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CHAPTER 1

Introduction to microarray technology
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1. Introduction

Completion of the Human Genome Project has opened a new era in studies of 

functions of cells and organisms.  Identification of the thousands of genes forming 

genomes brings us to the next frontier: elucidation of the functions of these genes and 

their interactions to “functional genomics” An experimental tool that allows surveying 

expression of the genetic information on a genome-wide scale at the level of single 

genes has been developed just a few years ago thanks to the microarray technology. 

Global gene expression profiling using microarrays is emerging as key technology for 

understanding fundamental biology of gene function development and for discovering 

new  classes  of  diseases  such  as  cancer  and  for  understanding  their  molecular 

pharmacology.  Numerous unsupervised and supervised learning methods have been 

applied to the task of discovering and learning to recognize classes of co-expressed 

genes.  Multiple open source software is available for evaluating the significance of 

the information given by microarrays. Genes databases and microarrays datasets are 

free accessed by the scientists and universities who want to test ,to improve or to 

produce new algorithms and methods for  better utilization of this big amount of raw 

information. 

1.1Microarray technology

Microarray or microchip is a chip made of glass or other solid material, with an 

array of tiny DNA spots placed on it.  Each spot contains fragments of DNA or RNA 

molecule whose sequence is predefined and corresponds to portions of a particular 

gene.   The  lengths  of  these  fragments  may  vary  from  about  20  nucleotides  in 

oligonucleotide  microarrays  to  thousands  of  nucleotides  in  genome  microarrays. 

Typical microarray contains several thousand spots on the surface of a quarter square 

inch, and a library of thousands of genes is placed on a single chip.  To probe the 

global gene expression levels of many genes in biological samples such as cell lines, 

tissue extracts, or laser micro dissected cells,  messenger RNAs are first extracted. 

mRNAs are then reverse-transcribed into cDNA.  The amount of cDNA produced is 

then amplified by polymerase chain reactions (PCR), a standard molecular biology 

technique. Under proper experimental conditions the concentrations of the cDNA for  

a  specific  gene  reflect  the  amount  of  expressed mRNA of  this  gene  in  the  probe  
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sample (pic 1).  The expression levels of individual    genes present on the chip can 

then  measured  quantitatively  by  laser  scanning  (fluorescent  probes)  or  by 

phosphoimaging (radio labelled probes) spots at different predefined locations on the 

chip.  In another experiment scheme, the extracts from the sample tissue and a control 

tissue are marked with different dyes, and are hybridized simultaneously on the same 

chip.   This  approach  provides  information  about  the  relative  concentration  of 

expressed RNA in sample and control tissues. As probe samples collected at different 

well-designed experimental conditions are applied, the relative expression levels of all 

genes on the chip can then be analyzed for changes in the expression patterns to 

obtain an integrated global picture about the underlying genetic networks [1]. 

                                                            

                                                               Pic.1  
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1.1.1 DNA and oligonucleotide gene expression microarray 
platforms:   principals and differences

Since the inception of DNA microarrays, technological advances have lead to the 

development of two main types of arrays, namely clone-based and oligonucleotide 

based.  Both expression  systems,  each  with  different  experimental  designs, are 

routinely used to compile comparative global mRNA expression profiles of tissues or 

cell lines. 

cDNA microarrays (pic 2) are microscopic array which contain large sets of DNA 

sequences immobilized on a  solid substrate.  In  a  array experiment,  many specific 

cDNAs are spotted on a single matrix. The matrix is then simultaneously probed with 

fluorescently  tagged  cDNA  representations  of  total  RNA  pools  from  test  and 

reference cells, allowing one to determine the relative amount of transcript present in 

the pool by the type of fluorescent signal generated. Current technology can generate 

arrays with over 10. 000 cDNA pre square centimetre. For cDNA arrays, each value is 

the  logarithm of  the  ratios  of  the  estimated  abundances  of  mRNA in  two  tissue 

samples.  [2]. 

Oligonucleotide  microarrays  (pic  2)  each  spot  on  the  array  contains  a  sort 

synthetic ilogonucleotide.  The oligos are designed based on the knowledge of the 

DNA (or EST) target sequences to ensure high-affinity and specificity of each oligo to 

a  particular  target  gene.  The  advantage  of  this  type  or  microarrays  is  that  they 

improve signal –to-noise ratio and accuracy of RNA quantization and reduce the rate 

of false positives and miscalls [2]. 

      The  above  microarray  platforms  have  two  major  differences.  The  cDNA 

microarray is characterized as fluorescent labelled platform and the oligonucloetide 

microarray as radioactively labelled platform. Comparisons and test taken on these 

two  technologies  have  indicated  no  clear  consensus  as  to  the  comparability  of 

expression profiles from different platforms, using either ratio-transformed or single 

channel  expression  data.  Additionally  studies  have  led  to  the  conclusion  that 

oligonucleotide- based arrays, such as those produced by Affymetrix, and full-length 

clone-based arrays may be too different in experimental design to be expected to give 

global expression results that can be directly correlated.  This suggests that microarray 

technologies should not be used as an absolute quantisation method and that pooling 
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of global expression profiles from different microarray platforms for the purposes of 

large-scale data mining should be undertaken with caution. [3].  

                                                             

  Pic. 2 

1.2The importance of clinical data

A big question that  arises from the usage of  this  technology is  whether  the 

laboratory samples and  the methods involved to create the microarray are capable of 

giving the right picture of the pathological status of the patient and the expression 

profiles of the genes. In other words is there a systematic and analytic approach that 

gives trustworthy results? These questions arise from the tension between the relative 

ease of producing the results and the objective difficulty of dealing with the results. 

Additionally, the diversity of experimental designs and schemes adds to the confusion 
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[4].  The size of experimental groups and the design of the experiments also vary 

widely,  from  timecourse  experiments  to  cross-sectional  studies,  from  single 

observations  with  no  repeats  to  analysis  of  hundreds  of  samples.  Naturally,  these 

diverse experimental schemes pose diverse computational requirements—the analysis 

of an experiment designed discover a new class of a disease is  different from an 

experiment designed to test the immediate targets of a known transcriptional activator. 

The wealth and complexity of information that characterizes results  of microarray 

experiments has led to the suggestion that there may not be a single “best” analytic 

approach  and  that  indeed  the  application  of  several  analytical  and  computational 

approaches  to  a  dataset  may aid  in  the  exposure  of  different  and  complementary 

aspects of the data [3].  Additionally the collaboration between clinical and computer 

scientists  and  the  usage  of  multiple  tools  are  actions  that  will  make  possible  the 

accurate analysis of the microarray data. 

                                                                  Pic. 3
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1.3Methods

Microarray studies often generate massive amounts of data, which are difficult 

to be exhaustively examined by hand (arrays of high dimensionality with 24. 000 

genes  each)(pic  2).   Bioinformatics  analysis  and  interpretation  to  extract  genetic 

patterns from these data are therefore essential for gaining biological insights from 

experiments.  If  we  would  like  to  group the  methods  that  are  being  used  for  the 

exploration of the information that it is hidden beneath the huge amount of data of  the 

microarrays, we would end up with 4 extensive categories:

• Genes selection

• Clustering ( supervised or unsupervised) 

• Classification 

• Marker genes or feature selection 

In first category we are trying to identify genes that experience significant changes 

in expression under different experimental conditions. For example specific genes are 

expressed to a healthy tissue and different genes are expressed in a tumour tissue. 

Permutation  T-tests,  neighbourhood  analysis  [5],  p-values,  correlation  matrices, 

Sebestyen criterion [6] are methods used for identifying genes which are differentially 

expressed  under  different  conditions  and  selecting  them  for  further  experimental 

validation [7]. 

With clustering we search for groups of genes that are likely to be co-regulated or 

participating  in  related  metabolic  and  regulatory  pathways.  Algorithms  like  self 

organizing maps (SOMs) , hierarchical clustering , k-means clustering ,  bootstraps 

resampling methods , principal component analysis (PCA) [5] are widely used for the 

discovery of underlying structures in a dataset. A common example is the discovery 

of  the  two  phenotypes  of  leukaemia  AML  and  ALL  with  the  combination  of 

microarray’s technology and the above clustering methods. 

Classification involves predicting and classifying experimental samples whether 

they belong to a particular type of tissue, disease or phenotype classes. Particularly 

the supervised classifiers seek to  function { }: 1,....nf P→΅ that maps the unknown 
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sample i to one of the P classes(assuming that each sample belongs to strictly one of 

the P phenotypes) according to the global expression profile    n
ix Ξ ΅  [8]. 

Lastly  the  identification  of  candidate  marker  genes  or  marker  genes  clusters 

indicative  of  specific  phenotypes  is  a  task  very  important  and  significant  for  the 

development of new drugs and therapies.   Furthermore the selection of a  specific 

number  of  features  is  important  because  some  methods  of  supervised  learning 

perform inaccurately and/or slowly when asked to consider a large number of them. 

But even when using classification algorithms that are good at handling many features 

(such as the SVM method), there is a more practical concern.  The method of typing 

cancers  must  be  reliable,  inexpensive,  rapid,  and  easily  performed  for  it  to  be 

employed by medical diagnostic laboratories.  At the moment, these criteria exclude 

expression arrays with thousands of genes, and feature selection is required to reduce 

the feature set to a manageable number of genes [7]. 

1.4Problems dealing with microarrays datasets

Although  the  advantages  and  possibilities  of  this  technique  in  the  future  are 

numerous, there are obviously associated drawbacks. The main disadvantages of this 

technique include the following:

The actual  size of the array may be a problem, when the sample is  being 

prepared. This is due to the DNA molecule itself. When working on the kind of scale 

necessary  for  microarrays  -  micrometers  -  DNA can actually  be  very  difficult  to 

handle. It has been described as acting 'almost like concrete coated with superglue' 

[9].To reduce these effects, a number of solutions are being developed: the electrical 

polarization of the array spots, developed by Nanogen, and the use of 'nonwettable' 

blank  regions  on  arrays,  created  by  microscopic  surface  tension  barriers,  by 

Protogene.

Another critical issue is the technical limitations The microarray technique is 

currently limited not by the number of probes on an array, but by the resolution of the 

scanner used. A solution to this problem is the GeneArray Scanner, developed by a 

partnership  between  Affymetrix  and  Hewlett-Packard.  This  scanner  has  a  greater 

resolution of 3mm, and also has the capacity for a minimum of 400,000 probes. The 
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use of this scanner therefore has the potential to resequence 100,000 bases at one 

time.

Another  problem  associated  with  cDNA  chips  is  the  quantization  of 

expression.  Quantization  of  expression  is  affected  by  a  non-linear  relationship 

between the amount of probe present, and the strength of the signal that is generated. 

The problem that is being caused is an underestimation of the extent of any large 

changes that may have occurred in the gene expression. This particularly occurs for 

mRNA molecules that are present in large numbers in the cell.

One of the major problems involved with the technique of DNA micro arrays 

is concerned with the amount of data that is produced. In fact the development of 

methods that efficiently organize, distribute and of course interpret this data could be 

said  to  be  the  most  formidable  task  for  researchers.  Large-scale,  high-throughput 

experimental methods such as this require a great deal of information processing and 

data  analysis.  Currently  in  development  is  a  software  package  known as  LIMS - 

Laboratory  Information  Management  Systems.  This  software  and  the  databases 

associated  with  it  involves:  design  microarrays  track  clones  collect,  analyze  and 

interpret data from gene expression studies.

Another  last  issue  someone  should  address  when  referring  to  microarrays 

methods is the problem of high dimensionality or else “the curse of dimensionality” 

[10]. If we consider the genes as the variables then we would have large n (n>5000) 

where n indicates genes and small m (m<100) where m indicates the cases.  In order 

to overcome the large n small m problem a lot of methods have been proposed and 

implied.   Principal  component  analysis[5],partial  least  squares(PLS),hybrid 

univariate/multivariate/conditionally univariate selections,Sebestyen criterion [6] are 

processes able to reduce the number of variables (genes) in order to decrease the 

computational cost and boost the accuracy of other methods such as classification.  

1.5Breast cancer microarrays datasets

Our  understanding  of  signal  transduction  components  and  their  interactions 

regulating  growth  and  arrest  of  breast  cancer  cells  is  still  limited.   Microarray 

technologies provide a powerful method to explore the complexities of transcriptional 
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profiles  defined  by  selected  pharmacological  mitogens  and  inhibitors  pivotal  for 

breast cancer cell growth.  This highlights the question of how genes contributing to 

the tumour subclassification are associated with a particular hormone or growth factor 

signal arrest.  Human breast tumour cell lines have been used extensively as models 

of neoplastic disease, and accordingly, their expression profiles provide a frame of 

reference for assessing the biological significance of expression patterns in a specific 

tumour [11,cunliffe et al 18].  There have been several studies of gene expression 

analysis of breast cancer cells treated with a limited number of growth agonists and 

antagonists, producing catalogues of responsive genes.  Among the distinctions made 

to date, the strongest separation is observed between ER(estrogens receptors)+ and 

ER- tumours but also between lymph node(-) and lymph node (+). 

Additionally we should mention the existence of many breast cancer datasets 

and databases which can be accessed by anyone who wish to deal  with this  new 

promising area of biology and mathematics.   Hedenfalk et al.  , Perou et al.  , Van 

Veer  et  al.   are  recent  studies  which  are  public-accessed  and  involve  the 

implementation of many statistical and mathematical principals and the combination 

of biological and algorithmic  knowledge in order to reveal important information 

about breast cancer genes. In the end of this work there is an index with the public 

accessed  microarray  databases.  Most  of  the  above  works,  which  demand  the  co-

operation  of  doctors  and  computer  engineers,  have  extensively  applied  many 

classification  and  clustering  methods  on  clinical  data.  Another  important  aspect, 

which has not been yet evaluated, is the combination of the above works, such as the 

search for common marker genes,  which will  help to establish a  common way in 

exploring and treating this  huge  amount  of  information obtained from microarray 

technology. 

1.5.1 Van Veer’s breast cancer dataset

In Van Veer work [11], 98 primary breast cancers have been gathered: 34 from 

patients  who  developed  distant  metastases  within  5  years,  44  from patients  who 

continued to be disease free after a period of at least 5 years, 18 from patients with 

BRCA1 germline mutations and 2 from BRCA carriers. All patients were lymph node 

11



negative.  From each patient 5μg total RNA was isolated from snap-frozen tumour 

material and used to derive complementary RNA (cRNA). A reference pooling was 

made by pooling equal amounts of cRNA from each of the sporadic carcinomas. Two 

hybridizations  were  carried  out  for  each  tumor  using  a  fluorescent  dye  reversal 

technique on microarrays containing approximately 25. 000 human genes synthesized 

by inkjet technology. 

An  unsupervised  hierarchical  clustering  algorithm allowed  to  cluster  the  98 

tumors on the basis of their similarities measured all over 5. 000 significant genes. 

Similarly the 5. 000 genes were clustered on the basis of their similarities measured 

over these of 98 tumors (pic 4). In the dendrogram in figure 4 the length and the 

subdivision of the branches displays the relatedness of the breast tumors (left) and the 

expression of the genes (top). Two distinct groups of the tumors are the dominant 

feature in this two-dimensional display suggesting that the tumors can be divided into 

two types on the basis of this set  of  ~5000 genes. But still  the dimension of the 

dataset  is  too high.  It  is  necessary to  be reduced  in  order to apply classification 

algorithms. So a powerful two-step supervised classification method applied on the 

dataset in order to reduce its dimensionality. The result was to reduce the number of 

genes to 231 from 5000 in the first step. In the second step these 231 genes were 

ranked ordered on the basis of the magnitude of the correlation coefficient. In the 

third  step  the  number  of   genes  in  the  prognosis  classifier  was  optimized  by 

sequentially  adding subsets  of  5  genes  from the  top of  this  rank-ordered list  and 

evaluating its power for correct classification using the “leave-one out method” for 

cross  validation.  Classification  was  made  on  the  basis  of  the  correlations  of  the 

expression profile of the “leave-one out” sample with the mean expression levels of 

the remaining samples from the good and the poor prognosis patients. The accuracy 

improved until the optimal number of marker genes was reached (67 genes). Until 

now the dimensionality of the problem have been reduced from 25. 000 to 67. !!Our 

aim is to evaluate the accuracy of different algorithms and neural networks when they 

are applied as classifiers on this 67-dimensional dataset (pic 4).  
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1.5.2 West’s breast cancer dataset

In this work [12] the collection of samples includes mostly Stage II cancers 

and above. All cancer samples have the same histology. The tumour samples were 

chosen to include roughly an equal representation of hormone receptor-positive versus 

hormone receptor-negative cancers. All tissues were screened for tumour content, and 

cases that contained less than 60% tumour cells were excluded. For the creation of the 

microarrays Affymetrix Human Gene GENECHIP DNA arrays were used. 

         The initial 49 tumours were classified as ER- or ER+ via immunohistochemistry 

(IHC) at time of diagnosis and then later via protein immunoblotting assay for ER to 

check the IHC results.  In five cases, the IHC and blot test conflicted.  These five 

cases and an additional four of the tumours selected randomly were separated from 

the rest to be treated as validation samples to be predicted on the basis of analysis of 

the remaining training cases.   Of the latter,  two were rejected due to failed array 

hybridization, leaving 18 ER- and 20 ER+.  By using the ER outcomes of only the 38 

training arrays, a simple screen was implemented to identify the 100 genes maximally 

correlated  with  outcome.   This  screen  computed  sample  correlation  coefficients 

between genes and ER-/ER+ binary outcomes and selected those genes giving the 100 

largest absolute values of this correlation. With these 100 “best” genes (fig. 2) we will 

examine our classification algorithms in order to analyse their accuracy on predicting 

the class of unknown tumour tissues. 

  Figure 4 Two-dimensional presentation of transcript ratios for 98 breast tumors. 
Each row represents a tumour and each column a single gene. As shown in the colour 
bar red indicates upregulation, green downregulation black no change and grey no 
data available. The yellow line marks the subdivision into two dominant clusters. 
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Figure 5.  Expression levels of top 100 genes providing pure discrimination of ER 
status.  Expression levels are depicted by colour coding, with black representing the 
lowest level, followed by red, orange, yellow, and then white as the highest level of 
expression.  Each column in the figure represents all 100 genes from an individual 
tumor  sample,  which  is  grouped  according  to  determined  ER  status.   Each  row 
represents an individual gene,  ordered from top to bottom according to regression 
coefficients

         

 

                                                                     Pic. 4 
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1.6Datasets obtained with RFE method

Except from the above Van Veer’s method in which 67 marker genes had been 

selected ,we evaluated the RFE (SVM based) method in order to reduce the number 

of these genes and compare the results obtained from the classifiers with the results 

of Van Veer’s genes. 

RFE method uses the internal workings of a Support Vector Machine (SVM) 

to rank features.  An SVM is trained on feature vectors derived from examples of 

two  classes.   The  apparent  importance  of  each  feature  is  derived  from  the 

orientation  of  the  class-separating  hyper  plane.   The  feature(s)  with  the  least 

apparent importance are removed.  The remaining features are used to retrain the 

SVM for  the next  iteration.  Here  the  stopping  criterion for  the  RFE method is 

different each time, that’s why we have 3 different datasets of genes. In 64 genes 

,we keep cutting genes in a way that the remaining number of genes is power of 2. 

We stopped the elimination when the accuracy of the SVM started falling under 

97%. In dataset of  31 genes we started with 5000 genes and continued , cutting in 

each irritation 1000 genes, until we reached 1000 genes. Then we cut 500, we reach 

immediately the 500 and after that, we changed the cutting number to 50 each time. 

Having 50 genes, we changed again the cutting number to 1 each time until we 

found that reducing the number to less than 31 genes ,the accuracy of the SVM 

started falling. 

1.7Software packages 

For the accomplishment of the classification tasks ,we use mainly the  Matlab 

software. Specifically we used to toolbox for neural networks and the prtoolbox for 

the rest of the algorithms and their fusion.For the creation of roc curves we used to 

Medcalc  software  which  is  a  statistical  toolbox  which  can  be  downloaded  for 

evaluation  purposes  for  30-days.We  wrote  scripts  where  we  first  choose  the 

evaluation method ,then we choose the classifier and last we get the accuracy results. 
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In the end of the work there are the internet addresses where these tools can be found 

and an example of the way the scripts have been written.

1.8Aims and goals of this work

The purpose of this assignment is the evaluation of 6 supervised classification 

algorithms  on  the  above  breast  cancer  datasets.  We  examine  their  ability  on 

identifying  unknown  samples  after  their  train  procedure.  The  datasets  with  the 

reduced number of genes have been obtain, as we have mention above, with gene 

selection methods such as the RFE.As a result we have 5 datasets with marker genes 

(4 datasets of 19,31,64,67 marker genes each  (Van Veer experiment) and 1 dataset of 

100 marker genes (West experiment) . The accuracy of the classifiers  is being tested 

with use of validation methods such as leave-one-out,  v-fold cross validation,  roc 

curves and combining classifiers(fusion).After getting the above results we examine 

their performance and try to find  which of them performed better,  
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CHAPTER 2

Supervised classification algorithms
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2. Methods for supervised classification

2.1Neural network classifier

A neural network consists of units (neurons), arranged in layers, which convert 

an input vector into some output.   Each unit takes an input, applies a (often nonlinear) 

function to it and then passes the output on to the next layer.   Generally the networks 

are defined to be feed-forward: a unit feeds its output to all the units on the next layer, 

but there is no feedback to the previous layer.   Weightings are applied to the signals 

passing from one unit to another, and it is these weightings which are tuned in the 

training phase to adapt a neural network to the particular problem at hand.   This is the 

learning phase. In our neural network we utilize back propagation algorithm in order 

to train our binary model. The inputs were vectors whose columns are the values of 

the genes in a specific tissue. The output of the network is a two state signal : 1 if the 

tissue belongs to the 1st class or 0 if the tissue belongs to the 2nd class. 

There are many ways to initialize a network ,to train it  with the appropriate 

algorithm ,to update the weights. Each combination has different results so it’s critical 

,through setting up with multiple ways the network, to find the appropriate neural 

model that will give us the highest fidelity. For that reason we tested different transfer 

functions, back propagation algorithms and the way we stopped the training function 

e. g.   maximum number of epochs, minimum square error, minimum gradient. 

Another issue that we should address is the format of the data that we feed the 

network. In Van Veer dataset all the expression values of genes were log transformed 

and in West dataset all the values were normalized by dividing the columns by the 

mean column intensity. 
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2.2Setting up the neural network

We assembled a feed-forward back propagation network as we can see in the 

above schematic picture. We constructed one input layer ,one hidden layer and one 

output layer. The hidden layer had 5 neurons. As input we feed the layer with the 

expression values of all genes presented in a specific tissue. If the tissue belongs e. g 

to a healthy sample then the network would classify it as “1” or as “0” if we have a 

tumour sample. We let the network to “learn”, to update the weight values in order to 

have the desired output for a specific number of epochs. We used 2 different transfer 

functions:  for  Van Veer  dataset  we applied the log-sigmoid function and the tan-

sigmoid  function  for  West  dataset  (pic.  6).  Additionally,  we  trained  the  West’s 

network with a gradient descent algorithm with adaptive learning rate and Van Veer’s 

network with levenberg-marquardt algorithm and as a performance function we utilize 

the mean squared error function for both networks. In the next paragraphs we will 

explain in depth the above parameters of our neural network classifier and how we 

evaluated its classification performance. 

       

                                                     
                                                         

                                                       pic 5
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                                                                Pic.6 

2.3Initializing and training the ANN

Before presenting the inputs  to  the neurons of  the network we initialize  the 

weights that connect  each neuron with the input.  A random valued weight  matrix 

n i΄ ,where  n  is the number of neurons and i  the number of inputs, is created with 

each row normalized to 1 [13]. Once the network weights have been initialized, the 

network  is  ready  for  training.  In  our  first  network  we  utilize  a  backpropagation 

algorithm to train it. Like perceptron learning, back-propagation attempts to reduce 

the  errors  between  the  output  of  the  network  and  the  desired.   The  term 

backpropagation refers to the manner in which the gradient is computed for nonlinear 

multilayer networks.  

2.3.1 Descent gradient back propagation algorithm

There are a number of variations on the basic algorithm that are based on other 

standard optimization techniques, such as conjugate gradient and Newton methods. 

More precisely we used a variation of a descent gradient backpropagation algorithm 

with adaptive learning rate.  As a gradient descent algorithm the network weights are 
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moved along the negative of the gradient of the performance function which in our 

case is the mean square error .  

Let  jix  be the input vector i  for the j  neuron, jiw  the weight matrix of  j  

neuron , t  the target vector . The output of each neuron is ( )j jy uφ=     where 

1

j

j ji ij
i

u w x
=

= ε  and  φ  is the transfer function. The error of the network  when 

we compare the desire output with the real output is  j j je t y= −   for the  j  

neuron or 
2

1

1 ( )
m

i i
i

MSE y t
m =

= −ε if we are using the mean square error. We 

want to “propagate” this error backwards to all the neuron’s output and input 

weights so as to fix them and minimize the error output. For this purpose we use the 

above delta rule for the change to the weight jiw  from node i  to node j . 

i. Output weight modification

                             Delta rule:             ji j jiw xη δ∆ = Χ Χ

jiw∆  : the weight change between hidden layer and output neuron

  η      : learning rate 

    jδ   : local gradient 

   jix : input signal to output neuron
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The local gradient  jδ is the product of  ( )ji ijw xφ Ά ε  and the error  je . In our 

network  1j =  because we have 1 neuron.  More precisely the jδ  comes from the 

above equation.  

                    

2

1

1 ( ) ( )
( ) ( ) 2 ( )

( ) ( ) ( )
( ) ( )

( )(1 )

( )

j
j j j j j

j j j

j j j j j j
j j

j j j j

j j

ji ij
i

yE t y t y
u u u

t y y t y u
u u

t y y y
E

w x

δ

φ

δ

=

∂∂ ∂= = − = − −Χ
∂ ∂ ∂

∂ ∂= − − = − −
∂ ∂

= − − −

∂=
∂ ε

ii. Hidden layer weight modification

When we have to update the weights of the hidden layer meaning the weights 

that connect the input layer with the layer before the output layer we use the above 

type with a little modification. For the neuron j  the gradient  jδ  is the same for all 

the  weights  jiw  which  are  connected  with  the  neuron.  Also  we  use  the  output 

gradient   jδ  which  we have  computed previously.   For  each  hidden unit j  ,we 

calculate:

                  
( )

(1 )j j j kj j
k downstream j

y y wδ δ
Ξ

= − ε
Update each network weight  jiw  as follows:
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                       ji ji jiw w w← + ∆

           where        ji j jiw xη δ∆ = Χ Χ                   

Let’s  now  see  now  what  “adaptive”  learning  rate  means.  With  standard 

steepest  descent,  the  learning  rate  is  held  constant  throughout  training.   The 

performance of the algorithm is very sensitive to the proper setting of the learning 

rate.  If  the  learning rate  is  set  too high,  the  algorithm may oscillate  and become 

unstable. If the learning rate is too small, the algorithm will take too long to converge. 

For this reason we use three constants ,the learning increase and learning decrease 

and max ratio. First we let the network  give an output and to compute the error with 

the initial learning rate. At the second epoch we calculate again the output error. We 

compare the new and the old error. If the ratio is more that the max ratio (~1. 04) then 

we decrease the learning rate, multiplying it with learn_decrease (0. 85). If the new 

error is less than the old error, the learning rate is multiplied by a learning increase 

factor (=1. 3). 

Having  decided  to  use  the  above methods  for  initializing  the  weights  and 

training  the  network  we  started  to  configuring  it.  We  tried  different  number  of 

neurons, epochs and we changed a lot of times the values of learning parameters so as 

to find the combination that would give us the optimum results.  For the West et al. 

dataset  of  100 genes  we used one  hidden layer  with 15 neurons,  the tan-sigmoid 

function and the gradient descent training algorithm. We trained the network for 400 

epochs.  For Van Veer et  al.   dataset  we set  up the neural network with different 

parameters each time due to the fact we had three different datasets of significant 

genes. But first we will explain the training algorithm for this network. 
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2.3.2 Levenberg-Marquadt algorithm

As we have mentioned before our performance function is the mean square 

error: 

              

The  Levenberg-Marquardt  method  which  belongs  to  the  batch  training 

techniques tries to minimize this function. The method is based on the calculation of 

two Jacobian  matrices:  Jacobian  error  matrix  Je  and  
2J which  in  our  situation 

obtain  constants  due  to  the  fact  that  the  data  are  linear.  The  weight  change  is 

calculated from the next equation                   

                         

                             

In  our  network  ,where  we  have  one  output  each  time,  the  error  vector  is 

1[ ,.... ]me e e=  , m=number of samples. The weights are being updated in the same 

way with the previous learning algorithm. The scalar m  controls the learning rate 

and the learning method of the algorithm. Let’s see how it succeeds (the scalar m) in 

combining  gradient  descent  algorithm  and  Gauss-Newton  method.  If  the  errors 

decreases ,that means that the weight’s update is good ,then the scalar m  is decreased 

in order to reduce the influence of the gradient descent. On the other hand if the error 

increases we increase m  so as to follow the gradient more with small learning rate 

and we keep the previous values of the weights [14].  The LM method is very fast and 

in a small number of epochs the network is trained. But due to the fact that we have to 

compute inverse matrices the cost of the update becomes prohibitive after the model 
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size increases to a few thousand parameters.  For moderately sized models (of a few 

hundred parameters) however, this method is much faster than gradient descent. 

2.4Accuracy of the neural classifier via leave-one-out method

We chose to validate the accuracy of the neural classifier with the leave-one-

out method.  The leave-one-out method is an important statistical estimator of the 

performance of a learning algorithm. It works as follows: We divide the input data 

into two sets. The one set will be used to train the classifier and we call it training 

set  and the other set will be used to test the accuracy of the trained classifier and we 

call it test set. The formal expression of the leave one out method is:

                                   

                                    
1

1( ) ( , )
m

i
d i

i
R f l f z

m =

= ε

where iz  is the training set , if  is the test set and ( )dR f  is the leave-one-out error. 

Leave-one-out  technique  is  supposed  to  be  an  “almost”  unbiased  estimate  of  the 

generalization error of df . A common belief is that the leave-one-out estimate has a 

large variance: when different training sets are sampled from the same distribution, 

the variance of the leave-one-out error computed over these samplings is generally 

larger  than 10-fold cross  validation.  Also there are examples where leave-one-out 

error fails  completely due to the instability of the learning algorithm.  Despite all 

these  handicaps,  the  leave-one-out  estimate  is  used  by  many  practitioners.   It  is 

generally believed as to be a fairly good estimator albeit not the best and it has been 

used successfully for model selection[15]. There are a lot of works ,theoretical and 

practical which point out that the performance of the above algorithm depends a lot on 

the kind of the classifier. In many cases where the classifier is stable, its leave-one-out 

error is close to its generalization[16]. In our neural network leave-one-out validation 

produces results where the performance varies each time we run the algorithm by a 

factor of 2%, which is a good result and it occures due to the fact that we use mean 
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square  error,  a  continues  error  function  which  have  been  proved  that  helps  the 

algorithm to perfome well. But still ,even for classifiers such as neural networks ,there 

are questions such as if the difference between leave-one-out error and network error 

give us a good “estimator” for the stability of the classifier [15]. 

At  next  pages  we  see  the  performance  of  the  classifier  using  the 

aforementioned algorithm. In West et al.  dataset we have 49 tissue samples of which 

25 belong to ER+ (estrogens receptor) and 24 ER- and a neural network of  1 hidden 

layer with 15 nodes, an output layer of 1 node with two  : `1` or `0` and an input 

vector of 100 genes. We trained the network for 400 epochs with the descent gradient 

algorithm. In Van Veer et al.  dataset we have 78 tissue samples , 44 of them belong 

to D + ( diseased) and 34 belong to D- (not diseased).  The network is the same with 

the previous  with  the  difference  that  we use  6  neurons  and we train  it  with  LM 

algorithm for 100 epochs.  The first table presents the accuracy of the classifier at 

each dataset. If the equation gives a result more than 0. 5 then  the tumor belongs to 

class “1”, else it belongs to class “0”. The other tables display the arithmetic results of 

the network when we applied the leave-one-out method. On the x-axis is the tissue 

samples and in the y-axis is the output of the neural each time we feed it with the test 

sample. The more close the graph to zero means that the sample belongs to class A 

and the more closer to one means that the sample belongs to class B.

Table of results: 

Each percentage 

represents the 

generalization 

ability of the 

network.

               

                                 Classifier

Marker genes

Feed forward Neural Network 
trained with backpropagation 
method

19 genes
97. 4% accuracy,  2 errors

31 genes
100% accuracy

64 genes
97. 4 % accuracy, 2 errors

67 genes ( Van Veer)
98,7% accuracy,   1 error

100 genes (West) 83% accuracy,       8 errors
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Table2 

Leave-one-out  results  of  the  network 
using the test dataset of 19 genes. Each 
column  represents  the  possibility  of 
tumor belonging to a certain class.

Table 3

 Leave-one-out  results  of  the  network 
using the test  dataset of 31 genes. 

Table 4
 
Leave-one-out  results  of  the  network 
using the test  dataset of 64 genes
                                                 

  Table 5

 Leave-one-out  results  of  the  network 
using the test dataset of 67 (Van Veer) 
genes

Table 6 

Leave-one-out results of the network 
using the test dataset of 100 genes 
( West dataset). 

                                                                
                                                               Table 1
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The x-axis represents the tissue samples and the y-axis the output of the neural each 
time we test it with the unclassified sample.

2.5Introduction to high order neural network (Honn)

High  order  neural  networks  are  fully  interconnected  nets,  containing  high 

order connections of sigmoid functions in their neurons .They have been shown to 

have impressive computational, storage, and learning capabilities.  This performance 

is because the order or structure of a high-order neural network can be tailored to the 

order or structure of a problem.  For the above reason a neural network designed for a 

specific class of problems becomes specialized and very efficient in solving these 

problems. 

Before starting explaining the above method we will give some information about 

the relationship between i i iw w ax= ± n non linear data and TLU’s. It is known that 

nonlinearly  separable  subsets  of  pattern  space  can  be  dichotomized  by  nonlinear 

discriminate functions.  Attempts to adaptively generate useful discriminate functions 

led to the study of threshold logic units (TLUs). Most famous is the perceptron [16] 

which in  its  original  form was constructed from randomly generated functions  of 

arbitrarily high order.  Minsky and Papert studied TLUs of all orders, and came to the 

conclusions that high-order TLUs were impractical due to the combinatorial explosion 

of high-order terms, and that first-order TLUs were too limited to be of much interest. 

They also notice that single feed-forward slabs of first-order TLUs can implement 

only linearly separable mappings. So which is the solution to the above problems? 

There are two suggestions: first we can cascade slabs of first order TLUs. But this will 

result in training problems because either there in no simple way in providing the 

hidden units with a training signal or multislab learning rules require thousand of 

iterations  to  converge  which  often  don’t  give  the  correct  results  due  to  the  local 

minimum problem . Second suggestion is the use of single slabs of high order TLUs. 

The high order terms are equivalent to hidden units and since there are no hidden 

units to be trained the single slab learning rules can be used. This methods has been 

used in this work and will be presented in the next chapter. 
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2.6Principals of the Honns

If we define x , y  its input  and output respectively, with nx Ξ ΅  and qy Ξ ΅  

the input-output representation of a HONN is given by 

                                                       ( )Ty W S x=

where  Ŵ : L - dimensional vector of adjustable synaptic weights and 

      ( )S x  : L - dimensional vector with elements ( )iS x , 1,2,...i L=  of the form 

                                               
( )( ) [ ( )] j

i

d i
i j

j I
S x s x

Ξ
= Υ

                                                   

where iI , 1,2,....i m=  is  a  collection  of  non-order  subsets  of  {1,2….  .  n}  and 

( )js x is a monotonically increasing, smooth function which is usually represented 

by sigmoid of the form:

                                                    ( )
1 lxs x

e
µ λ−= +

+
                                                    

where  the parameters  μ  ,  l represent the bound and maximum slope of sigmoid’s 

curvature while  λ  is the vertical shift. [17]. In our experiment we created a second 

order neural network without hidden layers. That means that we feed the network with 

combinations of   i jx x  where ix , jx   are values random selected from the input 

vector x . So the input vector to the k neuron is
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( )iab i i a bw t y x xη∆ = −

    

        We trained the above network using the simple perceptron rule. 

where M is the set of misclassified input patterns, and d is the desired output of the 

TLU. This is the perceptron error criterion. If all input vectors are correctly classified 

the error  E=0.  The contribution of a misclassified input pattern to the error is  its 

absolute  distance  from the  decision  boundary.  The  perceptron  learning  procedure 

minimizes this error function. The learning procedure is as follows:

1.  train the perceptron with  the test set until E=0

2.  present the test set to the network (batch or single mode)

3. compare d and and output y and we update the weights as following

           

We  used  only  1  neuron  in  order  the  network  to  compute  the  function  that 

minimizes the mean error and approximates the input data. Also we trained it for 500 

epochs so the time spent on training was long enough. But as we know we must 

search for a combinations of  i jx x  which give the optimum classifying result and 

give the parameters λ ,μ the   As we see in the results below when the data have low 

dimensionality the classifier results does not fall below 90 percent. In Van Veer and 

West dataset the dimensionality is reduced not only because the significant genes are 
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more but also because we add the second order values to the input vector. For that 

reason we notice that the performance of the algorithm falls to 80. 

      

  

Table 7

 
Results  of  the 

HONN classifier 

for five different 

breast  cancer 

datasets

  
                     Classifie
r

Genes

High order Neural 
Network 
with Perceptron rule

19 genes 98,7 %     1 error

31 genes 96,1%      3 errors

64 genes 97,4%         2 errors

67 genes 82%        11 errors

100 genes 79,5%     10 errors
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Table 8

Honn result on 19 genes dataset

Table 9

Honn result on 31 genes dataset

Table 10

Honn result on 64 genes dataset

Table 12

Honn result on 100 genes dataset

                                                                     Table 7   

Graphical results of the HONN classifier for five different breast cancer 
datasets. The x-axis represent the tissues samples and the y-axis the output of the 
network at each of the previous samples.
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2.7Generalization and regularization, two important issues

2.7.1 Generalization

Very often in literature about neural networks we meet the term generalization 

meaning the performance on unseen input patterns, i. e.  input patterns which were not 

among the patterns on which the network was trained.  If we train for too long, you 

can often get the total sum-squared error very low, by over-fitting the training data - 

we get a network which performs very well on the training data, but not as well as it 

could on unseen data. Also by stopping training earlier, we hope that the network will 

have learned the broad rules of the problem, but not bent itself into the shape of some 

of the more idiosyncratic (perhaps even noisy) training patterns. In our network we 

meet two situations. With LM algorithm the square error reached its minimum value 

too early so we stopped the training of the network after 20 epochs. With the gradient 

descent algorithm we let the network to be trained for more than 1000 epochs. How 

we can find the number of epochs where our network will  maintain its  ability to 

generalize to unseen data? We perform the above algorithm to find the right stopping 

point: we divide the dataset into two groups, the first will be the train set and the 

second the test set. We partitioned with ratio 80/20. We train the network we the train 

set and we test it with the other set for a specific number o epochs. We write down the 

mean error. Next we change the number of epochs and we train and simulate the 

network again. Repeating the previous steps we notice that while error on the training 

set falls monotonically with the number of epochs, error on the test set falls and then 

rises. We estimate the number of epochs where this happens and we use it as criterion 

as our network to have a good generalization ability. 

2.7.2 Regularization

Regularization  is  another  way  of  improving  performance.   This  involves 

modifying  the  performance  function,  which  is  normally  chosen  to  be  the  sum of 

squares of the network errors on the training set. How we do that? In the performance 
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function we add a term that consists of the mean of the sum of squares of the network 

weights and bias:

                          ( | ) ( | , )w DM E w A E D w Aα β= +

where wE  is the familiar performance function ,  α and β are parameters which will 

be explained later and ( | , )DE D w A   is the term which is computed from the next 

equation:

                                       
2

1

1( | )
n

w j
j

E w A w
n =

= ε

Using this performance function will cause the network to have smaller weights 

and biases, and this will force the network response to be smoother and less likely to 

overfit. Again there is a trouble maker. The parameters α ,β are very essential in order 

to improve the generalization ability of the network.  If we choose big    we might 

overfit the network. If we set it too small,  the network will not adequately fit  the 

training data. One solution, which we have adapted, is the Bayesian regularization.

2.7.3 Bayesian regularization

Although  Bayesian  analysis  has  been  in  use  since  Laplace,the  Bayesian 

method of  model-comparison has only recently been developed in depth[18]. What 

Bayesian  regularization  do,  through  the  computation  of  several  parameters  and 

comparing several solutions, is objectively setting these settings in order to find the 

best  architecture  A  which  gives  optimal  results.   The  main  idea  is  to  force  a 

probabilistic interpretation onto the neural network technique so as to be able to make 

objective statements.  Lets suppose we have a network with a specified architecture A 

and connections w which is viewed as making predictions about the target outputs as 

a function x in accordance with the probability distribution :
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( | , , )e( | , , , )

( )

m mE t x w A
m m

m

P t x w A
Z

β

β
β

−

=

where  ( ) E
mZ e dtββ −= ς  is the error for a single datum and β is a measure 

of the presumed noise included in t. Because in our situation the targets are binary 

outputs we will not use the parameter β  but the matrix G that we will see later what it 

refers to. For the weights w, a prior probability is assigned in the form:

                                     

                          
( | )

( | , , )
( )

wE w A

w

eP w A R
Z a

α

α
−

=

where  ( ) wEk
wZ a d we α−= ς and  α  is  a  measure  of  the  characteristic  expected 

connection magnitude. Now for the posterior probability of the network connections 

w is then:

                                 
( )

( | , , , , )
( , )

w DE E

M

eP w D A R
Z

α β

α β
α β

− +

=

where   ( )( , ) w DE Ek
MZ d w e α βα β − += Χς

So under this framework, minimisation of w DM E Eα β= +  is identical to 

finding  the  maximum  a  posteriori  parameters  MPw ;minimization  of  DE  by 

backpropagation  is  identical  to  finding  the  maximum likelihood parameters MLw . 

Thus an interpretation has been given to back propagations functions DE  and
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wE  and to the parameters ,α β . But in our case there is a difference: our targets are 

binary and not probabilities estimates. This means that the parameter  β  will not be 

used as we will see in the next paragraph. 

2.7.3.1 A framework for our classifier: determination of α  and G

A classification model H consists of a specification of its architecture A and 

the regularizer R for its parameters w [19]. When a classification model’s parameters 

are set to a particular value, the model produces an output  ( : , )y x w A  between 0 

and 1, which is viewed as the probability ( 1| , , )P t x w A= . The likehood i. e the 

probability of the data as a function of w is then:

                                
1( | , ) (1 )m mt t

m
P D w A y y −= −Υ

                                                          exp ( | , )G D w A=

where 

                         ( | , ) log (1 ) log(1 )m m
m

G D w A t y t y= + − −ε

Now is we assign a prior over alternative parameter vector w,

 

                       

( )exp( )
( | , , )

( )

c
c w

c
c

w

a E
P w a A R

Z a

−
=

ε

where  ( ) wEk
wZ a d we α−= ς and  α  is  a  measure  of  the  characteristic  expected 

connection magnitude. Now for the posterior probability of the network connections 

w is then:
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( )( )

( | , , , )

c
c w

c
E G

c
M

eP w D a A R
Z

α− +ε
=

where ( )( ) c w
E Gk

M
Z d w e αα − += Χς . Both wZ  and MZ  are normalizing constants. The 

calculation of the gradient and Hessian of G is as easy as for a quadratic DE  (is case 

we had the regression model) if the outputs units activation function is the traditional 

logistic ( ) 1/(1 )af a e−= + .  In our case we compute the Hessian matrix through 

the levenberg-marquat  Jacobian algorithm.   

The  gradient  of  G  with  respect  to  the  parameters  w  and  for  a  function 

( ) ( )( ) ( ( ))m my x f a x=   is:

                                     

                                           ( ) ( )m
m

G t y g m= −Ρ ε
where ( )mg = ∂a/∂w| ( )mx x= . 

Now  lets  see  how  the  training  process  gives  the  appropriate  set  of  MPw

(training) and how the network responds to test sample (classification). Lets assume a 

locally  Gaussian  posterior  probability  distribution  over  MPw w w= + ∆ , 

1( | ) ( ) exp ( )
2

T
MPP w D P w w A w− ∆ ∆;  and if we assume that the activation ( ; )x wα  is 

a locally linear function of w with ∂α/∂w=g, then for any given x ,the activation α is 

approximately Gaussian distributed :

        

          
2

2
22

1 ( )( ( ) | ) ( , ) exp(
22

MP
MP a aP a x D normal a s

ssπ
−= = −

where  2 ( )
MP

MP
W

a
E w

γ=   and  2 1Ts g A g−= .  The  parameter  γ is 

12 ( )MP MPN a tr Hγ −= −  and it is called the effective number of parameters and it is a 
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measure  of  how  many  parameters  in  the  neural  network  are  effectively  used  in 

reducing the error function.  It can range from zero to N. 

So the moderate output is:

         2 2( 1| , ) ( , ) ( ) ( , )MP MPP t x D a s f a normal a sψ= = = ς

The above results give the moderate outputs which the same with the most 

probable networks outputs are since in our case the targets output are binary numbers 

and not possibilities. 

Let’s now see the steps made in order to compute the parameter  α and the 

optimal MPw [20]. 

1.  Initialize the α and the weights giving them random values. After the first 

training step, the objective function parameters will recover from the initial state. 

2.  We take one step from the Levenberg-Marquard algorithm to minimize the 

objective function M

3.  Compute the effective number of 12 ( )MP MPN a tr Hγ −= −  where H is found 

with  the  Gauss-Newton  approximation  using  the  Levenberg-Marquard  training 

algorithm 2 ( ) 2T
NH F w J J aI= = +Ρ  where J is the jacobian error matrix of the 

trainig set errors. 

4.  We compute the new estimate for  2 ( )
MP

MP
W

a
E w

γ=

5.  We repeat steps from 1-4 until coverage

Each re-estimate of the objective function parameters, the objective function is 

changing; therefore,  the minimum point is moving.  If  traversing the performance 

surface generally moves toward the next minimum point, then the new estimates for 

the objective function parameters will be more precise.  Eventually, the precision will 

be good enough that the objective function will not significantly change in subsequent 

iterations.  Thus, we will obtain convergence. 
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The Bayesian regularization method does not stop here. The next step that 

utilizes is the model comparison which is not evaluated in this work. In our neural 

network ,as we mention before ,we use the Bayesian regularization in order to 

minimize a combination of squared errors and weights, and then to determine 

the correct combination so as to produce a network that generalizes well. In the next 

table we can see the result of the above method. 

                                                               

                                                         Table 8 

          Comparing bayesian regularized neural network with simple neural network

                      
Classifier

Marker genes

Feedforward Neural Network
trained with 
backpropagation method and 
regularized by Bayesian rule

Feedforward Neural 
Network
trained with 
backpropagation 
method

19 genes 100% accuracy 0 errors 97. 4% accuracy, 
 2 errors

31 genes 100%  accuracy  0 errors 100% accuracy

64 genes 98,7%  accuracy 1 error 97. 4 % accuracy, 
2 errors

67 genes 
( Van Veer) 98,7%  accuracy 1 error 98,7% accuracy,  

 1 error

100 genes 
(West) 92,3% accuracy  5 errors 83% accuracy,  

  8 errors
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2.8Conclusions for neural networks

As we can clearly see the accuracy is very high. Even when the dimensionality 

is increased, the classifier has good performance although with HONN we notice a 

small decrease. One aspect that we should point out is this: if we  tried to train the 

West’s network with the LM algorithm and test its accuracy the results wouldn’t be of 

the same quality. Additionally, if we would try to test the dataset of 67 genes in the 

neural classifier of the 32 gene’s dataset the results would be totally different in a 

negative  way.  This  occurrence  is  due to  the fact  that  the  two datasets  have been 

obtained  from  different  experiments  and  for  different  purposes.  Moreover  the 

clustering methods with which we have chosen the most significant genes each time 

result  in  datasets  with different  genes.  With this  example we want  to  specify the 

importance of the experiment and how it affects the results of  the above algorithms 

when they appied on different datasets. So far there has not been established a unified 

way of treating a specific kind of dataset e. g.  breast cancer or even to assent to a 

specific  type  of  genes  that  should  be  examined  when  we  set  up  microarrays  to 

examine e. g brain cancer tissues. 

Another issue is the results we got using regularization rule. As we easily notice 

the performance of  the neural  classifier  is  increased when we use this  method to 

improve the generalization ability of the network. But we must agree that the results 

we get without the above method are very good and give small error rate and high 

generalization of the network. 

  LAURA FERGUSON  
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‘neural network 1’, painting

2.9Other Classification methods

We start this section by formally defining the structure of each classification 

algorithm.  We will describe the mathematical and statistical principals they are based 

on,the correlation and distance measure they adapt and in the end how they perform 

with our  datasets.  The main aim of  the algorithms is  to  find a  hyperplane  which 

separates best the two classes. Though our data is linear, meaning that they can be 

segregated  by  a  simple  line,  we  apply  and  non  linear  classifiers  such  as 

SVM,quadratic and k-nearest classifier in order to qualify their performance on linear 

data. 

2.9.1 K-nearest neighbour classifier

One  of  the  simplest  classification  procedures  is  the  k-  nearest  neighbour 

classifier.  To classify a query x , we find the most similar example in train set and the 

plurality class among the nearest neighbours is the class label of the new sample. To 

carry  out  this  procedure  we  need  to  define  a  similarity  measure  on  expression 

patterns.   In  our  experiments,  we  use  the  Pearson  correlation  as  a  measure  of 

similarity.  Pearson's correlation reflects the degree of linear relationship between two 

variables.  It ranges from +1 to -1.  A correlation of +1 means that there is a perfect 

positive linear relationship between variables.  A correlation of -1 means that there is 

a perfect negative linear relationship between variables. [21]. The computational form 

is:

                        2 2
2 2

( , )

( )( )

x y
xy

Nr x y
x y

x y
N N

Χ
−

=

− −

ε εε
ε εε ε
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where  x  is the input vector , y  is a vector from the train set. The vector i
y   with 

high  ( , )ir x y  has high similarity with the test  vector.  At the end the algorithm 

returns the class of the x . 

Lets see now how the algorithm works with our data.  To determine the class 

of a new example x :

• calculate the distance ( , )r x y  between x and all examples in the 

training set. 

• select k-nearest examples to x in the training set

• assign x to the most common class among its k-nearest neighbors

The advantages of the classifier is that it is robust to noisy data by averaging 

k-nearest neighbors, easy to implement ,use and explain its prediction. In our tests we 

used  a  7-neightborhood  analysis  and  the  accuracy  were  around  85%  with  both 

bootstrap methods.  

2.9.2 Quadratic classifier

Before we start explaining the classifier we will introduce two main theories 

on  which  the  classifier  is  based.   We will  begin  presenting  a  simple  parametric 

modelling  for  describing  microarray  data,  the  normal  distribution.  The  normal 

distribution is a convenient model for studying a wide variety of physical processes. 

The  probability  density  function   of  a  multivariate  normal  distribution  has  the 

following form :

 
1

1d/2 2

1 1p(x)=N(x| ,Σ)= exp( ( ) ( ))
2(2 ) | |

Tx xµ µ µ
π

−− − Σ −
Σ

dχ Ξ ΅
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          where            
1

1 N

n
n

x
N

µ
=

= ε            mean value                         

                                
1

1 ( )( )
1

N
T

n
x x

N
µ µ

=

= − −ε
− ε        covariance matrix

Another issue is the rule that we use to choose the right class for the unknown 

sample in a classification problem. The discriminant function ( )ig x ,where  i is the 

class, it is based on the Bayesian rule and has the next form:

 

1
1d/2 2

( | ) ( ) 1 1 1( ) ( | ) exp( ( ) ( )) ( )
( ) 2 ( )(2 ) | |

Ti i
i i i

P x Pg x P x x x P
P x P x
ω ωω µ µ ω

π
−= = = − − Σ −

Σ

We eliminate the constant terms and we have:

1/ 2 1
i

1( ) exp( ( ) ( )) ( )
2

T
i ig x x x Pµ µ ω− −= − − Σ −ε

Additionally we take the natural logs:

11 1( ) ( ) ( ) log log( ( ))
2 2

T
i i ig x x x Pµ µ ω−= − − Σ − − +ε

The above expression is called quadratic discriminant function. To see it in a more 

“quadratic” form we can reorganize the equation:

  ( ) T
i i i iog x x W x w x w= + +
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Where        

1

1

1
0

1
2

1 1 log log( ( ))
2 2

i i

i i

T
i i i

W

w

w P

µ

µ µ ω

−

−

−

= −

=

= − Σ − +ε

ε
ε

               

The covariance matrix  iε is the one that defines if the discriminant function is 

linear or quadratic and the decision boundaries are hyper-planes or parabolic. 

There are five cases for iε  :

1. 2
i Iσ=ε

2. i =ε ε  diagonal 

3. i =ε ε  no diagonal

4. i j=ε ε  general case

5. 2
i i Iσ=ε

 In our case we choose the 4th case which is more general case. We computed two 

different covariance matrices and when we presented the test sample to the trained 

classifier, it would choose the class according to the next rule (MAP):

 

                          decision rule      →   choose iω   if ( ) ( )i jg x g x>  

                                        where ( ) ( | )i ig x P xω=

The construction of the quadratic classifier involves estimating mean vectors iµ nd 

covariance  matrices   iε  altogether  n 1
i

−ε (n  +  3)/2  parameters.   Estimating  these 

parameters with high accuracy is necessary for constructing a good discriminant rule, 

because  the  calculation  of  the  inverse  matrices  1
i

−ε are  often  ill-conditioned. 

Estimating the high-dimensional covariance matrices requires a large amount of data. 

In our case the estimation did not take long due to the use of computer with lot of ram 

memory and processor with high speed. 
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2.9.3 Support vector classifier

Support vector machines (SVMs) have been successfully applied to a wide 

range  of  pattern  recognition  problems,  including  handwriting  recognition,  object 

recognition, speaker identification, face detection and text categorization.  SVMs are 

attractive because they boast an extremely well developed theory.  A support vector 

machine finds an optimal separating hyperplane between members and non-members 

of a given class in an abstract space. But many classifiers do the same thing. So what 

is  the  difference  that  makes  the  SVM so  good  classifiers?  There  are  two  major 

classification problems that SVM succeeds in bypassing them. 

The  two  problems  have  to  do  with  the  non-linearity  and  the  high 

dimensionality of the train data. As we know the real-world problems involve non-

separable data for which there does not exist a hyperplane that successfully separates 

the class members from non-class members in the training set.  One solution to the 

inseparability problem is to map the data into a higher-dimensional space and define a 

separating  hyperplane  there.   This  higher-dimensional  space  is  called  the  feature 

space, as opposed to the input space occupied by the training examples.  With an 

appropriately  chosen  feature  space  of  sufficient  dimensionality,  any  consistent 

training  set  can  be  made  separable.   However,  translating  the  training  set  into  a 

higher-dimensional  space  incurs  both  computational  and  learning-theoretic  costs. 

Representing the feature vectors corresponding to the training set can be extremely 

expensive in terms of memory and time.  Furthermore, artificially separating the data 

in this way exposes the learning system to the risk of finding trivial solutions that 

overfit the data. 

Support  vector  machines  elegantly  sidestep  both  difficulties  [22].   SVMs 

avoid overfitting by choosing a specific hyperplane among the many that can separate 
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the  data  in  the  featurespace.   SVMs  find  the  maximum  margin  hyperplane,  the 

hyperplane that maximizes the minimum distance from the hyperplane to the closest 

training point (see figure 4).  The maximum margin hyperplane can be represented as 

a  linear  combination  of  training  points.   Consequently,  the  decision  function  for 

classifying points with respect to the hyperplane only involves dot products between 

points.  Furthermore, the algorithm that finds a separating hyperplane in the feature 

space can be stated entirely in terms of vectors in the input space and dot products in 

the feature space.  Thus, a support vector machine can locate a separating hyperplane 

in the feature space and classify points in that space without ever representing the 

space explicitly, simply by defining a function, called a kernel function that plays the 

role of the dot product in the feature space.  This technique avoids the computational 

burden of explicitly representing the feature vectors. 

The selection of an appropriate kernel function is important, since the kernel 

function  defines  the  feature  space  in  which  the  training  set  examples  will  be 

classified.  The kernel function acts as a similarity metric between examples in the 

training  set.  As  long  as  the  kernel  function  is  legitimate,  an  SVM  will  operate 

correctly even if the designer does not know exactly what features of the training data 

are being used in the kernel-induced feature space.  Human experts often find it easier 

to specify a kernel function than to specify explicitly the training set features that 

should be used by the classifier.   The kernel expresses prior knowledge about the 

phenomenon being modeled, encoded as a similarity measure

between two vectors. 

Another  appealing  feature  of  SVM  classification  is  the  sparseness  of  its 

representation of the decision boundary.  The location of the separating hyperplane in 

the feature space is specified via real-valued weights on the training set examples. 

Those training examples that lie far away from the hyperplane do not participate in its 

specification and therefore receive weights of zero.  Only the training examples that 

lie close to the decision boundary between the two classes receive nonzero weights. 

These training examples are called the support vectors, since removing them would 

change the location of the separating hyperplane.  
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2.9.3.1 The theory of SVM

We  have  the  labeled  training  data  { , }i ix y , 1,....i l=  ,  { 1,1}iy −Ξ and 

d
ix Ξ ΅ . Suppose we have some hyperplane which separates the positive from the 

negative results.  The points  x  which lie on the hyperplane satisfy  0w x b+ =Χ  

where  w  is normal to hyperplane ,  /b w  is the perpendicular distance from the 

hyperplane to the origin and  w  is the Euclidean norm of w . Let d+  ( d− ) be the 

shortest  distance from the separating hyperplane to  the closest  positive  (negative) 

example. Define the “margin” of the separating hyperplane to be  d d− ++ . For the 

linearly separable case the support vector algorithm simply looks for the separating 

hyperplane with largest margin. This can be formulated as follows: suposse that all 

the training data satisfy the following constraints:

 1ix w b+ ≥ +Χ  for 1iy =

  1ix w b+ ≤ −Χ  for  1iy = −

This can be combined into one set of inequalities:

Also the distance between the two parallel lines that separate the two classes is 
2

w

. So we can find the pair of the hyperplanes which gives the maximum margin by 

minimizing the  
2w

 with the above inequality as a constrain. Thus we have the 

minimization problem:

                                     

                                        Minimize 2w     

                                        subject to ( ) 1 0i iy x w b+ − ≥Χ
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,

1( )
2i i j i j i j

i i j
W a a a a y y x x= −ε ε

We will  now switch  to  a  Lagrangian  formulation  of  the  problem for  two 

reasons.  The constraints will  be replaced by the lagrange multipliers and with the 

reformulation of the problem tha training data will only appear in the form of dot 

products between vectors. This is a crucial property that will allow us to generalize 

the procedure to the non linear case.  The lagrangian of the above inequation is:

                     
2

1 1

1 ( )
2

l l

p i i i i
i i

L w a y x w b a
= =

= − + +Χε ε

We must now minimize pL  with respect to w , b and simultaneously require 

that  the  derivatives  of  pL  with  respect  to  all  the  ia  vanish  ,all  subject  to  the 

constraints 0ia ≥ . This is convex quadratic programming problem

By  setting  the  derivative  of  the  Lagrangian  to  be  zero  the  optimization 

problem can be written in terms of ia
           

                             max 

                                   

                                       subject to 0ia ≥  , 0i ia y =ε

Solving the above quadratic problem or else the “dual problem” we use the 

ia  in order to find the  
1

n

i i i
i

w a y x
=

= ε  which will give us the best parallel lines 

that separate the different classes. Many of the ia  are zeros. The ix  with the non zero 

ia  are called the support vectors and determine the decision boundary. So if  jt ,

( 1...... )j s=  is  the  indices  of  the  s  support  vectors  we  can  write 

1 j j j

s
t t tj

w a y x
=

= ε so  as  when  we  test  unseen  data  z  we  compute 
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1
( )

j j j

s
t t tj

Tw w a y xz b z b
=

=+ = +ε  and classify  z  as class 1 if the result is 

positive  and class2  otherwise. 

So  far  we  have  consider  only  large  margin  classifier  with  linear  decision 

boundary. Lets see what happens when our data is non-linear. In this case we use the 

kernel trick. Before that, we will explain the idea of treating non-linear data. For this 

reason we introduce two terms, input space and  feature space.   The input space is 

where our data appear (which in our non-linear case are not separable by a straight 

line) and where the data in the training algorithm are in the form of dot products . 

Now  suppose  we  first  mapped  our  data  to  some  other  (maybe  infinite) 

Euclidean space H  ,which we call it feature space, using a mapping : dR HΦ → . 

In this  space the data are linear separable.    Then of course the algorithm would 

depend  on  the  data  through  dot  products  ( ) ( )i jx xΦ ΦΧ   as  usual  and  the 

computation would be easy. But still we don’t know the function Φ . For this reason 

we use the kernel trick and we work in the feature space. We choose an appropriate 

function  K  such that  ( , ( ) ( ))
i ji jK x x x xΦ ΦΧ= so as to use  K  in the training 

algorithm even though the function  Φ  is  unknown. So in one hand we succeed in 

working in a linear way by increasing the dimensionality of the data and in the other 

hand we can compute the inner product of  ( ) ( )
i j

x xΦ ΦΧ  with the help of kernel 

function  K .  But  which kernel  functions are  appropriate  each time? First  we will 

mention the types of kernels that are being used more. 
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0i ia y =ε

• Polynomial kernel with degree d

     
1 j j j

s
t t tj

w a y x
=

= ε ( , ) ( 1) pK x y x y= +Χ

• Radial basis function kernel with width s

                    
2 2( , ) / 2x yK x y e σ− −=

• Sigmoid with parameter k and q

           

             ( , ) tanh( )K x y kx y δ= −Χ

So if we rewrite the dual problem using the kernel function K  we will have:

   

                      max   
,

1( ) ( ). ( )
2i i j i j i j

i i j
W a a a a y y K x K x= −ε ε

                                         subject to 

Accordingly if we want to test an unknown sample z we will use the modified 

test function:  

               
1

, ( ) ( , )
j j j

s
t t tj

f w z w a y xb K z bφ
=

= =+ = +εp f

All above the kernels functions must obey the Mercer’s condition which states 

that there is a mapping Φ  and an expansion ( , ( ) ( ))
i ji jK x x x xΦ ΦΧ=  if and only 

if, for  any ( )g x  such :

                            

                                2( ) dxg xς  is finite

                             then  ( , ) ( ) ( ) 0K x y g x g y dxdy ≥ς
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In other words the function must be positive definite in order to describe an 

inner product [23], [24]. Note that for specific cases, it may not be easy to check 

whether  Mercer’s  condition  is  satisfied.  However  we  can  easily  prove  that  the 

condition is satisfied for positive integral powers of dot product ( , ) ( ) pK x y x y= Χ
. 

Another issue that we should address is the uniqueness and the global solution 

that the classifier offers. It turns out that every local solution is also global. This is a 

property of every convex programming problem [Fletcher 1987].  Furthermore the 

solution is guaranteed to be unique if the objective function is strictly convex, which 

in our case means that the Hessian matrix is positive definite. However, even if the 

Hessian is semi positive definite the solution can still be unique. 

By global we mean that there exists no other point in the feasible region at 

which  the  objective  function  takes  a  lower  function.  There  are  two  cases  where 

uniqueness may not hold: solutions for which  { , }w b  are themselves unique but for 

which the expansion of  w in  1 j j j

s
t t tj

w a y x
=

= ε is  not;  and solutions  whose  { , }w b  

differ. For this case there is a simple theorem that shows  if a non unique solution 

occur,then  the  solution  at  one  optimal  point  is  continuously  deformable  into  the 

solution at the other optimal point ,in such a way that all intermediate points are also 

solutions. 

2.9.4  Bayes Classifier

The  Naive  Bayes  Classifier  technique  is  based  on  the  so-called  Bayesian 

theorem and is  particularly  suited  when  the  dimensionality  of  the  inputs  is  high. 

Despite  its  simplicity,  Naive  Bayes  can  often  outperform  more  sophisticated 

classification methods. They can handle an arbitrary number of independent variables 

whether continuous or categorical. Bayesian classifiers assign the most likely class to 

a  given  example  described  by  its  future  vector.  Learning  such  classifiers  can  be 
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greatly  simplified  by  assuming  that  features  are  independent  given  class,  that  is, 

1
( | ) ( | )n

ii
P X C P X C

=
= Υ  where 1( ..... )nX X X= a feature vector and C  is 

the class.   Despite this unrealistic assumption, the resulting classifier is remarkably 

successful in practice, often competing with much more sophisticated techniques [25]. 

Naive  Bayes  has  proven  effective  in  many  practical  applications,  including  text 

classification, medical diagnosis, and systems performance management [26]. 

  The success of naive Bayes in the presence of feature dependencies can be 

explained as follows: optimality in terms of zero-one loss (classification error) is not 

necessarily related to the quality of the fit to a probability distribution.   (i. e. , the 

appropriateness of  the independence assumption).   Rather,  an optimal classifier  is 

obtained as long as both the actual and estimated distributions agree on the most-

probable  class  [25].  For  example  [25]  prove  naive  Bayes  optimality  for  some 

problems classes that have a high degree of feature dependencies, such as disjunctive 

and conjunctive concepts. 

2.9.4.1 Definitions and background

Let  1( ..... )nX X X=  be  a  vector  of  observed  random  variables  called 

features where  its  feature  takes  value  from its  domain iD .  The  set  of  all  feature 

vectors (example or states) is denoted 1 ..... nD DΩ = ΄ ΄ . Let C  be an unobserved 

random variable denoting the class of an example where in our case takes two values 

1 or 0. The Bayes classifier  ( )h x  uses as dicriminant functions the class posterior 

probabilities given a feature vector i. e  ( ) ( | )if x P C i X x= = = . Applying Byes 

rule gives :

              
( | ) ( )( | )

( )
P X x C i P C iP C i X x

P X x
= = == = =

=
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1
( ) ( | ) ( )nNB

i j
f x P X x C i P C i

=
= = = =Υ

( ) ( ( ) ( ))
( ( ) ( )) ( ) { ( ( ) ( )}x

R h P h X g X
P h X g X P X x E P h x g x

= =Ή
= =Ή Ήε

where  ( )P X x=  is identical for all classes and therefore it can be ignored. This 

yields Bayes discriminant functions:

                  

                             ( ) ( | ) ( )if x P X x C i P C i= = = =

where   ( | )P X x C i= =  is  called  the  class  conditional  probability  distribution 

(CPD). 

Thus the Bayes Classifier 

         

                          ( ) arg max ( | ) ( )
i

h x P X x C i P C i= = = =

finds  the  maximum  a  posteriori  probability (MAP)  hypothesis  given  example  x. 

However direct  estimation of the  ( | )P X x C i= =  from a given set  of training 

examples is hard when feature space is high-dimensional. Therefore approximations 

are  commonly  used,  such   as  using  the  simplifying  assumption  that  features  are 

independent given the class.   This yields the naïve Bayes classifier ( )NB x  :

             

Therefore the rule  that we use for the classification task is:

      

                 1
 if  ( | ) max( ( | ) ( ))n

k k j
x C P C x P X x C i P C i

=
= = = =Υ:

The probability of a classification error or risk of a classifier h  is defined as
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where  xE  is the expectation error over x.  We say that classifier  h is optimal on a 

given problem if its risk coincides with the Bayes risk. 

2.9.4.2 Limitations and optimality of the Bayes classifier 
    

Some limitations of naive Bayes are well-known: in case of binary features (

ik =2 for all 1,.....,i n=  ) it can only learn linear discriminant functions [27] and 

thus is always suboptimal for non-linear separable concepts. When  2ik >  for some 

features  naïve  Bayes  is  able  to  learn  (some)  polynomial  discrimintant  functions. 

Thus,  polynomial  separability is  a necessary,  although not sufficient,  condition of 

naive Bayes optimality for concepts with finite-domain features. 

Despite  its  limitations,  naive  Bayes  was  shown  to  be  optimal  for  some 

important classes of concepts that have a high degree of feature dependencies, such as 

disjunctive  and  conjunctive  concepts  [27].  These  results  can  be  generalized  to 

concepts with any nominal features:

Theorem: The naive Bayes classifier is optimal for any two-class concept with  

nominal features that assigns class 0 to exactly one example, and class 1 to the other  

examples, with probability 1. 

Surprisingly, the accuracy of naive Bayes is not directly correlated with the 

degree of feature dependencies measured as the class-conditional mutual information 

between the features.  Instead, a better predictor of accuracy is the loss of information 

that features contain about the class when assuming naive Bayes model.  However, 

further empirical and theoretical study is required to better understand the relation 

between  those  information-theoretic  metrics  and  the  behaviour  of  naive  Bayes. 

Further directions also include analysis of naïve Bayes on practical application that 

have almost-deterministic dependencies, characterizing other regions of naive Bayes 

optimality and studying the effect of various data parameters on the naive Bayes error. 
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Finally,  a  better  understanding  of  the  impact  of  independence  assumption  on 

classification  can  be  used  to  devise  better  approximation  techniques  for  learning 

efficient Bayesian net classifiers, and for probabilistic inference, e. g. , for finding 

maximum-likelihood assignments. 

CHAPTER 3
 
Results of the supervised classifiers
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3. Results 

3.1 The leave-one-out and v-fold cross validation results 

In this section we will analyze ,compare and try to evaluate the results we get 

after applying the four classifiers on the Van Veer’s and West’s datasets. For testing 

the accuracy of the classifiers we experimented with two methods, the leave-one-out 

and the v-fold cross validation. The first method has been analyzed previously so we 

will say a few words about the second. In v-fold cross validation we randomly create 

test-subsets of size v from  the samples. We train the classifier with the (v-1) samples 

and the we test it with the test-subset.  We repeat the process for n times(in our case 

we repeated it  200 times)  ,each time creating new subsets.  In  each repetition we 

calculate the percentage of the correct classified samples, we sum up all the results 

after the end of the process in order to find the mean value which shows the accuracy 

of the classifier.

Before starting the evaluation of the classifiers we took the two datasets and log 

transformed  all  the  numerical  values.  We  set  up  each  classifier  ,trying  different 

parameters each time, in order to succeed in  getting the best results. At next table 

there are the results of the classifiers with both the leave one out and v-fold cross 

validation methods. 
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                                                              Table 9

                                 Classification results via leave-one out method

                        C
lassifiers

Datasets

QDC

Quadratic  
Classifier

SVM

Support Vector  
Machine

NAIVEbc

Naive Bayes  
classifier

K-MEANS

K-nearest  
neighborhood

classifier

19 genes
87%

10 errors 100% 80.5%
15 errors

85.7%
11 errors

31 genes
88.3%
9 errors 100% 79. 2%

16 errors
81.8%

14 errors

64 genes
84.4%

12 errors
97.4%
2 errors

79.2%
16  errors

84.4%
12 errors

67 genes
Van Veer et al. 

77.9%
17 errors

80. 5%
15 errors

80. 5%
15 errors

83.1%
13 errors

100 genes
West et al. 

83%
8 errors

83%
8 errors

89. 7%
5 errors

85. 7%
7 errors
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                                                         Table 10

                    Classification results via 3-fold cross validation out method

       Classifiers

Datasets

QDC

Quadratic  
Classifier

SVM

Support  
Vector  
Machine

NAIVEbc

Naive Bayes  
classifier

K-MEANS

K-nearest  
neighborhood
classifier

 19 genes
74% 99. 6% 85,6% 88. 3%

 31 genes
92% 100% 85. 3% 88. 6%

 64 genes

91%
99% 91,2% 91%

 100 genes 
West et al. 

89% 91% 90% 89. 6%

 67 genes
Van Veer et al.  

86. 6% 88% 80. 36% 84%
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In the leave-one-out method ,we notice that the SVM classifier has the best 

performance ,specially with 19 and 30 gene’s dataset where the accuracy is 100%. As 

the number of genes is increased ,the performance of classifier falls to 80%. One 

explanation would be the fact that the dimensionality of the input space is decreased 

so  it’s  easier  for  the  classifier  to  compute  the  correct  discriminant  function  and 

classify unseen sample with more accuracy. But as we can notice all the classifiers 

,except from the k-means, give better results with the 100 genes of West instead of the 

67 genes of Van Veer, which are fewer. This phenomenon has to do with the quality 

of the selected marker genes. When the genes are informative, meaning that they help 

the  classifier  to  correct  find  the  hyperplane  to  separate  the  two  classes,  then  the 

accuracy of the classifier is better than having less genes with poor ‘quality’. 

Continuing the analysis of the results we see that the quadratic classifier gives 

good  results,  which  are  around  80%-86%  with  all  datasets.  The  k-nearest 

neighborhood has very good performance with 19 and 30 gene’s datasets ( 81-85% 

accuracy) and  it  maintain its accuracy close to  83% with the rest. The naïve Bayes 

classifier gives results which are stable. The accuracy at West’s dataset is 89.7%, it 

performs poor on 64 gene’s dataset (79,2% ) and performs almost the same on the 

dataset of  19 and 30 genes (~ 80% ). As a conclusion we must admit that most of the 

classifiers  gave  very  good  results  with  a  few  classification  mistakes.  The  SVM 

classifier performed well when dealing with a small number of genes, the k-nearest  

classifier has a mean accuracy value of 83% which is similar to the performance of 

the  quadratic classifier and last,  the naïve Bayes classifier  performed at  a stable 

manner (~80%).

Now we will evaluate and compare the results of the v-fold cross validation 

with the one we got through the leave-one-out process. A first notice we can make is 

that the performance of the classifiers is close to the previous results. Again,  SVM 

classifier has a very good performance, giving accuracy results around 90%, k-means 

and naïve Bayes classifiers gave a high level of performance (their mean score is 82% 

and 84% ) and  quadratic classifier performed a little worst comparing with the leave-

one-out results. 
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3.2        Evaluation through ROC curves 

Roc curves is a very important method which can improve the accuracy of 

two class or multiclass classifiers. The usage only of the results of the classifiers 

cannot  give  as  a  right  picture  of  their  performance.  In  fact  we  can  have  two 

classifiers with the same numerical value of accuracy which act totally different! 

The Receiver  Operating Characteristics  (ROC) (pic.  7)  of  a  classifier  shows its 

performance as a trade off between selectivity and sensitivity. What these two terms 

mean? A more precise definition of the roc curves will help in understanding what 

they  represent.  A  ROC  curve  is  a  provides  a  graphical  representation  of  the 

relationship between the true-positive (specificity) and false-positive (sensitivity) 

prediction rate of a model. The y-axis corresponds to the sensitivity of the model, it 

shows the True positive rate and it is calculated as: 

    

      
number of positive instances correctly classifiedPr

total number of positive instances
T =

The x-axis  corresponds to  the specificity of the classifier  ,it  represents the 

False positive rate and it is calculated as:

       

       
number of negative instances misclassifiedPr

total number of negative instances
F =

The greater the sensitivity at high specificity values (i. e.  high y-axis values at 

low X-axis values) the better the model.  

                                            

                                                             Pic. 7
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Confusion matrix Positive Negative

 True positive TPF (true positive 
fraction)

FPF( false positive 
fraction)

True negative FNF( false negative 
fraction)

TNF (true negative 
fraction)

                                                         Table 11 

                                                   Confusion matrix

Before going on, we should mention the creation of a confusion matrix that 

help up to gather and have more accurate view of the data gathered for the creation of 

the Roc curve.

The most important information that we get from this matrix is the TPF and 

TNF which is identical with the TRr  and FPr that we have explained above. With the 

help of Matlab we compute the TP and FP samples each time we run the classifier in 

order to find the pairs (FPr,TPr).  

Another interesting aspect of the Roc curve is the “area under the curve”.   A 

numerical measure of the accuracy of the model can be obtained from this ,where an 

area of 1. 0 signifies near perfect accuracy, while an area of less than 0. 5 indicates 

that the model is worse than just random.  In other words the quantitative-qualitative 

relationship between area and accuracy follows a fairly linear pattern.  Also the area 

under the ROC is a convenient way of comparing classifiers which in our case is very 

useful.  A random classifier has an area of 0. 5, while and ideal one has an area of 1. 

In  practice  to  use  a  classifier  one  normally  has  to  chose  an  operating  point,  a 

threshold.  This fixes a point on the ROC.  In some cases the area may be misleading. 

That is, when comparing classifiers, the one with the larger area may not be the one 

with the better performance at the chosen threshold (or limited range). For this reason 

we introduce the terms  classification cost and  error  rate in  order  to  obtain more 

information from the roc curve about the performance of the classifier. 

There is a last and important point that we should address about the creation of 

a roc curve. That is the existence of a threshold parameter in the classifier that will 

help us to increase TP at the cost of an increased FP or decrease FP at the cost of a 
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decrease in TP.  Each parameter setting provides a (FP, TP) pair and a series of such 

pairs can be used to plot an ROC curve.  

3.3 Results of Roc curves

For the creation of the roc curves we took the above classifiers and thought the 

use of Matlab we created the next Roc curves. We took our datasets ,we split them 

into two groups, one for training and one for testing. In one graph we represent the 4 

classifiers in order to compare them more easily:

                  

Roc curve for 19 genes

Roc curve for 31 genes
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Roc curve for 64 genes

Roc curve for 67 genes

Roc curve for 100 genes

                           

                                             Table 12

                                 Graphs of the roc curves

                                                    

Observing the above Roc curves we notice two things.  First  we notice the 

differences that two classifiers can have even if they give the same results at leave-

one-out method.In the dataset  of  67 genes of  Van Veer  the svm and naïve-bayes 
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classifiers give the same classification results (80% accuracy).But if we examine the 

roc curve of each classifier we observe that naïve-bayes succeeds better in classifying 

the healthy samples (class 1) in contrast  with svm who performs better  on tumor 

tissues (class 2).Another issue is that  comparing the roc curves results and the results 

of the previous validation techniques we see no differences. On the contrary the roc 

curves confirm the results we get with the others methods. Also in the above matrix 

we have the area under the curve which is a numerical value for the performance of 

the classifier:

Area under 
the curve

SVM QDC K-NEAREST NAÏVEBAYES

19 genes 1,000 0,863 0,806 0,795

31 genes 1,000 0,907 0,788 0,828

64 genes 0,971 0,827 0,874 0,803

67 genes 0,788 0,752 0,826 0,809

100 genes 0,837 0,836 0,877 0,856

                                Area under the roc curve 

  

As  we  can  notice  the  performance  of  all  classifiers  decreases  when  the 

dimension of dataset increases. The area of most the classifiers is between 0.8 -0.9 

which  is  a  good performance  value.  Another  aspect  is  that  in  some datasets,  for 

example in 67 genes dataset, k-nearest and naïve bayes performed better than svm and 

qdc which give better results in the smaller datasets.
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CHAPTER 4

Combining classifiers 
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4. Introduction to fussion classification

4.1 Beyond singularity: combining the above classifiers 
  

The main objective of designing many machine learning systems is to achieve 

the best  classification.  This  aim led to  the development  of  different  classification 

schemes for any machine learning problem.  It has been observed that in such design 

studies, usually, none of the single classifiers, such as the classifiers we evaluated 

above, is enough to classify the unseen data optimally [28]. 

These observations motivated the interests  in combining classifiers.   Many 

single classifiers are used for decision making by combining their individual results to 

derive a more accurate decision. The aim is to determine an effective combination 

method that makes use of the benefits and avoids the weaknesses of each classifier. 

There are different ways of how the single classifiers are combined [29]. In 

this work we will test and compare three combining methods: maximum combining, 

voting combining and product combining classifier. Let’s now see the principals of 

the above combining rules. 

4.2 Combining rules

Once the posterior probabilities  ( )mnp x   for i classifiers and j classes have 

been computed for our test set, they must be combined into  ( )ms x which can be 

used for the final classification. We will use 3 different methods in computing the 

above term:

' ( ) ( ( ))m mns x rulem p x=
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' ( )( )
( ) 1

m
m

m
m

s xs x
p x

=
=ε

The final result is obtained from the equation:

                                 ( ) arg max ( ( ))mf x m s x=

The 3 rules that we use is described next: 

Maximum  combining  classifier: The  maximum  combining  classifier  selects  the 

selection  of  the  single  classifier  giving  the  highest  normalized  probability.  So 

substituting the rule we then have:

arg max( ( ))( ) , ( )
mnm s xs x p n xΆ =

Voting combining classifier: The classification is done by counting the votes for 

each class over  the input  classifiers  and selecting the majority  class.  Again if  we 

replace in the first equation we have:

mn
m

( )=  (argmaxm(p (x))=m)ms xΆ ε
    

Product combining classifier: Each single classifier gives a normalized probability 

value for each class.  Then all normalized probabilities are multiplied per class.  The 

class with the highest probability product will be chosen. Again, we have:

( ) ( )m mn
m

s x p xΆ = Υ
Having the above combining rules, we test them on our four classifiers and get 

the next results. We should mention that here the test set is small comparing to train 

set (a (1/4 ratio) :
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                                                             Table 13

 

Quadratic Svm
Naïve-

bayes
K-Nearest

Maximum

Combining

classifier

Product

Combining

classifier

Voting

Combining

classifier

19 genes 87%
10 errors 100% 80.7%

15 errors
85.7%

11 errors 100% 84,4% 84,4%

31 genes 88.3% 100% 79. 2% 81.8% 98,7% 81,8% 80,5%

64 genes 84.4% 97.4% 79.2% 84.4% 96,1% 80,5% 90,9%

67 genes 77.9% 80. 5% 80. 5% 83.1% 79,2% 79,2% 79,2%

100 genes 83%       83% 89. 7% 85. 7% 80,3% 89,7% 85,7%
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                                         Results of the combined methods

We can notice that the maximum combining classifier gives almost equal results 

with the individual classifier which performs best. The two other methods give results 

which are like the mean value of all the classifiers at each dataset. We should mention 

that  having  the  roc  curves,  the  two  different  cross  validation  techniques  and  the 

combined classifiers results we can have a better view of the performance of the each 

classifier individually so as to choose which one to use but also to decrease its error 

while we take into account the results of others. 
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CHAPTER 5

 Conclusions 
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5. Conclusions

Microarray technology offers a huge amount of data that with the appropriate 

manipulation can reveal a lot of important information regarding the nature of many 

of the cancer diseases such a breast cancer. Many techniques have been applied on 

datasets  in order to find specific genes or group of genes that are responsible for 

cancer symptoms. One aspect of this effort is the classification of clinical samples 

using algorithms which are widespread used to other areas of science and technology. 

We must mention that all the algorithms have a common way of acting: they try 

to find a hyper plane which best separates the different classes that in our situation are 

two. The philosophy of computing this hyper plane different in each algorithm.  In 

this work we applied the neural network method in order to predict the class of unseen 

samples from datasets obtained from two different microarrays experiments. We used 

different  architectures  of  neural  networks  such  as  different  backpropagation 

algorithms in order to test their performance. We got very good results ,most of them 

close to 90% of accuracy ,due to the fact of the quality of the genes and the power of 

neural  networks.  We continued our work using different  proposed algorithms that 

have  been  used  to  same  works.  Again  the  results  are  very  good  with  most  the 

algorithms. To support the robustness of the results we used methods such as roc 

curves, two different cross validation techniques and combination of the classifiers so 

as to compare all  of the results and get a more precise picture of the algorithm’s 

performance each time. In the next tables we can examine the results of each classifier 

separately.
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⇒ SVM

19 genes 31 genes 64 genes 67 genes 100 genes

100% 100% 97,4%
2 errors

80.5%
15 errors

83%
8 errors

⇒ Quadratic

19 genes 31 genes 64 genes 67 genes 100 genes

87%
10 errors

88.3%
9 errors

84.4%
12 errors

77.9%
17 errors

83%
8 errors

⇒ Naïve Bayes
\

19 genes 31 genes 64 genes 67 genes 100 genes

80%
15 errors

79.2%
16 errors

79.2%
16 errors

80.5%
15 errors

89.7%
5 errors
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⇒ K-means

19 genes 31 genes 64 genes 67 genes 100 genes

85.7%
11 errors

81.8%
14 errors

84.4%
12 errors

83. 1%
13 errors

85. 7%
7 errors

⇒ Neural network

19 genes 31 genes 64 genes 67 genes 100 genes

100% 100% 98.7%
1 error

98.7%
1 error

92.3%
5 errors

⇒ High order neural network

19 genes 31 genes 64 genes 67 genes 100 genes

98,7 %     
1 error

96,1%      
3 errors

97.4%         
2 errors

82%       
 11 errors

79,5%    
 10 errors

As  we  can  observe  the  classifiers  give  good  results,  specially  the  more 

complicated neural (Bayesian regularized) and svm algorithms. But in all classifiers 

their performance starts to fall when the dimensionality of the data is increased but it 

does not fall under 80%.
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If we compare the results of the two networks we observe the performance of the 

HoNN is lower than the performance of the simple neural network. This happens due 

to the fact that the input space in HoNN is increased when we introduce the second 

order terms. Increasing the dimensionality of the network we make more difficult for 

the algorithm to find the appropriate hyperplane to distinguish the two classes.

In general if we want to point out the results of this work we can discrete them as 

follows:

1. The 3-fold cross validation gave better results than the leave-one-out method.

2. The Bayesian regularization improved the performance of the neural network.

3. In small datasets the more complicated algorithms (NN’s and SVM) 
performed much better than the simple classifiers.

4. Increase of dimensionality =decrease in the performance of the classifier

5. The combination of the classifiers resulted as a mean valued method from 
where the maximum combining classifier performed better than the others.

For  the end we should indicate  that  the classification task performs well  only 

when the previous clustering and gene selection methods select the most informative 

genes which help to the linearity of the data. So it is important the correct utilization 

of each task so as to contribute in the discover of genes and group of genes which 

need to be treated accordingly in order to fight the different types of cancer.
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Resources
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6. Resources

6.1 Software for classification

• Prtoolbox (for the other algorithms)   http://www.prtools.org  /  

• Matlab (for neural networks)     http://www.mathworks.com/

• Medcalc (for roc curves)   http://www.medcalc.be/     

Here  is  an  example  of  matlab  script  on  how  we  implemented  the  methods  for 

evaluating the classifier. It  is an example of leave –one –out method for k-nearest 

classifier and for neural network classifier

k-means neighborhood classifier

clear
x=xlsread('G100.xls');
x=mameannorm(x);
 
 for i=1:1:49;
 
      X=x.';
      A=dataset(X,genlab([25 24],[1 -1]'));
      Test=A(i,:);
      A(i,:)=[];
      [classifier] = knnc(A,5);
      M=Test*classifier;
      e=M*testc;
      coutnting(i)=e;
 end 
 
sum(coutnting)
accuracy=100-(sum(coutnting)*100)/49
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neural network classifier

clear
y=xlsread('results.xls');
 
for i=1:1:49;
    x=xlsread('G100.xls');

x=manorm(x);
test=[x(:,i)];
x(:,i)=[];
net=newff(minmax(x),[15  1],{'tansig','tansig'},'traingda');
net.trainParam.lr = 0.05;
net.trainParam.lr_inc = 1.2;
net.trainParam.lr_dec=0.9;
net.trainParam.show=NaN;
net.trainParam.mc = 0.5;
net.trainParam.epochs = 400;
net.trainParam.goal = 0;
net.trainParam.max_perf_inc=1.1; 
 [net,tr]=train(net,x,y);
a_test(i)=sim(net,test);

 
end

6.2 Public breast cancer microarray datasets

1. Van’t Veer et al. 
http://www.rii.com/publications/2002/vantveer.html

25.000 genes reduced to 67 genes of two classes: patients who are free-disease after 5 
years and patients who have developed metastases with in 5 years.

2. Perou et al.

Available at 
http://genome-www.stanford.edu/breastcancer/molecularportraits/download.shtml

No description due to the fact that the paper needs to be bought 
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3. Huang et al.
Available at http://data.cgt.duke.edu/lancet.php

Gene expression patterns from the major metagenes that predict lymph
node status from current and earlier Duke breast cancer study.(7.129 genes)
496 metagenes, 89 tumor samples in 4 clusters-   

4. West et al. 
Available at http://data.cgt.duke.edu/west.php

7129 genes per 49 breast tumors reduced to 100 informative genes and clustered to 
two pathologic groups: 25 tumors with Estrogen Receptor + (ER+) and 24 tumors 
with ER - 

5. Martin et al.
Available at http://mbcf.dfci.harvard.edu/labs/pardee/expression patterns.html

No description due to the fact that the paper needs to be bought 

6. Hedenfalk et al.
Available at http://research.nhgri.nih.gov/microarray/NEJM Supplement

This article highlights the overall impact at the gene expression level of diverse 
regulators of breast cancer growth and links the behavior of breast cancer cells in 
culture to important clinical. More precisely Expression profiles from three breast 
cancer cell lines, MCF7, T-47D (both ER), and MDA-MB-436 (ER ), were compared 
at time points (2, 8, and 24 h) after treatment with growth agonists and
antagonists known to affect breast cancer cell proliferation.
13.824 genes reduced to 1023 informative genes

6.3     Public microarray database (in alphabetical order)

• ArrayExpress   - A public repository for microarray based gene expression 
data maintained by European Bioinformatics Institute.

• ChipDB   - A searchable database of gene expression
• ExpressDB   - A relational database containing yeast and E. coli RNA 

expression data. Reference[PubMed]
• Gene Expression Atlas   - A database for gene expression profile from 91 

normal human and mouse samples across a diverse array of tissues, organs, 
and cell lines. Reference[PubMed][pdf]

• Gene Expression Database (GXD)   - A database of Mouse Genome 
Informatics at the Jackson laboratory.
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• Gene Expression Omnibus   - A database in NCBI for supporting the public 
use and disseminating of gene expression data. Reference[PubMed]

• GeneX   -  National Center for Genome Resources's initative to provide an 
Internet-available repository of gene expression data

• GermOnline   - GermOnline provides information and microarray expression 
data for genes involved in mitosis and meiosis, gamete formation and germ 
line development across species. Reference[PubMed]

• Human Gene Expression Index (HuGE Index)   -  aims to provide a 
comprehensive database to understand the expression of human genes in 
normal human tissues. Reference[PubMed]

• List Of Lists Annotated (LOLA)   - a web driven database allowing 
researchers to identify and correlate significant subsets of genes derived from 
microarray expression profiling.

• M-CHiPS (Multi-Conditional Hybridization Intensity Processing   
System) - M-CHIPS is a data warehousing concept and focuses on providing 
a structure suitable for statistical analysis of a  microarray database's entire 
components including the experiment annotations. Reference [PubMed][web 
supplement]

• MUSC DNA Microarray Database   - MUSC DNA Microarray Database is 
a web-accessible archive of DNA microarray data. Reference[PubMed]

• NASCArrays   - a repository for Affymetrix data generated by NASC's 
transcriptomics service. Reference[PubMed]

• Oncomine   - The goal of this project is to curate publicly available cancer 
microarray studies and provide data mining tools to efficiently query genes 
and datasets of interest as well as meta-analyze groups of studies. Links to 
various bioinformatics resources have been implemented including Unigene, 
Swissprot, Biocarta, HPRD, and KEGG, among others.

• Public Expression Profiling Resource (PEPR)   - A web oracle data 
warehouse of quality control and standard operating procedure (QC/SOP) 
Affymetrix data. Reference[PubMed]

• READ (RIKEN cDNA Expression Array Database)  - A database 
maintained by RIKEN (The institute of Physical and Chemical Research), 
Japan. Reference[PubMed]

• Rice Expression Database (RED)   - RED holds raw and normalized data 
from expression profiles obtained by the Rice Microarray Project and other 
research groups. These data are open to the public less than one year after 
sending the data to each research group.

• RNA Abundance Database (RAD)   - RNA Abundance Database (RAD) is 
a public gene expression database designed to hold data from array-based and 
nonarray-based (SAGE) experiments. The ultimate goal is to allow 
comparative analysis of experiments performed by different laboratories using 
different platforms and investigating different biological systems.

• Saccharomyces Genome Database (SGD): Expression Connection   -  
A gene expression database of Saccharomyces genome database in Stanford 
University, provide simultaneous search of several microarray studies result 
for gene expression data for a given gene or ORF. Reference[PubMed]

• Soybean Genomics and Microarray Database (SGMD)   - The SGMD 
attempts to provide an integrated view of the interaction of soybean with the 
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soybean cyst nematode and contains genomic, EST and microarray data with 
embedded analytical tools allowing correlation of soybean ESTs with their 
gene expression profiles. Reference[PubMed]

• Standford Microarray Database (SMD)     - Standford Microarray Database 
(SMD) stores raw and normalized data from microarray experiments, as well 
as their corresponding image files. In addition,  SMD provides interfaces for 
data retrieval, analysis and visualization. Data is released to the public at the 
researcher's discretion or upon publication. Reference[PubMed]

• Yale Microarray Database  
• yeast Microarray Global Viewer (yMGV)   - A database for yeast gene 

expression data maintained by Laboratoire d
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