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Abstract

In recent years there has been a great effort to convert the existing Air
Traffic Control system to a novel system known as Free Flight. Free Flight is
based on the concept that increasing international airspace capacity will grant
more freedom to individual pilots during the enroute flight phase, thereby
giving them the opportunity to alter flight paths in real time. Under the
current system pilots must request, then receive permission from air traffic
controllers to alter flight paths. Understandably the new system allows pilots
to gain the upper hand in air traffic. At the same time, however, this freedom
increase pilot responsibility. Pilots face a new challenge in avoiding the traffic
shares congested air space. In order to ensure safety, an accurate system,
able to predict and prevent conflict among aircrafts is essential. There are
certain flight maneuvers that exist in order to prevent flight disturbances or
collision and these are graded in the following categories : vertical, lateral
and airspeed. This work focuses on airspeed maneuvers and tries to introduce
a new idea for the control of Free Flight.
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Chapter 1

Introduction

1.1 Select the most appropriate system for

conflict avoidance in Free Flight [1]

Dealing with aircraft means dealing with real time systems. An accurate
real time system requires the minimum possible response time so that the
system functions well.

In dealing with this specific problem we can focus on two basic areas
in the creation of an accurate control system based on airspeed maneuvers:
optimum (minimum) velocity changes [2] and quick response of the
system. Initiating slight changes in velocity requires a minimum time to
change the velocity. Furthermore, having an immediate response by the
system, means a quick calculation of the changes. If those calculation times
are minimum then we also minimize the total process time which is a basic
principle in real time systems.

Considering the importance of response time in relation to the prevention
of air traffic conflict we conclude that the most appropriate way to calculate
new velocities is to use a neural network, knowing that an already trained
neural network has very short response time.

Neural networks [3] can be characterized as computational models with
particular properties such as the ability to adapt or learn, to generalize, as
well as to cluster or organize data, and whose operation is based on parallel
processing. The intriguing question however, is to what extent does the
neural approach prove to be better suited to certain applications rather than
other models.
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1.2 The purpose of this diploma thesis

The goal of this work is the creation of a neural network that can predict
the optimal velocity change of two aircraft in order to avoid an imminent
conflict.

First and foremost, collision cases were gathered for the creation of the
specific neural network. This task was managed with Matlab code which
created random flights with true velocities. In this way, a great number of
cases are gathered but many of those cases were relevant to the problem, so
the method of sample deletion is used. Sample ejection omits cases that are
irrelevant to a problem.

The next step is the creation of a nonlinear program in GAMS [4] tool
used to define the new velocities of each aircraft in order to avoid conflict.
The function of this program is to find the minimum velocity changes. Fur-
thermore, it is important to mention that for each conflict case there is a
unique file in GAMS [4], giving solution to the problem as well as a specific
file keeping the velocity changes. Because of the great amount of data two
side programs in C++ were used in order to edit these files (GAMS, velocity)
in a few seconds while manually it would have taken days for this work.

The final step is the collection of data to train the neural network [3].
Thus it was decided that the inputs of the neural network, known as training
set, would consist of initial and final positions in the control sphere, as well as
initial velocities. The desired output, known as the target set, of the neural
network would be the velocity changes [2].

1.3 Structure of thesis

After the introduction part the four chapters follow:
Chapter2 : Approach of the problem
Chapter3 : Non-linear programming
Chapter4 : Neural Networks
Chapter5 : Appendix A
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Chapter 2

Problem Approach

Free Flight is the new air traffic system that is meant to replace the
existing national airspace system. It is a system that gives the pilot freedom
to change a flight path in real time although burdening him with the risk of
safety. In Free Flight many aircraft might share the same airspace as they
do not follow specific flight paths as in the current system. Thus the new
system requires the pilot to ensure a safe flight [5]. Earlier efforts have
been made in order to define the appropriate control system in Free Flight.
Collision avoidance and more specifically the maneuvers that are used, can
be grouped into the following categories: vertical, lateral and airspeed. The
primary work is focused on conflict detection and resolution in Free Flight
domain by using airspeed maneuver [6].

2.1 Basic idea of scenario

Matlab code is used, in order to create the collision cases. First of all,
a true scenario is represented for the Free Flight problem. There is a sphere
with a radius equal to 108 kilometers, termed here as the control zone [7].

The object of our study is the case of two aircraft flying in this sphere.
Each airplane has random initial and final configuration points in the control
sphere. We consider the traffic of the two aircraft linear with stable velocities
in order to simplify the problem. When the two objects are closer than 9
kilometers we consider that a conflict happens.

Our study involves collision cases while, non-crash cases are ignored. The
conflict scenarios are created as follows:

First of all, we create a sphere with radius of 108 kilometers and two air-
craft randomly distributed in it. The first aircraft (as well as the second) has
random initial points Paircraft1(xi, yi, zi) and final points Paircraft1(xf , yf , zf )
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Figure 2.1: The control sphere.

in the sphere.
Furthermore, to determine each aircraft in a unique way, we use the two

spherical angles , θ, φ. Consider that for the two dimension space we need
only one angle to define the direction of an object. Thus for the 3 dimension
space we need 2 angles. Where

−π

2
≤ θ ≤ π

2
(2.1)

and

0 ≤ φ < 2π (2.2)

To resume, we have the position of an object totally determined by the
point:

Paircraft1(xi, yi, zi, θi, φi) (2.3)

We want to find a relationship between the two objects so we consider
the route as a function of time. Thus the configuration of an aircraft at time
t is:

Paircraft1(xt, yt, zt, θt, φt) (2.4)

To test whether the objects collide, we check the distance between them
during a specific period of time.
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Figure 2.2: P1 (P3) is the insertion point, P2 (P4) the escape point in the
sphere of the first (second) aircraft.

2.1.1 Requirements for aircraft tracking in the sphere

The question that arises from the above scenario is how the system will
track the aircraft and find their position in the control sphere. The answer
is simple; it is the same as in the current system of tracking, via radar [8].
To begin with, there are two categories of radar: the embedded radar [9] in
each aircraft and the ground radar [10] that is located mainly near airports.
Civil aircraft have radar that can cover distances between 3 km and 20 km.
There are also some categories of fighter aircraft that have radar able to
cover distances in the range of 100 km. Furthermore, ground radar can cover
distances greater than 600 km. In the statement of our problem, we have a
control sphere with a radius of 108 km. The worst case scenario concerning
the greatest distance two aircraft may have is 216 km, equal to the length of
the diameter of the sphere, so we need radar that can cover this distance.

2.1.2 Equations for collision scenarios

The equations [11] expressing the move from the initial point to the
final are:
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x = x1 + a1λ
y = y1 + a2λ
z = z1 + a3λ

(2.5)

Where
a = (a1, a2, a3) = (x2 − x1, y2 − y1, z2 − z1) (2.6)

and λ is a variable.
Having random values for the two input angles φi and θi and for the

output angles φf and θf in the sphere, we create the initial and final points
as follows:

x = Rsin(φ)cos(θ) (2.7)

y = Rsin(φ)sin(θ) (2.8)

z = cos(φ) (2.9)

Where θ, φ angles are shown in the figure below:

Figure 2.3: The angles that determine the position of the aircraft in the 3D
space.

Considering that the the two aircraft follow a linear path with constant
velocities we get the following equation.

s = u1t (2.10)
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On the other hand we have that the length s covered by an object in a
flight is equal to :

s =
√

(x− x1)2 + (y − y1)2 + (z − z1)2 (2.11)

considering the mathematical type of distance.
By equating the (2.10) and (2.11) we get:

u1t =
√

(x− x1)2 + (y − y1)2 + (z − z1)2 (2.12)

If we replace term (x − x1) with its equal from equation (2.5) a1λ we
finally have:

u1t = λ
√

(a1)2 + (a2)2 + (a3)2 (2.13)

and if we set the equation: u1t = λ|a| analyzing the above equation we have:

λ =
u1t

|a| (2.14)

Furthermore we can replace the term λ with it’s equal in equation (2.5)
and finally take the equation below:

x = x1 +
a1u1

|a| t (2.15)

y = y1 +
a2u1

|a| t (2.16)

z = z1 +
a3u1

|a| t (2.17)

With these functions we know where an aircraft is positioned at the
moment t. So we know the distance between the two aircraft at the specific
time t. The distance between the two aircraft at the time t is:

d=
√

((xi(t)− xj(t))2 + (yi(t)− yj(t))2 + (zi(t)− zj(t))2
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2.1.3 Collection Of Collision Data

We construct 4000 collision cases using a Pentium 4 at 2,3 GHz. The
running time is approximately four months. The data are selected via a
random number generator, uniformly. Some of those data present cases where
collision is unavoidable using the velocity control because either they consist
of head-on collision or they are in parallel routes, where the distance between
each other is less than 9 kilometers, or they possess almost the same initial
points in the sphere. These cases represent 0.3% of the total number. The
remaining cases are solved using non-linear programming. The information
we get consists of the initial and final configuration points in the sphere,
including the polar θ, φ angles. To begin with, when a collision occurs, two
basic files are created: the colloutx.txt file that contains the initial and final
parameters x, y, z in the control zone and the angles.txt file that contains
the initial and final angles for the two aircraft. The code stops running only
when our data reach the number of 2000 or if we force it to stop.

Procedure of data collection

In this section the procedure of the data collection is explained. We
actually want to simulate real collision scenarios during free flight. The
scenarios are created through a MATLAB code. In the beginning of this
program the control environment, where the two aircraft fly, is created. This
environment is a sphere with a diameter of 216 km.

Each aircraft covers a distance in this sphere. This distance is defined
by two points in the three dimension space, the initial and the final point in
the sphere. Simply by connecting this points with a straight line we get the
distance that each aircraft will cover. We create these points with the help
of the polar angles θ, φ as it is shown in the above equations:

x = Rcos(θ)sin(φ)

y = Rsin(θ)sin(φ)

z = cos(φ)

Since we want to have random points we actually select random polar
angles θ, φ. We need four angles for each aircraft, θin, θfin, φin, φfin for the
initial and final points. This is achieved by the use of the function rand() that
originally generates values from 2−53 to 1 − 2−53. We want to have values
for the angle θ from -1.57 to 1.57 because θ = [−π

2
, π

2
] and for φ from 0 to
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Figure 2.4: The control sphere created by MATLAB code.

6.28 because φ = [0, 2π). Thus we multiply the given number from function
rand() with an appropriate value so as to get the desired range of values. The
velocity for each aircraft is defined in the beginning of the program. From the
program we get two categories of scenarios: those where conflict occurs and
those where conflict does not occur. The route of each aircraft is created step
by step. The aircraft are moving straight with constant velocities, thus the
distance is given by the equation s = ut. Given a value for t and consider the
velocity as a constant, we can measure the current distance covered as well
as the position at a specific time t. Knowing the position of each aircraft,
we can check for every time t the distance between the two aircraft and
evaluate, if the two aircraft are going to conflict. The two aircraft conflict,
when their between distance at time t is less than 9 km. All these scenarios
are schematically represented by a video created during the execution of the
program. The initial and final points as well as the routes and the conflict
points are shown in this video. In case of conflict we represent the conflict
points with blue color. Moreover two files are saved for a conflict case. The
first file contains the initial and final coordinates of aircraft. The name of
the file is collout.txt and in the first (second) column has the coordinates for
the first (second) aircraft. The other file named angles.txt contains in the
first (second) row the angles (θin, θfin, φin, φfin) for the first (second) aircraft.
Cases without conflict are not saved but they encountered instead for statistic
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reasons. There is a variable named counter that is increased for every new
case. It was noticed that the total amount of cases was 80.000 and only the
5% were conflict cases. The program was running for 18 hours per day for
120 days . Thus we had an average of 34 conflict cases per day. We choose to
make a program that generates both conflict and non-conflict cases because
we wanted to approach a real scenario. Finally it is good to mention that
some data of a percentage of 0.2% was generated twice. To find these data
we used the command diff of program cygwin. In every new step we were
comparing the new file with the previous ones. In case the new file already
existed, we simply discarded it. Thus all data collected are unique.
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Chapter 3

Non-Linear programming

3.1 General about non-linear programming

Having the function [12] :

minf(x), xεX

Where

• f : R → R is a continuous (and usually differentiable) function of n
variables

• X = Rn or X is a subset of Rn with a ”continuous” character.

1. If X = Rn , the problem is called unconstrained

2. If f is linear and X is polyhedral, the problem is a linear program-
ming problem. Otherwise it is a nonlinear programming problem.

Linear and nonlinear programming have traditionally been treated
separately. Their methodologies have gradually come closer.

A constrained non-linear programming problem deals with the search
for a maximum (or minimum) of a functionf(x) of n variables x = (x1, x2, ..., xn)
subject to a set of inequality constraints gj(x) ≤ 0, (gj(x) = 0, j = 1, 2, ..., p),
and is denoted as:

Maximize f(x)subject to gj(x) ≤ bj, j = 1, 2, ..., m

If any of the functions f(x), h(x), g(x) is non-linear, then the above formula-
tion is called a constrained non-linear programming problem. The functions
f(x), h(x), g(x) can take any form of non-linearity, and it is assumed that
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they satisfy continuity and differentiability requirements. No algorithm that
will solve every specific problem fitting this format is available. However,
substantial progress has been made for some important special cases of this
problem by making various assumptions about these functions, and research
is continuing very actively. Closely related to the idea of non-linear program-
ming are the notions of convex sets as well as convex and concave functions.
We will briefly define these notions below [9]:

Convex set definition:

A set SεRn is said to be convex if the closed line segment joining any
two points x1 and x2 of the set S, that is ,(1− λ)x1 + λx2 belongs to the set
S for each λ such that 0 ≤ λ ≤ 1.

Convex function definition:

Let S be the convex subset of Rn, and f(x) be a real valued func-
tion defined on S. The function f(x) is said to be convex if for x1, x2εS, and
0 ≤ λ ≤ 1, we have f [(1− λ)x1 + λx2 ≤ (1− λ)f(x1) + λf(x2)].
This inequality is called Jensen’s inequality after the Danish mathematician
who first introduced it.

Concave function definition:

Let S be a convex subset of Rn, and f(x) be a real valued function
defined on S. The function f(x) is said to be concave if for any x1, x2εS,and
0 ≤ λ ≤ 1, we have:f [(1− λ)x1 + λx2 ≥ (1− λ)f(x1) + λf(x2)].

In simpler terms, a convex function is always ”curving upward” (or not
at all) and a concave function is always ”curving downward” (or not at all).
If a non-linear programming problem has no constraints, the objective func-
tion being concave guarantees that a local maximum is a global maximum.
Similarly, the objective function being convex ensures that a local minimum
is a global minimum. If there are constraints, then one more condition will
provide this guarantee, namely, that the feasible region is a convex set. In
essence, a convex set is simply a set of points such that, for each pair of
points in the collection, the entire line segment joining these two points is
also in the collection.

In general, the feasible region for a non-linear programming problem is
a convex set whenever all the gj(x) [for the constraints gj(x) ≤ bj are convex.
The subject of non-linear programming is a very large one and is constantly
updated and reviewed.
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3.1.1 GAMS software package

GAMS [4] provides a high-level language for the compact represen-
tation of large and complex models, allowing changes to be made in model
specifications simply and safely. Also it allows unambiguous statements of al-
gebraic relationships and permitting model descriptions that are independent
of solution algorithms.

The design of GAMS incorporated ideas drawn from relational database
theory and mathematical programming and attempted to merge these ideas
to suit the needs of strategic modelers. Relational database theory provides a
structured framework for developing general data organization and transfor-
mation capabilities. Mathematical programming provides a way of describing
a problem and a variety of methods for solving it. The following principles
were used in designing the system:

• All existing algorithmic methods should be available without changing
the user’s model representation. Introduction of new methods, or of
new implementations of existing methods, should be possible without
requiring changes in existing models. Linear, nonlinear, mixed inte-
ger, mixed integer nonlinear optimizations and mixed complementarity
problems can currently be accommodated.

• The optimization problem should be expressible independently of the
data it uses. This separation of logic and data allows a problem to be
increased in size without causing an increase in the complexity of the
representation.

• The use of the relational data model requires that the allocation of
computer resources be automated. This means that large and complex
models can be constructed without the user having to worry about
details such as array sizes and scratch storage.

Basic Components of GAMS

Inputs

• Sets Declaration
Assignment of members

• Data(Parameters,tables,Scalars)
Declaration
Assignment of values
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• Variables
Declaration
Assignment of type

• Assignment of bounds and/or initial values(optional)

• Equations
Declaration
Definition

• Model and Solve statements

• Display statement(optional)

Outputs

• Echo Print

• Reference Maps

• Equation listings

• Status reports

• Results

3.1.2 Problem Example

To understand the use of GAMS a simple problem is presented below
[13]: In the transportation problem, we are given the supplies at several
plants and the demands at several markets for a single commodity. And we
are given the unit costs of shipping the commodity from plants to markets.
The question is: how much shipment should be between each plant and each
market so as to minimize total transport cost? The algebraic representation
of this problem is usually presented in a format similar to the following.

Indices: i =plants
j =markets
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Given Data: ai =supply of commodity of plant i (in cases)
bj =demand for commodity at market j (cases)
cij =cost per unit shipment plant i and market j (euro/case)

Decision variables: Xij =amount of commodity to ship from plant i to
market j (cases)
Where xij ≥ 0,for all i,j

Constraints: Observe supply limit at plant i :
∑

j xij ≤ ai, for all i cases
Satisfy demand at market j :

∑
i xijbj

Objective Function: Minimize
∑

i

∑
j cijxij

Note that this simple example reveals some modeling practices that we
regard as good habits in general and that are consistent with the design of
GAMS. First, all the entities of the model are identified (and grouped) by
type. Second, the ordering of entities is chosen so that no symbol is referred
to before it is defined. Third, the units of all entities are specified and fourth,
the units are chosen to a scale such that the numerical values to be encoun-
tered by the optimizer have relatively small absolute orders of magnitude.
The names of the types of entities may differ among modelers. For example,
economists use the terms ”exogenous variable” and ”endogenous variable”
for ”given data” and ”decision variable”, respectively. In GAMS, the termi-
nology adopted is as follows: indices are called sets, given data are called
parameters, decision variables are called variables, and constraints and the
objective function are called equations. The GAMS representation of the
transportation problem closely resembles the algebraic representation above.
The most important difference, however, is that the GAMS version can be
read and processed by the computer.

3.1.3 Optimum Velocity Changes with the help of Gams

Basic ideas of the problem

The main decision variable that determines whether or not we have
conflict is the distance between the two aircraft. If this distance is less than
9 km then we have conflict. Based on this fact, the problem is approached
as a function of time. Thus the solution for the avoidance of conflict lies in
keeping the distance between the two objects greater than 9 km during the
entire route. First of all, we sectioned the time of the route into a number of
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parts. To begin with we know that the aircraft fly with a speed equal to 15
km per minute and that the control sphere has a diameter of 216 km. It is
easily understandable that the greatest distance that can be covered is 216
km and this can be done in 14.4 minutes. Whether the segment of time is
a minute, half a minute or a quarter of a minute depends on how accurate
we need or want to be. In the specific solution, the amount of the time is a
quarter of a minute. Having decided how to split time, we now require that,
for all these segments of time, the distance between the two objects should
be greater than 9 km. According to this, the velocities of the two collision
objects will change until the desired ones are given.

Algorithm for GAMS

The velocity change occurs when two aircraft are flying in specified
directions and must avoid a conflict by implementing a velocity magnitude
change. Each aircraft can change its velocity by a quantity q that can take
positive or negative values. It is understandable that aircraft can not make
exorbitant changes in their velocities, instead they make limited ones. More
specifically, there exist upper and lower bounds of velocities for each aircraft
given by the following equation:

Ui,min 6 Ui 6 Ui,max (3.1)

The velocity bounds differ from aeroplane to aeroplane. The new
velocity that comes from the old one augmented by a value of q (negative or
positive), must not exceed the minimum and maximum bounds. This can be
represented by the following equation:

Ui,min 6 Ui + qi 6 Ui,max (3.2)

The usual bounds for a commercial aircraft must not exceed 1% of their
nominal velocity. We choose stricter bounds in our case, 0.5%. Consequently
q has lower and upper bounds as follows

−0.99 6 qi 6 0.99 (3.3)

In our algorithm we consider that two aircraft conflict if the distance
between them is less than 9 km. The distance between them is given by the
following equation:

d =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2

As mentioned before, if we manage to change the velocities in a way that
expands the distance between them more than 9 km, we will have conflict
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resolution. The basic issue is that there are an infinite number of values
that can manage this resolution but actually only one set will be optimum
according to the hierarchy defined in our algorithm. Therefore, we want to
achieve min|qi|, i = 1, 2.

Furthermore in non-linear programming there are some constraints. Our
algorithm, is based on a very simple idea: By taking the route of the aircraft
as a function of time we can split the route into time slices. An example
shown in the figure reveals the idea.

Figure 3.1: Position of each aircraft at every time slice

In the above figure, we see the positions of the aircraft in time slice 1 in
red. We examine, for each time slice, the distance between the two current
positions d12. Whenever d12 ≤ dcol, a collision occurs. Therefore, if for
all these positions, all the distances are made greater than 9 km, then the
conflict is successfully avoided.
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Figure 3.2: Distances between aircraft position

Thus, the constraints in our non-linear program according to 3.10 are the
following:

dis(1, i, j) > 9 (3.5)

and

dis(2, i, j) > 9 (3.6)

and

dis(3, i, j) > 9 (3.7)

and

dis(4, i, j) > 9 (3.8)

and
.
.
.
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d(n, i, j) > 9 (3.9)

The maximum time n in our problem is equal to 50. Consider that the
max distance, each aircraft can travel is 216 km and with a velocity of
15km/minute, it needs 14,4 minutes in total. So by taking almost a quarter
of minute as our time slice, we need at most 50 slices.

At the end of each GAMS program we get the optimum velocity changes.
By applying these changes, actually we decrease the velocity for one of the
two aircraft and increase the other’s. As a result, the aircraft passes the
crucial conflict point at another time slice and thus the conflict is avoided.

Figure 3.3: With the velocity changes the aircraft pass through the crucial
point at different time slices

Implementation of the problem

GAMS is an important tool in non linear programming. It is used
to compute the minimum velocity change of two aircraft that are about to
collide, in order to avoid this from happening.
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The algebraic representation of conflict avoidance problem is represented
in the format below :

Indices i=number of aircraft
t=timeslice

Given Data: Coordinates:
xi = x coordinate for the i aircraft(while entering the sphere in Km)
yi = y coordinate for the i aircraft(while entering the sphere in Km)
zi = z coordinate for the i aircraft(while entering the sphere in Km)
xfin = x coordinate for the i aircraft(while exiting the sphere in Km)
yfin = y coordinate for the i aircraft(while exiting the sphere in Km)
zfin = z coordinate for the i aircraft(while exiting the sphere in Km)

Decision Variables: f equals to
∑

(i, qi)

Constraints: qi where q is belong in the set [-0.9,0.99]

Objective Function: Considering that:

A1(j) = xfinal(i)− xi

A2(j) = yfinal(i)− yi

A3(j) = zfinal(i)− zi

u(i) are the initial velocities of the two aircraft

q(i) are the velocity changes

number(t)=0,1,2,3,...,50

distance(i) =
√

(A1(i))2 + (A2(i))2 + (A3(i))2

considering that:

Bx(i) = x(i) + A1(i)
distance(i)

)(u(i) + q(i))0, 5number(t)

By(i) = y(i) + A2(i)
distance(i)

)(u(i) + q(i))0, 5number(t)

Bz(i) = z(i) + A3(i)
distance(i)

)(u(i) + q(i))0, 5number(t)
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Then the objective function will be:

dist(i, j) =
√

(Bx(j)−Bx(i))2 + (By(j)−By(i))2 + (Bz(j)−Bz(i))2

(3.10)

The complexity of the algorithm based on the aircraft number i is O(i2)
and that is because we have n aircraft then we are going to take complexity
(i
2)25 = i!

(i−2)!∗2!∗25
= i(i−1)

2
.

Collision scenarios

There are three basic categories of collision cases.

1. Cases in which the two aircraft are conflicting straight forward

2. Cases in which the two aircraft enter the control sphere from almost
the same point

3. And last but not least all other cases of conflict

In the first two categories there is no solution to the problem while in the
third category all cases can be solved. In the specific problem it was desired
to select only cases from category three and ignore the other two categories.
Nevertheless proposals will be given in the end of the chapter for categories
one and two. Scenarios for each case are given below.

Case1:

Aircraft1 Initial Final
Angleθ 0.14965 4.79630
Angleφ 4.8592 5.1159

x -24.218 24.400
y -14.809 14.638
z -42.402 42.113

Aircraft2 Initial Final
Angleθ 4.7800 0.14900
Angleφ 5.1060 4.8590

x 24.4840 -24.200
y 14.500 -14.799
z -41.99 -42.450

The conflict scheme is given below:

27



Figure 3.4: Case1 Example1

Case2:
Example1:

Aircraft1 Initial Final
Angleθ 5.4066 5.2772
Angleφ 4.3041 1.2738

x -63.42 55.281
y 76.181 -87.231
z -42.875 31.603

Aircraft2 Initial Final
Angleθ 2.2871 5.1811
Angleφ 1.9524 0.3153

x -65.813 -15.129
y 75.599 -29.876
z -40.217 102.68
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Figure 3.5: Case2 Example1

Example2:

Aircraft1 Initial Final
Angleθ 4.6026 5.3576
Angleφ 2.5832 2.7386

x -6.2674 25.469
y -56.875 -33.838
z -91.597 -99.35

Aircraft2 Initial Final
Angleθ 4.6466 3.6438
Angleφ 2.6422 1.948

x -3.4001 -88.012
y -51.609 -48.33
z -94.81 -39.777
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Figure 3.6: Case2 Example2

Case3:
Example1:

Aircraft1 Initial Final
Angleθ 4.2087 2.0148
Angleφ 1.5943 2.301

x -52.114 -33.968
y -94.561 71.402
z -2.5359 -73.566

Aircraft2 Initial Final
Angleθ 0.6791 2.1375
Angleφ 5.1478 2.6372

x -76.198 -28.02
y -61.507 44.038
z 45.55 -94.549

In this category every conflict has an optimum solution.

30



Figure 3.7: Case3 Example1

Figure 3.8: Case3 Example1 after conflict resolution
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The velocity changes are: for the first aircraft 0.023 and for the second
-0.021.

Example2:

Aircraft1 Initial Final
Angleθ 4.9967 1.2665
Angleφ 2.0376 2.1732

x 27.053 26.664
y -94.575 84.901
z -48.6 -61.195

Aircraft2 Initial Final
Angleθ 5.4515 2.4885
Angleφ 2.0537 2.1577

x 64.431 -71.418
y -70.695 54.644
z -50.149 -59.812

Figure 3.9: Case3 Example2
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And after the conflict resolution the new scheme is the above:

Figure 3.10: Case3 Example2 after conflict resolution

It is important to mention that the solution for the conflict is optimum
with accuracy of 2 decimals. Thus, if we change the second decimal of one
solution we will have conflict. The velocity change for the first aircraft is
-0.634 while for the second aircraft is 0.565 . Now if we set the velocity
change for the first aircraft to be 0.555 we can see in the following scheme
that conflict happens again.
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Figure 3.11: Case3 Example2

Example3:

Aircraft1 Initial Final
Angleθ 4.7468 0.007718
Angleφ 4.2593 4.2593

x 3.6801 -97.099
y -106.77 -0.74943
z 15.858 -47.278

Aircraft2 Initial Final
Angleθ 1.2038 3.9212
Angle φ 4.42 6.096600

x -37.103 14.25
y -96.53 14.084
z -31.134 106.13

The velocity changes are −0.042 and 0.113 for each aircraft.
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Figure 3.12: Case3 Example3

Figure 3.13: Case3 Example3 after conflict resolution

35



Similarly if we change the second velocity change to 0.103 the conflict
will not be solved.

3.1.4 Cases with 3 aircraft

The algorithm used for the conflict solution of two aircraft applies also
in cases with more aircraft. It is noticed that for three and four airplanes
the algorithm is fast enough. For more than four airplanes the problem com-
plexity is increased but still we take results fast. We set out an example for
three aircraft.

Aircraft1 Initial Final
x 3.2643 16.535400
y -16.0633 93.59
z 106.749 -51.2973

Aircraft1 Initial Final
x -0.39850 20.0728
y 1.4585 27.527401
z 107.99 -102.4857

Aircraft1 Initial Final
x -103.034 15.146100
y -17.2012 -102.261
z 27.4251 31.2734

.

In this example collision happens between two aircraft and we have to change
the velocities so that not only the initial conflict but also any possible new
conflict with the third aircraft to be avoided. Before the conflict resolution
we had the scheme below. The optimum velocity changes for each aircraft
are : - 0.9 for the first airplane, 0.761 for the second and 0 for the third.
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Figure 3.14: Conflict Example with three aeroplanes

Figure 3.15: Conflict Resolution with three aeroplanes
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3.1.5 Recommended Solutions for unsolvable cases with
the presented algorithm (Which account for 0.3%
of the total number of cases in our experiment).

As it was mentioned above, there are two cases of conflict in which the
specific algorithm is not able to provide a solution. Considering the fact that
aircraft conflict resolution is a serious problem that should be handled with
responsibility, we have to provide solutions for all conflicts. Thus we present
below solutions for two different cases.

• Solution for straight forward conflict: A lot of research has already
been made for this case with the most prevalent solution the direction
change for the aircraft. A simple idea is changing the angles θ or φ each
time. For example when a conflict is imminent a system will oblige the
aircraft to change its direction. A good idea would be, only one from
a pair of aircraft to change its direction so that, the possibility for
another conflict with another aircraft to be avoided.

• Solutions for aircraft entering in the control sphere from almost the
same point: A simple proposal for this issue is to have sequential con-
trol spheres or a bigger control sphere. Then either the algorithm for
velocity or direction change can be applied.

However an optimum system may have as a default solution the velocity
change and when the above categories appear, the direction change can be
selected as a second option.

3.1.6 Comparison with another algorithm

Many algorithms appeared that solve the velocity change problem. A
very good algorithm is also the following : It considers that each aircraft is
vested with a sphere and conflict happens if aircraft 1 and its safety sphere
intersect, the cone generated by aircraft 2, or vice versa, as we can see in the
scheme 3.1.6.

We refer to the above case, by examining the motion of two spheres in
2-dimensions because of symmetry, in the plane defined by vector s, which
represents the distance of two spheres’ centers, and by u12 of relative speed
of motion among the 2 flying aircraft. (Refer to Figure 3.1.6) [2].

Consider now the two non-parallel straight lines that are tangent to the
discs of both aircraft. Let a be the angle between the first straight line and
the horizontal axis, and ω be the angle between the vector u12 of relative
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Figure 3.16: Cone sections between two moving spheres

Figure 3.17: The two non parallel straight lines tangent to the safety discs
of radius d/2 for two aircraft

speed and the vector s which represents the distance of the two spheres
centers. If ω is the angle between vectors u12 and s we have

cosω =
u12 ∗ s

|u12|| ∗ s| (3.11)

where

s =

{
x2− x1, y2− y1, z2− z1

}
(3.12)
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Since

tanω =
±√1− cosω2

cosω

in the case of positive sign no conflict occurs if:

√
1− ( u12∗s

|u12|∗|s|)
2

u12∗s
|u12|∗|s|

≥ tan(a)

(3.14)

or √
1− ( u12∗s

|u12|∗|s|)
2

u12∗s
|u12|∗|s|

≤ tan(−a) (3.15)

To obtain non conflict constraints for n aircraft we need to consider
the non conflict conditions described by 3.14 and 3.15 for all possible pairs
of aircraft. Let’s consider the pair of aircraft (i, j). We have to distinguish
between two possible cases: ui ∗ s < 0 and ui ∗ s > 0 and also tanω ≤ tan−a

tana =
d
2

Aij
2

= d
Aij

where Aij is the distance between the two aircraft i and j.

So, we obtain the following groups of constraints:

Case1: uij ∗ s < 0 and tanω has positive sign

Case2: uij ∗ s > 0 and tanω has positive sign

Case3: uij ∗ s < 0 and tanω has negative sign

Case4: uij ∗ s < 0 and tanω has negative sign

Each case has two subcases. Only one of these subcases of constraints
will be used in our model for each instance. Because this cases are or cases,
only one will happen each time we introduce boolean variables to have the
total set of constraints.

From the complexity examination we can see that the two algorithms do
not have any difference because the complexity is affected by the number of
aircraft. Thus for our algorithm we have complexity equal to O(n2), as the
case for our algorithm. Considering the above mentioned algorithm, we have
complexity also equal to O(n2). If we examine the airplanes by pairs we have

: (n
2 )8 = n!

(n−2)!∗2!∗8 = n(n−1)
2
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So it is better to examine the two algorithms in their ability to find the
optimum changes. For this reason we give some examples of conflict. We
will refer to the algorithms by the names algorithm1 and algorithm2 were
algorithm1 is our algorithm and algorithm2 is S.Kodaxakis algorithm.

Example1:Four airplanes distributed in the sphere and one pair involved
in a conflict.

Figure 3.18: Four airplanes and one conflict.

Figure 3.19: Four airplanes after conflict avoidance.
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Both algorithms are able to solve the conflict. Thus it is interesting to
check their advantages and disadvantages. The solution that each algorithm
gives is the following.

Algorithms Aircraft1 Aircraft2 Aircraft3 Aircraft4
Algorithm1 0.432 0 -0.596 0
Algorithm2 0.66 0.66 -0.397 0.66

We notice that our algorithm gives optimum velocities and it is not
necessary for all aircraft to change their velocities. We may have optimum
changes but we have bigger computation time. Thus algorithm2 give, results
in 0.008 seconds in contrast to our algorithm that runs in 0.012 seconds.

Example2: The following example is five aircraft in the sphere and one
conflict.

Figure 3.20: Five airplanes and one conflict.
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Figure 3.21: Five airplanes after the conflict avoidance.

And the recommended solutions of the two algorithms are:

Algorithms Aircraft1 Aircraft2 Aircraft3 Aircraft4 Aircraft5
Algorithm1 0.896 0 0 0 0
Algorithm2 0.66 0.66 0.66 0.66 -0.196

.

Example3:

Figure 3.22: Five airplanes and two conflicts.
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Figure 3.23: Five airplanes after the conflict avoidance.

Algorithms Aircraft1 Aircraft2 Aircraft3 Aircraft4 Aircraft5
Algorithm1 0.86 0 0.19 0 0
Algorithm2 0.66 0.66 -0.397 0.66 -0.196

.

Example4:

Figure 3.24: Six airplanes and two conflicts.
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Figure 3.25: Six airplanes after the conflict avoidance.

Algorithms Air1 Air2 Air3 Air4 Air5 Air6
Algorithm1 0 0.3 0 0.43 0 0
Algorithm2 0.364 0.66 0.66 0.136 0.66 0.66

.

One disadvantage for algorithm2 is that it does not calculate the angles
that are used(a,ω), instead they are calculated separately and this makes the
total computation time bigger. If those extra calculations are inserted into
the algorithm we will manage to decrease the total response time. Another
disadvantage is that the algorithm does not provide optimum velocity changes
as someone can notice from the above examples. Let’s mention that the two
algorithms were examined and compared through an amount of examples
that reached 40. Our disadvantage is the execution time of the algorithm.
In algorithm2 the execution time is 0.008 but in our case 0.012 sec.
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Chapter 4

Neural Networks

4.1 Fundamentals of Neural Network

An artificial network consists of a pool of simple processing units which
communicate by sending signals to each other over a large number of weighted
connections [3]. A set of major aspects of a parallel distributed model can
be distinguished :

1. a set of processing units (’neurons,’ ’cells’).

2. a state of activation yk for every unit, which equivalent to the output
of the unit; connections between the units. Generally each connection
is defined by a weight wjk which determines the effect which the signal
of unit j has on unit k.

3. a propagation rule, which determines the effective input sk of a unit
from its external inputs.

4. an activation function Fk, which determines the new level of activation
based on the effective input sk(t) and the current activation yk(t) (i.e.,
the update); an external input (bias, offset) jk for each unit.

5. a method for information gathering (the learning rule), an environment
within which the system must operate, providing input signals and (if
necessary)error signals.

Each unit performs a relatively simple job: receive input from neigh-
bors or external sources and use this to compute an output signal which is
propagated to other units. Apart from this processing, a second task is the
adjustment of the weights. The system is inherently parallel in the sense
that many units can carry out their computations at the same time. Within
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neural systems it is useful to distinguish three types of units: input units (in-
dicated by an index i) which receive data from outside the neural network,
output units (indicated by an index o) which send data out of the neural
network, and hidden units (indicated by an index h) whose input and out-
put signals remain within the neural network. During operation, units can
be updated either synchronously or asynchronously. With synchronous up-
dating, all units update their activation simultaneously; with asynchronous
updating, each unit has a (usually fixed) probability of updating its activa-
tion at a time t, and usually only one unit will be able to do this at a time.
In some cases the latter model has some advantages. The figure below shows
the fundamental components of neural network:

Figure 4.1: The basic components of neural network.

4.1.1 Connections between units

In most cases we assume that each unit provides an additive contribu-
tion to the input of the unit with which it is connected. The total input to
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unit k is simply the weighted sum of the separate outputs from each of the
connected units plus a bias or offset term

jk: sk(t) =
∑

j ωjk(t)yj(t) + θk(t).

The contribution for positive ωjk is considered as an excitation and for
negative ωjk as inhibition. In some cases more complex rules for combin-
ing inputs are used, in which a distinction is made between excitatory and
inhibitory inputs. We call units with a propagation rule sigma units.A differ-
ent propagation rule, introduced by Feldman and Ballard (Feldman Ballard,
1982),is known as the propagation rule for the sigma-pi unit:

sk(t) =
∑

j ωjk(t)
∏

yjm(t) + θk(t)

Often, the yjm are weighted before multiplication. Although these
units are not frequently used,they have their value for gating of input, as
well as implementation of lookup tables (Mel, 1990).

4.1.2 Activation and output rules

We also need a rule which gives the effect of the total input on the acti-
vation of the unit. We need a function Fk which takes the total input sk(t)
and the current activation yk(t) and produces a new value of the activation
of the unit k:

yk(t + 1) = Fk(yk(t), sk(t)).

Often, the activation function is a nondecreasing function of the total
input of the unit:

yk(t + 1) = Fk(sk(t)) = Fk(
∑

j ωjk(t)yj(t) + θk(t))

although activation functions are not restricted to nondecreasing functions.
Generally, some sort of threshold function is used: a hard limiting threshold
function (a sgn function), or a linear or semi-linear function, or a smoothly
limiting threshold . For this smoothly limiting function often a sigmoid (S-
shaped) function like
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yk = F (sk) = 1
1+e−sk

is used. In some applications a hyperbolic tangent is used, yielding output
values in the range [-1, +1].

Figure 4.2: Various activation function for a unit.

In some cases, the output of a unit can be a stochastic function of the
total input of the unit. In that case the activation is not deterministically
determined by the neuron input, but the neuron input determines the prob-
ability p that a neuron get a high activation value:

p(yk ← 1) = 1
1+e−sk/T

,in which T (cf. temperature) is a parameter which determines the slope
of the probability function. In all networks we describe we consider the
output of a neuron to be identical to its activation level.

4.1.3 Network topologies

In the previous section we discussed the properties of the basic processing
unit in an artificial neural network. This section focuses on the pattern of
connections between the units and the propagation of data.As for this pattern
of connections, the main distinction we can make is between:

• Feed-forward networks, where the data flow from input to output units
is strictly feedforward. The data processing can extend over multiple
(layers of) units, but no feedback connections are present, that is, con-
nections extending from outputs of units to inputs of units in the same
layer or previous layers.

• Recurrent networks that do contain feedback connections. Contrary
to feed-forward networks, the dynamical properties of the network are
important. In some cases, the activation values of the units undergo a
relaxation process such that the network will evolve to a stable state in
which these activations do not change anymore. In other applications,
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the change of the activation values of the output neurons are signifi-
cant, such that the dynamical behaviour constitutes the output of the
network (Pearlmutter, 1990).

4.1.4 Training of artificial neural networks

A neural network has to be configured such that the application of a set of
inputs produces (either ’direct’ or via a relaxation process) the desired set of
outputs. Various methods to set the strengths of the connections exist. One
way is to set the weights explicitly, using a priori knowledge. Another way
is to ’train’ the neural network by feeding it teaching patterns and letting it
change its weights according to some learning rule. We can categorize the
learning situations in two distinct sorts.

These are:

• Supervised learning or Associative learning in which the network
is trained by providing it with input and matching output patterns.
These input-output pairs can be provided by an external teacher, or by
the system which contains the network (self-supervised).

• Unsupervised learning or Self-organization in which an (output)
unit is trained to respond to clusters of pattern within the input. In this
paradigm the system is supposed to discover statistically salient fea-
tures of the input population. Unlike the supervised learning paradigm,
there is no a priori set of categories into which the patterns are to be
classified; rather the system must develop its own representation of the
input stimuli.

4.1.5 Terminology

Output vs. activation of a unit. Since there is no need to do otherwise,
we consider the output and the activation value of a unit to be one and the
same thing. That is, the output of each neuron equals its activation value
[15].

Bias, offset, threshold. These terms all refer to a constant (i.e., inde-
pendent of the network input but adapted by the learning rule) term which
is input to a unit. They may be used interchangeably, although the latter
two terms are often envisaged as a property of the activation function. Fur-
thermore, this external input is usually implemented (and can be written) as
a weight from a unit with activation value 1.

Number of layers. In a feed-forward network, the inputs perform no
computation and their layer is therefore not counted. Thus a network with
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one input layer, one hidden layer, and one output layer is referred to as a
network with two layers. This convention is widely though not yet universally
used.

Representation vs. learning. When using a neural network one has
to distinguish two issues which influence the performance of the system. The
first one is the representational power of the network, the second one is the
learning algorithm. The representational power of a neural network refers to
the ability of a neural network to represent a desired function. Because a
neural network is built from a set of standard functions, in most cases the
network will only approximate the desired function, and even for an optimal
set of weights the approximation error is not zero. The second issue is the
learning algorithm. Given that there exist a set of optimal weights in the
network, is there a procedure to (iteratively) find this set of weights?

4.1.6 Networks with threshold activation function

A single layer feed-forward network consists of one or more output
neurons o, each of which is connected with a weighting factor ωio to all of
the inputs i [5]. In the simplest case the network has only two inputs and
a single output, as sketched in figure 18 (we leave the output index o out).
The input of the neuron is the weighted sum of the inputs plus the bias term.

Figure 4.3: Single layer network with one output and two inputs.
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The output of the network is formed by the activation of the output neu-
ron, which is some function of the input :

y = F (
∑2

i=1 ωixi + θ)

The activation function F can be linear so that we have a linear network,
or nonlinear. In this section we consider the threshold (or Heaviside or sgn)
function:

F (s) =

{
1, if s > 0;
−1, otherwise.

The output of the network thus is either +1 or -1, depending on the input.
The network can now be used for a classification task: it can decide whether
an input pattern belongs to one of two classes. If the total input is positive,
the pattern will be assigned to class +1, if the total input is negative, the
sample will be assigned to class -1. The separation between the two classes
in this case is a straight line, given by the equation:

ω1x1 + ω2x2 + θ = 0

The single layer network represents a linear discriminant function. A ge-
ometrical representation of the linear threshold neural network is given in
figure 14 equation, can be written as

x2 = −ω1

ω2
x1 − θ

ω2

and we see that the weights determine the slope of the line and the bias
determines the ’offset’ , i.e. how far the line is from the origin. Note that also
the weights can be plotted in the input space: the weight vector is always
perpendicular to the discriminant function.

Now that we have shown the representational power of the single layer
network with linear threshold units, we come to the second issue: how do we
learn the weights and biases in the network? We will describe two learning
methods for these types of networks: the ’perceptron’ learning rule and the
’delta’ or ’LMS’ rule. Both methods are iterative procedures that adjust the
weights. A learning sample is presented to the network. For each weight the
new value is computed by adding a correction to the old value. The threshold
is updated in a same way:

ωi(t + 1) = ωi(t) + ∆ωi(t) θ(t + 1) = θ(t) + ∆θ(t)
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Figure 4.4: Geometric representation of the discriminant function and the
weights.

4.1.7 Perceptron learning rule and convergence theo-
rem

Suppose we have a set of learning samples consisting of an input vector x
and a desired output d(x). For a classification task the d(x) is usually +1 or
-1. The perceptron learning rule is very simple and can be stated as follows:

1. Start with random weights for the connections

2. Select an input vector x from the set of training samples

3. If y 6= d(x) (the perceptron gives an incorrect response), modify all
connections wi according to: Dωi = d(x)xi

4. Go back to 2

Note that the procedure is very similar to the Hebb rule; the only differ-
ence is that, when the network responds correctly, no connection weights are
modified. Besides modifying the weights, we must also modify the threshold
θ. This θ is considered as a connection w0 between the output neuron and
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a ’dummy’ predicate unit which is always on: x0 = 1. Given the perceptron
learning rule as stated above, this threshold is modified according to:

∆θ =

{
0, if the perceptron responds correctly;
d(x), otherwise.

Figure 4.5: The percepton

4.1.8 Networks with linear activation functions:The delta
rule

For a single layer network with an output unit a linear activation function
the output is:

y =
∑

j = ωjxj + θ

Such a simple network is able to represent a linear relationship between
the value of the output unit and the value of the input units. By thresh-
olding the output value, a classifier can be constructed (such as Widrow’s
Adaline), but here we focus on the linear relationship and use the network
for a function approximation task. In high dimensional input spaces the net-
work represents a (hyper)plane and it will be clear that also multiple output
units may be defined. Suppose we want to train the network such that a
hyper plane is fitted as well as possible a set of training samples consisting
of input values xp and desired (or target) output values dp. For every given
input sample, the output of the network differs from the target value dp by
(dp − yp), where yp is the actual output for this pattern. The delta-rule
now uses a cost- or error-function based on these differences to adjust the
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weights. The error function, as indicated by the name least mean square, is
the summed squared error. That is, the total error E is defined to be simply
given by:

E =
∑

p Ep = 1
2

∑
p(d

p − yp)2

where the index p ranges over the set of input patterns and Ep represents the
error on pattern p. The LMS procedure finds the values of all the weights
that minimise the error function by a method called gradient descent. The
idea is to make a change in the weight proportional to the negative of the
derivative of the error as measured on the current pattern with respect to
each weight:

∆pωj = −γ ϑEp

ϑωj

where γ is a constant of proportionality. The derivative is:

ϑEp

ϑωj
= ϑEp

ϑyp
ϑyp

ϑωj

Because of linear units :

ϑyp

ϑωj
= xj

ϑEp

ϑyp = −(dp − yp)

such that:

∆pωj = γδpxj

where δp = (dp − yp) is the difference between the target output and the
actual output for pattern p. The delta rule modifies weight appropriately
for target and actual outputs of either polarity and for both continuous and
binary input and output units. These characteristics have opened up a wealth
of new applications.

4.1.9 Back Propagation

In this chapter we will focus on feed-forward networks with layers of
processing units. The central idea behind this solution is that the errors for
the units of the hidden layer are determined by back-propagating the errors
of the units of the output layer. For this reason the method is often called
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the back-propagation learning rule. Back-propagation can also be considered
as a generalization of the delta rule for non-linear activation functions and
multilayer networks.

4.1.10 Multi layer feed-forward networks

A feed-forward network has a layered structure. Each layer consists of
units which receive their input from units from a layer directly below and
send their output to units in a layer directly above the unit. There are no
connections within a layer. The Ni inputs are fed into the first layer of Nh,1
hidden units. The input units are merely ’fan-out’ units; no processing takes
place in these units. The activation of a hidden unit is a function Fi of the
weighted inputs plus a bias. The output of the hidden units is distributed
over the next layer of Nh,2 hidden units, until the last layer of hidden units,
of which the outputs are fed into a layer of No output units (see figure 4.1.10).
Although back-propagation can be applied to networks with any number of
layers, just as for networks with binary units it has been shown that only
one layer of hidden units suffices to approximate any function with finitely
many discontinuities to arbitrary precision, provided the activation functions
of the hidden units are non-linear (the universal approximation theorem). In
most applications a feed-forward network with a single layer of hidden units
is used with a sigmoid activation function for the units.

Figure 4.6: A multi-layer network with l layers of units.
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4.1.11 Back propagation algorithm

The algorithm of feed forward back error propagation is given below:

Repeat

{

for (pno=0;pno<N_Patterns;pno++)

{

/* Forward pass */

Apply Input[pno] to input units;

Compute Y[pno] at output units ;

/* Backward pass */

For each layer, starting at output

{

For each unit in this layer

{

Compute the error at this unit

For each weight to this unit

{

Compute Dw

Apply Dw

}

}

}

}

Increment epoch counter

Compute total error

}

until (total error small enough or

epoch count exceeded)

Where epoch is the number of repentance of training with different inputs
every time and ∆w is the arithmetic difference between old and new weights.

4.2 Conflict avoidance with neural networks

In our problem the neural network that is selected is a back propagation
neural network with two hidden layers. One input layer with twelve inputs
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and one output layer with two outputs. The twelve inputs are ordered by
the way they are written in the train file.
Inputs:

• The initial positions of the first aircraft xin1, yin1, zin1

• The initial positions of the second aircraft xin2, yin2, zin2

• The final positions of the first aircraft xfin1, yfin1, zfin1

• The final positions of the second aircraft xfin2, yfin2, zfin2

The first hidden layer has 50 Neurons and the second has 40 neurons.
We decide to choose these numbers of neurons for each layer, as this neural
network provides less training and testing error.

Outputs:

• The velocity change for the first aircraft 1

• The velocity change for the second aircraft 2

Figure 4.7: Feed Forward Back Error Propagation Neural Network with two
hidden layers.The first hidden layer has 50 neuron while the second 40 neu-
rons.
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The outputs of our network are not quantized, they take continuous val-
ues. Thus we need big of training set. To minimize the training set we can
follow one of the two techniques :

1. In the problem that we examine we have 2 aircraft that are about to
crash and we want to avoid the conflict. An easy way to decrease the
training data but also to keep our solution accurate is to give in each
case the relative position of the two aircraft. For example the reference
system could be the position of the first aircraft and not the beginning
of the 3 axes x, y ,z of the 3D system. With this model the number of
the inputs decreasing in 6 instead of 12.

2. The second proposal and the one that it is followed in the specific thesis
is to limit the cases in a small part in our sphere by taking advantage of
the symmetry of it. In this way, a small training set would be enough.

We finally use 3500 data for training and 600 data for testing. The
reliability of the network is examined by the method of cross validation.
Cross-validation is a method to estimate the generalization error based on
”resampling”. In k-fold cross-validation, data is divided into k subsets of
(approximately) equal size. The net is trained k times, each time leaving out
one of the subsets from training. In the beginning, the data are separated in
ten parts (k=10) then each time 8 different parts are chosen to be the training
data and the two remaining parts to be the testing data. The neural network
is trained with 10 slightly different set of data. Then the final training and
testing error is estimated by taking the average of all the errors resulted from
each time we trained the network.

The number of epochs that was essential for the training of the neural
network was 1000. The transfer function that was used in every unit was the
hyperbolic tangent sigmoid function.

For example, the above function calculates the output vector a of a layer
of hyperbolic tangent sigmoid neurons given a network input vector p, the
layer’s weight matrix W and bias vector b, and denote by

a = tansig(Wp + b).

This transfer function takes the input vector of any value between plus and
minus infinity, and squashes the output into the range -1 to 1, according to
the expression:

a = en−e−n
en+e−n
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Figure 4.8: Tan-Sigmoid Transfer Function

Figure 4.9: Tan-Sigmoid Transfer Function (Wp+b)

4.2.1 Construction of the neural network

In this section the procedure followed, in order to create the neural
network for collision avoidance in Free Flight, is explained. The program is
written in Matlab and is described in the following four steps below.

Step1 : Inputs and Outputs of the neural network

The non-linear program already gave solutions for every solvable conflict
case we gathered. Thus we have a system that takes as inputs the initial and
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final positions in the sphere of the each aircraft (xin, yin, zin, xfin, yfin, zfin),
the initial velocities for each aircraft and as outputs provides the velocity
changes so that the conflict to be avoided. With those data we construct a
neural network, acting as a global interpolator system, that, after training,
may provide answers to unknown inputs. It has as inputs the basic informa-
tion such as positions in the sphere for each aircraft and provides the velocity
changes as outputs in order for an imminent conflict between two aircraft to
be avoided. Thus we train the neural network and use it in order to provide
solutions for unknown conflict cases. Thus the data used in nonlinear pro-
gram as well as their outputs for each case are used as training data for the
neural network. They are gathered in a file named train.txt. Each row in
the file represents a conflict case. The file consists of 16 columns where the
first 14 represent the input of the neural network and columns 15 and 16 the
desired outputs. The total number of rows is equal to the total number of
conflict training cases (4000). To create the training file we need to gather
data from 2 different files (collout.txt, sol.txt) that sum up to 2∗4000 = 8000.
Because of the great amount of information a side program in C++ is created
in order to build the train.txt file. Each time this file is executed the user
provides two numbers. Thus if for example, numbers 1 and 100 are provided,
data from cases 1 to 100 will be written in the train.txt file automatically.
Having the train.txt file we can save the inputs that will be needed for the
neural network in a array called input and the desired output in a array
named target. Moreover an array named PR that contains the number of
columns define the number of neurons in the first layer of the neural network.

Step2 : Construction of the neural network

The neural network in our problem is a feed forward back error prop-
agation with full connectivity. In Matlab there is a command that builds a
feed forward fully connected neural network named newff. The command
newff has as attributes the number of neurons of the first, hidden and output
layer and the transfer function for each layer. Finally the training function
is defined. In this problem the training function that we use is trainlm.
Trainlm is a network training function that updates weight and bias val-
ues according to Levenberg-Marquardt optimization [17]. Construction of
a neural network means to create the layers, the neurons, the connectivity
between the neurons of each layer and the weights of each connectivity. It is
usually recommended initial weights to be selected at random.
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Step3 : Training

In this step the neural network is trained for all conflict cases.The
total number of conflict cases used in the training set is 3500 while the
test set consists of 600 cases. After training it provides two outputs: the
velocity changes for both aircraft. These velocity changes try to approach
the optimum velocity changes. The absolute difference of their values is the
training error. In training procedure there is a parameter named epochs and
its value can be given before the beginning of the training. A training ends if
our goal or a restriction (set by us) is achieved. A goal is usually the training
error. If the training error for example turns equal to 0.001 then the training
stops. A restriction can be the number of epochs, for example we can set
that if the epochs turns 500 and the goal is not yet achieved then the training
stops.

Step4 : Errors

The most important factors for the evaluation of a neural network is the
training and the testing error. Training error must be extremely low, this
means that the neural network is well trained for the input data. Testing
error actually evaluate the neural network. Testing is greater than training
error. The testing error is calculated by the absolute difference of a the
output with the desired output for cases not used in training.

4.2.2 Evaluation of the neural network

Following the above mentioned states we train the feed forward back
propagation neural network. In a first approach we get a testing error 6%
that is a considerable error. In this part of the thesis we have the following
issues:

• First of all it would be satisfying to have a testing error 0,1% but in
such big range of values a 6% could be considered as satisfactory.

• Secondly the issue of the highest importance in this study is the accu-
racy of the system, especially while this study is related with aircraft
where there is no tolerance in errors. Also the solutions taken from
GAMS are optimum for each case and as it was mentioned above if the
second decimal of one of the solutions is changed we are going to have
conflict again. But the basic thing that was not mentioned until now
is what we mean by using the word change: decrease or increase? The
answer is simple because if the solution is negative, by giving a more
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negative solution nothing will happen but by increasing the solution it
is a fact that a conflict will occur. Similarly if we have a new velocity
bigger than the old one if we increase this velocity even more nothing
will be happened.

Sometimes the optimum velocity is not acceptable because if we slightly
change the optimum solution we will fail in solving the problem. As we can
see in the following scheme there are two optimum velocities, one for the first
aircraft and one for the second.

Figure 4.10: Optimum Velocity changes and failure

Assume the case where the first aircraft has to decrease its original
velocity and the second to increase its velocity. Because we have optimum
velocity changes if we give at the negative solution a more negative value,
we still avoid the conflict but if we give a solution less negative than the
optimum we will present a conflict. As we want a safe belt in our system
we will adjust the solution with a value of 0,12. We either add or subtract
this value depending on the category of solution as it was mentioned above.
This approach makes the system more accurate and the testing error of 6%
acceptable.

Two matrices with error information for 10 different training sets used
through cross validation are represented below.

64



Set/Error Max Min Average
Training Er Training Er Training Er

set1 2.35 57 ∗ 10−5 13 ∗ 10−4

set2 0.487 62 ∗ 10−6 10−4

set3 0.82 15 ∗ 10−6 18 ∗ 10−4

set4 2.007 17 ∗ 10−8 9 ∗ 10−4

set5 0.03 9 ∗ 10−6 4, 7 ∗ 10−4

set6 0.17 23 ∗ 10−6 10−3

set7 1.14 74 ∗ 10−7 12, 3 ∗ 10−4

set8 0.626 33 ∗ 10−6 11.98 ∗ 10−4

set9 0.333 12 ∗ 10−6 3.2 ∗ 10−4

set10 0.507 16.3 ∗ 10−7 6.81 ∗ 10−4

Set/Error Max Min Average
Testing Er Testing Er Testing Er

set1 12,01 0, 12 6.16
set2 22 1.87 6.53
set3 15.74 0.034 5.25
set4 18.27 0.078 5.89
set5 9.87 0.14 5.93
set6 14.076 0.002 6.01
set7 18.48 0.08 5.78
set8 10 0.15 4.99
set9 15.56 0.04 6.24
set10 12.84 0.105 5.9

.

We can see below a picture that Matlab code produces during the training
and shows the training error.

4.2.3 Neural networks vs Non-Linear programming

We saw that non-linear programming helps us to solve the collision cases.
The solutions we got were used in order to train the neural network. Actually
the solutions were the desired outputs of the neural network known as targets.
The basic criterion for us to evaluate the two methods is the execution time
and the optimum velocity changes. We can compute in GAMS tool the
execution time by a file that is produced with the name file.lst. In MATLAB
tool we can compute the execution time with the help of two commands
named tic and toc. Tic command is placed at the begging of the code that
we want to examine and toc at the end. It is noticed that the GAMS code has
execution time 0.012 while matlab code for an already trained neural network
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Figure 4.11: Error through training in function with the epochs

has execution time 2.5340 sec. Obviously the GAMS code performed better
than the MATLAB, but this is not the best way to solve collision cases.
First of all GAMS code gives solutions only for one case in each pass while
MATLAB can give solutions for hundred of cases simultaneously. In this
point of view MATLAB code prevails. Furthermore it is good to mention
that GAMS gives the optimum velocities, while MATLAB gives solutions
approaching the optimum. It is desirable at the most of the cases, as it
was explained previously, to have almost optimum solutions. To sum up
MATLAB code is offering a good response time when we are dealing with
lots of aircraft but GAMS tool is definitely the best way to calculate solutions
for only two aircrafts. It is up to us which of the two methods to select.
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4.3 Appendix A-Codes

4.3.1 Matlab Code-Representation of the problem

number=1;

rand(’state’,sum(100*clock));

while number<2000,

v=[15,15];

tslice=0.5;

d=9;

clear collout;

clear coll phi1 theta1 phi2 phi5 theta2 theta5 phi3 theta3 dist distance;

clear x R;

clear y z;

clear X Y Z;

close all; % close any opened figures

clc;

n=max(size(v));

opengl autoselect

R=108;

phis=linspace(0,2*pi,30)’;

thetas=linspace(0,2*pi,30)’;

for N=1:1:size(phis,1)

for M=1:1:size(thetas,1)

xs(N,M)=R*sin(phis(N))*cos(thetas(M));

ys(N,M)=R*sin(phis(N))*sin(thetas(M));

zs(N,M)=R*cos(phis(N));

end

end

figure

surf(xs,ys,zs)

hold on

axis equal

shading interp

colormap(’gray’)

alpha(0.1)

caxis([R+100,R+101]);

lighting gouraud

camlight left

%------------------------------------------------
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X=[];

Y=[];

Z=[];

collout=[];

counter=0;

while size(collout)==0,

counter=counter+1;

if(counter==20)

break;

end

tyxaioi1=rand(1,8);

phi1=2*pi*tyxaioi1(1,1);

theta1=2*pi*tyxaioi1(1,2);

% shmeia eisodou 1ou aeroplanou (1h sthlh)

x(1,1)=R*sin(phi1)*cos(theta1);

y(1,1)=R*sin(phi1)*sin(theta1);

z(1,1)=R*cos(phi1);

phi3=2*pi*tyxaioi1(1,3);

theta3=2*pi*tyxaioi1(1,4);

% shmeia eksodou 1ou aeroplanou (1h sthlh)

x(2,1)=R*sin(phi3)*cos(theta3);

y(2,1)=R*sin(phi3)*sin(theta3);

z(2,1)=R*cos(phi3);

distance=sqrt((x(2,1)-x(1,1))^2+(y(2,1)-y(1,1))^2+(z(2,1)-z(1,1))^2);
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if distance<d

counter=0;

continue;

end

phi2=2*pi*tyxaioi1(1,5);

theta2=2*pi*tyxaioi1(1,6);

theta5=2*pi*tyxaioi1(1,7);

phi5=2*pi*tyxaioi1(1,8);

% shmeia eksodou 1ou aeroplanou (2h sthlh)

x(1,2)=R*sin(phi5)*cos(theta5);

y(1,2)=R*sin(phi5)*sin(theta5);

z(1,2)=R*cos(phi5);

% shmeia eksodou 2ou aeroplanou (2h sthlh)

x(2,2)=R*sin(phi2)*cos(theta2);

y(2,2)=R*sin(phi2)*sin(theta2);

z(2,2)=R*cos(phi2);

% ypologismos twn A

for N=1:1:2

A1(N,1)=x(N,2)-x(N,1);

A2(N,1)=y(N,2)-y(N,1);

A3(N,1)=z(N,2)-z(N,1);

A(N,1)=sqrt(A1(N,1)^2+A2(N,1)^2+A3(N,1)^2);

%xronoi tou kathe aeroplanou

T(N,1)=A(N,1)/v(1,N);

end

%Tmax=max(T);

Tmax=max(T);

t=0:tslice:Tmax;

t=t’;

X=[];

Y=[];

Z=[];

for N=1:1:n
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for M=1:1:size(t,1)

X(M,N)=x(N,1)+(A1(N,1)*v(N)/A(N,1))*t(M,1);

Y(M,N)=y(N,1)+(A2(N,1)*v(N)/A(N,1))*t(M,1);

Z(M,N)=z(N,1)+(A3(N,1)*v(N)/A(N,1))*t(M,1);

end

end

tot=factorial(n)/(factorial(n-2)*factorial(2));

coll=[];

for N=1:1:size(X,1)

TESTER=0;

Pair=[0,0];

for M=1:1:size(X,2)

if sqrt((X(N,M)-x(M,1))^2+(Y(N,M)-y(M,1))^2+(Z(N,M)-z(M,1))^2)<A(M,1)

if N==1 | N==size(X,1)

plot3(X(N,M),Y(N,M),Z(N,M),’ro’,’linewidth’,1);

else

if M==1

plot3(X((2:N),M),Y((2:N),M),Z((2:N),M),’g-’,’linewidth’,2);

else

plot3(X((2:N),M),Y((2:N),M),Z((2:N),M),’r-’,’linewidth’,2);

end

end

else

plot3(x(M,2),y(M,2),z(M,2),’ro’,’linewidth’,1);

end

end

I=1;

J=2;

for K=1:1:tot

if J<M

dist=sqrt((X(N,I)-X(N,J))^2+(Y(N,I)-Y(N,J))^2+(Z(N,I)-Z(N,J))^2);

if dist<d

TESTER=1;

Pair(1,1)=I;

Pair(1,2)=J;
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plot3(X(N,I),Y(N,I),Z(N,I),’b*’,’linewidth’,4);

plot3(X(N,J),Y(N,J),Z(N,J),’b*’,’linewidth’,4);

if size(coll,2)==0;

coll=Pair;

else

checker=0;

steper=1;

for L=1:1:size(coll,2)/2

if Pair(1,1)~=coll(1,steper) | Pair(1,2)~=coll(1,steper+1)

checker=1;

else

checker=0;

end

steper=steper+2;

end

if checker==1

coll(1,end+1)=Pair(1,1);

coll(1,end+1)=Pair(1,2);

end

end

end

J=J+1;

else

dist=sqrt((X(N,I)-X(N,J))^2+(Y(N,I)-Y(N,J))^2+(Z(N,I)-Z(N,J))^2);

if dist<d

TESTER=1;

Pair(1,1)=I;

Pair(1,2)=J;

plot3(X(N,I),Y(N,I),Z(N,I),’b*’,’linewidth’,4);

plot3(X(N,J),Y(N,J),Z(N,J),’b*’,’linewidth’,4);

if size(coll,2)==0;

coll=Pair;

else

checker=0;

steper=1;

for L=1:1:size(coll,2)/2

if Pair(1,1)~=coll(1,steper) | Pair(1,2)~=coll(1,steper+1)

checker=1;

else

checker=0;

end
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steper=steper+2;

end

if checker==1

coll(1,end+1)=Pair(1,1);

coll(1,end+1)=Pair(1,2);

end

end

end

I=I+1;

J=I+1;

end

end

pause(0.1);

Mo(N)=getframe;

end

xlabel(’x’)

ylabel(’y’)

zlabel(’z’)

collout=[];

steper=1;

for N=1:1:size(coll,2)/2

collout(1,steper)=coll(1,steper);

collout(1,steper+1)=coll(1,steper+1);

collout(2,steper)=x(coll(1,steper),1);

collout(2,steper+1)=x(coll(1,steper+1),1);

collout(3,steper)=y(coll(1,steper),1);

collout(3,steper+1)=y(coll(1,steper+1),1);

collout(4,steper)=z(coll(1,steper),1);

collout(4,steper+1)=z(coll(1,steper+1),1);

collout(5,steper)=x(coll(1,steper),2);

collout(5,steper+1)=x(coll(1,steper+1),2);

collout(6,steper)=y(coll(1,steper),2);

collout(6,steper+1)=y(coll(1,steper+1),2);

collout(7,steper)=z(coll(1,steper),2);

collout(7,steper+1)=z(coll(1,steper+1),2);

steper=steper+2;

end

intactout=[];

C=1;

for N=1:1:size(x,1)

checker=0;
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for M=1:1:size(coll,1)

for K=1:1:size(coll,2)

if N==coll(M,K)

checker=1;

end

end

end

if checker==0

intactout(1,C)=N;

intactout(2,C)=x(N,1);

intactout(3,C)=y(N,1);

intactout(4,C)=z(N,1);

intactout(5,C)=x(N,2);

intactout(6,C)=y(N,2);

intactout(7,C)=z(N,2);

C=C+1;

end

end

end

if counter<20

f=num2str(number);

d=[’collout’ f ’.txt’];

e=[’angles’ f ’.txt’]

angles(1,1)=phi1;

angles(1,2)=phi5;

angles(1,3)=theta1;

angles(1,4)=theta5;

angles(2,1)=phi3;

angles(2,2)=phi2;

angles(2,3)=theta3;

angles(2,4)=theta2;

dlmwrite(d,collout,’\t’)

dlmwrite(e,angles,’\t’)

dlmwrite(’intactout.txt’,intactout,’\t’)

end

if counter<20

number=number+1;

end

end
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4.3.2 Gams-Conflict resolution

*Number of aircraft

Set i "aircraft" /1 * 2/;

Set t "timeslice" /1 * 50/;

alias (i,j);

Parameters msd,A1(i),A2(i),A3(i),distance(i);

Parameters count(i)

/ 1 1

2 2

/;

*x-coordinates in Km

Parameters x(i)

/1 -43.467

2 27.736/;

*y-coordinates in Km

Parameters y(i)

/1 -9.018

2 -40.555/;

*z-coordinates in Km

Parameters z(i)
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/1 98.455

2 96.177/;

*initial heading angles in rads

Parameters theta(i)

/1 0.205

2 5.312 /;

*initial heading angles in rads

Parameters phi(i)

/1 5.860

2 0.472/;

*initial velocities in Km/min

Parameters u(i)

/ 1 15

2 15

/;

Parameters xfin(i)
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/1 34.039

2 -13.797/;

Parameters yfin(i)

/1 -49.472

2 -25.928/;

Parameters zfin(i)

/1 89.766

2 103.930/;

Parameters number(t)

/1 1

2 2
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3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43
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44 44

45 45

46 46

47 47

48 48

49 49

50 50

/;

*minimum safe distance in Km

msd=9;

A1(i)=xfin(i)-x(i);

A2(i)=yfin(i)-y(i);

A3(i)=zfin(i)-z(i);

d(i)=sqrt( A1(i)*A1(i)+A2(i)*A2(i)+A3(i)*A3(i) );

Variable f,q(i) ;

q.up(i)=0.99;

q.lo(i)=-0.9;

Equations

metabolh,velocity1(i),velocity2(i),dis(i,j,t);

metabolh.. f=e=sum(i,sqr(q(i)));

velocity1(i).. u(i)+q(i) =l=15.99;

velocity2(i).. u(i)+q(i) =g=14.1;
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dis(i,j,t).. (sqrt

(sqr(

((x(j)+(A1(j)/distance(j))*(u(j)+q(j))*0.5*number(t))

- (x(i)+(A1(i)/d(i))*(u(i)+q(i))*0.5*number(t)))

)

+sqr(

((y(j)+(A2(j)/d(j))*(u(j)+q(j))*0.5*number(t))

- (y(i)+(A2(i)/d(i))*(u(i)+q(i))*0.5*number(t)))

)

+sqr(

((z(j)+(A3(j)/d(j))*(u(j)+q(j))*0.5*number(t))

- (z(i)+(A3(i)/d(i))*(u(i)+q(i))*0.5*number(t))

)

)

)-9.01 ) $ (count(i)<count(j))=g=0;

Model nlc /all/ ;

option domlim=10;

option sysout=on;

option nlp=conopt2;

option mip=cplex;

option rminlp=conopt2;

option minlp=dicopt;

option sysout=on;

*

*solve relaxed model

*

*solve nlc using rminlp minimizing f;

solve nlc using nlp minimizing f;
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4.3.3 Matlab Code Neural Network

close all;

clear all;

load train3.txt;

num_of_data=3596;

nl1=55;

nl2=45;

%nl3=20;

input=train3(1:num_of_data,1:12);

target=train3(1:num_of_data,13:14);

for i=1:12

PR(i,1)=min(input(:,i));

PR(i,2)=max(input(:,i));

end

%PR

A=input’;

B=target’;

net=newff(PR,[nl1 nl2 2],{’tansig’ ’tansig’ ’tansig’ ’tansig’ },’trainlm’);

net.trainParam.epochs=500;

net.trainParam.show = 1;

net.trainParam.lr = 0.1;

net=train(net,A,B);

y2=sim(net,input’);

i=1:num_of_data;

for j=1:num_of_data

diaf1(j)=B(1,j)-y2(1,j);

diaf2(j)=B(2,j)-y2(2,j);

adiaf1(j)=abs(diaf1(j));

adiaf2(j)=abs(diaf2(j));

ades1(j)=abs(B(1,j));

ades2(j)=abs(B(2,j));

training_error(j)=(max( adiaf1(j),adiaf2(j) ))*100;
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end

training_error

sum=0;

for j=1:num_of_data

sum=sum+training_error(j);

end

av_training_error=sum/num_of_data;

max_training_error=max(training_error);

max_training_error

av_training_error

testing_data=500;

input1=train3(num_of_data+1:num_of_data+testing_data,1:12);

target1=train3(num_of_data+1:num_of_data+testing_data,13:14);

y3=sim(net,input1’);

k=1:testing_data;

%plot(k,target1’,’o’,k,y3,’*’)

C=input1’;

D=target1’;

for j=1:testing_data

testing_error(j)=(max (( abs( D(1,j)-y3(1,j) ) ) , (abs( D(2,j)-y3(2,j) ))) )*100;

end

max_testing_error=max(testing_error);

%testing_error

max_testing_error

sum=0;

for j=1:testing_data

sum=sum+testing_error(j);

end

av_testing_error=sum/testing_data;

av_testing_error
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dlmwrite(’err.txt’,testing_error,’\t’)

dlmwrite(’iw.txt’,net.IW{1,1},’\t’)

dlmwrite(’b.txt’,net.b,’\t’)

dlmwrite(’lw21.txt’,net.LW{2,1},’\t’)

dlmwrite(’lw32.txt’,net.LW{3,2},’\t’)

4.3.4 Side programs

Write the Gams file

#include <iostream.h>

#include <string.h>

#include <stdio.h>

int main()

{

int num1,num2,local,mod;

char file1[15],temp[4];

char file2[15],file3[15];

float xin1,yin1,zin1,theta1,phi1,xin2,yin2,zin2;

float xout2,yout2,zout2,xout1,yout1,zout1,theta2,phi2,local1,dv1,dv2=0.0;

FILE *fp1;

FILE *fp2;

FILE *fp3;

cout<<"Enter the first number:";

cin>>num1;

cout<<endl<<"Enter the second number:";

cin>>num2;

strcpy(file1,"");

strcpy(file2,"");

strcpy(file3,"");

strcpy(temp,"");

for(int i=num1;i<=num2;i++)

{

strcat(file1,"collout");

strcat(file2,"angles");
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strcat(file3,"testing");

if(i<10)

{

temp[0]=i+48;

temp[1]=’\0’;

}

if(i>9 && i<100)

{

temp[0]=(i/10)+48;

temp[1]=(i % 10)+48;

temp[2]=’\0’;

}

if(i>99)

{

temp[0]=(i/100)+48;

mod=i%100;

temp[1]=(mod/10)+48;

temp[2]=(mod % 10)+48;

temp[3]=’\0’;

}

strcat(file1,temp);

strcat(file1,".txt");

strcat(file2,temp);

strcat(file3,temp);

strcat(file2,".txt");

strcat(file3,".gms");

if((fp1=fopen(file1,"r"))==NULL)

cout<<"Error opening file";

fseek( fp1, 0L, SEEK_SET );

fscanf(fp1,"%d",&local);

fscanf(fp1,"%d",&local);

fscanf(fp1,"%f",&xin1);

fscanf(fp1,"%f",&xin2);

fscanf(fp1,"%f",&yin1);
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fscanf(fp1,"%f",&yin2);

fscanf(fp1,"%f",&zin1);

fscanf(fp1,"%f",&zin2);

fscanf(fp1,"%f",&xout1);

fscanf(fp1,"%f",&xout2);

fscanf(fp1,"%f",&yout1);

fscanf(fp1,"%f",&yout2);

fscanf(fp1,"%f",&zout1);

fscanf(fp1,"%f",&zout2);

fclose(fp1);

fp2=fopen(file2,"r");

fseek( fp2, 0L, SEEK_SET );

fscanf(fp2,"%f",&phi1);

fscanf(fp2,"%f",&local1);

fscanf(fp2,"%f",&theta1);

fscanf(fp2,"%f",&local1);

fscanf(fp2,"%f",&phi2);

fscanf(fp2,"%f",&local1);

fscanf(fp2,"%f",&theta2);
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fclose(fp2);

fp3=fopen(file3,"r+");

fseek( fp3, 245L, SEEK_SET );

fprintf(fp3,"/1 ");

fprintf(fp3,"%3.3f\n",xin1);

fprintf(fp3,"2 ");

fprintf(fp3,"%3.3f",xin2);

fprintf(fp3,"/;");

fseek( fp3, 60L, SEEK_CUR);

fprintf(fp3,"/1 ");

fprintf(fp3,"%3.3f\n",yin1);

fprintf(fp3,"2 ");

fprintf(fp3,"%3.3f",yin2);

fprintf(fp3,"/;");

fseek( fp3, 55L, SEEK_CUR);

fprintf(fp3,"/1 ");

fprintf(fp3,"%3.3f\n",zin1);

fprintf(fp3,"2 ");

fprintf(fp3,"%3.3f",zin2);

fprintf(fp3,"/;");

fseek( fp3, 70L, SEEK_CUR);

fprintf(fp3,"/1 ");

fprintf(fp3,"%3.3f\n",theta1);

fprintf(fp3,"2 ");

fprintf(fp3,"%3.3f ",theta2);

fprintf(fp3,"/;");

fseek( fp3, 70L, SEEK_CUR);

fprintf(fp3,"/1 ");

fprintf(fp3,"%3.3f\n",phi1);
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fprintf(fp3,"2 ");

fprintf(fp3,"%3.3f",phi2);

fprintf(fp3,"/;");

fseek( fp3, 110L, SEEK_CUR );

fprintf(fp3,"/1 ");

fprintf(fp3,"%3.3f\n",xout1);

fprintf(fp3,"2 ");

fprintf(fp3,"%3.3f",xout2);

fprintf(fp3,"/;");

fseek( fp3, 42L, SEEK_CUR);

fprintf(fp3,"/1 ");

fprintf(fp3,"%3.3f\n",yout1);

fprintf(fp3,"2 ");

fprintf(fp3,"%3.3f",yout2);

fprintf(fp3,"/;");

fseek( fp3, 42L, SEEK_CUR);

fprintf(fp3,"/1 ");

fprintf(fp3,"%3.3f\n",zout1);

fprintf(fp3,"2 ");

fprintf(fp3,"%3.3f",zout2);

fprintf(fp3,"/;");

fclose(fp3);

strcpy(file1,"");

strcpy(file2,"");

strcpy(temp,"");

strcpy(file3,"");

}

return 0;
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}

Write the solution files

#include <iostream.h>

#include <string.h>

#include <stdio.h>

int main()

{

int num1,num2,flag,counter,mod;

char local;

char file1[15],temp[4];

char file2[15];

char str[50]="";

float sol1,sol2,sol3;

FILE *fp1;

FILE *fp2;

cout<<"Enter the first number:";

cin>>num1;

cout<<endl<<"Enter the second number:";

cin>>num2;

strcpy(file1,"");

strcpy(file2,"");

counter=0;

for(int i=num1;i<=num2;i++)

{

flag=1;

strcpy(file1,"");

strcpy(file2,"");

strcpy(temp,"");

strcpy(str,"");

sol1=sol2=sol3=0.0;

strcat(file1,"testing");

strcat(file2,"sol");
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if(i<10)

{

temp[0]=i+48;

temp[1]=’\0’;

}

if(i>9 && i<100)

{

temp[0]=(i/10)+48;

temp[1]=(i % 10)+48;

temp[2]=’\0’;

}

if(i>99)

{

temp[0]=(i/100)+48;

mod=i%100;

temp[1]=(mod/10)+48;

temp[2]=(mod % 10)+48;

temp[3]=’\0’;

}

strcat(file1,temp);

strcat(file1,".lst");

strcat(file2,temp);

strcat(file2,".txt");

if((fp1=fopen(file1,"r"))==NULL)

cout<<"Error opening file";

fseek( fp1, 0L, SEEK_SET );

strcpy(str," ");

while(strcmp(str,"VAR"))

{

fscanf(fp1,"%s",str);

}

88



for(int k=0;k<14;k++)

{

fscanf(fp1,"%s",str);

}

fscanf(fp1,"%s",str);

if(str[0]==’.’)

{

flag=0;

fp2=fopen(file2,"w");

fprintf(fp2,"0");

fclose(fp2);

continue;

}

if((!strcmp(str,"-0.900")) || (!strcmp(str,"0.990")) )

{

flag=0;

sol1=atof(str);

}

sol1=atof(str);

for(int k=0;k<4;k++)

fscanf(fp1,"%s",str);

fscanf(fp1,"%s",str);

if (flag==0)

{

if((strcmp(str,"0.990" )) && (strcmp(str,"-0.900" )))

{

flag=1;

}

else
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{

fp2=fopen(file2,"w");

fprintf(fp2,"0");

fclose(fp2);

continue;

}

}

sol2=atof(str);

fclose(fp1);

if(flag==1)

{

counter++;

fp2=fopen(file2,"w");

fprintf(fp2,"%f ",sol1);

fprintf(fp2,"%f",sol2);

fclose(fp2);

}

strcpy(file1,"");

strcpy(file2,"");

strcpy(temp,"");

strcpy(str,"");

sol1=sol2=sol3=0.0;

}

cout<<endl;

cout<<"********************************************\n";

cout<<counter<<" "<<"situations were solved"<<endl;

cout<<"Press any key and enter to exit:";

cin>>local;

}
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Write the training file

#include <iostream.h>

#include <string.h>

#include <stdio.h>

int main()

{

int num1,num2,counter,local,mod;

char in;

char file1[15],temp[4];

char file2[15],file3[15];

float xin1,yin1,zin1,xout1,zout1,yout1,xin2,yin2,zin2,xout2,yout2,zout2

float local1,dv1,dv2=0.0;

float phi1,phi2,theta1,theta2;

FILE *fp1;

FILE *fp2;

FILE *fp3;

FILE *fp4;

cout<<"Enter the first number:";

cin>>num1;

cout<<endl<<"Enter the second number:";

cin>>num2;

strcpy(file1,"");

strcpy(file2,"");

strcpy(file3,"");

strcpy(temp,"");

fp3=fopen("train3.txt","a");

counter=0;

for(int i=num1;i<=num2;i++)

{

strcpy(file1,"");

strcpy(file2,"");

strcpy(temp,"");

strcpy(file3,"");

strcat(file1,"collout");

strcat(file2,"angles");

strcat(file3,"sol");

if(i<10)
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{

temp[0]=i+48;

temp[1]=’\0’;

}

if(i>9 && i<100)

{

temp[0]=(i/10)+48;

temp[1]=(i % 10)+48;

temp[2]=’\0’;

}

if(i>99)

{

temp[0]=(i/100)+48;

mod=i%100;

temp[1]=(mod/10)+48;

temp[2]=(mod % 10)+48;

temp[3]=’\0’;

}

strcat(file1,temp);

strcat(file1,".txt");

// cout<<file1<<endl;

strcat(file2,temp);

strcat(file3,temp);

strcat(file2,".txt");

strcat(file3,".txt");

fp4=fopen(file3,"r");

fscanf(fp4,"%f",&dv1);

if(dv1==0)

{

fclose(fp4);

continue;

}
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fscanf(fp4,"%f",&dv2);

fclose(fp4);

if((fp1=fopen(file1,"r"))==NULL)

cout<<"Error opening file";

fseek( fp1, 0L, SEEK_SET );

fscanf(fp1,"%d",&local);

fscanf(fp1,"%d",&local);

fscanf(fp1,"%f",&xin1);

fscanf(fp1,"%f",&xin2);

fscanf(fp1,"%f",&yin1);

fscanf(fp1,"%f",&yin2);

fscanf(fp1,"%f",&zin1);

fscanf(fp1,"%f",&zin2);

fscanf(fp1,"%f",&xout1);

fscanf(fp1,"%f",&xout2);

fscanf(fp1,"%f",&yout1);

fscanf(fp1,"%f",&yout2);

fscanf(fp1,"%f",&zout1);

fscanf(fp1,"%f",&zout2);

fclose(fp1);

if((fp2=fopen(file2,"r"))==NULL)

cout<<"Error opening file";

fseek( fp2, 0L, SEEK_SET );

fscanf(fp2,"%f",&phi1);

fscanf(fp2,"%f",&local);

fscanf(fp2,"%f",&theta1);

fscanf(fp2,"%f",&local);

fscanf(fp2,"%f",&phi2);

fscanf(fp2,"%f",&local);

fscanf(fp2,"%f",&theta2);

fscanf(fp2,"%f",&local);

fclose(fp2);
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fprintf(fp3,"%3.3f ",xin1);

fprintf(fp3,"%3.3f ",yin1);

fprintf(fp3,"%3.3f ",zin1);

fprintf(fp3,"%3.3f ",phi1);

fprintf(fp3,"%3.3f ",xout1);

fprintf(fp3,"%3.3f ",yout1);

fprintf(fp3,"%3.3f ",yout2);

fprintf(fp3,"%3.3f ",zout1);

fprintf(fp3,"15 ");

fprintf(fp3,"%3.3f ",xin2);

fprintf(fp3,"%3.3f ",yin2);

fprintf(fp3,"%3.3f ",zin2);

fprintf(fp3,"%3.3f ",xout2);

fprintf(fp3,"%3.3f ",yout2);

fprintf(fp3,"%3.3f ",zout2);

fprintf(fp3,"15 ");

fprintf(fp3,"%3.3f ",dv1);

fprintf(fp3,"%3.3f ",dv2);

fprintf(fp3,"\n");

counter++;

strcpy(file1,"");

strcpy(file2,"");

strcpy(temp,"");

strcpy(file3,"");

}

fclose(fp3);

cout<<endl;

cout<<"*******************************************\n";
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cout<<counter<<" "<<"situations were added to train.txt"<<endl;

cout<<"Press any key and enter to exit:";

cin>>in;

return 0;

}
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