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“Information is the resolution of uncertainty.”
- Claude Shannon

“Nature uses only the longest threads to weave her patterns,so that each small piece of her fabric reveals the organization
of the entire tapestry.”
- Richard P. Feynman

“I am interested in mathematics only as a creative art.”
- G. H. Hardy
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ABSTRACT

In wireless channels, maximum-likelihood (ML) block noncoherent detection offers signi�cant gains
over conventional symbol-by-symbol detection when the fading channel coef�cients are not available
and cannot be estimated at the receiver. Certainly, in general the complexity of the block detector grows
exponentially with the symbol sequence length. However, ithas been recently shown that for M-ary
phase-shift keying (MPSK) modulation block noncoherent detection can be performed with polynomial
complexity. In this work, we develop a new ML block noncoherent detector for MPSK transmission of
arbitrary order and multiple-antenna reception. The proposed algorithm introduces auxiliary spherical
variables and constructs with polynomial complexity a polynomial-size set which includes the ML data
sequence. It is shown that the complexity of the proposed algorithm is polynomial in the sequence length
and at least one order of magnitude lower than the complexityof computational-geometry based nonco-
herent detection algorithms that have been developed recently.
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I. Introduction

Multiple-antenna wireless systems are well known to attainincreased orders of diversity resulting in substantially higher

system capacity compared to single-antenna systems. When perfect channel state information (CSI) is available or can be

retrieved through adequate channel estimation at the receiver, several coherent detection schemes can be followed. However,

the very nature of wireless channels suggests rapidly changing channel conditions, thus making channel estimation complex

and cost inef�cient. Even when channel fades occur slowly, phase distortion is introduced and must be accounted for at the

receiver end to avoid performance loss.

Alternatively, noncoherent detection has been studied extensively [1]-[5] and implemented in modern digital communi-

cation standards. Since noncoherent detection does not need any channel knowledge or estimation, it is applicable evenin

most degraded and fast fading channels, making it much more attractive than coherent detection under unfavorable channel

conditions. Due to the memory in the received data sequence induced by fading channel memory, noncoherent maximum

likelihood sequence detection (MLSD) has recently been a subject of extensive research [1]-[4]. Optimal receivers that suf-

fer from exponential complexity with respect to the data sequence length as well as approximate and sub-optimal detection

algorithms were developed in [1], [5]. However, very recentstudies [3], [4] proved the existence of ef�cient noncoherent

MLSD receiver schemes that attain optimality with polynomial complexity by utilizing computational-geometry (CG) based

optimization algorithms.

The present work shows that noncoherent MLSD of MPSK symbolsin SIMO systems can be expressed as a rank-de�cient

quadratic form maximization problem and computed ef�ciently in polynomial time. We follow a completely different ap-

proach than [3],[4] and, inspired by the work in [6]-[8],1 construct a polynomial-complexity noncoherent MLSD method that

is at least one order of magnitude faster than the method in [4]. The proposed method that is developed in this present workis

also applicable to any arbitrary-order MPSK modulation. Further analysis shows that the computational complexity depends

only on the data sequence length and receive-diversity order and does not depend on SNR.

1The work in [6]-[8] considers the ef�cient computation of thebinary vector that maximizes a rank-de�cient quadratic form. The authors prove the
existence of the optimal solution and develop a method that computes it in polynomial time. Although rank-de�cient quadraticform maximization was also
treated in [10] based on CG principles, the method in [6]-[8] requires at least one order of magnitude less complexity compared to the method in [10].

6



II. System Model

We consider the transmission of a sequence ofN uncodedM -ary phase-shift keying (MPSK) data symbolss = [ s1;

s2; :::; sN ]T , wheresn is selected from anM -ary alphabetA M
4
= f ej �

M (2m +1) jm = 0 ; 1; : : : ; M � 1g, n = 1 ; 2; : : : ; N . The

data sequence is shaped and transmitted overD independent and identically distributed (i.i.d.) frequency �at Rayleigh fading

wireless channels. The downconverted and pulse-matched equivalent received signal at thedth antenna is

yd =
p

Phds + nd (1)

whereP is the constant transmitted power, andhd denotes the coef�cient of the channel between the transmit antenna and the

dth receive antenna and is modeled as zero-mean complex Gaussian with variance� 2
h . Furthermore,nd represents additive

white complex Gaussian noise (AWGN) and is modeled as a zero-mean complex Gaussian vector with co-variance matrix

� 2
n I . We collect all received data from theD receive antennas and form theN � D “received matrix”

Y
4
= [ y1y2 : : : yD ]: (2)

TheD channel coef�cientshd, d = 1 ; 2; : : : ; D , are assumed unknown to both the transmitter and the receiver, implying

that noncoherent detection has to be performed. The MLSD decision for the transmitted sequences given theN � D

observation matrixY maximizes the conditional probability density function (pdf) of Y given s. Thus, the maximization

problem becomes

sopt
4
= arg max

s2A N
M

f (Y js)

= arg max
s2A N

M

f (y1; y2; : : : ; yD js):

(3)

Due to independence among theD channels, the columns of the received matrixY are i.i.d. given the transmitted sequence

s. Therefore,

sopt = arg max
s2A N

M

DY

d=1

f (yd js)

= arg max
s2A N

M

DX

d=1

ln f (yd js):

(4)

The conditional received vector at thedth antenna given the transmitted sequence isyd js = hds+ nd wherehds is a singular

complex Gaussian vector independent fromnd, d = 1 ; 2; : : : ; D . The following proposition identi�es the pdf ofyd js.

Proposition 1 The sum of a singular complex Gaussian vector and an independent complex Gaussian vector results in a

complex Gaussian vector.
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Proof Consider a singular Gaussian vector of the form

q = [ a1q; a2q; : : : ; aN q]T ; q � CN(mq; � 2
q); a1; a2; : : : ; aN 2 R (5)

and an independent complex Gaussian vector

n = [ n1; n2; : : : ; nN ]T ; n � CN(m n ; Cn ): (6)

Consider the sum
P N

i =1 (qi + ni ) =
P N

i =1 ni +
P N

i =1 ai qand observe that both
�

q
P N

i =1 ai

�
and

� P N
i =1 ni

�
are independent

complex Gaussian random variables. Then
P N

i =1 (qi + ni ) is also a complex Gaussian random variable. Consequently

z = n + q is a complex Gaussian vector [12]. 2

According to Proposition 1, sincehd andnd are both zero-mean,yd js is a zero-mean complex Gaussian vector with covari-

ance matrix

R y d j s
4
= Ef ydy H

d jsg = � 2
n I + P � 2

h ssH : (7)

As a result, the MLSD receiver of (4) becomes

sopt = arg max
s2A N

M

DX

d=1

ln
1

� N jR y d j sj
exp

n
� y H

d R � 1
y d j syd

o

= arg max
s2A N

M

DX

d=1

�
� y H

d R � 1
y d j syd + ln

1
� N jR y d j sj

�
:

(8)

Using the propertyjA + cdH j = jA j(1 + dH A � 1c) found in [11], we computejR y d j sj = � 2N
n (1 + NP � 2

h
� 2

n
). Since,jR y d j sj

is not a function ofs, it can hence be dropped from the detector in (8). Moreover, using the matrix inversion lemma, the

inverse ofR y d j s becomesR � 1
y d j s = 1

� 2
n

�
I � P � 2

h
� 2

n + NP � 2
h

ssH
�

, implying that the decision rule in (8) is simpli�ed to

sopt = arg max
s2A N

M

DX

d=1

1
� 2

n

�
�jj yd jj2 +

P � 2
h

� 2
n + NP � 2

h
y H

d ssH yd

�

= arg max
s2A N

M

DX

d=1

jy H
d sj2

= arg max
s2A N

M

jjY H sjj : (9)

If the above optimization is performed through exhaustive search, then it costsO(M N ) computations which is an intractable

complexity even for moderate vales ofN . In the next section, we follow an approach similar to the oneof [6]-[8] but

tailored to our detection problem in (9). Speci�cally, we introduce2D � 1 spherical coordinates and develop an ef�cient

algorithm to build a setS(Y N � D ) � A N
M that consists ofjS(Y N � D )j = O((NM )2D � 1) signal vectors, is constructed with

O((MN )2D ) computations, and contains the optimal vectorsopt in (9).
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III. Ef�cient ML Block Noncoherent MPSK Detection

A. Theoretic developments

In order to develop an ef�cient technique for solving the maximization problem in (9), we introduce2D � 1 auxiliary

hyperspherical coordinates� 1 2 (� �; � ]; � 2; : : : ; � 2D � 1 2
�
� �

2 ; �
2

�
and de�ne the2D � 1 hyperspherical vector

~c(� 1; : : : ; � 2D � 1)
4
=

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

sin � 1

cos� 1 sin � 2

...

cos� 1::: cos� 2D � 2 sin � 2D � 1

cos� 1::: cos� 2D � 2 cos� 2D � 1

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(10)

as well as theD � 1 hyperspherical complex vector

c(� 1; : : : ; � 2D � 1)
4
= ~c1:D; 1(� 1; : : : ; � 2D � 1) + j ~cD +1:2 D; 1(� 1; : : : ; � 2D � 1): (11)

Then, the problem in (9) is rewritten equivalently as

sopt = arg max
s2A N

M

jjY H sjj

= arg max
s2A N

M

max
� 1 2 ( � �;� ]

max
� 2 ;:::;� 2D � 1 2 ( � �

2 ; �
2 ]

jsH Yc (� 1; : : : ; � 2D � 1)j

(12)

due to Cauchy-Schwartz Inequality which states that for anyv 2 CD

jv H c(� 1; : : : ; � 2D � 1)j � jj v jj � jj c(� 1; : : : ; � 2D � 1)jj
| {z }

=1

(13)

with equality if and only if� 1; : : : ; � 2D � 1 are the hyperspherical coordinates ofv . Furthermore8v 2 CD ,

<f v H c(� 1; : : : ; � 2D � 1)g � j v H c(� 1; : : : ; � 2D � 1)j; (14)

with equality if and only if� 1; : : : ; � 2D � 1 are the hyperspherical coordinates ofv . Hence, the maximization problem in (12)

becomes

sopt = arg max
s2A N

M

max
� 1 2 ( � �;� ]

max
� 2 ;:::;� 2D � 1 2 ( � �

2 ; �
2 ]

<f sH Yc (� 1; : : : ; � 2D � 1)g: (15)

We interchange the maximizations in (15) and obtain the equivalent problem

max
� 1 2 ( � �;� ]

max
� 2 ;:::;� 2D � 1 2 ( � �

2 ; �
2 ]

NX

n =1

max
sn 2A M

<f s�
n Y n; 1:D c(� 1; � 2; : : : ; � 2D � 1)g; (16)
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we observe that the original maximization problem in (9) is decomposed in a set of symbol-by-symbol coherent detection

rules for a given set of angles(� 1; : : : ; � 2D � 1) 2 (� �; � ] �
�
� �

2 ; �
2

� 2D � 2
. For such a set of angles the maximizing argument

of a coherent decision metric of the sum in (16), say for symbol sn , depends only on the corresponding row of “received”

matrix Y , since that is the one related with thenth transmitted symbol. As� 1; � 2; : : : ; � 2D � 1 vary, the decision in favor of

sn is maintained as long as a decision boundary is not crossed. Due to the structure ofA M , the M
2 decision boundaries that

affect the maximization in (16) are given by

Y n; 1:D c(� 1; : : : ; � 2D � 1) = Aej 2� k
M ; k = 0 ; 1; : : : ;

M
2

� 1; n = 1 ; 2; : : : ; N: (17)

The decision boundaries in (17) can be rewritten without loss of generality (w.l.o.g.) as

=f e� j 2� k
M Y n; 1:D c(� 1; : : : ; � 2D � 1)g = 0 ; k = 0 ; 1; : : : ;

M
2

� 1; n = 1 ; 2; : : : ; N (18)

which is equivalent to

~Y l; 1:2D ~c(� 1; : : : ; � 2D � 1) = 0 ; l = 1 ; : : : ;
MN

2
; (19)

where

~Y
4
=

h
= (Ŷ ) < (Ŷ )

i
; (20)

Ŷ
4
= Y 


h
1 e� j 2 �

M e� j 4 �
M : : : e� j 2 �

M ( M
2 � 1)

i T
; (21)

and
 denotes Kronecker product. The inner maximization rule in (16) motivates us to de�ne adecision functions that maps

a set of angles(� 1; � 2; : : : ; � 2D � 1) to a certain value of setA M according to

s(y T ; � 1; � 2; : : : ; � 2D � 1)
4
= arg max

s2A M

<
�

s� y T c(� 1 : : : ; � 2D � 1)
	

(22)

for anyy 2 CD . Then, for the givenN � D matrixY , each set of angles in(� �; � ] �
�
� �

2 ; �
2

� 2D � 2
is mapped to a candidate

M -ary vector

s(Y N � D ; � 1; : : : ; � 2D � 1)
4
=

2

6
6
6
6
6
6
6
6
6
6
4

s(Y 1;1:D ; � 1; : : : ; � 2D � 1)

s(Y 2;1:D ; � 1; : : : ; � 2D � 1)

...

s(Y N; 1:D ; � 1; : : : ; � 2D � 1)

3

7
7
7
7
7
7
7
7
7
7
5

(23)

and the optimal vectorsopt in (15) belongs to
S

� 1 2 ( � �;� ]

S
� 2 ;:::;� 2D � 1 2 ( � �

2 ; �
2 ] s(Y N � D ; � 1; : : : ; � 2D � 1). Furthermore,

since oppositeM -ary vectors result in the same metric in (9), we can ignore the values of� 1 in
�
� �; � �

2

�
[

�
�
2 ; �

�
and
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Fig. 1.

consider� 1; : : : ; � 2D � 1 2 �
4
=

�
� �

2 ; �
2

�
, hence the maximization in (16) can be rewritten as

max
� 1 ;� 2 ;:::;� 2D � 1 2 �

NX

n =1

max
sn 2A M

<f s�
n Y n; 1:D c(� 1; � 2; : : : ; � 2D � 1)g: (24)

Since we have de�ned a new problem space, we may now collect all M -ary candidate vectors to set

S(Y N � D )
4
=

[

� 1 ;:::;� 2D � 1 2 �

f s(Y N � D ; � 1; : : : ; � 2D � 1)g � A N
M : (25)

Such set includes the maximizer of our detection problem, hence

sopt = arg max
s2S (Y )

jjY H sjj : (26)

The setS(Y N � D ) that includessopt is later proved to have cardinalityjS(Y N � D )j = O((NM )2D � 1). Moreover, an

ef�cient algorithm for the construction of the aforementioned set is developed in subsection B withO((NM )2D ) complexity.
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Fig. 2.

From (21), we observe that the rows of theMN
2 � 2D matrix ~Y determineMN

2 hypersurfacesF ( ~Y 1;1:2D ); F ( ~Y 2;1:2D ); : : :

; F ( ~Y MN
2 ;2:D ). An example of such hypersurface is shown in Fig.1 forD = 2 . Each hypersurface partitions the hypercube

� 2D � 1 into two regions, and all hypersurfacesF ( ~Y 1;1:2D ); F ( ~Y 2;1:2D ); : : : ; F ( ~Y MN
2 ;2:D ) partition the hypercube� 2D � 1

into K cells C1; C2; : : : ; CK such that
S K

k=1 Ck = � 2D � 1, Ck \ Cj 6= 0 8 k 6= j , with each cellCk corresponding to a

uniquesk 2 A N
M . Let f i 1; i 2; : : : ; i 2D � 1g � f 1; 2; : : : ; MN

2 g be a subset of2D � 1 indices (that correspond to2D � 1

hypersurfaces) and� ( ~Y MN
2 � D ; i 1; : : : ; i 2D � 1) 2 � 2D � 1 equal the vector of coordinates of the intersection of hypersurfaces

F ( ~Y i 1 ;1:2D ); : : : ; F ( ~Y i 2D � 1 ;1:2D ). The basic property of such an intersection is presented in the following proposition. The

proof is given in Appendix A.

Proposition 2 Any combination of2D � 1 hypersurfaces, sayF ( ~Y i 1 ;1:2D ); F ( ~Y i 2 ;1:2D ); : : : ; F ( ~Y i 2D � 1 ;1:2D ), has a unique

intersection (which is a vertex of a cell) if and only if no more than two hypersurfaces originate from the same row of the
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observation matrixY . 2

0   

0   

0   

f
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f
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f 1
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- p/2

- p/2

Fig. 3.

In Fig.2 we present the intersection ofM
2 hypersurfaces that originate from the same row ofY , with M = 8 , D = 2 .

We observe that such an ensemble of hypersurfaces partitions the hypercube� 2D � 1 into M partitions, with each partition

corresponding to a unique element of theA M alphabet. Moreover as an illustrative example for proposition 2, we present, in

Fig.3, the intersection of2D � 1 hypersurfaces, where no more than two hypersurfaces originate from the same row ofY ,

and observe that such unique intersection is a single point and a vertex of a cell.

Any cell, sayC
�

~Y MN
2 � 2D ; i 1; : : : ; i 2D � 1

�
for example, is exclusively associated with a uniqueM -ary vectors( ~Y MN

2 � 2D ;

i 1; : : : ; i 2D � 1), in the sense that within that cell all single points of the form(� 1; � 2; : : : ; � 2D � 1) 2 C
�

~Y MN
2 � 2D ; i 1; : : : ; i 2D � 1

�
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yield the same candidate vector,s
�

~Y MN
2 � 2D ; i 1; : : : ; i 2D � 1

�
that is; we collect all suchM -ary vectors to set

J ( ~Y MN
2 � 2D )

4
=

[

f i 1 ;:::;i 2D � 1 g�f 1;:::; MN
2 g

n
s

�
~Y MN

2 � 2D ; i 1; : : : ; i 2D � 1

�o
� A N

M : (27)

The cardinality ofJ ( ~Y MN
2 � 2D ) is given by

jJ ( ~Y MN
2 � 2D )j =

D � 1X

d=0

�
N
d

��
N � d

2D � (1 + 2d)

� �
M
2

� 2D � 1� d

= O((NM )2D � 1): (28)

Thus,J ( ~Y MN
2 � 2D ) containsO((NM )2D � 1) M -ary vectors. Then, it can be shown [8] that all candidate vectors form the

set

S(Y N � D ) = J
�

~Y MN
2 � 2D

�
[ J

�
~Y MN

2 � (2D � 2)

�
[ : : : [ J

�
~Y MN

2 � 2

�

=
D � 1[

d=0

J
�

~Y MN
2 � 2(D � d)

�
;

(29)

with ~Y MN
2 � 2(D � d) denoting the matrix that contains all �rst2(D � d) columns of~Y . As a result the cardinality of the above

set is

jS( ~Y MN
2 � 2D )j =

�
�
�J

�
~Y MN

2 � 2D

� �
�
� +

�
�
�J

�
~Y MN

2 � 2(D � 2)

� �
�
� + � � � +

�
�
�J

�
~Y MN

2 � 2

� �
�
�

=
DX

Q=1

Q� 1X

d=0

�
N
d

��
N � d

2Q � (1 + 2d)

� �
M
2

� 2Q� 1� d

=

=
DX

Q=1

O((NM )2Q� 1) = O((NM )2D � 1);

(30)

which is straightforward sinceJ
�

~Y MN
2 � 2D

�
, with cardinality O((NM )2D � 1), is the largest set among the subsets of

S( ~Y MN
2 � 2D ).

To summarize the developments of this subsection, we have utilized 2D � 1 auxiliary hyperspherical coordinates, and

partitioned the hypercube� 2D � 1 into O((NM )2D � 1) cells associated with uniqueM -ary candidate vectors that constitute

the setS(Y N � D ) � A N
M which includessopt in (9). Therefore, the initial detection problem in (9) has been converted into a

maximization amongO((NM )2D � 1) candidate vectors.

B. Algorithmic developments

The construction ofS(Y N � D ) is of special interest since it determines the overall performance of the proposed method.

According to (29), it reduces to the parallel construction of J ( ~Y MN
2 � 2d), for d = 2D; 2D � 2; : : : ; 2, which can be also fully

parallelized since cells in the hypersurface arrangement are examined independently from each other. It can be shown that the

14



decision function in (22) determines de�nitely the corresponding symbolsn if and only if no hypersurface originates from

Y n; 1:d. For the hypersurfaces that pass through the cell intersection, the rule in (22) becomes ambiguous. In such a case,

de�nite determination ofsn is attained if� 2D � 1 is set to�
2 and (22) is examined at the intersection of the same hypersurfaces

except from the hypersurface of interest.

The algorithm visits independently thejS(Y N � D )j = O((NM )2D � 1) intersections and computes the candidate vector

in A N
M for each intersection. The cost of the algorithm for each candidate vector isO(MN ) since it needs to check at most

MN inequalities. Therefore, the overall complexity for the construction ofS(Y N � D ) becomesO((NM )2D � 1) O(MN ) =

O((NM )2D ). The MATLAB code for the construction ofS(Y N � D ) is given in Appendix B..

It remains to describe how the vector of coordinates� ( ~Y MN
2 � d; i 1; : : : ; i 2d� 1) is obtained ef�ciently. Since such coordi-

nates represent the intersection ofF ( ~Y i 1 ;1:2d); F ( ~Y i 2 ;1:2d); : : : ; F ( ~Y i 2d � 1 ;1:2d) a unique solution is given by the following

system of equations

~Y [i 1 ;i 2 ;:::;i 2d � 1 ];1:2dc(� 1; � 2; : : : ; � 2d� 1) = 0(d� 1) � 1

jj c(� 1; � 2; : : : ; � 2d� 1)jj = 1

9
>>=

>>;
: (31)

We observe that the above equations(i) explicitly imply orthogonality between the(2d � 1)-dimensional hyperplane de�ned

by ~Y [i 1 ;i 2 ;:::;i 2d � 1 ];1:2d and the hyperspherical vectorc(� 1; � 2; : : : ; � 2d� 1), and(ii) constrain the solutions to unitary vectors.

To further assist the present work we introduce the following proposition.

Proposition 3 Consider a full-rank(d � 1) � d complex matrixQ. Then, the equation

Qc(� 1; : : : ; � d� 1) = 0(d� 1) � 1 (32)

has a unique solution� (Q) 2 � 2d� 1 which consists of the hyperspherical coordinates of the zero left singular vector ofQ.

2

We recall that one way to obtain the zero left singular vectorof Q is by singular value decomposition (SVD). Such a singular

vector is known to be unitary, thus norm-constrained to 1. Consequently, the solution of (31) can be ef�ciently obtained

simply by computing the zero left singular vector of matrix~Y [i 1 ;i 2 ;:::;i 2d � 1 ];1:2d, which is the hyperspherical vector of interest

c(� 1; � 2; : : : ; � 2D � 1). Now, sincec(� 1; � 2; : : : ; � 2d� 1) is obtained we need only computesn = arg max s2A M <f s� Y n; 1:2d

c(� 1 : : : ; � 2d� 1)g 8n 2 f 1; 2; : : : ; N g, that correspond to all elements of the candidate vector explicitly de�ned by the

intersection ofF ( ~Y i 1 ;1:2d); F ( ~Y i 2 ;1:2d); : : : ; F ( ~Y i 2d � 1 ;1:2d). However, as mentioned earlier, the determination ofsn where

15



n 2 f i 1; i 2; : : : ; i 2d� 1g becomes ambiguous, hence, we set� 2d� 1 = �
2 and solve the following system

~Y [i 1 ;i 2 ;:::;i n � 1 ;i n +1 ;:::;i 2d � 1 ]c(� 1; � 2; : : : ; � 2d� 2; �
2 ) = 0(d� 2) � 1

�
�
�
�c(� 1; � 2; : : : ; � 2d� 2; �

2 )
�
�
�
� = 1

9
>>=

>>;
: (33)

Solution is obtained similarly to (31), by computing the zero left singular vector of~Y [i 1 ;i 2 ;:::;i n � 1 ;i n +1 ;:::;i 2d � 1 ];1:2d� 1. Even-

tually, we computesn = arg max s2A M < f s� Y n; 1:2dc(� 1; : : : ; i n � 1; i n +1 ; : : : ; i 2d� 1)g for n 2 f i 1; i 2; : : : ; i 2d� 1g.

We recall that the corresponding complexity of [4] isO((NM )2D LP(NM; 2D)) where LP(NM; 2D) is the complexity

of a linear programming (LP) optimization problem withMN inequalities and 2D variables. Provided that the worst-case

complexity of LP(NM; 2D) in linear inNM [13], it turns out that the method in [4] costsO((NM )2D +1 ) calculations, i.e.,

one order of magnitude more calculations than the proposed algorithm. In addition, [4] treats only the caseM = 2 (BPSK)

andM = 4 (QPSK).
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Fig. 4.
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Finally, in Fig.4 we draw the complexity of the proposed algorithm and that of the exhaustive search, forD = 2 and8-

PSK constellations. We observe that for sequence lengths less thanN = 5 exhaustive search seems most ef�cient. However,

as sequence length grows, the complexity of the exhaustive search grows exponentially and becomes impractically largeeven

for moderate sequence lengths. Whereas, the complexity of the proposed algorithm grows polynomially with respect toN , is

surprisingly faster than exhaustive search, and remains practical even for large sequence lengths, where the candidate vector

set of the exhaustive search is incomputably large.

IV. Simulation Results
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Fig. 5. BER versus SNR for conventional, (proposed) MLSD noncoherent receivers, and MRC.

As an illustration, we consider differentially encoded8-PSK (M = 8) transmission by 1 antenna of a sequence of length
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N = 8 ; 14 and reception byD = 2 antennas; for the case where coherence detection is made themaximal ratio combining

(MRC) method is considered. The signal-to-noise ratio (SNR) ranges from5dB to20dB and for each SNR value103 Monte-

Carlo simulations are run. In Fig. 5, we present bit error rate (BER) of the conventional (1-lag) differential detector,of the

maximum-likelihood sequence detector (MLSD), and of the MRC detector. The noncoherent MLSD is implemented using

our proposed algorithm of complexityO((NM )2D ). Even forN = 8 the candidate set of our proposed algorithm is much

smaller than that of the exhaustive search. The reduced set of candidates of the proposed algorithm has size4480� 212 for

N = 8 , compared to the much larger set that needs to be visited by exhaustive search and has size224 = 16777216. For

N = 14 that difference grows with our method reducing the exponential set of242 to approximately215 candidate vectors,

in which the MLSD vector is included. Also, observe that as block length grows the BER curve of the MLSD algorithm

is getting closer to the BER curve of coherent detection. We can conclude that our algorithm truly appears as an ef�cient

noncoherent MLSD method that is applicable to any order of MPSK constellation.

Appendix A

In this appendix, we provide the proof of proposition 2 for arbitrary D , M , andN . For the given matrices~Y , Ŷ let ad
4
=

=f ŷn;d g andbd
4
= <f ŷn;d g, d = 1 ; 2; : : : ; D . Since ~Y n;d 0 = =f ŷn;d g for d0 = 1 ; 2; : : : ; D , and ~Y n;d 0 = <f ŷn;d g for d0 =

D + 1 ; D + 2 ; : : : ; 2D , n = 1 ; 2; : : : ; MN
2 . Moreover,=f e� j! ŷn;d g = =f ŷn;d gcos! � <f ŷn;d gsin ! and<f e� j! ŷn;d g =

<f ŷn;d gcos! + =f ŷn;d gsin ! . Motivated by Section III we de�ne two rotated hypersurfaces in the following manner

2

6
6
4

=f ŷn; 1g ::: =f ŷn;D g <f ŷn; 1g ::: <f ŷn;d g

=f e� j! ŷn; 1g:::=f e� j! ŷn;D g<f e� j! ŷn; 1g:::<f e� j! ŷn;D g

3

7
7
5

2

6
6
6
6
6
6
4

sin � 2

...

cos� 2::: cos� 2D � 1

3

7
7
7
7
7
7
5

= 0(2D � 1) � 1 ,

2

6
6
4

a1 ::: aD b1 ::: bD

a1 cos! � b1 sin ! ::: a D cos! � bD sin ! b 1 cos! + a1 sin ! ::: b D cos! + aD sin !

3

7
7
5

2

6
6
6
6
6
6
4

sin � 2

...

cos� 2::: cos� 2D � 1

3

7
7
7
7
7
7
5

= 0(2D � 1) � 1:

(34)

The �rst row yields the following equation

a1 sin � 1 + : : : + aD cos� 1::: cos� D � 2 sin � D � 1 + b1 cos� 1::: cos� D sin � D +1 + : : : + bD cos� 1::: cos� 2D � 1 cos� 2D � 1 = 0 ,

a1 tan � 1 + : : : + aD cos� 2::: cos� D � 2 sin � D � 1 + b1 cos� 2::: cos� D sin � D +1 + : : : + bD cos� 2::: cos� 2D � 1 cos� 2D � 1 = 0 ,
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tan � 1 = �

2

6
6
6
6
6
6
4

a2

...

bD

3

7
7
7
7
7
7
5

T 2

6
6
6
6
6
6
4

sin � 2

...

cos� 2::: cos� 2D � 1

3

7
7
7
7
7
7
5

a1
(35)

equivalently from the second row we obtain2

tan � 1 = �

2

6
6
6
6
6
6
4

a2 cos! � b2 sin !

...

bD cos! + aD sin !

3

7
7
7
7
7
7
5

T 2

6
6
6
6
6
6
4

sin � 2

...

cos� 2::: cos� 2D � 1

3

7
7
7
7
7
7
5

a1 cos! � b1 sin !
: (36)

The two solutions fortan � 1 de�ne two different hypersurfaces, if we show that the intersection of those two hypersurfaces

is independent of the arbitrary rotation, then proposition2 will have been proved. Continuingly, the intersection of the two

hypersurfaces is given by
2

6
6
6
6
6
6
4

a2

...

bD

3

7
7
7
7
7
7
5

T 2

6
6
6
6
6
6
4

sin � 2

...

cos� 2::: cos� 2D � 1

3

7
7
7
7
7
7
5

a1
=

2

6
6
6
6
6
6
4

a2 cos! � b2 sin !

...

bD cos! + aD sin !

3

7
7
7
7
7
7
5

T 2

6
6
6
6
6
6
4

sin � 2

...

cos� 2::: cos� 2D � 1

3

7
7
7
7
7
7
5

a1 cos! � b1 sin !
, (37)

2

6
6
6
6
6
6
4

a2(a1 cos! � b1 sin ! )

...

bD (a1 cos! � b1 sin ! )

3

7
7
7
7
7
7
5

T 2

6
6
6
6
6
6
4

sin � 2

...

cos� 2::: cos� 2D � 1

3

7
7
7
7
7
7
5

=

2

6
6
6
6
6
6
4

a1(a2 cos! � b2 sin ! )

...

a1(bD cos! + aD sin ! )

3

7
7
7
7
7
7
5

T 2

6
6
6
6
6
6
4

sin � 2

...

cos� 2::: cos� 2D � 1

3

7
7
7
7
7
7
5

,

2

6
6
6
6
6
6
4

a2(a1 cos! � b1 sin ! ) � a1(a2 cos! � b2 sin ! )

...

bD (a1 cos! � b1 sin ! ) � a1(bD cos! + aD sin ! )

3

7
7
7
7
7
7
5

T 2

6
6
6
6
6
6
4

sin � 2

...

cos� 2::: cos� 2D � 1

3

7
7
7
7
7
7
5

= 0 ,

2

6
6
6
6
6
6
4

a2a1 cos! � a1b1 sin ! � a1a2 cos! + a1b2 sin !

...

bD a1 cos! � bD b1 sin ! � a1bD cos! � bD aD sin !

3

7
7
7
7
7
7
5

T 2

6
6
6
6
6
6
4

sin � 2

...

cos� 2::: cos� 2D � 1

3

7
7
7
7
7
7
5

= 0 ,

2For the sake of simplicity and space, from now on we shall only include the �rst and last element of a vector in the equations
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2

6
6
6
6
6
6
4

sin ! (a1b2 � a2b1)

...

sin ! (� b1bD � aD bD )

3

7
7
7
7
7
7
5

T 2

6
6
6
6
6
6
4

sin � 2

...

cos� 2::: cos� 2D � 1

3

7
7
7
7
7
7
5

= 0 ,

sin !

2

6
6
6
6
6
6
4

a1b2 � a2b1

...

� b1bD � aD bD

3

7
7
7
7
7
7
5

T 2

6
6
6
6
6
6
4

sin � 2

...

cos� 2::: cos� 2D � 1

3

7
7
7
7
7
7
5

= 0 ,

2

6
6
6
6
6
6
4

a1b2 � a2b1

...

� b1bD � aD bD

3

7
7
7
7
7
7
5

T 2

6
6
6
6
6
6
4

sin � 2

...

cos� 2::: cos� 2D � 1

3

7
7
7
7
7
7
5

= 0 : (38)

Since we reached the �nal form in (38) w.l.o.g., we ought to assume that (38) is fully equivalent to (37), and thus the

intersection of the two hypersurfaces is independent of thearbitrary rotation! 6= 0 . Thus, proposition 2 holds true.

Appendix B

In this appendix the Matlab code for �nding the polynomial-sized reduced set of candidates that includessopt is provided.

The function complexrank M candfast(Y tilde, Y, M, N) has as input arguments the matrices~Y MN
2 � 2d, Y N

� d, the orderM

of M -PSK and the sequence lenghtN .

function S = complex_rank_M_cand_fast(Y_tilde, Y, M, N)

s = exp(j * pi/M * (2 * [0:M-1]'+1)); % MPSK constellation

[NM 2D] = size(Y_tilde);

if 2D > 2

s_reduced = [exp(-j * (pi/M)) ; exp(j * (pi/M)) ; exp(-j * (pi/M+pi)) ; exp(j * (pi/M+pi))];

s_2_slices = exp(j * pi/M) * [1 ; exp(j * pi)];

reduced_pairs = reshape(s_reduced, 2, []);

combs = find_combs1(N, 2D, M);
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S = zeros(N, size(combs, 1));

for i = 1:length(combs)

J = combs(i,:);

group = ceil(2 * J/M); % generator row

Y_tilde1 = Y_tilde(J,:); % intersecting HSs

phi = cartesian_to_spherical(find_intersection(Y_tild e1).');

c_complex = [sin(phi(1))+j * cos(phi(1)) * cos(phi(2)) * sin(phi(3)) ;...

cos(phi(1)) * sin(phi(2))+j * cos(phi(1)) * cos(phi(2)) * cos(phi(3))];

%%%% find cadidate %%%

[dummy, index_s] = max(real([Y(:,1) Y(:,2)] * c_complex * s'), [], 2);

S(:,i) = s(index_s);

%%%%%%%%%%%%%%%%%%%%%%

%%% disambiguate %%%

group = [group -1];

for m = 1:2D-1

k = mod(J(m)-1, M/2);

rotation = exp(j * (2 * k* pi/M));

Y12_m = [Y(group(m),1) Y(group(m),2)];

if group(m)- group(m+1) ˜= 0 % different row of origin

s_reduced_m = s_reduced * rotation;

reduced_pairs_m = reduced_pairs * rotation;

half_s_reduced_m = s_reduced_m(1:2:end,:);

[dummy, index_s] = max(real(Y12_m * c_complex * half_s_reduced_m').');

s_reduced_m = reduced_pairs_m(:,index_s);

phi_reduced = cartesian_to_spherical(find_intersectio n(...

[Y_tilde1([1:m-1 m+1:2D-1],1:2D-1)]).');

[dummy, index_s] = max(real(Y12_m * [sin(phi_reduced(1))+...

j * cos(phi_reduced(1)) * sin(phi_reduced(2));...
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cos(phi_reduced(1)) * cos(phi_reduced(2)) * sin(pi/2)+...

j * cos(phi_reduced(1)) * cos(phi_reduced(2)) * cos(pi/2)] * s_reduced_m'));

S(group(m),i) = s_reduced_m(index_s);

else

phi = cartesian_to_spherical(find_intersection(...

[Y_tilde1([1:m-1 m+1:2D-1],1:2D-1)]).');

s_reduced_m = s_2_slices * rotation;

[dummy, index_s] = max(real(Y12_m * [sin(phi(1))+...

j * cos(phi(1)) * sin(phi(2));...

cos(phi(1)) * cos(phi(2)) * sin(pi/2)+...

j * cos(phi(1)) * cos(phi(2)) * cos(pi/2)] * s_reduced_m'));

S(group(m), i) = s_reduced_m(index_s);

m = m + 1;

end

end

end

S = [S complex_rank_M_cand_fast(Y_tilde(:, 1:2D-2), Y(:, 1:(2D-2)/2), M)];

else

phi_crosses = [-pi/2 ; atan(-Y_tilde(:, 2)./Y_tilde(:, 1) )];

[phi_sort, phi_ind] = sort(phi_crosses);

phi_mid = (phi_sort(1:end-1)+phi_sort(2:end))/2;

for i = 1:length(phi_mid)

[dummy, index_s] = max(real(Y * (sin(phi_mid(i))+j * cos(phi_mid(i))) * s').');

S(:,i) = s(index_s);

end

end
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