

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΕΛΕΓΧΟΣ ΠΟΙΟΤΗΤΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ»

«ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΚΑΤΑΛΥΤΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΤΟΥ Ag ΓΙΑ ΤΗΝ ΑΠΟΤΕΛΕΣΜΑΤΙΚΗ ΑΝΤΙΜΕΤΩΠΙΣΗ ΤΩΝ ΚΑΥΣΑΕΡΙΩΝ ΤΩΝ ΠΡΟΝΟΜΙΑΚΩΝ ΚΙΝΗΤΗΡΩΝ LEAN-BURN»

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ

Υποβληθείσα στο Τμήμα Μηχανικών Περιβάλλοντος Του Πολυτεχνείου Κρήτης

Μποτζολάκη Γεωργία

XANIA 2004

Μεταπτυχιακή Διατριβή

«Διερεύνηση της καταλυτικής συμπεριφοράς του Ag για την αποτελεσματική αντιμετώπιση των καυσαερίων των προνομιακών κινητήρων lean-burn»

Μποτζολάκη Γεωργία

Τμήμα Μηχανικών Περιβάλλοντος Του Πολυτεχνείου Κρήτης

Τριμελής επιτροπή:

- Ιωάννης Γεντεκάκης
 Αναπληρωτής Καθηγητής, Γενικό Τμήμα, Πολυτεχνείο Κρήτης (επιβλέπων καθηγητής)
- Καλλίθρακας Ν..
 Καθηγητής, Γενικό Τμήμα, Πολυτεχνείο Κρήτης
- Καλογεράκης Ν.
 Καθηγητής, Τμήμα Μηχανικών Περιβάλλοντος, Πολυτεχνείο Κρήτης

ΕΥΧΑΡΙΣΤΙΕΣ

Θα ήθελα να ευχαριστήσω θερμά τον Αναπληρωτή καθηγητή Ιωάννη Γεντεκάκη για την ανάθεση αυτής της ερευνητικής μεταπτυχιακής εργασίας καθώς και για την επίβλεψη και την καθοδήγησή του κατά την διάρκεια της εκπόνησής της στα εργαστήρια Φυσικοχημείας και Χημικών Διεργασιών του Γενικού Τμήματος του Πολυτεχνείου Κρήτης. Η συνεργασία μαζί του ήταν δημιουργική και αποτελεσματική.

Επίσης θα ήθελα να ευχαριστήσω τους καθηγητές Νικόλαο Καλλίθρακα και Νικόλαο Καλογεράκη που δέχθηκαν να γίνουν μέλη της τριμελούς μου επιτροπής καθώς και για τις υποδείξεις τους για τη βελτίωση της παρούσας εργασίας.

Τέλος, θα ήθελα να ευχαριστήσω θερμά τον Ιωάννη Ραπακούσιο, μεταπτυχιακό φοιτητή του Διατμηματικού Προγράμματος Μεταπτυχιακών Σπουδών «Ελεγχος Ποιότητας και Διαχείριση Περιβάλλοντος» για τη σημαντική βοήθειά του κατά τη διάρκεια της πραγματοποίησης των πειραμάτων στα πλαίσια της αυτής της μεταπτυχιακής εργασίας.

ΠΕΡΙΛΗΨΗ

Σκοπός αυτής της εργασίας ήταν να διερευνηθεί η επίδραση της προσθήκης ενός αλκαλίου, του Rb και μερικών άλλων προσθέτων, όπως τα Rh, Pt, Na, Cs αλλά και φορέων, όπως η TiO₂ στην καταλυτική συμπεριφορά του Ag για την αντίδραση NO/C₃H₆/O₂ σε συνθήκες lean-burn.

Επιλέξαμε ως μέθοδο παρασκευής των καταλυτών την sol-gel και φόρτιση σε Ag 2wt%. Η διεξαγωγή των πειραμάτων περιελάμβανε μετρήσεις μετατροπής των αντιδρώντων (μετατροπή του προπυλενίου και του NO) με μεταβολή της θερμοκρασίας σε σταθερές συνθήκες εισόδου (1000 ppm NO, 1000 ppm C_3H_6 , 5% O_2) που προσομοιώνουν τις συνθήκες καυσαερίων φτωχών σε καύσιμο κινητήρων (lean burn engines).

Οι καταλύτες που παρασκευάστηκαν είναι οι εξής:

$CI: 2wt\%Ag/\gamma-Al_2O_3,$	C2: $2wt\%Ag(0.2wt\%Rb)/\gamma-Al_2O_3$,
C3 : 2wt%Ag(0.5wt%Rb)/γ-Al ₂ O ₃ ,	C4: 2wt%Ag(1wt%Rb)/γ-Al ₂ O ₃ ,
C5 : 2wt%Ag(2wt%Rb)/γ-Al ₂ O ₃ ,	<i>C6</i> : 2wt%Ag(0.02wt%Rh)/γ-Al ₂ O ₃ ,
C7 : 2wt%Ag(0.05wt%Rh)/γ-Al ₂ O ₃ ,	C8 : 2wt%Ag(0.2wt%Rh)/γ-Al ₂ O ₃ ,
C9 : 2wt%Ag(0.5wt%Rb,0.2wt%Pt)/γ-Al ₂ O ₃ ,	$\textit{C10: } 2wt\%Ag(0.5wt\%Cs)/\gamma-Al_2O_3,$
C11: 2wt%Ag(0.5wt%Na)/γ-Al ₂ O ₃ ,	<i>C12</i> : 2wt%Ag/TiO ₂ .

Σύμφωνα με τα πειραματικά αποτελέσματα η επίδραση των προσθέτων σε οποιαδήποτε από τις περιεκτικότητες που μελετήθηκαν καθώς και του φορέα TiO₂ είναι παρεμποδιστική στη δράση του καταλύτη 2wt%Ag/γ-Al₂O₃ ο οποίος έχει παρασκευαστεί με τη μέθοδο sol-gel.

1. ΕΙΣΑΓΩΓΗ	1
2. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ	2
2.1. Ατμοσφαιρική ρύπανση	2
2.2. Καταλυτικοί μετατροπείς	3
2.3. Κινητήρες lean burn	6
2.4. SCR των NO _x	7
2.4.1 Αναγωγή NO _x με NH ₃	7
2.4.2 Αναγωγή NO _x με υδρογονάνθρακες	9
2.4.2.1 Ζεόλιθοι	. 10
2.4.2.2 Μέταλλα (στοιχεία μετάπτωσης) σε φορέα Al ₂ O ₃	. 12
2.4.2.3 Καταλύτες Ag για την SCR των NO _x	. 16
2.4.4.3.1 Επίδραση της μεθόδου παρασκευής στη δραστικότητα του καταλύ	τη
	. 24
2.4.2.3.2 Προωθηση καταλυτων Ag/Al ₂ U ₃	. 26
2.4.2.3.3 Επιοραση της παρουσιας SO ₂ στη οραστικοτητα του καταλυτη 2.4.2.3.4 Προτεινόμενος μηγανισμός αντίδρασης κατά την με C ₃ H ₆ SCR των	. 30 V
NO _x	. 30
3. ΠΕΙΡΑΜΑΤΙΚΟ ΜΕΡΟΣ	. 33
4. ΑΠΟΤΕΛΕΣΜΑΤΑ	. 37
4.1 Μελέτη των καταλυτών σε συνθήκες lean-burn	37
4 1 1 Επίδοαση του Rb στην ενεονότητα/εκλεκτικότητα του Ag	37
4.1.2 Επίδραση του Rh στην ενεονότητα/εκλεκτικότητα του Ag	38
4.1.3 Επίδραση της προσθήκης Ρί και Rb στην ενεργότητα/εκλεκτικότητα του As	, 39
4 1 4 Επίδραση των αλκαλίων Να και Cs στην ενερνότητα/εκλεκτικότητα του Ag	39
4 1 5 Επίδραση της ΤίΟ ₂ στην ενεονότητα/εκλεκτικότητα του Ag	40
5. ΣΥΖΗΤΗΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ	. 55
5.1 Επίδραση των αλκαλίων	55
5.2 Επίδραση ευγενών μετάλλων (Rh)	. 55
5.2 Επωραση ευγενών μεταλών (Ki)	56
5.5 Επωραση της 1102	. 50
ΒΙΒΛΙΟΓΡΛΦΙΛ	60
ΔΙΔΛΙΟΙ Ι ΑΨΙΑ	. 00

1. ΕΙΣΑΓΩΓΗ

Ο Ag παρουσιάζει μια ενδιαφέρουσα συμπεριφορά, ικανοποιητικής δραστικότητας και υψηλής εκλεκτικότητας προς N₂, στις αντιδράσεις de-NO_x με αλκένια σε συνθήκες περίσσειας O₂. Μια περιεκτικότητα Ag 2wt% σε γ-Al₂O₃, ένας σχετικά οικονομικός καταλύτης, βρέθηκε να έχει βέλτιστη καταλυτική συμπεριφορά κατά την αναγωγή του NO από προπυλένιο σε συνθήκες lean-burn, και σταθερή απόδοση μετά από παρατεταμένη χρήση.

Η υποσχόμενη αυτή καταλυτική συμπεριφορά του Ag σε ένα δύσκολο στην αντιμετώπιση του πρόβλημα όπως αυτό του ελέγχου των καυσαερίων των κινητήρων lean-burn έδωσε έναυσμα για μια σειρά από πειραματικές εργασίες που στόχο είχαν την περαιτέρω βελτίωση της συμπεριφοράς του, δηλαδή στην αύξηση της ενεργότητας και της N₂/N₂O-εκλεκτικότητάς του, καθώς και την διεύρυνση της θερμοκρασιακής περιοχής ικανοποιητικής λειτουργίας του στην εν λόγω διεργασία. Οι έρευνες αυτές κινούνται σε τρεις κυρίως κατευθύνσεις: (i) μελέτη επίδρασης προσθέτων ουσιών που θα παίξουν τον ρόλο επιφανειακών προωθητών, (ii) μελέτη επίδρασης διαφορετικών φορέων και (iii) μελέτη της επίδρασης του τρόπου παρασκευής.

Τα αποτελέσματα που παρουσιάζουμε σε αυτή την εργασία αποτελούν μέρος μιας ερευνητικής μας προσπάθειας που έχει ως στόχο την συστηματική μελέτη της επίδρασης των αλκαλίων ή άλλων επιφανειακών προωθητών, καθώς και των φορέων όπως γ-Al₂O₃, TiO₂, doped-TiO₂, ZrO₂, doped-ZrO₂, στην καταλυτική συμπεριφορά του Ag για την αντίδραση NO/C₃H₆/O₂ σε συνθήκες lean-burn. Επιλέξαμε ως μέθοδο παρασκευής των καταλυτών την solgel και φόρτιση σε Ag 2wt%. Εδώ παρουσιάζουμε την επίδραση της προσθήκης ενός αλκαλίου, του Rb και μερικά από τα αποτελέσματα της επίδρασης άλλων προσθέτων, όπως τα Rh, Pt, Na, Cs αλλά και φορέων, όπως η TiO₂.

2. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ

2.1. Ατμοσφαιρική ρύπανση

Η ατμοσφαιρική ρύπανση ορίζεται ως η προσθήκη κάθε υλικού (μοριακής ή σωματιδιακής φύσης) στην ατμόσφαιρα, η οποία έχει ως αποτέλεσμα την αλλαγή της σύστασής της καθώς και τη βραχυπρόθεσμη ή μακροπρόθεσμη δηλητηρίαση της ζωής του πλανήτη. Οι κύριες πηγές ατμοσφαιρικής ρύπανσης είναι τα μέσα μεταφοράς, η οικιακή θέρμανση, οι διεργασίες παραγωγής ηλεκτρικής ενέργειας και οι βιομηχανικές καύσεις ορυκτών καυσίμων. Οι ρύποι που εκπέμπονται στο περιβάλλον απευθείας από τις πηγές που προαναφέρθηκαν λέγονται «πρωτογενείς» ρύποι και είναι οι εξής:

- <u>CO, CO₂</u>: το CO σε μικρές συγκεντρώσεις ευνοεί τη δημιουργία λιπαρού στρώματος στα αιμοφόρα αγγεία (συνεπώς προκαλεί καρδιακά προβλήματα). Σε μεγαλύτερες συγκεντρώσεις μπορεί να προκαλέσει ακαριαία το θάνατο επειδή δεσμεύεται στην αιμοσφαιρίνη του αίματος και εμποδίζει τη μεταφορά οξυγόνου στους ιστούς.
 Επιπλέον, το CO₂ συμβάλλει στο φαινόμενο του θερμοκηπίου.
- <u>Οξείδια του θείου (SO₂, SO₃) και ενώσεις που περιέχουν θείο (π.χ. OCS, CH₃SCH₃)</u>:
 προκαλούν σοβαρά αναπνευστικά νοσήματα όπως το εμφύσημα και συμμετέχει στο σχηματισμό της όξινης βροχής.
- <u>Οξείδια του αζώτου (N₂O, NO_x: NO, NO₂) και NH₃</u>: δυσχεραίνουν τη λειτουργία της αναπνοής, ερεθίζουν τα μάτια και συμμετέχουν στο σχηματισμό φωτοχημικού νέφους και όξινης βροχής. Επιπλέον, το N₂O συμβάλλει στο φαινόμενο του θερμοκηπίου.
- <u>Οργανικές ενώσεις (CH₄, HCs, VOCs)</u>: πολλοί HCs είναι καρκινογόνοι π.χ.
 βενζοπυρένιο.
- <u>Σωματιδιακή ύλη</u>: είναι βλαβερή για το αναπνευστικό σύστημα των ζωντανών οργανισμών [1, 2].

2.2. Καταλυτικοί μετατροπείς

Δύο σημαντικά θέματα που απασχολούν την ανθρωπότητα είναι το πρόβλημα της ρύπανσης του περιβάλλοντος καθώς και η ανάγκη εξοικονόμησης ενέργειας. Υπάρχει γενική απαίτηση οι μετακινήσεις να πραγματοποιούνται με υψηλή απόδοση χωρίς όμως αυτό να δημιουργεί πρόσθετη περιβαλλοντική ρύπανση [3]. Τα βενζινοκίνητα αυτοκίνητα διευκολύνουν τη ζωή του σύγχρονου πολίτη αλλά καταναλώνουν μεγάλα ποσά ορυκτών καυσίμων και είναι η επικρατέστερη πηγή μόλυνσης στα ανεπτυγμένα κράτη. Ο καταλυτικός μετατροπέας είναι μια συσκευή που τοποθετείται στο σύστημα εξαγωγής των καυσαερίων των αυτοκινήτων (σχήμα 1) και έχει ως σκοπό τη μετατροπή των εκπεμπόμενων ρύπων σε αβλαβή για την ατμόσφαιρα καυσαέρια, όπως H₂O και CO₂ (το CO₂ θεωρείται αβλαβές αέριο γιατί δεν έχει τοξικές ιδιότητες, παρόλο που συμβάλει στο φαινόμενο του θερμοκηπίου).

Σχήμα 1: Τοποθέτηση του καταλυτικού μετατροπέα στο σύστημα εξαγωγής των καυσαερίων των αυτοκινήτων.

Οι κυριότερες αντιδράσεις καταστροφής ρύπων που επιτελούνται σε ένα καταλυτικό μετατροπές είναι οι ακόλουθες:

Antidrágeic ofeidostic: $CO + \frac{1}{2}O_2 \rightarrow CO_2$ (1)

$$C_xH_y + (x+y/4)O_2 \rightarrow x CO_2 + y/2 H_2O$$
 (2)

Antidráseic anagogyúc: $NO + CO \rightarrow CO_2 + \frac{1}{2}N_2 (+N_2O)$ (3)

$$(2x+y/2) \text{ NO} + C_x H_y \rightarrow x \text{ CO}_2 + (x+y/4) \text{ N2} + y/2 \text{ H}_2 \text{ O} (+N_2 \text{ O})$$
 (4)

Οι σύγχρονοι **τριοδικοί καταλυτικοί μετατροπείς** (three-way catalytic converters, TWC) επιτυγχάνουν την ταυτόχρονη μετατροπή των αερίων CO, HCs και NO_x προς CO₂, H₂O και N₂. Αποτελούνται από:

- Ένα μεταλλικό εξωτερικό περίβλημα.
- Ένα κεραμικό (συνήθως) μονόλιθο, ο οποίος έχει κυψελοειδή μορφή με διαμήκη κανάλια μέσα από τα οποία διέρχονται τα καυσαέρια. Το υλικό κατασκευής του μονόλιθου είναι κορδιερίτης, ένα ιδιαίτερα θερμοανθεκτικό υλικό με μηδενικό συντελεστή θερμικής διαστολής.
- Μια ενδιάμεση επίστρωση (wash coat), στην οποία είναι υποστηριγμένες οι καταλυτικά ενεργές φάσεις. Ως ενδιάμεση επίστρωση επιλέγεται συνήθως η <u>γ-Al₂O₃</u>, υλικό που διαθέτει μεγάλη επιφάνεια (της τάξης των 100-200 m²/g) για να διασπαρθούν με τη βέλτιστη δυνατή διασπορά οι ενεργές φάσεις.
- Τις καταλυτικά ενεργές φάσεις: τα μέταλλα Pt, Pd και Rh ή συνδυασμό από αυτά. O Pt είναι έξοχος καταλύτης για την οξείδωση του CO και των υδρογονανθράκων αλλά εμφανίζει ασήμαντη δραστικότητα και πολύ χαμηλή N₂/N₂O εκλεκτικότητα για τις αντιδράσεις αναγωγής των NO_x. To Pd είναι ένας καλός καταλύτης οξείδωσης του CO και ακόμα καλύτερος για την οξείδωση των υδρογονανθράκων. Η αναγωγική του δράση δεν είναι τόσο άσχημη όσο του λευκόχρυσου, εντούτοις δεν είναι επαρκής. To Rh επιτυγχάνει την σχεδόν ολοκληρωτική διασπαστική ρόφηση του NO και N₂/N₂O εκλεκτικότητα που προσεγγίζει το 100%. Ωστόσο είναι πολύ σπανιότερο [1]. Επιπλέον, σε θερμοκρασίες μεγαλύτερες από 800-900°C, το Rh χάνει την

καταλυτική του δράση, αφού αντιδρά με το φορέα γ-Al₂O₃ (παρουσία περίσσειας O₂) σύμφωνα με την παρακάτω αντίδραση.

$$Rh_2O_3 + \gamma - Al_2O_3 \rightarrow RhAl_2O_3$$
 (5) [4]

 Τον <u>λήπτη λάμδα (λ)</u>, ο οποίος είναι ένας αισθητήρας οξυγόνου στο σημείο εισόδου των καυσαερίων στον μετατροπέα. Στη συνέχεια, με ένα ηλεκτρονικό σύστημα γίνεται αυτόματα η ρύθμιση της αναλογίας αέρα προς καύσιμο στο σύστημα τροφοδοσίας του καυσίμου. Αυτό έχει ως αποτέλεσμα την καλή καύση στον κινητήρα σε συνδυασμό με τη βέλτιστη λειτουργία του μετατροπέα.

Στους τριοδικούς καταλυτικούς μετατροπείς ο λήπτης λ διατηρεί στον κινητήρα την ανάμιξη αέρα-καυσίμου σε στοιχειομετρική αναλογία. Ο στοιχειομετρικός λόγος βάρους αέρα-καυσίμου υπολογίζεται με βάση την αντίδραση τέλειας καύσης ενός υδρογονάνθρακα C_xH_y : $C_xH_y + (x+y/4)O_2 \rightarrow x CO_2 + y/2 H_2O$ (6)

(Αέρας/Καύσιμο)_{στοιχ.} ≡

$$= (A/F) \quad \text{story.} = \frac{28.9(100/21)(x+y/4)}{12x+y} = 34.41\frac{4(x/y)+1}{12(x/y)+1}$$

Το πηλίκο της πραγματικής προς τη στοιχειομετρική αναλογία αέρα καυσίμου ονομάζεται δείκτης λ (ή λόγο ισοδυναμίας λ):

$$\lambda = \frac{A/F}{(A/F)_{stoic}}$$

Για λ >1 το μίγμα χαρακτηρίζεται φτωχό σε καύσιμο (<u>lean burn</u> conditions), ενώ για λ <1 πλούσιο. Για λ >1 (δηλαδή σε συνθήκες περίσσειας αέρα) επιτυγχάνεται πλήρης μετατροπή του CO και των υδρογονανθράκων από τον μετατροπέα ενώ δεν ευνοούνται οι αναγωγικές αντιδράσεις. Η απομάκρυνση των NO_x ευνοείται σε λ <1 (αναγωγικές συνθήκες).

Οι τριοδικοί καταλυτικοί μετατροπείς ρυθμίζονται να λειτουργούν σε μια περιοχή του λ κοντά στην τιμή 1, με μια ελαφρά διάθεση προς την πλευρά του πλούσιου σε καύσιμο μίγματος (λ <1). Η περιοχή αυτή ονομάζεται παράθυρο λ (Lambda window) (σχήμα 2) [1]. Παρόλο που σε αυτούς τους μετατροπείς επιτυγχάνεται η ταυτόχρονη μετατροπή των αερίων CO, HCs και NO_x προς αβλαβή αέρια, παράγονται μεγάλα ποσά CO₂, γεγονός που εντείνει το πρόβλημα του φαινομένου του θερμοκηπίου [3].

Σχήμα 2: Ταυτόχρονη μετατροπή HC, CO και NO_x σε TWC συναρτήσει της αναλογίας: αέρας/καύσιμο

2.3. Κινητήρες lean burn

Στόχοι των τεχνολογιών που εφαρμόζονται σε κινητήρες που λειτουργούν σε συνθήκες lean burn (φτωχές σε καύσιμο-περίσσεια O₂) είναι η εξοικονόμηση καυσίμων, η αύξηση της αποτελεσματικότητας των καύσεων και φυσικά η ταυτόχρονη μετατροπή των αερίων CO, HCs και NO_x προς αβλαβή αέρια. Παράλληλα επιτυγχάνεται μείωση των εκπομπών CO₂, γεγονός που οφείλεται στην μείωση της ποσότητας του καυσίμου που καίγεται. Δυστυχώς όμως η περίσσεια O₂ στα καυσαέρια δρα παρεμποδιστικά στην αναγωγή των NO_x και γι' αυτό γίνονται ερευνητικές προσπάθειες έτσι ώστε να βρεθεί ένα κατάλληλο καταλυτικό σύστημα που να πραγματοποιεί αποτελεσματικά την παρακάτω αντίδραση [4]:

$$HC + NO_x + O_2 \rightarrow N_2 + CO_2 + H_2O$$

$$\tag{7}$$

2.4. SCR των NO_x

Παρόλο που οι ρυθμίσεις κατά την πραγματοποίηση καύσεων είναι κατάλληλες έτσι ώστε να μειώνονται οι εκπομπές NO_x , απαιτείται και επεξεργασία των καυσαερίων με σκοπό την περαιτέρω μείωση των NO_x [3]. Οι καταλυτικές μέθοδοι που εφαρμόζονται για την απομάκρυνση των τοξικών NO_x από τα καυσαέρια αυτοκινήτων και των καπνοδόχων έχουν ως στόχο τη μετατροπή τους σε αβλαβές N_2 .

Η αποτελεσματικότητα της SCR των NO_x εξαρτάται από τη φύση του καταλύτη και του αναγωγικού (π.χ. αλκάνιο, αλκένιο, αλκοόλη), το μοριακό βάρος του αναγωγικού και τη μέθοδο παρασκευής του καταλύτη [5].

2.4.1 Αναγωγή NO_x με NH₃

Η πρώτη προσπάθεια εκλεκτικής καταλυτικής αναγωγής (selective catalytic reduction, SCR) των NO_x που αναφέρθηκε το 1957 αφορούσε την αντίδρασή τους με NH₃ προς παραγωγή N₂, παρουσία καταλύτη Pt και περίσσειας O₂. Οι κύριες επιθυμητές αντιδράσεις είναι οι εξής:

 $4 \text{ NH}_3 + 4 \text{ NO} + \text{O}_2 \rightarrow 4 \text{ N}_2 + 6 \text{ H}_2\text{O}$ (6)

$$4 \text{ NH}_3 + 2 \text{ NO}_2 + \text{ O}_2 \rightarrow 3 \text{ N}_2 + 6 \text{ H}_2\text{O}$$
(7)

Μια ανεπιθύμητη αντίδραση, η οποία παράγει N₂O, είναι η εξής:

$$2 \text{ NH}_3 + 2 \text{ O}_2 \rightarrow \text{N}_2\text{O} + 3 \text{ H}_2\text{O}$$
 (8)

Σχήμα 3: Πιθανές πορείες αντιδράσεων μεταξύ NH₃, NO_x και O₂.

Μέχρι το 1970, υπήρχαν λίγες εφαρμογές της διεργασίας SCR των NO_x. Η τεχνολογία που χρησιμοποιούσε Pt δεν μπορούσε να εφαρμοστεί γιατί η εκλεκτικότητα της Pt για την αναγωγή των NO_x ήταν μικρή σε θερμοκρασίες πάνω από 250°C. Στο σχήμα 4 φαίνεται η σύγκριση των θερμοκρασιών λειτουργίας για διάφορες καταλυτικές τεχνολογίες που εφαρμόζονται στην SCR των NO_x. Είναι φανερό ότι οι καταλύτες Pt χάνουν την εκλεκτικότητά τους πάνω από τους 250°C. Ο πρώτος καταλύτης που χρησιμοποιήθηκε σε θερμοκρασίες μεγαλύτερες των 250°C ήταν ο V₂O₅/Al₂O₃. Η χρήση του περιορίστηκε σε καυσαέρια χωρίς θείο, γιατί το Al₂O₃ αντιδρά με το SO₃ σχηματίζοντας Al₂(SO₄)₃ με αποτέλεσμα την απενεργοποίηση του καταλύτη. Στη συνέχεια, ο φορέας Al₂O₃ αντικαταστάθηκε από ΤiO₂. Ο καταλύτης Pt [4].

Σχήμα 4: Παράθυρα λειτουργίας διαφόρων καταλυτών για NO_x-SCR

Η εισαγωγή WO₃ και MoO₃ στον καταλύτη V₂O₅/TiO₂ οδηγεί σε ενίσχυση της δράσης του. Επιπλέον, η προσθήκη Cr₂O₃ στον ίδιο καταλύτη έχει ως αποτέλεσμα την εκλεκτική αύξηση της αναγωγής NO_x.

Oι Wechs et al. [5] έδειξαν ότι η εκλεκτικότητα της αναγωγής προς N₂ εξαρτάται από το είδος του φορέα και αυξάνεται με την εξής σειρά: $V_2O_5/TiO_2 > V_2O_5/Al_2O_3 > V_2O_5/SiO_2$.

2.4.2 Αναγωγή NO_x με υδρογονάνθρακες

Οι υδρογονάνθρακες που έχουν χρησιμοποιηθεί για την αναγωγή των NO_x είναι το μεθάνιο (CH₄), το προπάνιο (C₃H₈), το προπένιο (C₃H₆), καθώς και υδρογονάνθρακες με περισσότερα άτομα άνθρακα όπως το οκτάνιο (C₈H₁₈) και το δεκάνιο (C₁₀H₂₂). Η δραστικότητα των υδρογονανθράκων για την αναγωγή NO_x εξαρτάται από τη μοριακή τους μάζα και τη δομή τους. Οι υδρογονάνθρακες με περισσότερα άτομα άνθρακα στο μόριο τους, η σειρά δραστικότητας είναι η εξής: αλκίνια > αλκένια > αρωματικοί υδρογονάνθρακες > αλκάνια [5].

Το CH₄ δεν είναι καλό αναγωγικό για την SCR των NO_x για καταλύτες με φορείς οξειδίων μετάλλων γιατί η μεγαλύτερη ποσότητά του καταναλώνεται στην αντίδραση καύσης χωρίς να επιτυγχάνει σημαντική αναγωγή NO_x. Παρόλο που οι Shimizu et al. έχουν παρατηρήσει μεγάλη εκλεκτικότητα κατά την SCR των NO_x με CH₄ με καταλύτη 30wt% Ga₂O₃/Al₂O₃, η δραστικότητα και η αντοχή σε νερό του καταλύτη επιδέχονται βελτιώσεις [6].

Η χρήση οξυγονούχων μορίων στην SCR των NO_x έχει μελετηθεί σε μικρότερη έκταση. Οι αλκοόλες επιτυγχάνουν μεγάλες μετατροπές NO σε χαμηλές θερμοκρασίες, αλλά επειδή δεν είναι συστατικά των καυσαερίων, είναι αναγκαία η προσθήκη στα αυτοκίνητα μιας επιπλέον φιάλης που θα περιέχει αυτό το αναγωγικό. Το γεγονός αυτό δεν είναι πρακτικό και επιπλέον δεν συμφέρει οικονομικά [6].

Οι Burch et al. [7] μελέτησαν την αναγωγή NO σε lean burn συνθήκες σε καταλύτη Pt/Al_2O_3 χρησιμοποιώντας δύο διαφορετικά αναγωγικά μέσα: το C_3H_8 και το C_3H_6 . Η σύγκριση των αποτελεσμάτων για τις δύο αντιδράσεις οδήγησε τους ερευνητές στα εξής συμπεράσματα: Το C_3H_6 είναι πιο ενεργό από το C_3H_8 για την αναγωγή NO. Αυτό φαίνεται από το ότι επιτυγχάνουν 50% μέγιστη μετατροπή NO στους 240°C και 33% μέγιστη μετατροπή NO στους 410°C, αντίστοιχα.

Αρκετά οξείδια (Al₂O₃, SiO₂-Al₂O₃, TiO₂, ZrO₂) είναι αποτελεσματικά για την SCR των NO_x με C₃H₆. Έρευνες έδειξαν ότι η αλουμίνα παρουσιάζει τη μεγαλύτερη δραστικότητα επιτυγχάνοντας 32% αναγωγή NO στους 200°C (Τροφοδοσία: 1000 ppm NO, 320 ppm C₃H₆ και 10% O₂) [3].

2.4.2.1 Zεόλιθοι

Στην SCR των NO_x αναπτύχθηκαν και εφαρμόστηκαν οι TWC και οι καταλύτες ζεόλιθων, οι οποίοι είναι δραστικοί σε μεγαλύτερες θερμοκρασίες. Τέλος, χρησιμοποιήθηκαν και μέταλλα (στοιχεία μετάπτωσης) σε φορείς οξειδίων [3]. Σχετικά με τη χρήση των ζεολίθων γίνεται εκτενέστερη αναφορά στην συνέχεια της εργασίας.

Οι ζεόλιθοι είναι μια κατηγορία φυσικών ή συνθετικών υλικών που περιέχουν αργίλιο και πυρίτιο και σχηματίζουν καλά σχηματισμένες κρυσταλλικές δομές με πόρους. Στους ζεόλιθους, τα οξείδια του αργιλίου και του πυριτίου (Al₂O₃ και SiO₂) συνδέονται σχηματίζοντας τετραεδρικές δομές, στις οποίες κάθε κατιόν Al και Si ενώνεται με τέσσερα άτομα οξυγόνου. Επιπλέον, κάθε ανιόν οξυγόνου (O²⁻) ενώνεται είτε με Si⁺⁴ είτε με Al⁺³ σχηματίζοντας μια διάταξη όπως αυτή που απεικονίζεται στο σχήμα 5.

<mark>Σχήμα 5</mark>: Σύνδεση των ατόμων σε ζεόλιθους

Η ηλεκτρική ουδετερότητα επιτυγχάνεται με την ένωση Na⁺ ή H⁺ στο ανιόν AlO⁻, με αποτέλεσμα να δημιουργείται μια κατιονανταλλακτική περιοχή. Η διάμετρος των πόρων στους ζεόλιθους είναι 3 ως 8 Å, η οποία συμπίπτει με το εύρος μεγέθους των μορίων. Οι ζεόλιθοι δρουν ως μοριακά κόσκινα (molecular sieves) αφού κάθε μόριο με διάμετρο μεγαλύτερη από την διάμετρο του πόρου δεν μπορεί να εισέλθει στα κανάλια του ζεόλιθου.

Η καταλληλότητα των ζεόλιθων για την SCR των NO_x έγινε γνωστή από το 1970, όταν αναγνωρίστηκε ο συνθετικός ζεόλιθος μοντερνίτης (mordenite) ως ικανός καταλύτης για την SCR των NO_x. Ο μοντερνίτης έχει μια καλά καθορισμένη κρυσταλλική δομή και αποτελείται από SiO₂ και Al₂O₃ σε αναλογία 10:1. Οι εμπορικά διαθέσιμοι ζεόλιθοι για την SCR των NO_x λειτουργούν μέχρι και τους 600°C και η εκλεκτικότητά τους για την αναγωγή των NO_x αυξάνεται καθώς αυξάνεται και η θερμοκρασία [4].

Οι ζεόλιθοι που ανταλλάσσουν μέταλλα που ανήκουν στα στοιχεία μετάπτωσης παρουσιάζουν υψηλή δραστικότητα για την απομάκρυνση των NO_x σε υψηλές θερμοκρασίες (με μέγιστη τους 600°C), όπου οι καταλύτες των οξειδίων του αζώτου είναι θερμικά ασταθείς (σχήμα 4) [8]. Η δράση τους όμως παρεμποδίζεται παρουσία O₂ [3]. Επιπλέον, οι ζεόλιθοι ZSM-5 απενεργοποιούνται έντονα από το SO₂ και το H₂O [9].

Ο Cu-ZSM-5 είναι αποτελεσματικός για την αναγωγή των NO_x προς N₂, ενώ μελέτες έχουν δείξει ότι η αναγωγή NO <u>παρουσία υδρογονανθράκων</u> από τον Cu-ZSM-5 ευνοείται από περίσσεια O₂. Συγκεκριμένα, η μετατροπή του NO φτάνει το 85% όταν το μίγμα των αερίων περιέχει 1000 ppm NO, 1000 ppm C₃H₆ και 1% O₂. Η παρουσία O₂ προωθεί την αντίδραση σε θερμοκρασίες μικρότερες των 500°C. Σε υψηλότερες θερμοκρασίες η αναγωγή των NO ελαττώνεται γιατί όλος ο υδρογονάνθρακας καταναλώνεται κατά την αντίδραση καύσης (HC+O₂). Η βέλτιστη περιεκτικότητα O₂ βρέθηκε 2%, ενώ παρατηρείται μέγιστη ενεργότητα όταν ο βαθμός ανταλλαγής των κατιόντων Cu²⁺ του ζεόλιθου είναι 80-100%.

Όσον αφορά ζεόλιθους που περιέχουν μέταλλα εκτός από Cu, ερευνητικές μελέτες έδωσαν τα παρακάτω αποτελέσματα. Σύγκριση των καταλυτών Pt-ZSM-5, Cu-ZSM-5 και Fe-MOR έδειξε πως ο Pt-ZSM-5 είναι δραστικότερος. Το μειονέκτημα όμως που παρουσιάζει είναι η παραγωγή N₂O. Επιπλέον, ο Ce-ZMS-5 είναι περισσότερο ενεργός από τον Cu-ZSM-5. Με τους ζεόλιθους γαλλίου η μετατροπή NO έφτανε το 91% στους 400°C (Τροφοδοσία: 1000 ppm NO, 1000 ppm C₃H₆ και 10% O₂). Για τις ίδιες συνθήκες ο Cu-ZSM-5 έδωσε μετατροπή 60% στους 300°C. Σε αντίθεση με τους ζεόλιθους που περιέχουν χαλκό, εκείνοι που περιέχουν κοβάλτιο επιτυγχάνουν εκλεκτική αναγωγή NO με μεθάνιο [9].

Πρόσφατα, οι Holma et.al. [10] παρουσίασαν μια καινούρια ιδέα για τη συνεχή αναγωγή NO από υδρογονάνθρακες σε συνθήκες lean-burn. Χρησιμοποίησαν "διπλά" καταλυτικά συστήματα ζεόλιθων και συγκεκριμένα μηχανικά μίγματα Co-FER και H-ZSM-5, τα οποία ήταν ενεργά για την αναγωγή των NO_x προς N₂ με ισοβουτάνιο. Τα αποτελέσματά τους έδειξαν ότι ο βαθμός μετατροπής των NO_x εξαρτάται από τη συγκέντρωση του O₂ στο μίγμα των αερίων και η μέγιστη μετατροπή NO_x παρατηρήθηκε παρουσία 10% O₂. Η μετατροπή των NO_x προς N₂ ήταν 52% στους 350 °C (Τροφοδοσία: 760 ppm NO, 800 ppm ισοβουτάνιο και 10% O₂), αποτέλεσμα που μπορεί να βελτιωθεί χρησιμοποιώντας βέλτιστη αναλογία των δύο ζεόλιθων.

Πρόσφατα παρουσιάστηκε ένας ζεόλιθος με υψηλή αναλογία Fe/Al, ο overexchanged Fe-ZSM-5, ο οποίος παρουσιάζει υποσχόμενες ιδιότητες για την απομάκρυνση των NO_x. Η δραστικότητά του είναι υψηλότερη από του Cu-ZSM-5, δεν επηρεάζεται από την παρουσία H₂O και SO₂ και έχει εξαιρετική θερμική σταθερότητα. Επιπλέον, η εκλεκτική καταλυτική αναγωγή των NO_x από τους ζεόλιθους Fε-ZSM-11 εξαρτάται από την παρουσία Fe²⁺ στον καταλύτη [11].

2.4.2.2 Μέταλλα (στοιχεία μετάπτωσης) σε φορέα Al₂O₃

To Al₂O₃ μπορεί να χρησιμοποιηθεί ως φορέας σε καταλυτικά συστήματα γιατί παρουσιάζει υψηλή θερμική σταθερότητα και επιπλέον μπορεί να πραγματοποιηθεί διασπορά μεταλλικών κατιόντων σε αυτό. Οι Shimizu et al. [12] έδειξαν ότι τα μέταλλα στοιχείων μετάπτωσης υποστηριγμένα σε αλουμίνα έχουν μεγαλύτερη de-NO_x ικανότητα και μεγαλύτερη διάρκεια από τον ζεόλιθο Cu-ZSM-5. Αναλυτικότερα, σε υψηλές συγκεντρώσεις O₂ (6.7%), οι μετατροπές NO των Cu-Al₂O₃ και Cu-ZSM-5 ήταν συγκρίσιμες σε θερμοκρασίες μικρότερες από 253°C (Τροφοδοσία: 1000 ppm NO, 2000 ppm C₃H₆). Σε μικρότερες όμως συγκεντρώσεις O₂ (1%), η μετατροπή NO παρουσία Cu-ZSM-5 μειώνεται ενώ παρουσία Cu-Al₂O₃ αυξάνεται σε θερμοκρασίες μικρότερες από 353°C. Έτσι, οι επιστήμονες συμπέραναν ότι ο καταλύτης Cu-Al₂O₃ επιτυγχάνει μεγαλύτερη μετατροπή NO από τον ζεόλιθο Cu-ZSM-5 (σε θερμοκρασίες μικρότερες από 353°C).

Οι Hamada et al. σύγκριναν τη δραστικότητα των οξειδίων αρκετών μετάλλων (Cu, Co, Ni, Mn, Fe) σε αλουμίνα και σίλικα. Γενικά, βρέθηκε ότι οι καταλύτες που υποστηρίζονται σε αλουμίνα δρουν καλύτερα από αυτούς με σίλικα. Η δραστικότητα των καταλυτών εξαρτάται από τη μέθοδο παρασκευής τους καθώς και από τη θερμική τους επεξεργασία. Ο Hamada πρότεινε πως το πρώτο στάδιο στο μηχανισμό της SCR των NO_x είναι η οξείδωση του NO προς NO₂ [3].

Έρευνες επί της δραστικότητας ορισμένων στοιχείων μετάπτωσης (Cu, Co, Ag, V, Cr) σε φορέα αλουμίνας έγιναν και από τον Miyadera [3]. Ο περισσότερο ενεργός καταλύτης ήταν αυτός που περιείχε Ag, ο οποίος επιτύγχανε 80% μετατροπή NO στους 400°C. Η προσθήκη Cs στον καταλύτη Cu/Al₂O₃ είχε ως αποτέλεσμα τη μετατόπιση της μέγιστης μετατροπής σε χαμηλότερες θερμοκρασίες.

Όσον αφορά την SCR των NO_x σε ευγενή μέταλλα πάνω σε φορέα αλουμίνας, αυτή μελετήθηκε από τους Obuchi et al. [3]. Η εξάρτηση της μετατροπής του NO σε συνάρτηση με τη θερμοκρασία για διάφορα ευγενή μέταλλα (Pt, Pd, Ru, Rh και Ir) φαίνεται στο σχήμα 6. Η εκλεκτικότητα προς N₂ ήταν μόνο 30% στην πλατίνα, ενώ στα υπόλοιπα μέταλλα ξεπερνούσε το 75% (πίνακας 1).

Σχήμα 6: Καταλυτική ενεργότητα ευγενών μετάλλων: (○) Pt, (□) Pd, (△) Ru, (■) Rh και
 (●) Ir. Τροφοδοσία: 1000 ppm NO, 870 ppm C₃H₆ και 5% O₂.

Catalyst	Temperature (K)	NO conversion (%)	N ₂ (%)	Selectivity in N2 (%)
1% PVA1203	623	53	16	32
1% Rh/Al2O3	573	50	43	86
1% Pd/Al2O3	623	25	20	80
1% L/Al2O3	573	10	8	80

Οι Burch et al. μελέτησαν την επίδραση της περιεκτικότητας του μετάλλου στην δραστικότητα καταλυτών με 0,1-2wt% Pt και βρήκαν ότι η αύξηση της περιεκτικότητας ενισχύει την καταλυτική δράση όσον αφορά τη θερμοκρασία της μέγιστης μετατροπής αλλά και την ενεργότητα του καταλύτη [3]. Έρευνες έδειξαν ότι καταλύτες 1wt%Pt/γ-Al₂O₃ επιτυγχάνουν διαφορετική μετατροπή NO_x και εκλεκτικότητα προς παραγωγή N₂, ανάλογα με τον τρόπο παρασκευής τους (Τροφοδοσία: 750 ppm NO, 750 ppm C₃H₆, 6.5% O₂). Αναλυτικότερα, οι Seker et al. έφτιαξαν τον παραπάνω καταλύτη με εμποτισμό (impregnation) και βρήκαν 38% μέγιστη μετατροπή NO_x και 43% εκλεκτικότητα προς παραγωγή N₂ στους 240°C. Τα αποτελέσματά τους όμως με καταλύτη 1%Pt/γ-Al₂O₃ ο οποίος είχε παρασκευαστεί με τη μέθοδο sol-gel έδειξαν ότι η μέγιστη μετατροπή NO_x που επιτυγχάνεται είναι 33% αλλά η εκλεκτικότητα προς παραγωγή N₂ αυξάνεται σημαντικά στο 83% στους 270°C [13].

Οι δυνατότητες της προώθησης καταλυτών που χρησιμοποιούνται στην leanburn SCR των NO_x με ηλεκτροθετικά μέταλλα (αλκάλια και αλκαλικές γαίες) έχουν γίνει γνωστές από μελέτες των Yentekakis et al. [14]. Η προσθήκη Na σε Pt/γ -Al₂O₃ αυξάνει εξαιρετικά τους ρυθμούς παραγωγής N2 και CO2, μειώνει την παραγωγή N2O [15]. Επιπλέον, το εύρος θερμοκρασιών στο οποίο πραγματοποιείται η μετατροπή ΝΟ μετατοπίζεται προς χαμηλότερες θερμοκρασίες και η εκλεκτικότητα προς παραγωγή N2 βελτιώνεται πολύ σημαντικά, από 15% στον μη προωθημένο καταλύτη σε 95% στον 4.18wt%Na,0.5%Pt/ γ-Al₂O₃. Τα πειραματικά αποτελέσματα έδειξαν ότι το Na αυξάνει την ρόφηση του NO σε σχέση με το προπένιο και παράλληλα εξασθενεί το δεσμό N-O, διευκολύνοντας τη διάσπαση του ΝΟ. Επιπλέον έρευνες έχουν δείξει ότι η προσθήκη Να αυξάνει και την ρόφηση Ο₂ στην πλατίνα. Τα παραπάνω εξηγούν ικανοποιητικά την προωθητική δράση του Na σε καταλύτες Pt/γ-Al₂O₃ [14]. Σε πρόσφατες μελέτες οι Yentekakis et al. [15] σύγκριναν την επίδραση της προσθήκης Na στις αντιδράσεις $C_3H_6+NO+O_2$, $C_3H_6+O_2$ και NO+O₂. Σύγκριση των δύο πρώτων αντιδράσεων δείχνει ότι το ΝΟ δρα ως παρεμποδιστής στην αντίδραση μετατροπής του προπενίου. Το γεγονός αυτό οφείλεται στο σχηματισμό NO2, το οποίο είναι λιγότερο δραστικό για την αντίδραση με τον υδρογονάνθρακα και επιπλέον στη μείωση των διαθέσιμων θέσεων για την ρόφηση του O_2 . Μετά από σύγκριση των αντιδράσεων $C_3H_6+NO+O_2$ και $NO+O_2$ σε χαμηλές θερμοκρασίες και μετατροπή C_3H_6 μικρότερη από 100% είναι φανερό ότι ο σχηματισμός NO₂ παρεμποδίζεται εντελώς από την παρουσία του C₃H₆. Αυτό εξηγείται από την σημαντική ρόφηση του υδρογονάνθρακα κάτω από αυτές τις συνθήκες.

Το Pd είναι αρκετά αποτελεσματικό για την αναγωγή γιατί προωθεί τη διάσπαση του δεσμού N-O. Γι' αυτό ορισμένοι ερευνητές προσπαθούν να διαπιστώσουν αν μπορεί αντικατασταθεί το σπάνιο και ακριβό Rh από το Pd. Τα αποτελέσματα των Yentekakis et al. [16] έδειξαν ότι το Na προωθεί την καταλυτική δράση του Pd (σε 8 mol% yttria stabilised zirconia,YSZ) για την αναγωγή NO_x με C₃H₆. Η εκλεκτικότητα προς παραγωγή N₂ αυξάνεται από ~75% στον μη προωθημένο καταλύτη σε >95% στον ιδανικά προωθημένο καταλύτη.

Επιπλέον, έρευνες έχουν δείξει ότι το Na ενισχύει τη δράση του Rh/γ-Al₂O₃ για την καταλυτική αναγωγή NO_x παρουσία C₃H₆. Συγκεκριμένα, στα πειράματα των Macleod et al. ο μη προωθημένος καταλύτης παρουσίασε 53% εκλεκτικότητα προς N₂, ενώ στις ίδιες πειραματικές συνθήκες η εκλεκτικότητα προς παραγωγή N₂ με τον ιδανικά προωθημένο καταλύτη έφτασε στο 90% στους 375° C [17].

Ο καταλύτης Au/Al₂O₃ παρουσιάζει την καλύτερη καταλυτική συμπεριφορά για την αναγωγή NO με C₃H₆, παρουσία περίσσειας O₂ και υγρασίας, από όλους τους καταλύτες με Au που δοκιμάστηκαν πειραματικά. Παρόλα αυτά, απαιτούνται υψηλές θερμοκρασίες (μεταξύ 350 και 500°C) για να επιτευχθεί σημαντική μετατροπή NO προς N₂. Η αναγωγική δράση του Au/Al₂O₃ παρουσία C₃H₆ ενισχύεται από την μηχανική προσθήκη Mn₂O₃ στον καταλύτη. Συγκεκριμένα, η μετατροπή NO προς N₂ αυξάνεται σημαντικά κάτω από τους 300°C και φτάνει το 98%. Περαιτέρω αύξηση της θερμοκρασίας δεν προκαλεί σημαντική μείωση της μετατροπής [18].

2.4.2.3 Καταλύτες <u>Ag</u> για την SCR των NO_x

Ακόμα και πριν το 1997 ήταν γνωστό ότι οι καταλύτες αργύρου θα μπορούσαν να εφαρμοστούν για τον περιορισμό των εκπομπών NO_x από μηγανές που λειτουργούν σε συνθήκες lean-burn. Οι Hoost et al. [19] μελέτησαν καταλύτες Ag υποστηριγμένους σε φορείς γ-Al₂O₃ τους οποίους έφτιαξαν με τη μέθοδο του υγρού εμποτισμού. Οι καταλύτες Ag είναι φθηνοί, δεν καταστρέφονται μετά από παρατεταμένη χρήση και έχουν καλή απόδοση κατά την αναγωγή ΝΟ με C₃H₆. Τα αποτελέσματα έδειξαν ότι η βέλτιστη περιεκτικότητα του καταλύτη Ag είναι 2%. Με αυτή την περιεκτικότητα επιτυγχάνονται μεγαλύτερες μετατροπές NO_x και C₃H₆ σε όλες τις πειραματικές θερμοκρασίες κάτω από 500°C (Τροφοδοσία: 500 ppm NO, 222 ppm C_3H_8 , 445 ppm C₃H₆, 1500 ppm CO, 500 ppm H₂, 80000 ppm O₂, 15 ppm SO₂, 90000 ppm CO₂ ка 75000 ppm H₂O, ταχύτητα χώρου αντιδραστήρα = 25000 h⁻¹). Μία πιθανή εξήγηση για τη βέλτιστη αυτή περιεκτικότητα Ag σε γ-Al₂O₃ έχει δοθεί ήδη από το 1993 και είναι η εξής: Καταλύτες Ag/γ-Al₂O₃ με περιεκτικότητες μετάλλου πάνω από 2% ευνοούν την οξείδωση των υδρογονανθράκων, γεγονός που οδηγεί σε μικρότερες μετατροπές NO_x. Όσον αφορά τη διασπορά του μετάλλου στον φορέα, οι ερευνητές βρήκαν ότι αυξάνεται με αύξηση της περιεκτικότητας Ag σε γ-Al₂O₃ αλλά μόνο για περιεκτικότητες μικρότερες από 3%. Σε όλες τις πειραματικές συνθήκες της αντίδρασης $C_3H_6 + NO + O_2$ ο άργυρος βρισκόταν στην οξειδωμένη του μορφή (Ag^+) .

Mía ακόμη έρευνα που αφορούσε τους καταλύτες Ag/γ - Al_2O_3 πραγματοποιήθηκε από τους Bethke et al. [20]. Μελετήθηκαν οι δραστικότητες των καταλυτών $2wt%Ag/\gamma$ - Al_2O_3 και $6wt%Ag/\gamma$ - Al_2O_3 για την αναγωγή NO με C_3H_6 σε συνθήκες lean-burn. O καταλύτης $2wt%Ag/\gamma$ - Al_2O_3 πέτυχε 82% μετατροπή NO σε N₂ στους ~450°C, ενώ η μετατροπή με $6wt%Ag/\gamma$ - Al_2O_3 ήταν 20% στους ~470°C (σχήμα 7)

Σχήμα 7: Μετατροπή ΝΟ και C₃H₆ συναρτήσει της θερμοκρασίας με καταλύτες 2wt%Ag/γ-Al₂O₃ και 6wt%Ag/γ-Al₂O₃: (**■**) Μετατροπή ΝΟ προς N₂ με 2wt%Ag/γ-Al₂O₃, (**♦**) Μετατροπή C₃H₆ με 2wt%Ag/γ-Al₂O₃, (+) Μετατροπή ΝΟ προς N₂ με 6wt%Ag/γ-Al₂O₃, (*) Μετατροπή ΝΟ προς N₂O με 6wt%Ag/γ-Al₂O₃, (x) Μετατροπή C₃H₆ με 6wt%Ag/γ-Al₂O₃. Báρoς καταλύτη: 0.25 g. Τροφοδοσία: 0.1% NO, 0.1% C₃H₆, 6% O₂, F_t = 100 cc/min, ταχύτητα χώρου αντιδραστήρα (GHSV) = 12000 h⁻¹.

Στο σχήμα 8 φαίνεται η καταλυτική ενεργότητα της γ-Al₂O₃ καθώς και των καταλυτών 1.2wt%Ag/γ-Al₂O₃ και 10wt%Ag/γ-Al₂O₃ για την εκλεκτική καταλυτική αναγωγή NO από C₃H₆. Οι συγκεντρώσεις NO και O₂ που χρησιμοποιήθηκαν προσομοιάζουν αυτές που τυπικά εμφανίζονται σε πραγματικά καυσαέρια (i.e. 100-1000 ppm NO_x και 2-10% O₂), ενώ η συγκέντρωση του αναγωγικού ρυθμίζεται συνήθως ώστε να είναι ίση με τη συγκέντρωση NO_x. Οι μετατροπές NO και C₃H₆ καθώς και οι αποδόσεις διαφόρων προϊόντων (NO₂, N₂, N₂O και NH₃) διαφέρουν σημαντικά για τους τρεις αυτούς καταλύτες. Πρέπει να σημειωθεί ότι εκτός από τα οξείδια του άνθρακα και τις ενώσεις του αζώτου που προαναφέρθηκαν, μπορούν να σχηματιστούν ως παραπροϊόντα και ίχνη άλλων ενώσεων, όπως υδροκυάνιο.

Σχήμα 8: SCR των NO_x με C₃H₆ με καταλύτες: (x) γ-Al₂O₃, (◦) 1.2wt%Ag/γ-Al₂O₃ και (•) 10wt%Ag/γ-Al₂O₃ συναρτήσει της θερμοκρασίας. Τροφοδοσία: 500 ppm NO, 500 ppm C₃H₆ και 2.5% O₂/He, W/F = 0.06 g s cm⁻³, ταχύτητα χώρου αντιδραστήρα (GHSV) = ~ 50000 h⁻¹. Η διακεκομμένη γραμμή στο διάγραμμα της απόδοσης NO₂ δείχνει το θερμοδυναμικό όριο της αντίδρασης: NO + $\frac{1}{2}$ O₂ ↔ NO₂.

Η αλουμίνα είναι δραστική για την SCR των NO_x και παρουσιάζει μεγάλη εκλεκτικότητα προς παραγωγή N₂, αλλά μόνο σε υψηλές θερμοκρασίες (πάνω από 400°C). Ο καταλύτης 1.2%Ag/γ-Al₂O₃ παρουσιάζει παρόμοια προφίλ δραστικότητας και μάλιστα μετατοπισμένα προς χαμηλότερες θερμοκρασίες. Αντίθετα, ο καταλύτης 10wt%Ag/γ-Al₂O₃ είναι πολύ δραστικός σε χαμηλές θερμοκρασίες, αλλά μετατρέπει τα NO_x κυρίως προς υποξείδιο του αζώτου (N₂O), το οποίο είναι επίσης περιβαλλοντικός ρύπος.

Η αποτελεσματικότητα των μεταλλικών καταλυτών σε φορείς οξειδίων για την SCR των NO_x εξαρτάται σημαντικά από τη φύση του αναγωγικού (π.χ. αλκάνιο, αλκένιο, αλκοόλη), το μοριακό του βάρος και τη μέθοδο παρασκευής του καταλύτη. Σε μελέτες που πραγματοποιούνται σε αυτόν τον τομέα χρησιμοποιούνται αλκάνια και αλκένια συνήθως με 2 ή 3 άτομα άνθρακα, επειδή αυτά τα μόρια συνυπάρχουν στα καυσαέρια και επιπλέον επιτυγχάνουν υψηλές μετατροπές NO [6].

Στο σχήμα 9 φαίνεται η μετατροπή ΝΟ προς N_2 με καταλύτη 2wt% Ag/γ-Al₂O₃ και διάφορα κανονικά αλκάνια ως αναγωγικά μέσα. Η συγκέντρωση του αναγωγικού ήταν καθορισμένη ώστε να δίνει 6000 ppm άτομα άνθρακα. Τα μεγαλύτερα αλκάνια επιτυγχάνουν μεγαλύτερη μετατροπή NO προς N_2 σε ένα μεγάλο εύρος θερμοκρασιών, γεγονός που πιθανώς οφείλεται στη μεγαλύτερη ενθαλπία προσρόφησης και τους ασθενείς δεσμούς C-H στις μεθυλενικές ομάδες αυτών των υδρογονανθράκων [6].

Σχήμα 9: Μετατροπή NO προς N₂ με καταλύτη 2% Ag/γ-Al₂O₃ και αναγωγικά μέσα: (•) μεθάνιο, (•) αιθάνιο, και (\blacktriangle) προπάνιο, (\triangle) n-βουτάνιο, (\diamondsuit) n-εξάνιο και (\blacklozenge) n-οκτάνιο. Τροφοδοσία: 1000 ppm NO, 6000 ppm C, 10% O₂, 2% H₂O, W/F = 0.12 g s cm⁻³ (για το μεθάνιο: W/F = 0.9 g s cm⁻³). Οι Meunier et al. [21] πραγματοποίησαν μια σειρά από πειράματα με καταλύτες Ag/γ - Al_2O_3 για την με C_3H_6 SCR των NO_x με σκοπό να εξετάσουν την επίδραση της φόρτισης Ag και του χρόνου παραμονής (residence time), την αντοχή σε SO_2 και την επίδραση μεγάλων ποσοτήτων H_2O (12% v/v). Επιπλέον, σύγκριναν τη δραστικότητα διαφόρων καταλυτών σε φορείς ζιρκονίας με καταλύτες υποστηριγμένους σε αλουμίνα. Στο **σχήμα 10** φαίνονται οι μετατροπές NO και C_3H_6 και οι αποδόσεις N_2 και N_2O για καταλύτες με 0.5 ως 4wt% Ag σε φορέα αλουμίνας. Οι παραγωγές NO_2 και NH_3 δεν ήταν σημαντικές ώστε να αναφερθούν στο διάγραμμα του σχήματος. Η μεγαλύτερη παραγωγή N_2 και η μεγαλύτερη εκλεκτικότητα προς παραγωγή N_2 επιτεύχθηκαν με τον καταλύτη 1% Ag/γ - Al_2O_3 (8.7x10⁻⁵ $g_{silver}/m_{aloumina}^2$, επιφάνεια της αλουμίνας: 115 m²/g). Τα δείγματα με λιγότερο από 2wt%Ag παρουσίασαν υψηλές εκλεκτικότητες προς παραγωγή N_2 (περισσότερο από 95%) ενώ οι καταλύτες με μεγαλύτερο ποσοστό Ag έδωσαν σημαντικά ποσοστά N_2O .

Σχήμα 10: SCR των NO_x με C₃H₆ ως αναγωγικό: επίδραση της φόρτισης Ag σε γ-Al₂O₃ (γ-Al₂O₃: 115 m²·g⁻¹). Οι θερμοκρασίες που φαίνονται πάνω τις ράβδους αντιστοιχούν στις μέγιστες μετατροπές NO για τους καταλύτες που χρησιμοποιήθηκαν. Τροφοδοσία: 0.1% NO, 0.1% C₃H₆, 5% O₂ σε He, W/F = 0.12 g/s cm⁻³, ταχύτητα χώρου αντιδραστήρα (GHSV) = 25,000 h⁻¹.

Όσον αφορά την αντοχή σε SO₂, οι ερευνητές σύγκριναν τον καταλύτη 1.2% Ag/γ-Al₂O₃ με τους καταλύτες 0.3wt%Co, 3wt%Ni, 0.8wt%In/γ-Al₂O₃ προσθέτοντας 100 ppm SO₂ στο μίγμα των αερίων τροφοδοσίας [21]. Στο σχήμα H φαίνεται ότι μετά από έκθεση σε SO₂ οι μετατροπές του NO προς N₂ και του C₃H₆ μειώνονται για όλους τους καταλύτες που μελετήθηκαν. Όσο μεγαλύτερη είναι η διάρκεια της έκθεσης σε SO₂, τόσο αυξάνεται η έκταση της απενεργοποίησης των καταλυτών. Επιπλέον, είναι φανερό ότι η έκταση της απενεργοποίησης είναι μικρότερη στις περιπτώσεις του Co και του Ni. Πρέπει να σημειωθεί ότι μετά την απομάκρυνση του SO₂ από το μίγμα τροφοδοσίας, όλοι οι καταλύτες επανακτούν τη δραστικότητά τους εκτός από την προωθημένη με Ag αλουμίνα.

Σχήμα 11: (a) μετατροπή C₃H₆ και (b) απόδοση N₂ κατά την με C₃H₆ SCR των NO_x. T_{max}: Ni = 513°C, Co = 525°C, In = 550°C και Ag = 486°C. Τροφοδοσία: 0.1% NO, 0.1% C₃H₆, 5% O₂ σε He, ταχύτητα χώρου αντιδραστήρα (GHSV) = 100,000 h⁻¹.

Στο σχήμα 12 φαίνεται η επίδραση H_2O στην απόδοση N_2 και τη μετατροπή του C_3H_6 κατά την με C_3H_6 SCR των NO_x με καταλύτη 1.2% Ag/γ-Al₂O₃. Οι θερμοκρασίες μέγιστης μετατροπής (T_{max}) ελαττώνονται και μετατοπίζονται προς υψηλότερες τιμές παρουσία H_2O , επίδραση η οποία είναι πλήρως αντιστρεπτή.

Σχήμα 12: (a) μετατροπή προς N₂ και (b) μετατροπή C₃H₆ συναρτήσει της θερμοκρασίας κατά την με C₃H₆ SCR των NO_x. T_{max}: Ni = 513°C, Co = 525°C, In = 550°C και Ag = 486°C. Τροφοδοσία: 0.1% NO, 0.1% C₃H₆, 5% O₂ σε He, W/F = 0.12 g s cm⁻³, ταχύτητα χώρου αντιδραστήρα (GHSV) = 25,000 h⁻¹.

OI Meunier et al. [21] μελέτησαν επίσης και καταλύτες σε φορείς ζιρκονίας (ZrO₂). Οι μετατροπές NO και C₃H₆ καθώς και οι παραγωγές N₂, NO₂ και N₂O φαίνονται στο σχήμα 13, ενώ η παραγωγή της NH₃ είναι αμελητέα γι' αυτό και δεν απεικονίζεται στο διάγραμμα. Από τα σχήματα 9 και 13 φαίνεται ότι οι μη προωθημένοι καταλύτες ZrO₂ και γ-Al₂O₃ παρουσιάζουν την ίδια δραστικότητα κατά την με C₃H₆ SCR των NO_x. Η προσθήκη Ag στη ζιρκονία δημιουργεί καταλύτες που είναι πιο δραστικοί και σε χαμηλότερες θερμοκρασίες σε σύγκριση με τον μη προωθημένο καταλύτη. Συγκεκριμένα, καθώς αυξάνεται η φόρτιση με Ag παρατηρείται μείωση της θερμοκρασίας στην οποία η μετατροπή NO είναι μέγιστη. Η μέγιστη μετατροπή NO παρατηρείται όταν η φόρτιση του Ag στην ζιρκονία είναι σημαντική παρατήρηση είναι ότι οι εκλεκτικότητες προς παραγωγή N₂O είναι σημαντικές για όλους τους καταλύτες Ag/ZrO₂. Αυτός είναι και ο λόγος για τον οποίο οι καταλύτες Ag σε φορέα ZrO₂ δεν θεωρούνται τόσο χρήσιμοι στην SCR των NO_x όσο οι καταλύτες Ag σε φορέα γ-Al₂O₃.

Σχήμα 13: C₃H₆ SCR των NO_x: επίδραση της περιεκτικότητας Ag στη ζιρκονία (ZrO₂: 37 m²g⁻¹). Τροφοδοσία: 0.1% NO, 0.1% C₃H₆, 5% O₂ σε He, W/F = 0.12 g s cm⁻³, ταχύτητα χώρου αντιδραστήρα (GHSV) = 25,000 h⁻¹.

Συμπερασματικά, τα αποτελέσματα των Meunier et al. [21] δείχνουν ότι οι καταλύτες Ag/γ - Al_2O_3 θα μπορούσαν να χρησιμοποιηθούν στην SCR των NO_x αερίων, παρουσία νερού αλλά με χαμηλή περιεκτικότητα σε SO_x.

2.4.4.3.1 Επίδραση της μεθόδου παρασκευής στη δραστικότητα του καταλύτη

Οι Seker et al. [22] μελέτησαν και σύγκριναν τις ενεργότητες καταλυτών Ag/Al_2O_3 , οι οποίοι παρασκευάστηκαν με συγκαταβύθιση, εμποτισμό και τη μέθοδο solgel. Οι καταλύτες που παρασκευάστηκαν με την μέθοδο sol-gel ήταν πιο δραστικοί, είχαν μεγάλη θερμική σταθερότητα και επιτύγχαναν σχεδόν 100% εκλεκτικότητα προς N_2 . Αναλυτικότερα, στο σχήμα 14 φαίνεται ότι ο καταλύτης που παρασκευάστηκε με συγκαταβύθιση επιτυγχάνει 30% μετατροπή NO προς N_2 στους 500°C, ενώ η ίδια μετατροπή με καταλύτη που έχει παρασκευαστεί με τη μέθοδο sol-gel είναι 78% (στην ίδια θερμοκρασία).

Σχήμα 14: Μετατροπή ΝΟ προς N₂ με καταλύτες που παρασκευάστηκαν: (a) με συγκαταβύθιση και (b) με τη μέθοδο sol-gel. Τροφοδοσία: 1000 ppm NO, 1000 ppm C₃H₆ και 5%O₂/He, $F_t = 200$ cc/min. Calcination: 300°C.

Η σύγκριση καταλυτών 5wt%Ag/Al₂O₃ που παρασκευάστηκαν με εμποτισμό και sol-gel δείχνει ότι με τον δεύτερο καταλύτη το εύρος της θερμοκρασίας στο οποίο παρατηρείται υψηλή μετατροπή NO_x μετατοπίζεται προς χαμηλότερες τιμές.

Σε αυτό το σημείο πρέπει να αναφερθεί ότι η μέγιστη δυνατή μετατροπή NO_x επιτυγχάνεται όταν η αναλογία υδρογονάνθρακα προς NO είναι ίση με 1 (HC/NO = 1).

Όπως έχει ήδη αναφερθεί, ένα από τα πλεονεκτήματα της χρήσης καταλυτών Ag/Al₂O₃ που έχουν παρασκευαστεί με τη μέθοδο sol-gel είναι η πολύ μικρή παραγωγή N₂O (μικρή εκλεκτικότητα μετατροπής NO_x προς N₂O και μεγάλη εκλεκτικότητα προς N₂). Με τον καταλύτη 5wt%Pt/Al₂O₃ η εκλεκτικότητα προς N₂O είναι 72% ενώ με τον καταλύτη 5wt%Ag/Al₂O₃ (sol-gel) είναι μόνο 2%. Ο καταλύτης Cu/ZSM-5 δεν παράγει καθόλου N₂O (Bάρος καταλύτη: 1.0g. Τροφοδοσία: 500 ppm NO, 1333 ppm C₃H₆ και 10% O₂/ N₂, F_t = 4000 cc/min).

Στο σχήμα 15 φαίνεται η επίδραση της θερμοκρασίας calcinations στη μετατροπή NO προς N₂ με καταλύτη 5wt%Ag/Al₂O₃ που έχει παρασκευαστεί με τη μέθοδο sol-gel. Η μέγιστη δυνατή μετατροπή εμφανίζεται με καταλύτη που έχει υποστεί calcination στους 600°C.

Σχήμα 15: Μετατροπή NO προς N₂ με καταλύτες 5wt%Ag/Al₂O₃ που παρασκευάστηκαν με τη μέθοδο sol-gel και έχουν υποστεί calcination σε διάφορες θερμοκρασίες. Βάρος καταλύτη: 0.2g. Τροφοδοσία: 1000 ppm NO, 1000 ppm C₃H₆ και 5% O₂/He, $F_t = 200$ cc/min.

2.4.2.3.2 Προώθηση καταλυτών Ag/Al₂O₃

To 2001 oi Son et al. [23] παρουσίασαν μια μελέτη που αφορούσε την προώθηση καταλυτών Ag/Al₂O₃ με μέταλλα. Οι ερευνητές κατασκέυασαν τους καταλύτες με τη μέθοδο του υγρού εμποτισμού. Αρχικά, βρήκαν ότι η βέλτιστη φόρτιση Ag στην αλουμίνα είναι 2wt% (σχήμα 16). Οι μετατροπές NO με τον καταλύτη 3wt%Ag/Al₂O₃ ήταν χαμηλότερες από τις αντίστοιχες μετατροπές με τον καταλύτη 2wt%Ag/Al₂O₃ (από τους 300 ως τους 500°C). Αυτό οφείλεται στον μεταλλικό άργυρο που υπάρχει στον 3wt%Ag/Al₂O₃, ο οποίος ευνοεί την καύση του αναγωγικού C₃H₆.

Σχήμα 16: Μετατροπή NO με διάφορες περιεκτικότητες Ag σε Al₂O₃. Βάρος καταλύτη: 0.6g. Τροφοδοσία: 1000 ppm NO, 1000 ppm C₃H₆ και 5% O₂/ N₂, , $F_t = 400$ cc/min.

Προκειμένου να καταλάβουν την επίδραση της προσθήκης αλκαλίων, οι επιστήμονες πρόσθεσαν 1wt% Li, Na, K και Cs σε 2wt%Ag/Al₂O₃ (σχήμα 17). Οι μετατροπές NO με τους καταλύτες 2wt%Ag,1wt%Li/Al₂O₃, 2wt%Ag,1wt%Na/Al₂O₃, 2wt%Ag,1wt%K/Al₂O₃ ήταν χαμηλότερες από αυτές με τον καταλύτη 2wt%Ag/Al₂O₃. Aντίθετα οι μετατροπές NO με 2wt%Ag,1wt%Cs/Al₂O₃ ήταν υψηλότερες ιδιαίτερα από τους 300 ως τους 400°C. Οι ερευνητές εξήγησαν τη συμπεριφορά του Cs αναφέροντας ότι α) αύξησε τη σταθερότητα και την ανάπτυξη Ag₂O, β) αύξησε τη διασπορά των ατόμων Ag κατά τη διάρκεια της αντίδρασης και γ) η αύξηση της παραγωγής Ag₂O οδήγησε στην παραγωγή ενδιάμεσου ισοκυανικού (-NCO) προϊόντος.

Σχήμα 17: Επίδραση της προσθήκης αλκαλίου σε 2%Ag/Al₂O₃ στη μετατροπή NO. Βάρος καταλύτη: 0.6g. Τροφοδοσία: 1000 ppm NO, 1000 ppm C₃H₆ και 5%O₂/N₂, $F_t = 400$ cc/min.

Στη συνέχεια οι επιστήμονες μελέτησαν καταλύτες αργύρου σε αλουμίνα, στους οποίους είχαν προστεθεί διάφορες περιεκτικότητες Cs (σχήμα 18). Η μέγιστη μετατροπή NO με καταλύτη $2wt\%Ag/Al_2O_3$ ήταν ~58% στους 400°C, με $2wt\%Ag,0.5wt\%Cs/Al_2O_3$ ήταν ~68% στους 450°C και με $2wt\%Ag,1wt\%Cs/Al_2O_3$ έφτανε το ~65% στους 400°C. Γενικά με τους καταλύτες $2wt\%Ag,0.5wt\%Cs/Al_2O_3$ και $2wt\%Ag,1wt\%Cs/Al_2O_3$ οι μετατροπές NO ήταν υψηλότερες σε όλο το εύρος των θερμοκρασιών που εξετάστηκαν.

Σχήμα 18: Επίδραση της προσθήκης διαφόρων περιεκτικοτήτων Cs σε 2%Ag/Al₂O₃ στη μετατροπή NO. Βάρος καταλύτη: 0.6g. Τροφοδοσία: 1000 ppm NO, 1000 ppm C₃H₆ και 5% O₂/N₂, F_t = 400 cc/min.

Ένα ακόμη μέταλλο (ευγενές) το οποίο βρέθηκε να ενισχύει τη δράση του Ag/Al_2O_3 κατά την SCR των NO_x είναι το παλλάδιο (Pd). Το 2003 οι He et al. [24] παρουσίασαν μια μελέτη στην οποία φαίνεται ότι ο καταλύτης 5%Ag,0.01%Pd/Al₂O₃ επιτυγχάνει μεγαλύτερη μετατροπή NO_x από τον καταλύτη 5%Ag/Al₂O₃ ειδικότερα σε θερμοκρασίες από 300 ως 450°C. Συγκεκριμένα, με τον καταλύτη 5%Ag/Al₂O₃ η μέγιστη μετατροπή NO_x είναι ~78% στους 475°C (σχήμα 19). Η προσθήκη σε αυτόν τον καταλύτη 0.01%Pd οδηγεί σε ~80% μετατροπή και σε χαμηλότερη θερμοκρασία (440°C).

Σχήμα 19: Μετατροπή NO_x με καταλύτες 5%Ag/Al₂O₃ και 5%Ag,0.01%Pd/Al₂O₃. Βάρος καταλύτη: 1.2g. Τροφοδοσία: 800 ppm NO, 1714 ppm C₃H₆, 10% O₂, 10%H₂O, F_t = 4000 cc/min, ταχύτητα χώρου αντιδραστήρα (GHSV) = ~50,000h⁻¹, W/F = 0.018g s cm⁻³.

Aντίθετα με το Cs και το Pd ο χρυσός (Au) έχει παρεμποδιστική δράση στους καταλύτες Ag υποστηριγμένους σε αλουμίνα. Η μετατροπή NO με καταλύτη 5wt%Ag/Al₂O₃ είναι ~78% στους 500°C ενώ με 2.5wt%Ag,2.5wt%Au/Al₂O₃ φτάνει στο 40% στους 550°C (Βάρος καταλύτη: 0.2g. Τροφοδοσία: 1000 ppm NO, 1000 ppm C₃H₆, 5%O₂, $F_t = 200$ cc/min. Μέθοδος παρασκευής: sol-gel) [22].

Όπως έχει ήδη αναφερθεί, το Rh είναι μέταλλο που ευνοεί την εκλεκτικότητα προς παραγωγή N₂. Γι' αυτό οι Kotsifa et al. [25] εξέτασαν αν η δραστικότητα των καταλυτών Ag/γ-Al₂O₃ θα μπορούσε να προωθηθεί από την προσθήκη Rh. Παρασκεύασαν με τη μέθοδο του εμποτισμού καταλύτες αλουμίνας με συνολική περιεκτικότητα 1wt% σε Rh και Ag. Τα αποτελέσματά τους έδειξαν ότι οι καταλύτες 0.05wt%Ag(0.95wt%Rh)/γ-Al₂O₃ έχουν καλύτερη καταλυτική συμπεριφορά από τον Ag/γ-Al₂O₃ και του υπόλοιπους μικτούς καταλύτες Ag-Rh, αφού επιτυγχάνουν την μεγαλύτερη μετατροπή NO και την υψηλότερη εκλεκτικότητα προς παραγωγή N₂ (Τροφοδοσία: 1000 ppm NO, 3500 ppm C₃H₆, 5%O₂, W/F = 0.018 g s.cm⁻³).

2.4.2.3.3 Επίδραση της παρουσίας SO2 στη δραστικότητα του καταλύτη

Η παρουσία θείου (S) συνήθως καταστρέφει τους καταλύτες που χρησιμοποιούνται για την SCR των NO_x με υδρογονάνθρακες σε συνθήκες lean-burn. Παρόλα αυτά οι Angelidis et al. [25] έχουν δείξει ότι η παρουσία SO₂ μπορεί να ενισχύει τη δράση καταλυτών Ag/Al₂O₃ με μεσαίες περιεκτικότητες σε Ag (5%). Συγκεκριμένα, η αύξηση της συγκέντρωσης SO₂ οδηγεί πιο γρήγορα στη μέγιστη παραγωγή N₂ (480°C, βάρος καταλύτη: 0.66g, τροφοδοσία: 1000 ppm NO, 500 ppm C₃H₆, 10%O₂, F_t = 500 cc/min, μέθοδος παρασκευής: εμποτισμός).

2.4.2.3.4 Προτεινόμενος μηχανισμός αντίδρασης κατά την με C3H6 SCR των NOx

Όπως έχει ήδη αναφερθεί, η αλουμίνα παρουσιάζει καταλυτικές ικανότητες κατά την SCR των NO_x και εμφανίζει μεγάλη εκλεκτικότητα προς παραγωγή N₂, αλλά μόνο σε υψηλές θερμοκρασίες (πάνω από 400°C). Ο καταλύτης 1.2wt%Ag/γ-Al₂O₃ παρουσιάζει παρόμοια προφίλ δραστικότητας αλλά μετατοπισμένα προς χαμηλότερες θερμοκρασίες. Αντίθετα, ο καταλύτης 10wt%Ag/γ-Al₂O₃ είναι πολύ δραστικός σε χαμηλές θερμοκρασίες, αλλά μετατρέπει τα NO_x κυρίως προς υποξείδιο του αζώτου (N₂O), το οποίο είναι επίσης περιβαλλοντικός ρύπος.

Τα διαφορετικά προφίλ δραστικότητας που παρατηρούνται για τους καταλύτες: γ-Al₂O₃, 1.2wt%Ag/γ-Al₂O₃ και 10wt%Ag/γ-Al₂O₃ οφείλονται σε διαφορετικούς μηχανισμούς αντίδρασης (σχήμα 20) [19, 26]. Σε καταλύτες με μεγάλη φόρτιση αργύρου υπάρχουν μεγάλοι κρυσταλύτες κομμάτια μεταλλικού αργύρου στην επιφάνεια της αλουμίνας. Ο μηχανισμός αντίδρασης περιλαμβάνει τη διάσπαση NO και τον ανασυνδυασμό των προσροφημένων ατόμων αζώτου (N_(ads)) που προκύπτουν, είτε με άλλα N_(ads) με αποτέλεσμα το σχηματισμό N₂, είτε με προσροφημένα μόρια NO (NO_(ads)) με αποτέλεσμα το σχηματισμό N₂O. Σε αυτή την περίπτωση, ο ρόλος του υδρογονάνθρακα είναι να ανάγει το μέταλλο και συνεπώς να επιτρέπει την προσρόφηση και τη διάσπαση του NO. Η παρουσία Ag^ο αυξάνει το ρυθμό καύσης του C₃H₆ σε βάρος του σχηματισμού N₂ [19]. Σε καταλύτες Ag/γ-Al₂O₃ με μικρή φόρτιση αργύρου, ο άργυρος βρίσκεται στην οξειδωμένη του μορφή σε όλες τις πειραματικές συνθήκες και επικρατούν ισχυρές αλληλεπιδράσεις μεταξύ διεσπαρμένων κατιόντων Ag^+ και/ ή μικρών συμπλοκών οξειδίων του αργύρου και της αλουμίνας. Ο ακριβής μηχανισμός της αντίδρασης δεν είναι ακόμα πλήρως κατανοητός, αλλά πιθανώς το N_2 σχηματίζεται από μια σειρά παράλληλων και διαδοχικών αντιδράσεων από τις οποίες παράγονται πολλά ενδιάμεσα προϊόντα. Ο πιθανός ρόλος του Ag^+ είναι η οξείδωση του NO, με αποτέλεσμα τον σχηματισμό ανόργανου $NO_{x(ads)}$. Πράγματι, η παρουσία Ag^+ αυξάνει το ρυθμό παραγωγής ανόργανων $NO_{x(ads)}$, τα οποία στη συνέχεια αντιδρούν με το αναγωγικό. Έτσι παράγονται οργανονιτρο- και/ή οργανονιτροσο- ενώσεις (R-NO₂, R-ONO) και/ή παραγωγά τους (ισοκυανικές ενώσεις, αμίνες, αμμωνία), τα οποία αντιδρούν με το NO ή το NO₂ (που προέρχεται από το R-ONO) προς παραγωγή N₂.

Σχήμα 20: Διαφορετικοί ρόλοι του αργύρου κατά την με C_3H_6 SCR των NO_x: τα μεγάλα σωματίδια Ag^o καταλύουν την αποικοδόμηση-αναγωγή του NO, ενώ τα ιόντα Ag⁺ ευνοούν την οξείδωση του NO προς NO_{x(ads)}, τα οποία στη συνέχεια μετατρέπονται σε αζωτούχες οργανικές ενώσεις και αντιδρούν.

Το NO₂ προωθεί την καταλυτική δράση των καταλυτών Ag/γ-Al₂O₃ με μεγάλη φόρτιση αργύρου, καθώς οξειδώνει τον μεταλλικό άργυρο σε Ag⁺.

Το τυπικό σχήμα "volcano" που εμφανίζεται στις καμπύλες μετατροπής NO και παραγωγής N_2 οφείλεται στον ανταγωνισμό μεταξύ NO και O_2 για το αναγωγικό. Η μη εκλεκτική αντίδραση καύσης του αναγωγικού με O_2 γίνεται πολύ γρηγορότερα από την SCR σε υψηλές θερμοκρασίες και μειώνει τον αριθμό τον μορίων του αναγωγικού που απομένουν για την αντίδραση SCR. Η θερμοκρασία της μέγιστης παραγωγής N_2 συχνά αντιστοιχεί στο 90% της μετατροπής του αναγωγικού [6].

3. ΠΕΙΡΑΜΑΤΙΚΟ ΜΕΡΟΣ

Ο βασικός καταλύτης που χρησιμοποιήθηκε για τη διεξαγωγή των πειραμάτων ήταν Ag υψηλά διεσπαρμένος σε φορέα γ-Al₂O₃, με επακόλουθη προσθήκη Rb, Rh, Cs, Pt, Na. Επίσης παρασκευάστηκε και ένας καταλύτης Ag υψηλά διεσπαρμένος σε φορέα TiO₂. Για την παρασκευή των καταλυτών (2wt%Ag(Xwt%M)/γ-Al₂O₃, όπου X η περιεκτικότητα του καταλύτη στο πρόσθετο M) εφαρμόζεται η μέθοδος <u>sol-gel</u> και ακολουθείται η εξής διαδικασία:

Διαλύεται η κατάλληλη ποσότητα aluminum isopropoxide (AIP) σε νερό (10ml νερό/1g AIP) και προστίθεται νιτρικό οξύ (0.195mol HNO₃/1mol AIP) για να σχηματιστεί το κολλοειδές υδροξείδιο του αργιλίου. Ακολουθεί η προσθήκη στο κολλοειδές των υδατικών διαλυμάτων των νιτρικών αλάτων του Ag και του πρόσθετου M σε ποσότητες προϋπολογισμένες ώστε να παρασκευαστούν καταλύτες με την επιθυμητή περιεκτικότητα σε Ag και M. Μετά από ανάδευση μιας ημέρας, απομακρύνεται ο διαλύτης με θέρμανση στους ~70-80°C έτσι ώστε να σχηματιστεί το gel, το οποίο και ξηραίνεται με θέρμανση στους 110°C για 24h.

Για την παρασκευή του καταλύτη 2wt%Ag/TiO₂ εφαρμόζεται η μέθοδος sol-gel και ακολουθείται η διαδικασία που αναφέρθηκε παραπάνω, μόνο που χρησιμοποιήθηκε titanium isopropoxide (TIP) αντί για AIP.

Οι καταλύτες που παρασκευάστηκαν φαίνονται στον Πίνακα 2.

$CI: 2wt%Ag/\gamma-Al_2O_3$	C7 : 2wt%Ag(0.05wt%Rh)/γ-Al ₂ O ₃
C2: $2wt\%Ag(0.2wt\%Rb)/\gamma-Al_2O_3$	C8 : 2wt%Ag(0.2wt%Rh)/γ-Al ₂ O ₃
C3: $2wt\%Ag(0.5wt\%Rb)/\gamma-Al_2O_3$	C9 : 2wt%Ag(0.5wt%Rb,0.2wt%Pt)/γ-Al ₂ O ₃
$C4$: 2wt%Ag(1wt%Rb)/ γ -Al ₂ O ₃	<i>C10</i> : 2wt%Ag(0.5wt%Cs)/γ-Al ₂ O ₃
C5: $2wt\%Ag(2wt\%Rb)/\gamma-Al_2O_3$	C11: $2wt\%Ag(0.5wt\%Na)/\gamma-Al_2O_3$
<i>C6</i> : 2wt%Ag(0.02wt%Rh)/γ-Al ₂ O ₃	<i>C12</i> : 2wt%Ag/TiO ₂

Πίνακας 2: Καταλύτες Ag/γ-Al2O3 που παρασκευάστηκαν και μελετήθηκαν

Η πειραματική διάταξη που χρησιμοποιήθηκε για τη διεξαγωγή των πειραμάτων φαίνεται στο σχήμα 21. Η διάταξη περιλαμβάνει τη μονάδα τροφοδοσίας, τη μονάδα του αντιδραστήρα και τη μονάδα ανάλυσης.

Η μονάδα τροφοδοσίας αποτελείται από φιάλες αερίων υψηλής πίεσης με περιεκτικότητες:

- 7.83% NO σε He
- ♦ 10% C₃H₆ σε He
- ♦ 20.7% O₂ σε He
- καθαρό He (99.999%) ως αραιωτικό

Τα αέρια οδηγούνται σε ηλεκτρονικά ροόμετρα μάζας (MKS Instuments type 247) με τα οποία ρυθμίζεται η παροχή και η επιθυμητή σύσταση του αντιδρώντος μίγματος. Στη συνέχεια οδηγούνται μέσω μιας τετράπορτης βαλβίδας (4PV) στο υπόλοιπο κύκλωμα. Η βαλβίδα αυτή παρέχει τη δυνατότητα παράκαμψης του αντιδραστήρα, ώστε να επιτρέπεται η κατ' επιλογήν ανάλυση της σύστασης τροφοδοσίας (ανάλυση αντιδρώντων) αλλά και της σύστασης των αερίων της εξόδου του αντιδραστήρα (ανάλυση προϊόντων). Η συνολική ροή στην έξοδο του συστήματος ελέγχεται με ροόμετρο φυσαλίδας.

Ο αντιδραστήρας είναι κατασκευασμένος από κυλινδρικό σωλήνα quartz με εσωτερική διάμετρο 0.4 cm. Είναι εμβολικής ροής (plug flow reactor) και στο κέντρο του είναι τοποθετημένη η καταλυτική κλίνη σε στερεά μορφή. Για τη συγκράτηση της καταλυτικής κλίνης χρησιμοποιείται χαλαζιακός υαλοβάμβακας. Η τυπική φόρτιση σε καταλύτη ανέρχεται σε 200mg. Η θέρμανση του αντιδραστήρα γίνεται με φούρνο από quartz, η θερμοκρασία του οποίου ρυθμίζεται με αναλογικό ρυθμιστή, ενώ η μέτρηση της θερμοκρασίας γίνεται με θερμοστοιχείο τύπου Κ που βρίσκεται σε επαφή με την καταλυτική κλίνη.

Η ανάλυση των αντιδρώντων και προϊόντων γίνεται με on-line αέρια χρωματογραφία. Ο αέριος χρωματογράφος είναι Simandzou GC-14B. Ο διαχωρισμός O_2 και N_2 γίνεται σε στήλη Molecular Sieve 5A και ο διαχωρισμός CO_2 , N_2O και C_3H_6 σε στήλη Porapak-N. Η ανάλυση NO_x γίνεται με αναλυτή οξειδίων του αζώτου (42C Chemiluminescence NO_x analyzer, Thermoenvironmental Instr.), η λειτουργία του οποίου βασίζεται στο φαινόμενο της χημειοφωταύγειας.

Η διεξαγωγή των πειραμάτων περιελάμβανε μετρήσεις μετατροπής των αντιδρώντων (μετατροπή του προπυλενίου και του NO) με μεταβολή της θερμοκρασίας σε σταθερές συνθήκες εισόδου (1000 ppm NO, 1000 ppm C_3H_6 , 5% O_2) που προσομοιώνουν τις συνθήκες καυσαερίων φτωχών σε καύσιμο κινητήρων (lean burn engines).

4. ΑΠΟΤΕΛΕΣΜΑΤΑ

4.1 Μελέτη των καταλυτών σε συνθήκες lean-burn

Τα πειράματα αφορούσαν μετρήσεις μετατροπής των αντιδρώντων (μετατροπή του προπυλενίου και του NO) με μεταβολή της θερμοκρασίας σε σταθερές συνθήκες εισόδου (1000 ppm NO, 1000 ppm C_3H_6 , 5% O_2 , $F_t = 200$ cc/min) που προσομοιώνουν τις συνθήκες καυσαερίων φτωχών σε καύσιμο κινητήρων (lean burn engines). Όλοι οι καταλύτες παρασκευάστηκαν με τη μέθοδο sol-gel.

4.1.1 Επίδραση του Rb στην ενεργότητα/εκλεκτικότητα του Ag

Στο σχήμα 22 φαίνεται η μετατροπή του προπυλενίου για τους καταλύτες C1-C5 (2wt%Ag(Xwt%Rb)/γ-Al₂O₃, όπου X η περιεκτικότητα του καταλύτη στο Rb). Τα αποτελέσματα δείχνουν ότι ο καταλύτης 2wt%Ag/γ-Al₂O₃, παρασκευασμένος με τη μέθοδο sol-gel, επιτυγχάνει 100% μετατροπή C₃H₆ στους ~540°C. Η προσθήκη Rb σε οποιαδήποτε περιεκτικότητα από αυτές που μελετήθηκαν έχει παρεμποδιστική δράση στη μετατροπή C₃H₆ σε θερμοκρασίες μεγαλύτερες από ~380°C.

Στο σχήμα 23 φαίνεται η μετατροπή του NO για τους καταλύτες C1-C5. Τα αποτελέσματα δείχνουν ότι ο καταλύτης $2wt\%Ag/\gamma$ -Al₂O₃ είναι ο πιο δραστικός, επιτυγχάνοντας 82% μετατροπή NO στους ~500°C. Η προσθήκη Rb σε οποιαδήποτε περιεκτικότητα από αυτές που μελετήθηκαν έχει ως αποτέλεσμα τη σημαντική μείωση της μετατροπής NO. Ο καταλύτης $2wt\%Ag(0.5wt\%Rb)/\gamma$ -Al₂O₃ επιδεικνύει την καλύτερη συμπεριφορά επιτυγχάνοντας 77% μετατροπή NO στους ~520°C, ενώ ο καταλύτης $2wt\%Ag(2wt\%Rb)/\gamma$ -Al₂O₃ επιδεικνύει τη χειρότερη συμπεριφορά επιτυγχάνοντας ~500°C.

Η δραστικότητα των καταλυτών C1-C5 για τις μετατροπές C_3H_6 και NO αυξάνεται με την εξής σειρά:

C1: $2wt\%Ag/\gamma-Al_2O_3 > C3$: $2wt\%Ag(0.5wt\%Rb)/\gamma-Al_2O_3 >$

C4: $2wt\%Ag(1.0wt\%Rb)/\gamma-Al_2O_3 > C2: 2wt\%Ag(0.2wt\%Rb)/\gamma-Al_2O_3 > C2: 2wt\%Rb)/\gamma-Al_2O_3 > C2: 2wt$

C5: 2wt%Ag(2.0wt%Rb)/γ-Al₂O₃

Η εκλεκτικότητα προς παραγωγή N_2 υπολογίστηκε από τη σχέση:

$$S_{N_2} = \frac{\mu \varepsilon \tau \alpha \tau \rho \sigma \pi \eta \text{ NO } \sigma \varepsilon \text{ N}_2}{\sigma \upsilon v o \lambda ι \kappa \eta \mu \varepsilon \tau \alpha \tau \rho \sigma \pi \eta \text{ NO}}$$

Η εκλεκτικότητα προς παραγωγή N₂ για τους καταλύτες C1-C5 φαίνεται στο σχήμα 24. Είναι φανερό ότι η προσθήκη 0.2, 0.5, 1.0wt%Rb δεν επηρεάζει σημαντικά την εκλεκτικότητα προς παραγωγή N₂ του καταλύτη $2wt%Ag/\gamma$ -Al₂O₃. Αντίθετα με τον καταλύτη $2wt%Ag(2wt%Rb)/\gamma$ -Al₂O₃ παρατηρείται σημαντική μείωση (~10%) της εκλεκτικότητας προς παραγωγή N₂ ιδιαίτερα σε θερμοκρασίες μικρότερες από ~460°C.

4.1.2 Επίδραση του Rh στην ενεργότητα/εκλεκτικότητα του Ag

Στο σχήμα 25 φαίνεται η μετατροπή του προπυλενίου για τους καταλύτες C1 και C6-C8 (2wt%Ag(Xwt%Rh)/γ-Al₂O₃, όπου X η περιεκτικότητα του καταλύτη στο Rh). Με τον καταλύτη C8: 2wt%Ag(0.2wt%Rh)/γ-Al₂O₃ επιτυγχάνονται μεγαλύτερες μετατροπές C₃H₆ σε σχέση με τον C1: 2wt%Ag/γ-Al₂O₃ και σε θερμοκρασίες μεγαλύτερες από ~470°C. Σε μικρότερες θερμοκρασίες, οι δύο καταλύτες παρουσιάζουν παρόμοια συμπεριφορά. Με τον καταλύτη C8 μειώνεται η θερμοκρασία στην οποία επιτυγχάνεται 100% μετατροπή C₃H₆ κατά ~20°C. Η προσθήκη Rh σε περιεκτικότητες μικρότερες από 0.2wt% (C6-C7) έχει παρεμποδιστική δράση στη μετατροπή C₃H₆. Γενικά, όσο μεγαλύτερη είναι η περιεκτικότητα του καταλύτη σε Rh, τόσο αυξάνεται η δραστικότητά του για την μετατροπή C₃H₆.

Στο σχήμα 26 φαίνεται η μετατροπή του ΝΟ για τους καταλύτες. Τα αποτελέσματα δείχνουν ότι η προσθήκη Rh σε οποιαδήποτε από τις περιεκτικότητες που μελετήθηκαν οδηγεί σε σημαντική μείωση της μετατροπής NO. Ο καταλύτης με 0.02% περιεκτικότητα σε Rh παρουσιάζει την καλύτερη συμπεριφορά σε σύγκριση με τους υπόλοιπους μικτούς καταλύτες 2wt%Ag(Xwt%Rh)/γ-Al₂O₃ επιτυγχάνοντας όμως μόνο 60% μέγιστη μετατροπή NO στους ~540°C.

Η εκλεκτικότητα προς παραγωγή N₂ για τους καταλύτες C1 και C6-C8 φαίνεται στο σχήμα 27. Η προσθήκη Rh επηρεάζει την εκλεκτικότητα προς παραγωγή N₂. Αναλυτικότερα, η προσθήκη 0.02, 0.05, και 0.2%Rh αυξάνει την εκλεκτικότητα προς παραγωγή N₂ σε θερμοκρασίες μικρότερες από ~460°C. Επιπλέον, η αύξηση της περιεκτικότητας σε Rh οδηγεί σε αύξηση της εκλεκτικότητας. Ο καταλύτης C8: 2wt%Ag(0.2wt%Rh)/γ-Al₂O₃ εμφανίζει την καλύτερη συμπεριφορά μειώνοντας τη θερμοκρασία στην οποία επιτυγχάνεται 100% εκλεκτικότητα προς παραγωγή N₂ κατά ~80°C.

4.1.3 Επίδραση της προσθήκης Pt και Rb στην ενεργότητα/εκλεκτικότητα του Ag

Η μετατροπή του C₃H₆ για τους καταλύτες C1, C3 (2wt%Ag(0.5wt%Rb)/γ-Al₂O₃) και C9 (2wt%Ag(0.5wt%Rb,0.2wt%Pt)/γ-Al₂O₃) φαίνεται στο σχήμα 28. Η προσθήκη της Pt στον μικτό καταλύτη Ag-Rb οδηγεί σε αύξηση της μετατροπής C₃H₆ και σημαντική μείωση της μετατροπής NO (σχήμα 29).

4.1.4 Επίδραση των αλκαλίων Να και Cs στην ενεργότητα/εκλεκτικότητα του Ag

Στο σχήμα 30 φαίνεται η μετατροπή του προπυλενίου για τους καταλύτες C1, C10 (2wt%Ag(0.5wt%Cs)/γ-Al₂O₃) και C11 (2wt%Ag(0.5wt%Na)/γ-Al₂O₃. Η προσθήκη Cs και Na οδηγεί σε μείωση της μετατροπής C₃H₆ σε θερμοκρασίες μεγαλύτερες από ~400°C. Η μείωση αυτή είναι μεγαλύτερη στην περίπτωση της προσθήκης Cs.

Στο σχήμα 31 φαίνεται η μετατροπή του ΝΟ για τους καταλύτες C1, C10 και C11. Τα αποτελέσματα δείχνουν ότι η προσθήκη Cs και Na οδηγεί σε μείωση της μετατροπής NO, κατά 32 και 50% αντίστοιχα στους 500°C. Η εκλεκτικότητα της μετατροπής ΝΟ προς N₂ για τους καταλύτες C1, C10 και C11 φαίνεται στο σχήμα 32. Η προσθήκη των δύο αλκαλίων ελαττώνει την εκλεκτικότητα της μετατροπής NO προς N₂.

4.1.5 Επίδραση της TiO2 στην ενεργότητα/εκλεκτικότητα του Ag

Η μετατροπή του C₃H₆ για τους καταλύτες C1 ($2wt\%Ag/\gamma-Al_2O_3$) και C12 ($2wt\%Ag/TiO_2$) φαίνεται στο σχήμα 33. Με τον καταλύτη C1 εμφανίζεται μεγαλύτερη μετατροπή C₃H₆ σε θερμοκρασίες μικρότερες από ~480°C.

Στο σχήμα 34 φαίνεται η μετατροπή του NO για τους καταλύτες C1 και C12. Τα αποτελέσματα δείχνουν ότι με τον καταλύτη με Ag υποστηριγμένο σε TiO₂ παρουσιάζεται σημαντικά μικρότερη μετατροπή NO.

Η εκλεκτικότητα της παραγωγής N₂ για τους καταλύτες C1 και C12 φαίνεται στο σχήμα 35. Όταν ο Ag είναι υποστηριγμένος σε φορέα TiO₂ η εκλεκτικότητα προς παραγωγή N₂ είναι σταθερή και 100% σε όλες τις πειραματικές θερμοκρασίες.

Σχήμα 22: Επίδραση της προσθήκης Rb σε $2wt\%Ag/\gamma-Al_2O_3$ στη μετατροπή του C₃H₆ σε συνθήκες lean-burn (1000 ppm NO, 1000 ppm C₃H₆, 5% O₂).

- (x) C1: $2wt\%Ag/\gamma-Al_2O_3$
- (•) C2: 2wt%Ag(0.2wt%Rb)/γ-Al₂O₃
- (**•**) C3: 2wt%Ag(0.5wt%Rb)/γ-Al₂O₃
- (**=**) C4: $2wt\%Ag(1wt\%Rb)/\gamma-Al_2O_3$
- (\blacktriangle) C5: 2wt%Ag(2wt%Rb)/ γ -Al₂O₃

Σχήμα 23: Επίδραση της προσθήκης Rb σε 2wt%Ag/γ-Al₂O₃ στη μετατροπή του NO σε συνθήκες lean-burn (1000 ppm NO, 1000 ppm C₃H₆, 5% O₂).

- (x) C1: $2wt\%Ag/\gamma-Al_2O_3$
- (•) C2: 2wt%Ag(0.2wt%Rb)/γ-Al₂O₃
- (**♦**) C3: 2wt%Ag(0.5wt%Rb)/γ-Al₂O₃
- (**=**) C4: $2wt\%Ag(1wt\%Rb)/\gamma-Al_2O_3$
- (**Δ**) C5: 2wt%Ag(2wt%Rb)/γ-Al₂O₃

Σχήμα 24: Επίδραση της προσθήκης Rb σε 2wt%Ag/γ-Al₂O₃ στην εκλεκτικότητα προς παραγωγή προς N₂ σε συνθήκες lean-burn

- (1000 ppm NO, 1000 ppm C₃H₆, 5% O₂).
- (x) C1: $2wt\%Ag/\gamma-Al_2O_3$
- (•) C2: 2wt%Ag(0.2wt%Rb)/γ-Al₂O₃
- (♦) C3: 2wt%Ag(0.5wt%Rb)/γ-Al₂O₃
- (**=**) C4: $2wt\%Ag(1wt\%Rb)/\gamma-Al_2O_3$
- (\blacktriangle) C5: 2wt%Ag(2wt%Rb)/ γ -Al₂O₃

Σχήμα 25: Επίδραση της προσθήκης Rh σε $2wt\%Ag/\gamma-Al_2O_3$ στη μετατροπή του C₃H₆ σε συνθήκες lean-burn (1000 ppm NO, 1000 ppm C₃H₆, 5% O₂).

- (x) C1: $2wt\%Ag/\gamma-Al_2O_3$
- (\diamond) C6: 2wt%Ag(0.02wt%Rh)/ γ -Al₂O₃
- (\triangle) C7: 2wt%Ag(0.05wt%Rh)/ γ -Al₂O₃
- (Δ) C8: 2wt%Ag(0.2wt%Rh)/ γ -Al₂O₃

Σχήμα 26: Επίδραση της προσθήκης Rh σε $2wt\%Ag/\gamma$ -Al₂O₃ στη μετατροπή του NO σε συνθήκες lean-burn (1000 ppm NO, 1000 ppm C₃H₆, 5% O₂).

- (x) C1: $2wt\%Ag/\gamma-Al_2O_3$
- (\diamond) C6: 2wt%Ag(0.02wt%Rh)/ γ -Al₂O₃
- (\triangle) C7: 2wt%Ag(0.05wt%Rh)/ γ -Al₂O₃
- (Δ) C8: 2wt%Ag(0.2wt%Rh)/ γ -Al₂O₃

Σχήμα 27: Επίδραση της προσθήκης Rh σε 2wt%Ag/γ-Al₂O₃ στην εκλεκτικότητα προς παραγωγή N₂ σε συνθήκες lean-burn

- (1000 ppm NO, 1000 ppm C₃H₆, 5% O₂).
- (x) C1: $2wt\%Ag/\gamma-Al_2O_3$
- (\diamond) C6: 2wt%Ag(0.02wt%Rh)/ γ -Al₂O₃
- (\triangle) C7: 2wt%Ag(0.05wt%Rh)/ γ -Al₂O₃
- (Δ) C8: 2wt%Ag(0.2wt%Rh)/ γ -Al₂O₃

Σχήμα 28: Επίδραση της προσθήκης Pt και Rb σε $2wt\%Ag/\gamma-Al_2O_3$ στη μετατροπή του C₃H₆ σε συνθήκες lean-burn (1000 ppm NO, 1000 ppm C₃H₆, 5% O₂).

- (x) C1: $2wt\%Ag/\gamma-Al_2O_3$
- (*) C3: $2wt\%Ag(0.5wt\%Rb)/\gamma-Al_2O_3$
- (+) C9: 2wt%Ag(0.5wt%Rb,0.2wt%Pt)/γ-Al₂O₃

Σχήμα 29: Επίδραση της προσθήκης Pt και Rb σε 2wt%Ag/γ-Al₂O₃ στη μετατροπή του

NO σε συνθήκες lean-burn (1000 ppm NO, 1000 ppm C_3H_6 , 5% O_2).

- (x) C1: $2wt\%Ag/\gamma-Al_2O_3$
- (*) C3: $2wt\%Ag(0.5wt\%Rb)/\gamma-Al_2O_3$
- (+) C9: 2wt%Ag(0.5wt%Rb,0.2wt%Pt)/γ-Al₂O₃

Σχήμα 30: Επίδραση της προσθήκης Cs, Na και Rb σε 2wt%Ag/γ-Al₂O₃ στη μετατροπή του C₃H₆ σε συνθήκες lean-burn (1000 ppm NO, 1000 ppm C₃H₆, 5% O₂).

- (x) C1: $2wt\%Ag/\gamma-Al_2O_3$
- (*) C3: $2wt\%Ag(0.5wt\%Rb)/\gamma-Al_2O_3$
- (*) C10: 2wt%Ag(0.5wt%Cs)/γ-Al₂O₃
- (•) C11: 2wt%Ag(0.5wt%Na)/γ-Al₂O₃

Σχήμα 31: Επίδραση της προσθήκης Cs, Na και Rb σε $2wt\%Ag/\gamma-Al_2O_3$ στη μετατροπή του NO σε συνθήκες lean-burn (1000 ppm NO, 1000 ppm C₃H₆, 5% O₂).

- (x) C1: $2wt\%Ag/\gamma-Al_2O_3$
- (*) C3: $2wt\%Ag(0.5wt\%Rb)/\gamma-Al_2O_3$
- (*) C10: 2wt%Ag(0.5wt%Cs)/γ-Al₂O₃
- (•) C11: 2wt%Ag(0.5wt%Na)/γ-Al₂O₃

Σχήμα 32: Επίδραση της προσθήκης Cs, Na και Rb σε 2wt%Ag/γ-Al₂O₃ στην εκλεκτικότητα προς παραγωγή N₂ σε συνθήκες lean-burn (1000 ppm NO, 1000 ppm C₃H₆, 5% O₂).

- (x) C1: $2wt\%Ag/\gamma-Al_2O_3$
- (*) C3: $2wt\%Ag(0.5wt\%Rb)/\gamma-Al_2O_3$
- (*) C10: 2wt%Ag(0.5wt%Cs)/γ-Al₂O₃
- (•) C11: $2wt\%Ag(0.5wt\%Na)/\gamma-Al_2O_3$

Σχήμα 33: Σύγκριση των καταλυτών C1: 2wt%Ag/γ-Al₂O₃ και C13: 2wt%Ag/TiO₂ κατά τη μετατροπή του C₃H₆ σε συνθήκες lean-burn (1000 ppm NO, 1000 ppm C₃H₆, 5% O₂).

- (x) C1: $2wt\%Ag/\gamma-Al_2O_3$
- (-) C12: 2wt%Ag/TiO₂

Σχήμα 34: Σύγκριση των καταλυτών C1: 2wt%Ag/γ-Al₂O₃ και C13: 2wt%Ag/TiO₂ κατά τη μετατροπή του NO σε συνθήκες lean-burn (1000 ppm NO, 1000 ppm C₃H₆, 5% O₂).

- (x) C1: $2wt\%Ag/\gamma-Al_2O_3$
- (-) C12: 2wt%Ag/TiO₂

Σχήμα 35: Σύγκριση των καταλυτών C1: 2wt%Ag/γ-Al₂O₃ και C13: 2wt%Ag/TiO₂ για την εκλεκτικότητα προς παραγωγή N₂ σε συνθήκες lean-burn (1000 ppm NO, 1000ppm C₃H₆, 5% O₂).

- (x) C1: $2wt\%Ag/\gamma-Al_2O_3$
- (-) C12: 2wt%Ag/TiO₂

5. ΣΥΖΗΤΗΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ

Μελετώντας συνολικά τα αποτελέσματα (σχήματα 22 έως 35) καταλήγουμε στα παρακάτω γενικά συμπεράσματα:

5.1 Επίδραση των αλκαλίων

(i) Προσθήκη αλκαλίου (Rb, Na, Cs) και σε οποιαδήποτε ποσότητα, προκαλεί υποβάθμιση της δραστικότητας του καταλύτη και ως προς τη μετατροπή του C₃H₆ (σχήματα 22 και 30) και ως προς τη μετατροπή του NO (σχήματα 23 και 31). Τα αποτελέσματα που αφορούν την προσθήκη Cs δεν συμφωνούν με τα αποτελέσματα των Son et al. [23], σύμφωνα με τα οποία η προσθήκη 0.5 και 1% Cs βελτιώνουν πολύ την καταλυτική δράση του καταλύτη 2wt%Ag/γ-Al₂O₃. Είναι σημαντικό βέβαια να σημειωθεί ότι οι Son et al. παρασκεύασαν τους καταλύτες τους με τη μέθοδο του υγρού εμποτισμού, ενώ οι καταλύτες που μελετήθηκαν στα πλαίσια αυτής της εργασίας παρασκευάστηκαν με το μέθοδο sol-gel.

(ii) Αύξηση της περιεκτικότητας σε Rb οδηγεί εν γένει σε μονότονη μείωση των μετατροπών C₃H₆ και NO (με μικρή εξαίρεση στην μονοτονική υφή αυτής της συμπεριφοράς από τον καταλύτη με 0,2wt%Rb (σχήματα 22 και 23).

(iii) Η εκλεκτικότητα προς παραγωγή N₂ εμφανίζεται εν γένει ανεπηρέαστη από τη παρουσία προωθητή Rb εκτός της περίπτωσης υψηλών φορτίσεων (2wt%Rb) σε προωθητή, όπου παρατηρείται μια αξιοσημείωτη ελάττωση της εκλεκτικότητας (σχήμα 24). Φορτίσεις σε Na κaι Cs της τάξης των 0.5wt% υποβαθμίζουν την εκλεκτικότητα προς παραγωγή N₂ (σχήμα 32).

5.2 Επίδραση ευγενών μετάλλων (Rh)

(i) Προσθήκη Rh σε οποιαδήποτε ποσότητα από αυτές που μελετήθηκαν (0 έως 0.2wt%), προκαλεί σημαντική υποβάθμιση της δραστικότητας του καταλύτη ως προς τη μετατροπή του NO (σχήμα 26). Η αύξηση της περιεκτικότητας σε Rh οδηγεί σε αύξηση της μετατροπής NO σε θερμοκρασίες μικρότερες από ~500°C. Σε μεγαλύτερες θερμοκρασίες, ο καταλύτης 2wt%Ag(0.02wt%Rh)/γ-Al₂O₃ παρουσιάζει την καλύτερη συμπεριφορά επιτυγχάνοντας όμως μόνο 60% μέγιστη μετατροπή NO στους ~540°C.

(ii) Προσθήκη Rh (σε περιεκτικότητες 0 έως 0.2wt%) έχει εν γένει παρεμποδιστική δράση στη μετατροπή C₃H₆, ξεκινώντας από τη χειρότερη κατάσταση στη μικρότερη φόρτιση των 0.02wt% (μετατόπιση των θερμοκρασιακών προφίλ σε ~20°C μεγαλύτερες θερμοκρασίες). Η συμπεριφορά αυτή βελτιώνεται μονότονα με αύξηση της περιεκτικότητας σε Rh έως ότου η μεγαλύτερη δοκιμασθήσα φόρτιση (0.2wt% Rh) οδηγεί σε όμοια ή ελαφρώς καλύτερη συμπεριφορά από τον καθαρό Ag/γ-Al₂O₃ (σχήμα 25). Γενικά, όσο μεγαλύτερη είναι η περιεκτικότητα του καταλύτη σε Rh, τόσο αυξάνεται η δραστικότητά του για την μετατροπή C₃H₆.

(iii) H proshikh 0.02, 0.05 kai 0.2wt%Rh aukánei monótona thn eklektikóthta proc N₂ se hermokrasíec mikróterec apó ~460°C (syúma 27). Fia autéc, loipón, tic periektikóthtec, aúkínsh thc periektikóthtac se Rh odnyeí se aúkínsh thc eklektikóthtac. Antíheta, poshíkh polú mikrúc posóthtac Rh (0.005wt%) epiqérei shmantikú meíwsh thc eklektikóthtac proc paragwyú N₂ se hermokrasíec mikróterec apó ~520°C.

iv) Η προσθήκη Pt σε ποσοστό 0.2wt% στον καταλύτη $2wt%Ag(0.5wt%Rb)/\gamma-Al_2O_3$ αυξάνει τη μετατροπή του C₃H₆ ενώ μειώνει σημαντικά τη μετατροπή NO. Επιπλέον, μετά τους 380°C μειώνεται η εκλεκτικότητα προς παραγωγή N₂, η οποία τείνει σε μηδενικές σχεδόν τιμές στους ~540°C.

5.3 Επίδραση της ΤίΟ2

Ο καταλύτης 2wt%Ag υποστηριγμένος σε φορέα TiO₂ παρουσιάζει μεγαλύτερη μετατροπή C₃H₆ από τον καταλύτη 2%Ag/γ-Al₂O₃ σε θερμοκρασίες μικρότερες από ~480°C (σχήμα 33). Αντίθετα, η χρήση φορέα TiO₂ αντί γ-Al₂O₃ προκαλεί ελάττωση της μετατροπής NO αφού η μέγιστη μετατροπή NO σ΄ αυτή την περίπτωση είναι μόνο 30% στους ~450°C (δηλαδή 30% μικρότερη μετατροπή NO από τον καταλύτη 2%Ag/γ-Al₂O₃ στην ίδια θερμοκρασία) (σχήμα 34). Όσον αφορά στην εκλεκτικότητα προς παραγωγή

N₂, ο καταλύτης 2%Ag/TiO₂ επιτυγχάνει 100% εκλεκτικότητα σε όλες τις θερμοκρασίες που μελετήθηκαν πειραματικά (σχήμα 35).

5.4 Ερμηνεία των αποτελεσμάτων

Σύμφωνα με τα αποτελέσματα εκτεταμένων ερευνών από τους Yentekakis et al. [βλέπετε π.χ. 15] η προσθήκη αλκαλίων σε καταλύτες Pt αυξάνει σημαντικά την μετατροπή NO από C₃H₆. Αναπτύχθηκε μάλιστα από τους ερευνητές ένα μοντέλο που εξηγεί τον τρόπο δράσης των ηλεκτροθετικών προωθητών (αλκαλίων-αλκαλικών γαιών) για τη διεργασία της αναγωγής του NO από υδρογονάνθρακες. Τα βασικά στοιχεία αυτού του μοντέλου έχουν ως εξής:

(i) Η προσθήκη ηλεκτροθετικών προωθητών (αλκαλίων) σε Pt ενισχύει τη ρόφηση των μορίων που δρουν ως δέκτες ηλεκτρονίων (π.χ. NO και O₂) και των προϊόντων της διασπασής τους (N και O). Η ενίσχυση του δεσμού Pt-NO έχει ως αποτέλεσμα την εξασθένηση του δεσμού N-O στο μόριο του NO και συνεπώς τη διάσπασή του. Ταυτόχρονα η προσθήκη αλκαλίων στην καταλυτική επιφάνεια εξασθενεί το δεσμό των ροφημένων μορίων που δρουν ως δέκτες ηλεκτρονίων (π.χ. C₃H₆).

(ii) Εξαιτίας της ενίσχυσης της διασπαστικής ρόφησης του ΝΟ που προκαλεί η προσθήκη Na σε καταλύτες πλατίνας, αναμένεται μείωση της συγκέντρωσης του μοριακού NO στην επιφάνεια του καταλύτη και ως εκ τούτου αύξηση της συγκέντρωσης των ατόμων N και O, γεγονός που οδηγεί σε αύξηση της παραγωγής N₂ εις βάρος της παραγωγής N₂O. Συνεπώς οι προωθημένοι με Na καταλύτες εμφανίζουν εν γένει δραστικότητα στην αντίδραση αναγωγής του NO από C_3H_6 και σημαντικά βελτιωμένη εκλεκτικότητα προς N₂ από τους μη προωθημένους καταλύτες.

(iii) Ωστόσο, σε πολύ υψηλές φορτίσεις προωθητή Na (over-promotion) και παρουσία του υδρογονάνθρακα C₃H₆, σχηματίζονται επιφανειακά σύμπλοκα του τύπου Na₂CO₃ και NaNO₃, τα οποία συσσωρεύονται στην επιφάνεια του καταλύτη δρώντας παρεμποδιστικά στις ενεργές καταλυτικές θέσεις με αποτέλεσμα να εμποδίζεται η ρόφηση των αντιδρώντων και συνεπώς να μειώνονται οι ρυθμοί μετατροπής NO και C₃H₆. Τα παραπάνω εκτεθέντα αφορούν το μοντέλο δράσης των ηλεκτροθετικών προωθητών στους καταλύτες της ομάδας του Pt κατά την αντίδραση της αναγωγής του NO από υδρογονάνθρακες, μοντέλο το οποίο έχει αποδειχθεί σε σειρές παιραματικών μελετών [14-16].

Όσον αφορά τώρα τους καταλύτες Ag και τη συμπεριφορά τους σε αντιδράσεις de-NO_x με υδρογονάνθρακες, η ικανότητά τους να επιτυγχάνουν ισχυρή διασπαστική ρόφηση του ΝΟ, η διασπορά του αργύρου στο φορέα καθώς και ο μηγανισμός της αντίδρασης αναγωγής των NO_x από τους υδρογονάνθρακες διαφέρουν ανάλογα με τη μέθοδο καταλύτες παρασκευής. Αναλυτικότερα, στους $Ag/\gamma - Al_2O_3$ που παρασκευάζονται με τη μέθοδο του υγρού εμποτισμού, ο άργυρος αποτελείται από μεγάλους κρυσταλλίτες μεταλλικού Ag στην επιφάνεια του φορέα, πάνω στον οποίο ροφώνται και τα δύο αντιδρώντα μόρια (C₃H₆ και NO), με αποτέλεσμα να μην επιτυγχάνεται πλήρης διασπαστική ρόφηση του ΝΟ. Όσον αφορά στη διασπορά του αργύρου, είναι πολύ υψηλή στην περίπτωση των καταλυτών που παρασκευάζονται με τη μέθοδο sol-gel, σε αντίθεση με εκείνους που παρασκευάζονται με υγρό εμποτισμό, στους οποίους η διασπορά του αργύρου δεν βρίσκεται σε υψηλά επίπεδα και συνεπώς επιδέχεται βελτίωση. Σε αυτό το σημείο πρέπει επίσης να τονισθεί ότι σε καταλυτικά συστήματα Ag/γ-Al₂O₃ που παρασκευάζονται με τη μέθοδο του υγρού εμποτισμού σχηματίζονται κρύσταλλοι μεταλλικού αργύρου στην επιφάνεια του φορέα ενώ σε εκείνους που παρασκευάζονται με τη μέθοδο sol-gel, όπως αυτοί που μελετήθηκαν στην παρούσα εργασία, επικρατεί η οξειδωμένη μορφή του αργύρου (Ag⁺).

Βασιζόμενοι στις παραπάνω διαφορές των καταλυτών Ag/γ-Al₂O₃ και του μηχανισμού δράσης τους στις De-NO_x αντιδράσεις με υδρογονάνθρακες που προτίνεται σε προηγούμενες βιβλιογραφικές αναφορές μπορούμε να εξηγήσουμε να πειραματικά μας αποτελέσματα τονίζοντας ότι οι φαινομενικές διαφορές με προηγούμενα βιβλιογραφικά αποτελέσματα είναι δικαιολογημένες και ίσως αναμενόμενες αν λάβουμε υπόψιν μας παρακάτω.

Όσον αφορά στους καταλύτες αργύρου που παρασκευάστηκαν με τη μέθοδο του υγρού εμποτισμού, στη επιφάνειά τους υπάρχουν μεγάλοι κρυσταλλίτες μεταλλικού Ag, πάνω στον οποίο ροφώνται και τα δύο αντιδρώντα μόρια (C₃H₆ και NO). Επιπλέον, η διασπορά του αργύρου σε αυτούς τους καταλύτες δεν είναι πλήρης. Τα παραπάνω έχουν

ως αποτέλεσμα να μην επιτυγχάνεται πλήρης διασπαστική ρόφηση του ΝΟ. Η προσθήκη αλκαλίων σε αυτούς τους καταλύτες (π.χ. Cs) οδηγεί σε ενίσχυση της ρόφησης του ΝΟ, βελτίωση της διασποράς του Ag και εξασθένηση του δεσμού N-O. Συνεπώς, διευκολύνεται η διάσπαση του ΝΟ και έτσι προκύπτουν άτομα N και Ο που μπορούν να αντιδράσουν με άλλα άτομα N, ροφημένα μόρια NO και C₃H₆ δίνοντας τα προϊόντα N₂, N₂O και CO₂ αντίστοιχα. Τα παραπάνω οδηγούν σε προώθηση της δράσης των καταλυτών Ag/γ-Al₂O₃, οι οποίοι έχουν παρασκευαστεί με τη μέθοδο του υγρού εμποτισμού, στις De-NO_x αντιδράσεις, η οποία άλλοστε έχει παρατηρηθεί και από προηγούμενους μελετητές (Son et al [23]) όπως στην περίπτωση της προσθήκης Cs.

Από την άλλη μεριά, σε καταλύτες Ag/γ-Al₂O₃ που παρασκευάζονται με τη μέθοδο sol-gel, όπως αυτοί που μελετήθηκαν στην παρούσα εργασία επικρατεί η οξειδωμένη μορφή του αργύρου (Ag⁺), ο οποίος μάλιστα έχει και βέλτιστη διασπορά. Είναι γνωστό ότι ο Ag⁺ προωθεί τη ρόφηση των NO_x με αποτέλεσμα να μην πραγματοποιείται ανταγωνιστική ρόφηση C₃H₆ και NO [19]. Η προσθήκη ουσιών (αλκάλια: Rb, Cs, Na και ευγενή μέταλλα: Rh, Pt) που θα μπορούσαν να δράσουν ως προωθητές στους καταλύτες που παρασκευάζονται με τη μέθοδο sol-gel είναι πιθανόν να μειώνουν τις ενεργές καταλυτικές θέσεις του αργύρου, εμποδίζοντας τη ρόφηση των αντιδρώντων. Έτσι όχι μόνο δεν μπορούν να βελτιώσουν περαιτέρω τη διασπορά του αργύρου αλλά δρουν παρεμποδιστικά στην καταλυτική δραστικότητα.

ΒΙΒΛΙΟΓΡΑΦΙΑ

- Ι.Β. Γεντεκάκης, "Ατμοσφαιρική Ρύπανση, Επιπτώσεις, Έλεγχος και Εναλλακτικές τεχνολογίες", Εκδόσεις Τζιόλα, Θεσσαλονίκη, 1999
- Βιολογία Γενικής Παιδείας Γ λυκείου, Οργανισμός Εκδόσεως Διδακτικών Βιβλίων (2002)
- 3. A. Fritz, V. Pitchon, Applied Catalysis B: Environmental 13 (1997) 1-25
- 4. R.M. Heck, R.J. Farrauto, "Catalytic Air Pollution Control", Van Nostrand Reinhold, USA, 1995
- L.S. Glebov, A.G. Zakirova, V.F. Tret'yakov, T.N. Burdeinaya, G.S. Akopova, Petroleum Chemistry, 42 No. 3 (2002) 163-194
- R. Burch, J.P. Breen, F.C. Meunier, Applied Catalysis B: Environmental 39 (2002) 283-303
- 7. R. Burch, J.A. Sulluvan, T.C. Watling, Catalysis Today 42 (1998) 13-23
- 8. P. Forzatti, Applied Catalysis A: General 222 (2001) 221-236
- 9. J. Perez-Ramirez, et.al., Applied Catalysis B: Environmental 29 (2001) 285-298
- 10. T. Holma, et.al., Applied Catalysis B: Environmental 48 (2004) 95-100
- 11. O.A. Anunziata, et.al., Applied Catalysis A: General xxx (2004) xxx-xxx
- K. Shimizu, H. Maeshima, A. Satsuma, T. Hattori, Applied Catalysis B: Environmental 18 (1998) 163-170
- 13. E. Seker, E. Gulari, Journal of Catalysis, 179 (1998) 339-342
- I. V. Yentekakis, M. Konsolakis, R. M. Lambert, N. Macleod, L. Nalbantian Applied Catalysis B: Environmental 22 (1999) 123-133
- I.V. Yentekakis, V. Tellou, G. Botzolaki, I. Rapakousios, Applied Catalysis B: Environmental, in press (2004)
- 16 I.V. Yentekakis, R.M. Lambert, M.S. Tikhov, M. Konsolakis, V. Kiousis, Journal of Catalysis, 176 (1998) 82-92
- 17. N. Macleod, J. Isaak, R.M. Lambert, Journal of Catalysis, 193 (2000) 115-122
- 18. A. Ueda, M. Haruta, Applied Catalysis B: Environmental 18 (1998) 115-121
- 19. T.E. Hoost, R.J. Kudla, K.M. Collins, M.S. Chattha, Applied Catalysis B:

Environmental 13 (1997) 59-67

- 20. K.A. Bethke, H.H. Kung, Journal of Catalysis, 172 (1997) 93-102
- 21. F.C. Meunier, R. Ukropec, C. Stapleton, J.R.H. Ross, Applied Catalysis B: Environmental 30 (2001) 163-172
- E. Seker, J. Cavataio, E. Gulari, P. Lorpongpaiboon, S. Osuwan, Applied Catalysis A: General 183 (1999) 121-134
- I.H. Son, M.C. Kim, H.L. Koh, K.L. Kim, Catalysis Letters 75 No 3-4 (2001) 191-197
- 24. H. He, J. Wang, Q. Feng, Y. Yu, K. Yoshida, Applied Catalysis B: Environmental 46 (2003) 273-285
- A. Kotsifa, T.I. Halkides, D.I. Kondarides, X.E. Verykios, Catalysis Letters 79 No 1-4 (2002) 113-117
- 26. T.N. Angelidis, S. Christoforou, A. Bongiovanni, N. Kruse, Applied Catalysis B: Environmental 39 (2002) 197-204
- F.C. Meunier, J.P. Breen, V. Zuzaniuk, M. Olsson, J.R.H. Ross, Journal of Catalysis, 187 (1999) 493-505