elasticity term” or “elastic energy”, makes the 

snake act like a membrane. It is a measure of the distance of a snaxel from the 

previous snaxel in the sequence of the snake points, and therefore decides how much 

a control point should be pulled towards its neighbour or pushed away from it. 

Actually, the influence of this term can be expanded to include also the distance of the 

snaxel to its following (i+1) neighbour, as in equation (2.13). The ‘direction’ of this 

movement (push or pull) is defined by the polarity of α(s); if α(s) is positive, the 

minimization of the elastic energy of a snaxel is achieved by pulling this snaxel 

towards its neighbours. When this pull is applied to all snaxels in one iteration step, 

the snake appears to contract. On the contrary, when α(s) becomes negative, every 

snaxel moves away from its neighbours and contraction converts to expansion. This 

can be useful, for example, when we need to detect the contour of an object with a 

smooth interior (few internal edges) in a complex environment. In this case, we can 

initialize the snake into the object and then let it expand, avoiding the misleading 

external edges. 

 The magnitude of α(s) is also significant. The new position of a snaxel in the 

current iteration of the algorithm is related by the coefficient α(s) to the positions that 

this snaxel and its two neighbours (previous and next) had in the previous iteration 

step (equation 2.13). Therefore, the magnitude of α(s) controls the expansion or 

contraction rate. Larger values of α(s) make the snake shrink (or expand) more 

rapidly.   

 The second-order term measures the bending ability of the snake, in other 

words, its ability to form corners. It is also known as “bending term” or “bending 

energy”. The minimization of this energy tends to smooth the snake curve, 

disallowing large curvatures. That is why this term is said to make the snake act like a 

thin metal strip [22]: if the two ends of the strip are not connected (correspondingly, if 

the snake is open), the strip tends to open out into a straight line; if they are joined 

together (correspondingly, if the snake is closed), the strip becomes a smooth curve 

almost without corners (Figure 2.2). Setting the parameter β of a control point equal to 
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zero eliminates the bending term, allowing the snake to become second-order 

discontinuous and form a corner at that point.  

 
Figure 2.2: The minimization of the bending energy: the effect on a single snaxel [left], on an 

open snake [middle] and on a closed snake [right], after a number of iterations [22]. 

 

 From the above it is obvious that both elasticity and bending terms are 

affected by the relative positions of the control points along the snake and not by the 

image features. This fact justifies the characterization “internal”, which is given to the 

corresponding energies. 

 

2.2.2 Image energy 

Unlike the internal energy, this energy term relies on the information obtained from 

the image area around the snake and is irrelevant to the position of the control points. 

The minimization of the image energy aims to attract the snake towards salient 

features. The original model examines the cases of attraction to lines, edges and 

terminations, and in this direction proposes the following formulation of the image 

energy term: 

 

 image line line edge edge term termE w E w E w E= + +  (2.3) 

 

where  is the line-energy, lineE edgeE  is the edge-energy,  is the termination-

energy, and  are the corresponding weights. By adjusting properly 

these weights we can obtain different snake behaviour.  

termE

, ,line edge termw w w

 The line-energy is the simplest term of image energy and is actually the image 

intensity itself: 

 

 ( , )lineE I x y=  (2.4) 
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y

 

This energy term can attract a snake either to dark lines (small values of intensity) or 

bright lines (large values of intensity), depending on the sign of the weight . If 

 is positive, then the minimization of a positive quantity is achieved by going to 

smaller values of intensity, hence darker areas. Conversely, a negative weight leads to 

brighter areas. 

linew

linew

  The second term of equation (2.3) desires to guide the snake towards edges; 

this can be done using a simple gradient function: 

 

  (2.5) 2| ( , ) |edgeE I x= − ∇

 

The gradient of image intensity, ( , )I x y∇ , has large values at points that belong in 

strong edges; the stronger is the edge, the larger the gradient. This fact imposes the 

negative sign in equation (2.5). If the negation were not present, the control points 

would be repelled from strong edges during the energy-minimization.  

The original model also proposes a slightly different form of the edge term: 

 

  (2.6) 2 2(edgeE Gσ= − ∗∇ )I

 

where Gσ  is a Gaussian of standard deviation σ . Minima of this energy correspond 

to zero-crossings of , which define edges. This term can be used in a scale-

space continuation approach, where firstly the snake is let to converge on a blurry 

version of the image and then the blurring is being reduced gradually. This blurring 

effect enlarges the capture range around an object of interest. Figure 2.3 shows an 

example: 

2Gσ ∗∇ I
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Figure 2.3: Scale-space continuation on edge-energy [21]. 

 

The upper-left image shows the snake in equilibrium at a coarse scale. The edge 

localization is not that accurate but the goal of approaching to the contour is achieved. 

Reducing the blurring gradually, leads the snake to the position shown in the upper-

right image (intermediate scale) and finally to a very accurate localization shown in 

the lower-left image (no blurring at all). The lower-right image superimposes on the 

lower-left image the zero-crossings of 2Gσ I∗∇  that corresponds to the energy term 

of this image. It is worth to note that this last image appears to have many zero-

crossings that could mislead the snake. This does not happen though, due to the fact 

that the edge-energy is only a term in the whole energy functional. 

 Finally, the termination-energy is useful in finding terminations of line 

segments and corners. A line segment may appear to terminate either because another 

line or edge (probably from another object) occludes it, or because it changes 

direction, forming a corner [22]. In either case, line terminations correspond to 

important features of a target shape; therefore it is sometimes useful to detect them. 

The termination term is computed in a slightly smoothed version of the image, 

. Smoothing is used to reduce the image noise; noise could 

be misleading, for example, in cases where it degrades a line segment, making it 

appear like two distinct lines. If we denote by 

( , ) ( , ) ( , )C x y G x y I x yσ= ∗

1tan ( / )y xC Cθ −=  the gradient angle 

and by (cos ,sin )θ θ=n  and ( sin ,cos )θ θ⊥ = −n  the unit vectors along and 

perpendicular to the gradient direction respectively, then we have: 
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 (2.7) 

 

 The significance of the termination-term could be shown through the 

following example. Figure 2.4, shows a “subjective” triangle occluding two lines and 

three circles. If a snake were initialized into this “invisible” triangle, it would 

probably manage to converge to its subjective contour. Due to the combination of 

edgeE  and , some snaxels would be attracted to the existing edges, line-

terminations and corners, while the internal energy would smooth the snake, allowing 

to the rest of the snaxels to rest on the subjective edges of the triangle.  

termE

 

 
Figure 2.4: A subjective contour [22]. 

 

 

2.2.3 External constraint energy 

Kass et al. created a user-interface for snakes on a Symbolics Lisp Machine (Figure 

2.5), in order to examine the results of exerting interactively constraint forces to a 

snake. The user was able to “push” a snake near a feature of interest, letting the rest of 

the energy terms to continue the snake’s movement. Furthermore, the user was able to 

attach a spring to a snaxel and hence constraint its movement. The other side of the 
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spring could be free, so that the user could drug it around (using the mouse). It could 

also be connected to a fixed position in the image or to another snaxel.  

Another external constraint force proposed in the original model is a repulsion 

force of the form 2

1
r

, also controllable by the mouse. Due to numerical instability near 

(0r = 2

1
r

→∞ when ), this energy functional is clipped near zero and that is 

why the resulting potential is depicted as a volcano (Figure 2.5).     

0r →

The computation of the constraint energy term is not fully documented in the 

original model. It is stated, for example, that a spring connecting two snaxels 1x  and 

2x  would cause the addition of the term  to the external constraint energy 

(where k is the spring constant); there is no reference though to the case of a spring 

dragged around by the mouse. In fact, it is difficult, if not impossible to model such 

an interaction as an energy term. However, the original model includes  in the 

total snake energy. 

2
1 2(k x x− − )

conE

 

 
Figure 2.5: The Snake Pit user-interface. Snakes are shown in black, springs and the volcano 

in white [21]. 
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An example of applying external constraint forces to a snake is shown in 

figure 2.6 [22]. A snake has relaxed on a contour including two different objects (1). 

This fact is undesirable, so the user pushes a snaxel towards the desired target (2). 

Due to the internal forces of the snake, the neighbours of the above snaxel are moving 

along with it (3,4,5). The snake finally fits on the desired target, influenced by the 

other terms as well (6). 

 

 
Figure 2.6: User-interacted movement of a snake. Solid lines denote the snake and dashed-

lines denote snaxels’ movement [22]. 

 

 

2.2.4 Energy minimization 

As mentioned before, both image forces and constraint forces are external, therefore 

the sum of their corresponding energies can be written as ext image conE E E= + . Hence 

equation (2.1) becomes:  

             

 

1
*

0
1

2 2

0

( ( ( )) ( ( )))

1( ( ( ) | ( ) | ( ) | ( ) | ) ( ( )))
2

snake int ext

s ss ext

E E s E s ds

s s s s E s dα β

= +

= + +

∫

∫

v v

v v v s
 (2.8) 
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Assuming constant weights ( )sα α=  and ( )sβ β= , the above equation gives two 

independent Euler-Lagrange equations: 

 

 
2 4

2 4 0extEx x
s s x

α β ∂∂ ∂
− + + =

∂ ∂ ∂
 (2.9) 

 
2 4

2 4 0extEy y
s s x

α β ∂∂ ∂
− + + =

∂ ∂ ∂
 (2.10) 

 

 When ( )sα  and ( )sβ  are not constant, it is simpler to use a discrete form of 

equation (2.8): 

 

 *

1
( ( ) ( )

n

snake int ext
i

)E E i E i
=

= +∑  (2.11) 

 

where n is the number of the control points. Approximating the derivatives with finite 

differences and using vector notation ( , ) ( ( ), ( ))i i ix y x ih y ih= =v , the internal energy 

is written as: 

 

 2 2 2
1 1 1( ) | | / 2 | 2 | / 2int i i i i i i i

4E i hα β− − += − + − +v v v v v h

1v

 (2.12) 

 

where  and  (in a closed snake) and h is the distance between 

subsequent snaxels (it can be included in the values of α and β and disappear from the 

equation).  Let 

0 n=v v 1n+ =v

( ) /x ext if i E= ∂ ∂x i and ( ) /y extf i E y= ∂ ∂ , where the derivatives are 

approximated by finite differences if they cannot be computed analytically. Then the 

corresponding Euler equation is: 

                                                                

 

1 1 1

1 2 1

1 1

1 1 2

( ) ( )
[ 2 ]

2 [ 2 ]
[ 2 ]

( ( ), ( )) 0

i i i i i i

i i i i

i i i i

i i i i

x yf i f i

α α
β
β

β

− + +

− − −

− +

+ + +

− − − +
− + −
− + +

− + +
=

v v v v
v v v
v v v
v v v

 (2.13) 
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This equation can be written in matrix form as: 

 

 0=xAx + f (x, y)  (2.14) 

 0=yAy + f (x, y)  (2.15) 

 

where A is a  pentadiagonal banded matrix. If α and β are constant, then n n×

 

2 6 4 0 0 4
4 2 6 4 0 0

4 2 6 4 0 0
0 4 2 6 4 0

0 0 4 2 6 4
0 0 4 2 6

4 0 0 4 2

0

4
6

α β α β β β α β
α β α β α β β β
β α β α β α β β

β α β α β α β β

β α β α β α β β
β β α β α β α β

α β β β α β α β

+ − − − −⎡ ⎤
⎢ ⎥− − + − −⎢ ⎥
⎢ ⎥− − + − −
⎢ ⎥

− − + − −⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥− − + − −⎢ ⎥

− − + − −⎢ ⎥
⎢ ⎥− − − − +⎣ ⎦

A  

 

A similar form is used when α and β are variable for each snaxel. 

 In order to solve the above equations, the snake is made dynamic by treating 

 and x y  as functions of time. Then the right-hand sides of these equations are set 

equal to the product of a step size, γ , and the negative time derivatives of the left-

hand sides:  

 1 1 1( , ) (t t t t t )γ− −+ = −x −−Ax f x y x x  (2.16) 

 1 1 1( , ) (t t t t t )γ− − −+ = −yAy f x y y y−

1))t−

1))t−

)

 (2.17) 

 

We can now solve for position vectors iteratively: 

 

  (2.18) 1
1 1( ) ( ( ,t t tγ γ−
− −= + − xx A I x f x y

  (2.19) 1
1 1( ) ( ( ,t t tγ γ−
− −= + − yy A I y f x y

 

The matrix ( γ+A I  is also a pentadiagonal and banded matrix, so it can be inversed 

by LU decompositions in O(n) time. When the snake reaches its equilibrium, the time 

derivative vanishes and the above equations come to solution. 
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2.2.5 Advantages and disadvantages 

It was shown that snakes are active contour models with the ability to handle many 

different visual problems in a unified way. This is mainly due to the fact that snakes 

are based on the minimization of a modular energy; many different energy terms may 

be added to the total energy functional, according to the specific application. For 

example, if we want the snake to be attracted to areas of high green colouring, we can 

simply add an appropriate term that has small values in “high-green” pixels.  

 Another advantage of the snake model, as it was proposed by Kass et al., is 

that it allows the user to contribute to the snake movement. The user can place one or 

more snakes near target objects and interfere to their movement if needed. Thus a 

more efficient detection can be achieved. 

 Nevertheless, the ability of user-interaction could also be regarded as 

disadvantage. The original intention might be a user-guided model, however there are 

many applications that require unaided visual systems. 

 Even in the case though that the external constraint forces are tolerable, it is 

necessary to be able to model them in a functional. Moreover, they also have to be 

differentiable, due to the variatonal approach to energy-minimization. The same 

condition stands for the image forces too. 

Furthermore, there is no clear way to define the weights and hence the relative 

importance of the energy terms. A bad adjusting could result, for example, in a snake 

that keeps contracting (or expanding) even after “finding” the target. 

The fact that the movement of a snaxel is proportional to the magnitude of the 

internal energy could also create a problem. For example, if a snaxel has large elastic 

energy, it will jump to its new position and overrun an edge that may lie in between.    

Finally, the energy-minimization process is rather slow. This makes difficult 

the real-time implementation of the model in the case of tracking. 

 

2.3 A dynamic programming approach 

The problems related to the variational approach of the original model created the 

necessity of finding new methods for energy minimization. Amini et al. proposed a 

discrete multistage-decision process, using dynamic programming [25]. This approach 
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concerns only the minimization task; the snake energy to be minimized is still given 

by equation  (2.8): 

 

        
1 1

* 2 2

0 0

1( ( ( )) ( ( ))) ( ( ( ) | ( ) | ( ) | ( ) | ) )
2snake int ext s ss extE E s E s ds s s s s E dα β= + = + +∫ ∫v v v v s   

 

 

2.3.1 Energy minimization 

The discrete form of the above equation can be written as: 

 

 * 2 2
1 1 1

1

1 ( | | | 2 | ) ( )
2

n

snake i i i i i i i ext i
i

E Eα β− − +
=

⎛ ⎞= − + − + +⎜ ⎟
⎝ ⎠

∑ v v v v v v  (2.20) 

 

The minimization problem can be solved through a discrete multistage-decision 

process: starting from the initial snaxel on the contour, at each one of a finite set of 

stages  (that correspond to the n control points), a decision has to be made 

from a finite set of possible decisions.  

1 2( , ,..., )ni i i

 We can start with the comprehension of the problem, making an assumption 

for the shake of simplicity; if we assume that the snake energy does not include the 

bending-energy (the second term of equation (2.20)) then the minimization problem 

can be resembled to the minimization of a function like the following: 

 

  (2.21) 1 2 1 1 2 2 2 3 1 1( , ,..., ) ( , ) ( , ) ... ( , )nE u u u E u u E u u E u u− −= + + + n n n

1 }+

 

where each variable is allowed to take only one of m possible values. In a discrete 

dynamic programming approach, every ui corresponds to the state variable in the ith 

decision stage. The solution yields a sequence of functions of one variable (optimal 

value functions), , where for obtaining each , a minimization is performed 

over a single dimension. In the case of equation (2.21),  is of the general form: 

1
1{ }n

k ks −
= ks

ks

 

 1 1( ) min{ ( ) ( , )
k

k k k k k k ku
s u s u E u u+ −= +  (2.22) 
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For example, if n=5 in equation (2.21), then (2.22) gives: 

 

  (2.23) 

1

2

3

1 5 4

1 2 1 1 2

2 3 1 2 2 2 3

3 4 2 3 3 3 4

1 2 3 4 5 4 5 3 4 4 4 5,...,

( ) min ( , )

( ) min{ ( ) ( , )}

( ) min{ ( ) ( , )}

min ( , , , , ) ( ) min{ ( ) ( , )}

u

u

u

u u u

s u E u u

s u s u E u u

s u s u E u u

E u u u u u s u s u E u u

=

= +

= +

= = +

 

In the same way, the equation (2.20) without the bending-energy term, gives a set of 

equations of the following general form: 

 

 2
1 1 1( ) min{ ( ) | | ( )}

2k

k
k k k k k k ext ks s Eα

+ − += + − +
v

v v v v v

)

 (2.24) 

 

The process uses two matrices for storing the results of each stage. An energy-matrix 

for the optimal value functions, sk, and a position-matrix for the values of  that 

minimize (2.24). After the formulation of the two matrices, the contour of minimum 

energy is found by using the backward method of solution for discrete dynamic 

programming problems: the energy of the resulting contour is . 

Going back in the position-matrix, the contour is found. This procedure corresponds 

to a single iteration. The iterative process continues until  stops changing with 

time. Supposing n control points and m possible directions (decisions) for each point, 

the time complexity is O(nm

kv

min 1( ) min ( )
n

n nE t s −=
v

v

min ( )E t

2) for each iteration and the storage requirements are 

. n m×

 An important advantage of this algorithm is that it allows the enforcement of 

hard constraints to the solution (they are called “hard” because they cannot be 

violated). An example of such a constraint is a condition that demands that two 

adjacent snaxels cannot come closer to each other than a distance d (inequality 

constraint). In this case, the distance between adjacent points is also computed during 

the process; if a point  minimizes the function kv 1(k ks +v , but does not satisfy the 

constraint, it is rejected and substituted by the next best point that satisfies the 

condition. If there is no such a point, the algorithm terminates.  
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)

 Having the simple case (where the bending-energy is missing) in mind, we can 

proceed to the solution of the overall energy of equation (2.20). Now, a two-element 

vector of state variables, , is fixed and the general case of the optimal value 

function is: 

1( ,k k+v v

            

 1

2
1 1 1

2
1 1

( , ) min{ ( , ) | |
2

| 2 | ( )}
2

k

k
k k k k k k k k

k
k k k ext k

s s

E

1
α

β
−

+ − −

+ −

= + −

− + +

v
v v v v v v

v v v v

− +
 (2.25) 

 

In this case, the dynamic programming table has m2 entries for each stage; these 

correspond to the m2 possible two-element vectors of state variables. Thus, the time 

complexity increases to O(nm3) and the memory requirements become . Since 

there is no interaction between the m

2n m×
2 entries of each stage, their energy values could 

be computed in parallel. This would require m2 processors but would reduce 

complexity to O(n). 

  

2.3.2 Advantages and disadvantages 

The above “time-delayed” discrete dynamic programming algorithm has a significant 

advantage over the previous variational approach: there is no need of computing high-

order derivatives. The only ones required are the first-order and second-order 

derivatives of the internal energy and the gradient in the image energy functional. 

This fact implies numerical stability. Furthermore, the external forces don’t have to be 

differentiable.  

 Continuing the comparison, we can note that the Amini’s method works 

directly on the discrete grid, whereas the original model computes new point 

coordinates as real numbers. The latter allows points to fall between the discrete 

coordinates.  

 Moreover, the dynamic programming approach allows hard constraints to be 

easily included in the model. When these constraints are violated, the algorithm stops, 

so they can be used in order to prevent undesirable situations. 
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 On the other hand, the computational cost of the algorithm is very high. Given 

a snake of n control points and a window of m possible positions, the complexity is 

O(nm3 ) in time and O(nm2 ) in memory requirements. 

Finally, some drawbacks of Kass’s model still exist. There is no guideline at 

all for the evaluation of the energy weights. Furthermore, the elasticity energy is 

prone, due to its formulation, to make the snake shrink (or expand) continuously, as it 

minimizes (or maximizes) the distance of adjacent snaxels.        

 

 

2.4 “Fast snake” – a greedy approach 

Williams and Shah introduced a similar (to the dynamic-programming algorithm) 

approach [26], in the sense that the new positions of the control points are sought into 

a window around them. During each iteration of the algorithm, each snaxel moves to 

that position of its neighborhood (window), which minimizes its energy level. Unlike 

the previous methods, the snaxels move asynchronously, i.e. the movement of each 

snaxel takes place during the iteration rather at the end of it, affecting, in this way, the 

movement of the following snaxels. Despite being greedy, the proposed algorithm 

ensures faster convergence than the dynamic-programming approach, while in the 

same time, preserves the advantages of numerical stability and inclusion of hard 

constraint. The energy-model does not include terms due to external constrained 

forces (although it would be able to do so) and the basic snake energy is now written 

as: 

              

  (2.26) 

1
*

0
1

0

( ( ( )) ( ( )))

( ( ) ( ( )) ( ) ( ( )) ( ) ( ( )))

snake int ext

cont curv image

E E s E s ds

s E s s E s s E s dsα β γ

= +

= + +

∫

∫

v v

v v v

 

 where ( )sα , ( )sβ  and ( )sγ  are weights that control the relative influence of each 

term. Thus, their relative rather than absolute values are important. 
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|

2.4.1 Internal energy 

The first two terms of equation (2.26) form the internal energy of the snake and they 

correspond to the elastic and bending energy of the original model respectively. 

 The first-order term in the integrand of (2.8), i.e. the elastic energy, which in 

discrete form is written as , has a serious drawback. As mentioned before, 

the minimization of this term is equivalent to the minimization of the distance 

between subsequent snaxels, causing the snake to shrink consecutively. This is getting 

even worse in the greedy approach, as the movement is asynchronous and is based on 

local decisions.    

2
1| i i−−v v

In this model, the above term, which is called here “the continuity energy”, is 

made to include the average distance, ,d  between the adjacent control points. For 

each snaxel  we have: iv

 

 1( ) | |cont i i iE d −= − −v v v  (2.27) 

 

This equation still satisfies the desirable first-order continuity of the curve but in the 

same time ensures that the adjacent snaxles are almost equidistant. The average 

distance, d , is updated at the end of each iteration and is affected by the overall 

movement of the snake due to the minimization of the total energy (equation (2.26)). 

Thus, depending on the value of d , the snake can still expand or contract, but in a 

more controllable way, preventing the bunching-up on strong segments of the 

contour. 

The second term of equation (2.26) corresponds to the second-order term in 

the integrand of equation (2.8) and is actually a measure of the curvature of the 

contour (in this model it is called “the curvature energy”, Ecurv). The mathematical 

definition of curvature is d
ds
θ , where θ  is the angle between the positive x-axis and 

the tangent vector to the curve.  

There are many different ways to approximate the curvature of a discrete 

contour [26]. The greedy snake model uses the square of the difference of the vectors 

1 1( ) ( ,i i i i i i i 1)x x y y− −= − = − −u v v − )i and 1 1 1 1( ) ( ,i i i i i ix x y y+ + + += − = − −u v v , where  iv
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is the snaxel under consideration and 1i−v  and 1i+v  are the preceding and following 

snaxels respectively. Thus, the curvature energy is written: 

 

 2
1 1( ) | | | 2 |curv i i i i i iE + −= − = − + 2

1+v u u v v v  (2.28) 

 

This is a reasonable and quick measure of curvature. Note that it takes into account, 

not only the difference in the directions of the two vectors, but also the difference in 

length. Thus, if the above three snaxels are not evenly spaced, the curvature will be 

larger.  

 Another approach, which eliminates this last feature, uses the difference of the 

normalized vectors: 

 

 
2

1

1

( )
| | | |

i i
i

i i

curv +

+

= −
u uv
u u

 (2.29) 

 

The length of  is given by ( )icurv v 2sin( / 2)θ , where θ  is the difference between the 

directions of the two vectors (Figure 2.7). Now the curvature depends only on this 

difference, but its computation is slower than the one used in (2.28). 

 

 
Figure 2.7: Difference in direction of two vectors ( [0, ])θ π∈ . 

 

For every snaxel, both  and EcontE curv are computed for every possible position 

in the neighborhood of this snaxel and then the values are normalized to [0, 1] by 

dividing by the largest respective value in the neighbourhood. This normalization is 

made so that the range of both terms of the internal energy is the same. In this way, 

the relative importance of the two terms is absolutely defined by the ratio of α and β. 
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The polarity of these weights has the same significance as in section 2.2.1. Their 

magnitude though affects the gravity of each term but not the rate of movement. 

 

2.4.2 Image energy 

Unlike the original snake model, the image energy of the greedy snake consists of 

only one term: the magnitude of the gradient of the image. For the computation of the 

gradient any appropriate mask and smoothing filter can be used. 

The value of image energy must also be normalized to [0, 1] in consistency 

with the terms of internal energy. The magnitude of the gradient is an integer value 

between 0 and 255. The normalization of this value by dividing by 255 or by the 

largest value in the neighbourhood isn’t very accurate. If, for example, the largest 

value in the neighborhood is 240 and another position has a gradient of 225, the 

division with 240 will give 1 and 0.94 respectively, which doesn’t reflect the exact 

(quite large) difference between 240 and 225. The model uses a more efficient 

normalization formula: 

 

 ' ( )
( ) image_min image i

image i
image_max image_min

P P
P

P P
−

=
−

v
v  (2.30) 

 

where  is the real value of the gradient magnitude,  is the 

normalized value and ,  are the minimum and maximum values of 

gradient magnitude in the neighborhood. In the above case, supposing a minimum 

value of 140, this formula will give -1 and -0.85 respectively. Note that equation 

(2.30) yields a negative image energy, which has smaller values in larger values of 

gradient, exactly as in the original model. Furthermore, the algorithm sets min equal 

to max-5 when . This prevents large differences when close values of 

gradient are normalized. For example, for three subsequent values 50, 51 and 52 (in a 

supposed neighbourhood of three positions), the direct application of (2.31) will give 

0, -0.5 and –1 respectively, i.e. quite large differences; if we set , 

we will get –0.6, -0.8 and –1 respectively, i.e. smaller differences.  

( )image iP v ' ( )image iP v

image_minP image_maxP

max min < 5−

5 47min= max − =

 Finally, the weighting coefficient γ in equation (2.26) has a behaviour similar 

to that of weights α and β. The ratio of α, β and γ defines the gravity of each term in 
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1v

the overall energy. Usually γ is set larger than the other weights. Setting γ equal to 0 

results in a snake not affected by the image forces.  

 

2.4.3 Energy minimization 

 The minimization of the snake energy is performed locally and asynchronously. At 

each iteration of the algorithm, starting from the first snaxel, a square neighbourhood, 

which has this snaxel as center, is considered (Figure 2.8). The three energy terms are 

computed and normalized for every possible position in this neighbourhood. The 

normalized values are then multiplied by the respective weights and the addition of 

the results gives the total energy for each position. The position with the lower overall 

energy is found and the snaxel is moved there. This process goes on for each 

subsequent control point. As the computation of the internal energy takes into account 

also the preceding and following snaxels, we have to note that in closed snakes (the 

usual case)  and , where n is the number of snaxels (modulo n index 

arithmetic). The first snaxel is reexamined at the end, in order to take into account the 

movement of the last snaxel. 

0 n=v v 1n+ =v

 
Figure 2.8: Snaxel  is moving to that position of its neighbourhood that minimizes its total 

energy. The new contour segment is in red. 

iv

 

 At the end of each iteration the algorithm includes a significant and rather 

simple method for choosing an appropriate value of iβ  for each snaxel  in the next 

iteration step. Firstly, the curvature of the new snaxels is computed using equation 

(2.29). As mentioned before, this measure of curvature is computationally slow, but 

iv
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it’s only used n times at each iteration. Furthermore, this measure offers an easy way 

to define a meaningful threshold for the size of curvature, as its length is given by 

2sin( / 2)θ . A good choice for this threshold is 0.25, which corresponds 

approximately to 29o. If the curvature of a control point is greater than this threshold 

and greater than the curvature of the points before and after it in the contour, and 

moreover, if the gradient of the point is above a gradient-threshold (i.e. on a strong 

edge), then β is set equal to 0, for the specific control point, in the next iteration. This 

allows the snake to form a corner at that point in the next iteration, by eliminating 

from the overall energy the curvature term, which is expected to be large. This 

process is repeated at the end of the next iteration and if the above conditions aren’t 

satisfied, β gets back its initial value. The overall algorithm terminates when the 

number of the control points moved during an iteration is smaller than a threshold. A 

summary of the algorithm is given below in pseudo-code: 

 

Initialize αi, βi and γi for all i 

do 

    // loop for moving the snaxels to new locations 

    for i = 1 to n+1 // where 1n+ 1=v v . The first snaxel is first and last one processed 

 Emin = BIG 

 for j = 1 to m // m is the size of neighbourhood  

  Ej = αiEcont,j + βiEcurv,j + γiEimage,j

  if Ej < Emin then 

    Emin = Ej 

    jmin = j 

  end 

 end 

 if jmin not current location then 

  move snaxel iv  to location jmin 

  ptsmoved + = 1 // count points moved 

 end 

    end 
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    // decision for the value of β 

    for i=1 to n 

      2
1 1| / | | / | ||i i i i ic + += −u u u u

    end 

    for i = 1 to n    

     if ci > ci-1 and ci > ci+1  // if curvature is greater than neighbours  

  and ci > threshold1  // and curvature is greater than threshold1 

     and mag( ) > threshold2 // and magnitude is above threshold iv

     then  

βi= 0 

            end 

    end 

until ptsmoved < threshold3 

 

 

2.4.3 Advantages and disadvatages 

The greedy snake retains all the advantages of both the original model and the 

dynamic programming approach. The modular energy function allows the usage of 

any helpful term (differentiable or not), including hard constraints and even user-

guided constraints. The greedy snake model though can work efficiently without the 

influence of constraint forces coming from the user and this makes it more suitable for 

unaided visual systems. Furthermore, like the dynamic programming approach, it 

doesn’t require the computation of high-order derivatives, operates on the discrete 

grid and avoids overruning phenomena due to its window searching strategy. 

 Additionally, the greedy model makes easier the decision for the appropriate 

values of the weights α, β and γ. Only a zero weight is important as absolute value, 

since it eliminates the corresponding term in the energy functional. In all other cases, 

only the ratio of the parameters is important as it defines the gravity of each term. 

Two different sets of coefficients with the same ratio, for example, 

0.7, 0.5, 1i i iα β γ= = =  and 1.4, 1, 2i i iα β γ= = =  will have the same effect on the 

movement of snaxel . In the original model though, the second set would move the 

snaxel to a different position than the first set would. Moreover, the greedy algorithm 

iv
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implements a simple but efficient method for getting a variable β. This is very useful 

for handling in a unified way target shapes that have both corners and smooth areas.  

 Another advantage over the other two approaches comes from the different 

formulation of the continuity energy. The contraction/expansion of the snake due to 

this energy is more controllable and it leads to a contour with almost equidistant 

control points. 

 It is important that all the above advantages are achieved by an algorithm that 

is fast, in spite of its greedy character. The complexity in time is O(nm), much faster 

than the O(nm3) of dynamic-programming approach, where n is the number of control 

points and m is the size of the neighbourhood. Moreover the memory requirements are 

only O(m), as the snaxels are moving asynchronously. 

 Unfortunately, the greedy algorithm doesn’t solve some generic problems of 

snakes. The most important of them, the sensitivity in the original contour and the 

handling of concave contours, will be examined in detail in the following chapter. 
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Chapter 3: Two major problems of the basic snake   
algorithm 

 

 

 

3.1 Introduction 

After the general definition of the snake model and the examination of the three basic 

approaches to energy formulation and minimization, a closer look at the effectiveness 

of snakes must be taken. There are two basic problems that exist in all these 

approaches: sensitivity to the position and shape of the original contour, and disability 

of coping with concavities. The first problem may be due to the lack of desirable 

features (e.g. edges) or the existence of misleading features between the initial and the 

target contour. The second one is caused by the lack or weakness of forces that could 

push the snake towards concave areas.  

The two problems may become clearer through the following simple example 

(Figure 3.1). The target is a line-drawing of a U-shaped object on a smooth 

background (1). Note the boundary concavity on the top. The potential external force 

field that corresponds to an external energy of the form ( ( , ) ( , ))G x y I x yσ−∇ ∗ , where 

Gσ  is a Gaussian of standard deviation σ  and σ =1, is shown in (2). A close-up of 

this field at the concave area is taken in (3). Finally, the subsequent curves of the 

snake towards the final contour are superimposed on the original image (4). In (2) we 

can see that the external forces die out quite rapidly far away from the target 

boundary; if an initial contour is placed far from the target, it is unlikely to converge 

under the lack of image forces. A greater value of σ would increase the capture range 

but it would also lead to a deformation of the shape (blurring). But even if the contour 

is initialized into the capture range, it won’t be able to converge accurately to the 

concave part, as shown in (4). An explanation can be found by observing the close-up 

in (3): within the concave region, the forces point towards the sides of the concavity 

rather than towards the bottom of it. Hence, only an initial contour that is close 

enough to the target in both position and shape (i.e. having points within the concavity 

as well) can result in a more accurate fit. This is very restrictive though.   
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Figure 3.1: An inappropriate force field can lead to a poor convergence [27]. 

 

Many methods have been proposed for the solution of the above problems and 

the most of them were developed in the variational framework. The computational 

cost of the dynamic programming approach has limited the research for solutions that 

use dynamic programming. Therefore, in this chapter, we will see some methods 

proposed in the variational framework, and we will examine an interesting proposal, 

applied on the greedy snake model. This will serve as an introduction to the 

implementation details of the snake model of the current thesis, in the following 

chapter. 
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3.2 Variational approach framework 

Most of the proposed solutions were developed in the variational framework. Some of 

them are outlined in this section.  

Cohen [28] copes with the first problem by introducing a ‘balloon model’, 

where inflation/deflation normal forces push/pull constantly the snake towards the 

target object. These forces have the form 1 ( ) ( ( ))PF k s k s
P

∇
= −

∇
n v , where ( )sn  is the 

unit vector normal to the curve at point ( )sv ,  is the amplitude of the force, k is a 

constant, slightly larger than k

1k

1 so that an edge point can stop the inflation force, and 
2| |P I= − ∇ . In an extended version of the model [29], a Euclidean (or Chamfer) map 

is used to increase the capture range of the snake (Figure 3.2), as referenced in [27]. 

This model though doesn’t solve the problem of fitting to concave shapes. 

 

 
Figure 3.2: The capture range is improved (a), but the potential forces into the region of 

concavity (b), still cannot guide the snake to the bottom of it (c) [27]. 

 

 Other similar approaches add to the snake model constant forces in the normal 

direction of the snake, as noted in [30]. Xu et al. [31] uses such a force to help the 

evolution of the snake towards the target object, after suppressing its internal 

resistance in the normal direction. Berger [32] constructs a “wrapping” force in an 

open snake model in order to make the snake move towards the target after “locally 

growing” from a given starting point. However, all these forces are constant normal 

forces that depend only on the particular geometric property of a snake, i.e. either its 
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delimited area or its distance to the target contour. Hence, they may be too weak to 

reach the target or too strong, resulting in edge-overruns. 

 Wong et al. [33] proposes a “blown” force, which is also dependent on the 

specific geometric property, but both its amplitude and direction are determined 

adaptively. In this model, a first estimation of the target contour is found using the 

original snake model and then this estimation is corrected through a split-and-merge 

process. During the split process, the estimated contour is divided into two types of 

segments: these that are regarded to be located on the target boundary and those that 

are regarded to be far from it and need further movement. Each of the segments of the 

second type forms an open snake with fixed end-points, and an additional force is 

applied to this open snake, in order to further push it towards the target boundary. The 

direction of the force is determined by comparing the local regions on both sides of 

the segment; the force has to point towards the region with the greater image energy. 

The amplitude of the force is designated through a scaling function in a way that it is 

maximum at the mid-point of the segment and decreases gradually on both sides, 

resulting to be zero at the fixed end-points. When the split process is completed, old 

and new segments are re-connected in a merge process. The new contour is examined 

again and the split-and-merge process is repeated, if needed. The whole method has 

encouraging results but also some drawbacks. For example, the split-and-merge 

process is quite complex and the determination of the direction of the force is not 

always accurate.           

Xu and Prince [27] introduce a model that replaces the original image force by 

a new type of external force field, which is called the “gradient vector flow” (GVF) 

field ( , ) ( ( , ), ( , ))x y u x y x yυ=v . This field is defined by minimizing the energy functional: 

 

  (3.1) 2 2 2 2 2 2( ) | | |x y x yu u f f dxdε µ υ υ= + + + + ∇ −∇∫∫ v | y

 

In the above integrand, µ is a regularization parameter governing the trade-off 

between the two terms, , , ,x y x yu u υ υ  are the partial derivatives of u and υ, and f is any 

possible edge map that has large values near the edges. In almost homogenous regions 

of the original image, where the image intensity is almost constant, the gradient of 

edge map, , has small values and the energy in (3.1) is dominated by the sum of the f∇

 38



Two major problems of the basic snake algorithm 

 

2 0

2 0

squares of the partial derivatives of the vector field (first term). This yields a slowly 

varying, non-zero field in smooth areas of the image. On the other hand, in regions of 

strong edges, has large values and the energy, ε, is minimized by setting . 

These two cases lead together to an increment of the capture range. Furthermore, from 

the Euler equations derived from (3.1), 

f∇ f= ∇v

 

  (3.2) 2 2( )( )x x yu u f f fµ∇ − − + =

  (3.3) 2 2( )( )x x yf f fµ υ υ∇ − − + =

 

we can see that, in homogenous regions (where the partial derivatives of the edge 

map, ,x yf f , are zero), u and υ are both determined by Laplace’s equation. As 

referenced in [27], the result is that the GVF field is interpolated from the region’s 

boundary, reflecting a kind of competition among the boundary vectors, and yielding 

vectors that can point to boundary concavities (Figure 3.3). 

 

 

Figure 3.3: (a) Convergence of a snake using GVF external forces. (b) The potential force 

field. (c) A close-up of (b) within the boundary concavity [27]. 

 

The resulting potential field seems quite functional in the above figure but in real 

cases, where many objects and noise are present, it can be really misleading. 

Furthermore the computation of the GVF field is very time-consuming. 
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iv n

3.3 Greedy snake framework: Attractable snakes  

L. Ji and H. Yan [30] proposed a snake model, based on the greedy algorithm, with 

promising results in handling both of the known problems. The core of the model is a 

direct feedback mechanism, which introduces an additional adaptive force. This force 

manages to move the snake to the target when the other (internal and external) forces 

seem inadequate. The proposed model also includes an efficient edge detector for the 

computation of the potential external energy field, a composite convergence criterion 

for the minimization process, and an adaptive interpolation scheme that increases the 

flexibility of the snake contour. 

 

3.3.1 Energy formulation 

Τhe attractable snake model is based on the greedy algorithm. The energy to be 

minimized is given, for a discrete contour, by the equation:  

 

  (3.4) 
1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
n

snake cont i curv i image i db field i
i

E i E i E i E f i Pα β γ
=

⎡ ⎤= + + − ∇⎣ ⎦∑v v v v

 

The three first terms in the above sum constitute the energy functional of the original 

greedy snake model.  and  are computed and normalized as mentioned 

in the previous chapter. The new term implements the feedback mechanism, where 

,cont curvE E imageE

fieldP∇  is the difference in the potential energy of a desired image feature (e.g. edge) 

between the target and the snake,  is a weight that controls the gain of the feedback 

mechanism, and  is the projection of the normal direction of the snake at a snaxel. 

By determining the orientation of the normal direction, we can make the snake either 

contract or expand. The value of 

dbf

( )in

fieldP∇  is computed and normalized as follows: 
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 (3.5) 
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where fieldP  is the potential energy field and Pmax and Plevel are its maximum and 

threshold values respectively. In [30] it is implied that the potential field may result 

from a pre-processing stage or prior knowledge in order to include information about 

the desired image feature (e.g. edges) of only the target object. When such a prior 

knowledge is not possible the potential field involves the available image. For 

example, the attractable snake model in [30] uses as fieldP , the magnitude of the 

intensity gradient of the entire image. Furthermore, it proposes an edge detector 

scheme for the computation of this gradient (see next section for details). In the above 

equation we assume a 3x3 neighbourhood, where ,0i i=v v  and { }, | 1, 2,...,8i j j =v are the 

eight neighbours of .  iv

 A closer look at equation (3.5) reveals the functionality of the feedback 

mechanism and the adaptive character of the ‘force’ that this mechanism introduces. 

When a given snaxel is far away from the target object, the potential field has a small 

value at this point, smaller than the threshold Plevel. The potential field is also small 

(approaching to zero) at the eight neighbours of the snaxel. Hence, fieldP∇  approaches 

to its maximum value, which, in combination with the negative sign of the feedback 

term (eq. 3.4), gives a maximum push along the normal direction of the snake at the 

given snaxel (Figure 3.4a and 3.4b). As the snaxel gets closer to the target contour, its 

neighbourhood starts to include some desired features (e.g. edges) and so the sum in 

equation (3.5) gets larger values. This leads to smaller values of fieldP∇  and 

consequently to a reduction of the push (Figure 3.4c). Finally, when the fieldP  on the 

snaxel position is greater than Plevel (i.e. when the snaxel is very close or on the target 

contour), fieldP∇  is zero and there is no push at all. In general, we can say that both the 

image and the feedback term are based on the potential image energy (edges); the 

difference is that the image term uses only this potential energy, whereas the feedback 

term uses the difference in potential energy between the snake and the desired target 

contour, and combines this difference with a geometrical property of the snake, that is 

the normal direction of the snake at a snake point.    
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Figure 3.4: Movement of a snake under the control of the feedback mechanism [30]. 

 

3.3.2 Potential field: edge image 

The potential field of an image is determined by the image feature that is responsible 

to attract the snake to the target object. In the case where this feature is the object 

boundary (the case in this thesis), the potential field is actually an edge image. An 

effective edge image requires both good edge-detection and noise suppression. The 

attractable snake model proposes a new edge detector, which seems to be more 

efficient than the usual edge detectors [30]. 

 In the Canny detector, the gradient is calculated using the derivative of the 

intensity or the derivative of a Gaussian filter, and the result is smoothened via two 

1D Gaussian filters. The method uses then two thresholds, to detect strong and weak 

edges, and recognizes weak edges only if they are connected to strong edges. The 

detector is good at noise suppression but not at the weak edge identification. 

Furthermore, it gives a one-pixel-strength response to a step edge, which can lead to 

overrunning problems.  

 The Sobel detector uses two separable filters in order to detect edges in x and 

y directions: 

 

  (3.6) 
T

T

[ 1 0 1] [1 2 1]

[1 2 1] [ 1 0 1]
x x y

y x y

S D A

S A D

= ⋅ = − ⋅

= ⋅ = ⋅ −

 

where Dx and Dy are the 1D simple difference operators and Ax and Ay are the inherent 

average smoothers of the Sobel detector, applied in the orthogonal direction. The 

detector can give a two or three-pixel response to a step edge but is not so good at 
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noise suppression. Noise can be reduced by using a 2D Gaussian smoother before or 

after the Sobel detector, but this will also lead to image blurring. 

 The proposed edge detector is actually a combination of the above schemes. 

The two separate filters of (3.6) are first applied on the image, giving ImgSx and ImgSy 

respectively. Then, a 2D Gaussian filter splits into two directions x and y: 
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 (3.7) 

 

and the two smoothers are applied on the orthogonal directions of ImgSx and ImgSy. 

Hence the intensity gradient is: 

 

 2 2| | ( ) ( ) | | |x y x y x y xI ImgS G G ImgS ImgS G G ImgS∇ = ⊗ + ⊗ ≈ ⊗ + ⊗ |y  (3.8) 

 

Noise can be further suppressed using a threshold: 

 

  (3.9) max min min(| | | | ) | |levelP Tg I I I= ∇ − ∇ + ∇

 

where  and  are the maximum and minimum values of gradient 

respectively and T

max| |I∇ min| |I∇

g controls the trade-off between noise suppression (larger values of 

Tg) and identification of weak edges (smaller values of Tg). A value between 0.1 and 

0.4 is good for coping with both cases. Note that Plevel, as defined in (3.9), is also used 

in equation (3.5) for deciding whether a snaxel is close to the target contour or not.  

 The proposed scheme is claimed [30] to achieve larger edge strength over two 

or three pixels, greater noise suppression and better identification of weak edges than 

the Canny edge detector. An example is shown in figure 3.5. Furthermore, the 

blurring effects from the scale factor of the Gaussian filter are much less intense 

(Figure 3.6).  
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Figure 3.5: The proposed edge detector: (a) original intensity image and (b) edge image  

(σ = 1.0, Tg  = 0.2, Plevel = 46.6).  

 

 
Figure 3.6: The proposed edge detector with σ = 2.0 (Tg  = 0.2, Plevel = 40.2). 

 

 

3.3.3 Convergence criterion 

As mentioned in the previous chapter, the original greedy snake model uses a quite 

simple convergence criterion. The algorithm terminates when the number of points 

moved in a single iteration becomes smaller than a predefined threshold (a small non-

zero value). The attractable snake model proposes a compound-parameter criterion, 

which is based, apart from the number of the moved points, on two additional 

parameters: the snake contour length and the snake potential energy. 

 By intuition, as the snake approaches its equilibrium, it tends to be static (i.e. 

the number of points that have been moved tends to be zero), the contour length stops 
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changing and the overall image energy of the snake tends to remain constant and 

large. Therefore, the proposed criterion needs to compute the variation of these 

parameters during the snake movement, i.e. the standard deviation of the parameters 

within a number of successive iterations of the algorithm. This number is given by a 

step size, Tstep (in [30] a value around 10 is claimed to be a good value for Tstep). The 

criterion is shown in the block diagram of the following figure: 

 

 
Figure 3.7: A compound-parameter convergence criterion [30]. 

 

This criterion also allows us to choose between a convergence to a subjective contour 

and a convergence to a concave/convex contour (Figure 3.8). When the snake is far 

away from the target, its image energy is very small and starts to increase as the snake 

approaches to the target. If the variation of the snake image energy is not negligible 

then the variation of the other two parameters is being checked; note that the number 

of maximum acceptable iterations of the algorithm is also added as a final condition. 

On the contrary, if the image energy is almost constant, then the snake is likely to lie 

on a subjective contour. [30] mentions that, based on the human visual perception, a 

snake with overall image energy, ( )iamgeP V , equal or greater than a threshold Tp, which 

is equal to the 60% of the maximum possible image energy of the snake 

( ), is likely to lie on a subjective contour. Due to the normalization 

of the image energy to [0,1], we can say that 

max
0.6 ( )p imageT P= V

i
max

1

( ) ( )
n

image
i

P V γ
=

≈∑ , where n is the 
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number of points of the snake V and γ is the weighting coefficient of the image 

energy. So if ( )image pP V T≥  and furthermore we have predefined that we’re interested 

in a subjective contour, the algorithm terminates (convergence). Otherwise, the check 

moves on to the other parameters, as before. 

 
Figure 3.8: The convergence process of a snake [30]. 

 

 

3.3.4 Adaptive interpolation scheme 

The attractable snake model uses a dynamic interpolation scheme for the 

discretization of the snake contour. The snake can start from a simple initial contour, 

consisted of a few snaxels, and during its deformation it can be re-sampled via a linear 

interpolation. In particular, before each iteration step of the algorithm, the average 

distance, d , of subsequent snaxels is examined against a desired distance Tgap and if 

it’s larger than Tgap, the contour is linearly interpolated. Every new snaxel retains the 

parameter settings of the old snaxels, between which it is inserted. The fact that the 

interpolation takes place at the beginning of each iteration step offers a dynamic way 

to take into account the geometric property of the snake at each time, which is 

expressed by d . The value of threshold Tgap is crucial: if we want a coarse 

representation of the target contour or a snake that lies on a subjective contour then 

Tgap should be rather large, whereas lower values of Tgap are suitable for handling 

more complex shapes.  
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Chapter 4: Implementation details and results 

 

 

4.1 Introduction 

In this chapter we proceed to the implementation details of the tracker defined in 

chapter 1. Firstly, having only a single image in mind, we propose a modified snake 

model, which is based on the greedy algorithm and aims to achieve a tolerable 

convergence to the target contour. Then, we examine the details of applying this 

model to the whole process of tracking a target in a sequence of images, under the 

given stipulations of our tracker.  

The algorithm is tested on the two video streams shown in figures 4.1 and 4.2, 

which, for now on, we shall call video A and video B respectively. Note that in the 

first video, the people are moving perpendicular to the camera, whereas in the second, 

the movement is in general parallel to the camera. Hence, video A gives postures with 

larger concave areas due to the gait, as in frames 311 and 321 (Figure 4.1). On the 

other hand, in video B, the movement takes place in a highly cluttered background, 

with many misleading edges.  

 

   
                    frame 311                frame 316               frame 321 

Figure 4.1: Three frames of video A. 
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                    frame 166                frame 176               frame 186 

Figure 4.2: Three frames of video B. 

 

4.2 The snake model 

As mentioned in chapter 1, the initial contour is a rectangle around the target, defined 

by the user-specified upper-left and lower-right corners. Starting from these two 

points we get the rest of the initial snaxels by taking three equidistant points on each 

of the smaller sides of the rectangle and five equidistant points on each of the larger 

sides of it, concluding to 12 initial snaxels (Figure 4.3a). In figure 4.3b, it is depicted 

the initial contour that comes up by connecting the subsequent points. A more natural 

representation of the contour is given by a parametric curve interpolation (Figure 

4.3c), where the parameter value t(i) for the point  is chosen by Eugene Lee’s 

centripetal scheme [34], i.e. as accumulated square root of chord length: 

iv

 1 2
( ) j j

j i

t i +
<

= −∑ v v  (4.1) 

 
Figure 4.3: Initial snaxels. The user-defined corners are shown in green (a). Two different 

representations of the initial contour (b) and (c). 

 48



Implementation details and results 

 

From figure 4.3 it is obvious that, even if the rectangle is chosen close to the 

target, it’s not totally close in position (e.g. near the corners) and is definitely not 

close in shape (especially near the concavity). Therefore, the two problems mentioned 

in the previous chapter are still present. In the previous chapter we also saw that 

“attractable snakes” [30] offer promising solutions to problems of this form. Here we 

shall see that this algorithm generally has satisfying results, but in some cases there 

are some problems with its application to the given test videos. That is why we shall 

also examine a second solution, which is based on the original greedy snake model 

but uses a scale-space continuation technique.  

 

4.2.1 The “attractable snake” model 

In [30] the attractable snake model is applied successfully on some concave/convex 

objects and MR images. Here we try to apply this model on the above test images, 

where the target object is human. Some points of this implementation, including some 

modifications of the original algorithm, are given below: 

 

 The edge image, used in the image energy term, is computed as mentioned in 

the previous chapter, i.e. by a combination of the Sobel and Canny edge 

detectors. Furthermore, it is thresholded, according to the equation (3.8):  

 

max min min(| | | | ) | |levelP Tg I I I= ∇ − ∇ + ∇  

 

Having no prior information about the desired potential field, we can use as 

fieldP  the above edge image. In our case, we can take advantage of the 

rectangle initial contour in order to seek for the maximum and minimum 

values of gradient into this rectangle instead of the whole image. Of course 

this can only be done at the first frame, where the initial contour is rectangle. 

Some examples are shown in the following figures. 
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(a) 

 

 
(b) 

 

Figure 4.4: Original image (a) and thresholded edge image (potential field) (b) 

 (Tg = 0.2, Plevel = 36.2, Gaussian σ = 1.0) 
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(a) 

 

 
(b) 

Figure 4.5: Original image (a) and thresholded edge image (potential field) (b)  

(Tg = 0.2, Pleve l= 48, Gaussian σ = 1).  
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 The interpolation scheme proposed in [30] states that a new point is 

interpolated between each pair of snaxels at the beginning of each iteration 

step, when the average distance of the snake points is above a threshold Tgap. 

However, another re-sampling scheme is suggested in [35], which seems to be 

more adaptive. A new point is added in the middle of a snake segment defined 

by two subsequent snaxels, if the length of this segment is larger than a 

threshold lmax. In other words, the segment splits into two segments of equal 

length and the number of snaxels increases by one (Figure 4.6a). On the other 

hand, two subsequent snaxels that get closer than a threshold lmin are replaced 

by a single snaxel in the middle of the segment they define. Hence the 

segment is removed and the number of snaxels decreases by one (Figure 4.6b). 

At the beginning of each iteration of the snake algorithm, the re-sampling 

process consists of the removal-step followed by the split-step. In order to 

avoid an oscillatory behaviour, where segments are repeatedly removed and 

reinserted, we have to choose carefully the ratio of lmax and lmin. In general, the 

condition  must be satisfied. We can consider that the values of l2max minl l> max 

and lmin both depend on another parameter: the approximate desired length of 

the snake segments, ldes, which has significance similar to that of Tgap. 

Therefore, we can define only ldes and let lmax and lmin be proportional to the 

desired length, in a way, of course, that they satisfy the above inequality. A 

good choice is: 

 

 1
2min desl l=  (4.2) 

 3
2max desl l=  (4.3) 

 

Such a choice actually means that the desired segment length can 

approximately vary between 1
2 desl  and 3

2 desl .  
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Figure 4.6: The resampling steps: (a) split and (b) remove. 

 

 

 In the previous chapter we saw that the compound-parameter convergence 

criterion of the attractable snake model allows an option between a 

convergence to a subjective contour and a convergence to a concave/convex 

contour. In the edge image of Figure 4.4b, assuming that our target is the man 

at the left of the image, we can consider as a subjective contour the one that 

outlines the man without entering the area between the legs that is formed due 

to the gait. Obviously, we would like a snake that would not stop at this 

subjective contour but would move on to outline the present concavity. At the 

same time though, the resemblance in the illumination between the left leg and 

the background, in combination with the thresholding of the edge image, give 

a rather false sense of subjective contour at this area. Hence, in general we 

cannot decide whether we want the convergence process to stop on a 

subjective contour or not. If we omit the part that refers to the subjective 

contour, the proposed convergence criterion becomes: 
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(1)
Set Step Size

(2)
check if it is approaching its

equilibrium ( )lengthσ
Yes

(3)
moved points

M(v) = 0?
No 0?lengthσ∇ =

(4)
Max Iteration? Yes Convergence

Yes

No

Next Iteration

No

 

Figure 4.7: The new compound-parameter convergence criterion. 

 

The use of a step size in the above criterion imposes that the iterations of the 

algorithm are multiple of this step size, even if the snake converges at an 

earlier iteration as well. Therefore we can use a simpler convergence criterion 

that examines at the beginning of each iteration only two parameters: the 

number of the points moved in the previous iteration against a threshold, and 

the number of the current iteration against a maximum number of iterations 

(Figure 4.8). The threshold for the points’ movement, Tmoved, should be a small 

non-zero value, which should be dependent on the total number of snaxels and 

should be updated after each re-sampling of the snake. A good choice for 

Tmoved is: 

 

 /10movedT n σ= +  (4.4) 

 

where n is the total number of snaxels and σ is the scale factor of the Gaussian 

smoother. As we will show later in this section, this convergence scheme has 

almost the same results as the one of figure 4.7.  
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iteration k

moved points
M(V)<Tmoved? Yes

No

k = Max Iteration?

No

Yes Convergence

Next Iteration
k = k+1

 
 

Figure 4.8: A simpler convergence criterion. 

 

 The energy terms are calculated and normalized as mentioned in the previous 

chapter. The continuity, curvature and image terms are computed for each 

position of the neighbourhood around a given snaxel. For the feedback term 

though, the insertion of the normal direction in the computation of the term, is 

not very clear in [30]. Here, the difference in the potential, fieldP∇ , is 

calculated for the given snaxel as in equation (3.5): 

 
8

max ,
1

,0
max

,0

( ) / 8
( ) , ( )

0 , (

field i j
j

field i

)

field i level

field i level

P P
P if P P

P
if P P

=

⎧
−⎪

⎪
∇ = <⎨

⎪
⎪ ≥⎩

∑ v
v v

v

 

 

where ,0i i=v v  is the given snaxel and fieldP  is the magnitude of the above 

computed image gradient. This value of fieldP∇ , multiplied by , is 

assigned to that point of the neighbourhood of , which lies on the normal 

dbf−

iv
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direction of the contour at . All the other points in the neighbourhood have 

zero feedback energy. Thus, the additional push towards the target is given by 

means of energy minimization, only at the contour normal direction. The 

strength of the additional push depends on how far from the target the given 

snaxel currently is. In particular, when the given snaxel is already on an edge 

(or at least very close to an edge), its gradient magnitude is above  and we 

have a zero push. In the opposite case, the further the snaxel is from the target, 

the smaller is the sum of gradient magnitudes at the snaxel’s eight neighbours 

and so the stronger is the push. 

iv

levelP

 

 The normal vector of the snake at a given point is calculated as the 

perpendicular vector to the tangent vector at that point. The tangent vector is 

given by the following equation: 

 

 
cos( )

sin( )
i

i

t
i

t

θ

θ

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

t  (4.5) 

 

where 
itθ  is the angle between the tangent at the given point  and the x-axis. 

This angle can be basically calculated in three ways: using the backward 

difference, the forward difference or the centered difference: 

iv

 

 1 1

1
tan

i

i i
t

i i

y y
x x

θ − − −

−
=

−
 (4.6) 

 1 1

1
tan

i

i i
t

i i

y y
x x

θ − + −

+
=

−
 (4.7) 

 1 11

1 1

1 (tan tan
2i

i i i i
t

i i i i

y y y y1

x x x
θ − −− − + −

− +
= +

x− −
 (4.8) 

 

The first two equations give tangent vectors that have the direction of the 

contour (clockwise), as shown in figures 4.9a and 4.9b respectively. The 

centered difference gives a more realistic calculation of the tangent vector, as 

shown in Figure 4.9c, but the orientation does not always agree with the 

contour direction, since it’s the average of the other two measures. In this 
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work, we chose the third way of calculating the tangent vector, but we have to 

check the orientation of the tangent against the direction of the contour. This 

can be simply done by computing the dot products of the resulting tangent 

vector from equation (4.8) and each of the resulting tangent vectors from 

equations (4.6) and (4.7)  (which always have the same orientation as the 

contour). If any of these dot products is negative, then the proper angle is 
'
i it tθ θ π= + . Once the correct angle is computed, the normal vector is: 

 

 
cos( )

sin( )
i

i

n
i

n

θ

θ

⎡ ⎤
= ⎢ ⎥
⎢ ⎥⎣ ⎦

n  (4.9) 

 

where 
2i in t
πθ θ= −  is the angle between the normal vector and the x-axis. In 

other words, the normal vector is the tangent vector rotated clockwise (i.e. at 

the contour direction) by 
2
π . 

 

 
 

Figure 4.9: The tangent and normal vectors using (a) the backward, (b) the forward 

and (c) the centered difference. 
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 Even if the significance of the coefficients α, β, γ and fdb as control parameters 

of the four energy terms is clear, the optimal choice of their values is not an 

easy task. Actually, there is no ratio of these parameters that is optimal for all 

postures and for all parts of the target (e.g. weak edges, strong edges, 

concavities etc.) at the same time. The fact that, during an iteration step, the 

movement of each snaxel is affected by the so far moved snaxels 

(asynchronous movement), makes things more difficult. For example, if a 

snaxel locks onto a noisy point of high gradient far away from the target, the 

internal energy will probably keep the following snaxel(s) near to this snaxel 

and far from the target as well. In this implementation we attempt to keep a 

(almost) constant parameter ratio (with small variations in some cases), based 

on the common sense and on trials, and moreover we intent to correct some 

problems that may arise in some cases from such a general parameter 

definition. The common sense dictates that the weight of the image term, γ, 

should be greater that the other weights, since the image feature (edge) is the 

dominant cue that defines the target. The control of the continuity term is 

slightly more important than that of the curvature term, especially when we 

are interested in a rather coarse description of the target shape, so α should be 

grater than β. The feedback weight, fdb, should be usually between α and β, so 

that the effect of the feedback force would be limited in cases of “edge gaps”. 

A set of parameters that agrees with the above statements is: 

 

α = 0.7, β = 0.5, γ = 1, fdb = 0.5 

 

Furthermore, the choice of Tg for the computation of the edge threshold Plevel 

is also crucial: Tg should be large enough to suppress noise and at the same 

time small enough to maintain weak edges. Our choice is a value of Tg around 

0.2, which results in a value of Plevel around 40 in the range [0,255]. 

Sometimes though, this “trade-off” value doesn’t completely remove the 

image noise. In these cases we may observe snaxels being trapped in places far 

away from the target (Figure 4.10a). Note that two non-subsequent snaxels 

come very close to each other, forming a narrow contour “strip”. Cases like 

these are undesirable anyway, but they can further create another problem: 
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such snaxels, apart from being very close to each other, have also normal 

directions with opposite orientations; hence, they may move in such a way that 

they form a “closed-loop” (Figures 4.10b and 4.10c). A closed-loop is also 

created when two non-subsequent snaxels coincide (Figure 4.10d). 

 

 

Figure 4.10: Some undesirable contour deformations. (a): A snaxel is trapped far away from 

the target, forming a narrow contour “strip”. (b): The opposite movement of the two snaxels 

(red arrows) create a closed-loop (the contour in the previous iteration step is in red). (c) and 

(d): Two other cases of closed-loops. 

 

The problems depicted in Figure 4.10 may (or may not) be avoided with a 

specific parameter choice, but since we decided to use a general, constant 

parameter ratio, we have to find a way to eliminate these problems whenever 

they are created. A simplified but quite effective way to do so is the following. 

At the end of each iteration we find all the pairs of non-subsequent snaxels, 

between which the distance is 0, 1 or 2 . For each pair , there is a 

group of snake points that lie clockwise between v

( , )i jv v

i and vj and a group of 
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points that lie counter-clockwise between these two snaxels. In order to tackle 

the above undesirable deformations, we eliminate all the snaxels of the 

smallest group, including vj, if min| - |j i l<v v . We can also use a threshold so 

that only relatively small loops are eliminated. The images in Figure 4.10 are 

close-ups of some snapshots during a real convergence process. Using the 

initial contour that is shown, superimposed on the original and the edge image, 

in figures 4.11a and 4.11b, and the parameter set: α = 0.7, β = 0.5, γ = 1, fdb  = 

0.5, ldes = 3, Tg = 0.2, we get the contour of Figure 4.11c. During the execution 

of the algorithm, a lot of closed loops are being formed, blocking the smooth 

convergence of the snake. The algorithm terminates at the predefined 

maximum iteration, without achieving a tolerable fit to the target. Using the 

above algorithm for the elimination of “closed-loops”, we get the result in 

Figure 4.11d. In the following figure we use the centripetal interpolation 

scheme that was mentioned at the beginning of this section, since it gives a 

more natural contour representation.  

 
Figure 4.11: The initial contour on the original (a) and on the gradient image (b). The final 

contour without (c) and with (d) the “closed-loop elimination” algorithm. 

 60



Implementation details and results 

 

 

 The final contour in Figure 4.11d reveals the effectiveness of both the “closed-

loop elimination” algorithm and the feedback mechanism. In the specific 

example, the target object doesn’t have large concavities but the initial contour 

is not very close to it, in both position and shape. If we don’t use the feedback 

mechanism the snake will fail to converge to the target, as it’s shown in Figure 

4.12, where the resulting final contour (b) is compared to the contour that 

results if we use the feedback mechanism along with the algorithm for 

elimination of “closed-loops” (a). We get these results using the initial contour 

of Figure 4.11a and the same parameter set. We also use the simplified 

convergence criterion of Figure 4.8. This criterion terminates the algorithm 

after the 18th iteration, during which, 1 of overall 42 points was moved, for 

Figure 4.12a, and after the 9th iteration, during which, 6 of overall 51 points 

were moved, for figure 4.12b. Using the compound-parameter criterion of 

figure 4.7, we get almost the same results (figures 4.10c and 4,10.d) but after 

more iteration steps: 30 iterations and 1 of 42 points moved for figure 4.12a, 

and 30 iterations and 0 of 50 points moved for figure 4.12d. 

 

 
Figure 4.12: The resulting contours with (a,c) and without (b,d) the feedback                                         

mechanism, using the simplified (a,b) or the compound-parameter (c,d) convergence 

criterion. 
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 However, the effectiveness of the feedback mechanism in handling the two 

major problems of the previous chapter should also be examined on targets 

with larger concavities. Such a target is the one depicted in figure 4.13a. We 

use the initial contour that is superimposed on this figure, and the same 

parameter set (α = 0.7, β = 0.5, γ = 1, fdb  = 0.5, ldes = 3, Tg = 0.2). Obviously 

due to the fact that the continuity and the curvature term dominate the 

feedback term, the snake oscillates around some point into the concavity and 

finally the algorithm terminates at the maximum number of iterations, giving 

the result of figure 4.13d. Note that the compound-parameter criterion 

terminates the algorithm earlier (30 instead of 50 iterations) with exactly the 

same result. Hence, we can say that this criterion achieves faster convergence 

than the simplified criterion, when the snake converges in an oscillatory way. 

We can see that the snake does not totally outlines the concavity, but the final 

contour is definitely better than the one that comes up without using the 

feedback mechanism (Figure 4.13c). 

 

Figure 4.13: The initial contour on the original (a) and edge image (b). The resulting 

contours with (d) and without (c) the feedback mechanism. 
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 Having in mind what we have said above about the weight fdb, i.e. that 

dbfβ α≤ ≤ , we can further improve the final contour by choosing 0.7dbf α= =  

(Figure 4.14). This increment of fdb is allowed because the specific target has 

an edge contour without gaps (Figure 4.13b), unlike the target of Figure 4.11. 

 

 
               Figure 4.14: The final contour using fdb  = 0.7. 

 

The model becomes less effective though for targets with similar concavities 

and “edge gaps” as well (Figure 4.15a). With α = 0.7, β = 0.5, γ = 1, ldes = 3, Tg 

= 0.2 (Plevel = 37) and fdb  = 0.5, we get the result of figure 4.16a. Obviously 

the small values of fdb and Plevel stop the evolution of the snake into the 

concavity. Furthermore, the edge gap at the bottom of the right foot (4.15b) 

makes the snake overrun this “subjective” edge. The increment of fdb to 0.7 

doesn’t improve the result into the concavity and moreover leads to more edge 

overruns (Figure 4.16b). 

 

 Figure 4.15: A target with “edge gaps” and large concavities. The initial contour on the 

original (a) and edge image (b). 
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Figure 4.16: The final contour with fdb = 0.5 (a) and fdb = 0.7 (b). 

 

A greater value of Tg and hence of Plevel, for example 0.22 and 40.7 

respectively, can further suppress noise (Figure 4.17a) and lead to a slightly 

better description of the concave area but, of course the handling of edge gaps 

is still problematic (Figure 4.17b).  

 

  Figure 4.17: The edge image (a) (Plevel = 40.7) and the final contour (b)  

(fdb = 0.7). 

 

 In all the previous examples the area between the initial contour and the target 

object was almost clear of edges coming from noise or other objects, which 

could block the evolution of the snake. Unfortunately, this is not always the 

case. The following frame (Figure 4.18) of video B is a representative 

example. The background edges around the target (Figure 4.18b) stop the 

snake far away from the real contour, as we can see in figure 4.18c, where α = 

0.7, β = 0.5, γ = 1, fdb  = 0.5, ldes = 4 and Tg = 0.2 (Plevel = 48). A lower value of 
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Tg (Tg = 0.1/ Plevel = 24) just makes the effect of ‘edge-bypass’ less intense 

(Figure 4.18d). 

 

 
Figure 4.18: A cluttered background: the initial contour (a,b) and the final contour for 

two different values of Tg (c,d).   

 

There is definitely no parameter set that could achieve a tolerable convergence 

in this case, as the problem arises from the cluttered background. Therefore, 

the solution should be sought in the improvement of the edge image. A simple 

way to approximate the background is to calculate the average of the intensity 

images of the entire video stream (Figure 4.19a). Then, an improved edge 
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image can be taken by simply differencing the edge image of the background 

(Figure 4.19b) from the edge image of the current frame.  

 

 
Figure 4.19: A background approximation (a) and its edge image (b). 

 

The resulting image is also thresholded in order to further suppress noise. An 

example is shown in the following figure. In this case we choose a rather large 

value of Tg (Tg = 0.2, Plevel = 42.6) in order to remove the noisy edges due to 

the differencing, and a small value of fdb (fdb = 0.3), in order to avoid the 

‘bypass’ of subjective edges. We also use fewer snaxels (ldes = 5), as the target 

shape is not very complicated. This parameter set gives a quite tolerable final 

contour (Figure 4.20b). 

 

 
Figure 4.20: Using the difference of edge images: the initial contour on the resulting 

edge image (a) and the final contour (b) 

 66



Implementation details and results 

 

Another way of detecting only the moving objects of an image is 

referenced in [36]. This algorithm combines the spatial and the temporal 

information of an image in order to distinguish the moving objects from the 

background. In particular, it finds the static edges of a moving object using the 

spatial gradient of both the intensity image and the background (spatial 

information). Then it uses the information coming from the motion vectors 

and the first derivative of intensity in time, ( , , ) | ( , , ) ( , , 1) |tI x y t I x y t I x y t= − − , 

in order to detect the moving edges of the object (temporal information). The 

final edge image comes from the combination of the detected static and 

moving edges, followed by noise suppression (median filter). An example is 

shown in the following figure. 

 

 
Figure 4.21: The edge detection scheme of [35]: (a) Original intensity image and (b) edge 

image.  

 

Now we can apply the above attractable snake model on this improved edge 

image. By setting α = 0.7, β = 0.5, γ = 1, fdb  = 0.3, ldes = 4 and Tg = 0.14 (Plevel 

= 48), we get a satisfactory final contour (Figure 4.22b). 
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Figure 4.22: Attractable snake and edge detection using spatio-temporal information. 

 

  However, neither of the improved edge images can prevent the 

blocking of the snake movement, when an object that is not moving 

temporarily is very close to the target object, as in figure 4.23. For a given 

value of Tg (Tg = 0.2, Plevel = 35.2), a small value of fdb, e.g. fdb = 0.4, allows 

the snake to adapt to the subjective contour, but at the same time cannot 

“unlock” the snake from the adjacent object (Figure 4.23c). On the other hand, 

a greater value of fdb, e.g. fdb = 0.7, has exactly the opposite result (Figure 

4.23d). 

 
Figure 4.23: The initial contour is very close to a background edge (a,b). The 

parameter fdb should be neither small (c), nor large (d).  
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A quite efficient convergence can be achieved by a lower value of Tg (Tg = 

0.11, Plevel = 19.36) and, at the same time, by a higher value of fdb (fdb = 0.9) 

(figure 4.24). However, this “golden mean” can only be found after a “trial 

and error” process.  

 

 
Figure 4.24: The edge image (a) and the final contour (b). 

 

4.2.3 The “scale-space” model 

We have seen that the additional force introduced by the feedback mechanism can 

become very helpful when the initial contour is far from the target in both position 

and shape. In some cases though, e.g. in edge gaps, it may become undesirable and 

may force the snake to ‘overrun’ a subjective contour. In this section we examine yet 

another way of attracting the snake to the target when the initial contour is far away 

from it. The proposed model uses the energy functional of the original greedy snake 

(i.e. without the feedback term) but lets the snake move sequentially on edge images 

of subsequently decreasing Gaussian scale factor. All the other features of the model 

of section 4.2.1, i.e. the interpolation scheme, the simplified convergence criterion 

and the “closed-loop” elimination algorithm, are maintained in this model too.  

 For the computation of the edge image we use the following edge detector. A 

2D Gaussian filter splits into two directions, x and y, and the first derivatives of the 

1D filters (Dx and Dy in equation 4.11) are applied on the intensity image, giving the 

directional derivatives in the x and y directions: 
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where σ is the scaling factor of the Gaussian filter. Then, the two 1D Gaussian filters 

(Gx and Gy in equation 4.13) are applied on the orthogonal directions of the results of 

equation (4.10), giving the intensity gradient: 

 

 | | )x y x y )I (ImgD G (G ImgD∇ = ⊗ + ⊗  (4.12) 
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Finally, the resulting gradient is thresholded in order to further suppress noise. The 

threshold value is given, as above, by: 

 

max min min(| | | | ) | |levelP Tg I I I= ∇ − ∇ + ∇  

 

This edge detection scheme is quite good at noise suppression and gives a more-than-

one-pixel strength response to a step edge (fig 4.25). However, its most important 

feature, for the current application, is that, the increment of the scaling factor, σ, 

results in the blurring effect of figure 4.26. On one hand, this effect causes an 

undesirable image deformation (blurring), but on the other hand increases the capture 

range of the object.  
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Figure 4.25: The edge image with scale factor σ = 1 (Τg = 0.22, Plevel = 38.28)  

 

 
Figure 4.26: The edge image with scale factor σ = 3 (Τg = 0.22, Plevel = 37.4)  

 

In the following figure, firstly we let the snake converge onto the edge image of σ = 3; 

then we execute the snake algorithm in the edge image of σ = 1, using as initial 

contour the final contour of the previous stage (fig 4.27b). The final result is shown in 
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figure 4.27d. For this execution of the algorithm we used the following parameter set: 

α = 0.7, β = 0.5, γ = 1, ldes = 3 and Tg = 0.22.  

 

 
Figure 4.27: The snake converges subsequently on edge images of different scale 

factor (σ = 3 in (a) and σ = 1 in (c)). The intermediate result is in (b) and the final 

contour in (d).  

 

It is obvious that by setting σ = 3, we increase the capture range of the target but we 

also get a coarse representation of the shape, loosing in details. This can cause some 

problems. For example, in the above figure, the deformation at the human hand is 

quite intense and hence the snake concludes in the interior of the real target at that 

area, as it is depicted in the close up of figure 4.28a. Then the scale factor decreases to 

1 (fig. 4.28b) but the particular part of the snake is already away from the angle that 

the hand forms. That is why the snake slightly misses the human hand in figure 4.27d. 

 
Figure 4.28: Close-ups of the two edge images. 
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This effect can be improved by substituting the edge image of σ = 3 with a 

combination of the edge images of σ = 3 and σ = 1. For example, if we add the two 

edge images we get a new image of increased capture range and, at the same time, of 

smaller deformation (Figure 4.29).  

 

 
Figure 4.29: The result of adding the two edge images (σ = 3 and σ = 1). 

 

Note that he edge detector with σ = 1, unlike the one with σ = 3, cannot suppress the 

non-target line at the upper right of the target. This line is also present in the edge 

image of figure 4.29 and pulls the snake to the right, far away from the target. This 

feature of the image is undesirable and can be eliminated by the background- 

subtraction technique of the above section (for both edge images before the addition). 

The final result is shown in figure 4.30d. It is clear that this final contour outlines the 

target better than the one of figure 4.27d. We can also notice that the difference 

between the intermediate and the final contour is rather small. In this sense we could 

omit the execution of the algorithm on the edge image of σ = 1. However, this stage of 

the algorithm is usually short and improves (even slightly) the final contour. 
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Figure 4.30: Using the combination of the edge images along with the background extraction 

(a). The intermediate result is shown in (b), the gradient with σ = 1 in (c) and the final contour 

in (d). 

 

The application of this model to a more complicated shape gives us the result of the 

following figure. The parameter set is: α = 0.7, β = 0.5, γ = 1, ldes = 3 and Tg = 0.12.  

 

 
Figure 4.31: The application of the “scale-space” model on a more complex posture. 
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It is clear that the snake fails to enter the concavity, due to the absence of image 

forces in the area. Hence, the proposed model resolves only one of the two major 

problems of snakes.  

Finally, the “scale-space” model has quite good results when applied to targets 

with many edge gaps in a highly cluttered background, as it is demonstrated in the 

following figure. The parameter set at this example is: α = 0.7, β = 0.5, γ = 1, ldes = 4 

and Tg = 0.16. 

 

 
Figure 4.32: The application of the “scale-space” model on a target with many edge gaps, in a 

highly cluttered background. 
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4.3 The tracking algorithm 

In this section we present the details of embedding the snake model in the overall 

tracking algorithm. The basic form of this algorithm is the following: 

 

1. Identify an initial contour, C0, in the initial image, I0. 

2. Let it converge through the snake algorithm, giving you the optimised 

contour . '
0C

3. For every subsequent image Ik (k = 1, 2, …), 

i. use as  initial contour, Ck, of the image Ik, a motion-

compensated version of the optimised contour, , of the 

previous image I

'
1kC −

k-1 , 

ii.  let Ck converge to the target boundary through the snake 

algorithm, giving you the optimised contour . '
kC

 

A simple and fast way to find a motion-compensated version of the previous 

optimised contour is to use the velocity of each snaxel. Let’s say that we attempt to 

find the initial contour, Ck, in the current frame, Ik. The velocity of a single snaxel can 

be expressed by the signed distance, in x and y-axis, between the final positions of 

this snaxel in the two previous frames, Ik-1 and Ik-2. Hence, the initial contour Ck can 

be found by moving each snaxel of the optimised contour '
1kC −  according to its 

previous velocity. In other words, each snaxel of Ck is given by the following 

equation:  

 

 
( ) '( 1) '( 1) '( 2)

( )
( ) '( 1) '( 1) '( 2)

k k k k
i i i ik

i k k k k
i i i i

x x x x

y y y y
δ

− −

− −

−

−

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤−
⎢ ⎥= = + ⋅⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥

v  (4.14) 

 

where the weight δ defines the contribution of the previous velocity to the calculation 

of the new contour ( (0,1]δ ∈ ), and the symbol ⎡ ⎤⎢ ⎥  denotes rounding towards +∞ . The 

effectiveness of this simplified algorithm requires that the movement of the target 

object is constant in velocity and orientation. If the target motion is not abrupt, the 

variations in speed and orientation are small and the snake algorithm is likely to 
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⎥⎥

− −

correct an inaccurate estimation of the initial contour. Furthermore, it is obvious that 

this algorithm can be applied only from the third frame onwards, hence we should 

consider as initial contour for the second frame, the optimised contour of the first 

frame. This consideration cannot be very harmful, for the same reason.  

  

 

4.3.1 A tracker that uses the attractable snake model 

As it is mentioned in [30], the movement of the snake can be either contraction or 

expansion, according to the orientation of the normal direction. In all the experiments 

of section 4.2.1 we have chosen an inward orientation, since the starting, rectangle 

contour is initialised outside the target object. However, the above simple way of 

motion-compensation may give an initial contour that lies partially on the target 

interior. If a snaxel of the initial contour occur in the interior of the target and the 

contribution of its feedback energy term to the overall point energy is large enough, 

this snaxel will move further inwards. This incorrect movement will be accumulated 

from frame to frame and will probably result in a complete convergence failure, 

sooner or later. An example is shown in the following figure. The initial contours are 

in red (left) and the resulting contours are in green (right), for 4 consecutive frames. 

Note that the initial contour of the second frame (fig. 4.33c) is exactly the final 

contour of the first frame (fig. 4.33b), as there is no former information about the 

movement of the object. However, the snake manages to converge to the target. The 

initial contour of the third frame (fig. 4.33e), which comes from the motion-

compensation of the contour in figure 4.33d, outlines sufficiently the target object, 

leading to a good final contour (fig. 4.33f). The initial contour in the fourth frame 

though contains closed loops and snaxels within the object interior (fig. 4.33g), due to 

the motion-compensation algorithm. Inevitably, the snake fails to converge 

satisfactorily (fig. 4.33h). By setting δ = 0.1, we note that the compensated initial 

contours become closer to the real target contours. In this case, the term 

of equation (4.14) actually cuts off all the non-zero differences 

(  and ) to –1 or 1.  Eventually the snake also results in a 

convergence failure, but after 5 frames (fig. 4.34). Thus the parameter δ may be used 

'( 1) '( 2)

'( 1) '( 2)

k k
i i

k k
i i

x x

y x
δ

− −

− −

⎡ ⎤⎡ ⎤−
⎢ ⋅ ⎢
⎢ ⎥−⎢ ⎥⎣ ⎦⎢ ⎥

'( 1) '( 2)k k
i ix x− − '( 1) '( 2)k k

i iy y− −
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to control convergence, but essentially there is a need of some way to decide 

effectively between contraction and expansion.   

 

 
Figure 4.33: The results of tracking an object in a sequence of images, using the attractable 

snake model and the above motion-compensation algorithm (δ=1). The snake “misses” the 

target after three frames. 
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Figure 4.34: By decreasing the ‘compensation weight’, δ, to 0.1, the snake “misses” the target 

after 5 frames. 
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4.3.2 A tracker that uses the “scale-space” model 

In the previous subsection we saw that the simplified algorithm of motion 

compensation, even with a small compensation weight (δ = 0.1), may lead to an 

inaccurate initial contour, partially away from the target, either in or out of the target 

shape. Such cases usually result in a convergence failure when using the attractable 

snake model, mainly due to the action of the feedback mechanism. In the “scale-

space” model the feedback force does not exist and moreover, the convergence 

process starts in an edge image of increased capture range. Thus the snake model is 

more likely to correct an inaccurate estimation of the initial contour. The 

corresponding results of using this tracking algorithm on the sequence of images of 

figure 4.34 are shown in the following figure. The parameter set is: α = 0.7, β = 0.5, γ 

= 1, ldes = 3, Tg = 0.12 and δ = 0.1. 
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Figure 4.35: Tracking of object using the “scale-space” model (video A). 

 

It is clear that, if we can tolerate a coarse target outline (i.e. an outline that does not 

enter the concavity), the tracker works quite effectively. Another example is shown in 

the following figure. 
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Figure 4.36: Tracking of object using the “scale-space” model (video B). 

 

We can see that the snake misses some parts of the target contour in some frames (e.g. 

frames 181 or 183), but the convergence failure is usually not propagated to the 

following frames as it is in the case of the attractable snake model; on the contrary, in 

some cases we can observe a “recovery” of the “missing” parts (e.g. frame 187).  

 As a conclusion, we can say that there is a trade-off between accuracy in the 

target representation and effectiveness in the tracking process. This implementation of 

the tracker is less accurate in outlining the target that the implementation with 

attractable snakes but has lower sensitivity in bad initial-contour estimations, and 

hence better results in tracking the target in a sequence of images. An appropriate 

combination of the two methods would probably eliminate the disadvantages and 

maintain the advantages of the two sides. For example, after the application of the 

scale-space model we can find the snaxels of the final contour that haven’t reached 

the target (e.g. by examining their gradient value against a threshold); then we can 

further move towards the target only the contour segments that these snaxels form, by 

using the attractable snake model. The fact that the feedback force will not be applied 

on all snaxels and from the beginning of the process will probably eliminate the 

above-mentioned problems of the feedback term. Nevertheless, it is hard to decide 

whether a snaxel of low gradient is ‘in front of’ a concavity, and requires further 

movement, or just on a subjective contour, and does not need correction. Therefore 

this possible improvement of the algorithm has to be examined further.  
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Chapter 5: Conclusions and future work 

 

 

5.1 Conclusions 

In this work we attempted to examine the possibility of using active contour models 

(snakes) in order to implement a semi-automatic visual tracker. The system performs 

a target-state-estimation, followed by a target-state-verification, for each one of a 

series of images. The state-estimation (initial state) is provided by the user for the first 

image of the sequence and is generated from the previous movement of the target for 

the second image onwards. For the state-verification (final state) we tested two 

different implementations of the snake model: the attractable snake model and the 

scale-space model.  

 The addition of the feedback mechanism makes the attractable snake model 

very effective in outlining the target, as it resolves both of the major problems of the 

original snake model. On the other hand, the scale-space model can also cope with an 

initial contour far away from the target in position and shape, but it cannot outline 

large shape concavities. Both methods are parameter-dependent, in the sense that 

there is no global parameter set that gives the best results in all cases. However, in this 

work we propose a parameter set that can work, with small variations, for most cases.  

 The system was tested on images with noise and cluttered background, i.e. 

features that can distract the snake from fitting on the target. Techniques like noise 

suppression and background extraction minimize, but not totally eliminate, this 

problem. The attractable snake model is more effective than the scale-space model in 

these cases, as the additional feedback force points towards the target. On the other 

hand this force may have undesirable effect in the contour “edge gaps” that occur 

when the edge detector fails to detect target edges with intensity very close to the 

background intensity; the snake is likely to bypass the “subjective contour” and move 

towards the target interior, under the influence of the feedback force. The absence of 

this force in the scale-space model allows the internal energy to restrain the snake in 

these cases and therefore the scale-space model is more effective when “edge gaps” 

 85



Conclusions and future work 

  

are present. However it is, in general, slower than the attractable-snake algorithm, as 

it is actually executed both times for each case. 

 The simplified way of motion-compensation that is used in this work generally 

leads to inaccurate initial contour estimations, since it assumes that the movement of 

the target is almost constant in velocity and orientation. The attractable snake model, 

due to the action of the feedback force, is more susceptible to a bad estimation, 

especially when the estimated contour falls within the target interior. This fact reduces 

the number of subsequent frames on which the tracking algorithm can be applied. On 

the contrary, the increased capture range of the scale-space method can handle more 

easily such cases.  

As a general conclusion, we could say that the attractable-snake model 

achieves a satisfactory contour fit on a single frame, but cannot follow the target for a 

large sequence of images, whereas the scale-space model offers a coarser target 

representation, but is more effective in the tracking stage. 

 

5.2 Future work  

The tracking system of this thesis obtains some good results but also indicates some 

problems of tracking moving object using snakes. Therefore, there are some 

improvements that should be made in order to build a more effective tracker.  

An important point of the snake algorithm is the construction of an appropriate 

edge image, since edges are the dominant feature of the snake attraction. Problems 

like noise, surrounding edges and “edge gaps”, should be resolved more efficiently. 

The edge detection scheme that uses spatio-temporal information, and was mentioned 

in chapter 4, is a step towards this direction. However, a further processing of the 

detected edges, such as edge linking, is needed in order to prevent the snake from 

overrunning the real target contour.  

Future work may also take advantage of the modular snake energy in order to 

add other useful terms in the energy functional. For example, a possible addition 

could be a second image term, based on the temporal image gradient 

( ( , , ) ( , , ) ( , , 1)I x y t I x y t I x y t
t

∂
= −

∂
− ), instead of the spatial image gradient. This term 
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would actually generate an additional attracting force towards edges that are moving 

between frames.  

The above improvements refer to the “snake-part” of the implementation. In 

addition, future work should also concern the “tracking-part”. The estimation of the 

initial contour could be made in a more effective way, for example by using optical 

flow. In this case though, it is important to note that there is a trade-off between 

accuracy and speed.  

Another potential improvement could be the following. For each frame (from 

the second onwards), the initial contour could be generated from the relaxed contour 

of the previous frame, by some way of motion-compensation (snaxel by snaxel). 

Then, the final positions of the new snaxels (old snaxels after the motion-

compensation) could be found by minimizing, not only the energy of the new snake in 

the current frame, but also the energy of the old (relaxed) snake in the previous frame. 

This could work as feedback information for the correction of the initial estimation.  

Another possible improvement could deal with the full-automatic initialization 

of the tracking process; the initial contour for the first frame could be found by some 

kind of pre-processing (e.g. segmentation). The handling of occlusion from other 

objects is also an important matter. Finally, the proposed algorithm could also be 

slightly modified so that it could be applied on color and texture images. In this case, 

other energy terms, based on color and/or texture information, could be used.    
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