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Chapter 1

Introduction

In recent years, multi-input,multi-output (MIMO) systems have received a lot of

attention thanks to their ability to achieve improved performance and capacity results

for wireless communications by exploiting spatial diversity techniques.

In general, diversity techniques lead to an increase in the number of degrees of

freedom in a system . Spatial or in other words antenna diversity refers to the use

of multiple antennas at the transmitter (transmit diversity) and/or receiver (receive

diversity).

Transmit diversity techniques are of crucial importance especially in scenarios

where a base station (multiantenna transmitter) transmits information to several co-

channel users, each one equipped with a single antenna element. In this point, note

that the above setup is a typical real case scenario, for it is more cost effective to

use multiple antennas in a central point. Furthermore, it is well known that today’s

commercial systems provide mobile devices which are power and space restricted,

thus prohibiting the use of multiple antenna elements.

Several techniques and applications have been developed to exploit transmit di-

versity such as zero force beamforming, power control, minimum squared error beam-

forming, multicast transmit beamforming etc. Each one of these techniques handles

the downlink processing of a MIMO system from a different point of view and by

using different criteria and constraints. For instance some algorithms try to suppress

multiuser interference while some other algorithms try to guarantee acceptable quality
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of service to all users.

This thesis is concerned with the design and evaluation of multicast transmit

beamforming algorithms from the viewpoint of guaranteeing acceptable quality of

service to all users. Multicast services and applications have emerged in recent wireless

network technologies, such as the 802.16 standard, and UMTS-LTE.

Specifically, in this thesis we study transmit beamforming to multiple co-channel

multicast groups and multicast transmit beamforming with sidelobe constraints.

In the transmit beamforming to multiple co-channel multicast groups algorithm we

seek optimal beamforming vectors, one per group, so that all members within each

group obtain acceptable quality of service. Note that independent information is

transmitted to members of different groups . On the other hand, the multicast trans-

mit beamforming with sidelobe constraints algorithm is an extension of the multicast

transmit beamforming problem [5]. In this case, our goal is the design of a beam-

former that transmits and guarantees quality of service to specific users, while limiting

interference to all others.

As we will see later on, both problems can be approximately solved using semidefi-

nite optimization and highly efficient algorithms such as interior point methods whose

complexity grows as a polynomial function of the problem size.

1.1 Quality of Service

As previously mentioned, in this thesis we focus on algorithms whose primary issue

is to guarantee quality of service to all users. We assume that different users may

require different quality of service. This is a very reasonable assumption. As an

example consider the Internet. New applications such as streaming and voice over

IP have forced internet to alter its basic approach to provide best effort services to

all users. Users may require different types of service such as HTTP requests, video

streaming etc. each with different quality of service requirements.

Furthemore, in this thesis we have to describe the quality of service constraint in a

quantitative manner. In general, quality of service is a quality measure with many

alternative definitions. For example, one could express the quality of service in terms
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of delay, bit error rate, mean square error or signal to interference plus noise ratio

(SINR). In our study, we use the latter as an effective measure of the quality of service

since it determines the maximum achievable data rate and probability of error.

1.2 System Model

Consider a wireless scenario, where a base station is equipped with M antenna ele-

ments and simultaneously serves G multicast groups. Assume that each receiver is

equipped with a single antenna element.

The transmitted signal can be written as:

x =
G∑

k=1

bkw
H
k (1.1)

where wk is the M-dimensional beamforming vector and bk is the transmitted infor-

mation stream intended for the k-th group.

The received signal at a receiver of the i-th multicast group can be written as:

ri =
G∑

k=1

bkw
H
k hi + ni (1.2)

where ni represents noise, and hi denotes the M × 1 channel vector.

Note that equation (1.2) can be also written in the following form:

ri = biw
H
i hi +

G∑

j 6=i

bjw
H
j hi + ni (1.3)

By observing equation (1.3), we can clearly see that the user of the i-th multicast

group obtains not only its desired signal, but also interference from other co-channel

multicast groups. Specifically the term biw
H
i hi represents the desired signal and the

term
∑K

j 6=i bjw
H
j hi represents interference.

In general, transmit beamforming affects not only the performance of a desired

user but also the performance of all co-channel users. Consequently, unless designed
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jointly, transmit beamforming could lead to an overall degradation of the network’s

performance.

1.3 Channel State Information

Throughout our study, we assume that the transmitter can acquire perfect channel

state information (CSI). For instance in time division duplex systems (TDD) where

the uplink channel is reciprocal of the downlink channel, we can use training data to

obtain instantaneous channel estimates.

In general, we assume that a feedback link sends channel state information from

the receiver back to the transmitter. Furthermore, we assume that this link is both

delay and error free. However, we should note that this is not a realistic scenario

since it is almost certain that delays, estimation and quantization errors as well as

channel variations will occur, thus leading to a transmitter that possesses outdated

or false channel state information most of the time.

1.4 Introduction to convex optimization theory

In recent years, several breakthroughs and developments in algorithms have fueled

new interest in convex optimization theory and convex optimization has become a

tool of central importance in engineering

Convex optimization has several desirable properties that makes it tractable and

suitable in solving optimization problems. First of all, there exist no local minimum

which is not global. Therefore, once we find an optimum we are ensured that it is

necessarily a global optimum and the problem is solved. Furthermore, we can benefit

from results in duality theory to detect the feasibility or not of a problem. Finally,

several numerical solution methods such as the interior point methods can handle

very large problems in polynomial time.

Unfortunately, in practice non-convex problems turn out to be more common than

convex problems. In such cases, we have to devise an approximation of the original

problem by dropping or introducing constraints, changing variables etc. In general,
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obtaining a good approximation of the original problem is a non trivial task.

Below we give a brief introduction to the basic concepts of convex optimization theory.

1.4.1 Convex sets and functions

A set C is said to be convex if for any x, y ∈ C and 0 ≤ θ ≤ 1

θx + (1− θ)y ∈ C (1.4)

In other words, a set C is convex if for any points x, y∈ C, the line segment between

them also lies in C.

In a similar fashion, a function f is said to be convex over a interval (a,b) if for

any x, y ∈ (a,b) and 0 ≤ θ ≤ 1,

f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y) (1.5)

If equality holds only if θ = 1 or θ = 0, then f is said to be strictly convex.

If f is convex and continuously differentiable, we can use the first order Taylor

series approximation to obtain a global underestimator of the function,

f(y) ≥ f(x) +5f(x)T (y − x) (1.6)

A convex function has no local minima which is not global. This is one of the key

properties that make convexity so special and attractive in optimization.

Affine, quadratic and positive semidefinite functions as well as the Euclidean norm,

are all important elementary convex classes that arise frequently in optimization.
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1.4.2 Convex Cones

A set C is a convex cone K, if for each x ∈ K and each a ≥ 0, ax ∈ K.

A convex cone of special interest is the positive semidefinite cone,

K = {X|X symmetric and X º 0} (1.7)

1.4.3 Convex Optimization

Let us consider the following optimization problem:

min fo(x) (1.8)

subject to : fi(x) ≤ 0 i = 1, · · · ,m (1.9)

hi(x) = 0 i = 1, · · · , p (1.10)

Our goal is to find an x that minimizes the objective function fo(x) while satisfying

all equality and inequality constraints.

Problem (1.8),(1.9),(1.10) is said to be feasible if there exists at least one x for

which all equality and inequality constraints are satisfied. In the opposite case the

problem is said to be infeasible.

A convex optimization problem is defined as one in which the objective function

is convex, the inequality constraint functions are convex and the equality constraint

functions are affine.

Optimization problems in which the unknown variable is not a vector but a sym-

metric matrix which is required to be positive semidefinite are semidefinite optimiza-

tion problems. Below we give the standard form of a semidefinite problem (SDP):

min CX

subject to : AiX = bi i = 1, · · · ,m (1.11)

X º 0
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where Ai ∈ Rn×n, b ∈ Rm, C ∈ Rn×n, X ∈ Rn×n

1.5 Outline of the Thesis

In this thesis, we study physical-layer multicasting algorithms and conduct several

experiments using outdoor measured channel data to evaluate their performance.

In chapter 2 we study the problem of transmit beamforming to multicast co-

channel multicast groups proposed in [6]. We start with a description of the problem

model and next we present the problem formulation. In the third section, we give an

analytical description of the proposed relaxation. The fourth section describes the

Gaussian randomization technique we use to convert the solution of the relaxed prob-

lem to a proper solution for the original problem. Next, we give a detailed description

of the algorithm proposed in [6]. In sections 6 and 7 we describe the measurement

campaign and the measured channel data we use to conduct our experiments. In

section 8 we present the various experiments we have conducted and their results.

Finally, in the last section we discuss the results and obtain some conclusions.

In chapter 3, we study the problem of multicast transmit beamforming with side-

lobe constraints. At first, we describe the problem and give its formulation. In

sections 2 and 3 we give a detailed description of the relaxation and the algorithm we

propose to obtain apprimate solutions for the original problem. Next, we present the

results we have obtained from various experiments and Monte Carlo simulations. In

the last section, we discuss the results and draw some conclusions.

In the final chapter, we give some final conclusions regarding both algorithms.
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Chapter 2

Transmit Beamforming to multiple

co-channel multicast groups

In this chapter we are concerned with the problem of transmit beamforming to mul-

tiple co-channel multicast groups. We give a detailed description of the problem

statement and the relaxation proposed in [6]. Finally we test the algorithm under

several wireless scenarios using measured channel data

2.1 System Model

Consider a wireless scenario, where a multi-antenna transmitter (base station) simul-

taneously transmits information to G multicast groups. Note, that the transmitter

sends common information to users participating in the same multicast group, and

independent information to users of different multicast groups. Assume, that each

user is equipped with a single antenna element and participates to a single multicast

group. Furthermore, assume that that the transmitter is equipped with N antenna

elements.

Let Gk denote the set of all users allocated in multicast group k and M denote the

total number of users in the system.
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Clearly:
G∑

k=1

Gk = M (2.1)

where Gk := |Gk| and G ∈ {1, · · · ,M}

Cases of special interest arise when G = 1 and G = M . Specifically, when G = 1, the

transmitter sends common information to all users in the system. This is a broad-

casting scenario. On the other hand, when G = M the transmitter sends independent

information to each user and thus we are dealing with the SINR constrained downlink

beamforming problem.

2.2 Problem Statement

Let hi denote the N × 1 channel vector for user i and wH
k denote the N × 1 beam-

forming vector generated for multicast group k . Assume that the channel response

is frequency flat for all M users. Furthermore, assume that all N × 1 channel vectors

are independent of each other.

If all information signals {sk(t)}G
k=1 are uncorrelated and furthermore if they are

zero mean with unit variance, then the total transmitted power can be written as:

G∑

k=1

||wk||22 (2.2)

The SINR at each link can be expressed as:

SINR =
|wH

k hi|2∑
` 6=k |wH

` hi|2 + σ2
i

(2.3)

The beamforming problem can be formulated as one in which the total power radiated

by the transmitter is minimized, while the SINR at each user is greater than a target

value.
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min
{wk∈CN}G

k=1

G∑

k=1

‖wk‖2
2

s.t :
|wH

k hi|2∑
` 6=k |wH

` hi|2 + σ2
i

≥ ci, ∀i ∈ Gk,∀k ∈ {1, · · · , G} (2.4)

where ci denotes the prescribed minimum SINR at each receiver.

As mentioned earlier, the above setup includes the broadcasting scenario as a special

case which as shown in [5] is NP − hard. Loosely speaking, this means that we are

not likely to devise an algorithm which will solve problem (2.4) both efficiently and

optimally, which motivates seeking effective approximate solution.

2.3 Relaxation

Problem (2.4) is a quadratic optimization problem with quadratic non convex con-

straints. In order to convert problem (2.4) in a convex form, we introduce the following

matrices:

Qi := hih
H
i (2.5)

and

Xk := wkw
H
k (2.6)

Furthermore, by using the rule trace(AB) = trace(BA) we can write:

|wH
k hi|2 = hH

i wkw
H
k hi

= trace(hH
i wkw

H
k hi)

= trace(hih
H
i wkw

H
k )

= trace(QiXK)

(2.7)
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Problem (2.4) is reformulated equivalently as follows:

min
{Xk∈CN×N}G

k=1

G∑

k=1

trace(Xk)

s.t : trace(QiXk) ≥ ci

∑

` 6=k

trace(QiXl) + ciσ
2
i , ∀i ∈ Gk,∀k ∈ {1, · · · , G} (2.8)

Xk º 0

rank (Xk) = 1, ∀k ∈ {1, · · · , G}

The notation Xk º 0 means that Xk is positive semidefinite. Note that the positive

semidefinite constraint plus the rank one constraint ensure that Xk := wkw
H
k .

Problem (2.8) has a linear objective function, linear trace inequalities and a con-

vex positive semidefinite constraint. However the rank one constraint is nonconvex.

By dropping the rank one constraint, we obtain the following relaxation of the original

problem:

min
{Xk∈CN×N}G

k=1

G∑

k=1

trace(Xk)

s.t : trace(QiXk)− ci

∑

` 6=k

trace(QiXl) ≥ ciσ
2
i , ∀i ∈ Gk,∀k ∈ {1, · · · , G} (2.9)

Xk º 0,∀k ∈ {1, · · · , G}

In order to put problem (2.10) in the standard semidefinite form (1.11), we have to

transform the inequality constraints into equality constraints. Therefore, we introduce

M nonnegative slack variables and problem (2.10) can be written as:

min
{Xk∈CN×N}G

k=1,{si∈R}M
i=1

G∑

k=1

trace(Xk)

s.t : trace(QiXk)−ci

∑

` 6=k

trace(QiXl)−si = ciσ
2
i , ∀i ∈ Gk,∀k ∈ {1, · · · , G} (2.10)

si ≥ 0,∀i ∈ {1, · · · ,M}
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Xk º 0,∀k ∈ {1, · · · , G}

Problem (2.10) is a semidefinite programming problem (SDP) and we can solve it

efficiently by using interior point methods. Interior point methods are implemented

in several software packages. In our study, we use the MATLAB Sedumi toolbox to

solve problem (2.10) at a complexity cost that is at most O((GN2 + M)3.5)

2.4 Randomization

In general, the semidefinite relaxed problem (2.10) is not equivalent to the original

problem.

If problem (2.10) yields a feasible solution {Xk}G
k=1, then {Xk}G

k=1 is the optimal

solution to the original problem only if it satisfies the rank one constraint. However,

in the general case, if problem (2.10) turns out to be feasible, it is expected to yield

a solution {Xk}G
k=1 of higher rank. In this case, {Xk}G

k=1 will give a lower bound on

the cost function of the original problem. The reason is that by dropping the rank

one constraint, we have enlarged the feasibility region of the problem.

However, once the solution to the semidefinite relaxed problem is determined,

the optimal solution to the original problem can be approximated. The process

we use to convert the solution of the relaxed problem into a suitable solution of the

original problem is called randomization. Several randomization techniques have been

proposed in the literature. In our study, we use the Gaussian randomization technique

Gaussian Randomization is an iterative process. At each iteration, we use Xk to

compute a candidate beamforming vector wl. Below, we give a brief description of

its steps.

First, we calculate the eigenvalue decomposition UΣUH of Xk. Then, at each itera-

tion we generate a random, zero mean, unit variance, complex circularly symmetric

Gaussian vector vl and compute the candidate beamforming vector wl as follows:

wl = UΣ
1
2vl (2.11)

Each iteration produces a candidate beamforming vector which may be worse or
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better than previous checked candidate vectors. In the following section we explain

under which criteria we choose the best candidate beamforming vector.

2.5 The Multi-Group Power Control Problem

Gaussian randomization was used in [5], to obtain candidate beamforming vectors

for the broadcasting scenario. Furthermore, in order to satisfy the constraints, all

candidate beamforming vectors were scaled to the minimum length necessary. Un-

fortunately, in our study we cannot adopt the above strategy since scaling up one

group’s beamforming vector would increase interference to other groups.

To this end, let αk,i := |wH
k hi|2 and βk := ||wk||2. For each multicast group, we

seek the minimum power boost for which no constraint will be violated. Thus, we

can formulate the following Multi-Group Power Control problem [6]:

min
{pk∈R}G

k=1

G∑

k=1

βkpk

subject to :
pkαk,i∑

` 6=k plαl,i + σ2
i

≥ ci, ∀i ∈ Gk,∀k ∈ {1, · · · , G} (2.12)

pk ≥ 0,∀k ∈ {1, · · · , G}

Introducing M slack variables in order to convert the inequalities expressed in (2.12)

into equalities, results in the following reformulation:

min
{pk∈R}G

k=1,{si∈R}M
i=1

G∑

k=1

βkpk

subject to :pkαk,i − ci

∑

` 6=k

plαl,i − si = ciσ
2
i ,∀i ∈ Gk,∀k ∈ {1, · · · , G} (2.13)

pk ≥ 0,∀k ∈ {1, · · · , G}

si ≥ 0,∀i ∈ {1, · · · ,M}
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Problem (2.13) has a linear objective function and linear constraints. Note that the

best candidate beamforming vector, is the one that yields the minimum objective :∑G
k=1 βkpk.

The overall algorithm is summarized below:

1. Solve the semidefinite relaxation problem (2.10). Let {Xk}G
k=1 denote its solu-

tion.

2. If rank(Xk) 6= 1 for any k, use Gaussian randomization to generate a set of

candidate beamforming vectors. Let {wk}G
k=1 denote the set of candidate beam-

forming vectors. If rank(Xk) = 1 use the principal component of Xk.

3. Use the set {wk}G
k=1 to solve the Multi-Group Power Control problem. If, some

set {wk}G
k=1 yields the minimum objective function compared to all previous

checked, store the solution as well as the associated objective function.

Note that for G = M , the transmitter sends independent information to each receiver

and the relaxed problem is in fact equivalent to the original problem as shown in [1].

2.6 Testbed Description

In order to evaluate the performance of the proposed algorithm, we have conducted

several experiments using measured channel data. Measured channel data were down-

loaded from the iCORE HCDC lab web site university of Alberta in Edmonton

( http://www.ece.ualberta.ca/ mimo/ ).

2.6.1 Measurement Campaign description

The HCDC Laboratory at the university of Alberta has developed a portable 4 × 4

MIMO testbed to obtain real time measurements of the 4× 4 channel matrix H. All

measured channel gains hij (from transmit antenna i to receive antenna j) include not

only the characteristics of the physical propagation channel but also effects caused

by certain antenna configurations.
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The portable 4 x 4 MIMO testbed uses a narrowband communication system

operating in the unlicensed 902-928 MHz ISM band. The multiantenna structure

of both receiver and transmitter consists of a set of four dipole antennas vertically

polarized with adjustable antenna spacing.

At the transmitter, the four baseband signals are shaped by a raised cosine pulse

with a roll-off factor of 0.31, upconverted to an intrmediate frequency of (IF) of 12.5

MHz and sampled using 50 MHz digital to analog (D/A) conversion cards. Once

the outputs of the (D/A) cards are low pass filtered with a cutoff frequency of 15

MHz, the four independent IF waveforms are upconverted to the 902-928 band for

transmission.

The receiver has a similar multiantenna structure. The 4 receive waveforms are

firstly downconverted to an intermediate frequency (IF) of 12.5 MHz and once they

are sampled by the analog to digital (A/D) cards, code synchronization is performed.

The receiver performs the measurements non coherently. Finally we should note,

that the chip rate of each channel is low enough to assume that the channel is not

frequency selective. For a detailed description of the MIMO testbed see

2.7 The ’Quad’ Dataset

The iCORE HCDC lab web site contains numerous indoor and outdoor campaign

descriptions. In our study, we have used selected outdoor measurements which were

collected from the Quad court illustrated in figure 2.1.

Quad is an open area surrounded by trees and buildings. Its width is about 60 meters

and its length about 150 meters. The heights of the buildings surrounding the field

range from 15 to 30 meters. As we can see the transmitter’s location is fixed, whereas

the receivers can be placed in 6 different locations. Both transmitter and receiver

antennas have a λ/2 spacing. For each receiver location we have 9 data collections,

each one containing about 100 4× 4 channel snapshots. The 9 data collections were

obtained by shifting the receiver array on a 3x3 square grid with λ/4 spacing. Finally

note that three channel snapshots were recorded per second.

The proposed algorithm has been tested using an average over all grid locations
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Figure 2.1: Quad Field

and over all channel snapshots. Furthermore, in order to facilitate comparison with

the Rayleigh channel simulations conducted in [6], all channel gains have been nor-

malized by the average amplitude over all snapshots.

2.8 Experimental Results

In this section, our goal is to obtain quantitative results regarding the overall per-

formance of the algorithm and furthermore to detect the different factors that may

affect it. Throughout our experiments, performance is defined in terms of:

1. The feasibility percentage of the relaxed and the multi group power control

problem

2. The percentage for which the relaxed problem is equivalent to the original prob-

lem

3. The quality of approximate solutions

The feasibility of the relaxed problem is of paramount importance. Specifically, if

problem (2.10) is feasible, then we can use the Gaussian randomization technique

and solve the multi group power control problem to obtain an approximate solution

to the original problem. On the other hand, if problem (2.10) is infeasible, then

so is the original problem, which is intuitive. At this point, note that feasibility of

the relaxed problem alone, does not establish feasibility of the original problem. In
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particular, if the multi group power control problem turns out to be infeasible, the

feasibility of the original problem is not guaranteed.

Cases for which the relaxed problem is equivalent to the original problem are of

great importance too. Such cases occur when the solution of the semidefinite relaxed

problem is rank one. As previously discussed, the principal component of the semidef-

inite problem solution can be used to provide the optimum solution of the original

problem.

Finally, note that the quality of approximate solutions is defined as the ratio of the

total transmitted power to the lower bound of transmitted power obtained by solving

the relaxed problem.

In order to detect the factors that have impact on the performance, we have used

several scenarios, which were designed in the basis of:

1. the total number of multicast groups

2. the populations of the multicast groups

3. interference. Specifically, we have tested both directional and non directional

scenarios. Note that directional scenarios correspond to cases where the users

of each multicast group are spatially close, whereas non directional scenarios

correspond to cases where all users are scattered.

Each scenario has been tested for increasing numbers of the target SINR, for 700

iterations of the randomization technique and for users with the same quality of

service requirements. Furthermore, both the semidefinite relaxation problem and the

linear multi power control problem have been solved using the MATLAB toolbox

Sedumi. Last, note that each receive antenna at each location represents a separate

user. The results are summarized in the following tables.

Note that column 2 reports the feasibility percentage of R, column 3 reports the

percentage for which R is equivalent to I, column 4 reports the feasibility percentage

of MGPC, column 5 reports the average transmitted power over the lower bound

obtained from the SDR solution.
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1. Group1 Location 3: user1, user2 / Location 2: user3, user4

Group2 Location 6: user1, user2 / Location 7: user3, user4
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SINR R% R=I% MGPC% mean Gauss

10db 98.3274 87.1203 99.5140 1.2642

12db 87.3357 91.3817 99.5896 1.2889

2. Group1 user1, user2: Location 3 / user3, user4: Location 6

Group2 user1, user2: Location 5 / user3, user4: Location 7

SINR R% R=I% MGPC% mean Gauss

10db 98.3274 85.7837 99.3925 1.2509

12db 88.6499 90.5660 99.4609 1.3336

14db 75.6272 96.6825 99.6840 1.3298

16db 51.3740 97.4419 100 1.7926

18db 27.7180 99.1379 99.5690 1.6830

20db 13.6201 98.2456 99.1228 3.4784

22db 5.4958 100 100 -

3. Group1 user1, user2, user3: Location 3 / user4, user5: Location 6
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Group2 user1, user2: Location 5 / user3, user4, user5: Location 7

SINR R% R=I% MGPC% mean Gauss

10db 51.2545 81.3520 98.6014 2.1182

4. Group1 user1, user2, user3, user4: Location 3

Group2 user1, user2, user3, user4: Location 7

SINR R% R=I% MGPC% mean Gauss

10db 95.8184 94.1397 99.6259 1.2136

12db 91.0394 92.6509 99.6063 1.1923

14db 86.3799 92.8077 99.7234 1.7262

16db 68.3393 95.6294 99.8252 1.4273

18db 43.0108 96.9444 100 1.7063

20db 30.4659 98.8235 99.2157 2 1.2652

22db 17.0848 100 99.3007 1.2404

5. Group1 user1, user2, user3, user4: Location 3
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Group2 user1, user2, user3, user4: Location 2

SINR R% R=I% MGPC% mean Gauss

10db 100 99.4026 100 1.0508

12db 100 98.0884 99.5221 1.0316

14db 100 97.9689 99.5221 1.1045

16db 100 97.0131 99.7611 1.0631

18db 99.6416 98.0815 99.8861 1.0885

20db 96.7742 99.0123 99.7531 1.1510

22db 86.1410 99.8613 99.0291 1.0102

24db 76.8220 100 99.5334 -

26db 63.0824 99.8106 99.8106 1.1982

28db 43.8471 100 99.4550 -

30db 27.4791 100 97.5632 -

32db 15.0538 100 99.2063 -

6. Group1 user1, user2, user3, user4: Location 7

Group2 user1, user2, user3, user4: Location 6
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SINR R% R=I% MGPC% mean Gauss

10db 74.7909 80.319 99.3610 1.3096

12db 59.6177 87.3747 99.5992 1.5518

14db 35.8423 91.6667 93.3333 1.2460

16db 14.9343 92.8000 99.2000 1.1634

7. Group1 user1, user2, user3, user4: Location7 / user5: Location 5

Group2 user1, user2, user3, user4 : Location6 / user5: Location 1

SINR R% R=I% MGPC% mean Gauss

10db 26.1649 84.4749 96.8037 1.2825

8. Group1 user1, user2, user3, user4, user5: Location 7

Group2 user1, user2, user3, user4, user5: Location 6

SINR R% R=I% MGPC% mean Gauss

10db 74.7909 80.0319 99.3610 1.5620
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9. Group1 user1: Location 1 / user2, user3 : Location 2 / user4: Location 3

Group2 user1, user2: Location 5 / user3 : Location 6 / user4: Location 7

SINR R% R=I% MGPC% mean Gauss

10db 95.5926 86.1935 99.2258 1.6058

12db 71.8041 89.5175 98.8353 6.4524

14db 44.5639 92.7614 97.8552 2.1041

16db 25.3286 96.2264 98.5849 1.3436

10. Group1 user1: Location 3 / user2, user3: Location 5 / user4: Location 7

Group2 user1, user2: Location 2 / user3: Location 1 / user4: Location 6

SINR R% R=I% MGPC% mean Gauss

10db 74.3130 91.1576 99.6785 1.7264

12db 49.5818 93.2530 98.7952 1.2868

14db 28.6738 97.0833 99.5833 1.7673

16db 13.1422 100 100 1.0457
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11. Group1 user1: Location 1 / user2: Location 3 / user3: Location 5 / user4:

Location 7

Group2 user1: Location 2 / user2: Location 5 / user3: Location 7 / user4:

Location 6

SINR R% R=I% MGPC% mean Gauss

10db 60.0956 89.6620 99.4036 2 1.3599

12db 40.1434 91.3690 99.4048 1.4602

14db 29.8686 94 98.8000 1.7876

16db 21.5054 93.8889 99.4444 1.1631

18db 14.6953 99.1870 98.3740 1.2342

12. Group1 user1: Location 1 / user2: Location 3 / user3: Location 6 / user4:

Location 7

Group2 user1: Location 2 / user2: Location 3 / user3: Location 5 / user4:

Location 7
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SINR R% R=I% MGPC% mean Gauss

10db 53.5245 89.9554 98.6607 1.9458

12db 38.1123 96.2382 99.3730 2.3394

14db 27.5986 97.8355 98.7013 8.3910

16db 18.5185 99.3548 99.3548 6.3769

13. Group1 user1, user,user3,user4 : Location 7

Group2 user1, user2, user3, user4 : Location 5

SINR R% R=I% MGPC% mean Gauss

10db 81.2425 86.6176 99.5588 1.4035

12db 49.8208 90.4077 99.2806 1.7554

14db 18.8769 91.7722 100 1.2302
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14. Group1 user1: Location 5 / user2: Location 2 / user3: Location 7 / user4:

Location 1

Group2 user1: Location 3 / user2: Location 2/ user3: Location 1/ user4:

Location 6

SINR R% R=I% MGPC% mean Gauss

10db 69.5341 89.1753 99.1409 1.4055

12db 44.3250 91.1051 99.4609 1.1935

14db 24.6117 96.1165 97.5728 1.5061

16db 11.4695 96.8750 100 1.2151

15. Group1 user1, user2, user3, user4: Location 3

Group2 user1, user2, user3, user4: Location 2

Group3 user1, user2, user3, user4: Location 5

Infeasible
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16. Group1 user1, user2, user3: Location 3

Group2 user1, user2, user3: Location 2

Group3 user1, user2, user3: Location 5

SINR R% R=I% MGPC% mean Gauss

10db 5.2569 100 100 -

17. Group1user1, user2, user3: Location 3

Group2 user1, user2, user3: Location 2

Group3 user1, user2, user3: Location 6

SINR R% R=I% MGPC% mean Gauss

10db 32.1386 94.4238 98.5130 2.0651

18. Group1 user1, user2, user3: Location 7

Group2 user1, user2, user3: Location 6

Group3 user1, user2, user3: Location 1

Infeasible
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19. Group1 user1, user2, user3: Location 3

Group2 user1, user2, user3: Location 2

Group3 user1, user2, user3: Location 1

SINR R% R=I% MGPC% mean Gauss

10db 12.7838 100 97.1963 -

2.9 Conclusions

In the present section, we discuss the various experimental results.

We begin our discussion with the feasibility percentage of the semidefinite relax-

ation problem. As expected, the feasibility of the relaxed problem depends on the

number of multicast groups and their populations. As the number of multicast groups

or their populations increases, the feasibility of the relaxed problem drops. For ex-

ample, consider scenarios (15-19) and (7,8) respectively. Note, that even for scenarios

dealing with relatively few users, an increase in the number of multicast groups yields

a substantial decrease of the feasibility.

Another factor of great importance is the target SINR. For increasing values of the

target SINR, the feasibility percentage of the relaxed problem decreases (scenario 4).

We observe that directional scenarios tend to be more feasible than non directional
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scenarios since they can be solved for higher values of the target SINR. For exam-

ple, compare scenarios 5 and 9. Note that typical values of the highest SINR that

can be achieved for directional scenarios range between 18-22 dB, whereas for non

directional scenarios range between 14-16 dB. The feasibility percentage of the multi

power control problem is for most cases higher than 95 %. Therefore, for almost all

cases, if the semidefinite relaxation is feasible, an approximate solution to the original

problem can be obtained.

A surprising result in our study, is that the percentage of rank one solutions

{Xk}G
k=1 is at most cases much higher than 90%. In such cases, the relaxed prob-

lem is equivalent to the original problem and thus by solving the semidefinite relaxed

problem we obtain an exact solution of the original problem. Furthermore, we observe

that some relationship seems to exist between the rank one and feasibility percentages

of the relaxed problem. In particular, as the feasibility percentage of the semidefinite

relaxation problem drops, the percentage of rank one solutions is constantly increas-

ing. For example consider scenario (2).

Last but not least, the quality of approximate solutions defined as the ratio of the

total transmitted power corresponding to the approximate solution we obtain, to the

lower bound of transmitted power obtained by solving the semidefinite relaxation is

in most cases at most 3dB away of the lower bound.

Unfortunately, the transmitter is equipped with only 4 antennas and thus we have

not been able to fully analyze the impact of the number of transmit elements to the

performance of the algorithm. However it is intuitive that transmitters equipped with

more antenna elements will be able to serve more multicast groups and more users.

In fact, Monte Carlo simulation in [6], indicates that the feasibility of the relaxed

problem depends on the ratio N
G

and the populations of the multicast groups.
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Chapter 3

Multicast Trasnmit Beamforming

with Sidelobe constraints

In this chapter we are concerned with the problem of multicast transmit beamforming

with sidelobe constraints. Our goal is to find an optimal beamforming scheme which

transmits to specific users, while limiting interference to certain directions. This

problem is an extension of the multicast transmit beamforming problem posed in [5].

In the following sections, we give a detailed description of the problem model and the

proposed relaxation. Finally, we conduct several experiments to evaluate and verify

the adequacy of the proposed algorithm.

3.1 Problem Statement

Consider a wireless scenario, where a multiantenna transmitter (base station) simul-

taneously sends common information to K users. Assume that the transmitter is

equipped with N antenna elements, and that each receiver is equipped with a single

antenna element. Let wH denote the N × 1 beamforming vector and hi denote the

N × 1 channel vector from each transmit antenna to the receive antenna of user i.

The channel response is frequency flat for all K users. Note that since the transmitter

sends common information to all users we have no interference. In this case, quality

of service can be described in terms of signal to noise ratio (SNR).
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If the transmitted information signal is zero mean with unit variance, then the total

transmitted power is equal to ||wk||22. It follows that the SNR at each link can be

written as:

SNR =
|wHhi|2

σ2
i

(3.1)

where σ2
i denotes the variance of the white, zero mean noise.

Let the set {1, · · · ,M} denote the set of users we are interested to satisfy the

prescribed minimum SNR, while on the other hand, let the set {1, · · · , S} denote the

set of users for which we wish to limit interference. Furthermore, let ci denote the

minimum target SNR for the i-th user in {1, · · · ,M} and dj denote the maximum

SNR for the j-th user in {1, · · · , S}. The design of a beamformer, that minimizes

the total power and transmits to specific users, while limiting interference to certain

directions can be posed as:

min
{w∈CN}

‖w‖2
2

subject to :
|wHhi|2

σ2
i

≥ ci,∀i ∈ {1, · · · ,M} (3.2)

|wHbj|2
σ2

i

≤ dj,∀j ∈ {1, · · · , S}

where hi and bj correspond to the channel vectors of users in {1, · · · ,M} and

{1, · · · , S} respectively.

At this point, we define the normalized channel vectors h̃i := hi√
ciσ2

i

and b̃j :=
bj√
djσ2

i

,

and problem (3.2) can be written as:

min
{w∈CN}

‖w‖2
2

subject to : |wHh̃i|2 ≥ 1, ∀i ∈ {1, · · · ,M} (3.3)

|wHb̃j|2 ≤ 1, ∀j ∈ {1, · · · , S}

As mentioned, the above problem is an extension to the multicast beamforming

problem which is NP-hard. Thus problem (3.3) is NP hard too. As discussed in
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chapter 2, NP hard problems cannot be exactly solved in reasonable time.

3.2 Relaxation

Problem (3.3) has a quadratic cost function and quadratic constraints. In order to

cast problem (3.3) in a convex form we introduce the following matrices :

Qi = h̃ih̃
H
i (3.4)

and

Bj = b̃jb̃
H
j (3.5)

The problem can be written as :

min
{w∈CN}

trace(wwH)

subject to : trace(wwHQi) ≥ 1,∀i ∈ {1, · · · ,M} (3.6)

trace(wwHBj) ≤ 1,∀i ∈ {1, · · · , S}

By defining X = wwH we obtain:

min
{X∈CN×N}

trace(X)

subject to : trace(XQi) ≥ 1,∀i ∈ {1, · · · ,M} (3.7)

trace(XBj) ≤ 1, ∀j ∈ {1, · · · , S}

X º 0

rank (X) = 1

Problem (3.7) has a linear cost function, linear trace inequalities and a convex semidef-

inite constraint. However, the rank one constraint is non convex. By dropping the
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non convex constraint, problem (3.7) can be written as :

min
{X∈CN×N}

trace(X)

subject to : trace(XQi) ≥ 1,∀i ∈ {1, · · · ,M} (3.8)

trace(XBj) ≤ 1, ∀j ∈ {1, · · · , S}

X º 0

In order to cast problem (3.8) in the standard semidefinite form, we have to transform

the inequality constraints into equality constraints. Therefore, we introduce M+S non

negative slack variables and problem (3.8) can be written as :

min
{X∈CN×N},si∈R,rj∈R

vec(IN)T vec(X)

subject to : vec(QT
i )T vec(X)− si = 1,∀i ∈ {1, · · · ,M} (3.9)

vec(BT
j )T vec(X) + rj = 1,∀j ∈ {1, · · · , S}

si ≥ 0,∀i ∈ {1, · · · ,M}

rj ≥ 0,∀i ∈ {1, · · · , S}

X º 0 (3.10)

Problem (3.9) is a semidefinite programming problem (SDP) and it can be efficiently

solved by using interior point methods.

3.3 Algorithm

The matrix X obtained by solving the above relaxed problem will not be rank one in

general.

A way of obtaining an approximate solution to the original problem is to apply

the Gaussian Randomization technique, discussed in chapter 2. Unfortunately, our

problem includes opposing inequality constraints and therefore, we cannot simply
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scale up the candidate beamforming vectors as proposed in [5]

In order to resolve this situation let p denote the power scaling factor we seek.

An easy way to compute p comes from the key observation that p should satisfy the

following constraints:

p min |wHh̃i|2 ≥ 1 ⇔ p ≥ (min(|wHh̃i|2)−1 (3.11)

p max |wHb̃j|2 ≤ 1 ⇔ p ≤ (max(|wHb̃j|2)−1 (3.12)

Thus, if we can find a power scaling factor p, for which both inequalities (3.11) and

(3.12) are satisfied, then the minimum power boost is equal to min(|wHhi|2)−1. Note

that wH denotes a candidate beamforming vector.

The overall algorithm is summarized below :

1. Solve the semidefinite relaxation problem (3.9). Denote the solution X.

2. Apply the Gaussian randomization technique to obtain the set of all candidate

beamforming vectors. If rank(X) = 1 use the principal component of X instead.

3. For each candidate beamforming vector, check if inequalities (3.11) and (3.12)

are simultaneously feasible. If they are, then the minimum power boost is equal

to min(|wHhi|2)−1. Select the candidate beamforming vector that minimizes

the total transmitted power.

3.4 Simulation and Experimental Results

In this section, we test the algorithm for numerous Monte Carlo simulations and

experiments using measured channel data. The measured channel data were collected

at the Quad Field described in chapter 2. Our goal is to evaluate the performance

of the proposed algorithm. Furthermore, as in chapter 2, we wish to determine the

factors that affect performance.

In our study, performance is defined in terms of :
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1. the feasibility percentage of the semidefinite relaxation

2. the percentage for which the solution X of the semidefinite problem has rank

one

3. the percentage for which the power boost problem is feasible

4. the quality of approximate solutions

If the semidefinite relaxation problem is feasible, we can apply the Gaussian ran-

domization technique and solve the power boost problem to obtain an approximate

solution to the original problem. If the relaxed problem is infeasible, then so is the

original. On the other hand, feasibility of the original problem can be established

only if both the relaxation and the power boost problems are feasible. Thus, the

feasibility of both the relaxed and the power boost problems is of great importance.

In fact, if the power boost problem turns out to be infeasible, then the feasibility of

the original problem is not guaranteed.

In cases, where the the solution of the semidefinite problem has rank one, the re-

laxed problem is equivalent to the original problem. Thus, by solving the semidefinite

problem, we obtain the optimum solution of the original problem.

Finally, the quality of the approximate solutions is defined as in chapter 2, as

the ratio of the transmitted power to the lower bound on the transmitted power we

obtain by solving the semidefinite relaxation.

First, we test the algorithm for 1000 Monte Carlo runs and 700 Gaussian Ran-

domization iterations using a variety of choices for N,M,S. We assume that the hi,

bj,channel vectors are i.i.d. cicularly symmetric complex Gaussian random variables

of variance 1.

The results are summarized in the following table.

Note that, column 2 reports the feasibility percentage of the relaxed problem, column

3 reports the rank-one percentage of X, column 4 reports the average transmitted

power over the lower bound obtained from the SDR solution and column 5 reports

the feasibility percentage of the power boost problem.
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users R% rank=1% mean p%

N=4/M=4/S=4 98.5 78.1726 1.0840 58.6047

N=4/M=4/S=6 89.9 70.7453 1.0619 32.6996

N=4/M=6/S=6 85.4 38.0562 1.13 21.9282

N=4/M=6/S=8 71.9 32.4061 1.0894 15.2263

N=4/M=8/S=8 61.4 12.8664 1.15553 9.5327

N=4/M=10/S=10 35.1 6.5527 1.1196 4.2683

N=6/M=6/S=6 100 46.4 1.1884 37.5

N=6/M=8/S=6 100 19 1.3240 28.7654

N=6/M=8/S=8 99.7 15.6469 1.2353 14.3876

N=6/M=8/S=10 98.9 12.5379 1.1665 9.3642

N=6/M=10/S=10 98.3 4.5778 1.2305 5.1173

N=6/M=12/S=12 92.5 1.1892 1.2652 1.5317

N=8/M=8/S=8 100 19.6 1.3352 28.2338

N=8/M=10/S=10 99.9 4.9049 1.3504 9.4737

N=8/M=12/S=12 100 1 1.3827 3.2323

Furthemore we test the algorithm using selected outdoor measurements.
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1. Group M : user1, user2, user3, user: Location 5

Group S : user1 ,user2, user3, user4: Location 6

R% rank=1% mean p%

97.0131 85.5911 1.0358 3.4188

2. Group M : user1, user2, user3, user4: Location 2

Group S : user1, user2, user3, user4: Location 1

R% rank=1% mean p%

100 100 1 -
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3. Group M : user1, user2, user3, user4: Location 7

Group S : user1, user2, user3, user4: Location 5

R% rank=1% mean p%

100 87.2162 1.6345 57.0093

4. Group M : user1, user2, user3, user4: Location 3

Group S : user1, user2, user3, user4: Location 6

R% rank=1% mean p%

100 96.29 1.1915 54.8387
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5. Group M : user1, user2:Location 3 / user3, user4: Location 5

Group S : user1, user2, user3,user4: Location 6

R% rank=1% mean p%

97.1326 96.802 1.2478 23.0769

6. Group M : user1, user : Location 3 / user3, user4: Location 2

Group S : user1 ,user2, user3,user4: Location 6

R% rank=1% mean p%

100 100 1 -
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7. Group M : user1, user2: Location 2 / user3, user4: Location 1

Group S : user1, user2: Location 5 / user3, user4: Location 7

R% rank=1% mean p%

93.6679 72.3214 1.2134 30.4142

8. Group M : user1, user2: Location 7 / user3, user4: Location 2

Group S : user1, user2: Location 5 / user3, user4: Location 6

R% rank=1% mean p%

99.0442 73.462 1.4601 18.6364
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9. Group M : user1, user2: Location 7 / user3, user4: Location 6

Group S : user1, user2: Location 6 / user3, user4: Location 2

R% rank=1% mean p%

100 79.5699 1.4584 30.9942

10. Group M : user1, user2: Location 5 / user3, user4: Location 1

Group S : user1, user2: Location 2 / user3, user4: Location 6

R% rank=1% mean p%

99.8 88.5167 1.4414 28.1250
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11. Group M : user1, user2: Location 2 / user3, user4: Location 1 / user5, user6:

Location 7

Group S : user1, user2: Location 3 / user3 ,user4: Location 5 / user5, user6:

Location 6

R% rank=1% mean p%

56.63 39.0295 2.3716 2.7682

3.5 Conclusions

In this section, we discuss the results presented in the previous section.

First, we observe that it is the ratio N
K

that determines the feasibility of the relaxed

problem. Specifically, the feasibility of the relaxed problem decreases, for decreasing

values of the ratio N
K

. Furthermore, the feasibility percentage of the relaxed prob-

lem is for almost all experiments conducted much higher than 90%. As we can see,

the percentages of the power boost problem and the rank one solutions X are also

decreasing for decreasing values of the ratio N
K

. Note finally that the rank one per-

centages tend to be higher for directional scenarios than for non directional.

For both experiments conducted with measured channel data and Monte Carlo sim-

ulations the quality of service is for most cases much less than 1.5dB away from the

lower bound on transmitted power obtained by solving the semidefinite relaxed prob-

lem.

Finally, we have tested the algorithm using Vandermonde type channel vectors hi and

bj. As shown in [8], if we apply channel vectors of Vandermonde type to the transmit
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beamforming to multicast co-channel users problem, then the proposed relaxation is

equivalent to the original problem. The same seems to hold for the multicast beam-

forming with sidelobe problem we study here. We have used Vandermonde channel

vectors in several scenarios involving different number of transmit antenna elements

and different number of users and in all cases considered, we have obtained rank one

solutions.
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Chapter 4

Conclusions

In this thesis we have studied the problem of transmit beamforming to multiple co-

channel multicast groups and the problem of multicast beamforming with sidelobe

constraints. We have approximated both problems using a convex form and used

semidefinite programming to obtain solutions of good quality.

At first, we studied the problem of transmit beamforming to multiple co-channel

multicast groups and conducted several experiments using measured channel data

to evaluate its performance. For the majority of scenarios considered, the relaxed

problem yields rank one solutions. Thus, in most cases we are able to obtain the

exact solution of the original problem.

Next, we studied the problem of multicast transmit beamforming with sidelobe

constraints and implemented an algorithm to obtain an approximate solution to the

original problem. We have tested the algorithm under several scenarios. The feasibil-

ity percentage of the relaxed problem is in most cases higher than 90%. Furthermore

for most cases we are able to obtain approximate solutions of good quality.
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