
1 | P a g e

TECHNICAL UNIVERSITY OF CRETE

BACHELOR OF SCIENCE THESIS

IMPLEMENTING A THIN CLIENT FOR CLOUD CONNECTION

USING FIELD PROGRAMMABLE GATE ARRAY [FPGA]

MARCH 2015

2 | P a g e

3 | P a g e

TITLE

Implementing a Thin Client for Cloud connection using

Field Programmable Gate Array [FPGA]

AUTHOR:

KARATZAFERIS EFSTATHIOS ALEXANDROS

SUPERVISOR:

ASSOCIATE PROFESSOR, YANNIS PAPAEFSTATHIOU

COMMITTEE:

PROFESSOR, APOSTOLOS DOLLAS

PROFESSOR, MICHALIS ZERVAKIS

4 | P a g e

ABSTRACT

Technology, nowadays, dictates the use of high energy consumption devices in order to
run applications that demand a large amount of computing and network resources. Video
streaming, video calls, gaming, fancy multifunctional HTML5 webpages, web-based applications
and media editing software are a few examples of everyday usage of devices, almost reaching
their computing potential.

Portable devices crave for a reliable and portable power source while Desktop Computers
demand more and more computing power and higher processing speed. A common solution is
applied to address both of these issues, and that is Cloud Computing. Servers on the Internet are
assigned to execute a big chunk of the workload while Clients are only responsible for data
representation.

Our goal is to exploit the advantages of this scheme and we achieve that by introducing a
new level of abstraction which manages every I/O event that takes places between the user and
the machine. By isolating the data representation from the data processing procedures, we
eliminate the need of the CPU’s / GPU’s / HDD’s physical presence inside the modern devices
structure, therefore lowering the energy consumption and computing needs.

Our proposed system consists of two parts. A Thin Cloud Client designed in a Field-
Programmable Gate Array device which allows the user to remotely connect to a PC of his choice,
and a Cloud Server which is a C# application running on the connected PC. Computer and FPGA
communicate through the Internet and exchange every I/O event that is generated from/for the
peripheral devices. Our system is connected with the following peripherals: mouse, keyboard,
screen, speakers, and manages the data stream of all four. The FPGA user can remotely access and
fully use a PC running the Server application.

KEYWORDS

FPGA, REMOTE CONTROL, REMOTE ACCESS, STREAM, CLOUD, CLIENT, SERVER

5 | P a g e

ACKNOWLEDGMENTS

I would like to thank my supervisor, Dr. Yannis Papaefstathiou for his help and guidance,
for giving me the opportunity to work on my thesis, and also for giving me the freedom to
implement it the way I imagined I would!

I would also like to express my sincere gratitude to Joel Williams, who helped me and
advised me in the design process of the network interface, without even knowing who I am or
what my thesis is about! I am also thankful to Giota Mofori, for proofreading this thesis!

Finally, I would like to thank my family and friends for their support through all these
years!

6 | P a g e

ABBREVIATIONS

APP - Application

ARP - Address Resolution Protocol

CPU - Central Processing Unit

DLL - Dynamically Linked Library

DVI - Digital Visual Interface

FPGA - Field-Programmable Gate Array

FSM - Finite State Machine

FPS - Frame Per Second

GPU - Graphics Processing Unit

GUI - Graphical User Interface

HDD - Hard Disk Drive

IP - Internet Protocol

I/O - Input / Output

MAC - Media Access Control

MIG - Memory Interface Generator

OS - Operating System

PC - Personal Computer

UI - User Interface

VGA - Video Graphics Array

VNC Virtual Network Computing

7 | P a g e

Contents
ABSTRACT ... 4

ACKNOWLEDGMENTS ... 5

ABBREVIATIONS .. 6

LIST OF FIGURES .. 10

LIST OF TABLES .. 12

1. INTRODUCTION AND BASIC CONTRIBUTION ... 13

1.1 INTRODUCTION ... 13

1.2 GOAL & MOTIVATION ... 14

1.3 CONTRIBUTION .. 15

1.4 STRUCTURE OF THESIS ... 16

2. RELATED WORK ... 17

2.1 BACKGROUND... 17

2.1.1 REMOTE CONTROL ... 17

2.1.2 STREAMING MEDIA .. 19

2.1.3 FPGA-BASED APPS ... 20

2.2 RELATED DESIGNS ... 21

3. DESCRIPTION OF APPLICATION ...22

3.1 INTRODUCTION ..22

3.2 SOFTWARE ..22

3.2.1 GUI ..22

3.2.2 PERIPHERAL CONTROL ... 23

3.2.3 STREAM ... 23

3.3 HARDWARE .. 24

3.3.1 HARDWARE NEEDED .. 24

3.3.2 USER INTERFACE ... 24

3.3.3 FUNCTIONALITY ... 24

4. DESCRIPTION OF SYSTEM .. 25

4.1 HIGH-LEVEL ARCHITECTURE .. 25

4.1.1 FPGA DESIGN (DATA PATHS) ... 25

4.1.2 C# DESIGN .. 32

4.1.3 EXHAUSTIVE FRAME STREAMING DATA PATH... 35

4.2 LOW-LEVEL MODULES ... 42

4.2.1 HARDWARE DRIVERS .. 42

4.2.2 HARDWARE IMPLEMENTATION ... 56

8 | P a g e

 TX DATA ... 57

 RX DATA .. 60

 DATA TX .. 62

 KEYBOARD ... 64

 MOUSE .. 65

 CROSS DOMAIN CONNECTOR .. 66

 PERIPHERAL MONITOR ... 66

 AUDIO BUFFERING ... 68

 FRAME BUFFERING ... 70

o FRAME DATA FROM ETHERNET TO RAM MULTIPLEXOR .. 70

o RAM MULTIPLEXOR .. 71

 RAM INITIATOR .. 71

 WRITE BURST / READ BURST .. 73

 ARBITRATOR ... 74

 FRAME READER ... 76

 RAM-DVI SYNC .. 77

4.2.3 SOFTWARE LIBRARIES ... 78

 NAUDIO .. 79

 SLIM-DX... 81

 METRO FRAMEWORK ... 81

4.2.4 SOFTWARE IMPLEMENTATION ... 82

 ACTION DISPATCHER .. 83

 CLICKING ... 83

 DECOMPOSER ... 84

 DX SCREEN CAPTURE ... 85

 SCREENSHOT ... 85

 TYPING ... 85

 ACTION QUEUES ... 86

 KEYBOARD ACTION .. 87

 MOUSE ACTION .. 87

 MOUSE STATE ... 87

 KEYBOARD ... 89

 MOUSE .. 91

 SCREEN ... 92

 SPEAKERS .. 94

9 | P a g e

 APP INTERFACE .. 94

 UDP SERVER ... 95

 GUI ... 96

5. MEASUREMENTS, HARDWARE COST AND PERFORMANCE ... 97

5.1 MEASUREMENTS ... 97

5.2 HARDWARE COST .. 111

5.3 PERFORMANCE .. 117

6. LESSONS LEARNT .. 118

6.1 CRITICAL PROBLEMS AND ISSUES ... 118

6.1.1 CHIP INTERFACING .. 118

6.1.2 PROGRAMMING IN WINDOWS 8.1 ... 121

6.2 OTHER CHALLENGES ... 122

7. CONCLUSION AND FUTURE WORK ... 124

7.1 CONCLUSION ... 124

7.2 FUTURE WORK .. 125

7.3 SUGGESTIONS AND IMPROVEMENT ... 126

8. USER GUIDE ... 128

8.1 SOFTWARE INSTALLATION .. 128

8.2 SOFTWARE MANUAL ... 129

8.2.1 GENERAL SETTINGS .. 130

8.2.2 SCREEN ... 131

8.2.3 SOUND .. 132

8.2.4 PERIPHERALS ... 133

8.2.5 STATISTICS .. 134

8.3 FPGA-PC CONNECTION .. 135

8.4 PREPARING FPGA .. 135

8.5 FPGA UI .. 136

BIBLIOGRAPHY .. 137

10 | P a g e

LIST OF FIGURES
Figure 1: Energy Consumption on Smartphones .. 14

Figure 2: Top Level Hardware Diagram .. 26

Figure 3: FPGA Connectivity Data Path .. 27

Figure 4: Keyboard (Physical) Data Path .. 28

Figure 5: Mouse (Physical) Data Path ... 29

Figure 6: Audio Data Path (FPGA) .. 30

Figure 7: Frame Data Path (FPGA) ... 31

Figure 8: Audio Data Path (C#).. 32

Figure 9: Frame Data Path (C#) ... 33

Figure 10: Top Level Software Diagram... 34

Figure 11: Ethernet Core Interface ... 42

Figure 12: PS/2 Interface .. 45

Figure 13: DVI Controller Synchronization ... 47

Figure 14: DVI Interface ... 48

Figure 15: AC97 Interface ... 53

Figure 16: TX Data Flow Chart .. 58

Figure 17: TX Data (ARP Scenario) ... 59

Figure 18: RX Data Flow Chart ... 61

Figure 19: Data TX Flow Chart ... 62

Figure 20: Keyboard Flow Chart ... 64

Figure 21: Mouse Flow Chart .. 65

Figure 22: Peripheral Monitor Flow Chart ... 67

Figure 23: Audio Buffering Flow Chart ... 69

Figure 24: Frame Data from Ethernet to RAM Mux Flow Chart ... 70

Figure 25: RAM Initiator Flow Chart .. 72

Figure 26: Write Burst ... 73

Figure 27: Read Burst... 74

Figure 28: Arbitrator Flow Chart ... 75

Figure 29: Frame Reader Flow Chart .. 76

Figure 30: RAM-DVI Sync Flow Chart .. 77

Figure 31: Audio Recording Flow Chart .. 80

Figure 32: Action Dispatcher Flow Chart ... 83

Figure 33: Decomposer Flow Chart .. 84

Figure 34: Action Queues Flow Chart .. 86

Figure 35: Mouse State Flow Chart ... 88

Figure 36: Frame Streaming Flow Chart ... 93

Figure 37: App Interface Flow Chart .. 95

Figure 38: Overall Ethernet Bitrate Diagram .. 98

Figure 39: Overall Ethernet Packet Rate Diagram .. 98

Figure 40: Overall Frame Bitrate Diagram .. 99

Figure 41: Overall Frame Packet Rate Diagram .. 99

Figure 42: Overall Audio Bitrate Diagram ... 100

Figure 43: Overall Audio Packet Rate Diagram ... 100

Figure 44: Overall Peripheral Bitrate Diagram ... 101

Figure 45: Overall Peripheral Packet Rate Diagram .. 101

Figure 46: Audio Bitrate Diagram while listening to Music .. 102

file:///C:/Users/Alexandros/Desktop/Thesis%20G.docx%23_Toc421878379
file:///C:/Users/Alexandros/Desktop/Thesis%20G.docx%23_Toc421878380
file:///C:/Users/Alexandros/Desktop/Thesis%20G.docx%23_Toc421878382
file:///C:/Users/Alexandros/Desktop/Thesis%20G.docx%23_Toc421878383
file:///C:/Users/Alexandros/Desktop/Thesis%20G.docx%23_Toc421878384
file:///C:/Users/Alexandros/Desktop/Thesis%20G.docx%23_Toc421878385
file:///C:/Users/Alexandros/Desktop/Thesis%20G.docx%23_Toc421878386
file:///C:/Users/Alexandros/Desktop/Thesis%20G.docx%23_Toc421878387
file:///C:/Users/Alexandros/Desktop/Thesis%20G.docx%23_Toc421878395
file:///C:/Users/Alexandros/Desktop/Thesis%20G.docx%23_Toc421878408

11 | P a g e

Figure 47: Frames Per Second (FPS) Diagram while listening to Music .. 102

Figure 48: Frame Bitrate Diagram while watching a Movie ... 103

Figure 49: Frames per Second (FPS) Diagram while watching a Movie ... 103

Figure 50: Frame Bitrate Diagram while watching a YouTube Video ... 104

Figure 51: Frame Bitrate Diagram while Browsing the Internet .. 104

Figure 52: Frames per Second (FPS) Diagram while Browsing the Internet .. 105

Figure 53: Frame Bitrate Diagram while Cloud Server is Idle ... 105

Figure 54: Peripheral Bitrate Diagram while using Office .. 106

Figure 55: Ethernet vs Frame Bitrate while watching a YouTube Video ... 106

Figure 56: Frame vs Audio Bitrate while watching a YouTube Video .. 107

Figure 57: Usage while executing different Tasks ... 107

Figure 58: Server's Network Usage.. 109

Figure 59: Server’s RAM Usage .. 110

Figure 60: Server's CPU Usage ... 110

12 | P a g e

LIST OF TABLES
Table 1: A Thesis - TV Analogy ... 17

Table 2: 2-D Representation of Base Frame (Software) .. 35

Table 3: Representation of Transmitted Frame Packet... 36

Table 4: Index Distribution of a Frame inside RAM ... 38

Table 5: Frame Coordinates (x,y) inside RAM ... 38

Table 6: Pixel Drawing Pattern in the FPGA ... 38

Table 7: RAM Reading Constraints .. 39

Table 8: Reading pixels from RAM... 40

Table 9: Chrontel Register Settings ... 49

Table 10: 18 to 24 bit Color Conversion ... 50

Table 11: Screen Timings ... 51

Table 12: AC97 Initiation Commands ... 54

Table 13: Keyboard Translation Table .. 89

Table 14: Mouse Translation Table ... 91

13 | P a g e

1. INTRODUCTION AND BASIC CONTRIBUTION

1.1 INTRODUCTION

Nowadays, technology dictates the frequent use of portable computing devices, such as
Laptops, Smartphones, Tablets etc. These are mostly used to surf the Internet, playback media
(videos, music), make phone and video calls and to get through some lightweight work, such as
responding to e-mails. Video streaming, access to multifunctional HTML5 webpages, media
playback, flash storage and access to web applications are only a few features that every design
must be equipped with.

All these devices require a portable power source and batteries are used to fulfill these
needs. Even though we had some major improvements in this field, batteries cannot provide
energy to the modern devices for more than 35 hours, and if features like WIFI and 4G are used
to access the Internet, or the CPU operates at full speed, the batteries durability is approximately
20 hours. Comparing these numbers with the evolution of today's CPUs and GPUs we can safely
assume that a more elegant solution is much needed.

Besides the portable devices dominance, many users acquire a PC to work on or a video
game console to entertain themselves while playing games. Hardware designers, web designers,
media editors, graphics designers, architectures to a name a few, are using computers with great
computing power and enormous storage capacity. The applications designed or the games played,
crave for more and more computing power themselves, which forces users to update their PC
with better and faster components.

Researchers came up with a new scheme, Cloud Computing, which tries to address some of
the issues we just mentioned. Computing workload is transferred through the Internet and is
assigned to powerful servers which just return the results of the calculations. This model saves
up a lot of computing time since many computers can cooperate to finish a difficult task. The
same concept is used in order to save digital files to the Cloud, eliminating the need for large HDDs.

This is the scheme is we are trying to exploit by assigning a server (Cloud Server) to carry
out all the computing tasks for a Cloud Client, leaving it with one and only duty, the data
representation. Specifically, we have managed to redirect all I/O peripheral stream from/to the
FPGA through the Internet, thus enabling it to remotely control the Cloud Server and use it like
an ordinary PC.

14 | P a g e

1.2 GOAL & MOTIVATION

Our main motive is to drastically lower the energy consumption levels of modern devices,
while lightening their computing workload by designing a new genre of machines. Users will
theoretically be equipped with more powerful and less power hungry personal computers. PC’s
which are more time enduring. Achieving that required to reach a number of goals which will
be now listed.

 Isolate the user peripherals from the CPUs / GPUs in order to eliminate the physical
presence of the second. We achieve that by introducing a new level of abstraction which
will manage all I/O events that take place between a user and a Personal Computer.

 Design devices (Clients) without a processing unit that are interfacing with the standard
peripherals (mouse, keyboard, speakers and screen) only. The lack of a CPU / GPU
drastically reduces the energy consumption of the device. A closer look at the results of a
paper called “An Analysis of Power Consumption in a Smartphone” can validate our
hypothesis.

Figure 1: Energy Consumption on Smartphones

 Simulate the communication of Cloud Clients with Cloud Servers, which will be responsible
to transfer all the representation data to the peripherals. The processing power of the
connected Clients would be the same as the Cloud Servers.

Our proposed system is a Thin Client designed in a Field - Programmable Gate Array device
which allows the user to remotely connect to a PC of his choice, and a C# application that enables
this functionality. Computer and FPGA communicate through the Internet and exchange every
I/O event that is generated from/for the peripheral devices. Our device is connected with the
following peripherals: mouse, keyboard, screen, speakers, and manages the data stream of all four.
The FPGA user can remotely access and fully use a PC on the Cloud.

15 | P a g e

1.3 CONTRIBUTION

Even though we managed to design an operating device that reaches its goals, the whole
concept is open for research. We still have to examine whether it is really worth adapting this
scheme. Reaching to a positive conclusion will bring up a few new topics which our thesis can
contribute to and open up new possibilities for further improvement.

First of all, it explores a new area of technology. Devices with such features do not exist
nowadays and it will be interesting to see how the manufactures will adapt to those changes.
Also, we should consider new OS for our Cloud Servers, systems which will not be responsible to
communicate with peripherals since the I/O will be simulated and transferred through Internet.
Finally, that leads to the idea of reestablishing a new network scheme.

16 | P a g e

1.4 STRUCTURE OF THESIS

[Chapter / Description / Keywords]

Chapter 1 is an introduction to this thesis. Here are stated the goals of our design along with the
contributions it offers.

Introduction, goal, contribution

Chapter 2 examines some background research that is related with our Thesis.

Background, related work

Chapter 3 describes what our design must do. A simple breakdown of our design’s functionality
alongside with some early insights on how things work.

Simple, brief, functionality, top level

Chapter 4 is where all the details of our work are listed and the algorithms behind every
implementation are introduced and explained.

Detail, algorithm, architecture

Chapter 5 is a collection of measurements and diagrams outlining the performance and cost of
our design.

Cost, measurement, diagrams table

Chapter 6 sums up every solution we came up to in order to overcome some critical problems
we encountered.

Problem, challenge, solution

Chapter 7 reaches a conclusion for our thesis and suggests possible improvements or topics that
are open for research.

Conclusion, future work, improvement

Chapter 8 is a simple user guide for everyone who is trying to download our design to an FPGA
and see how it actually works.

User guide, download design

17 | P a g e

2. RELATED WORK

2.1 BACKGROUND

2.1.1 REMOTE CONTROL

Remote control is a term that when used brings to mind the controllers we all use when
we are watching TV. The correspondence between the 2 examples is:

 TV Thesis
Server TV Device C# app

Communication Medium Infrared Internet
Client Remote Controller FPGA

Table 1: A Thesis - TV Analogy

The TV remote controller is used the same way we are using the FPGA, for controlling a
distant machine through a medium. In our case we are using the Internet in order to transfer
data, while the remote controller communicates with the TV via infrared.

The current technologies used in order to connect two distant PCs, letting the one control
the other, but presupposing the use of two PCs. Our aim is to replicate the example above where
the TV Remote is not a Television itself! That is why the remote control term is closer to our case
than the Remote Desktop term, or Screen Sharing which is used to describe the current
technologies.

The term remote desktop refers to a software or operating system feature that allows a
personal computer’s desktop environment to be run remotely on one system (usually a PC, but
the concept applies equally to a server), while being displayed on a separate client device. Remote
desktop applications have varying features. Some allow attaching to an existing user's session (i.e.,
a running desktop) and "remote controlling", either displaying the remote control session or
blanking the screen. Taking over a desktop remotely is a form of remote administration.

http://en.wikipedia.org/wiki/Personal_computer
http://en.wikipedia.org/wiki/Personal_computer
http://en.wikipedia.org/wiki/Login_session

18 | P a g e

Remote desktop sharing is accomplished through a common client/server model. The
client, or VNC viewer, is installed on a local computer and then connects to the network via a
server component, which is installed on a remote computer. In a typical VNC session, all keystrokes
and mouse clicks are registered as if the client were actually performing tasks on the end-user
machine.

It is clear that the model above fits our needs with one exception. The client device we are
planning to use will not be a computing system. It will be a simple controller, a Thin Client,
responsible for data representation and I/O management. Other than that, the same concept will
be used in our effort to design the software that will allow the remote access to the PC that runs
it (VNC). Windows have already designed an application for Remote Access that requires 2 PC’s
running this OS. Commercial apps have also be designed and are widely used by companies in
order to access and repairs distant computers.

19 | P a g e

2.1.2 STREAMING MEDIA

Streaming media is multimedia that is constantly received by and presented to an end-
user while being delivered by a provider. The verb "to stream" refers to the process of delivering
media in this manner; the term refers to the delivery method of the medium rather than the
medium itself.

Live streaming, which refers to content delivered live over the Internet, requires a form of
source media (e.g. a video camera, an audio interface, screen capture software), an encoder to
digitize the content, a media publisher, and a content delivery network to distribute and deliver
the content.

As I have already mentioned in Chapter 2.1.1, Remote Desktop is also known as Screen
Sharing, meaning that the two connected devices provide the same visual data to their users.
Since our FPGA will not be a computing system the only way for it to provide the visual data
needed is for the Cloud Server to live stream them through the Internet. The content delivered
will be the server’s frame data, the source media, the server, the encoder and media publisher our
VNC software, and finally the content delivery network the Internet.

Many problems arise in the design of a network that supports live streaming and
additional research is required in order to examine the efficiency of our proposed design when
using the Internet. Leaving the transfer medium aside, we focus on encoding and publishing of
the media we are trying to stream.

Commercial and open source applications have already been developed. That, enables users
to stream / share their screen and audio content through the Internet. Most of them use Direct X
to capture the frame data and encode them using H264 (x264) (AAC for the audio). They can also
handle Real Time Streaming constraints while adjusting the encoding and the data rate of the
stream. Studying the way these applications operate, was crucial in our effort to design a simple
and thin version of this type of software.

20 | P a g e

2.1.3 FPGA-BASED APPS

The FPGA we are using is equipped with many media ports, such as PS/2 ports, DVI port,
audio ports (jacks) and Ethernet port. In order to interface with each of them we needed and
thankfully we were able to locate some related example designs from the manufacturer, and some
well conducted user guides.

XPS Thin Film Transistor (TFT) Controller was the design that helped us to interface with
the DVI port. The component is able to display up to 256k colors but we changed that and now
we can properly use the 24-bit RGB channel and get 16,777,216 different combinations. We decided
not to use the PLB Bus that was included in order to keep the design cost as low as possible. The
most important aid from this component, was the Chrontel CH-7301 Chip initiation.

XAPP58, High Performance DDR2 SDRAM Interface was the example design we used for the
sake of interfacing with a RAM Device. All of the initial parameters where explained and that
helped us to avoid some pitfalls in the design process. Also, the Virtex-5 FPGA Embedded Tri-Mode
Ethernet MAC User Guide was a very long Guide with every detail we could possibly need to get
the Ethernet Core working.

Some external sources were taken into consideration while interfacing with the AC97 chip,
the Chrontel Chip and the PS/2 ports. LM4550 has a very informative data sheet as the CH-7301
DVI chip does. Finally, credits should be given to Piotr Foltyn for the PS/2 core that was used to
communicate with the mouse and the keyboard. It was obtained from OpenCores.org.

21 | P a g e

2.2 RELATED DESIGNS

A small research was conducted before the actual design of our device began. We studied
many applications and designs to get some tips and hints on how things actually work, besides
the theoretical background we had already examined. Some examples are listed below:

i. Hardware

a. The project “Implementing a Real Time Music Pedal in FPGA” was further studied.
Audio samples are read and processed in real time in this design. We adapted this
algorithm along with the Audio Chip Drivers (AC97). In our case the sample source
was the Cloud Server and the signal processing part was replaced with a simple
buffer that fed the output with the incoming audio stream. Eventually, we found
every technical information needed in order to redirect the audio stream from the
Ethernet, where it was received, to the output, the AC97 chip. The original driver
was found at javiervalcarce.eu.

b. FPGA NES System, by Brian Bennett, was examined to better understand the usage
of the TFT controller and send visual data to the DVI screen. This design revealed
the actual way the DVI Chip should be fed with data and helped us design the way
video data were temporarily stored in the FPGA.

c. Implementation Scenario for Teaching Partial Reconfiguration of FPGA was another

Paper we studied and actually helped us understand and visualize the way our
video stream works. In this case, the FPGA is fed with video data from a file located
in a PC, and then sends them to screen using a DVI controller.

d. A user design in Spartan-3E Starter Board was explored while designing the

Mouse/Keyboard interface. Useful technical information about the PS/2 protocol
were found and were paired with some theoretical background from Computer-
Engineering.com.

ii. Software

Fortunately, the software design had fewer pitfalls and obstacles, and it was pretty clear from
the beginning. Besides some software for C# components, such as Sockets, Queues etc., one software
category was enough for us to acquire all the theoretical background needed.

Open Broadcast Software, which is a free and open source application for recording and live
streaming, is a typical example and member of this category. We adapted some of the concepts it
uses, though none of the encoding methods.

22 | P a g e

3. DESCRIPTION OF APPLICATION

3.1 INTRODUCTION

The purpose of this chapter is pretty simple. We are attempting to deconstruct the structure
of our design and outline what our proposed system should do. Our system consists of 2 basic
elements, the Cloud Server (software) and the Cloud Client (hardware). Our software is responsible
to capture the video stream that is produced from the screen and the speakers of the PC that runs
on. It also delivers the stream to the Client through the network. Also, it receives all I/O actions
from the FPGA and translates them to mouse movement and keyboard strokes. The hardware part
is responsible for capturing every mouse and keyboard event that is produced from these
peripherals, encodes them and sends them through Internet to the software to simulate them. It
also receives the video stream, decodes the data and drives the DVI screen and the native speakers.
The following chapter contains the basic functionality of the system.

3.2 SOFTWARE

3.2.1 GUI

The Graphical User Interface was designed using a Metro-Style pattern which is
encountered on Windows 8 Applications. It is a single window application, all settings and
functionalities scattered across 5 tabs. Upon execution, the user is greeted with the starting screen
of the application. Here, the user can launch the application and the software initiates all the
components needed.

After that, the main window appears with its five tabs. The first one contains network
information about the application. Start Streaming button initiates a polling process using a
socket. The software is on standby mode waiting for the Client to send the starting packet. This
packet contains identity information about the Clients MAC address, the IP address, and the ports
used. These information are used to launch the virtual devices of our Cloud Server. Finally, the
Stop Button suspends every software process, clears away any junk data left and moves into
standby mode again.

The last tab is called Usage Statistics. Here we calculate some useful informatics that give
an insight to the resources consumed by our application. Ending the application, leads to the
disposal of all C# object used in our application, and any kind of streaming / communication with
/ to the Cloud Client is terminated.

23 | P a g e

3.2.2 PERIPHERAL CONTROL

Our GUI includes 3 more tabs that concern the virtual devices of our Cloud. Let’s examine
how these devices are controlled in order to use their I/O as the media stream that is transferred
to the client.

First, we create a virtual keyboard device as a C# object. The commands issued to this
device simulate actual keystrokes with the use of a Windows DLL library, thus enabling us to use
this object as a physical keyboard. The virtual mouse operates the same way, only its input is bit
more complicated since it is responsible for the cursor placement on the screen. Each of these two
devices is controlled by a different module that feeds them with commands received by the Client.
Upon the commands arrival to our application, they are placed in a Queue in order to make sure
that they are executed in the same order that they arrive. More information about the algorithms
used to control these devices are found in Chapter 4.

Moving on, a virtual device for the PC screen is also needed in order to capture its output
and stream it to the connected Cloud Client. Our application includes two different controllers
that are fed from the virtual screen with data in two different formats. Bitmap or DX Surface. If a
Client is connected to our application, these data are divided into packets and then sent through
the network. The algorithm which is used to determine the data needed to be captured and
transferred, is similar to the MPEG.

Finally, we create another virtual device to control the speakers. The NAudio library is
used to capture the audio stream and provides our device with a wave audio stream. Again, we
divide the stream into packets and deliver them to the connected Client.

3.2.3 STREAM

A big part of the Server - Client communication is the network management. Although
the virtual screen and speakers can handle the packet creation and use the sockets to send data
to the Client, mouse and keyboard incoming events need to be decrypted from the UDP packets
before being placed in the Queue. Also, a special C# object is used to establish the connection
between the two sides, which also includes the needed UDP packet decryption before the
application can handle them.

24 | P a g e

3.3 HARDWARE

3.3.1 HARDWARE NEEDED

The Cloud Client needs to simulate all the I/O of a Personal Computer. An FPGA device is
programmed in order to communicate with the Cloud Server, receive the media stream and send
all peripheral events to be simulated. The FPGA screen port is DVI and a compatible screen is
needed. A set of speakers with a Jack port is also needed, alongside with a PS/2 keyboard device
and a PS/2 mouse device. We choose the ML505 Virtex 5 lx110t board for our device which
includes all these connectivity ports and comes with a big enough FPGA to fit our hardware
design files.

3.3.2 USER INTERFACE

Since our goal is to create a really thin Client we chose not to include a complex user
interface. An interface with mouse and keyboard connectivity and visual representation would
require many precious resources from our FPGA. To overcome this issue, we hardcoded just the
starting screen to indicate that our system is ready to operate. Also, we are using the FPGA push
buttons to trigger specific actions such as Reset or Cloud Connection. All connection information
(IP address, MAC address, port number) are hardcoded too and need to be changed when the FPGA
is connected to a different PC.

3.3.3 FUNCTIONALITY

The hardware design is divided into two main categories. The driver interfaces, which
includes deterministic interfaces to the FPGA chips that drive the connectivity ports. The other
category includes design modules that manipulate or store the data we need to drive the
peripheral devices. A simple list of the available operations would be like this:

 Capture data from the PS/2 ports and compose data packets for each peripheral event.

 Create a frame buffer and store incoming frame data.

 Read frame data from RAM and feed the screen device.

 Create an audio buffer and store incoming audio data.

 Read audio data and feed the speakers device.

 Transfer all outgoing network data to the Cloud Server using a MAC core.

 Receive all ingoing network data and notify the corresponding modules.

25 | P a g e

4. DESCRIPTION OF SYSTEM

4.1 HIGH-LEVEL ARCHITECTURE

In this Chapter we present the High-Level data path alongside with High-Level
Architecture diagrams. The data path is extensive and includes every data transformation from
the moment we capture them to the moment we deliver them and finally simulate them or
represent them. The diagrams will be expanded more into later chapters, but they provide a
sufficient representation of the module connectivity.

4.1.1 FPGA DESIGN (DATA PATHS)

Top Level Diagram Annotations

Data Paths Annotations

Ethernet Port

Mouse

Keyboard

Speakers

Screen

26 | P a g e

Figure 2: Top Level Hardware Diagram

27 | P a g e

Figure 3: FPGA Connectivity Data Path

28 | P a g e

Figure 4: Keyboard (Physical) Data Path

29 | P a g e

Figure 5: Mouse (Physical) Data Path

30 | P a g e

Figure 6: Audio Data Path (FPGA)

31 | P a g e

Figure 7: Frame Data Path (FPGA)

32 | P a g e

4.1.2 C# DESIGN

Figure 8: Audio Data Path (C#)

33 | P a g e

Figure 9: Frame Data Path (C#)

34 | P a g e

It is clearly shown in the Top Level Diagram that follows up, how the incoming packets
from the FPGA are received from the Ethernet port and led through the Decomposer, to the virtual
Devices. This Data Path has minor data manipulation (only String tokenization), so no diagrams
were made for these cases. The Software Implementation Chapter contains a detailed description
of the decoding process that transforms the incoming packets to commands for our virtual
devices.

Annotations

Figure 10: Top Level Software Diagram

35 | P a g e

4.1.3 EXHAUSTIVE FRAME STREAMING DATA PATH

1. Windows 8 Frame Format

a. Bitmap ARGB (1 Byte Alpha Channel + RGB Color).
b. Dimension 1024x768 pixels.
c. So, total # of pixels is 786.432
d. Total # of Bytes for ARGB Format is 3.145.728.
e. Total # of Bytes for RGB Format is 2.359.296.

2. Capture Screenshot

a. All pixels are captured and stored in a Byte Array [length = 2.359.296].
b. We completely ignore Alpha channel, and save only RGB Color.
c. The pattern is

Array Position X X + 1 X + 2 X + 3 X + 4 …
Color Byte B G R B G …

d. The first Byte we read is the Blue Color value at the position (0, 0) which is bottom
left.

e. We continue reading the whole line until (0, 1023).
f. Full format of the captured frame

Array Position 0 1 2 3 4 5 6 7 8
Color B G R B G R B G R

g. 2-D Representation: (Only Showing Blue Color Values)

ByteArray[2356223] … … … ByteArray[2359293]

… … … … …

ByteArray[3073] … … … …

ByteArray[0] ByteArray[3] … ByteArray[3070]

Table 2: 2-D Representation of Base Frame (Software)

36 | P a g e

3. Packet Creation For Base Frame

a. Packet is 100 Bytes long. 4 Bytes are reserved for indexing and 96 Bytes are
Pixel/Color data.

b. 96 / 3 Bytes per pixel for colorization= 32 pixels per packet!
c. Indexing (first 4 Bytes of the packet)

Pattern: 0 , 16 , 32 , 48 , 64 , 80 , 96 , 112 ...

 Maximum Index Calculation:

i. We send a total # of 1024 * 768 = 786.432 pixels, in 32 pixels long packets.

ii. The total # of packets is 24.576.

iii. Every packet needs 16 indexes in RAM, so we will be using 393.216 indexes.

iv. The index span is [0:393215] so the Max Index we will be sending is

393.200.

4. Packet Creation for Streaming

a. Read 32 pixels (32*4 Bytes = 128 Bytes) from the freshly captured frame (contains
alpha channel).

b. Compare Color value of these pixels to the Base Frame.
c. If there is a data mismatch, transmits the packet as described in Step 3.

Software Side Summary

i. Sends 100 Bytes long packets.

ii. Each packet contains Color Values for 32 consecutive pixels.

iii. First 4 bytes of the packet are reserved for RAM Indexing.

iv. Next 96 Bytes are pure information.

v. Representation of the packet:

Byte# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Data RAM Index B G R B G R B G R B G R B G
Pixel Pixel 0 Pixel 1 Pixel 2 Pixel 3 …

Table 3: Representation of Transmitted Frame Packet

37 | P a g e

5. Hardware: Receive Data from Ethernet Port

If valid data are being received:

a. Store incoming index from the first 4 received Bytes:

RAM Write Index [Bits] 31 30 … 24 23 22 … 16 15 14 … 8 7 6 … 0
Received Index [Bytes] [1st Byte] [2nd Byte] [3rd Byte] [4th Byte]

b. Store incoming pixel values:

Data [Bits] 767 .. 760 759 … 752 751 … 744 … 23 … 16 15 … 8 7 … 0
Pixel Color B G R B G R
Pixel # 0 0 0 31 31 31

6. RAM Multiplexing

a. Received data bypass the RAM Initiator Module and move on to the Arbitrator

b. The Arbitrator decides when RAM is available to be written and only then sends
the Write Burst Command.

7. Write Burst to RAM

a. Since we are writing 1024 Bits in a single Write Burst, and every word is 64 Bits long,
the length of the Burst in words, is 16. So, we will be needing 16 RAM indexes.

Write Burst Input 256 Bits 256 Bits 256 Bits 256 Bits
Index Received Received + 4 Received + 8 Received + 12

Bit Aligning [767:640]
[639:576 & Pad]

[575:448]
[447:384 & Pad]

[383:256]
[255:192 & Pad]

[191:64]
[63:0 & Pad]

Byte Aligning
[16 Bytes]

[8 Bytes][Pad]
[16 Bytes]

[8 Bytes][Pad]
[16 Bytes]

[8 Bytes][Pad]
[16 Bytes]

[8 Bytes][Pad]

*Pad = 64 Zero Bits

b. Write Burst receives 4 words per cycle. Let’s translate these words from Byte Aligning
to Pixel Count.

Pixel # 1 2 3 4 5 6 7 8
[16][8][Pad] [BGR] [BGR] [BGR] [BGR] [BGR] B GR [BGR] [BGR] 0

c. We can see that 4 words contain 8 pixel values. Since every RAM Write Burst is 16

words long, we will be storing 32 pixels (or one received packet) in total.

38 | P a g e

Store Frames Summary

i. Every received packet is stored in RAM with a single Write Burst.

ii. Every Write Burst needs 16 RAM indexes, just as many as our software counts for every

packet it transmits.

iii. Packets contain 32 pixels, or 96 Bytes, or 768 Bits. Since every RAM Write Burst is 1024

Bits long, we use the Zero Padding technique.

iv. 2-D Representation of the frame as it is stored in the FPGA RAM:

Table 4: Index Distribution of a Frame inside RAM

392.704 … … … … 393.200
… … … … … …

512 … … … … …
0 16 32 48 … 496

Table 5: Frame Coordinates (x,y) inside RAM

(767,0 – 767,31) … … … (767,992 – 767,1024)
… … … … …

(1,0 – 1,31) … … … …
(0,0 – 0,31) (0,32 – 0,63) (0,64 – 0,95) … (0,992 – 0,1023)

8. DVI Core

a. Receives 24 Bits Color vectors as input.

[23 … 16] [15 … 8] [7 … 0]
BLUE GREEN RED

b. Pixel drawing pattern in 2-D. Notice that rows are not read in the same order that
our software stores them!

Y X
0 0 1 2 3 … 1023
1 0 1 2 3 … 1023
… 0 1 2 3 … 1023

767 0 1 2 3 … 1023

Table 6: Pixel Drawing Pattern in the FPGA

39 | P a g e

9. RAM DVI Synchronization

a. Feeds DVI Core with RGB pixels.
b. Signals Frame Reader one Row before the first visible one is being drawn.
c. Asks Frame Reader for new pixel values preemptively (when buffer is 97%).
d. Uses two 6.144 Bits long buffers.
e. Buffer Refill Methodology:

i. Each buffer is 6.144 Bits long

ii. Equals to 768 Bytes.
iii. Equals to 256 pixel values!
iv. Since every row has 1.024 pixels, each buffer should be refiled twice!

f. The first pixel we extract from the buffer is the one placed at [6143:6120] and we

move until [23:0]. Note: The order of the Bytes is BGR.

10. Frame Reader

a. After the Base Frame has been built in RAM, the New Frame signal from RAM DVI
Synch triggers the functionality of this module.

b. From now on, every time the Synching module is asking for pixels, Frame Reader
is responsible to deliver them.

c. Frame Reader acquires pixel values from the RAM, by issuing a RAM Read Burst
command to the Arbitrator.

d. Since we are reading 32 pixels every time we are accessing RAM, we need to repeat
this process 8 times in order to deliver 256 pixels to the Synching module.

e. Let’s review some time constraints:

i. 75 MHz domain: The frequency that pixel values are being sent to DVI Core.
ii. 125 MHz domain: The frequency that RAM operates.

Frequency Period Task Constraint
75 MHz 13.3 ns Request Pixels from Ram 256 cycles * 13,3 = 3413 ns

125 MHz 8 ns

RAM Access 8 cycles * 8 = 64 ns
Read Latency 18 cycles * 8 = 144 ns

Max Read Latency 26 cycles = 208 ns
8 Accesses 8 * 64 = 512 ns

8 Accesses + Latency 512 + (8*144) = 1664 ns
8 Accesses + Max Lat. 512 + (8*208) = 2176 ns

Table 7: RAM Reading Constraints

40 | P a g e

f. Index Calculation System

i. The Frame Reader module starts serving the DVI Core as long as it receives
the New Frame signal.

ii. From that point on, it keeps track of the pixels that have already been sent,
so it is able to feed the DVI Core correctly.

iii. We have already mentioned that the DVI Core requests pixels to be read in
different way than they are stored. So, we need to calculate indexes in a
different way in order to access RAM properly.

iv. Index Calculation:

1. We begin with top row (767, 0) and read pixels all the way across
the line. Since that is the last row we received and stored inside the
RAM, our starting index will not be 0, but 392.704 (See Table 3).

2. We index increment is still 16.
3. We subtract 512 to move to the next row (e.g. (767, 0) to (766, 0)).

11. Read Burst to RAM

a. Read Burst commands retrieve 1024 Bits or 16 words from the RAM.
b. We have already been storing 32 pixels using 16 words in RAM, so Read Burst

command responds with 32 pixels or 1 received packet!
c. Read pattern:

Index Index + 4 Index + 8 Index + 12

256 bits 256 bits 256 bits 256 bits

d. We know that some of these bits are intentionally filled with Zeros, so every 3
words we read from the RAM, one is ignored. That leaves us with 12 words * 8 Bytes
= 96 Bytes or 32 pixels! (see Section 7)

e. Decoding pattern: (How to fill 32 pixels long buffer)

Index (Bits) Bits Count Word Count
[767 : 640] 128 2
[639 : 576] 64 1

Ignore 64 1
[575 : 448] 128 2
[447 : 384] 64 1

Ignore 64 1
[383 : 256] 128 2
[255 : 192] 64 1

Ignore 64 1
[191 : 64] 128 2
[63 : 0] 64 1
Ignore 64 1

Table 8: Reading pixels from RAM

41 | P a g e

Read Frames Summary

i. We maintain two 256 pixels long buffers, in order to feed the DVI Core.

ii. Frame Reade sends 4 Read Burst commands to fill one buffer.

iii. Frame Reader is responsible to inverse the row reading order by calculating the read

index as explained in Section 10.f.

iv. Frame Reader filters the unwanted zero’s we filled the RAM with in order to align

data, and returns only true pixels values.

Dx = Word [] = Valid {} = Ignored
RAM Access RAM Access RAM Access RAM Access

[D0D1][D2]{D3} [D4D5][D6]{D7} [D8D9][D10]{D11} [D12D13][D14]{D15}

42 | P a g e

4.2 LOW-LEVEL MODULES

4.2.1 HARDWARE DRIVERS

a. ETHERNET INTERFACE

Figure 11: Ethernet Core Interface

43 | P a g e

The Ethernet module was one of the most important parts of our design since it is the
bridge between the two communicating entities, Server and Client. The FGPA board we used, Virtex
5 XUP lx110t came with a Marvell 88E1111 chip embedded, able to provide us a Gigabit Ethernet
Interface. This kind of bandwidth is more than enough to transmit the stream from the Cloud to
the Client and vice versa.

We are using the Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC Core to interface with
the board’s chip. Xilinx supports this core pretty well and has published an extensive user guide.
The core is able to handle two Ethernet interfaces simultaneously, each of them operating at speed
of 10/100/1000 Mb/s. We instantiated only one interface for our design. Other than choosing
the desired operating speed, we only made one change on the core’s settings:

PHYINITAUTONEG_ENABLE = TRUE

Auto negotiation is an Ethernet procedure by which two connected devices choose
common transmission parameters, such as speed, duplex mode, and flow control. In this process,
the connected devices first share their capabilities regarding these parameters and then choose
the highest performance transmission mode they both support. We chose to enable this
functionality in our core in order to avoid manual configuration of settings.

We also provided the core with a 125MHz reference clock which is the maximum clock
rate of the cat5 Ethernet cables. The core also provided a lot of interface signals, like frame drop,
statistics, delays, pauses etc. but we chose not to use any of them. Using this interface to send
simple UDP packets was still too complex, so we implemented two more modules in order to
interface with the core in a higher abstraction level.

Core Signal Interface (TX – transmit, RX – receive)
TX_CLK_OUT TX Clock output

TX_CLK_0 TX Clock input
RX_LL_CLOCK_0 Reference Clock (125MHz)
RX_LL_RESET_0 Reset RX
RX_LL_DATA_0 RX Data (8 bits)

RX_LL_SOF_N_0 Start of RX Frame
RX_LL_EOF_N_0 End of RX Frame

RX_LL_SRC_RDY_N_0 Source Ready (Core has received a packet)
TX_LL_CLOCK_0 Reference Clock (125MHz)
TX_LL_RESET_0 Reset TX
TX_LL_DATA_0 TX Data (8 bits)

TX_LL_SOF_N_0 Start of TX Frame
TX_LL_EOF_N_0 End of TX Frame

TX_LL_SRC_RDY_N_0 Source Ready
TX_LL_DST_RDY_N_0 Destination Ready (Core is ready to transmit)

44 | P a g e

Physical pinout interface is not mentioned (the auto generated UCF from the IP Core
Generator takes care of that issue). Also, the unused signal are left unmentioned. Finally, it is
important to use a buffer (BUFG) in the reference clock, although the generated test bench we are
using took care of that too.

45 | P a g e

b. PS/2 INTERFACE

Figure 12: PS/2 Interface

The PS/2 connector is a 6-pin mini-DIN connector used for connecting some keyboards
and mice to a PC compatible computer system. Our Virtex-5 Board is equipped with two PS/2
ports, one for keyboard connection and one for mouse. The protocol is old and simple, so we were
able to find a module interface pretty easily.

46 | P a g e

Core Signal Interface
sys_clk System Clock (100 MHz onboard clock)
sys_rst Reset
ps2_clk Bidirectional PS/2 Clock

ps2_data Bidirectional PS/2 Data
tx_data TX Data (8 bits)

send_req Request Transmission
busy Core is busy

rx_data RX Data (8 bits)
ready RX ready
error Error in data reception

47 | P a g e

c. DVI (DIGITAL VIDEO INTERFACE)

Figure 13: DVI Controller Synchronization

Our Virtex-5 board comes with a DVI port for monitor connection. Digital Visual Interface
(DVI) is a video display interface used to connect a video source, such as a display controller to a
display device, such as a computer monitor. We use Xilinx’s XPS Thin Film Transistor (TFT)
Controller in order to interface with the DVI port.

The Chrontel CH-7301 chip is controlling the DVI port on our board so it is the first thing
we should communicate with. The FPGA connects with the chip using the I²C protocol. I²C (Inter-
Integrated Circuit), pronounced I-squared-C, is a multi-master, multi-slave, single-ended, serial
computer bus, used for attaching low-speed peripherals to computer motherboards and
embedded systems.

http://en.wikipedia.org/wiki/Display_device
http://en.wikipedia.org/wiki/Display_device
http://en.wikipedia.org/wiki/Computer_bus
http://en.wikipedia.org/wiki/Computer_bus

48 | P a g e

Figure 14: DVI Interface

49 | P a g e

The XAPP we used included a demo module which could take care of the Chrontel chip
settings. First of all, we had to alter the slave address (found on the Chrontel manual, its 7’h76)
and the clock rate parameter (100 MHz). Moving on, an embedded FSM is writing the correct
register values to the chip in order to initiate its operation. These are:

Register Number (hex) Value (hex) Description
49 c0 Power Management, Set DVIP and DVIL to ‘11’

21 09 DAC Control Register Enable DAC Bypass and
HSYNC/VSYNC output

33 06 DVI PLL Charge Pump Control Register Scale Divider
34 26 DVI PLL Supply Control Register
36 a0 DVI PLL Filter Register

Table 9: Chrontel Register Settings

Even though we are using a 75 MHz clock to generate the HSYNC / VSYNC signals, we have
been noticing some glitches in the core’s operation whilst setting up the PLL register according to
the table below. We experimented by alternating the initial settings, once using the ones with <65
MHz and again with >65 MHz. More on Chapter 6.

Register / Frequency <=65 MHz >65MHz
33h TPCP 08h 06h
34h TPD 16h 26h
36h TPF 60h a0h

Moving on, we had to alter the core in order to display 24-bit color. Its previous
configuration was for 18-bit color so we changed the pin assignment for the 12-bit DVI Data
signals that the core was using to this:

50 | P a g e

assign dvi_data_a

[0] GREEN[4]
[1] GREEN[5]
[2] GREEN[6]
[3] GREEN[7]
[4] RED[0]
[5] RED[1]
[6] RED[2]
[7] RED[3]
[8] RED[4]
[9] RED[5]
[10] RED[6]
[11] RED[7]

assign dvi_data_b

[0] BLUE[0]
[1] BLUE[1]
[2] BLUE[2]
[3] BLUE[3]
[4] BLUE[4]
[5] BLUE[5]
[6] BLUE[6]
[7] BLUE[7]
[8] GREEN[0]
[9] GREEN[1]
[10] GREEN[2]
[11] GREEN[3]

Table 10: 18 to 24 bit Color Conversion

More details on table 4 of the Chrontel Manual.

The physical pinout to the Chrontel chip was pretty straightforward. Our board’s Master
UCF file had all the information needed. Finally, we implemented one more module which took
care of the connection of the TFT module with the FPGA and it also generated some much needed
DVI signals. Its operation is closely related with the chip interfacing that is why it is included in
this chapter.

The system’s supported resolution is 1024x768 with 70 Hz refresh rate.

51 | P a g e

General Timing
Screen Refresh Rate 70 Hz

Vertical Refresh Rate 56.475903614458 kHz
Pixel Frequency 75 MHz

Horizontal Timing (Line)
Polarity of horizontal sync pulse is negative.

Scanline Part Pixels Time[µs]
Visible Area 1024 13.653333333333
Front Porch 24 0.32
Sync Pulse 136 1.8133333333333
Back Porch 144 1.92
Whole Line 1328 17.706666666667

Vertical Timing (Frame)
Polarity of vertical sync pulse is negative.

Frame Part Lines Time[ms]
Visible Area 768 13.59872
Front Porch 3 0.05312
Sync Pulse 6 0.10624
Back Porch 29 0.51349333333333
Whole Line 806 14.271573333333

Table 11: Screen Timings

We created the much needed HSYNC and VSYNC with two simple VHDL counters with a
range of 0 to 1327 for horizontal synchronization and 0 to 805 for vertical. Also, we had to create
the Data Enable DVI signal according to the timings of the table above. It is important to remember
that both the horizontal and vertical conditions need to be met in order to drive the Data Enable
signal high.

a. HSYNC Conditions

i. The horizontal pulse is repeated every 1328 clock cycles.
ii. The sync pulse is 136 cycles long.

iii. So the HSYNC is high whenever the horizontal counter is less than 136 and greater
than 0.

iv. The front porch is 24 cycles long so the first Data Enable condition is that the
horizontal counter is less than 1328-24=1304.

v. The back porch is 144 cycles long so the second Data Enable condition is that the
horizontal counter is greater than 136+144=280 cycles.

52 | P a g e

b. VSYNC Conditions

i. The vertical pulse is repeated every 806 clock cycles.
ii. The sync pulse is 6 cycles long.

iii. So the VSYNC is high whenever the vertical counter is less than 6 and greater than
0.

iv. The front porch is 3 cycles long so the first Data Enable condition is that the vertical
counter is less than 806-3=803.

v. The back porch is 29 cycles long so the second Data Enable condition is that the
vertical counter is greater than 6+29=35 cycles.

Core Signal Interface (Physical pinout not included)
CLK Reference clock or pixel clock (75 MHz)

RSTN Reset
RGB 24-bit Color Vector for every pixel

ROWS Row Number (11-bit)
LINES Line Number (11-bit)

53 | P a g e

d. AC97 (AUDIO INTERFACE)

Figure 15: AC97 Interface

AC'97 (Audio Codec '97; also MC'97 for Modem Codec '97) is an audio codec standard
developed by Intel Architecture Labs in 1997. The standard was used in motherboards, modems,
and sound cards. AC'97 defines a high-quality, 16- or 20-bit audio architecture with surround
sound support for the PC. AC'97 supports a 96 kHz sampling rate at 20-bit stereo resolution and
a 48 kHz sampling rate at 20-bit stereo resolution for multichannel recording and playback.
AC97 defines a maximum of 6 channels of analog audio output. Our board comes with a
LM4550 AC’97 Audio Codec with I/O ports. We are using the Line Out port to output the audio
stream from the Cloud Server.

http://en.wikipedia.org/wiki/Intel_Architecture_Labs
http://en.wikipedia.org/wiki/Sound_card

54 | P a g e

We are using the AC’97 Core interface from Mike Wirthlin. First, we need to initiate the
core by writing on the chip’s registers. The following commands are sent:

X"000000 Write 0x0 to 0x0 (Reset Registers)
X"020808 Write 0x0808 to 0x2 (Master Volume 0db gain)
X"040808 Write 0x0808 to 0x4 (Headphone Volume)
X"0a8000 Write 0x8000 to 0xa (Mute PC Beep)
X"180808 Write 0x0808 to 0x18 PCM Out Volume (Amp out line)
X"208000 Write 0x8000 to 0x20 (General purpose PCM Out Path = 1, 3D bypassed)

Table 12: AC97 Initiation Commands

Core Signal Interface (Physical pinout not included)
Clkin 125 MHz Reference Clock
Reset Reset

PCM_Playback_Left 16-bit Left Channel
PCM_Playback_Right 16-bit Right Channel

PCM_Playback_Accept Core is ready to read the 2 channel sample

The physical pinout was easily assigned with the help of Virtex-5 Master UCF File.

55 | P a g e

e. RAM (MEMORY INTERFACE)

Xilinx's Memory Interface Generator (MIG) is the tool we are using to interface the board's
DDR2 SDRAM. DDR2 SDRAM interfaces are source-synchronous and double data rate. They
transfer data on both edges of the clock cycle.

The MIG tool offers the option to implement more than one controllers for the SDRAM but that
would make the design too complex for no reason, so we chose to implement only one. Since the
RAM will be fed with data from the Ethernet MAC modules it was convenient to choose the same
operating frequency for both. That's why we are choosing the reference clock to be set at 125 MHz
frequency, or 8000ps period.

The memory type of our RAM chip is SODIMM, so we chose that on the settings along with the
specific memory part, in our case the MT4HTF326HY-53E. The data width is 64 bits. Also, we
disabled the error correction code (ECC) and the Data Masking option to make the component as
much lightweight as possible. The burst length is 4 and the burst type sequential, which are the
default settings. We also chose the default settings for the CAS latency, output drive strength, RTT
– ODT and Additive latency.

Finally, we disabled the Debug signal and the PLL option. This is important because we had to
provide the clocks to the design, so we were obliged to design them too. No other change was
made to the Generator Guide. The following table describes the signal interface.

Core Signal Interface (Physical pinout not included)
clk0 125 MHz Reference Clock

clk90 90 Degrees Phase Shift
clkdiv0 Clock Divided
clk200 200 MHz Clock

sys_rst_n Negative Reset Input
phy_init_done RAM Initialization Completed

clk0_tb Clock Output for the Design
rst0_tb Reset Output for the Design

app_wdf_afull Write Data FIFO Almost Full
app_af_afull Address FIFO Almost Full

rd_data_valid Read Data Valid
app_wdf_wren Write Data FIFO Write Enable

app_af_wren Address FIFO Write Enable
app_af_addr Address
app_af_cmd Command

rd_data_fifo_out Read Data
app_wdf_data Write Data FIFO Input

56 | P a g e

4.2.2 HARDWARE IMPLEMENTATION

This chapter will be extensive, since we will be breaking down the entire design to examine
how our proposed system is working and what algorithms we are using to overcome our
problems.

We could say that the main purpose of this hardware design is to connect all the interfaces
we described in the above chapter and let the data flow and transform through them until they
feed, or be created by, the peripheral devices.

The Ethernet port is the only way for the Cloud’s streaming data to flow in and out of the
design (peripherals included), so we will begin by describing the modules that help us interact
with the Ethernet core.

Annotations for the following Flow Charts

Condition ActionLoop
Condition(s) MetCondition(s) NOT met

57 | P a g e

 TX DATA

The purpose of this module is to provide us a simple interface to communicate with the
Ethernet Core and feed it with data to be transmitted. These data can be either in the form of UDP
packet, or ARP packets.

If one of the peripherals triggers this module, then its data are transferred with the help of the
Ethernet Core to the Cloud Server. Before these data are delivered to the Core, the module attaches
all the information needed in order the packet to be recognized as a UDP. All these information
are hard-coded to the module, alongside with the destination port number, target IP address, target
MAC address, source port number, source IP address and source MAC address.

We mentioned before that this module is also used to transmit ARP packets. When a node
on the network graph tries to communicate with a specific address (IP or MAC) it checks its ARP
tables to find an IP-to-MAC address assignment. If it fails to locate such an assignment, it
broadcasts an ARP packet to all the nodes of the network. The node that bares the IP or MAC
address that the ARP packet is targeting, has to respond to this packet in order to be recognized
by the others. When our Cloud Server tries to send the first UDP packet to the Client, our FPGA is
not listed in its ARP tables, so it broadcasts an ARP packet. The RX Data module of our design
“catches” these packets, and notifies the TX Data module to respond to this ARP request.

To sum up, this module has an ARP interface which can be triggered by the RX Data module.
In this event, it sends an ARP response packet to the original sender containing the IP and MAC
address information. The second Flow Chart explains how this process is encapsulated in the main
FSM, which comes first.

[An embedded module is responsible for the IP Header Checksum. This module was written by
Joel Williams, and takes 5 32-bit words as input. The generated checksum appears on the 16-bit
output port 2 cycles after the last word was inserted].

58 | P a g e

Figure 16: TX Data Flow Chart

59 | P a g e

Figure 17: TX Data (ARP Scenario)

60 | P a g e

 RX DATA

This module monitors the Ethernet Core RX interface for incoming packets. It filters all
incoming traffic and saves only the incoming packets with same IP and MAC address that we
have hardcoded inside. There are two types of packets that this module can receive, ARP packets
and stream packets.

ARP packets are explained in the TX Data module. The only thing we need to add here, is that
we dispose all the information in these packets except for the address we need to respond to.
When those are fully received, we pass them to the transmitting module and notify it to begin
the ARP response.

Stream packets are categorized into frame and audio packets. We have made a convention to
use 2 different port numbers in order to identify the nature of the incoming data. In the process
of receiving the UDP packet it is easy for us to identify the port number and notify the
corresponding module that incoming data are going to arrive to the Client.

To sum up, this module just filters the incoming traffic and notifies other modules to handle
the incoming data. Neither it saves data nor does it perform any kind of calculations. The
following Flow Chart explains its functionality.

61 | P a g e

 Figure 18: RX Data Flow Chart

62 | P a g e

 DATA TX

In our effort to reduce the overall complexity of the modules, we decided to divide the packet
transmission workload into two different modules. This modules acts as an intermediate between
the peripheral modules and the TX Data. Modules that wish to transmit data to the Cloud Server,
trigger this module which adds some special prefixes to the data before it passes them to the
transmission module.

Figure 19: Data TX Flow Chart

63 | P a g e

This module is used in 3 cases:

Cause Prefix
Transmit Keyboard events karajizzferis_169.254.144.233_4562
Transmit Mouse events mouse_strookes_data_
Transmit Connection Packet keyboard_stroke_data_

This module withholds any activity until the connection packet is successfully transmitted
to the Cloud Server. Also, UDP packets have a minimum data length because the IP packet will
additionally be wrapped in a MAC packet (14 byte header + 4 byte CRC) which will be embedded
in an Ethernet frame (8 byte preamble sequence). This adds 26 bytes of data to the IP packet.
Sending the peripheral data without the prefixes causes the core to fill the packet with “trash
data” in order to reach the minimum packet length.

Moving on, we describe the modules responsible for the data flow from the peripherals,
mouse and keyboard, to the data transmission module. We will briefly explain the way we capture
the peripheral events through the PS/2 ports and the way we encode them before the
transmission.

So far, we have described the PS/2 interface that we are using. An instance of this “driver”
is used in the modules of keyboard and mouse, alongside with a controller, simulating a virtual
device in our design.

64 | P a g e

 KEYBOARD

This module is the virtual keyboard of our design. It includes a PS/2 interface to read/write
data from the port, a controller that eventually acts as the virtual device, and finally a component
to monitor this interface and notify the controller for incoming events.

The monitor component is a simple edge detector, so we continue our breakdown with the
controller. Every action from the physical keyboard is transmitted through the PS/2 port to our
interface, and then out of the component to the transmission module. Our controller’s job is to
reset the keyboard and monitor the incoming traffic for specific actions.

To reset the keyboard, the controller sends the reset command through the PS/2 port. After
that, it filters all incoming traffic in search for 3 specific key codes. Caps Lock, Num Lock and Scroll
Lock. After either of these codes is received, we have to send a command to the keyboard to light
up the indication LED. See the diagram below for details:

Figure 20: Keyboard Flow Chart

65 | P a g e

 MOUSE

This module is the virtual mouse of our proposed system. It also includes a PS/2 interface, a
controller and an edge detector just like the keyboard module. We also bypass every transmitted
action from the physical device to the transmission module, so the only task of our controller is
to reset the device.

This task is trickier than the single reset command we send to the keyboard. We have to wait
the device to pass the self-test, read the device ID and finally write a number of registers to get
the mouse working. The diagram below explains the FSM we use to achieve this.

Figure 21: Mouse Flow Chart

66 | P a g e

 CROSS DOMAIN CONNECTOR

The PS/2 interface operates with a 100 MHz clock which we provide from the onboard clock.
But the transmission modules operates with a 125 MHz clock in order to achieve Gigabit speed. To
bridge the gap between these two domains, we coded a simple component that reads data from
the 100 MHz domain and sends them to the 125 MHz domain in order to avoid any irregularities
in the data flow.

The way it works is pretty simple. A trigger notifies the module to buff the data from the 100
MHz domain. The module closes the trigger itself and then proceeds to send the data to the 125
MHz domain, avoiding any error that may occur.

 PERIPHERAL MONITOR

So far, we have mentioned that the data flow from the devices to the transmission is unfiltered.
This is the point where some order is restored and we adjust the data flow in order to make sense
to the receiver, the Cloud Server.

The case concerning the mouse data flow was easy to be handled, since this device sends data
with a standard length, which is 4 bytes. Every time we monitor a transmission from the mouse,
we buff the four incoming bytes and proceed to notify the Ethernet transmission module that we
are ready to send some data to the Cloud Server. After the prefix is sent to the core, the
transmission triggers this module to send the rest of the payload to the Ethernet core.

Now, we have to adjust the keyboard data flow. The keyboard device transmits codes of a
different length depending on the key we pressed and the nature of the stroke (press or release).
For example, some codes will be 2 bytes long with a byte prefix of 0xf0 which indicates that the
next byte we will receive, will point to a key that was released. Also, some keys have a constant
0xe0 prefix, which makes the release sequence of these keys: 0xf0 0xe0 + key code, which is 3
bytes long!

67 | P a g e

Figure 22: Peripheral Monitor Flow Chart

68 | P a g e

 AUDIO BUFFERING

This module handles the incoming flow of the audio stream and it is also responsible for the
sample output to the AC97 codec we are using for the audio playback. We will examine these
operations separately and then the Flow Chart at the end of this section we clear out how these
two are combined inside the module.

Let's start with the storing process. The Cloud Server delivers the audio samples to our Client
through the Internet in small chunks of information, the packets. In Chapter 4.1.1, you can actually
see how many bytes long these packets are and how many samples they contain. The module's
internal buffer is 4 bytes wide and 48000 indexes long. Since every audio sample is 4 bytes long,
2 bytes per channel or 16 bit, and our application on the Cloud Server samples the audio stream
at 44.100 KHz, we can see that our module is able to buff a bit more than one 1 second of the
audio stream, enabling us to experience a lossless playback.

The FSM that stores the incoming values from the RX Data module filters the incoming packets
and decides to keep only the ones that are delivered to the port we have already reserved for the
audio stream. The port number is hard coded into the RX Data module as we have already
mentioned. In a few words, our FSM gathers up 4 bytes at the time in order to make a full audio
sample and then attempts to write it to the internal buffer. It also keeps track of the next empty
index we can send the sample to.

A big part of this module is the playback process. As explained in Chapter 4.2.1, the audio driver
requires a full audio sample to be ready in its incoming port at the rate of 44.1 KHz. This module
reads samples from the internal buffer and delivers them to the audio driver with a very simple
and elegant way. We could describe this process as two software pointers filling in and out the
buffer, but the whole concept is better explained in the following Flow Chart.

69 | P a g e

Figure 23: Audio Buffering Flow Chart

70 | P a g e

 FRAME BUFFERING

Here we are introduced to the frame stream process. This module is subdivided into three
other modules. The first one is the MIG interface and it is thoroughly explained in the according
section. That leaves us with a module that handles the incoming data stream from the Ethernet
MAC Core, and another one that diverges the data flow from/to the RAM module.

o FRAME DATA FROM ETHERNET TO RAM MULTIPLEXOR

So far we have described the process of capturing incoming stream data from the RX Data
module. Again, we are filtering the incoming stream for frame stream data only and when a
packet arrives we buff its contents. We make sure to deliver these packets to the RAM only when
we have captured enough data to perform a Write Burst command to the RAM. More on that issue
can be found at Chapter 4.1.3. Every outgoing packet from this module starts with the RAM index
that it will be written to, and the rest of the pixel data follow.

Figure 24: Frame Data from Ethernet to RAM Mux Flow Chart

71 | P a g e

o RAM MULTIPLEXOR

This is the most important and complex part of our design. In a few words, it is responsible to
create and maintain the reference frame of the design and also make it available for access from
the RAM-DVI Sync module. Again, the module is subdivided into 5 others that execute specific
operations.

 RAM INITIATOR

After the reset signal has been asserted to the device, a reference frame should be created and
stored in the RAM device in order for the screen to have something to display initially. That is the
main task of this module, to send specific pixel data to the RAM in order to slowly create the
reference frame of the design.

This is accomplished with a simple FSM described in the Flow Chart below. After is has ran its
course and the reference frame has been sent to the RAM, this module's output is multiplexed
with the incoming stream from the Ethernet MAC module. So, after it has sent the initial reset data
(reference frame) it enables the Frame Data from Ethernet to RAM Mux outgoing data to bypass
this module and reach the RAM. That way, we ensure that the incoming frame stream data are
saved to the RAM only after the initialization has finished.

72 | P a g e

Figure 25: RAM Initiator Flow Chart

73 | P a g e

 WRITE BURST / READ BURST

As we explained in Chapter 4.1.3, the RAM handles packets that are a lot bigger than a single
pixel. Not only that, but our controller is reading/writing data to/from the RAM in a bursting
manner. The process to read or write a burst of data to the RAM is thoroughly explained the MIG
manual. In these modules we implement this process, thus making the communication between
the sub-modules much easier.

The following diagrams taken from the Xilinx MIG User Guide describe these processes. Notice
in Chapter 4.1.3, how we skip a writing/reading cycle every now and then in order to achieve
the proper data aligning.

Figure 26: Write Burst

74 | P a g e

Figure 27: Read Burst

 ARBITRATOR

Since our DDR2 SDRAM device is being used by two different modules, the Frame Reader and
the Frame Data from Ethernet to RAM Mux module, we need some kind of arbitration in order to
avoid data collision.

This module handles read requests from the Frame Reader and write requests from the Frame
Data from Ethernet to RAM Mux module. Some constraints need to be met before these requests
are resolved. In case one of these requests needs to be stalled, the arbitrator keeps track of the
request and serves it a bit later when it is sure that no data collision will occur. The timing
constraints of Chapter 4.1.3 make our job easier since they eliminate a lot of faulty possibilities.
The following Flow Chart describes the arbitration algorithm.

75 | P a g e

Figure 28: Arbitrator Flow Chart

76 | P a g e

 FRAME READER

The connection between the DVI and the DDR2 SDRAM is made through this module. Every
time the DVI module needs data (pixels) in order to feed the screen, it signals this module
preemptively. The Frame Reader proceeds to send multiple read requests to the RAM in order to
buff a bigger chunk of information (see 4.1.3) and then delivers it to the RAM-DVI Sync module.
The read indexes are generated here since the DVI is only asking for more pixels and not specific
data. The following Flow Chart explains the simple process that takes place inside this module.

Figure 29: Frame Reader Flow Chart

77 | P a g e

 RAM-DVI SYNC

The last connecting link between the Cloud Server's frame stream and the DVI driver is this
module. The timing constraints which are described in Chapter 4.1.3 are justifying the use of two
main buffers in this module. In a few words, every time we are filling one buffer with data, we
read data from the other and vice versa. That way, the data flow is continuous with no delays or
missing pixels. This module signals the Frame Reader at some critical points in order to fill the
already used buffer preemptively. The following Flow Chart describes the tasks of this module
and the way they are accomplished.

Figure 30: RAM-DVI Sync Flow Chart

78 | P a g e

4.2.3 SOFTWARE LIBRARIES

A fair amount of the workload needed while implementing the software-based Cloud
Server could be found in ready-to-execute libraries. A few thousand program code lines were
spared because of three precompiled libraries in our project, the NAudio library for the audio
recording, the Slim-DX for the screenshots, and Metro Framework for the GUI. The following
chapter outlines the way we are utilizing these libraries for our profit. Before we move on, here
a useful diagram:

Annotations

79 | P a g e

 NAUDIO

NAudio is an open source audio API for .NET written in C# by Mark Heath, with contributions
from many other developers. It is intended to provide a comprehensive set of useful utility classes
from which we can construct our own audio application. It includes features like: record wave
stream, playback, edit etc.

We chose NAudio simply because it is open source, light-weight, easy to use and covers our
design needs. Its ability to manipulate the audio stream as a signal, was also a critical point on
our decision. Let's see in detail how this library is being used in our software.

First of all, we need a way to capture the server's audio stream, in order to stream it to the
Client, which will handle the playback. Every possible audio source needs to be captured and the
only way to do that, is through our operating system, in our case Windows 8.1. Windows come
with an embedded API, the Windows Session API or WASAPI. NAudio provides an interface to this
API, called WasapiLoopBackCapture, which is using the Windows API to capture the audio stream
to a wave object.

Moving to a signal domain while capturing the audio stream, proved to be useful since we
can apply transformations to the signal, such as the volume modification. We can also change the
signal precision or the sampling frequency but we chose not to, in order to maintain a certain
level of quality to our application.

After we instantiate out interface to the Wasapi, we have to override the callback method of
the library, which will be executed every time the API has captured a number of samples. In this
method we choose to repeatedly extract a few samples from the buffer until it is empty, while
also creating small packets to be delivered to our client through a UDP server. More details on the
following Flow Chart.

Finally, we designed our own simple interface for starting / pausing / stopping the recording
process, using some NAudio functions like StartRecording and StopRecording. Chapter 5 holds all
the statistical data concerning this library's usage.

80 | P a g e

Figure 31: Audio Recording Flow Chart

81 | P a g e

 SLIM-DX

Slim-DX is a free open source framework that enables developers to easily build DirectX
applications using .NET technologies such as C#. It is designed to be an efficient, simple, and lean
wrapper that fully encompasses all of Microsoft's gaming and multimedia technologies and
exposes them to managed code. All of the code is under the MIT/X11 license, and all content is
under the Creative Commons Attribution-Share Alike license.

Before moving on to the details of the way we are utilizing this library, we have to write
down a few things. Direct access to the Direct X using a C# application, seems to be impossible in
the Windows 8 environment, especially in our case, where the OS recognizes the embedded Intel
Graphics Card as the main graphics card of our PC. Thus, we tried to import the User32.dll Library
in order to capture the screenshots for our frame stream using the Graphical Device Interface
(GDI). That method proved to be ineffective, but more on that issue later.

So, we end up using the Slim-DX library which is a fairly lightweight interface compared to
the Direct X. The huge advantage over the GDI method, is the capture format. This library gave us
the option to receive the data as an array of elements, whilst GDI method returns a Bitmap. It is
way easier to extract data from an array than from an image file structure. Not to mention the
time wasted on creating this unused structure at the first place.

We implemented a plain interface to utilize this library, which includes a single method, the
CaptureScreen method. First of all, we need to initiate a virtual screen and we do that with the
help of the Slim-DX library. We are given the option to create a software-based or a hardware-
based device, and of course we chose the second one. After the initialization, our capturing method
uses a Surface object, the size of our computer's screen, to capture all the pixels that are being
displayed at that point. This surface object holds an array buffer with all data needed, and that' is
the object we are returning to the caller.

 METRO FRAMEWORK

The computer we used to develop our design comes with a Windows 8 OS. After our decision
to implement a Graphical User Interface for the software that our Cloud Server will be running,
it was only logical to choose a library that will give our application a Windows 8 feel. Metro
Framework does that fairly easy, since our only task was to extend our GUI class to a MetroForm
class. All objects, like buttons and panels, were overwritten by this library and eventually
redesigned to match today's representation trends. Any feature provided by this library and not
the standard C# classes, will be noted.

82 | P a g e

4.2.4 SOFTWARE IMPLEMENTATION

Our whole software design is composed of a few thousand lines of code, so quoting them
here will not be a smart choice. Instead, we drew a class diagram (Chapter 4.12). Let's start with a
more generic categorization of the classes used.

 Controllers

In this category are included classes which are either responsible to interact with
an external library, such as Slim-DX, or they're assigned with a managing task, such as
simulating mouse clicks or decomposing incoming UDP messages.

 Data Types

In this category are included classes which can also be described as the widely
known C structures. No methods are included other than accessing methods to the
encapsulated data. These structures can be simple data “boxes” (MouseAction), or more
complex like a Queue (ActionQueues).

 Devices

In this category are included classes which simulate one the four peripheral devices
we are interacting with in this project. The finals processing steps of the I/O
communication take place inside these classes.

 Network

In this category are included only two classes, one responsible for creating and
maintaining UDP servers, and another one which initiate the network interface. Since a
valid network connection is a prerequisite, every critical object is instantiated step by step
through this class.

Every software class we designed will be explained using the same pattern as in the Hardware
section, a few words followed by a Flow Chart. The suffix indicates the category it belongs to.

83 | P a g e

 ACTION DISPATCHER
Controllers

This class manages two of the most basic controllers of our application, clicking and typing.
The workload is assigned into two different threads, one responsible for the mouse actions, and
one for the keyboard actions. The two threads run constantly but synchronization is achieved by
the Queue class. Specifically, the thread execution is protected by a lock/unlock/monitor pattern
which forces the two threads to wait until a monitor pulse has arrived, then proceed to pop a task
from the Queue and finally execute it using the controllers.

Figure 32: Action Dispatcher Flow Chart

 CLICKING
Controllers

As we have already mentioned, this class is managed and instantiated by the class
ActionDispatcher. We could best describe this class as a wrapper for the virtual device, Mouse.
Every time ActionDispatcher pops a task from the Queue, this class is responsible to issue the
command to our virtual device.

84 | P a g e

 DECOMPOSER
Controllers

This class holds responsibility for decomposing incoming packets and extracting key
elements from them. In Chapter 4.1.1, we can see that every incoming data packet from the Client
is encoded in a plain, wet unknown to our application, format. Here, we are trying to “tokenize”
the incoming messages and according to the information we extract from them, return key codes
to the caller. In total, five different decomposing methods have been implemented to extract the
key codes needs, and each of them reveals a different chunk of information, like mouse position,
click type, keyboard stroke etc. In sections Mouse and Keyboard you can find a translate table for
every aspect of the key codes used in our application.

Figure 33: Decomposer Flow Chart

85 | P a g e

 DX SCREEN CAPTURE
Controllers

Read Chapter 4.2.1

 SCREENSHOT
Controllers

This class was designed to capture a screenshot and return the data to the caller in a BMP
format. The GDI method that is being used, requires some methods and structures from the
User32.dll Library, so we start of by importing this library to our project. Before we continue on
describing the main task of this class, we have to point out that this class is able to locate the
mouse pointer information from the OS and use them to draw it on the screenshot. This feature
is not available on the DxScreenCapture class that is our default capturing class, but if we take
into account issues like speed and throughput it is clear that the GDI is ineffective. Moving on, in
order to collect the frame data, we instantiate a Graphics object which is similar to the Surface
object of the Slim-DX library. Inside this object, we are copying pixel values from the whole screen
area. The mouse pointer is also drawn onto the image, before returning the bitmap file to the
caller.

 TYPING
Controllers

This class is designed as a mirror to the Clicking class. Again we have designed a wrapper
for our virtual device (Keyboard) and proceed to pass the incoming tasks to the actual Keyboard
class. The only minor change, is the introduction of fixed interval between two consecutive
incoming tasks. More on that issue at Chapter 6.2.

86 | P a g e

 ACTION QUEUES
Data Types

This class contains two action queues, one filled with mouse actions and one with
keyboard actions. Access to the queues is granted through methods which are protected with
synchronization blocks. Add and Remove methods are mutually excluded by locking the entire
queue every time an action is performed (push or pop). Finally, we have taken into consideration
the possibility of attempting to read from an empty queue.

Figure 34: Action Queues Flow Chart

87 | P a g e

 KEYBOARD ACTION
Data Types

This class could be described as a C structure that comes with a set of setters and getters
for the embedded elements. Here, we have anticipated a maximum number of three simultaneous
key strokes, but in reality our Cloud Client sends one key stoke at a time. So, we only need an
integer key code and key hit descriptor (press key or release key) in order to fully describe a
keyboard action.

 MOUSE ACTION
Data Types

This class is designed as a mirror to the KeyboardAction class and contains all the
information needed to describe an occurred mouse event, which are: X coordinate, Y coordinate
and a click descriptor.

 MOUSE STATE
Data Types

According to the PS/2 protocol, the mouse device does not transfer the current position of the
mouse pointer, instead it calculates the movement of the device and transfers that value. While
drawing the mouse pointer onto the screen using only the horizontal and vertical movement
values, we need to know the prior position of the pointer in order to calculate the new one. This
is the purpose of this class, to memoir the current mouse pointer state and enable us to calculate
the new one using the information we receive from the Client.

Maintaining the right x-y coordinates proved to be a tricky task, since we had to be careful
not to overflow the mouse position value and assign an out of bounds position to the pointer.
Also, we had to simulate the constant press of a mouse click, in case of a drag-n-drop event and
that is why because the Client keeps sending “press left click down” messages according to the
PS/2 protocol, which should be ignored from us in order to avoid sending multiple left click
actions to our Server.

88 | P a g e

Figure 35: Mouse State Flow Chart

89 | P a g e

 KEYBOARD
Devices

This class simulates a virtual keyboard device. Again, we are importing the User32.dll
library in order to retrieve the critical keybd_event function. Class Keyboard Action contains all
the necessary information to call this function and finally simulate the keyboard event we
received from the Client.

Up to three simultaneous key hits are supported, but not used. Finally, a big translation
function was implemented in order to decode the key codes to software codes.

Table 13: Keyboard Translation Table

Received Key Code Translation Stg 1 Virtual Key Name Virtual Key Code
0x76 9 VK_ESCAPE 0x1B
0x16 23 VK_1 0x31
0x1e 24 VK_2 0x32
0x26 25 VK_3 0x33
0x25 26 VK_4 0x34
0x2e 27 VK_5 0x35
0x36 28 VK_6 0x36
0x3d 29 VK_7 0x37
0x3e 30 VK_8 0x38
0x46 31 VK_9 0x39
0x45 22 VK_0 0x30
0x4e 107 VK_OEM_MINUS 0xBD
0x55 105 VK_OEM_PLUS 0xBB
0x66 1 VK_BACK 0x08
0x0d 2 VK_TAB 0x09
0x15 48 VK_Q 0x51
0x1d 54 VK_W 0x57
0x24 36 VK_E 0x45
0x2d 49 VK_R 0x52
0x2c 51 VK_T 0x54
0x35 56 VK_Y 0x59
0x3c 52 VK_U 0x55
0x43 40 VK_I 0x49
0x44 46 VK_O 0x4F
0x4d 47 VK_P 0x50
0x54 111 VK_OEM_4 0xDB
0x5b 113 VK_OEM_6 0xDD
0x5a 4 VK_RETURN 0x0D

0xe0 + 0x14 94 VK_RCONTROL 0xA3
0x14 93 VK_LCONTROL 0xA2
0x1c 32 VK_A 0x41
0x1b 50 VK_S 0x53

90 | P a g e

0x23 35 VK_D 0x44
0x2b 37 VK_F 0x46
0x34 38 VK_G 0x47
0x33 39 VK_H 0x48
0x3b 41 VK_J 0x4A
0x42 42 VK_K 0x4B
0x4b 43 VK_L 0x4C
0x4c 104 VK_OEM_1 0xBA
0x52 114 VK_OEM_7 0xDE
0x0e 110 VK_OEM_3 0xC0
0x12 91 VK_RSHIFT 0xA1
0x5d 112 VK_OEM_5 0xDC
0x1a 57 VK_Z 0x58
0x22 55 VK_X 0x5A
0x21 34 VK_C 0x43
0x2a 53 VK_V 0x56
0x32 33 VK_B 0x42
0x31 45 VK_N 0x4E
0x3a 44 VK_M 0x4D
0x41 106 VK_OEM_COMMA 0xBC
0x49 108 VK_OEM_PERIOD 0xBE
0x4a 109 VK_OEM_2 0xBF
0x59 92 VK_LSHIFT 0xA0

0xe0 + 0x11 96 VK_MENU 0x12
0x11 95 VK_MENU 0x12
0x29 10 VK_SPACE 0x20
0x58 8 VK_CAPITAL 0x14
0x05 77 VK_F1 0x70
0x06 78 VK_F2 0x71
0x04 79 VK_F3 0x72
0x0c 80 VK_F4 0x73
0x03 81 VK_F5 0x74
0x0b 82 VK_F6 0x75
0x83 83 VK_F7 0x76
0x0a 84 VK_F8 0x77
0x01 85 VK_F9 0x78
0x09 86 VK_F10 0x79
0x78 87 VK_F11 0x7A
0x07 88 VK_F12 0x7B
0x75 16 VK_UP 0x26
0x6b 15 VK_LEFT 0x25
0x74 17 VK_RIGHT 0x27
0x72 72 VK_ADD 0x6B

0xe0 + 0x1f 58 VK_LWIN 0x5B
0x1f 0 VK_OEM_8 0xDF

Default 0 VK_OEM_8 0xDF

91 | P a g e

 MOUSE
Devices

This class is a mirror to the Keyboard class. The Mouse device is simulated, but in this
case we are importing two functions from the User32.dll library in order to carry out the mouse
event. The mouse_event (handles the press/release of mouse buttons) and SetCursorPosition.

Virtual Event Key Code
MOUSEEVENTF_MOVE 0x0001

MOUSEEVENTF_LEFTDOWN 0x0002
MOUSEEVENTF_LEFTUP 0x0004

MOUSEEVENTF_RIGHTDOWN 0x0008
MOUSEEVENTF_RIGHTUP 0x0010

MOUSEEVENTF_MIDDLEDOWN 0x0020
MOUSEEVENTF_MIDDLEUP 0x0040
MOUSEEVENTF_XDOWN 0x0080

MOUSEEVENTF_XUP 0x0100
MOUSEEVENTF_WHEEL 0x0800

MOUSEEVENTF_VIRTUALDESK 0x4000
MOUSEEVENTF_ABSOLUTE 0x8000

WHEEL_DELTA 0x70

Table 14: Mouse Translation Table

92 | P a g e

 SCREEN
Devices

This class simulates a virtual screen device. A capturing controller is included alongside
with a UDP Server instance. In our implementation we are using this device with the Slim-DX
controller, but the user is given the option to change the controller from the GUI.

A number of standard methods have been designed for this class that allow us to start,
restart, stop and initiate the device. Also, we view usage statistics, save the current screen state to
a Bitmap file and finally shut down entirely the device.

Into more technical details, the frame data are stored to a huge array containing all the
information needed to represent 1024 x 768 pixels with 24bit color resolution. Before we start
using this device in order to stream data to the Cloud Client, we need to build the first frame by
filling up this array with data. This is achieved by calling the screenshot controller, retrieving the
returned object which is a Surface object and step by step extract the data buffer containing the
pixel values. We have to ignore the alpha channel while filling up the buffer because the DVI
Driver of the Cloud Client has no need of it, so we would be sending junk data.

After the base screen is ready we continue by transmitting the whole buffer to the Client.
Some data may be lost, but that is not a big problem because the streaming algorithm we are
using will replace them at some point. This algorithm works similarly to the MPEG since it chooses
to transmit only the differences between two consecutive frames. In order to achieve a good FPS
rate, we are forced to take screenshots as fast as we can, compare the newly captured data with
the base frame and finally send the pixels that differ from the original image. In the Hardware
Implementation Chapter (4.2.2) we described how the DVI Driver reads data in chunks and not
pixel by pixel, so we are trying to speed up this process by comparing data the same way. So,
every time a difference is spotted in a pixel of two consecutive frames we are sending the entire
chunk of pixels to the Client and not just the changed one.

The following Flow Chart outlines the algorithm used while streaming the Cloud's frame
stream. In a higher abstraction level, the true difference between the GDI method and the Slim-
DX method, is only the object we're reading from in order to fill our array (Surface vs Bitmap).

93 | P a g e

Figure 36: Frame Streaming Flow Chart

94 | P a g e

 SPEAKERS
Devices

This class simulates the speaker device. Compared to other classes, it is autonomous since
it does not interact with other controllers or devices other than the application's GUI. The NAudio
library is imported in order to instantiate the WasapiLoopbackCapture object which will
eventually provide us with the needed wave stream. In Chapter 4.2.1 we have already described
how this library is utilized.

 APP INTERFACE
Network

This class is multi-threaded and responsible for the application's network interface. Since
we need to establish a valid connection to the Client in order for the application to operate, this
class is actually our main class.

First of all, five threads are constructed and initiated though this class. The
actionServerThread handles the UDP server, whilst the pollingThread's task is to poll the listening
socket for incoming packets that may concern our application. Frame thread and Audio thread
instantiate the corresponding virtual devices and continue on working on these data streams.
Finally, connectionThread's only task is to poll the listening port and establish a valid connection
with the Client. After that, it is disposed.

All controllers and devices are instantiated inside this class in order to have a valid
reference to them in case we need to exchange data. The execution thread of this class is outlined
in the GUI section, so we will just explain what these method calls actually do.

NetworkStart starts the action server thread, which construct the listening UDP server. This
server will be used later on to establish a connection to the Client and receive incoming packets.
NetworkShutDown terminates the controllers and device operations. EstablishConnection blocks
the calling thread as it is waiting to receive a connection request from the Client. When it is
successfully received, the initiateDevices method is called, which handles the start of the other
thread's execution. PollPort method is called while initiating the polling thread and it also blocks
the calling thread. Its task is to receive incoming packets, decode them, and finally decide if they
concern our application. If they do, all information is extracted from the packet and with the help
of set of decomposing function, the right controller is called to carry out the task.

95 | P a g e

Figure 37: App Interface Flow Chart

 UDP SERVER
Network

This class acts as a UDP packet server, responsible to receive and transmit packets from a
specific port number and IP address. The UDP listening port is 4567 by default. While initiating the
server, we have to provide and IPEndPoint, derived from the specific port we will be using, and
IPHostEntry. Also, we initiate two different sockets for data transmission, one for the audio stream
and another for the frame stream.

Besides the close, receive (it is important to remember that is a blocking method) and send
methods which are pretty standard, we implemented some more, in case we need to readjust some
features of the server, like the listening port number. Finally, this class holds statistics which can
be retrieved from a public method, alongside with other data, like Local IP and Global IP.

96 | P a g e

 GUI

Inside this class, we are drawing the Graphical User Interface while initiating the entire
application. The initiation simply concerns the management of the App Interface class. The
execution thread is pretty straightforward, we are just running the Start method of the App
Interface class, whilst setting the Local IP for the UDP Server.

While initiating the application, we need to handle some visual elements to transition from
the starting screen to the main screen. Background execution is assigned with these tasks in order
to avoid interrupting the constant redrawing of our GUI.

Finally, we developed a series of methods to update, maintain and handle events that occur
from the GUI. An extensive guide at Chapter 8 is enough to give the user an idea of what every
button does in our GUI, so we will be merely mentioning the methods in order to avoid
redundancy.

97 | P a g e

5. MEASUREMENTS, HARDWARE COST AND
PERFORMANCE

5.1 MEASUREMENTS

 We downloaded our design to the FPGA and then proceed to remotely control the
connected PC. We carried out a few tasks in a time span of ~19 minutes. Before presenting the
measuring diagrams, here is a table of the activities we ran in the Cloud Server:

Time Span (min:sec) Activity
00:01 – 02:16 Idle
02:17 – 03:53 Music
03:54 – 06:13 Idle
06:14 – 08:46 Music
08:47 – 09:28 Office
09:29 – 09:48 YouTube
09:49 – 11:15 Reading Email / Browsing Imgur
11:16 – 12:01 YouTube
12:02 – 12:07 Idle
12:08 – 13:05 Browsing Reddit with Music On
13:06 – 13:28 Browsing File Explorer
13:29 – 15:26 Watching a movie (1080p)
15:27 – 15:50 Muting sound on movie
15:51 – 16:48 Unmute – Keep watching
16:49 – 17:03 Launching Premiere
17:04 – 18:18 Windows 8 Game Application
18:19 – 18:30 Idle

*Idle state may contain a few mouse movements and Windows swapping. Also, applications were
launched during the previous time span.

98 | P a g e

Figure 38: Overall Ethernet Bitrate Diagram

Figure 39: Overall Ethernet Packet Rate Diagram

0

1000

2000

3000

4000

5000

6000

7000
K

B
/S

EC

MINUTES

Ethernet Bitrate

0

10000

20000

30000

40000

50000

60000

70000

MINUTES

Ethernet Packet Rate

99 | P a g e

Figure 40: Overall Frame Bitrate Diagram

Figure 41: Overall Frame Packet Rate Diagram

0

1000

2000

3000

4000

5000

6000

7000
K

B
/S

EC

MINUTES

Frame Bitrate

0

10000

20000

30000

40000

50000

60000

70000

MINUTES

Frame Packet Rate

100 | P a g e

Figure 42: Overall Audio Bitrate Diagram

Figure 43: Overall Audio Packet Rate Diagram

0

50

100

150

200

250

K
B

/S
EC

MINUTES

Audio Bitrate

0

50

100

150

200

250

MINUTES

Audio Packet Rate

101 | P a g e

Figure 44: Overall Peripheral Bitrate Diagram

Figure 45: Overall Peripheral Packet Rate Diagram

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
K

B
/S

EC

MINUTES

Peripherals Bitrate

0

10

20

30

40

50

60

70

MINUTES

Peripheral Packets

102 | P a g e

Figure 46: Audio Bitrate Diagram while listening to Music

Figure 47: Frames Per Second (FPS) Diagram while listening to Music

0

50

100

150

200

250
K

B
/S

EC

MINUTES

Audio Bitrate

0

5

10

15

20

25

MINUTES

FPS

103 | P a g e

Figure 48: Frame Bitrate Diagram while watching a Movie

Figure 49: Frames per Second (FPS) Diagram while watching a Movie

0

500

1000

1500

2000

2500

3000

3500

4000

4500
K

B
/S

EC

MINUTES

Frame Bitrate

0

5

10

15

20

25

MINUTES

FPS

104 | P a g e

Figure 50: Frame Bitrate Diagram while watching a YouTube Video

Figure 51: Frame Bitrate Diagram while Browsing the Internet

0

1000

2000

3000

4000

5000

6000

7000
K

B
/S

EC

MINUTES

Frame Bitrate

0

500

1000

1500

2000

2500

3000

3500

4000

4500

K
B

/S
EC

MINUTES

Frame Bitrate

105 | P a g e

Figure 52: Frames per Second (FPS) Diagram while Browsing the Internet

Figure 53: Frame Bitrate Diagram while Cloud Server is Idle

0

5

10

15

20

25

MINUTES

FPS

0

500

1000

1500

2000

2500

K
B

/S
EC

MINUTES

Frame Bitrate

106 | P a g e

Figure 54: Peripheral Bitrate Diagram while using Office

Figure 55: Ethernet vs Frame Bitrate while watching a YouTube Video

0

0.2

0.4

0.6

0.8

1

1.2

1.4
K

B
/S

EC

MINUTES

Peripheral Bitrate

0

1000

2000

3000

4000

5000

6000

7000

K
B

/S
EC

MINUTES

Ethernet vs Frame

Ethernet Bitrate

Frame Bitrate

107 | P a g e

Figure 56: Frame vs Audio Bitrate while watching a YouTube Video

Figure 57: Usage while executing different Tasks

0

1000

2000

3000

4000

5000

6000

7000
K

B
/S

EC

MINUTES

Frame vs Audio

Frame Bitrate

Audio Bitrate

0

500

1000

1500

2000

2500

Music Browsing Gaming

K
B

/S
EC

Peripheral Audio Frame Ethernet

108 | P a g e

Studying the above diagrams, we are able to extract a large amount of useful information.
First of all, we can distinguish the heavier and high demanding tasks from the light ones and in
the future, redesign our application to cover our needs. Secondly, we identify which parts of the
application are high demanding because we already know what task they are trying to
accomplish at a given point. Finally, it is the simplest yet effective way for someone else to
understand the impact that our application will have whilst running on a PC.

Some random thoughts:

 The Overall Ethernet/Frame Bitrate diagrams are pretty much the same, since the frame
streaming process is the one needing the most bandwidth.

 When we are streaming Audio the Bitrate is constant because the source produces data at
a standard rate.

 Peripheral Packets are received with a burst rate, because that is the nature of their
creation. Also, since every event can be represented with a few Bytes, the Bitrate is never
too high.

 While listening to Music, the FPS reached satisfying values. At the end of the diagram, we
observed a drop which is explained by some Window swapping that are Frame-Costly.

 While watching a movie we observed higher Bitrate in action scenes where more different
frames are drawn.

 Also, the FPS values change the opposite way than the Frame Bitrate.
 The Frame Bitrate was constantly low while we were Browsing and reading an HTML page,

and high when we were scrolling down the page (Facebook).
 The Frame Bitrate is very low when the Cloud Server is idle.
 In the Audio-Frame comparison diagram we can verify again the constant Audio Bitrate,

while Frame Bitrate depends on many things (frames drawn from the Cloud Server,
algorithm and system workload).

 While carrying out a simple task, like listening to music, the average usage of Frame and
Audio is pretty much the same.

 That is not the case on more complex task like Browsing, where even though there’s no
audio streaming, we can see that the Frame streaming would occupy the biggest part of
the bandwidth anyways.

As it was expected, the “heavier” tasks proved to be the ones that produce new frames at
high rate. These were the video playback, gaming and browsing which occasionally includes
video playback. Interestingly, applications that were high demanding in computing resources, like
Adobe Premiere, did not limit our application's effectiveness that much even though they
acquired many workload quantums from the CPU task scheduler. Also, audio streaming seems to
be working 100% no matter what. Keeping in mind that the audio stream has a constant Bitrate,
it automatically makes this feature the most effective and reliable! Finally, tasks like typing a text
or listening to music, even browsing text-based or image-based websites, produces a really
satisfying ~20 FPS.

109 | P a g e

Unfortunately, in the following diagrams we can clearly see the large amount of
computing resources that out application demands when operating with maximum demand. The
CPU percentage usage increases drastically as our software is constantly taking screenshots and
creates data packet out of the captured pixels. That's not good news for our application because
high CPU usage also means high energy consumption and eventually it wears out of the chip.
Also, considering the CPU chip we are actually using, an Intel i5 with a strong computation
capability, it may be difficult to execute our application effectively in a weaker PC. Finally, we
observed high Network usage, but that is only expected since we are striving for a top quality
stream without using a sophisticated stream compression algorithm.

On the other hand, our application occupies a really small amount of Memory in the RAM,
which is encouraging, considering how demanding the newly developed applications are. RAM
usage is also a good indicator for a rough estimation of the simultaneous programs that a PC can
run. Occupying that small amount of memory almost places our software in the Background
Services category, which is good for the role our application should play.

Figure 58: Server's Network Usage

0

2

4

6

8

10

12

14

16

18

Idle

Movie

Music

OfficeBrowsing

Adobe Premiere

Gaming

Network Usage (Mbps)

110 | P a g e

Figure 59: Server’s RAM Usage

Figure 60: Server's CPU Usage

41

4096

RAM Usage (MB)

C# App Total RAM

39

67

42

45

50

47

56

CPU Usage (%)

111 | P a g e

5.2 HARDWARE COST

Synthesis Report Summary

Source Parameters
Input File Name : "example_design.prj" Input Format : mixed Ignore Synthesis Constraint File : NO

Target Parameters
Output File Name : "example_design" Output Format : NGC Target Device : xc5vlx110t-1-ff1136

Source Options
Top Module Name : example_design Automatic FSM Extraction : YES FSM Encoding Algorithm : Auto

Safe Implementation : No FSM Style : LUT RAM Extraction : Yes
RAM Style : Auto ROM Extraction : Yes Mux Style : Auto

Decoder Extraction : YES Priority Encoder Extraction : Yes Shift Register Extraction : YES
Logical Shifter Extraction : YES XOR Collapsing : YES ROM Style : Auto

Mux Extraction : Yes Resource Sharing : YES Asynchronous To Synchronous : NO
Use DSP Block : Auto Automatic Register Balancing : No

Target Options
LUT Combining : Auto Reduce Control Sets : Auto Add IO Buffers : YES

Global Maximum Fanout : 100000 Add Generic Clock Buffer(BUFG) : 32 Register Duplication : YES
Slice Packing : YES Optimize Instantiated Primitives : NO Use Clock Enable : Auto

Use Synchronous Set : Auto Use Synchronous Reset : Auto Pack IO Registers into IOBs : Auto
 Equivalent register Removal : YES

General Options
Optimization Goal : Speed Optimization Effort : 1 Power Reduction : NO

Keep Hierarchy : No Netlist Hierarchy : As_Optimized RTL Output : Yes
Global Optimization : AllClockNets Read Cores : YES Write Timing Constraints : NO

Cross Clock Analysis : NO Hierarchy Separator : / Bus Delimiter : <>
Case Specifier : Maintain Slice Utilization Ratio : 100 BRAM Utilization Ratio : 100

DSP48 Utilization Ratio : 100 Verilog 2001 : YES Auto BRAM Packing : NO
 Slice Utilization Ratio Delta : 5

HDL Synthesis Report

Macro Statistics

ROMs : 1

 16x25-bit ROM : 1
Multipliers : 2

 3x3-bit multiplier : 2
Adders/Subtractors : 47

12-bit adder : 2 12-bit subtractor : 4 16-bit adder : 3 16-bit adder car/out:2 16-bit subtractor : 1
17-bit adder car/out :1 2-bit adder : 2 3-bit adder : 4 32-bit adder : 3 5-bit adder : 2

5-bit subtractor : 2 6-bit adder : 4 6-bit adder car/out :4 6-bit subtractor : 3 7-bit adder : 3
7-bit addsub : 1 8-bit adder : 2 8-bit adder car/out :2 8-bit subtractor : 1 9-bit adder : 1

Counters : 130
8-bit up counter : 1 10-bit up counter : 1 11-bit up counter : 1 12-bit up counter : 4 14-bit down counter :2

15-bit down counter :2 16-bit up counter : 2 2-bit down counter : 1 2-bit up counter : 2 3-bit down counter : 3
3-bit up counter : 4 32-bit up counter : 3 4-bit down counter : 2 4-bit up counter : 8 5-bit down counter : 5
5-bit up counter : 1 6-bit up counter : 1 6-bit updown cntr:82 7-bit up counter : 1 8-bit down counter : 2

 9-bit updown cntr:2
Accumulators : 4

12bit updown accmltr:1 2bit up accmltr: 1 32-bit up accmltr: 2
Registers : 2786

1-bit register : 2616 2-bit register : 11 12-bit register : 18 128-bit register : 2 15-bit register : 1
16-bit register : 14 20-bit register : 2 24-bit register : 1 25-bit register : 4 28-bit register : 1
3-bit register : 13 31-bit register : 6 32-bit register : 9 4-bit register : 5 48-bit register : 1
5-bit register : 6 6-bit register : 9 6144-bit register : 2 64-bit register : 8 7-bit register : 4

 8-bit register : 42 768-bit register : 11

112 | P a g e

Comparators : 54
11bit comparator >= : 5 11bit comparator < :4 13-bit comparator !=: 4 15-bit comparator = : 1 16-bit comparator = :2
17-bit comparator != :1 2-bit comparator = : 5 2-bit comparator >= : 1 2-bit comparator < : 2 3-bit comparator >= :2
3-bit comparator <= :3 32bit comparator >= :4 32bit comparator less :5 4bit comparator >= : 1 4-bit comparator <= :1
5-bit comparator = : 1 5-bit comparator >= : 1 5-bit comparator < : 1 5-bit comparator <= : 5 6-bit comparator < : 1
7-bit comparator !=: 1 8-bit comparator = : 2 8bit comparator <= : 1

Multiplexers : 15
1-bit 40-to-1 multiplexer : 5 1-bit 64-to-1 multiplexer : 2 1-bit 8-to-1 multiplexer : 8

Tristates : 4
 1-bit tristate buffer : 4

Xors : 43
1-bit xor2 : 39 1-bit xor8 : 2 1-bit xor9 : 2

Advanced HDL Synthesis Report

Macro Statistics

FSMs : 28
ROMs : 1

 16x25-bit ROM : 1
Multipliers : 2

 3x3-bit registered multiplier : 2
Adders/Subtractors : 45

12-bit adder : 2 12-bit subtractor : 4 16-bit adder : 3 16bit adder car/out : 2 16-bit subtractor : 1
17bit adder car/out : 1 3-bit adder : 4 32-bit adder : 3 5-bit adder : 2 5-bit subtractor : 2

6-bit adder : 4 6-bit adder car/out : 4 6-bit subtractor : 3 7-bit adder : 3 7-bit addsub : 1
8-bit adder : 2 8-bit adder car/out : 2 8-bit subtractor : 1 9-bit adder : 1

Counters : 128
10-bit up counter : 1 11-bit up counter : 1 12-bit up counter : 4 14-bit down counter :2 15-bit down counter :2
16-bit up counter : 2 2-bit down counter : 1 2-bit up counter : 2 3-bit down counter : 3 3-bit up counter : 4
32-bit up counter : 3 4-bit down counter : 1 4-bit up counter : 8 5-bit down counter : 4 5-bit up counter : 1
6-bit up counter : 1 6-bit updown cntr :82 7-bit up counter : 1 8-bit down counter : 2 8-bit up counter : 1

 9-bit updown cntr :2
Accumulators : 4

12bit updown accmltr:1 2-bit up accmltr: 1 32-bit up accmltr: 2
Registers : 26233

 Flip-Flops : 26233
Comparators : 54

11-bit cmprator >= :5 11-bit comparator < : 4 13-bit cmprator!= : 4 15-bit comparator = : 1 16-bit cmprator = : 2
17-bit cmprator!= : 1 2-bit comparator = : 5 2-bit comparator >= : 1 2-bit comparator < : 2 3-bit cmprator >= : 2
3-bit cmprator <= : 3 32-bit cmprator >= : 4 32-bit comparator < : 5 4-bit cmprator >= : 1 4-bit cmprator <= : 1
5-bit comparator = : 1 5-bit comparator >= : 1 5-bit comparator < : 1 5-bit comparator <= : 5 6-bit comparator < : 1
7-bit comparator!=: 1 8-bit comparator = : 2 8-bit cmparator <= : 1

Multiplexers : 15
1-bit 40-to-1 multiplexer : 5 1-bit 64-to-1 multiplexer : 2 1-bit 8-to-1 multiplexer : 8

Xors : 43
1-bit xor2 : 39 1-bit xor8 : 2 1-bit xor9 : 2

113 | P a g e

Final Register Report

Macro Statistics

Registers : 26084
 Flip-Flops : 26084

Shift Registers : 26
10-bit shift register : 1 12-bit shift register : 1 15-bit shift register : 3 16-bit shift register : 1 2-bit shift register : 10

 24-bit shift register : 1 3-bit shift register : 9

Final Report

Final Results

 RTL Top Level Output File Name : example_design.ngr
Top Level Output File Name : example_design

Output Format : NGC Optimization Goal : Speed Keep Hierarchy : No
Design Statistics

 # IOs : 220
Cell Usage :

BELS : 13570 # GND : 2 # INV : 183 # FDCPE_1 : 8 # FDE : 6808
LUT1 : 389 # LUT2 : 792 # LUT3 : 1258 # FDP : 431 # FDPE : 34
LUT4 : 1924 # LUT5 : 1375 # LUT6 : 6272 # FDR : 937 # FDRE : 16190
MUXCY : 665 # MUXF7 : 76 # VCC : 2 # FDRS : 93 # FDRSE : 379
XORCY : 632 # FlipFlops/Latches : 26367 # FD : 947 # FDRSE_1 : 128 # FDS : 60

FD_1 : 9 # FDC : 59 # FDCE : 15 # FDS_1 : 2 # FDSE : 29
FDCPE : 21 # IDDR_2CLK : 64 # ODDR : 153 # RAMS : 49 # RAMB16 : 4

RAMB18 : 4 # RAMB36_EXP : 41 # Shift Registers : 43 # SRLC16E : 25 # SRLC32E : 18
Clock Buffers : 13 # BUFG : 12 # BUFGP : 1 # IO Buffers : 209 # IBUF : 39

IBUFG : 1 ## IOBUF : 70 # IOBUFDS : 8 # OBUF : 89 # OBUFDS : 2
DCM_ADVs : 2 # DCM_ADV : 2 # Others : 107 # BUFIO : 8 # FIFO36_72_EXP : 2
FIFO36_EXP : 1 # IDELAYCTRL : 2 # IODELAY : 91 # PLL_ADV : 2 # TEMAC : 1

Device utilization summary

Selected Device: 5vlx110tff1136-1
Slice Logic Utilization

Number of Slice Registers 26357 out of 69120 38%
Number of Slice LUTs 12236 out of 69120 17%
Number used as Logic 12193 out of 69120 17%

Number used as Memory 43 out of 17920 0%
Number used as SRL 43

Slice Logic Distribution
Number of LUT Flip Flop pairs used 34418

Number with an unused Flip Flop 8061 out of 34418 23%
Number with an unused LUT 22182 out of 34418 64%

Number of fully used LUT-FF pairs 4175 out of 34418 12%
Number of unique control sets 749

IO Utilization
Number of IOs 220

Number of bonded IOBs 220 out of 640 34%
IOB Flip Flops/Latches 10

Specific Feature Utilization
Number of Block RAM/FIFO 45 out of 148 30%

Number using Block RAM only 45
Number of BUFG/BUFGCTRLs 13 out of 32 40%

Number of DCM_ADVs 2 out of 12 16%

114 | P a g e

Number of PLL_ADVs 2 out of 6 33%
Timing Summary

Speed Grade -1
Minimum period 7.677ns (Maximum Frequency: 130.264MHz)

Minimum input arrival time before clock 3.089ns
Maximum output required time after clock 5.595ns

Maximum combinational path delay 4.526ns
Timing Detail

Total REAL time to Xst completion 798.00 sec
Total CPU time to Xst completion 797.84 sec

Total memory usage is 1052380 kilobytes

:

Utilization by Hierarchy

115 | P a g e

Place and Route

Device Utilization Summary:
Number of BUFGs 13 out of 32 40%

Number of BUFIOs 8 out of 80 10%
Number of DCM_ADVs 2 out of 12 16%

Number of FIFO36_72_EXPs 2 out of 148 1%
Number of FIFO36_EXPs 1 out of 148 1%
Number of IDELAYCTRLs 5 out of 22 22%

Number of ILOGICs 82 out of 800 10%
Number of LOCed ILOGICs 8 out of 82 9%
Number of External IOBs 220 out of 640 34%

Number of LOCed IOBs 181 out of 220 82%
Number of IODELAYs 91 out of 800 11%

Number of LOCed IODELAYs 8 out of 91 8%
Number of OLOGICs 132 out of 800 16%

Number of PLL_ADVs 2 out of 6 33%
Number of RAMB18X2s 4 out of 148 2%

Number of RAMB36_EXPs 41 out of 148 27%
Number of TEMACs 1 out of 2 50%

Number of Slices 9438 out of 17280 54%
Number of Slice Registers 26016 out of 69120 37%
Number used as Flip Flops 26015

Number used as Latches 0
Number used as LatchThrus 1

Number of Slice LUTS 11923 out of 69120 17%
Number of Slice LUT-Flip Flop pairs 30267 out of 69120 43%

Overall effort level (-ol): High
Router effort level (-rl): High

Router Info
Phase 1 : 106772 unrouted; REAL time: 45 secs
INFO: Route: 538 - One or more MIG cores have been detected in your design and have been successfully placed and routed. These
MIG core(s) have critical skew and delay requirements that are independent of the user (UCF) timing constraints. These MIG-related
timing constraints have been successfully met in this design. However, the user must verify separately that all timing constraints
specified in the UCF file have been met.
Phase 2 : 95314 unrouted; REAL time: 51 secs
Phase 3 : 39787 unrouted; REAL time: 1 mins 39 secs
Phase 4 : 39806 unrouted; (Setup:0, Hold:872, Component Switching Limit:0) REAL time: 1 mins 49 secs
Updating file: example_design.ncd with current fully routed design
Phase 5 : 0 unrouted; (Setup:0, Hold:865, Component Switching Limit:0) REAL time: 2 mins 25 secs
Phase 6 : 0 unrouted; (Setup:0, Hold:865, Component Switching Limit:0) REAL time: 2 mins 25 secs
Phase 7 : 0 unrouted; (Setup:0, Hold:865, Component Switching Limit:0) REAL time: 2 mins 25 secs
Phase 8 : 0 unrouted; (Setup:0, Hold:865, Component Switching Limit:0) REAL time: 2 mins 25 secs
Phase 9 : 0 unrouted; (Setup:0, Hold:0, Component Switching Limit:0) REAL time: 2 mins 27 secs
Phase 10 : 0 unrouted; (Setup:0, Hold:0, Component Switching Limit:0) REAL time: 2 mins 31 secs

Total REAL time to Router completion: 2 mins 31 secs
Total CPU time to Router completion: 2 mins 31 secs

116 | P a g e

Clock Report

Clock Net Resource Locked Fanout Net Skew(ns) Max Delay(ns)
clk75 BUFGCTRL_X0Y25 No 3123 0.588 2.120

frame_buffer/clk0 BUFGCTRL_X0Y26 No 3127 0.579 2.108
tx_clk_0 BUFGCTRL_X0Y12 No 879 0.544 2.126

frame_buffer/clkdiv0 BUFGCTRL_X0Y28 No 476 0.542 2.075
AC97_clk_BUFGP BUFGCTRL_X0Y4 No 31 0.189 1.783
CLK_100_IBUFG BUFGCTRL_X0Y0 No 123 0.348 2.055

frame_buffer/clk90 BUFGCTRL_X0Y27 No 121 0.327 2.111
rx_clk_0_i BUFGCTRL_X0Y29 No 50 0.427 2.090

refclk_bufg_i BUFGCTRL_X0Y10 No 5 0.155 1.723
frame_buffer/clk200 BUFGCTRL_X0Y5 No 10 0.278 1.896

o/delayed_dqs<0> IO Clk No 17 0.095 0.419
o/delayed_dqs<1> IO Clk No 17 0.083 0.380
o/delayed_dqs<2> IO Clk No 17 0.101 0.425
o/delayed_dqs<3> IO Clk No 17 0.107 0.404
o/delayed_dqs<4> IO Clk No 17 0.101 0.425
o/delayed_dqs<5> IO Clk No 17 0.101 0.425
o/delayed_dqs<6> IO Clk No 17 0.096 0.393
o/delayed_dqs<7> IO Clk No 17 0.101 0.425

* Net Skew is the difference between the minimum and maximum routing only delays for the net. Note this is different from Clock
Skew which is reported in TRCE timing report. Clock Skew is the difference between the minimum and maximum path delays which
includes logic delays.

* The fanout is the number of component pins not the individual BEL loads, for example SLICE loads not FF loads.

Timing Score 0 (Setup: 0, Hold: 0, Component Switching Limit: 0)
Peak Memory Usage 939 MB

Placer Placement generated during map
Routing Completed - No errors found
Timing Completed - No errors found

Number of error messages 0
Number of warning messages 0

Number of info messages 2

117 | P a g e

5.3 PERFORMANCE

Before we begin commenting and eventually concluding on the hardware performance
we ought to clear out a few things first. The system we developed in our FPGA board operates
exclusively the way we have designed it to. There are no side processes to be taken care of or
other entities consuming the board's computing resources. So, a critical point on the hardware
performance is whether it is able to handle and process any incoming events.

The “data consuming” peripherals such as the monitor or the speakers, are connected to
interfaces that feed them with a standard amount of information no matter the input on our
system might be. So, as long as our system is working, the performance of these devices is
guaranteed to be stable and satisfactory, leaving these interfaces out of the performance question.
Specifically, monitor operates at 70Hz with 1024 x 768 resolution or ~157MB/s bandwidth.
Speakers operate at 48 KHz with 4 bytes sample resolution or ~187.5KB/s bandwidth.

Moving on, we have to conclude on the other interfaces keeping in mind that they are
handling spontaneous events, such as the creation of mouse events or a change on the audio
stream which we are receiving from the Cloud. Every test so far gave us good results, which
means that the Ethernet, RAM and PS/2 interfaces are able to handle the amount of incoming
information and transform them into a stable stream of information to the “data consuming”
peripherals or through the internet to the Cloud.

Judging by the incoming stream of data in our system, we can assume that our Thin Client
is able to handle the tasks we have assigned to it, whilst occupying a small amount space on the
FPGA board, which is whole point of our Thesis.

The main goal of the software application we designed was to carry out the task of
managing the incoming stream of events from the Client and produce and deliver the “feedback”
stream. As we can see on the measurements Chapter 5.1, our application is consuming a fair
amount of computing resources while operating under the most difficult conditions. Even though,
our multi-thread approach gave us ability to handle perfectly aspects such as the incoming
peripheral simulation events. The thing that our application struggled the most to handle, was
clearly the FPS.

118 | P a g e

6. LESSONS LEARNT

6.1 CRITICAL PROBLEMS AND ISSUES

6.1.1 CHIP INTERFACING

In this Chapter we will be making a sort list containing all kind of difficulties and obstacles
we have faced in our effort to interface our proposed hardware system with the board's physical
ports. Some problems occurred because of our unfamiliarity with the proper way that some
devices operate. That was the case with the AC97 interface and the Ethernet's Marvell interface,
and that is the reason we will not be mentioning any issues concerning these two interfaces.

 DVI

Let's begin with the DVI interface. Digital Visual Interface is not a popular interface in the FPGA
world since most boards come with a VGA port. The driver support on the DVI port is almost
nonexistent and we had to use the interface from another Verilog project we found on the
Internet. Still, changes needed to be made in order to come up with a working monitor interface.

Our board is equipped with a Chrontel 7301C chip which is responsible to feed the physical
DVI port with the pixel values needed. Our first task was to turn on this chip and instruct it to
initialize the communication between our system and the DVI port. The Chrontel chip accepts
commands through an I²C bus which operates in each own protocol. Learning this protocol and
sending the right initialization commands was the very first challenge we faced.

According to the XPS Thin Film Transistor (TFT) Controller, we had to send a series of
commands to the chip's registers concerning the Power Management, the Digital to Analog (DAC)
register and the PLL adjustment. We chose the settings that best fit our design's prerequisites but
came up to “dead end”. We end up having two different set of initialization commands that both
appear to have normal results. However, after a certain amount of operation time, glitches begin
to appear on our monitor that eventually mess up with the screen drawing timings. The problem
persists even when we reset the device. But, if we synthesize the design from scratch using the
other set of initialization commands, the problem disappears. This weird behavior leads us to the
conclusion that either the Chrontel chip suffers from a malfunction, either we are unable to
initialize the chip correctly.

119 | P a g e

The second problem we faced with this interface had to do with the color resolution. This
driver was designed to draw pixels using a 6-bit color model, which is not acceptable in our case.
Our Cloud server sends frames with 24-bit pixel resolution, so we had to find a way to feed the
chip with 8-bit color. The challenge was, that even though the Chrontel Manual explicitly
mentioned the right timings to send each color's bits, our driver's manual was not very clear on
that issue. We were forced to take an educated guess with the color's bits order, but finally we
found the proper way to feed the chip with data.

 PS/2 - USB

Starting the design process, our intention was to use the board's USB port to interface with the
peripheral devices, mouse and keyboard. Luckily enough, our research prevented us from actually
trying to implement the USB interface, and here is why.

We had to choose an FPGA board to design our system in, but every available option was
equipped with only one USB port. It was only logical then, to seek a combo device that could
handle both peripherals, or a wireless USB receiver. The problem was that both these type of
devices used a USB Hub model to exchange data with the system they're connected to. We were
left two options: either design a USB Hub interface from scratch, or choose another port/protocol
to interface with our peripherals.

Keeping in mind that in a future expansion of our system, we may need a USB port to connect
portable flash drives or other types of peripherals, we chose to use the board's PS/2 ports. This
protocol may be outdated but in our effort to get the best out of our board, it was great choice.

120 | P a g e

 RAM

The biggest challenge we faced was to find adequate memory inside our board to store one
frame from the Cloud Server. Since the image resolution is 1024x768, with 24-bit color resolution,
we needed ~2.25 MB of memory. Our miscalculation of the FPGA's max memory capacity led us to
believe that we will not need an external source of memory. To correct this mistake we began
searching for an alternative way to store and access data, fast enough.

Random Access Memory was the device of our choice. Xilinx has developed the Memory
Interface Generator (MIG) in order to implement the correct memory interface for our board. The
first major problem was the luck of support concerning the UCF files. The example designs were
assuming a specific design pattern, which in our case did not match our own. With the help of
the Xilinx Community we managed to find the correct setting and finally enable the RAM in our
system.

The final problem we solved had to do with a slight in MIG manual. While embedding the MIG
interface in our design, we chose to not use Data Masking for reasons of simplicity. The auto
generated Verilog file does not contain a connection port for the Data Mask bits of the device, and
nowhere in the manual is mentioned in what logic level we have to tie the Data Mask pins in our
board, high or low. Again, the Xilinx Community solved this issue for us and we were able to test
our design without risking the integrity of our device.

121 | P a g e

6.1.2 PROGRAMMING IN WINDOWS 8.1

Developing and designing a system on Windows 8.1 OS was a challenge on its own. The
problem does not lie only on the OS, but also on the support that companies provide on their
designing tools.

First of all, the tool we are using to develop the hardware part of system is Xilinx ISE 14.7.
This platform is not yet supported in the new Windows OS so while working on it, several bugs
appeared. The most important ones, were the fact that we were unable to open a new window
dialog in case it was needed (e.g. Open New File), and we were also unable to synthesize our
design. Eventually we were forced to replace some software libraries with older version of the
platform.

Our choice for the software designing tool was Microsoft's Visual Studio, since we are
programming in the C# language. Our need for access to the rendering process of the computer
screen and our need to apply graphical changes to the OS, is something that Windows 8.1 do not
easily cover. In order to develop an application with that kind of authority over the OS, we had
to authenticate the project before actually running it.

Specifically, when simulating keyboard strokes we noticed that the Alt + Tab command
was not executed, whilst the Alt + Esc command was working fine. After several hours of research,
we found out that Windows 8 do not permit a user developed program to apply graphical changes
to the OS. In our case, a little panel is drawn on top of the screen every time the Alt + Tab
combination is pressed, that contains all the active windows of the OS. And that was the problem.
The simulated command was issuing a draw command to the OS which our program was not
permitted to do so. Eventually, we compromised with the use of the Alt + Esc combination only.

The same denial of access to the OS drawing process, combined with the fact that our laptop
recognized the embedded Intel Graphics Card as the primary one, was the problem with our effort
to directly access the Direct X API. However, we bypassed this problem too, by importing the Slim-
DX library. Not only it is a light-weight library but it saved us the trouble from authenticating
our application.

122 | P a g e

6.2 OTHER CHALLENGES

Here we will be discussing some random challenges we faced throughout the design
process, that did not really belong to the previous chapters, but might be useful to anyone that
might want to migrate our design to different board or run our software on different PC or OS.

 Gigabit Ethernet seems to be a common communication port nowadays, but that is a
misconception. Neither our laptop, nor our router were equipped with a Gigabit Ethernet
port, so we had to improvise. The only port with an equal or bigger bandwidth than the
Gigabit Ethernet on our laptop, was a USB 3.0 port. A brief internet search led us to an
Ethernet to USB adapter that simply transformed our USB port to an Ethernet one!

 We started designing our application with the false notion that running a software was a
deterministic process. That is not always the case though. To send UDP packets through the
Ethernet port, using the Ethernet protocol, we instantiated software sockets. We falsely
assumed that if the socket accepts the few thousand packets we are sending to it, they will
eventually be delivered to the network. Whether they will reach their destination is a
completely different story.

The fact is, that if an error occurs during the socket's try to send these packets, our
application will never have any indication. So, we were forced to assume an upper limit
to the socket's incoming data bandwidth in order to manually prevent the data overflow
that may occur. And we were right, since the Ethernet protocol does not have the same
throughput as a software application. It was hard to readjust the data flow in our
application and even harder to redesign the whole hardware system in order to increase
its error tolerance.

 Another “network” issue was the UDP's minimum length. When we first captured the
signals from the peripheral devices, we attempted to transfer these information through
Ethernet frames. These frame's minimum length is 64 bytes (14 bytes header, 4 checksum,
46 data section). These 46 bytes will hold the IP header which is 20 bytes long, plus the
UDP header which is 8 bytes long. That leaves us with a 46 – 28 = 18 bytes long data
packet at minimum. These data bytes have to be filled, otherwise they will be padded with
zeroes. Going back to our captured signals, the information we attempted to transfer was
less than 18 bytes, and that was quite confusing while crosschecking the results via
Wireshark. Eventually, we added a few extra bytes as a header of our own, in order to
fulfill the minimum length requirement. We also took care not to surpass the MTU
(Maximum Transmission Unit) which is 1500 in the Ethernet Frame Protocol.

123 | P a g e

 As explained in section Mouse of the Chapter 4.2.2, the process of resetting and initializing
the mouse device is bit more complex than just issuing a single reset command. We were
able to enable the data transmission from the mouse to the FPGA board through a series of
commands, but we also experienced an inconsistency. Specifically, there are times where
the mouse initialization commands have no effect in the mouse's state and we need to
resend them by resetting the whole system. It is possible though, that the problem lies on
the physical device we are using as a mouse, so there's not much we can do in this case.

 The keyboard device also offered some challenges. Every keyboard device is equipped with
three indication lights concerning the state of the Caps Lock, Scroll Lock and Num Lock
buttons. We assumed that pressing on of these buttons would trigger an inner mechanism
of the keyboard that would light up the corresponding LED light. But that is not the case,
since we have to monitor the entire data flow and locate the events that suggest the
pressing of one these three keys. Then, it is our responsibility to send the right commands
in order to instruct the keyboard to light up the right LED light.

Another keyboard issue was the possibility of simulating numerous keyboard events in a
tiny time gap. The internet network does not guarantee the on schedule delivery of the
packets, so it is possible that some packets may be delayed. Our application stores all
incoming packets in a Queue structure before handling them. In some scenarios, the polling
thread may receive two consecutive packets with keyboard events and place them on the
Queue. When the serving thread begins its execution in its own quantum of time, two
events will be popped from the Queue and will be served with a tiny time difference. That
may cause trouble since all keyboards have a standard character repeat rate that we're
exceeding by sending keystrokes too fast, leading to possible loss of information.

 The AC97 interface we are using in our proposed system accepts 16-bit resolution samples
for each channel. The library we are using in our software application records audio at
32-bit float resolution, so the mismatch is obvious. We had to transform the captured
format to a new waveform with 16-bit resolution samples, but the compatibility was
questionable. Finally, through the NAudio community we found a way to apply the
transformation without losing too much information.

 Finally, we had to choose between two different screen capturing methods, the GDI method
and the Slim-DX method. The main advantage of the GDI method was the ability to draw
the mouse pointer on top of the image, something that Slim-DX is not able to do. We tried
to find a workaround but the resources needed and the delay that was introduced in the
streaming process, led to pick the Slim-DX even if our system does not support mouse
pointer for the time being.

124 | P a g e

7. CONCLUSION AND FUTURE WORK

7.1 CONCLUSION

The goal of the thesis was pretty simple. Even though devices with the same theoretical
concept already exist (terminals) we wanted to create a Thin Client that is not limited to a local
network, and also supports the new features of I/O interaction between user and machine.

And we achieved that. Our design is fully functional and ready to remotely access every
PC with a static IP address in its possession. Peripheral simulation runs smoothly and flawlessly
as does the sound and video stream. We encountered some FPS issues but that is an obstacle that
can be surpassed.

Specifically, every mouse event, clicks and movement, is successfully transmitted to the
Cloud Server in 24 byte long packets. Cloud Server decodes them and simulates the peripheral
commands it receives. The recorded audio that is streamed has a quality of 48 KHz, better than
studio CDs. The video stream reaches 19-20 FPS in mostly inactive states, but drops to 2-3 FPS at
the weakest point of our encoding algorithm.

Our Thin Client operates as expected, but that does not mean there is no room for
improvement. As explained in the following chapters, some concepts of the theoretical
background need to be reevaluated, such as the way our current networks are constructed, and
some practical issues can be addressed and rise the user experience to a new level.

Many challenges were faced and many problems were solved, especially regarding the
reuse of many hardware interfaces. Modules and concepts that were being used so far to interface
devices with the FPGA, turns out that they were being designed mainly for integrating them to
systems equipped with a processor but that was not our case. Simple modifications were made in
order for them to operate the way we wanted. This process was extremely educating for us
because it brought up many issues and limitations that our initial design had. Overcoming these,
actually shed more light on our solution and helped us readjust critical parts of our design which
finally led to a fully functional Thin Client implemented in the FPGA.

All in all, the most important thing to learn from this thesis, is to think outside the box. The
whole concept of this thesis has no point considering how most of our computing devices work
nowadays. But it brought up some unused space, a gap ready to be utilized and be exploited in
order to handle computing and energy issues from a different perspective.

125 | P a g e

7.2 FUTURE WORK

In this chapter we are trying to list any possible future work that may be related to our
design. As it was mentioned before, we are dealing with a physical design and not a theoretical
concept and that leaves a lot of room for research. Now that we established that is actually
possible to introduce a new level of abstraction in the user - machine interaction scheme, a lot of
new topics are open for debate.

First of all, it is the new global network topology. The Internet is a global system of
interconnected computer networks that use the standard TCP/IP protocol to link several billion
devices worldwide. It is a network of networks that consists of millions of private, public,
academic, business, and government networks of local to global scope, linked by a broad array of
electronic, wireless, and optical networking technologies.

The first major change concerns the sum of active Internet connections. By transforming
all clients to simple data representation devices, the only ones in need of accessing the Internet
data are the Servers, members of the Cloud. The data path of every webpage starts at the Web
Server and reaches only the Cloud Servers, which are now responsible for delivering these data
to the real clients. A strongly established connection between Web and Cloud Servers leads to
simpler, faster and more stable Internet connection for the Clients.

Now, let’s dig into some traits of the Cloud-Clients connection. Since most of the data Clients
are sending through the Internet is produced from the peripheral devices, for example mouse
actions, chat text, video calls, nothing is expected to change from this point of view. But we will
have to exclude file sharing from this model. Files will be physically stored to the Cloud Servers
so the Clients will only be sending commands for the file transfer which will take place inside
the Cloud! Regarding the incoming data rate, as discussed before, the Clients are merely data
representation devices. With the implementation of new frame capturing algorithms, the required
data rate can be pretty much standard since the stream is active all the time. Burst data transfers
will not be that common in our model, so the connections that are established between the routers
in the network should be reconsidered.

Moving on, since our main form of communication is a media stream, the encoding should
be taken into account. Our application takes for granted that the network bandwidth will always
be enough, but that is not the case most of the times. New encoding / decoding algorithm may be
needed to be developed to tackle this issue, while keeping in mind that the workload should not
be devastating for the Cloud Servers, and that our design does not have the required computing
power to decode complex video or sound streams.

http://en.wikipedia.org/wiki/Computer_network

126 | P a g e

That brings up another question, whether it will be viable to incorporate a graphics card
in our design and instead of streaming the whole video data, rendering commands will be sent
and the frame data will be drawn locally. And since the OS of the Cloud Servers will not have to
draw the pixel screen, it makes screen support an unnecessary feature for them. That along with
some safety issues, regarding the remote connection, are some of the topics to be examined in the
Cloud OS functionality.

7.3 SUGGESTIONS AND IMPROVEMENT

In the process of implementing our design, we noticed a few things that could be improved
and touch up the experience of remotely connecting to our PC. Every concept is examined
separately in an attempt to add more depth in our design.

 Features like the mouse and keyboard simulation are working flawlessly on the FPGA side.
In our app, we faced some difficulties programming for the Windows 8 OS. Windows 8
prevent user applications from making graphical changes by issuing keyboard commands.
That means that sending the Alt + Tab command, which draws a little window to screen
with all running applications to choose one and bring it to the foreground, is not allowed.
Authenticating this application in order to be considered a trusted one, may solve this
problem.

 While the AC 97 chip plays the audio stream perfectly on the FPGA and the NAudio library
records all audio events in the sound card flawlessly, it would be nice to include some
features in our design that alter the recording and playback experience. Right now, the
sound stream can be turned on/off from the application but it would be convenient to
have this option to the FPGA too. Finally, users may desire to choose a different recording
encoding, a new samples per second rate or the number of channels recorded (Stereo -
Mono).

 Finally, there is a lot of room for improvement regarding the frame stream. Although our
encoding algorithm is a simplified version of MPEG, the use of a new one could increase
the FPS which is struggling a lot when data need to be delivered to the FPGA. On top of
that, the mouse pointer is a must-have feature in modern PC’s and a new way of drawing
it on the screenshots should be implemented. This task that can be assigned to the FPGA
and not our C# application.

Continuing, a list of suggestions that can expand the functionality and usability of our design
is proposed. These suggestions aim towards concentrating enough workload to complete another
thesis, and hopefully address or examine some of the issues mentioned before.

127 | P a g e

 First on the list, is the improvement of the theoretical background. Encoding algorithms
need to be reexamined along with an overall optimization of the system. Especially in the
software, bottlenecks should be located and resolved while in the hardware a better
clocking distribution should be considered. Reducing the slices occupied in the FPGA will
be a big deal, alongside with a lightweight software application that allows user to fully
take advantage of the computing power of the Cloud Server he is connected to.

 Last but not least, Ethernet packet distribution in the software side should be monitored
and adjusted all the time. Using Gigabit Ethernet, every packet or frame has a maximum
physical size of 1538 Octets. That leads to a Max Frame Rate of 81274 Ethernet FPS, since
we are not using Jumbo Frames. It is possible that our application may produce data in a
faster rate, which leads to packet loss inside the network since sockets cannot handle the
amount of incoming data. More on that issue on the Chapter 6. Displaying more statistics
about the this issue and the data flow inside the application in general will allow the user
to make the required tweaks in order to ensure the steady operation of our design.

 Moving down the list, we encounter some more practical suggestions. USB was designed
to standardize the connection of computer peripherals and it has become a commonplace
on almost every device. It is only logical that USB support should be included in our design.
First, USB Hub should be an option since most of the mouse and keyboard devices come in
combo (a single USB receiver is used to communicate with both peripherals). Second, USB
peripherals like web cameras, printers and external hard disk drives are used quite
frequently in our everyday life and it is essential for the user to be able to use them in
this new scheme we are introducing. The basic idea will be the same and all
communication data will be streamed from/to the Cloud according to the USB protocol.

 At the bottom of the list are sitting the screen upgrades/suggestions but their importance
is fundamental in our effort to improve the user experience. HDMI is the new video/audio
interface for monitors and screens, so it should be included in our design. It also has the
benefit that it can transfer sound as well alongside with the video data. More screen
resolutions should also be available to the user to choose from. Finally, a very simple
starting menu (no reason to increase the complexity of our Thin Client) should be included
in our design with a few specific options for the user, such as: Insert target IP address,
target port number, username and password. In case the FPGA has no LED indicators, some
statistics about the driver state (Ethernet, RAM, DVI, AC97) would be a useful feature.

128 | P a g e

8. USER GUIDE

8.1 SOFTWARE INSTALLATION

Currently there is no installer for the Windows 8 App that’s used in this thesis. There are
some critical DLL files that need to be in the same location as the executable file. These libraries
are:

Slim-DX DLL’s Used from Slim-DX in order to build the video stream.
NAudio DLL’s Used in order to record sound & build the sound stream.

MetroFramework DLL’s Used in the application’s GUI.

The peripheral actions simulations require a Windows Library, User32.dll. In most systems,
linking to this library won’t be an issue.

Here is a complete list of the libraries needed:

Assimp64.dll NAudio.dll
AssimpNet.dll NAudio.WindowsMediaFormat.dll
MetroFramework.dll SharpDX.dll
MetroFramework.Fonts.dll SlimDX.Dircet3D9.dll
MetroFramework.Design.dll User32.dll

The application was designed, debugged and tested using Visual Studio 2012 in the
Windows 8 environment. Its behavior may be unpredicted if run in other operating systems.
Other than that, the DLL libraries and the .exe file are the only prerequisites needed to launch the
application.

129 | P a g e

8.2 SOFTWARE MANUAL

Upon launch, user is greeted in the starting screen where the current version of the
application is found, along with a “Start Application” button. After the Start command is issued,
the application is loading some assets and the GUI is initialized. The functionality of the app is
categorized in five tabs. Let’s examine every possible action the user can take:

130 | P a g e

8.2.1 GENERAL SETTINGS

It is advised to check on your system’s current IP address by issuing the ipconfig command
in the Windows CMD, and crosscheck with the IP that is displayed on this tab. Remember that this
is the IP that the FPGA needs in order to remotely connect to this PC.

The user is given the option to complete the following forms, and update some connection data:

 Username: The FPGA device sends some authorization data in order to connect with the
app, and one of these is a username. Changing the default value will restrain the FPGA
from interacting with this app.

 Target IP: This is the IP address that the app’s sockets send the data to.
 Port #: This is the port number that the app’s sockets send the data to.

131 | P a g e

 Save Changes button will make any alterations permanent. The button’s color will change
to notify the user that the action was completed.

 Start Streaming enables the server behavior of the app where the connection between PC
and FPGA is established. Upon receiving the right authorization, the app starts streaming
data through the Internet.

 Stop Streaming is visible once the Start button has been pressed. User is given the option
to terminate the stream.

8.2.2 SCREEN

132 | P a g e

 Screen Resolution The only resolution supported is 1024x768. Any other value indication
may lead to malfunctions.

 File Type and Bits per Color.
 User is given the option to turn on/off the video stream.
 User can choose between two frame capturing methods. DirectX uses the Slim-DX Library

methods, while GDI uses Windows Graphic Device Interface. GDI encapsulates the mouse
drawing on the screenshots. Warning: This option reduces performance drastically.

8.2.3 SOUND

133 | P a g e

 Sound Recording Encoding The NAudio Library records sound in 16 bits long float samples.
 Sample Rate The default value is 48KHz which is greater than CD’s.
 Channels Both channels (Right,Left) are recorded [Stereo].
 User is given the option to turn on/off the sound stream.
 User is given the option to adjust the recording volume [0-1 range in float format]. This

option should not be confused with the speaker volume as it only affect the volume of the
sound stream and not the PC’s native sound.

8.2.4 PERIPHERALS

 User is given the option to turn on/off the peripheral (mouse, keyboard) data reception.

Warning: Devices with USB Hub are not supported. Although, a USB to PS/2 switch can be used
for USB devices without Hub.

134 | P a g e

8.2.5 STATISTICS

All streams are cut into smaller chunks in order to be sent from the sockets. These chunks are
called packets. Knowing the packet size allows us to measure the bit rate of every stream.

Packets / sec How many packets of data are sent through the sockets.
Actions / sec How many peripheral actions are received.
Frames / sec How many frames are examined.

Bit Rate (KB/s) Calculated using this formula:

(# packets * packet size) / 1024. Packet size is given in Bytes.

Video packet size 100
Audio packet size 960

Peripheral event packet size 24

135 | P a g e

8.3 FPGA-PC CONNECTION

For the FPGA programming check Chapter 8.4

Our devices are connected through the Internet, so theoretically there is no need for
physical connection between them. Both of them are connected with a router to access the
network. Warning: The router must support 1 Gigabit Ethernet connections.

If the Cloud Server is accessing the Internet with a Static IP address provided by the ISP,
then the FPGA can identify its target and exchange packets with it. Nowadays most ISP’s provide
Dynamic IP addresses to their subscriptions so it is impossible for the devices to identify each
other and remotely connect.

Another more viable option to test this design is to connect both the devices with an
Ethernet cat6 cable. Both of them are assigned with Local IP address and is easier to operate.
Although, the FPGA needs to use the ARP Protocol to establish itself on the network and the routing
tables.

8.4 PREPARING FPGA

First of all, physical connections need to be established.

o Connect the DVI cable to the DVI port of the FPGA.
o Connect the jack speaker cable to the Line Out port. Headphones port can be used too.
o Connect the PS/2 peripherals, mouse and keyboard.
o Connect the JTAG to USB peripheral which is used to program the FPGA.
o Connect the power plug.

The target’s (Cloud Server) IP address and port number have to be known beforehand. Locate these
parameters in the TX Data and RX Data Verilog files and change them accordingly. Then regenerate
the design. Next step is to turn on the device and download the .bit to the FPGA. Finally, iMPACT
is used to program the FPGA with our design.

136 | P a g e

8.5 FPGA UI

After completing the steps described in Chapter 8.4 the FPGA is ready for the remote connection.
The User Interface is pretty straightforward:

o Top push-button sends the reset signal to device.
o Middle push-button sends the authorization packet in order to remotely access the Server.

Here’s a table with LED debugging information:

 On Off
LED 0 Keyboard Working Reset the device
LED 1 Mouse Working Reset the device
LED 2 Ethernet Working Check cable connection
LED 3 AC 97 Working Reset the device
LED 4 RAM Working Check RAM placement
LED 5 Screen Working Reset the device
LED 6 Connection Successful Check LED 2 & Chapter 8.3
LED 7 Streaming Online Check LED 2

Ethernet Chip (Marvell 88E1111) has its own LED interface on the FPGA.

137 | P a g e

BIBLIOGRAPHY

[1] An Analysis of Power Consumption in a Smartphone, Aaron Carroll - Gernot Heiser.

[2] Implementation Scenario for Teaching Partial Reconfiguration of FPGA. Pierre Leray, Amor Nafkha,Christophe Moy

[3] Implementing a Real Time Music Pedal in FPGA, Thanos Sariggelos, Efstathios Alexandros Karatzaferis

[4] Streaming Media – Wikipedia

[5] Remote Desktop Software – Wikipedia

[6] Ethernet Protocol – Wikipedia

[7] UDP Protocol – Wikipedia

[8] ARP Protocol – Wikipedia

[9] Digital Video Interface - Wikipedia

[10] XPS Thin Film Transistor (TFT) Controller, (v2.01a), December 02, 2009 - Xilinx

[11] Xilinx High-Performance DDR2 SDRAM Interface in Virtex-5 Devices - XAPP858 (v2.2), September 14, 2010

[12] ML505/ML506/ML507 Evaluation Platform User Guide Xilinx [UG347] (v3.1.2) May 16, 2011

[13] Virtex-5 FPGA Embedded Tri-Mode Ethernet MAC User Guide UG194 (v1.10) February 14, 2011 Xilinx

[14] Memory Interface Solutions User Guide UG086 (v3.6) September 21, 2010 Xilinx

[15] CH7301C DVI Transmitter Device Datasheet - 2010

[16] LM4550 AC ’97 Rev 2.1 Datasheet May 2004

[17] PS/2 Core in Verilog, Piotr Foltyn, OpenCores.org

[18] AC 97 Core + Interface, Javier Valcarce.

[19] FPGA NES System, by Brian Bennett 2012

[20] TX Data Verilog File + IP Header Checksum, Joel Williams.

[21] NAudio Library, Mark Heath

[22] MetroFramework Library, Sven Walter, Dennis Magno

[23] Slim-DX Library, 2009-2011, Slim-DX Group.

