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“Information is the resolution of uncertainty.”
- Claude Shannon

“Nature uses only the longest threads to weave her patteaxm#hat each small piece of her fabric reveals the organirati
of the entire tapestry.”
- Richard P. Feynman

“l am interested in mathematics only as a creative art.”
- G. H. Hardy



ABSTRACT

In wireless channels, maximume-likelihood (ML) block noheoent detection offers signi cant gains
over conventional symbol-by-symbol detection when thenfgaadthannel coef cients are not available
and cannot be estimated at the receiver. Certainly, in getheraomplexity of the block detector grows
exponentially with the symbol sequence length. Howevenag been recently shown that for M-ary
phase-shift keying (MPSK) modulation block noncohererédigon can be performed with polynomial
complexity. In this work, we develop a new ML block noncohdrdetector for MPSK transmission of
arbitrary order and multiple-antenna reception. The psepaalgorithm introduces auxiliary spherical
variables and constructs with polynomial complexity a poiyial-size set which includes the ML data
sequence. Itis shown that the complexity of the proposeatitiign is polynomial in the sequence length

and at least one order of magnitude lower than the complexitpmputational-geometry based nonco-
herent detection algorithms that have been developedtigcen
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. Introduction

Multiple-antenna wireless systems are well known to atba@meased orders of diversity resulting in substantialiyhlr
system capacity compared to single-antenna systems. Whstipehannel state information (CSI) is available or can be
retrieved through adequate channel estimation at thewercseveral coherent detection schemes can be followedevw,

the very nature of wireless channels suggests rapidly éhgrdpannel conditions, thus making channel estimationptexn
and cost inef cient. Even when channel fades occur slowhage distortion is introduced and must be accounted foreat th
receiver end to avoid performance loss.

Alternatively, noncoherent detection has been studieensitely [1]-[5] and implemented in modern digital communi
cation standards. Since noncoherent detection does ndtamyechannel knowledge or estimation, it is applicable éaen
most degraded and fast fading channels, making it much mteetve than coherent detection under unfavorable ablann
conditions. Due to the memory in the received data sequenteed by fading channel memory, noncoherent maximum
likelihood sequence detection (MLSD) has recently beerbjestiof extensive research [1]-[4]. Optimal receiverd thd-
fer from exponential complexity with respect to the datausege length as well as approximate and sub-optimal detecti
algorithms were developed in [1], [5]. However, very recstudies [3], [4] proved the existence of ef cient honcohdre
MLSD receiver schemes that attain optimality with polynahtiomplexity by utilizing computational-geometry (CG)sea
optimization algorithms.

The present work shows that noncoherent MLSD of MPSK symh@$MO systems can be expressed as a rank-de cient
guadratic form maximization problem and computed ef cignib polynomial time. We follow a completely different ap-
proach than [3],[4] and, inspired by the work in [6]-[BRonstruct a polynomial-complexity noncoherent MLSD meltiuat
is at least one order of magnitude faster than the method.iff e proposed method that is developed in this present isork
also applicable to any arbitrary-order MPSK modulationrtirer analysis shows that the computational complexityeddp

only on the data sequence length and receive-diversity amtdoes not depend on SNR.

1The work in [6]-[8] considers the ef cient computation of tiénary vector that maximizes a rank-de cient quadratic formheTauthors prove the
existence of the optimal solution and develop a method that atespt in polynomial time. Although rank-de cient quadratirm maximization was also
treated in [10] based on CG principles, the method in [6]-&juires at least one order of magnitude less complexity compartbe method in [10].



[I. System Model

We consider the transmission of a sequencd afncodedM -ary phase-shift keying (MPSK) data symbesls [ s;;
s; i sn T, wheres, is selected from aM -ary alphabef v L fd w@me) jm=0;1;:::;M 1g,n=1;2:::;N. The
data sequence is shaped and transmitted Dviedependent and identically distributed (i.i.d.) freqograt Rayleigh fading

wireless channels. The downconverted and pulse-matchedadent received signal at thith antenna is
p_
Yd= Phgs+ ng N}

whereP is the constant transmitted power, anddenotes the coef cient of the channel between the transmiérana and the
dth receive antenna and is modeled as zero-mean complexi@augth variance 2. Furthermorengy represents additive
white complex Gaussian noise (AWGN) and is modeled as a zeanmomplex Gaussian vector with co-variance matrix

2]. We collect all received data from tlfie receive antennas and formtNe D “received matrix”
4 ey T
Y =[yiy2:::ypl (2)

TheD channel coef cientdy,d=1;2;:::; D, are assumed unknown to both the transmitter and the receiyaying
that noncoherent detection has to be performed. The MLSIsidecfor the transmitted sequenseggiven theN D
observation matrixY maximizes the conditional probability density functiord{pof Y givens. Thus, the maximization

problem becomes

Sopt e arg max f (Y js)
S2A N

®3)

=arg max f(yi;y2;:::;ypjs):
s2A N

Due to independence among thechannels, the columns of the received malfivare i.i.d. given the transmitted sequence

s. Therefore,

Sopt =arg max  f(yajs)
M d=1

(4)

= arg max Inf (yqjs):
M d=1

The conditional received vector at thth antenna given the transmitted sequenggjs = hqs+ ny wherehgsis a singular

complex Gaussian vector independent fragpd = 1;2;:::; D. The following proposition identi es the pdf of4js.

Proposition 1 The sum of a singular complex Gaussian vector and an indegermbmplex Gaussian vector results in a

complex Gaussian vector.



Proof Consider a singular Gaussian vector of the form

q=[a10;a0;::;ad; g CN(mg 2); asaz:iijan 2R )]

n:[nl;nz;:::;nN]T; n CN(mp;Chp): (6)

, P P P P P ,
Considerthesum L, (g+n;)= 1, ni+ L, aqandobservethatbothy |\, a and ., n; areindependent
P
complex Gaussian random variables. Thelﬁ':l (g + n;) is also a complex Gaussian random variable. Consequently

Z = n + (g is a complex Gaussian vector [12]. 2

According to Proposition 1, sind®; andng are both zero-meanjs is a zero-mean complex Gaussian vector with covari-

ance matrix
4 .
Ry.s = Efyayfjsg= 21+ P Zss™: 7
As a result, the MLSD receiver of (4) becomes
Ne n 0
Sopt = arg max In;exp yiR. L yg
" AN g IRyl ¢ yals
5 (8)
= arg max Y§R, 1std In —=——
S2A N 4, d JRyjsl

Using the propertyA + cd"j = jAj(1+ d" A *c) found in [11], we computgRy jsj = 32N (1+ NP —52‘). SincejRy jsi

is not a function ofs, it can hence be dropped from the detector in (8). Moreow&@nguthe matrix inversion lemma, the

2
inverse ofRy s becomes’Rydlj,S = % I %ng 2 ss | implying that the decision rule in (8) is simpli ed to
Sopt = arg max 1 i yaii® + 7*%%? ss'yq
AN 4y h A+ NP R
X

=arg max  jyq s
S2A N d=1

=arg max jjY "sjj: (9)
s2A N

If the above optimization is performed through exhaustearsh, then it cost®(M N') computations which is an intractable
complexity even for moderate vales Nf. In the next section, we follow an approach similar to the oh¢6]-[8] but
tailored to our detection problem in (9). Speci cally, wermduce2D 1 spherical coordinates and develop an ef cient
algorithmto build ase8(Yn p) A N thatconsists ofS(Yn p)j = O((NM )?P 1) signal vectors, is constructed with

O((MN )2P) computations, and contains the optimal vestgr in (9).



l1l. Efcient ML Block Noncoherent MPSK Detection

A. Theoretic developments

In order to develop an ef cient technique for solving the rimaization problem in (9), we introduc2D 1 auxiliary

hyperspherical coordinates 2 ( ; 1. 2;:::; 20 12 5,5 anddenethe2D 1 hyperspherical vector
2 3
sin 1
cos jsin »
e( 1;::15 2p 1 2 : (10)
COS 1:::COS 5p 2SiN 2p 1

COS 71:11COS 2p 2CO0S 2p 1

aswellasth® 1 hyperspherical complex vector
4 .
c( 1;::5; 2p 1) = €rp:al 150115 20 1)+ jepsiz2pia( 151015 20 1): (11)
Then, the problem in (9) is rewritten equivalently as

Sopt = arg max jjY " 5]
M

(12)
=arg max max max isTYe( 1 ap 1)
s2A N 12( ;1 2 20 12( 757]
due to Cauchy-Schwartz Inequality which states that fona@yCP
jvfe( i 2o 1)j i Vi jeCaitty; o0 2j (13)
=1
with equality if and only if 1;:::; ,p 1 are the hyperspherical coordinates/ofFurthermore8v 2 CP,
<fvPe( 10 20 19 jvPe( it 2o 2 (14)
with equality if and only if 1;:::; 2p 1 are the hyperspherical coordinatesrofHence, the maximization problem in (12)
becomes
Sept = arg max  max max <fstyc( q;::; : 15
oft gsZA’h“A 12( 5 ] 2 20 12( 553 (1 1) (13)
We interchange the maximizations in (15) and obtain thevadgmt problem
X
max max max <fs,Ynipc( 1; 2;::%; ; 16
12C 5 ] 2 20 12( gigl _y n2Aw nYmupC( 1 2 20 1)9 (16)



we observe that the original maximization problem in (9) é&amposed in a set of symbol-by-symbol coherent detection

rules foragiven setofanglés;:::; 0 1)2( ; ] viki ® 2 Forsuch a set of angles the maximizing argument

of a coherent decision metric of the sum in (16), say for syinsho depends only on the corresponding row of “received”

s, is maintained as long as a decision boundary is not crosseé t@®the structure oy , the'\"7 decision boundaries that

affect the maximization in (16) are given by

- M
Ynipc( 1;::5 20 1):AeJ2 Mk*;k:O;l;:::;? 1, n=1;2;:::;N: a7

=fe l2 MLYn;l;DC( 1,507 20 1)9=0; k:0;1;:::;M7 1, n=1;2;:::;N (18)

Vivzo€( 1315 20 1) =05 I=15 == (19)
where
h i
vIo=(?) <(?); (20)
h ) ) o rwm It
iy 1elrelim:elif(s 1) (21)

and denotes Kronecker product. The inner maximization rulel8) (notivates us to de ne decision functiors that maps

asetofangleé 1; 2;:::; 2p 1)toacertainvalue of s& )y according to
T o e 4 T
s(y'; 15 251 2p 1)=argmax < sy c( 1::; 2p 1) (22)
S2A M
foranyy 2 CP. Then, forthe givetN D matrixY , each setofangles{n ; ] 513 P 2ig mapped to a candidate
M -ary vector 2 3
S(Y 1105 1;::%5 20 1)
4+ 8 S(Y21p: 130015 20 1)
S(YN D; 15::5; 2D 1) = (23)
S(Yn;1:D3 155155 2D 1)
. . S S
and the optimal vectosyy: in (15) belongs to 20 51 2 2o 120 giql s(YN p; 1;:::; 20 1). Furthermore,
since oppositéM -ary vectors result in the same metric in (9), we can ignoeevidlues of ; in v 3 [ % and

10
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consider 1;:::; op 12 = 5,3 » hence the maximization in (16) can be rewritten as
X
max max <fs,Yn1pc( 15 21055 20 1)9
1; 2;55 20 12 Sn2A m

[
S(Yn p) 2 fs(Yn p; 15055 20 1) A N

Such set includes the maximizer of our detection problemcée

Sopt =arg max jj¥ "sjj:

(24)

(25)

(26)

The setS(Y N p) that includessyy is later proved to have cardinalif(Y n p)j = O((NM)?® ). Moreover, an

ef cient algorithm for the construction of the aforementax set is developed in subsection B watt{NM )2® ) complexity.

11
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Fig. 2.

From (21), we observe that the rows of tA8- 2D matrix ¥ determine}- hypersurfaceB (Y 1,120 ); F (Y 2,1:20); 1 i

T E(Y MN o ). An example of such hypersurface is shown in Fig.10or 2. Each hypersurface partitions the hypercube

uniques, 2 AN . Letfigjiziiiip 19 f 1;2;:::; Mg be a subset 02D 1 indices (that correspond 2D 1
hypersurfaces) and(Y% oii1;iiiip 1) 2 2P 1equal the vector of coordinates of the intersection of hyeaces
F(Yi,.120);::5;F(Yi,, .:120). The basic property of such an intersection is presenteukifiailowing proposition. The

intersection (which is a vertex of a cell) if and only if no mdhan two hypersurfaces originate from the same row of the

12



observation matrixy .

In Fig.2 we present the intersection %# hypersurfaces that originate from the same rowyqfwith M

Fig.3, the intersection diD

We observe that such an ensemble of hypersurfaces pastitienhypercube 2° ! into M partitions, with each partition

= 2.
corresponding to a unique element of thg alphabet. Moreover as an illustrative example for propmsi2, we present, in

1 hypersurfaces, where no more than two hypersurfaces at@fnom the same row of ,
and observe that such unique intersection is a single pothtavertex of a cell.
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4 [ n . . 0
I(Yuy 5p) = S Yuy ppiisiiiiian 1 A v (27)
figymizn 19f Liu; Mg
The cardinality of] (Y% op ) IS given by
- - l;( 1 N N d M 2D 1 d

d=0
Thus,J (Y uy 5p) containsO((NM )2P 1) M -ary vectors. Then, it can be shown [8] that all candidatearedorm the
set

S(Yn 0)=J Yu o [J Yur @p 5 [ [ Yu
g1 (29)
= J Yw  5p g
d=0

with Y MY (D d) denoting the matrix that contains all r&D d) columns ofY". As a result the cardinality of the above

setis

IS(Yuy 5p)j= J Yuw 5p +J Yuw 5p 5 + +J Ywm ,

R Xty N d M 2R td

- 2 - 30
o g0 @ 29 (@+2d) 2 (30)
»

O((NM)*® 1= O((NM)** b);
Q=1

which is straightforward sincé Y“% oo » With cardinality O(NM )2P 1), is the largest set among the subsets of
S(Yuy 5p).

To summarize the developments of this subsection, we halieedt2D 1 auxiliary hyperspherical coordinates, and
partitioned the hypercube?® 1 into O((NM )?P 1) cells associated with uniqud -ary candidate vectors that constitute
thesetS(Yn p) A N whichincludessyy in (9). Therefore, the initial detection problem in (9) h&eh converted into a

maximization amon@ ((NM )2P 1) candidate vectors.

B. Algorithmic developments

The construction o5(Y y p) is of special interest since it determines the overall perénce of the proposed method.

parallelized since cells in the hypersurface arrangenrergxamined independently from each other. It can be shoatritib

14



decision function in (22) determines de nitely the corresding symbols, if and only if no hypersurface originates from
Y n:1:4. FoOr the hypersurfaces that pass through the cell intéosedhe rule in (22) becomes ambiguous. In such a case,
de nite determination o6, is attained if op 1 is set to; and (22) is examined at the intersection of the same hydarss
except from the hypersurface of interest.

The algorithm visits independently ti&(Y n p)j = O((NM )2P 1) intersections and computes the candidate vector
in AY, for each intersection. The cost of the algorithm for eachditiate vector iSO(MN ) since it needs to check at most
MN inequalities. Therefore, the overall complexity for thestuction ofS(Y y p) become®©O((NM )2 1) O(MN ) =

O((NM )?P). The MATLAB code for the construction (Y n p) is given in Appendix B..

It remains to describe how the vector of coordinaté¥ uy_ g i1;:::;i29 1) is Obtained ef ciently. Since such coordi-
nates represent the intersectionFofY i, .1.24); F (Yi,:1:2d4) ;111 F (Yi,4 ,:1:24) @ unique solution is given by the following
system of equations 9

by Y iy, .1.2¢ and the hyperspherical vectof 1; 2;:::; 24 1), and(ii) constrain the solutions to unitary vectors.

To further assist the present work we introduce the foll@ypnoposition.

Proposition 3 Consider a full-ranKd 1) dcomplex matridQ. Then, the equation

Qc( 1;::5; 4 1)=0@ 1 1 (32)

has a unique solution (Q) 2 2¢ * which consists of the hyperspherical coordinates of the ket singular vector of.

2

We recall that one way to obtain the zero left singular veofd is by singular value decomposition (SVD). Such a singular

vector is known to be unitary, thus norm-constrained to 1ngeguently, the solution of (31) can be ef ciently obtained

15



9
C Sy 2
YL[|1iz;122;i n Liin+ inio2d 1]C( 1y 2yeees 2d 2’5)_ O(d 2) 1~
5 : (33)
C( 15 250 20 2:5) =1 ;
Solution is obtained similarly to (31), by computing theaaft singular vector oF i i, 1uin i 20 1]:12d 1- EVEN-
tually, we computes, = argmaxsaa ,, <fS Yn.1:24C( 1;::350n 1;in+1;:005029 1)gforn 2fiq;iz;iii;iag 10.

We recall that the corresponding complexity of [4J3$(NM )2° LP(NM; 2D)) where LENM; 2D) is the complexity
of a linear programming (LP) optimization problem withN inequalities and 2D variables. Provided that the worsecas
complexity of LRNM; 2D) in linear inNM [13], it turns out that the method in [4] cosBy(NM )2P*1) calculations, i.e.,
one order of magnitude more calculations than the propdgedithm. In addition, [4] treats only the caté = 2 (BPSK)

andM = 4 (QPSK).

exhaustive
proposed

15

complexity
|_\
o
)
T
|

10 7

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
sequence length

Fig. 4.
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Finally, in Fig.4 we draw the complexity of the proposed aitjon and that of the exhaustive search, fbr= 2 and8-
PSK constellations. We observe that for sequence lengtegharN = 5 exhaustive search seems most ef cient. However,
as sequence length grows, the complexity of the exhaustasels grows exponentially and becomes impractically laxgs
for moderate sequence lengths. Whereas, the complexitg girtiposed algorithm grows polynomially with respeditpis
surprisingly faster than exhaustive search, and remaaxsipal even for large sequence lengths, where the caedigator

set of the exhaustive search is incomputably large.

IV. Simulation Results

conventional
—— MLSD,N=8
1 . MLSD, N =14
10 N MRC :

BER

1 1 1 1 1 1 1 1
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
SNR (dB)

10' ] ] ] ] ] ]

Fig. 5. BER versus SNR for conventional, (proposed) MLSD noncoheesgivers, and MRC.

As an illustration, we consider differentially encod@®SK (M = 8) transmission by 1 antenna of a sequence of length

17



N = 8; 14 and reception byp = 2 antennas; for the case where coherence detection is madeattimal ratio combining
(MRC) method is considered. The signal-to-noise ratio (PNRges fronbdB to 20dB and for each SNR valus® Monte-
Carlo simulations are run. In Fig. 5, we present bit erroe (BER) of the conventional (1-lag) differential detectfrthe
maximum-likelihood sequence detector (MLSD), and of the@Adetector. The noncoherent MLSD is implemented using
our proposed algorithm of complexi®((NM )2P). Even forN = 8 the candidate set of our proposed algorithm is much
smaller than that of the exhaustive search. The reduced sahdidates of the proposed algorithm has €480 22 for

N

8, compared to the much larger set that needs to be visited lgustive search and has s = 16777216 For

N = 14 that difference grows with our method reducing the expdakset of2*2 to approximatel\2'® candidate vectors,

in which the MLSD vector is included. Also, observe that asckllength grows the BER curve of the MLSD algorithm
is getting closer to the BER curve of coherent detection. e anclude that our algorithm truly appears as an ef cient

noncoherent MLSD method that is applicable to any order oSkIRonstellation.

Appendix A

In this appendix, we provide the proof of proposition 2 fobirary D, M , andN . For the given matrice¥’, ¥ let ag 2
=f ¥n.q g andhy 2 of a0 d=1;2:::;D. SinceYngo = =f $pggford®=1;2;:::;D, and¥ ng0 = <f Yhqgford®=
D+1;D+2;:::;2D,n=1;2;:::; M Moreover=f e " $,.qg= =f $nqagcos! <f $nqgsin! and<fe ! ¢,qg=

<f $n.agcos! + =f $r.qgsin! . Motivated by Section Il we de ne two rotated hypersurfade the following manner

2 3
sin o
=f P19 i =f¥pg <f¥n10 I <f¥hag
_ _ A A =0gp 1) 1.,
=fe I f)n;lg::::]c € I 9n;D g<f € I 9n;lg:::<f € J yn;D g
COS 5:::COS 2p 1
2 3
sin 5
ajp ap by
=0pp 1 1
a;cos!l  bysin! @ apcos! Ibpsin! bjicos! + a;sin! i bpcos! + ap sin!

COS 2:1ICOS 7p 1
(34)

The rst row yields the following equation
a;sin 1+ :::+ ap COS 1::COS p 2SN p 1+ bycos 1:::coS pSin ps1 + :::+ bp COS 1:::€CO0S 5p 1€C0S op 1 =0,

ajtan 1+ 11+ ap COS 2::C0S p 2SiN p 1+ b COS 2:::€0S p SN pyg + i1+ bp COS 2:::€OS 5p 1€COS 2op 1 =0,

18



37

(o)) COS 5:::COS p 1
tan ;= 35
) - (35)
equivalently from the second row we obtain
2 372
a,cos!  bpsin! sin
by cos! + ap sin! COS ,:::COS 2p 1
tan 1= - : (36)

a; cos! by sin!
The two solutions fotan ; de ne two different hypersurfaces, if we show that the istation of those two hypersurfaces
is independent of the arbitrary rotation, then proposifionill have been proved. Continuingly, the intersectiontad two

hypersurfaces is given by
2 372 312 3

2
a sin E a, cos! by sin! sin o

(0) COS ,:::CO0S op 1 by cos! + ap sin! COS 5:::COS 2p 1
= : , (37)

a; cos! by sin!
2
E sin >

3; 37

2 2 2
E ap(ay cos! b sin!) E sin » E ai(ay cos! b, sin!)

bpb (a; cos!  bysin!) COS 2:::COS 2p 1 ai(bp cos! + ap sin!) COS 2:::COS 2p 1
2 372 3
ay(a; cos! b, sin!) a;(aycos! by sin! ) sin >
. -0 .
b (a; cos! bysin!) a(bp cos! + ap sin!) COS 2:11COS 2p 1
2 372 3
aa; cos! ajbysin!  ajapcos! + ajhp sin! sin »
=0 ,
bp a; cos! bp by sin!  a;bp cos! bp ap sin! COS 2:1:COS op 1

2For the sake of simplicity and space, from now on we shall amtjuide the rst and last element of a vector in the equations

19



2 372
E sin! (aiby, axhy) E sin o
sin! ( bjbp aphp) COS 2:1:COS 2p 1
2 372
atly aby sin »
sin! E E
by b COS 2:::COS 2p 1
2 372
E b, axby sin »

COS 2:1:COS 2p 1

w

=0: (38)

Since we reached the nal form in (38) w.l.o.g., we ought tewase that (38) is fully equivalent to (37), and thus the

intersection of the two hypersurfaces is independent oatb#rary rotatiorl 6 0. Thus, proposition 2 holds true.

Appendix B

In this appendix the Matlab code for nding the polynomi&ted reduced set of candidates that incluslgs is provided.

The function complexank M _candfast(Y_tilde, Y, M, N) has as input arguments the matrit?'eswT 24 Y ng, the ordeM

of M -PSK and the sequence lenght

function S = complex_rank_M_cand_fast(Y_tilde, Y, M, N)
s = exp(j *piM *(2 «[0:M-1]'+1)); % MPSK constellation
[NM 2D] = size(Y_tilde);

if 2D > 2

s_reduced = [exp(+ * (pi/M)) ; exp( *(pi/M)) 5 exp(

s 2 slices = exp(j *pilM) *[1 ; exp(j *pi);
reduced_pairs = reshape(s_reduced, 2, []);

combs = find_combsl1(N, 2D, M);
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* (pi/M+pi)) ; exp(] * (pi/M+pi))];



S = zeros(N, size(combs, 1));

for i = 1:length(combs)
J = combs(i,:);
group = ceil(2 *J/M); % generator row
Y _tildel = Y_tilde(J,:); % intersecting HSs
phi = cartesian_to_spherical(find_intersection(Y_tild el).);
c_complex = [sin(phi(1))+j * cos(phi(1)) * cos(phi(2)) *sin(phi(3)) ;...

cos(phi(1)) * sin(phi(2))+ * cos(phi(1)) * cos(phi(2)) * cos(phi(3))];

%%%% find cadidate %%%
[dummy, index_s] = max(real([Y(:,1) Y(;,2)] *Cc_complex *s'), [], 2);
S(,i) = s(index_s);
%%%%%%% %% %% %% % %% %% % %% %

%%% disambiguate %%%

group [group -1];

for m 1:2D-1
k = mod(J(m)-1, M/2);
rotation = exp(j * (2 * k* pi/M));
Y12_m = [Y(group(m),1) Y(group(m),2)];
if group(m)- group(m+1) "= 0 % different row of origin
s_reduced_m = s reduced =+ rotation;
reduced_pairs_m = reduced_pairs * rotation;
half s reduced_m = s reduced_m(1:2:end,:);
[dummy, index_s] = max(real(Y12_m *C_complex =*half_s_reduced_m’).");
s_reduced_m = reduced_pairs_m(;,index_s);
phi_reduced = cartesian_to_spherical(find_intersectio n(...
[Y_tilde1([1:m-1 m+1:2D-1],1:2D-1)]).");
[dummy, index_s] = max(real(Y12_m * [sin(phi_reduced(1))+...

j * cos(phi_reduced(1)) * sin(phi_reduced(2));...
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cos(phi_reduced(1)) * cos(phi_reduced(2)) * Sin(pi/2)+...
j * cos(phi_reduced(1)) * cos(phi_reduced(2)) * cOS(pi/2)] *s reduced_m));
S(group(m),i) = s_reduced_m(index_s);
else
phi = cartesian_to_spherical(find_intersection(...
[Y_tildel([1:m-1 m+1:2D-1],1:2D-1)]).";
s_reduced_m = s 2 slices * rotation;
[dummy, index_s] = max(real(Y12_m * [sin(phi(1))+...
j *cos(phi(1))  =*sin(phi(2));...
cos(phi(1)) * cos(phi(2)) * sin(pi/2)+...
j * cos(phi(1)) * cos(phi(2)) * cos(pi/2)] *s_reduced_m));
S(group(m), i) = s_reduced_m(index_s);
m=m + 1;
end
end
end
S = [S complex_rank_M_cand_fast(Y_tilde(:;, 1:2D-2), Y(;, 1:(2D-2)/2), M)];
else
phi_crosses = [-pi/2 ; atan(-Y_tilde(:, 2)./Y_tilde(:, 1) );
[phi_sort, phi_ind] = sort(phi_crosses);
phi_mid = (phi_sort(1:end-1)+phi_sort(2:end))/2;
for i = 2L:length(phi_mid)
[dummy, index_s] = max(real(Y * (sin(phi_mid(i))+j * cos(phi_mid(i))) *s').");
S(,i) = s(index_s);
end

end
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