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Abstract

In this paper we will present the Generalized Range Search over P-Grid (GRaSP) framework.
GRaSP provides a model and an API for constructing novel distributed data structures than can
handle generalized range queries. This means that we can customize GRaSP on the shape and di-
mensionality of the data and queries and will produce source code for a distributed data structure
that can handle the prede�ned type of queries. We exhibit and evaluate empirically GRaSP by im-
plementing two protocols on in. First of all the Multidimensional Range Search protocol (MDRS)
and secondly the Three-sided Range Search protocol (3SIDED). MDRS can answer d-dimensional
rectangular range queries and 3SIDED can answer d-dimensional 3-sided range queries. 3SIDED
is in our knowledge the only distributed data structure that can handle 3-sided range queries. Ex-
periments verify the theoretically logarithmic to the number of the peers on the network latency
and the low maximum throughput, i.e. the load of the most loaded peer on the network.
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Chapter 1

Introduction

Searching is a fundamental problem in Computer Science for decades now. The problem is to
organize pairs of ordered keys and values so that the retrieval of keys (and consequentially their
values) given a range is ef�cient. This problem is called the Generalized Range Search Prob-
lem. More formally the Generalized Range Search is de�ned as fol lowing. Assume we denote
the search space with the symbol U (in�nite set), the key space with K � 2U (keys are subsets of
U ) and the range space with R � 2U (ranges are subsets of U ). Then assuming that the dataset
K � K is stored on a network and given a general range query r � R we want all the keys
AK(r) = fk 2 Kjk \ r 6= ;g that answer it. Note that we don’t assume beforehand the shape nor
the dimensionality of the data or the queries. This means that the data can be points, rectangles1 ,
polygons or whatever. Also note that nowhere do we mention the nature of the storage medium,
that is if the keys are stored on the Primary Memory of the Secondary Memory of on Peer-2-Peer
(P2P) network.

The Generalized Range Search problem can be instantiated in the form of Point Search Problem
where the keys and the queries are points. The answer to a query are all the keys that are identi�ed
with the query. Another problem is the Orthogonal Range Search Problem where the keys can be
of any shape and the query is a rectangle. The answers to a query are all the keys that overlap the
query.

Software packages that can handle such generalized range search problems are called Frame-
works2. A framework is customized for a speci�c type of search probl em (i.e. shape and dimen-
sionality of data and queries) and generates a �solution� da ta structure. Nowadays such frame-
works for Primary and Secondary Memory exist with satisfactory performance. On the other hand
rudimentary work has been done for the case of P2P. Therefore the need is imperative for develop-
ing frameworks that produce ef�cient distributed data stru ctures. Our work comes to complete this
gap. We have crafted a framework called Generalized Range Search over P-Grid (GRaSP) which
tackles the aforementioned generalized range search problem more ef�ciently than any existing
adversary.

Initially we will present the most prominent data structures that tackle individual search problems
such as point and rectangles range queries for (in this order) Primary Memory, Secondary Memory
and P2P. On the next chapter we will present existing framework solutions.

For the Primary Memory the best well-known data structures are the Binary Search Tree[36] with
worst-case search cost O(log n), balanced data structures such as 2-3-4 tree[36], AVL[36] and

1We interchangeably use the terms rectangle, rectangular and orthogonal.
2We interchangeably use the terms framework, protocol and network.

1



CHAPTER 1. INTRODUCTION 2

Red-Black Tree[36] with worst-case search cost O(log n) but with slight increased construction
and update costs in order they remain balanced, and data structures such the Splay Tree[36] which
have expected search cost O(log n). On Secondary Memory the balanced solutions dominate with
the most well-known cases of 2-3-4 tree[36], B-tree[14], B+ � tree and B� � tree with worst-
case search cost O(logB n), where B is the number of keys that can �t in one block and n is the
number of the keys. UB-tree[15] is an interesting extension of the B+ � tree for handling multi-
dimensional keys.

Having solved the point search problem the interest nowadays lies on rectangle range search.
Orthogonal range search comes in many variants. The most simple one is the 1-dimensional Or-
thogonal range search where we want to retrieve all keys within a query interval.A well-known
data structure for answering 1-dimensional range queries is the Interval Tree[22] (or Segment Tree)
which stores 1-dimensional intervals and returns all the ranges overlapping the query. Query needs
O(log n + k) time, construction of the tree O(n log n) time and storage O(n) space, where n is
the number of stored objects and k is the number of reported results. The Interval Tree has been
externalized (External Interval Tree) and needs O(n=B) space, O(logB n+T=B) I/Os for search-
ing and O(logB T ) I/Os for updating, where B is the number of objects per disk block and T is
the number of reported results.

Generalizing the dimensionality of the 2-dimensional Orthogonal range search problem into higher
dimensions a multi-dimensional Orthogonal range search retrieves all the keys within a query
hyper-rectangle. The generalization of the Interval Tree for higher dimensions is the Range
Tree[36] which needs for searching O(log2 n + k) time and for storage O(n log n) space. Ex-
ternal Range Tree is the external extension of the Range tree and needs O(logB n + T=B) I/Os
for searching and O(log2

B n= logB logB n) I/Os for insertions/deletions. Another data structure
that can handle multi-dimensional (k-dimensions) Orthogonal range queries is the well-known kd-
tree[17]. Levels of the tree are split along successive dimensions at the points. kd-tree can also
be used for nearest neighbor searches. The complexity (if the tree is balanced) is O(n log2 n) for
the construction of the tree, O(log n) for insertion, O(log n) for removal and O(n1�1=d + k) for
searching. An interesting extension of the kd-tree is the adaptive k-d tree[18] where successive
levels may be split along different dimensions. An interesting extension of it, especially useful for
the disk, is the k-d-B-tree[39] which is actually a kd-tree in the sense that it splits multidimensional
spaces like an adaptive k-d tree, but also balances the resulting tree like a B-tree. k-d-B-tree is a
static tree because it doesn’t allow point insertions nor deletions. It needs O(

p

n=B + T=B) I/Os
for searching and O(n=B logB n) I/Os for construction. If we make it dynamic using a logarith-
mic method then the searching needs O(

p

n=B + T=B) I/Os, the updates O(log2
B n) I/Os and

O(n=B) space (linear space). Probably the most general and applicable data structure is the R
tree[28]. R tree stores multidimensional objects (eg intervals, regions, 3-D objects, arbitrary high
dimensional objects). Actually it is the generalization of the B-tree[14] for higher dimensions and
for storing more general objects. Many extensions of the R tree have been developed but just to
mention a few ones there is the R+ � tree, the R� � tree and the Hilbert R-tree. R+ � tree[40]
is used for indexing spatial information and is a compromise between the R-tree and the K-D-B
tree; it avoids overlapping of internal nodes by inserting an object into multiple leaves if neces-
sary. R� � tree[16] supports point and spatial data at the same time with a slightly higher cost
than other R-trees. Hilbert R-tree[34] exploits the fact that the performance of the R-trees depends
on the quality of the algorithm that clusters the data rectangles on a node. More precisely Hilbert
R-tree uses Hilbert curve to impose a linear ordering on the data rectangles. It can be thought of
as an extension of B+ � tree for multi-dimensional objects. Another data structure for multi-
dimensional Orthogonal range search is the Quad tree[26] which stores areas, points, lines and
curves. It can be easily extended into the 3-dimensional space (Octal Tree[20]). O-tree[41] is used
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for planar planar Orthogonal range search on external memory. It needs O(
p

n=B + T=B) I/Os
for searching, O(logB n) I/Os for insertions/deletions and O(n=B) space (linear space). It can be
extended to work in d-dimensions with optimal query bound O((n=B)1�1=d + T=B).

Let’s consider now P2P data structures. The trend nowadays is to map data and peers into IDs.
One way to achieve this is via the adoption of the DHTs. A Distributed Hash Table (DHT) is
actually a distributed Hash Table. The Hash Table is an ef�ci ent data structure (for Internal and
External Memory) for storing pairs of {key,value} and retrieving in O(1) (expected) time a value
if you have the key. Similarilly, a Distributed Hash Table (DHT[4, 2, 3, 5]) is a way to look up
(usually in O(logn)) a value into a structured, decentralized, scalable and fault-tolerant network
if you have the key (n is the number of the peers). This implies that in a network we determinis-
tically store keys (instead of values) to peers and probably on foreign peers instead on the owner
peer of each value. In order to �nd the responsible peer for a v alue, we hash the value into a key
ID, we also hash (using the same hash function) to a unique peer credential (such as the peer IP) to
a peer ID and afterwards we store (or retrieve) the key to (from) peer which has the most similar
ID to the key ID (or alternatively �the less distant�). The di stance metric among key IDs and peer
IDs is de�ned each time by the protocol employed; for example the distance between a key and
a peer ID is de�ned by Kademlia[5] as their XOR distance where as Chord[2] de�nes it as their
difference; note that XOR is a symmetrical distance metric versus the difference. In order to look
up for an object we retrieve its key (by hashing it) and in a step-by-step process a relative query is
forwarded through the overlay until it reaches the peers that hold the key. Some of the networks
that use a DHT are the CAN[4], MURK[8], Kademlia[5], Pastry[3], Tapestry[6], Chord[2] and
PGrid[10].

Point searching is the oldest and best studied searching problem on P2P and many networks have
been developed such as Pastry [3], Kademlia [5], Chord [2] and PGrid [10] which answer a query
in O(logn), where n is the number of the peers. Moreover, SkipGraphs [13] and SkipNet[29]
can handle point queries with cost O(logn) w.h.p. and congestion O(logn). Rainbow Skip
Graphs [27] provide essentially the same performance guarantees, but with additional guaran-
tees for fault tolerance. SkipWebs [12] can handle multi-dimensional point queries with expected
cost O(logn=loglogn) (same for updates) and O(logn) congestion. Other methods that can tackle
d-dimensional point queries are CAN [4] and MURK [8].

An easy way to make DHTs able to handle multi-dimensional queries is mapping the d-dimensional
keys onto 1-D with the help of a hashing algorithm (such as space-�lling curves). Ganesan et al. [8]
propose two structures, SCRAP, based on space-�lling curve s over a skip graph-like network, and
MURK, a CAN-derived network which partitions space in a manner similar to k-d trees. They
evaluate their techniques experimentally, but do not consider congestion. Moreover the shower
algorithm [24] facilitates 1-dimensional range queries over a trie by using space �lling curve.

BATON[31] is a distributed balanced tree based method which can handle 1-dimensional Orthogo-
nal range queries in O(logn) time and updates in O(logn) amortized time, where n is the number
of peers. BAT ON� is a k-ary tree generalization of BATON with query cost O(logkn) and update
cost O(k + logn). Another protocol is the P-tree [23].

To go one step further PHT [38], MURK [8] and Distributed Segment Tree [44] can support multi-
dimensional Orthogonal range search.

Abstracting the shape and dimensionality of a range query we now face a more general search
problem, i.e. generalized range search . A generalized range search problem is formally de�ned
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by a pair (K;R), where K is the set of keys, and R � 2K is the set of the query ranges. Our
ultimate goal is to organize a �nite set K � K so that, for any r 2 R, the r \K can be computed
ef�ciently. Or simpler stated we want to retrieve all the key s that answer a range query as fast as
possible (in terms of either memory accesses or disk accesses or messages).

Having de�ned the generalized range queries we now want a fra mework which we can customize
to particular search problems. Such a framework should provide a theoretical model and a API
to develop new data structures that will have some theoretical ef�ciency safeguards. The typical
procedure of the development of a new data structure using a framework is initially customizing
the framework and afterwards generating the source code for the data structure in question. Any
physical issues such as memory management, I/O and message passing should be hidden from the
user in order to decrease complexity and development time.

On this thesis, we are especially interested on frameworks that can produce distributed data struc-
tures, i.e. data structures that can handle queries over a P2P environment. Assume for example
that we want to construct a distributed data structure that can answer point queries. In this case,
we could address to such a P2P framework, customize it with information such as how the peers
organize, the state of each peer and when a peer can answer the query and the framework would
generate source code for such a data structure ready to be used. Issues such as the middleware
needed for the peers to communicate should be hidden from the user and taken care automatically
from the framework. The framework could also be more clever and any organization information
be hidden and self-handled by the framework. For example the peers could be organized into a list
or over a tree or over a skip-list etc.

We propose a novel P2P framework called Generalized Range Search over P-Grid (GRaSP) which
tackles the generalized range search problem in a distributed manner. One can easily customize
GRaSP and rapidly develop new data structures that are overlayed over a network. Theoreti-
cal guarantees and boundaries are given for its performance. More speci�cally on GRaSP range
queries are answered on O(log n) hops with high probability, where n is the number of peers of
the network. The congestion is also provable low, i.e. O(log n) and there is also the ability to
introduce storage redundancy to improve load balancing. Lastly, we empirically evaluate GRaSP
by implementing two new protocols on it. The �rst protocol is the Multidimensional Range Search
(MDRS) and can deal with the d-dimensional rectangle queries. The second one is the Three-sided
Range Search (3SIDED) protocol and can deal with d-dimensional 3-sided queries. In our knowl-
edge 3SIDED is the only network that can deal with 3-sided queries over a network.

On Chapter 2 we introduce the reader to existing frameworks for P2P that tackle the generalized
search problem with especially emphasis on the PGrid case. On Chapter 3 we present GRaSP. On
the next two chapters we implement two networks based on GRaSP, i.e. on Chapter 4 we present
the MDRS network which can answer ef�ciently d-dimensional Orthogonal range queries and on
Chapter 5 we present the 3SIDED network which can answer 3-sided queries. On Chapter 6 we
evaluate MDRS and 3SIDED and we conclude on Chapter 7.



Chapter 2

Related Work

In Chapter 1, we emphasized the central role that searching plays in the �eld of Computer Sci-
ence. We mentioned that searching is so far well-studied for Primary and Secondary Memory but
immature yet for P2P environments. We are especially interested on constructing a framework
which will tackle the Generalized Range Search Problem and facilitate the rapid development of
any distributed data structure.

The concept of frameworks is very old. For example in the �eld of Software Engineering sev-
eral attempts had been made to construct frameworks that allowed the rapid composition and
generation of new systems. A typical framework was GENESIS[1] on 1990. Soon the concept
of frameworks was developed by the Databases �eld. Maybe the most prominent example of
such a framework is the GiST framework which allows the development of data structures for the
Secondary Memory. Extending these ideas we want a framework that can be easily customized
and produce distributed data structures. Typical examples of such frameworks are VBI[9] and
PGrid[10] networks.

On this chapter we will describe GiST, VBI and PGrid. We will delve more into PGrid because
it’s peer organization will be the inspiration for GRaSP. At the end of this chapter we to be clear
the pros and especially the cons of VBI and PGrid that will introduce on next chapter the superior
GRaSP.

2.1 GiST

GiST[30] is a tree data structure which supports search and update functions and provides an
API which further supports recovery and transactions. GiST framework can be used to build a
variety of search trees for Secondary Memory such as R-Tree[28], B-Tree[14], hB-tree[35] and
RD-tree[43]. Not surprisingly GiST has been used to construct many indices for the well-known
ORDBMS PostgreSQL1.

1http://www.postgresql.org

5
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2.2 VBI

A distributed data structure oriented to generalized range queries is the Virtual Binary Index
Tree (VBI-tree)[9]. On VBI peers are overlayed2 over a balanced binary tree like they do on
BATON[31]. The tree is only virtual, in the sense that peer nodes are not physically organized
in a tree structure at all. The abstract methods de�ned can su pport any kind of hierarchical tree
indexing structures in which the region managed by a node covers all regions managed by its chil-
dren. Popular multidimensional hierarchical indexing structures that can be built on top of VBI
include the R-tree[28], the X-tree[19], the SS-tree[25], the M-tree[21], and their variants. VBI
guarantees that point queries and range queries can be answered within O(logn) hops, where n
is the number of the peers. VBI speci�es an effective load bal ancing strategy to allow nodes to
balance their work load ef�cient. Validation has been made b y applying the M-tree and nearest
neighbor queries over VBI.

The major drawback of VBI is that it isn’t scalable for low-dimensional rectangular range queries
as has been recently proved by Blanas et al[42]. They compared VBI[9], PGrid[10], CAN[4] and
MURK[8] and concluded that the only scalable network is PGrid.

2.3 PGrid

According to the results of Blanas et al[42] (see the previous paragraph) the most scalable network
if PGrid[10]. Our framework GRaSP borrows many elements from PGrid and therefore we delve
into PGrid in great detail. Some concepts initially introduced on the following paragraphs are
repeated or referred later on on Chapter 3 when speaking for GRaSP.

2.3.1 Topology

The topology of the network is referred to the overlay organization of the peers. In PGrid peers are
organized over a binary tree but on the contrary to VBI the tree is a trie[36]3 and not necessarily
balanced. The trie contains two kinds of nodes; the internals and the externals (leaves). Peers are
located only on the leaves and therefore there is no congestion near the root. The internal nodes
are virtual in the sense that they do not contain any keys, nor are used and nor are adopted by
the peers. Every node has zero or two children. Therefore the trie is characterized as a virtual
trie. Each peer holds only a part of the overall tree. Each peer is labeled with a unique bitstring
(i.e. it contains only 0’s and 1’s) which is called PeerID. PeerID is determined by the peer’s po-
sition onto the trie and represents the part of the tree that the peer is responsible for. The root has
the special PeerID � which denotes the empty bitstring and the overall data space. If a node has
P eerID = pid and has children then its children have PeerIDs pid � 0 and pid � 1, where � denotes
the concatenation of two strings. PGrid doesn’t relate the PeerID of a peer with its data space.

2An overlay network is a computer network which is built on top of another network. Nodes in the overlay can be
thought of as being connected by virtual or logical links, each of which corresponds to a path, perhaps through many
physical links, in the underlying network. For example, many peer-to-peer networks are overlay networks because they
run on top of the Internet. (de�nition from http://en.wikip edia.org/wiki/Overlay_network)

3A trie[36] T for a string S belonging into an alphabet � is an ordered tree with the following properties: (a) each
node (except for the root) is labeled with a character of �, (b) the ordering of the children of an internal node of T is
determined by a canonical ordering of the alphabet �, and (c) T has s external nodes, each associated with a string of
S, such that the concatenation of the label of the nodes on the path from the root to an external node v of T yields the
string of S associated with v.
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Therefore is characterized as a framework.

PGrid construction is triggered by local interactions only. Whenever two peers meet the re�ne
their routing tables with the help of the exchange algorithm. More speci�cally when two peers
meet at random or intentionally (for example due to a point search or a datum update) they divide
the search space and each one takes responsibility for one half and stores the address of the other
peer to cover the other half. Therefore a peer can guarantee the routing of a message to any peer of
the trie. There is also an algorithm for the construction of the trie if there is already a pool of peers
available. This algorithm gives a balanced trie but the trie may soon become unbalanced because
of the exchange algorithm.

An exemplary trie is depicted on Figure2.1.

0

0

1

1

00

0

01

1

10

10

11

11

010

0

011

1

Figure 2.1: PGrid exemplary trie. Each node is labelled by each depth from the root.

2.3.2 Routing Tables

Each peer stores information necessary for routing a message to any peer on the network. The
information is in the form of pointers to other peers and is stored on a table, called Routing Table.
On PGrid, the routing table of each peer is consisted of at least one pointer for each bit of its
PeerID to at least another peer with this PeerID as a pre�x. Th is guarantees that if a peer cannot
answer a query it can forward it to another peer that is closer to the result.
More speci�cally, for each bit in its path, a peer stores in it s routing table the address of at least
one other peer that is responsible for the other side of the binary tree at that level. Thus, if a peer
receives a query string it cannot satisfy, it must forward it to a peer that is closer to the result.
The PGrid construction algorithm guarantees that peer routing tables always provide at least one
path from any peer receiving a request to one of the peers holding a key so that any query can
be satis�ed regardless of the peer queried. The routing tabl es are updated through the exchange
algorithm which we mentioned in the previous paragraph.
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2.3.3 Searching

PGrid was initially developed for answering 1-dimensional point queries[11]. Later on Aberer[24]
proposed a searching algorithm which can answer d-dimensional range queries. More speci�cally
using a space �lling curve we can map a d-dimensional space in to 1-dimensional space. Then we
can execute a 1-dimensional range query on the mapped space instead of the original and retrieve
there the answers. Aberer’s searching algorithm comes into two forms: a sequential algorithm
(Minmax Algorithm) and a superior parallel (Shower Algorithm). In the shower algorithm each
peer forwards simultaneously a query it receives to neighbors that can answer it. The cost for the
shower algorithm is O(log n), where n is the number of the peers. The evaluation of the afore-
mentioned searching algorithm has been made theoretically and empirically on PlanetLab using
the search algorithms over PGrid.

Here we present the Shower Algorithm. We use our own notation and rename Shower Algorithm
into Route Algorithm. The purpose for this is that we will we also use the same notation later
on when presenting GRaSP on Chapter 3 and its instances MDRS on Chapter 4 and 3SIDED on
Chapter 5. Assume that p " q denotes the Longest Common Pre�x of PeerIDs p; q. Also denote
with Lp the routing table of peer p. Lp[x] selects uniformly among all q so that p " q = x.

Then apply recursively:

Route(Peer p, Peer q) {
if( p " q = q )

Process();
else

Route( Lp[p " q] , q );
}

We explain the Route Algorithm through an example that is depicted on Figure 2.2. Assume that
peer 11 wants to route a message to peer 010. Further assume that peer 11 has references to peer
00, peer 00 to 011 and peer 011 to 010. Initially peer 11 forwards a message to peer 00 because
00 has common pre�x of length 1 with the target peer 010. Next, peer 00 forwards a message to
peer 011 because the latter peer has common pre�x of length 2 w ith the target peer. Likewise does
the peer 011 which forwards a message to the target peer. We observe that at each step a message
is forwarded to a peer that is at least one bit closer to the target peer. Therefore the routing cost is
O(log n), where n is the number of the peers.

The problem with such space �lling curve techniques is that t he spatial locality of the data items
is not preserved, i.e. if two data items are near on the original space then they are note necessarily
near on the reduced mapped space. Therefore neighbor data items can be stored into different
peers which are far away onto the underlying PGrid trie.

2.3.4 Updates of Data Items

PGrid supports key updates by utilizing a general algorithm for updates which is basically a hybrid
push/pull rumor spreading algorithm which also offers probabilistic guarantees. For a detailed de-
scription of the updates see [7].
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Figure 2.2: Application of the Route Algorithm over the trie of Figure 2.1. Peer 11 wants to
forward a message to target peer 010. Initially, peer 11 forwards a message to peer 00 because it
has a common pre�x of length 1 with the target peer 010. Likewi se peer 00 forwards a message
to peer 011, and 011 forwards a message to target peer 010. Observe that the distance is halved at
each step. The latency here is H(11; 010) = 3 hops.



Chapter 3

GRaSP

In the previous chapter, we explored the existing frameworks that tackle the generalized range
search problem on P2P. We emphasized on the fact that none of them is a panacea, neither VBI
nor PGrid. Therefore we look to a new framework called Generalized Range Search in P2P Net-
works (GRaSP) that also tries to tackle the generalized range search problem on P2P. In general
lines GRaSP resembles PGrid on the way the peers are organized over a trie but abstracts the
searching algorithm.

One can customize GRaSP in order to rapidly construct new protocols. The meaning each time
will be obvious from the collocation. For example one may want to handle queries of T-type and
D-dimensionality. Then he should customize GRaSP for the data space each peer is responsible
for, when a peer can answer such a T-type query and how a new peer selects a parent peer. It’s ob-
vious that the type of the query and the dimensionality of the dataset should be known beforehand
the customization of a new protocol.

The chapter is organized as follows. Initially we present the topology of GRaSP and how the peers
organize and share the underlying data space. Afterwards, we study the procedure for data updates
(insertions/removals). Next, we present the steps taken by a new peer when joining the network.
On next section, we present the state of each peer which allows it to route a message to any peer of
the network. This routing mechanism naturally introduces us on the next section with the searching
algorithm. Lastly but not least, we sum up the steps needed to be followed in order to customize
GRaSP and construct a new protocol. We see that they are straight-forward and easy to be grasped.

3.1 Topology

The peers of the network are organized over a trie samewise as the do on PGrid (see Section 2.3.1).
The trie structure has been chosen for the following reasons:

� PGrid (and therefore the underlying trie organization) has been empirically proved scalable
to the number of peers.
Blanas et al[42] have empirically proved that PGrid which is overlayed over a trie) scales
better than VBI[9], CAN[4] and MURK[8] in relation to multidimensional orthogonal range
queries.

� Aberer [10] has proved that for any trie, the expected hop distance H(p; q) between any pair
of peers p,q, is O(logn).

10
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(a) (b) (c)

Figure 3.1: The evolution of the trie while constructing it from a pool of four peers. On Fig-
ure 3.1(a) there is only one peer, the root which has P eerID = �. On Figure 3.1(b) a new peer
joins the trie. The ex-root becomes node 0 and the new peer becomes node 1. On Figure 3.1(c)
two more peers join the trie, peers 0 and 1 become nodes 00 and 10 and the new peers get the
PeerIDs 01 and 11 (note that the trie is not necessarily balanced, just happens here).

� More recently Argyriou et al [37] have proven that the routing diameter of any trie with n
peers is O(log n) with high probability.

� Argyriou et al [37] have also proven that the congestion is O(log n) for any trie with n peers.

For clari�cation purposes we present on Figure 3.1 the step- by-step evolution of an exemplary trie
while new peers join it.

3.2 Hierarchical Space Partitioning

So far we have described how the peers are organized over a trie. Now we will describe which
part of the data space each node of the trie adopts. This is referred as the Space Partitioning of the
key space K . Remember that only the leaves really store keys and not the inner nodes which are
virtual. The issue of space partitioning is very important because the load balancing is depended
by it. Ideally the data and the queries would be uniformly distributed across the peers. Then all the
peers would sustain the same load. But usually this is not the case. Nor the data nor the queries
are uniformly distributed. Instead the data distribution is skewed and only a few peers are most
popular answering most of the queries. These peers are the bottleneck of the network that limits
its scalability. When deciding a space partitioning algorithm for a distributed data structure (i.e.
network) one should exploit the nature of the problem. This means that more peers should be
located on areas where data are more dense assuming that such areas accept most of the queries.
On Chapters 4 and 5 we will provide the reader with two examples of such space partitioning
techniques that are provably ef�cient as is empirically pro ved on Chapter 6.

Now we pose a few conditions that any hierarchical space partitioning algorithm should meet. If
we denote the universal data space by U and the data space of peer P eerID with S(peerID) then
we require both the following conditions to comply:

� S(�) = U
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� S(x � 0) [ S(x � 1) = S(x)

The �rst condition states that the root node is responsible f or the whole data space. The second one
states that the combined data spaces of two sibling nodes equals the data space of their parent peer.

With only these assumptions we note that a key may be stored into multiple peers. This is deliber-
ately happening for load balancing purposes and should be controlled by the user’s options when
de�ning S(P eerID).

On Figure 3.2 we present the evolution of the trie while new peers join the network and two re-
spective arbitrary space partitioning schemes over a supposed 2-dimensional data space. Note that
the trie is the same as the one on Figure 3.1 but augmented with the data space S() of each node.
Note that any space partitioning scheme can be chosen at each customization of the GRaSP proto-
col and therefore beget unique novel protocols (data structures). The �rst data space partitioning
algorithm followed here splits the data space once almost horizontally and once vertically and the
second algorithm splits the data space of each peer always horizontally � these are really dummy
splitting algorithms and are only used for demonstration purposes. The data space partitioning
algorithm of each crafted protocol should ameliorate any congestion problems by exploiting the
type of queries, i.e. should locate more peers wherever there are dense data and the opposite on
the case the data are terse. We will look a concrete example when studying the 3SIDED protocol
on Section 5.1.

3.3 Proposed Bootstrapping Algorithms

In order a new peer to join the network it should �rst select a p eer (Bootstrap Peer which will guide
its join. The selection algorithm is called Bootstrapping Algorithm. For sake of simplicity we as-
sume that the bootstrap peer will adopt the new peer as its child (alternatively it could redirect it
to another peer). We now want to propose some algorithms for choosing the new peer a bootstrap
peer. For sake of simplicity we propose two bootstrapping algorithms that both assume global
knowledge of the peers or that keys. Many more can bootstrapping algorithms can be crafted even
free from such limiting assumptions.

Volume Balanced Selection The new peer chooses a random point on the data space (which may
not correspond to an existing data key) in the multidimensional search space and the boot-
strap node is the node which is responsible for the data space that contains the chosen key.

Data Balanced Selection The new peer chooses a random data key (which exists!) and the boot-
strap node is its owner peer.

On the Volume Balanced Selection peers tends to equalize the volume of each peer. On the Data
Balanced Selection peers tend to have equal number of keys.

Both algorithms drive to much too much different tries. A delegate exception consists the case
where the data are uniformly distributed. Then both selection algorithms drive to similar tries.

3.4 Generalized Searching

Here we present a novel searching algorithm called Search Algorithm. This algorithm is an exten-
sion of the Route Algorithm already mentioned on Section 2.3. But �rst let’s remind the reader the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.2: The evolution of the trie and two possible space partitionings (a�c). Two possible data
partitioning schemes are presented; one on (d�f) and anothe r on (g�i). We denote with S() the data
space of each node. The root node is denoted with �.

fact that peers are organized over a trie exactly as they did on PGrid. We also depicted a detailed
example on Section 3.1 and Figure 3.1. Moreover, the routing tables are constructed samewise as
on PGrid. For clari�cation purposes we present on Figure 3.3 the construction the routing table of
peer 0100.

Having now explained how the peers organize over a trie and how the routing tables are con-
structed we are ready to describe how to Search Algorithms works. More formally, given a range
query r and the peer p who asks it the Search Algorithm returns all the peers that their data space
S(p) is intersected r, i.e. S(p) 6= ;.

Now let’s see the inner details of the Search Algorithm itself. The notation used is the same as the
one earlier introduced when describing the Route Algorithm on Section 2.3.3.

Then apply recursively:
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(a) trie (b) 0* = 1* (c) 01* = 00*

(d) 010* = 011* (e) 0100* = 0101*

Figure 3.3: Constructing the routing table of peer 0100. On (a) we present the overall trie. On (b)
we invert the �rst bit of peer 0100 in order to show that peer 01 00 has to have a reference link onto
a leaf of the subtrie 0, i.e. in our case onto peer 1. Samewise for (c), (d) and (e). On (f) we present
all the neighbors which peer 0100 has links to.

Search(Peer p, Range r, int l) {

if( S(p) \ r 6= ; )
answerLocally(r);

foreach(pre�x x of p, such that jxj � l)

if( S(x � bit(p,jxj)) \ r 6= ; )
Search( Lp[x], r, jxj+ 1);

}
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(a) (b) (c)

Figure 3.4: Example of Search Algorithm. Peer 010 searches for the range query r. The subtries
for which a peer in question should have a pointer to a leaf (at least) are circumscribed with
circles. Assume that peer 0100 asks a range query r which for sake of simplicity can be answered
only be peer 000. Peer 0100 cannot answer the query and therefore forwards it to its neighbor
001. 001 cannot also answer the query and therefore forwards it to its neighbor 000 which can
now fully answer the query. The series of executions of the Search Algorithm is the following:
Search(0100,r,1)! Search(001,r,2).

The aforementioned algorithm is quite simple. It takes as arguments the peer p which asks the
generalized query r and an integer l. l denotes the maximum depth of the trie that the query has
visited so far and is used as a boundary limit in order to avoid cycles when forwarding queries.
The peer that initiates the query sets l equal to 0 and each peer that accepts a query increases l
by one when reforwards the query. If the key space S(p) of the peer which receives the query is
intersected with the query r then the peer answers the query. Then the peers checks its routing
table to �nd a neighbor that its key space is also intersected with the query. If this is the case
then it forwards the query to it with incremented by one the boundary limit l so that the neighbor
won’t forward the query back to it. We should mention here that if the query can be forwarded to
multiple neighbors then only one of them is chosen (uniformly) for load balancing purposes.

Each peer has at least one pointer to the other side of the trie. Therefore a hop can traverse half
of the maximum distance among the peers. Or in other words the Shower algorithm at each call
halves the number of the undiscovered peers by two. Therefore the number of the hops needed to
answer an abstract query is O(logn + k), where n is the number of the peers and k is the number
of the reported items.

Note that a key may be returned multiple times during a search. The is obviously a bug but a minor
one.

On Figure 3.4 we present an example of peer 0100 searching a range r over the trie of Figure 3.3.

Later on Chapters 4 and 5 we will present two realistic examples of the algorithm’s usage for two
novel distributed data structures.
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3.5 Data Updates

GRaSP allows datum updates (insertions/deletions) in a manner similar to PGrid2.3. Assume peer
q wants to insert (delete) the key K on the network. Then the peer p stores AK(S(p)). In a more
detailed approach what is happening is that peer q executes the Search Algorithm with input the
key in question, i.e. Search(Peer q, d, 0). The query is forwarded until it reaches one or more
peers that are responsible for the data space that includes the candidate key. A similar process is
followed for a datum removal. A datum update can be approached as a removal and insertion view
a double-execution of the Search Algorithm � once for the rem oval of the obsolete datum and
one for the insertion of the new one.

The above process would be very expensive for a new peer joining the network because it would
have to repeat it for every datum in its disposal in order to distribute them into the network. There-
fore we introduce the notion of batch updates. Now the new peer p passes a collection of keys into
the Search Algorithm instead of a Range.

3.6 Overview of customization steps for GRaSP

All-in-all it is very easy to construct a new protocol using GRaSP. The only issues one has to take
care to customize a new protocol is setting up the following abstract parameters.

� Specify the form of the generalized range query: r
eg is it a point query? a 1-dimensional range query? an d-dimensional rectangular range
query? (see Section 1 for the de�nition of the Generalized Se arch Problem and some in-
stances of it)

� Specify (hierarchical) space partitioning (some speci�c c onditions should guilt): S(p)
(see Section 3.2)

� Specify when a peer can answer a generalized range query: S(p) \ r
(see Section 3.4)

� Choose a bootstrapping algorithm
(see Section 3.3)

Obviously, all the aforementioned parameters have to been chosen beforehand running a cus-
tomized protocol of GRaSP.

3.7 Sum Up

To sum up we have provided a framework that borrows the trie overlay of PGrid and generalized
the Shower Algorithm into the Search Algorithm in order to handle any generalized range query
in any dimensions. We have also given instructions on the Space Partitioning tactic that should be
followed along with a few conditions that should be full-�ll ed.

On the following two chapters we implement two protocols based on GRaSP in order to exhibit and
evaluate it: Multidimensional Range Search (MDRS) and Three-sided Range Search (3SIDED).
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MDRS can handle multidimensional rectangular range queries and 3SIDED can handle multidi-
mensional 3-sided range queries.



Chapter 4

MDRS

In the previous chapter we considered the GRaSP framework. We saw that GRaSP facilitates the
construction of new distributed data structures by hiding the technical dif�culties emerged, such
as the middleware. In this chapter we customize GRaSP in order to craft a novel protocol that can
handle multi-dimensional rectangle range queries over rectangle keys. We call it Multidimensional
Range Search (MDRS).

In order to de�ne MDRS more formally we instantiate the Gener alized Range Search Problem
earlier de�ned on Chapter 1. Now, the search space is U = [0; 1]d, where d is the number
of the dimensions. The key space and the range space contain d-dimensional rectangles, i.e.
K = R = fd-dimensional rectanglesg.

A d-dimensional rectangle can be depicted as a hyper-rectangle on d dimensions bounded on
left-bottom by the point Pmin = (P 1min; P2min; : : : ; P dmin) and on top-right by the point
Pmax = (P 1max; P2max; : : : ; P dmax).

A typical 2-dimensional rectangle range query is depicted on Figure 4.1.

For an exemplary application consider a Geographical Information Systems (GIS) package. GIS
is an information system for capturing, storing, analyzing, managing and presenting data which
are spatially referenced (linked to location)1. An exemplary function would be to locate all the
parks that are located on a user-speci�ed rectangle over a ma p which only includes all the parks of
Greece. Here the map of the earth would be the search space U , the rectangle would be the range

1De�nition of GIS taken from http://en.wikipedia.org/wiki /GIS.

Figure 4.1: 2-D Range Query

18
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space R and Greece would be the data space K . This is a typical example of a 2-dimensional
rectangle range query.

According to the proposed steps mentioned on Section 3.6 for the customization of GRaSP we
have structured the organization of the chapter. Initially on Section 4.1 we specify the space par-
titioning algorithm. Next, on Section 4.2, we describe when a peer can answer an rectangle range
query. We conclude with an example of the Search Algorithm applied over a MDRS trie.

4.1 Hierarchical Space Partitioning

In order to achieve load balancing we want to exploit the nature of the problem, i.e. the fact that the
queries are rectangle and can happen anywhere on the space. Therefore we would like to split the
space into rectangles aligned to x and y dimensions. The obvious solution is following the idea of
k-d trees, i.e. S(peerID) is splitted along dimension jpeerIDj mod d, where jidj is the length
of the bitstring id. Or other words we split the key space of a peer in a Round-Robin manner. For
example in the case of d = 2 the x and y splitting dimensions are interchanged at each level of the
trie.

Obviously there aren’t any peers holding the same keys (S(x � 0) \ S(x � 1) = ;). Therefore
each key is inserted only once into the network. Later on on Section 6.2.1 we will more say that
replication equals 1.

4.1.1 Example

In order to depict the aforementioned sceptic we present respectively on Figure 4.1.1 and Fig-
ure 4.3 an in-depth example of a series of node joins and the respective space partitionings for a
2-dimensional key space. The evolution of the trie is progressing according to what we have said
on Section 3.1. For the rest of the chapter (and even the thesis) we will stick with MDRS to two
dimensions for the sake of simplicity. Any generalizations to more dimensions are self-intuitive.

For the �gures that contain tries (on this and next chapter) t he notation used on each node follows
the template:

peerID : [Pmin � Pmax]DIM = splitcoord

where:

peerID is the peerID of the node (we use the notation root for the root node instead of the empty
string �).

[PminPmax ] are the two boundary points which de�ne the rectangle key sp ace for which the peer
is responsible for. This is actually the key space S() of the peer with peerID= P eerID.

DIM = splitcoord DIM shows the dimension along which the key space of this node (with
PeerID= P eerID) will be splitted when a new peer becomes its child (on bootstrapping).
Typical values for DIM are the following. If the split dimension is along the y-dimension
then DIM equals Y DIM . Else, if the split direction is along the x-dimension the DIM
equals XDIM . splitcoord is the coordinate on the DIM -dimension that the key space of
this node will be splitted when a new peer becomes its child (on bootstrapping). Obviously,
the value of DIM = splitcoord for the root node is dummy without any sense.
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For the case of MDRS we to make the following remarks. Y DIM and XDIM are interchanged at
each level of the trie. Also, the coordinates XDIM = Y DIM = fthe half of the parental DIMg.
Moreover. two sibling nodes have the same DIM = splitcoord value.

Next to each leaf we list its keys and routing table. Obviously the inner (virtual) nodes have neither
keys nor routing tables. Each edge of the trie is annotated with 0 or 1.

4.2 Orthogonal Range Searching

Having de�ned the query type r as a rectangle and the key space S(p) of a peer p as a rectangle
area of a set of rectangles (and postponed bootstrapping algorithm for Section 6.3.3) the only thing
left to fully specify MDRS is checking when a peer can answer a query. A peer can answer a query
r if its key space S(p) is intersected with it, i.e. if S(p)\ r. If this is the case then we want to �nd
all the keys in S(p) that intersect to r and return them as answers to the query. On other words
we want to check if a rectangle intersects a set of rectangles. The core of this problem is checking
if two rectangles, let’s call them A and B, intersect. This is the case if (a) the boundary top-right
point of A dominates (i.e. is more-or-equal) the boundary bottom-left of B and (b) the boundary
top-right point of B dominates the boundary bottom-left point of the A.

4.2.1 Example

Here we present an exemplary application of the Search Algorithm (see Section 3.4) over the
MDRS trie of Figure 4.1.1(e).

Look at Figure 4.2.1. Assume node 011 asks the range query r with Pmin � (xmin; ymin) =
(0:000000; 0:000000) and Pmax � (xmax; ymax) = (800:631002; 176:698761). Actually this
is a real 3-sided query ((xmin; xmax; ymax) = (0:000000; 800:631002; 176:698761)) used in our
experiments on Section 6.3. Node 011 initially checks if itself can answer part of the query. This
is the case and therefore it answers part of the query locally (answerLocally(r) of Search Algo-
rithm). Afterwards if traverses its routing table (the loop of Search Algorithm) and checks if any
of its neighbors can answer part of the query too or if at least any neighbor is closest to the query
than itself. This is the case with neighbors 1 and 00. Therefore node 011 forwards them the query
r (the inner recursive call of Search of Search Algorithm). Recursively the same process is car-
ried out on nodes 1 and 00. Note that node 00 now doesn’t forward the query to node 011 again
because of the parameter l of the Search Algorithm.
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(a) number of nodes=1: {�} (b) number of nodes=2 {’0’,’1’}

(c) number of nodes=3 {’00’,’01’,’1’} (d) number of nodes=3 {’00’,’010’,’011’,’1’}

Figure 4.2: Exemplary evolution of the MDRS trie on 2-D while new nodes join arrive.
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(a) number of nodes=1: {�} (b) number of nodes=2 {’0’,’1’}

(c) number of nodes=3 {’0’,’10’,’11’} (d) 3number of nodes=3 {’00’,’01’,’1’}

Figure 4.3: Exemplary evolution of the 2-dimensional MDRS topology while new nodes join
arrive. There is a 1-to-1 mapping between this �gure and Figu re 4.1.1.
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Figure 4.4: Example of answering a 2-dimensional orthogonal range query over the MDRS trie. The trie is the one earlier presented on Figure 4.1.1(e).



Chapter 5

3SIDED

In Chapter 3 we presented GRaSP, a framework for constructing distributed data structures that
can tackle the generalized range search problem over a P2P network. In the previous Chapter 4 we
customized GRaSP and constructed MDRS, a protocol that can handle multi-dimensional rectan-
gular range queries. Likewise, in this chapter we will customized GRaSP and instantiate 3SIDED,
a protocol that can answer multi-dimensional 3-sided range queries. The process followed to ac-
complish this is similar to the one followed on the construction of MDRS.

Let’s de�ne more formally the 3-sided Range Search Problem. For sake of simplicity we will stick
to 2 dimensions � any generalizations are self-intuitive. T he keys are points. A 3-sided range
query is a degenerated rectangle range query. More precisely, going back to the de�nition of the
rectangle on the beginning of Chapter 4 we set d = 2 and P 2min = 0. On this case the 3-sided
query is bounded on top. Alternatively, if P 2max =1 then the 3-sided range query is bounded on
bottom. Let’s relax the notation in order to make things simpler and represent the two dimensions
with the familiar x-axis and y-axis. Then a 3-sided range query bounded on bottom is equivalently
de�ned by the triplet of coordinates xmin; xmax; ymin and a 3-sided range query bounded on top
by the triplet of coordinates xmin; xmax; ymax. A typical 3-sided range query bounded on top is
presented on Figure 5.1(a) and another one bounded on bottom is presented on Figure 5.1(b). For
the rest of the chapter (and the thesis) we will stick to 3-sided range queries bound on top.

3SIDED uses and alternative representation for the keys and queries. Here we will use the nota-
tion earlier introduced when de�ning the Generalized Range Search Problem earlier de�ned on

(a) 3-sided Query (bounded on top) (b) 3-sided Query (bounded on bottom)

Figure 5.1: Example of 3-sided queries. On (a) we have 3-sided query bound on top and on (b) a
3-sided query bounded on bottom.

24
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(a) 3sided Query (b) 3sided Query (reduced form)

Figure 5.2: 3-sided range query representation and its equivalent reduced form as used on 3SIDED.

Chapter 1. First of all we de�ne the search space as U = [0; 1]d, where d is the number of the
dimensions. Each key is depicted as an upward ray, i.e. K = fupward raysg. Each 3-sided range
query is depicted as an horizontal segment, i.e. R = fhorizontal segmentsg. On Figure 5.6 we
present a typical 2-dimensional 3-sided range query and its equivalent horizontal segment reduc-
tion used by 3SIDED.

Typical applications of the 3-sided range search problem are found when working with �nan-
cial data. Assume for example that on a 2-dimensional space we the x-axis t represents the time
progress (in days of month) and the y-axis s represents the sales of products (in dollars). We
want to �nd all the products that had high sales during Christ mas. Then the predicate would be
s > 100$ and 25 <= t <= 31 on December. This an example of a 3-sided query bounded on
bottom. Alternatively we could �nd low sales and this would be a 3-sided query bounded on top.

According to the guidelines earlier provided on Section 3.6 in order to fully specify the 3SIDED
protocol we have to specify the format (shape and dimensionality) of the data and query, when a
peer can answer a query and the hierarchical space portioning scheme. Again, we postpone the
choice of the bootstrapping algorithm for Section 6.3.3. Accordingly we have organized the struc-
ture of the chapter. Namely, on Section 5.1 we specify the space partitioning followed by 3SIDED
and the reason motivated it. Afterwards on Section 5.2 we specify when a peer can answer a query.

A strong emphasis should be given to the fact that, in our knowledge, there isn’t any previous
work on P2P that tackles the multi-dimensional 3-sided range search problem, i.e. there isn’t any
network that can handle 3-sided range queries. Our work is pioneer and depicts the usefulness of
GRaSP once again.

5.1 Hierarchical Space Partitioning

Handling 3-sided queries is a very demanding problem. The most prominent reason is that all the
queries hit peers low on the key space. This is especially obvious for the low-and-wide 3-sided
queries. Moreover, if a 3-sided query is tall-and-narrow many peers will be hitted. On both cases
each peer will return a small part of the answer. Typical examples of both queries are depicted on
Figure 5.3.

On Section 3.2 GRaSP proposes that in order to ameliorate the load balancing problem the Space
Partitioning scheme should be adapted to the nature of the problem, i.e. to the dif�cult queries
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(a) low-and-wide (b) tall-and-narrow

Figure 5.3: Dif�cult 3-sided queries. It’s obvious their pa rticularities and the problems they pose.

depicted on Figure 5.3. Therefore we want many peers on the bottom of the space and less on
the top. The lower peers should hold low-and-wide areas and and the upper ones tall-and-narrow.
This can be achieved by adding redundancy low on the key space and splitting the key space in
rectangles, low-and-wide on bottom and tall-and-narrow on top as we mentioned before. This idea
can be effectuated by adopting the following algorithm. The space partitioning algorithm adopted
by 3SIDED contains two type of splits, one horizontal and one vertical. When a key space is split-
ted vertically then it is splitted into the middle of the x-axis (remember that for sake of simplicity
we just refer two 2 dimensions). Therefore two equal volumed key spaces result. On the case of
the horizontal split the key space is splitted on the y-axis not on the middle but on a the YSEP

percentage of its height. YSEP is a user speci�ed parameter and controls the overlapping be tween
the key spaces of the peers. The higher YSEP is the higher the overall overlapping is. Obviously
YSEP 2 f0; 1g. Assume a new peer p wants to join the network and becomes child of the parent
(bootstrap) node b. If key space of b was resulted from an horizontal split and the last bit of b is 0
then its key space is also splitted horizontally. If it ended on 1 then it is splitted vertically. On the
opposite case where the key space of b resulted from vertical split then it is also resplitted verti-
cally. Section 3.1 tells us which part of the key space of b each newly created child gets. This ideas
are presented on a more formal manner on the algorithm known as 3sidedHashing on Algorithm 1.

Assume we want calculate the key space of peer with PeerID bs, i.e. the value of S(bs). Also
assume that the search space U is bounded respectively by the bottom-left and top-right points
Pmin = fXMIN ; YMINg and Pmax = fXMAX ; YMAXg. Also assume that we have set YSEP .
Then given the arguments as input to the hashing algorithm then 3sidedHashing returns the fol-
lowings:

pmin = fxmin; xmaxg, pmax = fymin; ymaxg The key space of peer bs is bounded respectively
by the bottom-left and top-right points pmin and pmax.

ysep is the coordinate on the y-dimension that the key space of peer bs will be further splitted if it
adopts a peer. This may be equal to ymin in case its key space will be vertically splitted.

Just to refresh the obvious we mention here where the 3sidedHashing Algorithm is used. This
is the case when a new peer joins the network (see Section 3.1) the peer that will adopt it (boot-
strap/parent peer) should split its key space into two (overlapping or not) subregions and each one
be given to each peer. The 3sidedHashing Algorithm tells us where to split the key space of the
parent peer.
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Algorithm 1 3sidedHashing (XMIN ,YMIN ,XMAX and YMAX are the boundaries of the overall
data space).

1: function 3SIDEDHASHING(XMIN ,YMIN ,XMAX ,YMAX ,YSEP ,bs)
2: xmin  XMIN

3: xmax  XMAX

4: ymin  YMIN

5: ysep  YMIN

6: ymax  YMAX

7: hsplit T rue
8: for all i 1; size(bs) do
9: b bs[bsi]

10: if hsplit = T rue then
11: ymiddle  ymin + YSEP � (ymax � ymin)
12: if bit = 0 then ymax  ymiddle

13: else
14: ysep  ymiddle

15: hsplit False
16: end if
17: else
18: xmiddle  xmin + 0:5 � (xmax � xmin)
19: if bit = 0 then
20: xmax  xmiddle

21: else
22: xmin  xmiddle

23: end if
24: end if
25: end for
26: return [xmin,xmax,ymin,ysep,ymax]
27: end function
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Note that on 3SIDED we don’t pose the restriction S(x � 0) \ S(x � 1) = ; as we did on MDRS
on Section 4.1). Therefore we can introduce replication, i.e. overlapping key spaces, into the net-
work. This is useful as we have already explained for load balancing reasons.

5.1.1 Example

A detailed example (for YSEP = 0:3) of a series of peer joins and the respective evolution of the
trie and the topology is depicted on Figure 5.1.1 and Figure 5.5. Actually, this is a realistic case
borrowed from our experiments on Section 6.3. The notation used is consistent to the notation
earlier introduced and used on Section 4.1.1.

5.2 3-sided Range Searching

Having de�ned the query r as an horizontal segment and the key space S(p) of peer p as a
rectangular area that contains a set of upward rays (and postponed bootstrapping algorithm for
Section 6.3.3) the only thing left to fully specify 3SIDED is checking when a peer can answer
a query. A peer can answer a query if its sub-key-space bounded on bottom-left by the point
pmin = fxmin; ysepg and on top-right by the point pmax = fxmax; ymaxg is intersected the query
horizontal segment. The aforementioned coordinates results from the execution of the 3sidedHash-
ing Algorithm with input P eerID = p. Note the distinction between the key space of a peer, i.e.
the area for which a peers holds all the inlaid keys, versus the space of a peer for which the peer is
responsible for answering queries.

Now that we know if a peer can answer a query we want to get all its keys that answer the query.
A brute force method with linear time complexity would be to compare all the upward ray keys of
the peer with the horizontal segment of the query.

On Figure 5.6(b) we present an horizontal segment query intersected with 3 upward ray keys (we
also depict the original 3-sided range query and keys for clari�cation purposes). On Figure 5.6(a)
we see that responsible for answering the 3-sided range query (bounded on top) is peer 010. Peer
010 holds keys a, b and c. Only keys a and b answer the query. The answer keys are colored red.
On Figure 5.6(b) we see an equivalent picture where the query is an horizontal segment and the
keys are upward rays. Again the upwards rays a and be answer the query.

An important notice is the following. Practically the query can be fully answered by peers 010
and 101 since their key spaces are intersected the query. But from what we have said at the begin-
ning of this section it’s obvious that only peer 010 is intersected the query. Therefore is peer 101
receives the query in question it will discard it or forward it to a neighbor.

5.2.1 Example

Here we tersely present an exemplary application of the Search Algorithm (see Section 3.4) on
Figure 5.2.1. The steps followed are similar to the respective case of the MDRS protocol on Sec-
tion 4.2.1 and therefore we avoid plagiarism.
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(a) number of nodes=1: {”} (b) number of nodes=2 {'0','1'}

(d) number of nodes=3 {'0','10','11'} (e) 3number of nodes=3 {'00','01','1'}

Figure 5.4: Exemplary evolution of the 3SIDED trie on 2-D while new nodes join arrive.
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(a) number of nodes=1: {”} (b) number of nodes=2 {'0','1'}

(c) number of nodes=3 {'0','10','11'} (d) 3number of nodes=3 {'00','01','1'}

Figure 5.5: Exemplary evolution of the 2-dimensional 3SIDED topology on while new nodes join
arrive. There is a 1-to-1 mapping between this �gure and Figure 4.1.1.

(a) 3sided Query (b) 3sided Query (reduced form)

Figure 5.6: Depicting when a peer can asnwer a 3-sided range query on 3SIDED. Practically both
peers 010 and 101 can answer the query but on 3SIDED only 010 does so! On (b) keys are upward
rays and the 3-sided range query is an horizontal segment. Keys a and b anwer the query and are
colored red. Key c doesn't answer the query and is colored black.
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Figure 5.7: Example of answering a 2-dimensional 3-sided range query over the 3SIDED trie. The trie is the one earlier presented on Figure 5.1.1(e).



Chapter 6

Performance Evaluation

In order to evaluate GRaSP we have constructed a fast and scalable simulator called RangeSim-
Cpp. This is the mean of the evaluation and is presented on Section 6.1. On Section 6.2 we present
the Cost Model on which we have based the evaluation, i.e. themetrics used to evaluate the quality
of a network. On Section 6.3 we experiment with 2-dimensional orthogonal range queries over
MDRS and 3-sided queries over 3SIDED and MDRS (we regard a 3-sided query as a range query
unbounded on a side).

6.1 Simulators

In order to develop protocols over the GRaSP framework we needed to develop a consistent API.
This API gives the necessary mechanisms to represent the trie topology of GRaSP, the routing
tables, the searching algorithm, the bootstrapping and to customize any Space Partitioning algo-
rithm. Initially we experimented with a Java simulator for P2P calledPeersim. Due to its lack
of ef�ciency (for reasons that we will justify later on) we have developed a novel C++ simulator,
calledRangeSimCpp.

6.1.1 Peersim

Peersim[33] is a con�gurable, extendable and self-contained simulator for P2P protocols in Java.
It can support the simulation of large networks and the processing of many queries. It can also
support dynamic protocols, where node additions and removals are happening. Peersims has two
modes of operation, the Cycle Based and the Event Driven.

Cycle Based Simulation

The Cycle Based Simulation is a simplest simulation mode. Herein nodes are given the control
periodically, in some sequential order. The processing of queries follows a Breadth First Search
manner in the following sense; all the queries that are no answered till the current cyclei are either
answered locally or forwarded. The ones answered are discarded from the network whereas the
ones forwarded are reprocessed in similarly manner on cyclei + 1 . This process is continued until
all the queries are fully answered.

32



CHAPTER 6. PERFORMANCE EVALUATION 33

Event Driven Simulation

In the event based model there is not the semantic of the cycle. On the contrary the events (eg the
queries in our case) have to be scheduled explicitly and these are the ones which drive the �ow
of the simulation. Therefore this mode is more realistic butalso less ef�cient. The Event Driven
Simulation also supports transport layer simulation versus the Cycle Based Simulation.

In our experiments we have employed the Cycle Based Simulation mode of Peersim on static net-
works. Unfortunately the memory and processing demands of Peersim have not been satisfactory
and therefore a new simulator has been developed from the scratch in C++ which is working in a
similar Cycle Based mode.

6.1.2 RangeSimCpp

The C++ implementation has been calledRangeSimCppand is working in a Cycle Based mode
but in a Depth First Search manner on the contrary to Peersim.This means that each the query
is feeded to the simulator, processed on a cycle-by-cycle manner until it is fully answered. After-
wards it is discarded from the simulator and a new query begins. This process is followed until all
queries are fully answered. Obviously only one query is loaded at any time slice. The bene�ts are
obvious and are further discussed on Section 6.1.3.

6.1.3 Comparison

Peersim and RangeSimCpp exhibit some common attributes andsome crucial differences. Here
we compare the two aforementioned simulators side-by-sidein relation to their common Cycle
Based operation. First of all Peersim is written in Java whereas RangeSimCpp in C++. Each
language provides each pros and cons. Java supports memory garbage collection but is not as fast
as C++. On the contrary C++ is not safe from memory leaks but isfaster than Java. The most
important difference however is the processing algorithm of the queries that each simulator fol-
lows; in Peersim we load all the queries in memory and all of them are processed (forwarded or
answered) on each cycle (Breadth First processing) whereasin RangeSimCpp we load each query
in memory, we process each until is fully answered and afterwards we load the next one and so
on (Depth First processing). The subtle difference betweenthe two aforementioned algorithms is
that former requires all the queries residing in the memory during the whole duration of the simu-
lation whereas the latter one requires only one query being in the memory at any time. Therefore,
according to our experience, Peersim cannot handle ef�ciently simulations of tens of thousand of
queries. For instance if the number of peers is of order of 100K then the memory needs are of
order GB and the current CPUs cannot handle it at all. On the contrary RangeSimCppś memory
needs are of order MB and the time needs are of order of minutes.

6.2 Modeling P2P Network Performance

In order to evaluate GRaSP more general any P2P protocol we borrow some evaluation metrics.
Here we mention the most important ones which are the ones used later on our experiments.
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6.2.1 Replication

By replication (of data) we de�ne the percentage of the original dataset that is stored in our net-
work. Obviously the replication is greater or equal to one (equal to one when there isn't any).
Replication may exist when two or more peers possess same keys; this may be the case for exam-
ple for load balancing when we want the queries for these keysto be splitted between the two peers.

6.2.2 Fairness Index

Another metric pertinent to the data is theFairness Index[32] which is de�ned asF I =
(
P n

i =1 x i )2

n
P n

i =1 x i
2

wherex i is the number of data points of peeri andn is the number of peers. In essence Fairness
of Index shows the fairness of the distribution of the data onthe peers; i.e. how air are the data
distributed among the peers. FI is continues, scale independent, i.e. applies to any network size
(even for a few peers only) and is bounded between 0 and 1 — 0 forunfairness (when one peer
holds all the data), 1 for equally fairness (when all the peers have equal number of data).

6.2.3 Average per-process Message Traf�c, Maximum Throughput

Average per-process Message Traf�c and Maximum Throughputare novel metrics initially in-
troduced by Blanas and Samoladas[42]. They studied a few recent P2P networks through d-
dimensional orthogonal range queries (PGrid[10], VBI[9],CAN[4], MURK[8]) and concluded
through extent simulation that all of them except PGrid don't scale with the number of peers.
They emphasized that it not enough measuring the average load per peer in order to reach a ver-
dict for the scalability of a network. What should be measured is the load of the most loaded peer,
i.e. the Maximum Throughput.

Let's de�ne now the Average per-process Message Traf�c and Maximum Throughput. Assume
peerj accepts incoming messages at an arrival rate� j , where each message has service demands.
On the other hand this peer has maximum service rate j for an incoming message. Therefore the
time required to serve an incoming message iss= j . More generally assumeS is a random vari-
able that denotes the distribution of the service demand of the incoming messages. Accordingly
de�ne Sj = S= j and denoteE[Sj ] being its expected value.

If P is a set of processes with individual popularities� p andmj (p) is the number of messages
in processp 2 P received by peer j then themessage distributionof the network is de�ned as

� j =
P

p2 P � p m j (p)
 j

and theAverage per-process Message Traf�casM =
P n

j =1  j � j .

TheMaximum Throughputis de�ned as� max = 1
E [S] _max j � j

. Obviously, Maximum Throughput
is the inverse of the average per-query processing time of the most-loaded peer in the network. In
our experiments we have set for simplicityE [S] = 1 (i.e. each peer can service the 100% of the
incoming messages) and therefore� max = 1=maxj � j . Simply stated it we could say the Maxi-
mum Throughput is a metric which measures the load of the mostloaded peer or alternatively that
is the maximum query rate that the network can sustain inde�nitely. Above� max some peers may
become overload and crash or on the best cast discard messages.
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6.3 Experiments

In order to evaluate GRaSP we have implemented the MDRS and 3SIDED protocols (see Chap-
ters 4 and 5 respectively). We have experimented with 2-dimensional orthogonal range queries
over MDRS and 3-sided queries over 3SIDED and MDRS (we regarda 3-sided query as a range
query withd = 1 or d = �1 , whered is the unbounded side). Initially we set the test beds
to conduct our experiments, i.e. the number of queries and peers, the datasets, etc. Finally we
evaluate each protocol by plotting its results based on the cost model presented on Section 6.2.

6.3.1 Datasets

We have simulated MDRS and 3SIDED with �ve datasets; one realistic and three synthetic ones.
Two of the synthetic were tuff to handle ef�ciently and one wepretty easy. All of them are 2-D and
contain about 1M data points. They are all listed on Figure 6.3.1. The realistic dataset is depicted
on Figure 6.1(d) and illustrates roads on he map of Greece. The easy synthetic dataset contains
data points following a random uniform distribution (see Figure 6.1(e)). Lastly, the remaining
tuff synthetic datasets contain data points generated fromthe following distribution: (a) a circle
distribution (Figure 6.1(a)), (b) 25 Gaussian clusters (Figure 6.1(b)) and (c) a diagonal distribution
(Figure 6.1(c)).

6.3.2 Queries

For the MDRS we have crafted pseudo 3-sided queries bounded on top, i.e. 2-D range queries
shifted on the x-axis (i.e.ymin = 0). For the 3SIDED we have created reduced 3-sided queries
bounded on top as described on the following paragraph. Bothtype of queries have been created
data skewed, i.e. the probability for a key to answer a query is analogous to the key density around
the location of this key. Therefore peers with many data are very popular and expected to accept
many queries.

Creation of 3-sided queries

In order to create 2-D range queries shifted on the x-axis we have followed the following steps
(assume that we want the query to containqsizekeys for answer):

1. Choose a random point(x; y) (under the condition that the number of all the points under
the horizontal line passing through point is greater or equal to qsizeelse reinitialize). The
chosen point is at this point a rectangular that closes in zero volume.

2. Extend a little bit the rectangular from the left and the right direct ions on the x-dimension.

3. Extend a little bit the rectangular from the top and the bottom direct ions on the y-dimension.

4. If the rectangular includes approximatelyd (with a prede�ned positive/negative bias) data
then stop. Else repeat the previous two steps iteratively until convergence.

Creation of 4-sided queries

In order to create data skewed 3-sided queries we have followed the following steps (assume that
we want the query to containqsizekeys for answer):
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(a) Circle (b) Clusters (c) Diagonal

(d) Greece (e) Uniform

Figure 6.1: Available Datasets with which we have experimented.
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1. Choose a random point(x; y) (under the condition that the number of all the points under
the horizontal line passing through point is greater or equal to qsizeelse reinitialize).

2. Extend a little bit the point from the left and the right directions thus creating a line segment
on the x-dimension.

3. If the rectangular area under the line segment includes approximatelyd (with a prede�ned
positive/negative bias) data then stop. Else repeat the previous two steps iteratively until
convergence.

6.3.3 Bootstrapping Algorithm

The bootstrapping algorithm (see Section 3.3) that was followed by both protocols for the con-
struction of the trie was the Data Balanced Selection. Therefore the nodes should tend to have
equal number of data. The validity of this assertion will be validated later when we will discuss
The Fairness of Index of each protocol.

6.3.4 Test Beds

Each experiment's network is consisted of1K , 5K , 10K , 20K , 30K , 50K , 75K and100K num-
ber of peers. The number of queries is relevant to the number of peers and equal to the one third
of them. For example when the number of peers is equal to1K then we initiate1K=3 = b333c
queries. The datasets we have employed are the cycle, clusters, diagonal and uniform ones that
are presented on Section 6.3.1.

Maximum Throughput (see Section 6.2.3) is reverse proportional to the messages the most loaded
peers receives. These messages can be divided into the ones locally answered (relative messages)
and the ones forwarded (non-relative messages). When the size of the query is small (i.e. the
number of the reported data items that answer the query) we expect the number of the relevant
messages to be low and the number of the non-relative messages to be high. On the contrary we
expect the opposite when the size of the query is high. In order to further examine the relation of
Maximum Throughput in respect to the query size we have create 3 query sizes, 50–60, 500–600
and 5000–6000.

In order to avoid clutterness due to the large number of �gures we have grouped into one �gure the
three �gures that correspond to an experiment of the same specs except for the three possible query
sizes. In order to accomplish this we have used improperly for each experiment and each network
size the notation of thecon�dence intervalsinstead of the notation of points. Each curve describes
an experiment carried out for three query sizes and a range ofpeers. Each bundle of three query
sizes is depicted on the trajectory of each curve with a con�dence interval which contains three
points, one for each query size. These three points correspond to three results sorted from the low-
est to highest. Accordingly the have been depicted on the barof each con�dence interval. More
speci�cally each c.i. contains ameanvalue, alowestbound and a highesthighestbound. The
lowest bound corresponds to the experiment with the query size that gave the lowest performance
value, the opposite gilts for the highest bound and the one point left corresponds to the value of the
remaining experiment. Therefore a con�dence interval shows the range that a performance metric
gets for an experiment with three query sizes: 50–60, 500–600 and 5000–6000 points.

We have carried out 10 individual experiments for both MDRS and 3SIDED protocols. We have
used different seed for the random generator for each experiment and averaged over the results.



CHAPTER 6. PERFORMANCE EVALUATION 38

6.3.5 Overview of the experiments conducted

The number of parameters that we have set up in order to conduct the experiments are quite a few
because we want to thoroughly study the behavior of MDRS and 3SIDED. Therefore the reader
may be confused. For this reason we sum up here all the test beds that we have set up:

For 2-dimensional orthogonal range queries over MDRS we have:

� 1 protocol: MDRS

� 5 datasets

� 3 query sizes

� 10 simulations

And therefore we run in total1 � 5 � 3 � 10 = 150 test beds.

For 3-sided range queries over MDRS and 3SIDED we have:

� 2 protocols:

– MDRS

– 3SIDED (4 possible values forYSEP )

� 5 datasets

� 3 query sizes

� 10 simulations

And therefore we run in total(1 + 4) � 5 � 3 � 10 = 750 test beds.

6.3.6 Results: 2-dimensional Rectangular Searching Over MDRS

On the following paragraphs we experiment with 2-dimensional rectangular range queries over
MDRS. The metrics used are Fairness Of Index, Replication, Latency, Maximum Throughput and
Traf�c.

Fairness Index

As we have already mentioned on Section 6.3.3 we expect all the peers to have comparable num-
ber of data items in their disposal because of the Data Balanced Selection choice as bootstrapping
algorithm.

Initially, remember from Section 6.2.2 that FI is bounded between 0 and 1, where 1 denotes the
perfect fairness where all the peers have exactly the same number of data items and the opposite
happens for FI equal to 0.

This is con�rmed as we case see on Figure 6.2. On x-axis we present the network size and on y-
axis the FI for each network size. Actually FI is generally high, especially for the uniform dataset
where it approaches 0.7 (remember from Section 6.2.2 that FIis bounded between 0 and 1, where
1 denotes the perfect fairness where all the peers have exactly the same number of data items and
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Figure 6.2: Fairness Index (for orthogonal range queries over MDRS)

the opposite happens for FI equal to 0). The worst FI is achieved by the Circle and Diagonal
datasets and is equal to 0.3. The FI of the Greece dataset is lied somewhere between and is equal
to 0.5.

Latency

Latency is theoretically (see Section 3.4) equal toO(logn), wheren is the number of peers. On
Figure 6.3 we present the Latency for a series of network sizes. Obviously MDRS approaches
indeed this theoretical measure. It's obvious that Latencyis independent of the query size.

Average Messages Per Query

The Average Message Traf�c is increased with the number of peers as showed on Figure 6.4. On
x-axis we list the number of the peers of the network and on y-axis the Average Messages Per
Query for each such network size. All the datasets present comparable Average Message Traf�c
with the best (lowest) having the Diagonal dataset and the worst (highest) having the Uniform
dataset. The obvious relation between the Traf�c and the query size is the following: Traf�c(small
query size)� Traf�c(big query size).

Maximum Throughput

Maximum Throughput in relation to the network size is depicted on Figure 6.5. On x-axis we
list the number of the peers of the network and on y-axis the Average Messages Per Query
for each such network size. It's obvious that MDRS presents the maximum (best) Maximum
Throughput for the Diagonal dataset and the lowest (worst) for the Circle dataset. Generally
Maximum Throughput scales with the number of peers. The obvious relation between the Max-
imum Throughput and the query size is the following: Max.Throughput(small query size)�
Max.Throughput(big query size)

6.3.7 Results: 3-sided Range Searching Over MDRS and 3SIDED

On the following paragraphs we experiment with 3-sided queries over MDRS and 3SIDED. The
metrics used are again Fairness Of Index, Replication, Latency, Maximum Throughput and Traf�c.
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Figure 6.3: Latency (for orthogonal range queries over MDRS)
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Figure 6.4: Average Message Traf�c (for orthogonal range queries over MDRS)
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Figure 6.5: Maximum Throughput (for orthogonal range queries over MDRS)

Fairness Index

Initially, remember from Section 6.2.2 that FI is bounded between 0 and 1, where 1 denotes the
perfect fairness where all the peers have exactly the same number of data items and the opposite
happens for FI equal to 0.

Fairness Of Index is depicted on Figure 6.3.7. On x-axis we present the network size and on y-axis
the FI for each network size. As we have already mentioned on Section 6.3.3 we expect all the
peers to have comparable number of data items in their key space because of the Data Balanced
Selection bootstrapping algorithm selection made. Unfortunately this is the true in our case. As
we see on Figure 6.3.7 FI is quite high for both MDRS and 3SIDED, especially for the uniform
dataset where FI approaches 0.7. For the rest datasets the FIof MDRS is generally better (higher)
and constant but for 3SIDED decreases exponentially and becomes soon less that 0.1. More specif-
ically 3SIDED generally has Fairness Index than 0.4 for the datasets Circle,Clusters,Diagonal and
Greece. MDRS behaves better with higher FI.
An importance observation is the inverse relation between 3SIDED'sYSEP and FI. Namely, higher
YSEP the lower FI is.

Replication

Replication is depicted as a histogram on Figure 6.7. X-axisis graduated with the datasets and
y-axis measures the replication of each dataset. Obvious replication is always greater than 1.
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